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ABSTRACT

A numerical methodology for the simulation of cavitating
flows is considered. A homogeneous-flow cavitation model, ac-
counting for thermal effects and active nuclei concentration, is
considered, which leads to a barotropic state law. The continu-
ity and momentum equations for compressible inviscid flows are
discretized through a finite-volume approach, applicable to un-
structured grids. The numerical fluxes are computed by shock-
capturing schemes and ad-hoc preconditioning is used to avoid
accuracy problems in the low-Mach regime. Second-order accu-
racy in space is obtained through MUSCL reconstruction. Time
advancing is carried out by an implicit linearized scheme. Two
different numerical fluxes are investigated here, viz. the Roe and
the Rusanov schemes. For the Rusanov flux two different time
linearizations are proposed; in the first one the upwind partof
the flux function is frozen in time, while in the second one its
time variation is taken into account, although in an approximated
manner. The different schemes and the different linearizations
are appraised for the quasi 1D-flow in a nozzle through compar-
ison against exact solutions and for the flow around a hydrofoil
mounted in a wind tunnel through comparison against experi-
mental data. Non-cavitating and cavitating conditions aresim-
ulated. It is shown that, for cavitating conditions, the Rusanov
scheme together with the more complete time linearization al-
lows time steps much larger than for the Roe scheme to be used.
Finally, the results obtained with this scheme are in good agree-
ment with the exact solutions or the experimental data for all the
considered test cases.

INTRODUCTION

The present work is part of a research aimed at developing
a tool for numerical simulation of 3D compressible flows satis-
fying a generic barotropic equation of state. In particular, we are
interested in simulating cavitating flows through the barotropic
homogeneous flow model proposed in [1]. In previous works, see
e.g. [2, 3], a linearized implicit, second-order accurate,numeri-
cal method for the simulation of compressible barotropic flows
on unstructured grids was developed. This numerical schemeis
based on a finite-volume spatial discretization, through the Roe
numerical flux function [4] and a MUSCL reconstruction tech-
nique [5] to obtain second-order accuracy. A time-consistent
preconditioning is introduced to deal with the low Mach num-
ber regime. The linearized implicit time-advancing is associated
to a defect-correction technique to obtain a second-order accu-
rate (both in time and space) formulation at a limited computa-
tional cost. The set-up numerical tool has been validated through
a rather extensive set of numerical experiments and the obtained
results were in good agreement with experimental data and ana-
lytical solutions. However, when cavitation occurs, the stability
properties of the scheme deteriorate dramatically and onlyvery
small time steps are allowed. This clearly increases the computa-
tional costs and, thus, makes difficult to afford the simulation of
complex cavitating flows, as occur in many aerospace and indus-
trial applications. To overcome this problem a different numeri-
cal flux function, namely the Rusanov one (see [6,7]), is consid-
ered in this work. The Rusanov numerical flux function is known
to have excellent robustness properties and thus it seems tobe a
good candidate to eliminate, or at least reduce, the instabilities
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connected with the cavitation. The same steps used to develop
the numerical tool based on the Roe numerical flux function are
herein followed for the Rusanov case. First, it has been verified
that preconditioning is needed also for the Rusanov scheme to
deal with the low-Mach regime and a suitable preconditioning is
defined. Moreover, the linearized implicit time advancing tech-
nique is defined. Note that for the Rusanov scheme, also thanks
to its simplicity, two different linearizations are proposed: the
first one is a classical linearization, in which the upwind part of
the flux is considered frozen, as it is usually done in the literature
for the family of upwind schemes to which the Roe and Rusanov
ones belong (see, e.g., [8] or [9]). Conversely, in the second
linearization the time variation of this upwind part is taken into
account, although in an approximate manner. This may be im-
portant when the speed of sound has a stiff change in magnitude,
as typically occurs for homogeneous-flow models in presenceof
cavitation. Finally, the same ingredients developed to achieve
second-order accuracy for the Roe scheme, i.e. MUSCL recon-
struction and defect correction, are also applied to the Rusanov
numerical flux.

