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ABSTRACT

A numerical methodology for the simulation of cavitating
flows is considered. A homogeneous-flow cavitation model, ac
counting for thermal effects and active nuclei concentratis
considered, which leads to a barotropic state law. The oonti
ity and momentum equations for compressible inviscid floves a
discretized through a finite-volume approach, applicablert-
structured grids. The numerical fluxes are computed by shock
capturing schemes and ad-hoc preconditioning is used tiol avo
accuracy problems in the low-Mach regime. Second-ordas-acc
racy in space is obtained through MUSCL reconstruction.€Tim
advancing is carried out by an implicit linearized schemeo T
different numerical fluxes are investigated here, viz. tioe Bnd
the Rusanov schemes. For the Rusanov flux two different time
linearizations are proposed; in the first one the upwind phrt
the flux function is frozen in time, while in the second one its
time variation is taken into account, although in an apprated
manner. The different schemes and the different lineddrat
are appraised for the quasi 1D-flow in a nozzle through compar
ison against exact solutions and for the flow around a hydrofo
mounted in a wind tunnel through comparison against experi-
mental data. Non-cavitating and cavitating conditions sane-
ulated. It is shown that, for cavitating conditions, the &usv
scheme together with the more complete time linearizatien a
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INTRODUCTION

The present work is part of a research aimed at developing
a tool for numerical simulation of 3D compressible flows sati
fying a generic barotropic equation of state. In particulee are
interested in simulating cavitating flows through the bapic
homogeneous flow model proposed in [1]. In previous works, se
e.g. [2, 3], a linearized implicit, second-order accuragmneri-
cal method for the simulation of compressible barotropievflo
on unstructured grids was developed. This numerical sclieme
based on a finite-volume spatial discretization, throughRloe
numerical flux function [4] and a MUSCL reconstruction tech-
nigue [5] to obtain second-order accuracy. A time-consiste
preconditioning is introduced to deal with the low Mach num-
ber regime. The linearized implicit time-advancing is asated
to a defect-correction technique to obtain a second-ordeu-a
rate (both in time and space) formulation at a limited coraput
tional cost. The set-up numerical tool has been validateditih
a rather extensive set of numerical experiments and thénsata
results were in good agreement with experimental data aad an
lytical solutions. However, when cavitation occurs, thebdity
properties of the scheme deteriorate dramatically and eaty
small time steps are allowed. This clearly increases thepcbaa
tional costs and, thus, makes difficult to afford the simalaof
complex cavitating flows, as occur in many aerospace andindu
trial applications. To overcome this problem a differentraui-

lows time steps much larger than for the Roe scheme to be used.cal flux function, namely the Rusanov one (see [6, 7]), is bns

Finally, the results obtained with this scheme are in goadeg
ment with the exact solutions or the experimental data fahal
considered test cases.

ered in this work. The Rusanov numerical flux function is know
to have excellent robustness properties and thus it seebesdo
good candidate to eliminate, or at least reduce, the irlgtebi



connected with the cavitation. The same steps used to gevelo
the numerical tool based on the Roe numerical flux functien ar
herein followed for the Rusanov case. First, it has beerfigdri
that preconditioning is needed also for the Rusanov scheme t
deal with the low-Mach regime and a suitable preconditign
defined. Moreover, the linearized implicit time advanciegh-
nigue is defined. Note that for the Rusanov scheme, also shank
to its simplicity, two different linearizations are promus the
first one is a classical linearization, in which the upwindit e

the flux is considered frozen, as it is usually done in theditgare

for the family of upwind schemes to which the Roe and Rusanov
ones belong (see, e.g., [8] or [9]). Conversely, in the sdcon
linearization the time variation of this upwind part is takiato
account, although in an approximate manner. This may be im-
portant when the speed of sound has a stiff change in magnitud
as typically occurs for homogeneous-flow models in presefice
cavitation. Finally, the same ingredients developed tdexeh
second-order accuracy for the Roe scheme, i.e. MUSCL recon-
struction and defect correction, are also applied to theaRog
numerical flux.

A first series of 1D simulations for the steady flow in a
convergent-divergent nozzle have been performed in order t
compare the different schemes and numerical formulatidas
first-order scheme is generally more stable than the cooresp
ing second-order and we are interested in robustness it
set of simulations we only use the first-order version of thie-c
sidered schemes.

Then, the developed numerical methodology and the differ-
ent schemes are applied to the simulation of the inviscid flow
around a hydrofoil mounted in a wind tunnel [10] both in cavi-
tating and non-cavitating conditions. The accuracy of dselts
is appraised by comparison against experimental data [0H8.
robustness and efficiency of the different considered selsem
also investigated.

As a final remark, we are aware that a known drawback of
the Rusanov numerical flux function is the introduction oba t
large numerical dissipation in presence of contact disnaities
and, thus, this scheme is not well suited for viscous computa
tions. However, in the literature there are modificationghef
Rusanov scheme which reduce this problem without loosing in
robustness, as for instance the HLLC [7] or HLLE+ flux func-
tions [12]. In the spirit of the HLLE+ scheme, we have develdp
an original modification of the Rusanov flux function, aimed a
improving the behavior in presence of contact discontiasit
However, in this paper only inviscid flow simulations are pre
sented and has been checked that, as expected, this maalificat
has not significant effects for inviscid flows. Thus, this rified
Rusanov scheme is not presented here for sake of brevity.

