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ABSTRACT 

 
Unsteady quasi-one-dimensional and two-dimensional 

cavitating nozzle flows are considered using a homogeneous 
bubbly flow model. For quasi-one-dimensional nozzle flows, 
the system of model equations is reduced to two evolution 
equations for the flow speed and bubble radius and the initial 
and boundary value problems for the evolution equations are 
formulated. Results obtained for quasi-one-dimensional nozzle 
flows capture the measured pressure losses due to cavitation, 
but they turn out to be insufficient in describing the two-
dimensional structures. For this reason, model equations for 
unsteady two-dimensional bubbly cavitating nozzle flows are 
considered and, by suitable decoupling, they are reduced to 
evolution equations for the bubble radius and for the velocity 
field, the latter being determined by an integro-partial 
differential system for the unsteady acceleration. This integro-
partial differential system constitutes the fundamental equations 
for the evolution of the dilation and vorticity in two-
dimensional cavitating nozzle flows. The initial and boundary 
value problem of the evolution equations are then discussed 
and a method to integrate the equations is introduced. Due to a 
lack of an algorithm to compute two-dimensional bubbly 
cavitating flows presently, the numerical simulation of 2D 
cavitating nozzle flows is obtained by the CFD-Tool CATUM, 
which is based on an equilibrium phase transition model. 
Results obtained for a typical cavitation cycle show 
instantaneous high pressure pulses at instances of cloud 
collapses. 

INTRODUCTION 
 
Cavitating flows through converging-diverging nozzles 

have direct applications in ducts and venturi tubes as well as in 
Diesel injection nozzles. The first model of bubbly liquid flow 
through a converging-diverging nozzle was proposed by 
Tangren et al. [1] using a barotropic model. The problem has  

 
been reconsidered by Ishii et al. [2] by taking into account 
unsteady effects, but still neglecting bubble dynamics. A one-
dimensional continuum bubbly flow model that couples 
spherical bubble dynamics to the flow equations was proposed 
by van Wijngaarden [3,4] and was later employed in 
investigating shock wave structure [5]. Quasi-one-dimensional 
steady-state solutions of bubbly cavitating flows through 
converging-diverging nozzles have also been investigated using 
the continuum bubbly mixture model [6,7] by assuming that the 
gas pressure inside the bubble obeys the polytropic law and by 
lumping all damping mechanisms by a single damping 
coefficient in the form of viscous dissipation. These 
investigations have demonstrated that steady-state solutions are 
possible only for some range of the cavitation number, with the 
rest of the parameters kept fixed. Moreover, a recent 
investigation [8] shows that the temporal stability of these 
quasi-one-dimensional steady-state solutions suffer from being 
very sensitive to slight unsteady perturbations. A numerical 
investigation of unsteady quasi-one-dimensional bubbly 
cavitating flows have also been carried out [9] showing the 
possibility of propagating bubbly shock waves in the diverging 
section of the nozzle. 

The aim of this investigation is to give a detailed 
qualitative as well as quantitative analysis of unsteady quasi-
one-dimensional and two-dimensional cavitating nozzle flows. 
For this reason we first discuss the homogeneous bubbly flow 
model previously introduced for quasi-one-dimensional steady-
state and unsteady cavitating nozzle flows [5-9]. In this case, 
the system of model equations is reduced to two evolution 
equations for the flow speed and bubble radius and the initial 
and boundary value problems for the evolution equations are 
formulated. In this case a numerical algorithm is constructed 
for the solution of the initial and boundary value problems of 
evolution equations. Results obtained for quasi-one-
dimensional nozzle flows capture the measured pressure losses 
due to cavitation, but they turn out to be insufficient in 
describing the two-dimensional structures such as the formation 
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and development of the attached cavity, the formation of the re-
entrant jet and bubble cloud shedding and collapse. For this 
reason model equations for unsteady two-dimensional bubbly 
cavitating nozzle flows are considered and, by suitable 
decoupling, are reduced to evolution equations for the bubble 
radius and for the velocity field, the latter being determined by 
an integro-partial differential system for the unsteady 
acceleration. More importantly, this integro-algebraic partial 
differential system seems to form the fundamental equations for 
the evolution of the dilation and vorticity. In particular, the 
evolution equation of vorticity is shown to be precisely 
Fridman’s equation of vorticity [10], containing terms arising 
from non-barotropic flow. The initial and boundary value 
problem of the evolution equations are then discussed and a 
method to integrate the equations is introduced.  Unfortunately, 
the quantitative results of such a numerical algorithm are not 
yet available. Therefore, the quantitative results for 2D flows 
were obtained by an equilibrium phase transition cavitation 
model algorithm (CATUM), which has especially proved 
fruitful in capturing wave dynamics [11-14].  Results obtained 
for a typical cavitation cycle show instantaneous high pressure 
pulses at instances of cloud collapses.  

