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Abstract

The problem of determining the free surface of
a jet incident on a rigid wedge and the bound-
ary of a cavity behind the wedge is considered.
The single- and double-spiral-vortex models by
Tulin are used to describe the flow at the rear
part of the cavity. The location of the wedge
in the jet and the sides lengths are arbitrary.
This circumstance makes the flow domain dou-
bly connected for the single-vortex model whilst
it is simple connected for the double-vortex
model. Both the models are solved in closed
form by the method of conformal mappings. The
maps are expressed through the solutions to cer-
tain Riemann-Hilbert problems. For the former
model, this problem is formulated on a genus-
1 Riemann surface. The double-vortex model
requires the solution to a standard Riemann-
Hilbert problem on a plane. It is found that
the drag and lift are practically the same whilst
the jet surface, the cavity boundary at the rear
part and the deflection angle of the jet at infin-
ity are different. Also, the problem of determin-
ing the parameters for the conformal mapping in

the single-vortex model has two solutions. It is
shown that one of the solutions leads to a non-
physical shape of the cavity and needs to be dis-
carded. The case of a wedge in a channel with a
free surface is also analyzed.

1 Introduction

The flow induced by the supercavitating motion
of a strut is of considerable interest in many ma-
rine applications including the design and anal-
ysis of hydrofoils and marine propellers. It is a
relatively easy matter to solve a problem of two-
dimensional, irrotational, incompressible, steady
flow past a polygonal obstacle with rigid walls
when the flow domain is simply connected and
its boundary is prescribed. It is more difficult to
deal with nonsymmetric flow when the boundary
of the flow domain is free and the model assumes
the existence of a cavity behind the body. Since
flow is unsteady at the rear part of the cavity,
any steady-state model of supercavitating flow is
approximate. The most successful steady-state
cavity closure models achieve a reasonable bal-
ance between the mathematical rigorousness and
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experimental observations and allow to apply the
theory of functions of a complex variable and de-
rive an analytical solution.

The models of supercavitating flow used in
the literature are described in [8], [14], [9], [6].
These models include the Joukowsky open wake
model, the Riabouchinsky image model, the
Efros-Gilbarg-Rock-Kreisel re-entrant jet model,
and the two spiral-vortex models by Tulin [13].
The open wake model assumes the existence of
a semi-infinite wake behind the obstacle. Ri-
aboushinsky proposed to place an image obstacle
downstream of the real body. In the re-entrant
jet model, the flow domain is a two-sheeted Rie-
mann surface formed by gluing two replicas of
the physical plane along the hydrofoil. It is as-
sumed that a part of the main stream reverses
the direction and proceeds to the second sheet
through the junction line of the Riemann sur-
face.

In the Tulin spiral-vortex models, there are
two vortices in the rear part of the cavity. The
single-spiral-vortex model assumes that the ve-
locity is continuous at the centers of the vor-
tices but the two branches which form the cav-
ity boundary are discontinuous at the physi-
cal plane (the flow can be considered on an
infinitely-sheeted Riemann surface of a logarith-
mic function whose branch points are the cen-
ters of the vortices). In the double-spiral-vortex
model, the speed is discontinuous at the vortices
and there is a semi-infinite wake behind the cav-
ity. The speed on the wake boundary is con-
stant and is the same as at infinity. From the
mathematical point of view, there are two fea-
tures which distinguish these two models. First,
the complex velocity potential, w, has different
asymptotics at the centers, Cj , of the vortices.
For the single-spiral-vortex model, ln dw/dz =
O{[w − w(Cj)]

−1/2}, and for the double-spiral-

vortex model, ln dw/dz = O{ln[w − w(Cj)]},
z → Cj . Another difference is that for the for-
mer model, apart from some particular cases, the
flow domain is multiply connected. In the sec-
ond model, the flow domain is always simply-
connected. The double-spiral-vortex model was
used for the analysis of a cavitating foil beneath
a free surface [10], in the case of a cavitating
polygonal plate in a plane [5], and in a numerical
scheme for the a cavitating foil of arbitrary shape
[7]. For the simply-connected case, the nonlin-
ear single-spiral-vortex model was employed [11],
[12], [9]. The same model and the method of Rie-
mann surfaces were used in [1], [2] for the case of
two foils in a channel, and a wedge with a trail-
ing and a partial cavity in a plane. A method of
the Riemann-Hilbert problem for piece-wise au-
tomorphic functions for supercavitating flow in
an n+1-connected flow domain was proposed in
[3] . We emphasize that in these papers, the nu-
merical computations were implemented for the
simply connected case only. Recently [4], the
single-spiral-vortex model was applied to solve
analytically the problem of supercavitating flow
of a wedge beneath a free surface. The work pre-
sented herein is intended as a comparative study
of the single- and double-spiral-vortex models
applied to supercavitating jet flow past a wedge
when the location and the side lengths of the
wedge are arbitrary.