PHYSICAL MODELING
State and governing equations

A weakly-compressible liquid at constant temperafirés
considered as working fluid. The liquid densjyis allowed
to locally fall below the saturation limipisat = prsat(TL) thus
originating cavitation phenomena. A regime-dependentt-(we
ted/cavitating) constitutive relation is therefore adapt
As for the wetted regimep(> pisai), @ barotropic model of the

(=)

is adoptedpsat = Psat(TL) andBs. = BsL (TL) being the satura-
tion pressure and the liquid isentropic compressibiliggpec-
tively. As for the cavitating regimep(< prsat), @ homogeneous-
flow model explicitly accounting for thermal cavitation etts
and for the concentration of the active cavitation nuclethia
pure liquid has been adopted [1]. In this model, the evapora-
tion/condensation phenomena between the two phases tade pl
within a layer surrounding the cavity surface, within whitte
temperature is assumed to be constant. Hence, the variztion
the liquid entropy, as produced by the interfacial heatdfan
is opposite to the one of the cavities and therefore the pntro
of the mixture does not change. The entropy conservation per
mits to derive a differential barotropic relation for thevitating
mixture as well

)]

whereg*, n, Y and p; are liquid parametersy s4; is the liquid
sound speed at saturatiam—= 1 — p/pLsar ande. =€ (a,{) is

a given function (see [1] for its physical interpretatiorddior
more details). The resulting unified barotropic state lantfe
liquid and for the cavitating mixture only depends on the two
parameter3_ and(. For instance, for water & = 29316K, the
other parameters involved in (1) and (2) apy = 280682 Pa,
PLsat = 997.29 kg/n?, BsL = 510719 Pal, g = 1.67,n = 0.73,

W = 1.28, pc = 2.2110 Pa anda sa = 1415 m/s/[13].

Note that despite the model simplifications leading to a uni-
fied barotropic state law, the transition between wettedcavit
tating regimes is extremely abrupt. Indeed, the sound sfadied
from values of order 1®m/s in the pure liquid down to values of
order Q1 or 1 m/s in the mixture. The corresponding Mach num-
ber variation renders this state law very stiff from a nurcali
viewpoint.

The 3D Euler equations for an inviscid fluid are considered
as governing equations. Nevertheless, by virtue of thethapiz
state law, the energy balance is decoupled from the massand m
mentum balances; hence, it is possible to consider thexivitp
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family of classical first-order upwind schemes can be deflmed
the following expression of the numerical flux function:

reduced set of governing equations

%vtv + div(F(W)) =0 (3)

Dij = Djj ¢+ Diju (7)
in which the centered parb;j . and the upwind one&b;j , are

— T I i i
whereW = (p,pu, pv,pw) " is the conservative variables vector defined as:

and 7 (W) = (Fy, K, F,)" represents the classical flux functions
for mass and momentum balances.

The 1D case is used as a first step for the definition of the
different numerical approaches, which are then extendddran

plemented in the_ 3D case. Thus, the following 1D flow systemis g yarious schemes differ for the definition of the upwinrte
also considered: and, more specifically, of the matrig;.

F(W)+F (W)

1
2 ) CDij,u:—iQij (VVJ —V\/,) (8

Djj c =

MW IF(W)

ot P The Roe scheme One of the most popular choices for

®; j is the Roe numerical flux function [4], defined by:

=0 (4)

where W = (p,pu,p&)" and F(W) = (pu,pu?+p,put)’ in Qj = [Jw,w)| ©)
which ¢ denotes a passive scalar. As for the 3D case, the energy
equation does not need to be included since the partialaties
system([(4) is closed through a barotropic equation of state.

For the development of the numerical methods a generic

The so-called Roe matri¥ is a diagonalizable matrix satis-
fying specific conditions [4] whilelJ| = T |D|T~* where T

barotropic equation of state is considered:

p=p(p) )

The derivatived p/dp is assumed to be strictly positive (a
classical thermodynamic stability requirement for comnfion

ids) and can be regarded to as the square of the fluid sound spee
a(p). The equations (1) and(2) for the cavitating case are a par-

ticular instance of (5).

NUMERICAL FORMULATION

The spatial discretization of the governing equations seba
on a finite-volume formulation on unstructured tetrahedrals
and time advancing is carried out through an implicit lineed
algorithm. For sake of simplicity, the different numeridagre-
dients are presented in details in the 1D case; the genatializ
to 3D is then briefly discussed.