  
MODEL EQUATIONS FOR UNSTEADY BUBBLY 
CAVITATING   NOZZLE   FLOWS  

 
In this section we introduce the quasi-one-dimensional and 

the two-dimensional model equations of bubbly cavitating 
nozzle flows.   

 
A. QUASI-ONE-DIMENSIONAL FLOWS 

 
We consider an unsteady quasi-one-dimensional cavitating 

nozzle flow and we assume that the initial distributions, inlet 
conditions and nozzle geometry are such that cavitation can 
occur in the nozzle. We use a slightly modified version of the 
homogeneous bubbly mixture model [3-9]. In this model the 
slip between the bubbles and the liquid as well as the creation 
(nucleation and bubble fission) and coagulation of bubbles are 
neglected and spherical bubbles are assumed. These 
assumptions have been specifically addressed [15-22] and can 
be taken into account by an improved model. The quasi-one-
dimensional unsteady nozzle flow equations then take the form  
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The above equations are supplemented by a modified Rayleigh-
Plesset equation for spherical bubble dynamics, which takes 
bubble/bubble interactions into account in the mean-field as 
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where Λ  denotes the bubble/bubble interaction parameter 
defined by 

                               r
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with ∆r' denoting the radius of influence of interacting bubbles 
from the center of any fixed bubble [7,23]. In eq. (5) a 
polytropic law for the expansion and compression of the gas 
inside the gas/vapor bubble is used and all damping 
mechanisms, in an ad hoc manner, [24-27] are assumed in the 
form of viscous dissipation, characterized by a single viscosity 
coefficient  µ'eff .   Using the normalization 
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eqs.  (1)-(5)  take the normalized form 
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where L is the ratio of micro scale to macro scale defined by 
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κi is a parameter defined in terms of the inlet void fraction βi by 
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S0 is the non-dimensional surface tension coefficient defined by 
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and Re is a typical Reynolds number, based on the overall 
damping coefficient µ′eff, and is defined by 
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Furthermore, by eliminating the void fraction β, the mixture 
density ρ and the mixture pressure p between  eqs.  (8)-(12), we 
arrive at the evolution equations for the bubble radius R(x,t) 
and for the flow speed u(x,t) as 
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where the unsteady acceleration satisfies the linear partial 
differential equation 
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where the functions g, h, and s are given by 
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The functions Fj (R) ; j=1,2,...,10 , entering eqs. (20)-(22) are 
given in appendix A. The solution for the mixture pressure, the 
void fraction and the density then follow by 
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where the dilation  Ψ  is defined by Ψ=∂u/∂x+(1/A dA/dx)u . In 
particular, eq. (23) is independent of flow dimensionality and 
may be helpful for a quantitative comparison of the pressure 
distributions obtained by different cavitation models, whether 
they are based on barotropic relations or phase transition 
models. The steady-state solutions of the model equations are 
obtained if, in addition to the vanishing of the unsteady 
acceleration ( a =0), ∂R/∂t also vanishes everywhere for all 
times. In such a case we precisely recover the steady-state 
solution [7]. The single-phase incompressible steady-state limit 
is also achieved when κi >>1 and R is of O(1) on measure κi. If 
we define a small parameter ε by 
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the steady-state continuity and momentum equations in the 
incompressible limit become 
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where iu  is the initial normalized inlet flow speed and (–) 

denotes steady-state variables. Equations (26) and (27) show 
that deviations from the single-phase incompressible solution 
can hardly be observed as long as R remains of O(1) on 
measure ε. Equations (26) and (27) show that the steady-state 
incompressible flow solution is violated only when R becomes 
of  O(ε -1/3) (the cavitating flow regime). In particular, in the 
limit as κi →∞ (i.e. ε →0 which implies that R→0 and, 

consequently, β→0, eq. (26) reduces to the incompressible 
single-phase velocity distribution and eq. (27) yields Bernoulli's 
equation. 
 
B. TWO-DIMENSIONAL FLOWS 

 
For the analysis of the 2D (or 3D) structures of partial 

cavitation and supercavitation observed in experiments, the 
quasi-one-dimensional model equations discussed above are 
insufficient. Therefore, the model equations should be extended 
to multi-dimensional flows.  In this section, for simplicity, we 
introduce the model equations for two-dimensional unsteady 
bubbly cavitating flows to be able to calculate, at least, some of 
the 2-D flow structures observed. Using the homogeneous two-
phase dispersed flow model and the classical Euler equations, 
the continuity and momentum equations in two-dimensions 
take the form    
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where the mixture density ρ′ is given by eq. (1) and  the void 
fraction β is related to the radius of mono-dispersed spherical 
bubbles by eq. (4), assuming there is no bubble creation and  
coagulation. Equations (28)-(30) together with eqs. (1), (4) and 
the modified Rayleigh-Plesset equation (5) constitute the model 
equations for unsteady 2-D bubbly cavitating nozzle flows. 
With the normalization given by eq.  (7) together with y=y′/H′i , 
the two-dimensional normalized model equations take the form  
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The system of model equations (31)-(35) is completed by the 
normalized modified Rayleigh-Plessset equation (12). Similar 
to the procedure above for quasi-one-dimensional flows, we 
eliminate the normalized mixture density ρ and the void 
fraction β using the algebraic relations (31) and (35) in the 
normalized continuity equation (32), and the normalized 
pressure field between the normalized modified Rayleigh-
Plesset equation (12) and the normalized momentum equations 
(33) and (34). We then arrive at the following system of 
evolution equations for the normalized radius R and the 
normalized velocity field (u, v) as 
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where R1=R(x,0,t) and the source terms aS  and bS  are given 
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In eqs.  (41)-(43), ψ  and ω , respectively, denote the dilation 