2 Double-spiral-vortex model

The flow is two-dimensional, incompressible, ir-
rotational, and the gravity is neglected. The ver-
tex, A, of the wedge, DAB, is fixed and is chosen
to be the origin of the plane z = x1 + ix2 (fig-
ure 1). Far away from the wedge, as x1 → −∞,
the upper and the lower free surfaces of the jet
are described by the equations x2 = h1 and
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Figure 1: The double-spiral-vortex model do-
main.

x2 = −h+h1, respectively. As x1 → −∞, the ve-
locity of the flow is also prescribed, v = (V∞, 0).
The upper and the lower sides of the wedge have
lengths λ1 and λ2 and form the angles α0 and
β0 with the x1-axis, respectively. A motion with
the following features is to be considered:

(1) The wedge may move about the x3-axis
orthogonal to the flow plane. The angle of yaw,
δ, is to be determined from the condition that
the vertex A is the only stagnation point of the
flow.

(2) The sides of the wedge are straight and
rigid. The flow branches at the point A, and
the velocity vector is tangent to the faces of the
wedge,

arg
dw

dz
=

{

−α, z ∈ AB,
π − β, z ∈ AD,

(2.1)

where α = α0 + δ and β = β0 + δ. These two an-
gles define the actual position of the wedge when
the flow becomes steady-state. The derivative
dw/dz = v1 + iv2 is the complex velocity, v1 and
v2 are the components of the velocity vector v,
and w(z) = φ(z) + iψ(z) is a complex potential
of the flow.

(3) Behind the wedge, there is a cavity formed
by two branches ABC2 and ADC1 of the same

streamline. The cavity pressure, pc, is constant
and prescribed. The flow separates smoothly
from the points B and D. The free streamlines
ABC2 and ADC1 form two spirals at the ending
points C2 and C1. The speed on the bound-
ary of the cavity is constant, V = Vc, where
Vc =

√
σ + 1V∞, σ is the cavitation number,

σ = 2(p∞ − pc)(ρV 2
∞)−1, ρ is the density of the

liquid, and p∞ is the pressure as x1 → −∞. At
the centers of the spiral vortices, C1 and C2, the
logarithm of the complex velocity has the follow-
ing singularity [13]:

ln
dw

dz
= O{ln[w−w(Cj)]}, z → Cj , j = 1, 2.

(2.2)
At the points Cj , the speed is discontinuous.
First, the streamlines spiral at speed Vc, then
the speed jumps to V = V∞, and the streamlines
spiral backwards and continue in the direction of
the infinite point +∞+ ix2 (x2 is finite) forming
a wake. Thus, we have

∣

∣

∣

∣

dw

dz

∣

∣

∣

∣

=

{

Vc, z ∈ BC2 ∪ DC1,
V∞, z ∈ C2E2 ∪ C1E1,

Im w(z) = ψ0, z ∈ ABC2E2∪ADC1E1, (2.3)

where ψ0 = const.
(4) The boundary of the free surfaces of the

jet is formed by two streamlines, PE2 and PE1,
and the speed on the free surfaces is assumed to
be constant V = V∞. Thus,

∣

∣

∣

∣

dw

dz

∣

∣

∣

∣

= V∞, z ∈ PE1 ∪ PE2,

Im w(z) =

{

−ψ1, z ∈ PE1,
ψ2, z ∈ PE2,

(2.4)

where ψ1 and ψ2 are constants.
(5) The complex potential w(z) has the same

values at the centers of the double spirals, the
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points C1 and C2. Since these two points lie on
the two branches of the same streamline, this as-
sumption is equivalent to the following real con-
dition:

Re w(C1) = Re w(C2). (2.5)

(6) The width of the jet is finite as x1 → +∞.
This condition means that

arg
dw

dz

∣

∣

∣

∣

z=E1

= arg
dw

dz

∣

∣

∣

∣

z=E2

. (2.6)

The double-spiral-vortex model of supercavi-
tating flow of a jet past n finite obstacles is flow
in a simply connected domain regardless of the
number n. Therefore, there exists a function
z = f(ζ) which maps conformally a half-plane
into the flow domain. We denote the preimages
of the points A, B, Cj , D, Ej , and P by a, b, cj ,
d, ej , and p, respectively. Three real parameters
can be fixed arbitrarily, and we choose a = 0,
d = −1, and p = ∞.

To derive the expression of the mapping func-
tion f(ζ), we represent its derivative in the form

df

dζ
=

ω0(ζ)

V∞

e−ω1(ζ), (2.7)

where

ω0(ζ) =
dw

dζ
, ω1(ζ) = ln

dw

V∞dz
. (2.8)

The standard Schwarz-Christoffel formula is em-
ployed to recover the function ω0(ζ),

ω0(ζ) =
q1ζ

(ζ − e1)(ζ − e2)
. (2.9)

By integrating this expression, we find the com-
plex potential w(z(ζ))

w =
q1

e1 − e2
[e1 ln(ζ − e1) − e2 ln(ζ − e2)] + q2.

(2.10)

Here ln(ζ − ej) are the branches fixed by the
condition 0 ≤ arg(ζ − ej) < π, and q1 and q2

are some constants. To fix these constants, in
addition to the parametric ζ-plane, consider the
w-plane. Since w(0) = 0 we may find q2,

q2 = − q1

e1 − e2
[e1 ln(−e1) − e2(ln e2 + iπ)] .