Spatial discretization
The finite-volume spatial discretization of Eqs] (4) leaals t
the following semi-discrete problem:

W

OXi G Dii11) — P2 =0 (6)

where dx; is the width of the finite-volume ceil and @;; is a
numerical flux function between theh cell and thej-th one. A

is the matrix of the eigenvectors associated witand |D| =
diag(|A1],---,|Akl,-- -, |An|), Ak being thek-th eigenvalue ofi.
Clearly, the Roe matrix, originally defined in [4] for the easf
the Euler equations with an ideal-gas state law, dependkeon t
specific hyperbolic problem under consideration. For a gene
barotropic state equatioh (5) and the 1D hyperbolic sysé&m (
the following Roe matrix has been derivedin [3| 14]:

0 1 O
jij — 5121 —Clizj 20;; 0 (10)
—Gj & &) Gij

in which Gi; andg;; correspond to the well-known “Roe aver-
ages” for the state®f andW; of u and¢ respectively whereas
&jj, which can be identified with a Roe average for the sound
speed, is defined as:

P(PI) —P(P) ¢
——————if pj # pi
a(pspps) i pi=pj=ps

The Rusanov scheme  Another common choice for
®; j is the Rusanov scheme [6], which is defined by the choice of
a diagonal matrix foQ;j; more precisely:

Qij = Aij |



wherel is the identity matrix and the parametgs is an up-
per bound for the fastest signal velocities [7]. This scheare

be viewed as a simple example of HLL Riemann solvers (see solution.

e.g. [7]). This class of robust approximate Riemann solaees
based on the construction of averaging intermediate statbe

the low Mach number limit and, as a consequence, a precondi-
tioning technique is needed to recover the correct behaf¥ithre

In the spirit of [17], it is possible to work dirdgton

the term of the matrixQ;; without adding extra terms in the flux
expression and, therefore, it is possible to consider theng

solution of the Riemann problem. The Rusanov scheme assumes‘preconditioned matrix”:

only one intermediate wave state between two acoustic waves
andA;jj corresponds to the acoustic wavespeed estimate. Two of

the most common choices are:
Aij = max(|uj| +aj, [ui| + &) (12)

and the one based on the eigenvalues of the Roe matrix, that is
our case:

Aij = max(|Gij + &, |Gij — &) (13)

whereli; is the Roe average farandd; is defined by/(11).

Preconditioning for low Mach number flows
For the cavitating flow problem, a large part of the flow is

characterized by very low Mach numbers since we have to deal

with a weakly-compressible liquid. Compressible solvedsileit
accuracy problems when dealing with nearly-incompressibl
flows [15]. In order to counteract this difficulty, some praeo
ditioning must be applied.

A preconditioned Roe scheme A Turkel-like precon-
ditioning has been proposed in [14, 16] for the Roe flux fuorcti
associated with a barotropic equation of state using aairfat-
mulation as proposed in [15] for a perfect-gas state law.s Thi
preconditioning is acting only on the upwind part of the nuime
cal flux function; more precisely, (9) is substituted by:

Qij = P (WL W) [P(WL W) T(WE, W)

whereP(W,W;) is the preconditioning matrix.

It has been shown in [14, 16] that, with an adequate choice of

6100
Qj=ANj| 0 60 (14)
0 01
where the parametéris defined as
10°° if M<10°
6=6(M) = { min(M, 1) otherwise (15)

in which M = %, with u and a defined accordingly with the

choice ofAjj, i.e. if, for instancej;; = Gij + &; thenu = (j; and
a= &;j and similarly for the other choices afj. With this sim-
ple preconditioning procedure, the correct asymptoticalvesr
of the analytical solution is recovered (see![18]) .

Extension to second-order accuracy in space The
extension to second-order accuracy in space can be achieved
by using a classical MUSCL technique [5], in which instead of
;i1 = D(W,W1), the numerical fluxp, 1= ¢(W+1,V\/:Ll)
is computed as a function of the extrapolated vanable mhje

the cell |nterface<|+1 The considered value&/i1 are defined

by piecewise linear reconstruction of the solutlon and ban
expressed as follows infxzscheme form (see, e.g. [19]):

- hit1 Wi —W W -W_,
Wiy =we B o e g
hi Wi —W —
V\/i_th.H'ZH[(lB) Hrr]l |+BW+2hl W+l]
2 i+1 i+2

P(W, W), the preconditioned semi-discrete solution recovers the Wheref is a given parameter. Note that this technique can equiv-

same asymptotic behavior (with an expansion in power ofexr+ef
ence Mach numbew!) of the analytical one. This theoretical re-
sult has been also corroborated by numerical experimenithwh
show that the preconditioned formulation does not preseci-a
racy problems for low Mach number flows. We referto [14, 16]
for more details.

A preconditioned Rusanov scheme By carrying out

the same asymptotic analysis as/in [14, 16], it has been found
that the Rusanov scheme also encounters accuracy prollems i

4

alently be applied either to the Roe or to the Rusanov numleric
flux.

Linearized implicit time advancing

A first-order accurate linearized implicit approach
Let us consider an implicit backward Euler method applietthéo
semi-discrete problerm (6):

6x.