A first series of 1D simulations for the steady flow in a
convergent-divergent nozzle have been performed in order to
compare the different schemes and numerical formulations.As a
first-order scheme is generally more stable than the correspond-
ing second-order and we are interested in robustness, in this first
set of simulations we only use the first-order version of the con-
sidered schemes.

Then, the developed numerical methodology and the differ-
ent schemes are applied to the simulation of the inviscid flow
around a hydrofoil mounted in a wind tunnel [10] both in cavi-
tating and non-cavitating conditions. The accuracy of the results
is appraised by comparison against experimental data [11].The
robustness and efficiency of the different considered schemes is
also investigated.

As a final remark, we are aware that a known drawback of
the Rusanov numerical flux function is the introduction of a too
large numerical dissipation in presence of contact discontinuities
and, thus, this scheme is not well suited for viscous computa-
tions. However, in the literature there are modifications ofthe
Rusanov scheme which reduce this problem without loosing in
robustness, as for instance the HLLC [7] or HLLE+ flux func-
tions [12]. In the spirit of the HLLE+ scheme, we have developed
an original modification of the Rusanov flux function, aimed at
improving the behavior in presence of contact discontinuities.
However, in this paper only inviscid flow simulations are pre-
sented and has been checked that, as expected, this modification
has not significant effects for inviscid flows. Thus, this modified
Rusanov scheme is not presented here for sake of brevity.

PHYSICAL MODELING
State and governing equations

A weakly-compressible liquid at constant temperatureTL is
considered as working fluid. The liquid densityρ is allowed
to locally fall below the saturation limitρLsat = ρLsat(TL) thus
originating cavitation phenomena. A regime-dependent (wet-
ted/cavitating) constitutive relation is therefore adopted.
As for the wetted regime (ρ ≥ ρLsat), a barotropic model of the
form

p = psat +
1

βsL
ln

(

ρ
ρLsat

)

(1)

is adopted,psat = psat(TL) andβsL = βsL(TL) being the satura-
tion pressure and the liquid isentropic compressibility, respec-
tively. As for the cavitating regime (ρ < ρLsat), a homogeneous-
flow model explicitly accounting for thermal cavitation effects
and for the concentration of the active cavitation nuclei inthe
pure liquid has been adopted [1]. In this model, the evapora-
tion/condensation phenomena between the two phases take place
within a layer surrounding the cavity surface, within whichthe
temperature is assumed to be constant. Hence, the variationof
the liquid entropy, as produced by the interfacial heat transfer,
is opposite to the one of the cavities and therefore the entropy
of the mixture does not change. The entropy conservation per-
mits to derive a differential barotropic relation for the cavitating
mixture as well

p
ρ

dρ
dp

= (1−α)

[

(1− εL)
p

ρLsata2
Lsat

+ εLg⋆

(

pc

p

)η]

+
α
γV

(2)

whereg⋆, η, γV and pc are liquid parameters,aLsat is the liquid
sound speed at saturation,α = 1−ρ/ρLsat andεL = εL (α,ζ) is
a given function (see [1] for its physical interpretation and for
more details). The resulting unified barotropic state law for the
liquid and for the cavitating mixture only depends on the two
parametersTL andζ. For instance, for water atTL = 293.16K, the
other parameters involved in (1) and (2) are:psat = 2806.82 Pa,
ρLsat = 997.29 kg/m3, βsL = 510−10 Pa−1, g∗ = 1.67,η = 0.73,
γV = 1.28, pc = 2.21107 Pa andaLsat = 1415 m/s [13].

Note that despite the model simplifications leading to a uni-
fied barotropic state law, the transition between wetted andcavi-
tating regimes is extremely abrupt. Indeed, the sound speedfalls
from values of order 103 m/s in the pure liquid down to values of
order 0.1 or 1 m/s in the mixture. The corresponding Mach num-
ber variation renders this state law very stiff from a numerical
viewpoint.

The 3D Euler equations for an inviscid fluid are considered
as governing equations. Nevertheless, by virtue of the barotropic
state law, the energy balance is decoupled from the mass and mo-
mentum balances; hence, it is possible to consider the following
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reduced set of governing equations

∂W
∂t

+ div(~F (W)) = 0 (3)

whereW = (ρ,ρu,ρv,ρw)T is the conservative variables vector
and~F (W) = (Fx,Fy,Fz)

T represents the classical flux functions
for mass and momentum balances.