(in this case the divergence of the velocity field) and the 
vorticity and are given by 
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Equations (39) and (40) for the unsteady acceleration field ( a , 
b) constitute the fundamental equations for the transport of the 
dilation  ψ and of the vorticity ω in 2D bubbly cavitating flows.  
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In particular, eq. (40) is precisely the non-barotropic vorticity 
transport equation, called the Fridman equation [10], given by  
 

( ) ( ) 2

1
. . p

t
ψ ρ

ρ
∂

+ ∇ = − + ∇ + ∇ ×∇
∂
ω

u ω ω ω u         (46) 

where the term ( ).∇ω u  vanishes in 2D. Thus it forms the 

basis for the generation of vorticity in non-barotropic flows and 
is responsible for the re-entrant jet in partial cavitation and for 
all closure models of cavitation.  In the absence of cavitation 
where the source terms Sa and Sb vanish, eqs. (39) and (40) 
reduce to the classical Cauchy-Riemann equations (existence of 

the complex velocity potential). The equations for the 
normalized pressure, normalized density and void fraction then 
follow from Eqs. (23) and (24) with the dilation now defined by 
eq. (44). 

THE INITIAL/BOUNDARY VALUE PROBLEMS AND 
NUMERICAL METHODS OF SOLUTION FOR BUBBLY 
CAVITATING NOZZLE FLOWS 

 
The quasi-one-dimensional and two-dimensional model 

equations discussed above for unsteady bubbly cavitating 
nozzle flows need to be supplemented by appropriate initial and 
boundary conditions. In what follows we discuss the possible 
initial and boundary conditions that are suitable for the 
numerical simulation of the model equations together with the 
numerical method of solution in each case.  

A. QUASI-ONE-DIMENSIONAL FLOWS 

 
The solution of the hydrodynamic field in unsteady quasi-

one-dimensional bubbly cavitating nozzle flows requires the 
integration of the system of evolution equations (17)-(22) for 
the bubble radius R and for the flow speed u for a given nozzle 
geometry (Fig. 1). In this case we first have to specify the 
initial distributions for the bubble radius and flow speed 
throughout the whole nozzle, namely 

 

0( ,0) ( )R x R x=  and 0( ,0) ( )u x u x=   for i ex x x≤ ≤   .                          

                                                                                               (47) 
 
 
 

 
 

 

Figure 1: Nozzle geometry and boundary conditions for quasi-   
one-dimensional cavitating nozzle flows. 

The initial flow field in this case can be taken as the slightly 
perturbed steady-state quasi-one-dimensional flow field (for the 
range of parameters where quasi-one-dimensional steady-state 
solutions are not possible [6,7], one may start with the 
incompressible solution supplemented by an everywhere 
constant bubble radius distribution).  To be able to specify the 
boundary conditions at the nozzle inlet (x=xi) and at the nozzle 
exit (x=xe), we have to discuss the nature of the evolution 
equations (17)-(19). In particular, eq. (17) for the bubble radius 
evolution is hyperbolic for given flow speed so that we need 
only to specify the bubble radius at the inlet so that 
 

( , ) ( )i iR x t R t=                                                                    (48)  

          
with R0(xi) = Ri(0) to avoid a discontinuity in the bubble radius 
at the nozzle inlet. On the other hand, eqs. (18) and (19) can be 
combined into a single evolution equation, coupled to the flow 
speed and  bubble radius, as 
 

1 1 2 2( , ) ( ) ( , ) ( ) ( , )
u

a x t K t x t K t x t
t

∂
= = +

∂
A A  

 
2 2

1 1

2

( , ) ( , )  ( / )( / )
( , )

( , )i

x

x

s t t u u
x t d

W t

ξ ξ ξ ξ
ξ

ξ

 + ∂ ∂ ∂ ∂ + ∫
A A

A  

 
2 2

2 2

1

( , ) ( , )  ( / )( / )
( , )

( , )i

x

x

s t t u u
x t d

W t

ξ ξ ξ ξ
ξ

ξ

 + ∂ ∂ ∂ ∂ − ∫
A A

A  

                                                                                               (49) 
where W represents the Wronskian of the two linearly 

independent solutions A1 and A2 of the linear homogeneous 

equation corresponding to eq. (19) for the unsteady acceleration 
a and is given by    
 