AnWJFA ®;, |+1*A D 1i =

7(¢ir1i+1 cDl 1|) (16)



where A"(:) = ()™ — (-)". To avoid the solution of a non-
linear system at each time step, a linearizatioAsb;; is usually
adopted. A way to obtain such a linearization is to find two ma-
tricesD; andD» such that

AP;j = Dy (W, W) AW + Do (W W AW, (17)

In this cas€ (16) is reduced to the following block tridiagbn
linear system:

BY A™W 1 + Bg" AW + By"A™W 1 = — (@, — D ;)
where:

B} = —Dy (W™, W")

6Xi

ANt

B = O 1 Dy W) — D W)

B;" = Da(W", W1,)
A classical linearization is defined via differentiation taking:

OCDH

T w") and D (W"WM) = aw W

Nevertheless, it is not always possible nor convenient {0 ex
actly compute the Jacobian matricaq)ij andacﬂ In fact, itis

y comp W " aw !
not unusual to have some lack of differentiability of the rasm
ical flux functions; it is the case, in particular, for bothetRoe
and the Rusanov schemes.

A Jacobian-free linearization for the Roe scheme was previ-
ously derived in [3, 14], which only exploits the algebraiop-
erties of the Roe matrix and, therefore, does not depend®n th
specific equation of state. This approach is characteriged b

D1(W" W) = JN*(V\'{n,an) 1
) with J* = 5
D2(WM W) = 37 (W, W)

(J+J)

However, due to its particular construction, this approeah be
used only for the Roe scheme.

Alternatively, a classical linearization of type (17) cists
in applying a first-order Taylor expansion in time but withaarc
plete differentiation only for the centered part of the nuice
flux function while the matrixQ;; in the upwind part is frozen
at timet" (see, e.g., [8] for an application to the Roe scheme for

5

Euler equations or [9] for shallow water equations). Thisutes
in the following approximation:

A" 7 (AO)AW + AGWP)AW)

1 (18)
— 5Q ("W —A™W)

in which A is the Jacobian matrix df. Note that this approach
can be used for any upwind scheme of type (7)-(8), indepen-
dently of the differentiability or of the complexity in theffir-
entiation ofQ;j. In particular, it can be used for both the Roe and
Rusanov schemes.

Let us reinterpret this linearization by rewriting the time
variation of the upwind term o®;; as follows:

n
LW, - AW -

AnCDijM = — i (29)

. . An .

in which rinjan—&-l - 2Q'J (an+l _\N|n+l)_

The previous linearization is obtained just by neglectimgterm
™ itis worth noting that this term can be neglected as long
as that the solution is regular enough to satisfy:

ijn+l 7\Nin+1 0 O(AX) andA”Qi,- O O(At) (20)

Even if the assumption (20) is in general a reasonable one,
there are situations of practical interest in which it is satis-
fied. Indeed, if a discontinuity is present the magnitudehef t
termW" — WM can be large independently of the sizeMsf
Moreover, the term\"Q;; can also be large. This can happen,
in particular, in presence of huge variations of the flow gelo
ity or when the speed of sound has a stiff change in magnitude.
The latter is a typical situation in presence of cavitatidius,

a more complete linearization is proposed below for the cése
the Rusanov scheme by estimatin; nl neglected in the ap-
proximation [(18). Note that fully linearized formulatiofe the
classical Euler equations have been proposed in [20] ftereifit
upwind schemes.

Let us first notice that, the terms @j can be written as a
composite function of two variablea,andu, as follows:

Ok = Ok (U(WE(t), W4 (1)), a(WE(t), W (1)) (21)
whereqx = Aij, Aij defined by((12) or (13), or alternatively for
the case with preconditioningx = Ajj d(M) (dk given by (14)-
(15)).

Then, through differentiation of (21), by neglecting terms
of higher order and after some mathematical developmeats (s



[18] for more details), the following approximation of theepi-
ously neglected term is obtained:

1 1
M~ 2K AW — 5 Kji AW, (22)

1) 2

in which the generic element &§; is defined by the following
expression:

Jgx Oda n
* o avw,m> (Wi

(23)

(Kii ) m

dgx du
= =X —wn
( ou oW m I’k)
in which W , denotes then-th element of the vecton,. By
putting everything together, the following more complefe a
proximation of the time variation of the numerical flux fuioet
is obtained:

1
LT (A(W.”) +Q - Kij>A”W|

1 (24)
5 (A(VVJ”) -Qfj+ Kji>AnVVj

Note that ifKj; is a null matrix, [(24) reduces to (18).

Let us now make some simplifications based on physical
considerations related to the particular kind of applmasi of
interest in this study. Excepting when the flow is highly supe
sonic, we have that the flow derivativeswoére far smaller than
the ones o&. Indeed, due to the particular equation of state under
consideration (the barotropic cavitating one), when aditaon
from vapor to liquid occurs, this leads to a step-like chanfje

the speed of sound of a few order of magnitudes. Consequently

it seems reasonable to neglect the variationimcomputingKj;

in (23), and then, to approximate the variation of the magix
only through the variation ia. Under this assumption and using
the fact that only depends on the density, i&= a(p;,pj), the
matrix K previously defined in (23) reduces here to:

api 01 (DT - pln) 00

Kij = Opi G2 <(pu)?— (pU)i”> 00 (25)

0p; 03 ((pE)T— (pE)i”> 00

in which dy, ok represents the partial derivative g with respect
to pj, but considering only the variation m i.e.:

9
0p Ok = % where Xx = Xk(pi,Pj) = Ok (u7a(pi,pj))

These partial derivatives are numerically computed hexautih
centered finite differences.