The 1D case is used as a first step for the definition of the
different numerical approaches, which are then extended and im-
plemented in the 3D case. Thus, the following 1D flow system is
also considered:

∂W
∂t

+
∂F(W)

∂x
= 0 (4)

where W = (ρ,ρu,ρξ)T and F(W) =
(

ρu,ρu2 + p,ρuξ
)T

in
which ξ denotes a passive scalar. As for the 3D case, the energy
equation does not need to be included since the partial derivatives
system (4) is closed through a barotropic equation of state.

For the development of the numerical methods a generic
barotropic equation of state is considered:

p = p(ρ) (5)

The derivativedp/dρ is assumed to be strictly positive (a
classical thermodynamic stability requirement for commonflu-
ids) and can be regarded to as the square of the fluid sound speed
a(ρ). The equations (1) and (2) for the cavitating case are a par-
ticular instance of (5).

NUMERICAL FORMULATION
The spatial discretization of the governing equations is based

on a finite-volume formulation on unstructured tetrahedralgrids
and time advancing is carried out through an implicit linearized
algorithm. For sake of simplicity, the different numericalingre-
dients are presented in details in the 1D case; the generalization
to 3D is then briefly discussed.

Spatial discretization
The finite-volume spatial discretization of Eqs. (4) leads to

the following semi-discrete problem:

δxi
dWi

dt
+Φi(i+1)−Φ(i−1)i = 0 (6)

whereδxi is the width of the finite-volume celli and Φi j is a
numerical flux function between thei-th cell and thej-th one. A

family of classical first-order upwind schemes can be definedby
the following expression of the numerical flux function:

Φi j = Φi j ,c +Φi j ,u (7)

in which the centered partΦi j ,c and the upwind oneΦi j ,u are
defined as:

Φi j ,c =
F(Wi)+F(Wj)

2
, Φi j ,u = −

1
2

Qi j (Wj −Wi) (8)

The various schemes differ for the definition of the upwind term,
and, more specifically, of the matrixQi j .

The Roe scheme One of the most popular choices for
Φi, j is the Roe numerical flux function [4], defined by:

Qi j = |J̃(Wi ,Wj)| (9)

The so-called Roe matrix̃J is a diagonalizable matrix satis-
fying specific conditions [4] while|J̃| = T |D|T−1 where T
is the matrix of the eigenvectors associated withJ̃ and |D| =
diag(|λ1|, · · · , |λk|, · · · , |λn|), λk being thek-th eigenvalue ofJ̃.
Clearly, the Roe matrix, originally defined in [4] for the case of
the Euler equations with an ideal-gas state law, depends on the
specific hyperbolic problem under consideration. For a generic
barotropic state equation (5) and the 1D hyperbolic system (4)
the following Roe matrix has been derived in [3,14]:

J̃i j =













0 1 0

ã2
i j − ũ2

i j 2ũi j 0

−ũi j ξ̃i j ξ̃i j ũi j













(10)

in which ũi j and ξ̃i j correspond to the well-known “Roe aver-
ages” for the statesWi andWj of u andξ respectively whereas
ãi j , which can be identified with a Roe average for the sound
speed, is defined as:

ãi j =



















√

p(ρ j)− p(ρi)

ρ j −ρi
if ρ j 6= ρi

a(ρ⋆, p(ρ⋆)) if ρi = ρ j = ρ⋆

(11)

The Rusanov scheme Another common choice for
Φi, j is the Rusanov scheme [6], which is defined by the choice of
a diagonal matrix forQi j ; more precisely:

Qi j = λi j I
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where I is the identity matrix and the parameterλi j is an up-
per bound for the fastest signal velocities [7]. This schemecan
be viewed as a simple example of HLL Riemann solvers (see
e.g. [7]). This class of robust approximate Riemann solversare
based on the construction of averaging intermediate statesin the
solution of the Riemann problem. The Rusanov scheme assumes
only one intermediate wave state between two acoustic waves
andλi j corresponds to the acoustic wavespeed estimate. Two of
the most common choices are:

λi j = max(|u j |+a j , |ui |+ai) (12)

and the one based on the eigenvalues of the Roe matrix, that isin
our case:

λi j = max(|ũi j + ãi j |, |ũi j − ãi j |) (13)

whereũi j is the Roe average foru andãi j is defined by (11).