(2.11)
Determine now the constant q1. Notice that as
a point ζ traverses around the point ζ = ej

(j = 1, 2) along a path in the upper half-plane,
the variation of the function ln(ζ−ej) is iπ whilst
the corresponding variation of w is −iψj . Con-
sequently, q1 = −(ψ1 + ψ2)/π, e1 = −ψ1e2/ψ2.
The use of the conservation of mass law defines
the constants ψ1 and ψ2

ψ1 = V∞(h − h1), ψ2 = V∞h1. (2.12)

Thus, the function ω0(ζ) is defined by the ex-
pression

ω0(ζ) = − V∞hζ

π[ζ − (1 − h/h1)e2](ζ − e2)
(2.13)

which possesses one unknown real parameter e2.

We turn now to the determination of the func-
tion ω1(ζ). On referring to the boundary condi-
tions (2.1), (2.3), and (2.4), we see from (2.8)
that

Re ω1(ξ) = 0, ξ ∈ pe1 ∪ e1c1 ∪ c2e2 ∪ e2p,

Re ω1(ξ) =
1

2
ln(1 + σ), ξ ∈ c1d ∪ bc2,

Im ω1(ξ) = −α, ξ ∈ ab,

Imω1(ξ) = π − β, ξ ∈ da. (2.14)

The function ω1(ζ) can be found in terms of
singular integrals by solving a Riemann-Hilbert
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problem associated with the problem (2.14). By
evaluating the singular integrals we have

ω1(ζ) =
i ln(1 + σ)

2π

(

ln
ρ1 − ζ̂

ρ1 + ζ̂
− ln

ρ2 − 1/ζ̂

ρ2 + 1/ζ̂

)

−iα +
π + α − β

π
ln

√
b + iζ̂√
b − iζ̂

. (2.15)

Here

ζ̂ =

√

ζ − b

ζ + 1
, ρ1 =

√

b − c1

−c1 − 1
, ρ2 =

√

c2 + 1

c2 − b
,

arg(ρ1±ζ̂), arg(ρ2±1/ζ̂), arg(
√

b±iζ̂) ∈ [−π, π],
(2.16)

ρj > 0 (j = 1, 2), and the single branch of the

function ζ̂ has the following boundary values as
ζ = ξ ± i0:

ζ̂ =

{

|ζ̂|, ξ < −1 or ξ > b,

±i|ζ̂|, −1 < ξ < b.
(2.17)

The solution has to vanish at the point p. This
requirement leads to the following real condition
for the unknown parameters of the mapping

− ln(1 + σ) ln
2χ+(c2) + 2c2 − b + 1

−2χ+(c1) − 2c1 + b − 1

+2αρ− − 2(π − β)ρ+ = 0, (2.18)

where

ρ± =
π

2
± sin−1 1 − b

1 + b
. (2.19)

The derivative of the conformal mapping (2.7)
has been expressed through the functions ω0(ζ)
and ω1(ζ) = iΦ(ζ), Im ζ > 0, given by (2.13)
and (2.15). It will be convenient to rewrite its
expression in the form

df

dζ
= hF (ζ), F (ζ) = − ζe−ω1(ζ)

π(ζ − e1)(ζ − e2)
.

(2.20)

The function F (ζ) has 5 unknown real parame-
ters, e2, c1, c2, and b, the preimages of the points
E2, C1, C2, and B, and the yaw angle δ. The
parameter e1 is expressed through the unknown
e2 by

e1 =
l − 1

l
e2, l = h1/h ∈ (0, 1). (2.21)

For the definition of these five parameters, we
have the condition (2.18), the following two ge-
ometric conditions:

Im

b
∫

0

F (ζ)dζ = λ◦

1 sinα,

Im

0
∫

−1

F (ζ)dζ = λ◦

2 sinβ, (2.22)

and the relations

ln
c1 − e1

c2 − e1
=

e2

e1
ln

e2 − c1

e2 − c2
,

Imω1(e1) = Im ω1(e2). (2.23)

Here λ◦
j =

λj

h . The last two conditions follow
from equations (2.5) and (2.6) of the model. No-
tice that equation (2.18) and the second equation
in (2.23) are linear with respect the parameter
δ. This makes it possible to express this param-
eter from one of these two equations say, (2.18),
through the other four parameters, b, c1, c2, and
e2. For the solution of the system of the four
nonlinear equations (2.22) and (2.23) we use a
scheme based on the Newton iterative method
[4].