Second-order accurate linearized implicit time ad-
vancing The following space and time second-order accurate
implicit formulation is obtained considering the MUSCL kec
nigue for space as previously defined and a second-order back
ward differentiation formula in time:

3vvn+l — QNN Wn—l
OXj — LY +A"®D. —An(D- 1=
2t I+3 —3 (26)
n n
- (93 -oly)

where®, , ; = CIJ(V\llil,W+

merical fluxes computed as previously described. Similtoly
the 1st-order case, a Iinearizationﬂdfdbii% must be carried out

in order to avoid the solution of a nonlinear system at eautie ti
step. However, the linearization for the second-order aateu
fluxes and the solution of the resulting linear system ingpdiig-
nificant computational costs and memory requirements. ;Thus
a defect-correction technique [21] is used here, which istss

in iteratively solving simpler problems obtained, herestjoon-
sidering the same linearization as used for the 1st-orderee.
The defect-correction iterations write as:

) are the second-order accurate nu-

WO — W
BSDSW_ 1+ BSEDSW + BN 1 =S5 s=0,---,m—1
Wl — @m
in which:
BY = —Da(WP,, W)
T = | Dy, W) — Do WE W)

By = D(WE, WS 1)

SS=— (5"'(3%/3 AN+ W)+ 0P qais%)

D; andD; being the generic matrices of the approximation (17).
mis typically chosen equal to 2. Indeed, it can be shown [3, 21]
that only one defect-correction iteration is theoreticalbeded

to reach a second-order accuracy while few additional titama
(one or two) can improve the robustness.



Extension to 3D

In 3D, starting from an unstructured tetrahedral grid, aldua
finite-volume tessellation is obtained by the rule of mediaa
cellG is built around each vertaxand boundaries between cells
are made of triangular interface facets. Each of theseddxet a
mid-edge, a face centroid, and a tetrahedron centroid sise®r

The semi-discrete balance applied to ¢&llreads (not ac-
counting for boundary contributions):

d
VA

at (27)

z CDijZO

JEK(i)

whereW = (pi,piui,pivi,piwi)T is the semi-discrete unknown
associated witl;, V; is the cell volume X (i) represents the set
of nodes joined td\; through an edge ardlj; denotes the numer-
ical flux crossing the boundadgi; shared byC; andC; (positive
towardsC;).

Once defined;; as the integral ovedC;; of the outer unit
normal to the cell boundary, it is possible to approximétgby
exploiting a 1D flux function betweew, andWj;, along the di-
rectionvij; and the extension of the schemes previously presented
is straightforward. More details on the 3D formulation can b
found in [2, 16] for the formulation based on the Roe scheme.

NUMERICAL EXPERIMENTS
Barotropic 1D flows in a convergent-divergent nozzle

Inviscid flows in a quasi 1D convergent-divergent nozzle are
first considered. The governing equations are the reducegitD
ler equations (without passive scalar) with a source terhicky
accounts for variations of the cross-sectional &eéthe nozzle.
More precisely, the following system of differential eqoat is
obtained:

ow
ot

1 dSG(W

S(x) dx )

with W = (p,pu)", F(W) = (pu,pu?+p)’ and G(W) =
(pu,p?) "

The exact steady solution has been derived in [18] for the
case of a generic barotropic equation of state,[i.e. (5).

A non-cavitating polytropic flow In this first test case,
a fully subsonic flow, characterized by a low Mach number @alu
(approximately 10°), is obtained by considering the follow-
ing inlet conditionsp., = 900, U, = 0.03 and nozzle area ratio
Shin/S» = 0.9 respectively. Moreover, the following polytropic
law:

p=Kp* (28)

with Kk = 2 and s = 0.5 is used as equation of state. Similar
test cases have been used in previous works [14, 16] to inves-
tigate the behavior of the numerical solution in the low Mach
number regime, and, in particular, to validate the prectioning
defined for the Roe scheme. Thus, the purpose, here, is to ver-
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Figure 1. Comparison between Roe and Rusanov flux functions for the

pressure field, AX = L/400Q a) Without preconditioning; b) with pre-
conditioning.

ify that the Rusanov scheme requires a preconditioningesiya

and successively, to validate the technique proposed W((B).