Preconditioning for low Mach number flows
For the cavitating flow problem, a large part of the flow is

characterized by very low Mach numbers since we have to deal
with a weakly-compressible liquid. Compressible solvers exhibit
accuracy problems when dealing with nearly-incompressible
flows [15]. In order to counteract this difficulty, some precon-
ditioning must be applied.

A preconditioned Roe scheme A Turkel-like precon-
ditioning has been proposed in [14,16] for the Roe flux function
associated with a barotropic equation of state using a similar for-
mulation as proposed in [15] for a perfect-gas state law. This
preconditioning is acting only on the upwind part of the numeri-
cal flux function; more precisely, (9) is substituted by:

Qi j = P−1(Wi ,Wj)|P(Wi ,Wj)J̃(Wi ,Wj)|

whereP(Wi ,Wj) is the preconditioning matrix.
It has been shown in [14,16] that, with an adequate choice of

P(Wi ,Wj), the preconditioned semi-discrete solution recovers the
same asymptotic behavior (with an expansion in power of a refer-
ence Mach numberM) of the analytical one. This theoretical re-
sult has been also corroborated by numerical experiments which
show that the preconditioned formulation does not present accu-
racy problems for low Mach number flows. We refer to [14, 16]
for more details.

A preconditioned Rusanov scheme By carrying out
the same asymptotic analysis as in [14, 16], it has been found
that the Rusanov scheme also encounters accuracy problems in

the low Mach number limit and, as a consequence, a precondi-
tioning technique is needed to recover the correct behaviorof the
solution. In the spirit of [17], it is possible to work directly on
the term of the matrixQi j without adding extra terms in the flux
expression and, therefore, it is possible to consider the following
“preconditioned matrix”:

Qi j = λi j





θ−1 0 0
0 θ 0
0 0 1



 (14)

where the parameterθ is defined as

θ = θ(M) =

{

10−6 if M ≤ 10−6

min(M,1) otherwise
(15)

in which M =
|u|
a

, with u and a defined accordingly with the

choice ofλi j , i.e. if, for instance,λi j = ũi j + ãi j thenu = ũi j and
a = ãi j and similarly for the other choices ofλi j . With this sim-
ple preconditioning procedure, the correct asymptotic behavior
of the analytical solution is recovered (see [18]) .

Extension to second-order accuracy in space The
extension to second-order accuracy in space can be achieved
by using a classical MUSCL technique [5], in which instead of
Φi,i+1 = Φ(Wi ,Wi+1), the numerical fluxΦi+ 1

2
= Φ(W−

i+ 1
2
,W+

i+ 1
2
)

is computed as a function of the extrapolated variable values at
the cell interfacexi+ 1

2
. The considered valuesW±

i+ 1
2

are defined

by piecewise linear reconstruction of the solution, and canbe
expressed as follows in aβ-scheme form (see, e.g. [19]):























W−
i+ 1

2
= Wi +

hi+1

2

[

(1−β)
Wi+1−Wi

hi+1
+β

Wi −Wi−1

hi

]

W+
i+ 1

2
= Wi+1−

hi+1

2

[

(1−β)
Wi+1−Wi

hi+1
+β

Wi+2−Wi+1

hi+2

]

whereβ is a given parameter. Note that this technique can equiv-
alently be applied either to the Roe or to the Rusanov numerical
flux.