Since the derivative of the conformal mapping
has been found, it is possible to reconstruct the
free boundary which consists of the jet surface,
the cavity and the wake profile. By integrating
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Figure 2: The cavity, wake, and jet profiles when
λ1 = λ2 = 1, h = 16, h1 = 10, α0 = π

3 , and β0 =
2π
3 for some values of the cavitation parameter

σ: σ = 0.4 (1), σ = 0.5 (2), and σ = 1 (3).

the function df/dζ, we obtain the lower and up-
per boundaries of the jet,

z(τ) = D +

∫

dτ

df

dζ
dζ, τ ∈ pe1 (z ∈ PE1),

z(τ) = B+

∫

bτ

df

dζ
dζ, τ ∈ pe2 (z ∈ PE2). (2.24)

For the cavity and wake boundaries, we have
similar formulas. For the lower part of the cavity
boundary τ ∈ dc1 (z ∈ DC1) and for the upper
one, τ ∈ bc2 (z ∈ BC2). Figure 2 shows the cav-
ity shape and the profile of the wake and the jet
when λ◦

1 = λ◦
2 = 0.1, l = 5

8 , and α0 = π−β0 = π
3

for the values 0.4, 0.5, and 1 of the cavitation
number σ. The parameters of the conformal
mapping for σ = 1 have the following values:
e1 = −1.82018, c1 = −1.74692, b = 1.18188,
c2 = 2.62667, and e2 = 3.03363. It is seen that
the cavity size and the width of the wake be-
hind the cavity increase when the the cavitation
number decreases.
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Figure 3: The drag and lift coefficients, CX and
CY , when λ1 = 1, λ2 = 2, h = 20, h1 = 10,
α0 = π − β0 = π

3 vs the parameter σ: the single-
spiral-vortex model (–) and the double-spiral-
vortex model (- -).

We proceed now to compute the drag and lift
coefficients

CX + iCY =
2(X + iY )

ρV 2
∞λ◦h

, (2.25)

where λ◦ = λ◦
1 sinα+λ◦

2 sinβ, X and Y are drag
and lift, respectively, which by Bernoulli’s law
can be represented in the form

X + iY = − iρ

2

∫

DAB

(V 2
c − V 2)dz, (2.26)

where V = |dw/dz|. We have finally

CX + iCY = − i

λ◦

∫

dab

[σ + 1 − e2 Re ω1(ζ)]F (ζ)dζ.

(2.27)
For the parameters α0 = π − β0 = π

3 , λ◦
1 = 0.05,

λ◦
2 = 0.1 and l = 0.5, the drag and lift coefficients
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increase when the cavitation number σ increases
(figure 3).

Our scheme applied to a single hydrofoil for
small l = h1/h is consistent with the results by
[10] for the coefficient

CD + iCL =
λ◦

λ◦
1 + λ◦

2

(CX + iCY ) (2.28)

obtained for a foil beneath a free surface (h1 = 1,
h = ∞). For h = 1000 and h1 = 1, the angle of
attack 5.66◦ and σ = 0.096, the coefficient CD +
iCL obtained from our jet-solution is 1.900367 ·
10−2 + i · 0.191522, and the one reported in [10]
is 0.019 + i0.191.

3 Single-spiral-vortex model

The first two assumptions, (1) and (2), of the
single-spiral-vortex model are the same as for
the double-spiral-vortex model described in Sec-
tion 2. We write down the other assumptions of
the model which distinguish this model from the
double-spiral-vortex model.

(3) The closure cavity mechanism for the
single-spiral-vortex model is different from (2.2)

and is described by [13], [2]

log
dw

dz
∼ −K((w − w(C))−1/2), z → C.

(3.29)
Here −π ≤ arg[w(z) − w(C)] ≤ π, K is a posi-
tive constant, and the branch of the square root
is chosen such that [w(z) − w(C)]1/2 > 0 when
arg[w(z) − w(C)] = 0. The two branches of the
dividing streamline at the centers of the vortices
behind the foil, C1 and C2, pass to a half of an
infinitely sheeted Riemann surface of the loga-
rithmic function with the branch points C1 and
C2. After that the same streamline emerges from
the infinite sheet of the Riemann surface and re-
turns to a point C of the first, physical, sheet. In
contrast to the double-spiral-vortex model, the
speed is continuous at the rear part of the cavity
(figure 4).

On the boundary of the cavity, the complex
potential w(z) satisfies the following boundary
conditions:

Im w(z) = K0, z ∈ L1,

∣

∣

∣

∣

dw

dz

∣

∣

∣

∣

=

{

V∞, z ∈ L0,
Vc, z ∈ BC+ ∪ DC−,

(3.30)

where K0 is a real constant, and the contour L1

consists of the boundary of the cavity BC2∪DC1

and the faces of the wedge DAB.
(4) On the jet surface L0 = E−

1 E−

2 ∪ E+
1 E+

2 ,

Imw(z) = K±

1 , z ∈ E±

1 E±

2 , (3.31)

where K+
1 and K−

1 are some real constants.
(5) By contrast with the double-spiral-vortex

model, the flow domain, D̃, is not simply con-
nected but doubly connected. To assure that
the flow is single-valued, it is required that

∫

L∗

dz = 0, (3.32)
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Here L∗ is a closed contour in the flow domain
exterior to the contour L1.

As for the double-spiral-vortex model, we use
the conformal mapping technique. Let z = f(ζ)
map the exterior of two cuts, l1 = [0, 1] and l0 =
[m,∞) onto the physical domain D̃. Here m ∈
(1, +∞) is a parameter to be fixed. Denote the
preimages of the points A, B, C, D, E±

1 , and
E±

2 by a, b, c, d, e1, and e2, respectively. Since
such a map is defined up to one real parameter
and since e1 6= e2, we choose e1 = ē2. Clearly,
two cases need to be considered, e1 = e0 + i0
and e1 = e0 − i0, where e0 = |e1| = |e2|, e0 ∈
(m, +∞).