                  
1 2( , )W x t

x x

∂ ∂
= −

∂ ∂
2 1
A A

A A   ,                         (50) 

and where K1(t) and K2(t) are time dependent functions to be 
determined from the nozzle inlet and exit boundary conditions 
and  s  is given by 
 

        
2

2
( , ) ( , , , , , )

R u u
s x t s R u x

x x x

∂ ∂ ∂
=

∂ ∂ ∂
 

 
2 3 3 2

2 3 3 2
( , , , , , , ) [  ( , , )]

R u u u u u u R
s R u x u u g R x

x x x x x x x x

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 
 

2
4 5

2
2 2

( ) ( )
1

( ) ( )

F R u u dA F R u

F R x A dx F R x

  ∂ ∂  = − − + +   ∂ ∂   
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2

6 7 3 5

2 2 2

( ) ( ) 1 ( ) ( )
3

( ) ( ) ( )

F R R u F R dA F R F R R u
u

F R x x F R A dx RF R x x

 ∂ ∂ ∂ ∂   + + −    ∂ ∂ ∂ ∂    
 
 

2

84

2 2

( )( ) 1 1

( ) ( )

F RF R dA u d dA
u

F R A dx x F R dx A dx

∂    + +     ∂    
 

 
 

2

9 5 3

2 2 2

( ) ( ) ( )1 1

( ) ( ) ( )

F R F R F RdA dA u
u u

F R A dx F R A dx F R x

 ∂   + + +     ∂    
 

 
 

2

26 3 5

2 2

( ) ( ) ( )1 1
3

( ) ( )

F R F R F RdA dA
u u

F R A dx RF R A dx

    + −    
   

 

 

2 101

2 2

( )( ) 1

( ) ( )

F RF R d dA R
u

F R dx A dx F R x

 ∂ + +   ∂  
 

 

    
2

2 29
2

2

( ) 1 1 1

( )

F R dA d dA d dA
u u

F R A dx dx A dx dx A dx

     + +     
     

 

 

      5

2 2

( ) /1

( ) ( )
vF R p xd dA

u
F R dx A dx F R

∂ ∂ + +  
  

  .                                 (51) 

 
In order to evaluate the time dependent functions K1(t) and 
K2(t) in eq. (49), we consider the appropriate boundary 
conditions at the inlet and outlet of the nozzle. For real 
cavitating flows, either of the following two sets of boundary 
conditions can be specified: 
 (a) The inlet flow speed and exit pressure are specified, i.e.  
 

( , ) ( )i iu x t U t=  and   ( , ) ( )e ep x t P t=  for  t ≥ 0            (52) 

 
together with Ui(0)=u0(xi) and Pe(0)=p(xe,0) to ensure 
continuity of the solutions. 
(b) The inlet and exit pressures are specified, i.e.  
 

( , ) ( )i ip x t P t=  and   ( , ) ( )e ep x t P t=  for  t ≥ 0             (53) 

 
together with  Pi(0)= p(xi,0) and Pe(0)=p(xe,0) to ensure 
continuity of the solutions.   
The evaluation of the time dependent functions K1(t) and K2(t) 
in eq. (49) corresponding to the boundary conditions in each 
case are given in appendix B.  It should be mentioned that the 
boundary conditions of case (b) require enormous amount of 
computation time. Therefore, for simplicity, we adopt the 
boundary conditions of case (a). 
For the numerical method, we first evaluate the unsteady 
acceleration field by eq. (49) at every instant t using the flow 
speed distribution u(x,t) and  the radius distribution R(x,t)  at 
that instant, starting with the initial distributions u0(x) and 

R0(x).  The homogeneous solutions A1 and A2 of eq. (19) for 

the unsteady acceleration are obtained by power series methods 
of second order linear ordinary differential equations with 
variable coefficients. The time dependent functions K1(t) and 
K2(t) are evaluated using non-reflecting boundary conditions. 
Using the unsteady acceleration field, the evolution eq. (18) is 
integrated using a multi-stage Runge-Kutta method in time to 
arrive at the flow speed distribution at the next time step. Using 
the flow speed thus obtained, the first order hyperbolic equation 
(17) for the bubble radius R is integrated by the classical 
method of characteristics. Thus the solutions for the flow speed 
and radius distributions of the evolution equations are obtained 
for the next time step. The procedure is repeated in a similar 
manner for all subsequent time steps.   