Linearized implicit time advancing
A first-order accurate linearized implicit approach

Let us consider an implicit backward Euler method applied tothe
semi-discrete problem (6):

δxi

∆nt
∆nWi +∆nΦi,i+1−∆nΦi−1,i = −

(

Φn
i,i+1−Φn

i−1,i

)

(16)
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where ∆n(·) = (·)n+1 − (·)n. To avoid the solution of a non-
linear system at each time step, a linearization of∆nΦi j is usually
adopted. A way to obtain such a linearization is to find two ma-
tricesD1 andD2 such that

∆nΦi j ≃ D1(W
n
i ,Wn

j )∆nWi +D2(W
n
i ,Wn

j )∆nWj (17)

In this case (16) is reduced to the following block tridiagonal
linear system:

Bi,n
−1 ∆nWi−1 +Bi,n

0 ∆nWi + Bi,n
1 ∆nWi+1 = −

(

Φn
i,i+1−Φn

i−1,i

)

where:































Bi,n
−1 = −D1(Wn

i−1,W
n
i )

Bi,n
0 =

δxi

∆nt
I +D1(W

n
i ,Wn

i+1)−D2(W
n
i−1,W

n
i )

Bi,n
1 = D2(Wn

i ,Wn
i+1)

A classical linearization is defined via differentiation bytaking:

D1(W
n
i ,Wn

j ) =
∂Φi j

∂Wi
(Wn) and D2(W

n
i ,Wn

j ) =
∂Φi j

∂Wj
(Wn)

Nevertheless, it is not always possible nor convenient to ex-

actly compute the Jacobian matrices
∂Φi j

∂Wi
and

∂Φi j

∂Wj
. In fact, it is

not unusual to have some lack of differentiability of the numer-
ical flux functions; it is the case, in particular, for both the Roe
and the Rusanov schemes.

A Jacobian-free linearization for the Roe scheme was previ-
ously derived in [3, 14], which only exploits the algebraic prop-
erties of the Roe matrix and, therefore, does not depend on the
specific equation of state. This approach is characterized by:







D1(Wn
i ,Wn

j ) = J̃+(Wn
i ,Wn

j )

D2(Wn
i ,Wn

j ) = J̃−(Wn
i ,Wn

j )
with J̃± =

1
2

(

J̃±|J̃|
)

However, due to its particular construction, this approachcan be
used only for the Roe scheme.

Alternatively, a classical linearization of type (17) consists
in applying a first-order Taylor expansion in time but with a com-
plete differentiation only for the centered part of the numerical
flux function while the matrixQi j in the upwind part is frozen
at timetn (see, e.g., [8] for an application to the Roe scheme for

Euler equations or [9] for shallow water equations). This results
in the following approximation:

∆nΦi j ≃
1
2

(

A(Wn
i )∆nWi +A(Wn

j )∆nWj
)

−
1
2

Qn
i j (∆

nWj −∆nWi)

(18)

in which A is the Jacobian matrix ofF . Note that this approach
can be used for any upwind scheme of type (7)-(8), indepen-
dently of the differentiability or of the complexity in the differ-
entiation ofQi j . In particular, it can be used for both the Roe and
Rusanov schemes.

Let us reinterpret this linearization by rewriting the time
variation of the upwind term ofΦi j as follows:

∆nΦi j ,u = −
Qn

i j

2
(∆nWj −∆nWi)− Γn,n+1

i j (19)

in which Γn,n+1
i j

.
=

∆nQi j

2
(Wn+1

j −Wn+1
i ).

The previous linearization is obtained just by neglecting the term
Γn,n+1

i j . It is worth noting that this term can be neglected as long
as that the solution is regular enough to satisfy:

Wn+1
j −Wn+1

i ∝ O(∆x) and∆nQi j ∝ O(∆t) (20)

Even if the assumption (20) is in general a reasonable one,
there are situations of practical interest in which it is notsatis-
fied. Indeed, if a discontinuity is present the magnitude of the
termWn+1

j −Wn+1
i can be large independently of the size of∆x.

Moreover, the term∆nQi j can also be large. This can happen,
in particular, in presence of huge variations of the flow veloc-
ity or when the speed of sound has a stiff change in magnitude.
The latter is a typical situation in presence of cavitation.Thus,
a more complete linearization is proposed below for the caseof
the Rusanov scheme by estimatingΓn,n+1

i j , neglected in the ap-
proximation (18). Note that fully linearized formulationsfor the
classical Euler equations have been proposed in [20] for different
upwind schemes.

Let us first notice that, the terms ofQi j can be written as a
composite function of two variables,a andu, as follows:

qk = qk (u(Wi(t),Wj(t)) ,a(Wi(t),Wj(t))) (21)

whereqk = λi j , λi j defined by (12) or (13), or alternatively for
the case with preconditioning,qk = λi j dk(M) (dk given by (14)-
(15)).