Fig. [1 shows the comparison between the preconditioned and
the non-preconditioned simulations, as well as betweeiRte

and the Rusanov schemes. It turns out that a preconditisner i
actually needed and the proposed one seems effective. The tw
versions of the Rusanov scheme (RC and RR, i.e. usirig (12) and
(13) respectively) provide the same steady solution whigh a
pears slightly less accurate than the one obtained usinBdlee



scheme. Note that, only the first-order formulations of tha-c 4000

sidered schemes have been used in the 1D simulations. 3800
3600(

A complete cavitating 1D flow This second test case 3400
is characterized b ~ 997.94994 U, ~ 1.0005 andSmin/S. = y
0.5, while the equations of state| (1)-(2) for cavitating flows a 32007 i
used by takinglp = 29316 and{ = 0.1. A subsonic/supersonic = 3000" \
cavitating flow with a steady shock wave is then obtained. In- ' I
deed, at the inlet the flow is subsonM{ = 1.4-1073) then it is 2800/ — Exact 1
accelerated through the nozzle and transitions to supiergben 2600 ﬁg |
after the shock wave it becomes again subsonic. More pfgcise 2400l - - RR ‘
in the convergent zone the liquid transitions to the vapaseh - RRC K
and at the throat the flow reaches Mach 1. Afterward the flow 22007 00~ 500 o 500 1000
is expanded until Mach 14 and then, through a shock wave, the X
flow reverts to subsonic. This test case contains all thecdlffi @)
ties typically encountered in cavitating conditions: twoaoth 15 ‘
flow regions are divided by a shock wave, very high variations — Exact
of Mach number values are present in the flow with both highly ---RO
compressible and incompressible areas and there are/ligpiar RC
and vapor/liquid transitions. This test case is aimed atiatihg ~~RR
the preconditioning technique in the cavitating case asascht 10/ RRC
evaluating the behavior of the schemes in presence of discon -
nuities. S

It has been shown in previous studies| [2, 14, 16, 10] that =
strong stability limitations appear when cavitation occiar the 5r
case of a preconditioned linearized Roe formulation. Thmys,
taking a fixed spatial grid{x = L/250), the convergence be-
havior has been analyzed for a large rangéto¥alues and dif-
ferent approaches. In accordance with the previous stuties 0 ‘ ‘ ‘
Roe scheme is constrained by a stability condition thatdinfie -1000  -500 1000
maximum CFL coefficient to a small value, here of abo@10
The same limitation is also observed for the first Rusanawtor (b)

lation, i.e. Whe.n the linearization (18) is using, even & fRu- Figure 2. Comparison between Roe and Rusanov flux functions AX =
sanov scheme is I_<nown to be more robust.than.the_Roe@e. Co”'L/ZSQ a) pressure b) Mach number.

versely, by adopting the more complete linearization, {24)-
(25), this limit is increased up to 1400. Thus, even if the un-
bounded time step allowed in non-cavitating conditionsoisra- Flow over a NACA0015 hydrofoil

covered, the Rusanov scheme with the complete linearizatio The liquid flow over a NACA0015 hydrofoil in cavitating
be considered a major improvement in term of robustnessgsin  and non-cavitating conditions is considered. The hydtadbi

an increase of five orders of magnitude is obtained for the CFL chord lengthc equal to 115mmis mounted in a water tunnel at
coefficient. These results confirm the hypothesis that theemo  4° incidence angle and spans the entire width of the rectangula

complete linearization takes into account terms that beciom test chamber section. The test section, which is obtaineziby
portant when a subsonic phase transition or a shock wave (or ting the chamber along its symmetry plane, is sketched in Fig
both) are present. [3. This configuration has been considered in an experimental

Moreover, Fig. [ 2 shows that all the formulations based study in [11] for which the pressure coefficient distribution

on the Rusanov flux function provide results similar in accu- the symmetry plane of the hydrofoil is available, togethéhw
racy which are in rather good agreement with the exact smiuti  visualizations of the attached cavitation zone. This taseavas
Conversely, the Roe scheme introduces an unphysical eégpans a benchmark problem considered at the conference “Mathemat
shock wave and, as a consequence, the solution given by the nuical and Numerical aspects of Low Mach Number Flows”, Por-
merical scheme is not accurate: this is the well-know pnoble  querolles, France, June 21-25 2004, for which a numericalyst

of the entropy violation of the Roe scheme and would require a was performed with the Roe scheme (see [10]). Here, twordiffe
entropy fix (see, e.g., [7]). ent sets of inlet conditions are considered as summarizédhbn



[1]; the first conditions (TC1) correspond to a non-cavitatinge
while the second ones (TC2) generate a cavitating flow.

Testcasg U P, T Moo O
(m/s) | (Pa) | (K)
TC1 3.115 | 59050| 29315 | 2.2x 1073 | 11.71
TC2 3.115| 7500 | 29315 | 22x 1073 | 1.066

Table 1. Test case inlet conditions (O« being the inlet cavitation num-
ber).

i &

T 1.280

Figure 3. Sketch of the test section.

Even if the numerical discretization is fully 3D, this simaul
tion corresponds to a 2D flow since the computation domain is a
almost 2D domain, consisting in a slice of 0.1 ¢ thicknessién t
spanwise direction. The grid is made of 115728 nodes; a zoom
near the hydrofoil is shown in Fig.| 4. Free-slip conditioravé
been used on the wind tunnel walls and on the hydrofoil serfac
Characteristic based inflow and outflow conditions are inegos

Results of the non-cavitating simulations

As for the 1D case, for all the considered schemes large CFL
values can be used for non-cavitating flows; here, a CFL vaflue
200 has been chosen for the different simulations. Since thi
already led to very reduced computational times, a sysiemat
analysis of the actual stability limit has not been carrieiti for
these simulations. Actually, the initial flow for secondder sim-
ulations has been the final flow condition of the first-ordeneo
putation, but this has been done only for practical purpases
to reduce the time to reach the steady solution.
The pressure coefficient distribution obtained on the higiron
the different simulations is shown in Fig. 5 together witle th
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Figure 4. Zoom of the computation grid.