As before, the derivative df/dζ is conveniently
represented in terms of two functions, ω0(ζ) and
ω1(ζ), by (2.7).

The function ω0(ζ) is analytic in the exterior
of the cuts l0 and l1. At infinity, the func-
tion f(ζ) decays as K̃ζ−1/2, K̃ = const. This
implies ω0(ζ) = O(ζ−3/2), ζ → ∞. At the
preimages of the points E±

j , it has a logarith-

mic singularity, f(ζ) ∼ hπ−1(−1)j−1 ln(ζ − e0),
j = 1, 2. Since dw/dz ∼ V∞, ζ → e1, we ob-
tain ω0(ζ) ∼ hV∞[π(ζ − e0)]

−1, ζ → e1. It has
been shown in [2] that the function dw/dζ has
to vanish at the stagnation point and the point
where the branched streamline emerges from the
Riemann surface of flow. In our case this means
that ω0(ζ) has simple zeros at the points a and
c. Because of the first condition in (3.30) and
equation (3.31), Imω0(ζ) = 0 on l0 and l1. All
these conditions can be written as a homoge-
neous Riemann-Hilbert problem. By solving it
we find that a = c̄. Without loss of general-
ity, we assume that a ∈ l+1 and then c ∈ l−1 .
The most general form of the function ω0(ζ) with
such properties is

ω0(ζ) = hV∞ω∗

0(ζ), (3.33)

where

ω∗

0(ζ) =
p1/2(e1)

πp1/2(ζ)

(

1

ζ − e0
− 1

a − e0

)

. (3.34)

Here p(ζ) = ζ(1 − ζ)(ζ − m) and p1/2(ζ) is the
branch fixed by the condition p1/2(ξ) > 0 if ξ <
0. At the banks of the cuts l0 and l1, ζ = ξ±i0, it
has the properties p1/2(ζ) = ∓i|p1/2(ξ)|, 0 < ξ <
1, and p1/2(ζ) = ±i|p1/2(ξ)|, m < ξ < +∞. If
1 < ξ < m, then the function p1/2(ξ) is negative.

The function ω0(ζ) has three real parameters,
a, e0, and m to be determined. By conservation
of mass, we can write down the first real condi-
tion for them,

Im

e∗
∫

a

ω0(ζ)dζ = h1V∞, (3.35)

where e∗ is the preimage of a point E∗ in the
upper boundary of the jet. This condition can
be transformed into the form

Im

m
∫

1

ω∗

0(ζ)dζ =

{

l − 1, e1 ∈ l−0 ,
l, e1 ∈ l+0 .

(3.36)

From the conditions (2.1) and (3.29) to (3.31)
we conclude that the function ω1(ζ) satisfies the
boundary conditions

Re ω1(ζ) =

{

log
√

σ + 1, ζ ∈ bcd,
0, ζ ∈ l1,

Im ω1(ζ) =

{

−α, ζ ∈ ab,
π − β, ζ ∈ da,

(3.37)

and as ζ → c, ω1(ζ) = O(1/(z − c)). The func-
tion ω1(ζ) has a logarithmic singularity at the
point a and it is bounded at the points b and d.
At infinity, the function ω1(ζ) is bounded and it
vanishes at the point ζ = e1.
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Apart from the conditions at ζ = ∞ and ζ =
e1, these conditions are the same as those for the
function ω1(ζ) in the double-spiral-vortex model
for a wedge beneath a free surface [4]. Therefore,
the function ω1(ζ) can be determined in a simi-
lar manner through the solution to a Riemann-
Hilbert problem on a two-sheeted genus-1 Rie-
mann surface, R, of the algebraic function

u =

{

p1/2(ζ), ζ ∈ C1,

−p1/2(ζ), ζ ∈ C2.
(3.38)

Here C1 and C2 are two replicas of the extended
ζ-plane with the cuts l0 and l1. We write down
only the final formulas for the solution. Let
Φ(ζ, u) = −iω1(ζ) on the upper sheet C1 and

Φ(ζ, u) = i ω1(ζ) on the lower sheet C2. Then

Φ(ζ, u) = X(ζ, u)[Ψ(ζ, u)+Ω(ζ, u)], (ζ, u) ∈ R,
(3.39)

where

Ψ(ζ, u) = − α

2πi

∫

ab

(1 + u/v)dξ

X+(ξ, v)(ξ − ζ)

+
π − β

2πi

∫

da

(1 + u/v)dξ

X+(ξ, v)(ξ − ζ)

− ln(σ + 1)

4π

∫

bcd

(1 + u/v)dξ

X(ξ, v)(ξ − ζ)
, (3.40)

and v = u(ξ). The function Ω(ζ, u) is a rational
function on the surface R given by

Ω(ζ, u) = iM0
u(ζ) + u(c)

ζ − c
+ (M1 + iM2)

×u(ζ) + u(η0)

ζ − η0
− (M1 − iM2)

u(ζ) − u(η0)

ζ − η̄0
+ M3,

(3.41)
where Mj (j = 0, 1, 2, 3) are real constants to be
fixed.