Then, through differentiation of (21), by neglecting terms
of higher order and after some mathematical developments (see
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[18] for more details), the following approximation of the previ-
ously neglected term is obtained:

Γn,n+1
i j ≃

1
2

Ki j ∆nWi −
1
2

K ji ∆nWj (22)

in which the generic element ofKi j is defined by the following
expression:

(

Ki j
)

km =

(

∂qk

∂u
∂u

∂Wi,m
+

∂qk

∂a
∂a

∂Wi,m

)

(

Wn
j,k−Wn

i,k

)

(23)

in which Wi,m denotes them-th element of the vectorWi . By
putting everything together, the following more complete ap-
proximation of the time variation of the numerical flux function
is obtained:

∆nΦi j ≃
1
2

(

A(Wn
i )+Qn

i j −Ki j

)

∆nWi

+
1
2

(

A(Wn
j )−Qn

i j +K ji

)

∆nWj

(24)

Note that ifKi j is a null matrix, (24) reduces to (18).
Let us now make some simplifications based on physical

considerations related to the particular kind of applications of
interest in this study. Excepting when the flow is highly super-
sonic, we have that the flow derivatives ofu are far smaller than
the ones ofa. Indeed, due to the particular equation of state under
consideration (the barotropic cavitating one), when a transition
from vapor to liquid occurs, this leads to a step-like changeof
the speed of sound of a few order of magnitudes. Consequently,
it seems reasonable to neglect the variation inu in computingKi j

in (23), and then, to approximate the variation of the matrixQi j

only through the variation ina. Under this assumption and using
the fact thata only depends on the density, i.e.a = a(ρi ,ρ j), the
matrix Ki j previously defined in (23) reduces here to:

Ki j =





















∂ρi q1
(

ρn
j −ρn

i

)

0 0

∂ρi q2

(

(ρu)n
j − (ρu)n

i

)

0 0

∂ρi q3

(

(ρξ)n
j − (ρξ)n

i

)

0 0





















(25)

in which∂ρi qk represents the partial derivative ofqk with respect
to ρi , but considering only the variation ina, i.e.:

∂ρi qk =
∂χk

∂ρi
where χk = χk(ρi ,ρ j) = qk

(

u,a(ρi ,ρ j)

)

These partial derivatives are numerically computed here through
centered finite differences.

Second-order accurate linearized implicit time ad-
vancing The following space and time second-order accurate
implicit formulation is obtained considering the MUSCL tech-
nique for space as previously defined and a second-order back-
ward differentiation formula in time:

δxi
3Wn+1

i −4Wn
i +Wn−1

i

2∆t
+∆nΦi+ 1

2
−∆nΦi− 1

2
=

−
(

Φn
i+ 1

2
−Φn

i− 1
2

)

(26)

whereΦi± 1
2

= Φ(W−
i± 1

2
,W+

i± 1
2
) are the second-order accurate nu-

merical fluxes computed as previously described. Similarlyto
the 1st-order case, a linearization of∆nΦi± 1

2
must be carried out

in order to avoid the solution of a nonlinear system at each time
step. However, the linearization for the second-order accurate
fluxes and the solution of the resulting linear system implies sig-
nificant computational costs and memory requirements. Thus,
a defect-correction technique [21] is used here, which consists
in iteratively solving simpler problems obtained, here, just con-
sidering the same linearization as used for the 1st-order scheme.
The defect-correction iterations write as:























W 0 = Wn

B
i,s
−1∆sWi−1 +B i,s

0 ∆sWi +B
i,s
1 ∆sWi+1 = Ss

i s= 0, · · · ,m−1

Wn+1 =W m

in which:























































B
i,s
−1 = −D1(W

s
i−1,W

s
i )

B
i,s
0 =

3δxi

2∆t
I +D1(W

s
i ,W s

i+1)−D2(W
s
i−1,W

s
i )

B
i,s
1 = D2(W

s
i ,W s

i+1)

Ss
i = −

(

δxi

2∆t
(3W s

i −4Wn
i +Wn−1

i )+Φs
i+ 1

2
−Φs

i− 1
2

)

D1 andD2 being the generic matrices of the approximation (17).
m is typically chosen equal to 2. Indeed, it can be shown [3, 21]
that only one defect-correction iteration is theoretically needed
to reach a second-order accuracy while few additional iterations
(one or two) can improve the robustness.
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Extension to 3D
In 3D, starting from an unstructured tetrahedral grid, a dual

finite-volume tessellation is obtained by the rule of medians: a
cellCi is built around each vertexi, and boundaries between cells
are made of triangular interface facets. Each of these facets has a
mid-edge, a face centroid, and a tetrahedron centroid as vertices.