experimental data. It is clear that the second-order versic
proves the accuracy of the results for both the Roe and the Ru-
sanov fluxes; indeed, the suction peak is correctly predicte

the 2nd-order simulations, while in the 1st-order simwlatihis
peak is underestimated due to the excessive introducedriuaine
viscosity. Concerning the first-order formulation, the Rusv
scheme seems rather less accurate than the Roe one, hdaever,
the second-order case, the two schemes furnish similaltsesu

+ experiment
1 | -—-1%'Roe
l\ 1% Rusanov
\ --2" Roe
0.5 \\ — 2™ Rusanov
ok ! \ =7 |
o
¢
-0.5r b
_17 4
-1.5f b
0 0.2 0.4 0.6 0.8 1
xlc

Figure 5. Cp distribution for the TC1 test case (non-cavitating flow).



Results for cavitating conditions : —
+ experiment

As previously observed for the 1D case, when cavitation oc- 1r -~ Average 1% Rusanov
curs, the stability properties of the schemes change dieatigt — Instantaneous 1* Rusanov
For the first-order accurate formulations, the general bieha
observed for the cavitating 1D flow is recovered here. Indéed
the Roe scheme and for the Rusanov one with the first lineariza
tion (18), the CFL coefficient is limited to about0d, while the o
more complete Rusanov linearization permits to réaeh = 25. a
The increase in the maximum allowed CFL value is, here, of
more than three orders of magnitude, which is remarkable eve
if it is lower than that obtained in the 1D case.

0.5r

Only the simulations carried out with the most efficient ap- -1r
proach, i.e. the Rusanov one with the more complete time lin-
earization, have been advanced in time sufficiently to abtai
meaningful results. For the results given by the Roe scheme,
although on a different grid, we refer to [10]. Fig. 6 shows th 0 0.2 0.4 0.6 0.8 1
Cy, distribution on the upper side of the hydrofoil obtainedhwit xlc
the 1st-order accurate version of this scheme together théith
relevant experimental data. The solid line is the distidubb-
tained at a given time step, when a generally steady condgio
reached except for a small oscillation of the position of ¢nd
of the cavitation zone. First of all, note the good agreemetit
the experimental data obtained in both cavitating and nei ca
tating regions. The peak in ti&, distribution at the end of the
cavitation zone is due to the previously mentioned os@ifain
time of the end of this region and this peak is indeed elingidat
by averaging thé&, over several time steps (dashed line). This
unsteady behavior is also in agreement with the experimants
which the length of the cavitation bubble was found to oatzl|
in time betweerx/c = 0.4 andx/c = 0.46. Conversely, it could
not be observed in the Roe simulations in/[10], probably beea
a too short time interval could be simulated due to the prestio
discussed limitations of the allowable time step. Fig. 7vaho
the instantaneous iso-contours of the Mach number and of the
cavitation number obtained in these present simulatiotis the
Rusanov scheme. A rather large cavitation region, corm$po
ing to negative values of the cavitation number, is presetié
upper part of the hydrofoil, whose length is approximately/d)
again in good agreement with the experimental findings. Con-
versely, this length was significantly underestimated engimu-
lations with the Roe scheme in [10], confirming that probably
steady condition was not reached in those simulations. alete
how, very large Mach number values, up to approximately 28,
are reached in the cavitating region. This largely contabuo
render the numerical simulation of this type of flows parttcly CONCLUSIONS
stiff. Let us analyze now the results obtained with the 2riko The behavior of two different numerical fluxes, namely the
version of the Rusanov scheme with the more complete time lin Roe and Rusanov schemes, has been investigated in the simu-
earization. As for robustness, the maximum CFL value albbwe lation of cavitating flows through a numerical method based o

_1.57 i

Figure 6. Cp distribution for the TC2 test case (cavitating flow).

Rusanov one with the incomplete linearization. Moreovee, t
sensitivity to some numerical parameters, such as the nuofbe
iterations in the defect correction approach, ad-hoc aesidgim-
iters or preconditioning of the linear system to be solvedaath
time step, are currently under investigation. This mighegm-
portant insights on how to limit this efficiency reduction.s A
a consequence of the time step limitation, the 2nd-ordet-sim
lation could not be advanced enough in time to reach a steady
situation, but the cavitation region is still growing in #nThis
can be seen, for instance, in the avera@gdiistribution in Fig.