As for the function X(ζ, u), it is a piece-wise
meromorphic function, symmetric on the sur-
face, X(ζ, u) = X(ζ̄ ,−u(ζ̄)), (ζ, u) ∈ R \ L,
L = l0 ∪ l1, discontinuous through the contour
dab ∈ R, and whose one-sided limits satisfy the
boundary condition

X+(ξ, v) = −X−(ξ, v), (ξ, v) ∈ dab. (3.42)

This function is defined by singular integrals

X(ζ, u) = exp







1

4

∫

dab

(

1 +
u(ζ)

u(ξ)

)

dξ

ξ − ζ

−1

2

∫

γ

(

1 +
u(ζ)

u(ξ)

)

dξ

ξ − ζ

−1

2

∫

γ

(

1 − u(ζ)

u(ξ)

)

dξ̄

ξ̄ − ζ
− 2na

∫

l+
0

u(ζ)

u(ξ)

dξ

ξ − ζ















,

(3.43)
where γ is a continuous curve whose starting
and terminal points are η0 = (η0, u(η0)) and
ζ0 = (ζ0, u(ζ0)), respectively. The point η0 is
an arbitrary fixed point lying on the upper sheet
C1, whilst the point ζ0 can lie on either sheet.
The affix ζ0 of the starting point is defined by

ζ0 = sn2 ig0

2k
, (3.44)

where

k = m−1/2, g0 =
1

4

∫

dab

dξ

p1/2(ξ)
+

η0
∫

0

dξ

p1/2(ξ)
.

(3.45)
Denote

I± =
1

4

∫

dab

dξ

p1/2(ξ)
+

η0
∫

0

dξ

p1/2(ξ)
±

ζ0
∫

0

dξ

p1/2(ξ)
.

(3.46)
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If it turns out that both the numbers

− Im I−
4kK

and
Re I−
4kK′

(3.47)

are integers, then the point ζ0 ∈ C1 and na =
− Im I−(4kK)−1. Otherwise, the point ζ0 falls
on the lower sheet C2 and na = − Im I+(4kK)−1.
Here K = K(k) is the complete elliptic integral
of the first kind, and K

′ = K(
√

1 − k2).

The curve γ does not cross the contour l0. In
the case ζ0 ∈ C2, it passes through the point
ζ = 0 and consists of two parts, η0 0 ⊂ C1 and
0 ζ0 ⊂ C2. If the point ζ0 lies on the upper sheet,
then the contour γ can be chosen as the straight
line joining the points η0 and ζ0 provided it does
not cross the contour l0. We notice that in all the
numerical tests implemented the point ζ0 ∈ C1.

The solution (3.39) possesses 10 unknown real
constants. They are M0, M1, M2, and M3 (the
coefficients in the representation of the rational
function Ω(ζ, u)), the angle of yaw δ, and the
points a, b, d, e0, and m. To fix these unknowns
we have the same number of equations, linear
and nonlinear. The first equation (3.36) links
the three parameters a, e0, and m. Write down
the other equations. Due to the simple pole of
the function X(ζ, u) at the point ζ0, the function
ω1(ζ) has an inadmissible pole at this point. It
becomes a removable singularity if the following
complex condition holds

Ψ(ζ0, u(ζ0)) + Ω(ζ0, u(ζ0)) = 0. (3.48)

To guarantee a smooth detachment of the jet
breaking away from the wedge at the point z =
D, we require

Ψ(d, u(d)) + Ω(d, u(d)) = 0. (3.49)

Notice that at the point ζ = b the solution is
automatically bounded.

Since the function ω1(ζ) vanishes at the point
ζ = e1, we impose the following condition

Ψ(e1, u(e1)) + Ω(e1, u(e1)) = 0. (3.50)

Next, we wish the function ω1(ζ) being bounded
at the infinite point. By analyzing the principal
term in (3.39) at infinity, we have

M0 = Ψ0 − 2M2, (3.51)

where Ψ0 is a real constant given by

Ψ0 =
α

2π

∫

ab

dξ

vX+(ξ, v)
− π − β

2π

∫

da

dξ

vX+(ξ, v)

+
i ln(σ + 1)

4π

∫

bcd

dξ

vX(ξ, v)
. (3.52)

We also add the standard geometrical conditions

λ◦

1 sinα − Ω1 = 0, λ◦

2 sin β − Ω2 = 0, (3.53)

where

Ω1 = Im

∫

ab

ω∗

0(ζ)e−ω1(ζ)dζ,

Ω2 = Im

∫

da

ω∗

0(ζ)e−ω1(ζ)dζ. (3.54)

The final two real equations come from the re-
quirement for the mapping z = f(ζ) to satisfy
the single-valuedness condition (3.32) or, equiv-
alently, the following condition

∫

l∗
1

ω∗

0(ζ)e−ω1(ζ)dζ = 0, (3.55)

where l∗1 is a closed contour around the cut l1
which does not cross the cut l0.