The semi-discrete balance applied to cellCi reads (not ac-
counting for boundary contributions):

Vi
dWi

dt
+ ∑

j∈K (i)

Φi j = 0 (27)

whereWi = (ρi ,ρiui ,ρivi ,ρiwi)
T is the semi-discrete unknown

associated withCi , Vi is the cell volume,K (i) represents the set
of nodes joined toNi through an edge andΦi j denotes the numer-
ical flux crossing the boundary∂Ci j shared byCi andCj (positive
towardsCj ).

Once defined~νi j as the integral over∂Ci j of the outer unit
normal to the cell boundary, it is possible to approximateΦi j by
exploiting a 1D flux function betweenWi andWj , along the di-
rection~νi j and the extension of the schemes previously presented
is straightforward. More details on the 3D formulation can be
found in [2,16] for the formulation based on the Roe scheme.

NUMERICAL EXPERIMENTS
Barotropic 1D flows in a convergent-divergent nozzle

Inviscid flows in a quasi 1D convergent-divergent nozzle are
first considered. The governing equations are the reduced 1DEu-
ler equations (without passive scalar) with a source term, which
accounts for variations of the cross-sectional areaSof the nozzle.
More precisely, the following system of differential equations is
obtained:

∂W
∂t

+
∂F(W)

∂x
= −

1
S(x)

dS
dx

G(W)

with W = (ρ,ρu)T , F(W) =
(

ρu,ρu2 + p
)T

and G(W) =
(

ρu,ρu2
)T

.
The exact steady solution has been derived in [18] for the

case of a generic barotropic equation of state, i.e. (5).

A non-cavitating polytropic flow In this first test case,
a fully subsonic flow, characterized by a low Mach number value
(approximately 10−3), is obtained by considering the follow-
ing inlet conditionsρ∞ = 900, u∞ = 0.03 and nozzle area ratio
Smin/S∞ = 0.9 respectively. Moreover, the following polytropic
law:

p = κρκ (28)

with κ = 2 andκ = 0.5 is used as equation of state. Similar
test cases have been used in previous works [14, 16] to inves-
tigate the behavior of the numerical solution in the low Mach
number regime, and, in particular, to validate the preconditioning
defined for the Roe scheme. Thus, the purpose, here, is to ver-
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Figure 1. Comparison between Roe and Rusanov flux functions for the

pressure field, ∆x = L/4000: a) Without preconditioning; b) with pre-

conditioning.

ify that the Rusanov scheme requires a preconditioning strategy,
and successively, to validate the technique proposed in (14)-(15).
Fig. 1 shows the comparison between the preconditioned and
the non-preconditioned simulations, as well as between theRoe
and the Rusanov schemes. It turns out that a preconditioner is
actually needed and the proposed one seems effective. The two
versions of the Rusanov scheme (RC and RR, i.e. using (12) and
(13) respectively) provide the same steady solution which ap-
pears slightly less accurate than the one obtained using theRoe
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scheme. Note that, only the first-order formulations of the con-
sidered schemes have been used in the 1D simulations.