B. TWO-DIMENSIONAL FLOWS 

In order to discuss the solution of the two-dimensional 
system of evolution equations (36)-(45) of the bubble radius 
and flow velocity field for cavitating nozzle flows, they should 
be supplemented by appropriate initial bubble radius and 
velocity field distributions together with inlet and exit boundary 
conditions, similar to the case discussed for quasi-one-
dimensional flows. In this case the length of the quasi-1D 
nozzle is elongated in both the inlet and exit directions with 
corresponding constant inlet and exit areas to ensure uniform 
inlet and exit boundary conditions across the cross-sectional 
area at the inlet and exit of the nozzle, as shown in Fig. 2. We 
also assume a symmetric configuration of the flow field in the 
y-direction so that it is also sufficient to discuss the solution in 
the upper symmetric domain of the nozzle. In specifying the 
initial distributions of the bubble radius and velocity field for 
the evolution equations, care should be taken to start with 
irrotational flow in order to access the correct order of 
magnitude of vorticity generated in the cavitating regime.  
Therefore, we choose the initial flow field 

 

 0( , ,0) ( , )u x y u x y=  and 0( , ,0) ( , )v x y v x y=             (54) 

 
to be irrotational everywhere in the computational domain and 
uniform and uni-directional (ν=0) at the nozzle inlet and exit 
(i.e., at x=xi and x=xe) . We also take the initial radius 
distribution 
 

                       0( , ,0) ( , )R x y R x y=                                 (55) 

in such a way that it is also uniform at the nozzle inlet and exit. 
Taking into account the hyperbolicity of eq. (36) for the bubble 
radius for given velocity field, we need only to specify the 
bubble radius at the inlet. Assuming that the inlet bubble radius 
distribution is uniform in y at all times, we have  
 

                     ( , , ) ( )i iR x y t R t=                                          (56)            

          
with Ri(0) being equal to the corresponding initial inlet bubble 
radius to avoid a discontinuity in the bubble radius at the nozzle 
inlet. Similar to the procedure of quasi-1D flows, we can 
specify two sets of boundary conditions: 
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(a) The inlet flow speed and exit pressure, both uniform, are 

specified, i.e.  
 

( , , ) ( )i iu x y t U t= , ( , , ) 0iv x y t =   and   ( , , ) ( )e ep x y t P t=                               

                                                                                               (57) 
for t≥0 together with Ui(0) and Pe(0) matching the 
corresponding initial inlet and exit values to ensure continuity 
of the solutions. 
(b) The uniform inlet and exit pressures are specified , i.e.  
 

( , , ) ( )i ip x y t P t=  and   ( , , ) ( )e ep x y t P t=                   (58) 

for t≥0 together with Pi(0) and Pe(0) matching the 
corresponding initial inlet and exit values to ensure continuity 
of the solutions.  
The above boundary conditions, similar to the procedure in 
quasi-one-dimensional flows, should be converted to the 
boundary conditions for the unsteady acceleration field for the 
integro-partial differential system, given by eqs. (39) and (40).  
For this reason, assuming that the inlet velocity field is uniform 
and unidirectional and that the bubbles are in mechanical 
equilibrium at the inlet and exit of the nozzle and using eq. (23) 
for the pressure field, we can arrive at the following boundary 
conditions for the system of eqs.  (39) and (40) in each case : 
 

Case (a) The inlet flow speed and exit pressure, both uniform, 

are specified.  

 0a =   and   b=0  at  x = xi  , 0xa =  and  b=0 at  x = xe  , 

 0ya =  and  b=0 at  y = 0,  tanb a θ=  at  y = h(x)        (59) 

where y=h(x) denotes the shape of the upper wall of the nozzle 
and tanθ =dh/dx. Such a configuration of the boundary 
conditions are given in Fig. 2.  
 

Case (b) The uniform inlet and exit pressures are specified. 

0xa =   and   b=0  at  x = xi  , 0xa =  and  b=0 at  x = xe  , 

 0ya =  and  b=0 at  y = 0,  tanb a θ=  at  y = h(x).      (60) 

 
For the numerical method, similar to the procedure for quasi-
1D flows, we first consider the integro-partial differential 
system of equations, given by eqs. (39) and (40), subject to 
boundary conditions given by either eq. (59) or eq. (60). The 
system is solved in two iterative steps. In the first step the 
integral on the left-hand side of eq. (39) is set equal  to zero and 
the remaining  elliptic  system of  first  order  partial differential  
 
 
 

 
 

Figure 2: Nozzle geometry and boundary conditions of the 
unsteady acceleration field for two-dimensional cavitating 
nozzle flows. 

equations is first discretized by a central finite difference 
scheme. The resulting linear system of algebraic equations, 
subject to the boundary conditions given in eq. (59) or in eq. 
(60), are solved by Gauss-Seidel Over Relaxation Method. In 
the second step, the skipped integral on the left hand side of eq. 
(39) is evaluated and treated as a source term. The first step is 
then repeated to obtain the unsteady acceleration field at that 
instant. Using a multi-stage Runge-Kutta method in time and 
the solution for the unsteady acceleration field, the evolution 
eqs. (37) and (38) are integrated   to yield the velocity field in 
the next step. Using this velocity field, the hyperbolic evolution 
equation (36) is integrated by the method of characteristics or 
by using flux splitting methods to arrive at the bubble radius in 
the next time step. The numerical scheme is then to be repeated 
for all subsequent time steps. 