The real constants M0, . . . , M3 and the angle
of yaw δ = α−α0 are determined explicitly from
the linear equations (3.48) to (3.51). The other
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unknown parameters of the conformal mapping,
a, b, d, e1, and m, can be found from a system of
three real and one complex transcendental equa-
tions (3.36), (3.53), and (3.55).

The nonlinear system (3.36), (3.53), and
(3.55) of five real equations is solved numerically
by a technique based on the Newton method
similarly to the system of four nonlinear equa-
tions associated with the problem for a wedge
beneath a free surface [4]. The main feature of
the system (3.36), (3.53), and (3.55) is the pres-
ence of certain constraints for the unknown pa-
rameters. Indeed, we have chosen a ∈ l+1 , have
proved that c = ā ∈ l−1 , and 1 < m < ∞ by
the definition. Therefore, d ∈ l±1 , b ∈ l±1 and
0 < d < a, a < b < 1. All numerical tests im-
plemented show that in fact, d ∈ l+1 and b ∈ l+1 .
It turns out that there are two sets of param-
eters of the conformal mapping, {a, b, d, e1, m}
and {a, b, d, ē1, m}, which satisfy the system of
nonlinear equations. However, the set of param-
eters with e1 = e0 − i0 produces a nonphysical
solution: the two branches of the free streamline
which define the cavity intersect each other, and
the Brillouin condition is therefore violated.

For all the problem parameters tested, the
physical solution corresponds to the case when
e1 = e0 + i0 ∈ l+0 and therefore e2 = ē1 ∈ l−0 .
The values of the parameters of the conformal
mapping and the angle of yaw for some values of
the cavitation number σ when

α0 =
π

3
, β0 =

2π

3
, λ1 = 1, λ2 = 2,

h = 20, h1 = 10, (3.56)

are given in Table 1. It is seen that the angle
of yaw increases when the cavitation number in-
creases.

Table 1. The values of the parameters a, b, d,
e0, m, and the yaw angle δ for the parameters
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α
0
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1
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1 2 3 4 5 

Figure 5: The cavity shape and the jet surface
when α0 = π − β0 = π

3 , λ1 = λ2 = 1, l = 0.5,
σ = 0.5 for some values of the h: h = 10 (1),
h = 16 (2), h = 20 (3), h = 30 (4), and h = 50
(5).

(3.56) and some values of the cavitation number
σ.

σ a b d

0.3 0.991565 0.996192 0.971464

0.6 0.960173 0.982899 0.862127

1.0 0.870908 0.948976 0.570754

σ e0 m − 1 δ

0.3 1.0084579 1.395441 · 10−6 0.129164

0.6 1.043103 1.561740 · 10−3 0.134618

1.0 1.170520 1.958512 · 10−2 0.141443

To restore the shape of the cavity, we inte-
grate the function df/dζ over the contours bτ
(τ ∈ bc) and dτ (τ ∈ dc) as was described in
the case of the double-spiral-vortex model in Sec-
tion 2.3. We have reconstructed the shape of the
cavity behind the wedge and the jet for a sym-
metric wedge for different widths h of the jet or
equivalently for different values of the parameter
λ◦

1 = λ◦
2 (figure 5). The numerical results show
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Figure 6: The cavity shape and the jet surface
for α0 = π − β0 = π

3 , λ1 = λ2 = 1, l = 5
8 when

σ = 0.4 (1), σ = 0.5 (2), and σ = 1 (3).

that when h grows and the cavitation number is
fixed the length of the cavity grows as well.

The jet boundary, the cavity shape and the
streamline which splits at the vertex of the wedge
and then emerges at the rear part of the cavity
are shown in figure 6 for some cavitation num-
bers in the nonsymmetric case. The amplitude
of the wave on the surface of the jet and the cav-
ity length increase when the cavitation number
decreases.

In figure 7, we present the cavity and jet
profiles predicted according to the single-spiral-
vortex model (a solid line) and the double-spiral-
vortex model (a broken line). In the contrast to
the second model, there is no wake behind the
cavity in the former model. The shapes of the
cavity computed according to the two models,
are different only at the rear part of the cavity.
The length of the cavity is smaller for the double
model, however the separation point between the
cavity and the wake is hardly noticeable. Also,
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1
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2 
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2 

Figure 7: The cavity shape and the free surface
for a nonsymmetric wedge when α0 = π

3 , β0 =
2π
3 , σ = 0.5, h = 20, h1 = 10, λ1 = 1, and λ2 = 2

for the single- (1) and double-spiral-vortex (2)
models.

the jet is wider for the double model. This is
again because of the presence of the wake be-
hind the cavity.

The solid lines in figure 3 correspond to the
drag and lift coefficients CX and CY computed in
the framework of the single-spiral-vortex model.
It is seen that the curves for the single- and
double-spiral-vortex model (the broken lines) are
very close to each other. In the nonsymmetric
case, as x1 → +∞, the speed V → V∞. The ve-
locity vector v however does not tend to (V∞, 0).
This is because of the jet deflexion. In Table 2,
we give some values of the angle of deflection ǫ
at infinity for both the models. It is small and
of the same order for both the models.