[8 or in the instantaneous iso-contours of the cavitationMadh
numbers in Fig/ 9 (compare with Fig.] 7), in which the size of
the cavitating region is smaller that in the 1st-order satiohs.
Except for this problem, however, Fig. 8 shows that the ¢ffe€
the 2nd-order accuracy are noticeable only in a small zoae ne
the leading edge, while in the cavitating region @gis almost
equal to that obtained in the 1st-order simulations. Therdfs
ancies in the rear part of the hydrofoil are again due to tbk la
of convergence in the 2nd-order simulations; indeed, ttheega
of Cp in that zone have been observed to decrease in time, as the
cavitation region size increases.

in this simulation by numerical stability was 0.6. This \alis a finite-volume discretization in space and a linearizedliicitp
is noticeably reduced with respect to the 1st-order versiche time advancing. For the Rusanov scheme, two different time
considered scheme, but it still more than one order of madait linearizations are proposed; in the first one the upwind pért

larger than the one found for the 1-st order Roe scheme ohéort  the flux function is frozen in time, while in the second one its
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Figure 7. Cavitating conditions and 1st-order simulations: instantaneous
iso-contours of the cavitation number (a) and of the Mach number (b).

time variation is taken into account, although in an apprated

+ experiment
1r ‘ ---1%' Rusanov
| — 2" Rusanov
0.57 ] 4
0, -
Q
]
_05 4
_17 4
_15 4
0 0.2 0.4 0.6 0.8 1
x/c

Figure 8. TC2: Cp distribution (averaged values). Comparison between
first- and second-order formulations.

the first linearization suffer of stability problems whidmit the
maximum allowed CFL to very low values. Conversely, with
the Rusanov scheme and the more complete linearization this
limit is increased of five orders of magnitude. This confirnas o
speculation that taking into account in the linearizatioa time
variation of the upwind part of the numerical flux is impoitan
in cavitating conditions, due to stiff changes of severaleorof
magnitudes in the speed of sound. As for accuracy, the gesult
obtained with the Rusanov scheme show a similar and even bet-
ter accuracy agreement with the exact solutions than thiese g
by the Roe scheme, since the latter suffers of an entropgtianl
problem, which should be cured by ad-hoc fix.

The different numerical formulations have then been applie
to the simulation of the inviscid flow around a hydrofoil moed

manner. This may be important when the speed of sound has ain a wind tunnel both in cavitating and non-cavitating cdiodis.

stiff change in magnitude, as typically occurs for homogerse
flow models in presence of cavitation.

For the 1st-order version of the schemes, as previouslyroéde
for the 1D case, when cavitation occurs, the efficiency oRbe

The different schemes and linearizations have been first ap- scheme and of the Rusanov one with the incomplete lineaizat
praised in the simulations of a quasi-1D flow in a convergent- dramatically deteriorate and the CFL is limited to very loal-v

divergent nozzle, both in non-cavitating and cavitatingndio
tions. Exact solutions were available for these flows from-pr
vious works|[18]. As a first-order scheme is generally moee st
ble than the corresponding second-order one and we werdymain
interested in robustness, in this first set of simulatioresfitst-
order version of the considered schemes was only used. The no
cavitating simulations show that preconditioning is nekdkso

ues. Conversely, for the Rusanov flux with the more complete
time linearization, this limit is increased of more thaneéror-
ders of magnitude, which is remarkable even if it is lowemtha
that obtained in the 1D case. The obtained results are in good
agreement with the experimental data, both for the pressisre
tribution over hydrofoil and the size and position of the itav

ing region. When the 2nd-order accurate version of the Rusano

for the Rusanov scheme to overcome accuracy problems in the scheme with the more complete time linearization is used, th

low Mach limit and validate the adopted preconditioninggeo
dure. For non-cavitating flows a practically unbounded gaiti

maximum reachable CFL value is only one order of magnitude
larger than the one found for the 1-st order Roe scheme. How-

the CFL number can be used for all the schemes, while, when ever, the sensitivity to some numerical parameters in thi 2n
cavitation occurs, the Roe scheme and the Rusanov one withorder formulation, such as the number of iterations in thecte

11
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Figure 9. Cavitating conditions and 2nd-order simulations: instanta-
neous iso-contours of the cavitation number (a) and of the Mach number

(b).

correction approach, ad-hoc designed limiters or predandi
ing of the linear system to be solved at each time step, are cur
rently under investigation. This might give important igisis
on possible ways how to limit this efficiency reduction. More
over, 2nd-order accuracy is essential when dealing witbous
flows. However, in this case complex interactions between th
cavitating region and the boundary layer occur, which let@ads
an unsteady flow behavior. In this context, the time steptéimi
tions of the 2nd-order scheme might be not so critical. Angwa
viscous simulations of the hydrofoil flow are in progresshitie
Rusanov scheme (properly modified to deal with contact disco
tinuities) together with a P1 finite-element discretizatfor the
viscous terms, and the results will be forthcoming.

NOMENCLATURE
L length of the computational domain (for 1D studies).

12

L . At .
CFL Courant-Friedrich-Lewy condition:CFL = amaXB( in
which amax is the maximum speed of sound in the flow

field.
RO implicit linearized Roe formulation.
RC implicit linearized Rusanov formulation usirlg; from
(12) and the linearization (18).
RR implicit linearized Rusanov formulation usirg; from
(13) and the linearizatioh (18).
RRC implicit linearized Rusanov formulation using from
(13) and the linearization (24)-(25).
Cp pressure coefficier®, = %
épmum
_— P Psat
0 cavitation numbeo = =
zpwugo
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