AN EQUILIBRIUM PHASE TRANSITION MODEL: 
CATUM 

In this section we discuss an equilibrium phase transition 
model by Schnerr et al. [11-14], which is particularly useful in 
describing wave dynamics in cavitating flows. Although this 
model by-passes the details of bubble dynamics, it still can 
prove useful, particularly, in describing wave dynamics related 
to the collapse of bubble clouds. Since bubble nucleation in 
cavitating flows occur by heterogeneous nucleation, the initial 
phase change occurs near thermodynamic equilibrium. It is also 
known that bubble growth occurs almost isothermally with 
small temperature variations so that the increase in void 
fraction of the two-phase mixture can be accessed by this small 
variation in temperature regarding the compressibility of the 
two-phase mixture, leaving out all the detailed phenomena 
arising from bubble dynamics. In this model, called CATUM 
by its originators, a two-phase homogeneous mixture model is 
assumed where, similar to homogeneous bubbly flows, the 
single phase flow equations apply. In contrast to the change of 
the homogeneous mixture properties by cooperative dynamics 
of the bubbles, in CATUM the homogeneous mixture properties 
are defined by the internal energy and the density of the 
mixture. More precisely, the mixture density ρ′, the mixture 
pressure p′ and the mixture internal energy e′ at the mixture 
temperature T′ at thermodynamic equilibrium are given by 
 

    (1 ) ( ) ( )
sat vsat

T Tρ β ρ β ρ′ ′′ ′ ′= − +
�

  ,                        (61) 

 

  (1 ) ( ) ( ) ( )
sat vsat ve T T e Tρ β ρ β ρ′ ′′ ′ ′ ′ ′ ′= − +
�

                (62) 

and  

            ( )
sat

p p T′′ ′=                                                          (63) 

 
where the subscripts ℓ,  v and sat refer, respectively, to pure 
liquid, vapor and saturated states.  The pure vapor state (β=1) is 
described by perfect gas relations and the pure liquid (β=0) 
equation of state is described by a modified Tait law as 
 

                     

( ) ( )
sat sat

N

p B

p T B T

ρ

ρ

 ′ ′ ′+  =
 ′ ′′ ′ ′+  

                         (64) 
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where B′ and N are constants. Equations (61)-(64) together with 
the classical continuity, Euler momentum and energy equations 
form the basic model equations of CATUM. In particular, eqs. 
(61) and (62) for the two-phase mixture are solved for the 
mixture temperature T′ and for the void fraction  β. The mixture 
pressure is then determined by the Clausius-Clapeyron relation, 
eq. (63). 
Since the Euler equations can be expressed in the form of  
conservation laws, it is self-evident that the numerical method 
of CATUM is based on a cell centered finite volume 
formulation of conserved quantities. The resulting semi-discrete 
equations are then integrated in time using a second order 
explicit multistage Runge-Kutta method. The spatial 
discretization heavily relies on approximate Riemann solvers 
(Godunov-type schemes [28]). These methods have the 
advantage of capturing waves, of even high frequency, very 
accurately. Their drawback is the low Mach number limit. To 
overcome this difficulty, a Riemann solver to determine the 
mass flow together with a modified pressure flux that is 
consistent for low and high Mach number flow is developed 
[12]. The application of the numerical scheme to flows with 
phase change requires considerable attention, particularly 
during the last stages of condensation where the sonic speed 
rapidly increases in order of magnitudes. Here a modification 
based on the dissipative formulation of the numerical flux 
function is made. In this way the developed CFD-Tool CATUM 
enables capturing wave propagation properties from very low 
Mach numbers to appreciable Mach numbers. As for the 
treatment of the boundaries, a ghost-cell based approach is 
used. A physical wall boundary is assumed to be impermeable, 
adiabatic and inviscid, the flow tangency condition being 
achieved by mirroring the normal velocity component. Weakly 
reflecting boundary conditions are adopted at the inlet and the 
outlet of the numerical domain. Details of the numerical model, 
its implementation and its validation are given in [11-14].                                 

RESULTS AND DISCUSSION 
         
           We now consider the quasi-one-dimensional and two-
dimensional cavitating flows whose geometric configuration is 
shown in Fig. 3 (for quasi-one-dimensional flows, the inlet and 
exit of the nozzle are taken as shown in Fig.1 so that the 
specified exit pressure matches the measured value at the wall).  
 
 

 
 

Figure 3: 2D plane computational domain and boundary 
conditions (symmetry boundary condition enforces flow 
symmetry).   
 
 

 
(a)  
         

  
(b) 
                 

     
 

Figure 4: The unsteady quasi-1D distributions of  (a)  the 
pressure and (b) the flow speed at three instants of time for the 
cavitating nozzle flow of water with air bubbles with initial 
inlet void fraction    βi0 = 10

-6, initial inlet bubble radius R′i0 =50 
µm, inlet flow speed u′i = 8.2 m/s  and exit pressure p′e = 0.388 
bar ( the experimental results shown above for the pressure are 
the mean pressure measurements over a cycle, they fluctuate 
within ±2.0 kPa). 
 