Table 2. The angle of deflection ǫ for
the single-spiral-vortex model (SSVM) and the
double-spiral-vortex model (DSVM) of the jet at
infinity for α0 = π − β0 = π/3, λ1 = 1, λ2 = 2,
h = 20, h1 = 10.
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σ SSVM DSVM

0.3 −0.01524 −0.01661

0.5 −0.02294 −0.01811

0.7 −0.02745 −0.01954

1.0 −0.03392 −0.02160

Finally, we determine the circulation of the ve-
locity around the closed contour L1 = ABCDA
for the single-spiral-vortex model

Γ =

∫

l∗
1

dw

dζ
dζ = hV∞

∫

l∗
1

ω̃0(ζ)dζ. (3.57)

Table 3. Circulation (V∞)−1Γ for the single-
spiral-vortex model: α0 = π/3, β0 = 2π/3, λ1 =
1, λ2 = 2, h = 20, h1 = 10.

σ (V∞)−1Γ

0.3 -10.454608

0.4 -5.668399

0.6 -1.094609

1.0 -0.792022

It is seen from Table 3 that for a nonsymmet-
ric wedge, the absolute values of the circulation,
|Γ|, decreases when the cavitation number σ in-
creases. As h increases and h1 is fixed, Γ/V∞

decreases: for h1 = 10, λ1 = λ2 = 1, σ = 0.5,
α0 = π − β0 = π/3 and for h = 30, 80, and 150
we have Γ/V∞ = −0.4845, −0.3520 and −0.3288,
respectively that is consistent with the results [4]
for a wedge beneath a free surface. Because of
the condition (2.5), the corresponding integral
around the contour C1DABC2 for the double-
spiral-vortex model is zero.

4 Two wedges in a jet

Consider the single-spiral-vortex model for two
supercavitating wedges symmetrically located
with respect to the line of symmetry E1E2 for

−10 −5 0 5 10 15 20 25 30

−15

−10

−5

0

5

10

15

α
0
=π/3, β

0
=2π/3, δ=0.0315, λ

1
=1, λ

2
=1, h=20, h

1
=10

Figure 8: The cavity shape and the free surface
for a wedge in a channel (two symmetric wedges
in a jet) when α0 = π

3 , β0 = 2π
3 , σ = 0.3, h = 5,

and λ1 = λ2 = 1, h = 20 and h1 = 10.

the jet of width 2h when it is calm. This prob-
lem is equivalent to the problem for a wedge in a
channel with a free surface E+

1 E+
2 . The lower

boundary is rigid and therefore, arg dw
dz = 0,

z ∈ E1E2. The problem can be solved similarly
to the case of one wedge in a jet by using the
conformal map z = f(ζ) whose derivative has
the form (2.7) with the function ω0(ζ) defined in
(3.34). The second function, ω1(ζ), in addition
to the boundary condition (3.37) has to meet the
condition Imω1(ζ) = 0, ζ ∈ e1e2. In comparison
to the case of one wedge in a jet, the only one
difference in the representation of the function
ω1(ζ) is the contour of integration in the first in-
tegral in formula (3.43) for the function X(ζ, u):
the contour dab is to be replaced by dab ∪ e1e2.
The final solution has the same number of un-
known parameter and the same number of addi-
tional conditions. Note that to fix the position
of the wedge in the channel, we use the condition
(3.35), where h1 is the parameter introduced in

13



Section 2.

In figure 8, we show the predicted shape of
the cavity and the upper free surface. It is seen
that the presence of the bottom or, equivalently,
another symmetrically located wedge turns the
wedge (the yaw angle for the parameters chosen
is 0.0315).

Conclusions

The main contribution of this work is the com-
parative analysis of the two nonlinear models by
Tulin, the single- and double-spiral-vortex mod-
els applied to the problem for a jet past a yawed
nonsymmetric wedge.

By solving certain Riemann-Hilbert problems
we have derived the conformal mapping from
a parametric half-plane onto the flow domain
for the double-spiral-vortex model and from a
plane cut along two segments, [0, 1] and [m,∞),
onto the physical domain for the single-spiral-
vortex model. The former case is simpler since
the Riemann-Hilbert problem is set on the com-
plex plane whilst it is formulated on a genus-
1 Riemann surface in the case of the single-
spiral-vortex model. In both the models, the
final step of the method is the solution of an as-
sociated system of transcendental equations for
the unknown parameters of the conformal map-
ping. We have solved these systems by the New-
ton type method. It turns out that the nonlin-
ear system in the double-spiral-vortex model has
a unique solution. For the single-spiral-vortex
model, we have found two sets of parameters.
However, one of them violates the Brillouin con-
dition which requires the free streamlines do not
intersect each other. The second solution obeys
all the conditions of the model and is therefore
physical.

The numerical results for the drag and lift

coefficients computed according to the single-
and double-spiral-vortex models are very close.
What is different is the shape of the rear part
of the cavity, its length, and also the profile of
the jet. In general, the amplitude of the waves
on the jet are higher in the double-spiral-vortex
model. After the jet hits the wedge it deflects
from the original horizontal axis. Again, the de-
flection angles computed at infinity are not the
same for the two models. Finally, in general, the
circulation is not zero for the single-spiral-vortex
model while it always vanishes in the double-
spiral-vortex model.
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