For quasi-one-dimensional flows, we present results for the 
bubbly liquid mixture model whereas, for two-dimensional 
flows, we present results only for the equilibrium phase 
transition model since an accurate 2D algorithm for bubbly 
cavitating flows along the numerical procedure outlined above 
is under construction and the results for the bubbly mixture 
model are not yet available.  Therefore, a quantitative 
comparison of the results of the models can not be given at this 
stage. The only quantitative comparison we will present will be 
the comparison of the pressure distribution obtained for quasi-
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one-dimensional bubbly cavitating nozzle flows against the 
measured pressure values at the wall of the nozzle under the 
experimental conditions. 
For quasi-one-dimensional flows, we consider the two-phase 
dispersed flow of water with air bubbles with time –averaged 
inlet flow speed  u′i  =8.2 m/s , initial inlet void fraction βi0 = 
10-6, initial inlet bubble radius R′i0 =50 µm and time-averaged 
exit pressure p′e = 0.388 bar.  For the initial field we use a 
slightly perturbed steady-state distribution for the bubble radius 
and flow speed. Under the stated conditions, the steady-state 
solution shows that the bubbles grow slightly reaching their 
maximum size and then they return to their initial size, as also 
shown in Fig. 5(a) [29]. In this case the large growth and 
violent collapse of the bubbles do not occur and the bubbles 
seem to be in local mechanical equilibrium. To  reach  unsteady 
 
 
(a) 

                                                                                       
(b) 

              
 

Figure 5: The unsteady quasi-1D distributions of  (a) bubble 
radius and (b) unsteady acceleration at three instants of time for 
the cavitating nozzle flow of water with air bubbles with inlet 
void fraction    βi0 = 10

-6, inlet bubble radius R′i0=50 µm, inlet 
flow speed u′i = 8.2 m/s  and exit pressure p′e = 0.388 bar. 

cavitating flow conditions, we lower the exit pressure until the 
specified exit pressure under the unsteady cavitating flow 
conditions is reached. The normalized pressure, normalized 
flow speed, normalized bubble radius and normalized unsteady 
acceleration distributions along the nozzle axis obtained by the 
bubbly flow model are shown in Figs. 4 and 5 at three instants 
of time at the start of unsteady cavitation. In these figures the 
transient distributions are ignored and the time t=0  is 
artificially set at the begining  of unsteady cavitation. It is seen 
in Fig. 4(a) that reasonable agreement is achieved between the 
quasi-one-dimensional unsteady pressure distributions and the 
measured values from the experiments performed at the 
Mechanical Engineering Department at Istanbul Technical 
University under the same conditions. On the other hand, a 
close examination of the unsteady distributions in Figs. 3 and 4 
show that the flow speed and the bubble radius distributions 
(consequently, the density and void fraction distributions) seem 
to deviate only slightly fom the initially specified slightly 
perturbed steady-state distributions, since the cavitation sheets 
attached to the nozzle walls, in this case,  have small 
thicknesses compared to the nozzle height, thus influencing 
these distributions only slightly.  However, the presence of 
unsteady cavitation leads to pressure losses which are 
accommodated by large values of the unsteady acceleration. 
These large values of the unsteady acceleration are balanced by 
the pressure gradients. They do not contribute to the flow speed 
significantly because of the very small characteristic times 
involved.   
The two-dimensional results under the same experimental 
conditions (uniform inlet speed u′i = 8.2 m/s  and uniform exit 
pressure p′e = 0.388 bar) are numerically simulated by the 
equilibrium phase transition model using the code CATUM. A 
symmetry boundary condition is imposed so that the upper half 
of the nozzle is chosen to be the computational domain. This 
ensures flow symmetry, a priori.  The liquid inflow is assumed 
 
 

 
 
Figure 6: Time evolution of the total vapor volume [% comp. 
domain], a typical cycle of six equidistant instants of time 1 to 
6 with shedding frequency f′ ≈ 14.5 Hz and period T′=0.069 s. 
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to be pure water at the temperature 298 K. The simulation is 
performed on the nozzle grid shown in detail in Fig. 3 using 
4000 cells. A second order accurate numerical scheme is used 
both in space and time. The results for the total volume 
percentage of the vapor formed by cavitation is plotted against 
real time in Fig. 6 where a typical cavitation pattern with 
shedding frequency f′=14.5 Hz (corresponding to a cycle period 
of 0.069 s) is identified at 6 time instants. The maximum 
volume percentage with respect to the computational domain is 
about 9% and occurs at time instant 3. The length of the of 
0.069 s) is identified at 6 time instants. The maximum attached 
cavity is calculated as 0.126m. The distributions of the void 
fraction at six instances of time are shown in Fig. 7.  A sheet 
cavity is developed at instant 3 on both sides of the wall, 
followed by a re-entrant jet at instant 4 followed by cloud 
shedding at instant 5 and finally the collapse of the cloud at 
instant 6, typical of a partial cavitation cycle. The results for the  
           
 

 
 

 
 
 
 

Figure 7: Vapor volume fraction β at six instants of time 
(enforced flow symmetry due to symmetry boundary 
condition). Shedding frequency f′ ≈ 14.5 Hz, period T′=0.069 s. 
                                                       

    

       
 
 

   
 
 

                  
 

Figure 8: Static pressure distribution along the nozzle axis 
corresponding to time instants 1, 2 and 3 in Figure 6. 
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Figure 9: Static pressure distribution along the nozzle axis 
corresponding to time instant 4, 5 and 6 in Figure 6. 
 
 

static pressure distributions along the nozzle axis at six 
instances of time are shown in Figs. 8 and 9. The high pressures 
attained at time instances 1 and 6 are instantaneous pulses due 
to the collapse of the clouds. In other time instances the static 
pressure distributions are of the same order of magnitude of the 
measured static pressures at the wall. In this case a direct 
comparison with the static pressure distributions with those of 
the quasi-one-dimensional bubbly flow model is not possible 
due to the two-dimensional structure of the attached cavities 
and of cloud shedding. 

CONCLUSIONS 
 
Model equations for quasi-one-dimensional and two-

dimensional bubbly cavitating nozzle flows are presented and 
the evolution equations for the bubble radius and velocity field 
in each case are obtained. In particular, in two-dimensional 
flows the integro-partial differential system of equations for the 
unsteady acceleration field, which enters the evolution 
equations for the velocity field, is shown to constitute the 
fundamental equations of 2D cavitating flows, exhibiting the 
evolution of the dilation and of the vorticity. The 
initial/boundary value problems are then formulated for both 
unsteady quasi-one-dimensional and two-dimensional bubbly 
cavitating nozzle flows. Results obtained for the unsteady 
quasi-one-dimensional case show that it is possible to 
determine the pressure loss due to cavitation in this case. 
However, the quasi-one-dimensional model is insufficient in 
describing the two-dimensional flow structures. Since an 
algorithm to calculate the unsteady 2D bubbly flow model is 
yet not available, the 2D results were calculated by the 
CATUM algorithm based on an equilibrium phase transition 
model. The 2D results show considerable rise in pressure at 
instants of bubble collapse in the entire model. A 2D algorithm 
for the numerical simulation of bubbly cavitating nozzle flows, 
as summarized in this paper, is under construction and the 
results will be compared with those presented here by the 
CATUM algorithm. Such a comparison will be useful in 
quantifying the order of magnitude of the pressure values 
achieved during a cavitation cycle.  
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APPENDIX A:  
     
      The functions Fj (R) ; j=1,2,...,10 entering eqs. (20)-(22) are 
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APPENDIX B: 
 
The boundary conditions presented for the cases (a) and (b) 

in quasi-one-dimensional flows should be converted to the 
boundary conditions for the unsteady acceleration field in order 
to pose a two-point boundary value problem for the unsteady 
acceleration field given by eq. (19).  For this reason, using eq. 
(23) for the pressure distribution in quasi-one-dimensional 
flows, we can arrive at the boundary conditions for the 

unsteady acceleration field corresponding to the inlet and exit 
pressure boundary conditions as 
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where the functions Qi(t) and Qe(t) are defined by 
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The  time dependent functions K1(t) and K2(t) for case (a) and 
case (b) boundary conditions in quasi-one-dimensional flows 
then follow as :  
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where ( )a t∆  is given by 
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Case(b): The inlet and exit pressures are specified. 

            In this case, the functions  K1(t) and K2(t) satisfy the 
eqs. 
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where ( )b t∆  is given by 
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NOMENCLATURE 
 

Latin 

 A = cross-sectional area of the nozzle 
Cp = pressure coefficient 
H = height of nozzle 
R = bubble radius 
Re = flow Reynolds number 
S = surface tension coefficient 
U = flow speed 
L = micro to macro scale 
k = polytropic exponent 
p = mixture pressure 
t = time coordinate 
x = nozzle axial coordinate 
y     =      nozzle  
u = x-component of velocity field 
v = y-component of velocity field 
a = x-component of unsteady acceleration field 
b = y-component of unsteady acceleration field 
f = shedding frequency 

 

Greek 

 

β  = void fraction 

effµ = effective viscosity of liquid 

0η  = number density of nuclei per unit liquid  

              volume 
ρ  = mixture density 

ψ  = dilation 

ω  = vorticity 

iκ  = parameter in terms of inlet void fraction 

Λ = bubble-bubble interaction parameter 
 

Subscripts         
 
e = nozzle exit 
g = gas 
i  = nozzle inlet 
o = initial 

             �  = liquid phase 
             sat    =      saturated state 

v = vapor phase 
 

 

Superscripts 

 
´ = signifies a dimensional quantity  
                (otherwise dimensionless)     
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