A complete cavitating 1D flow This second test case
is characterized byρ∞ ≃ 997.94994,u∞ ≃ 1.0005 andSmin/S∞ =
0.5, while the equations of state (1)-(2) for cavitating flows are
used by takingTL = 293.16 andζ = 0.1. A subsonic/supersonic
cavitating flow with a steady shock wave is then obtained. In-
deed, at the inlet the flow is subsonic (M∞ = 1.4·10−3) then it is
accelerated through the nozzle and transitions to supersonic, then
after the shock wave it becomes again subsonic. More precisely,
in the convergent zone the liquid transitions to the vapor phase
and at the throat the flow reaches Mach 1. Afterward the flow
is expanded until Mach 14 and then, through a shock wave, the
flow reverts to subsonic. This test case contains all the difficul-
ties typically encountered in cavitating conditions: two smooth
flow regions are divided by a shock wave, very high variations
of Mach number values are present in the flow with both highly
compressible and incompressible areas and there are liquid/vapor
and vapor/liquid transitions. This test case is aimed at validating
the preconditioning technique in the cavitating case as well as at
evaluating the behavior of the schemes in presence of disconti-
nuities.

It has been shown in previous studies [2, 14, 16, 10] that
strong stability limitations appear when cavitation occurs for the
case of a preconditioned linearized Roe formulation. Thus,by
taking a fixed spatial grid (∆x = L/250), the convergence be-
havior has been analyzed for a large range of∆t values and dif-
ferent approaches. In accordance with the previous studies, the
Roe scheme is constrained by a stability condition that limits the
maximum CFL coefficient to a small value, here of about 0.01.
The same limitation is also observed for the first Rusanov formu-
lation, i.e. when the linearization (18) is using, even if the Ru-
sanov scheme is known to be more robust than the Roe one. Con-
versely, by adopting the more complete linearization, i.e.(24)-
(25), this limit is increased up to 1400. Thus, even if the un-
bounded time step allowed in non-cavitating conditions is not re-
covered, the Rusanov scheme with the complete linearization can
be considered a major improvement in term of robustness, since
an increase of five orders of magnitude is obtained for the CFL
coefficient. These results confirm the hypothesis that the more
complete linearization takes into account terms that become im-
portant when a subsonic phase transition or a shock wave (or
both) are present.

Moreover, Fig. 2 shows that all the formulations based
on the Rusanov flux function provide results similar in accu-
racy which are in rather good agreement with the exact solution.
Conversely, the Roe scheme introduces an unphysical expansion
shock wave and, as a consequence, the solution given by the nu-
merical scheme is not accurate: this is the well-know problem
of the entropy violation of the Roe scheme and would require an
entropy fix (see, e.g., [7]).
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Figure 2. Comparison between Roe and Rusanov flux functions ∆x =
L/250: a) pressure b) Mach number.

Flow over a NACA0015 hydrofoil
The liquid flow over a NACA0015 hydrofoil in cavitating

and non-cavitating conditions is considered. The hydrofoil of
chord lengthc equal to 115mm is mounted in a water tunnel at
4◦ incidence angle and spans the entire width of the rectangular
test chamber section. The test section, which is obtained bycut-
ting the chamber along its symmetry plane, is sketched in Fig.
3. This configuration has been considered in an experimental
study in [11] for which the pressure coefficient distribution on
the symmetry plane of the hydrofoil is available, together with
visualizations of the attached cavitation zone. This test case was
a benchmark problem considered at the conference “Mathemat-
ical and Numerical aspects of Low Mach Number Flows”, Por-
querolles, France, June 21-25 2004, for which a numerical study
was performed with the Roe scheme (see [10]). Here, two differ-
ent sets of inlet conditions are considered as summarized inTab.
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1; the first conditions (TC1) correspond to a non-cavitatingcase
while the second ones (TC2) generate a cavitating flow.

Test case U∞ P∞ T M∞ σ∞

(m/s) (Pa) (K)

TC1 3.115 59050 293.15 2.2×10−3 11.71

TC2 3.115 7500 293.15 2.2×10−3 1.066

Table 1. Test case inlet conditions (σ∞ being the inlet cavitation num-

ber).

Figure 3. Sketch of the test section.

Even if the numerical discretization is fully 3D, this simula-
tion corresponds to a 2D flow since the computation domain is an
almost 2D domain, consisting in a slice of 0.1 c thickness in the
spanwise direction. The grid is made of 115728 nodes; a zoom
near the hydrofoil is shown in Fig. 4. Free-slip conditions have
been used on the wind tunnel walls and on the hydrofoil surface.
Characteristic based inflow and outflow conditions are imposed.

Results of the non-cavitating simulations
As for the 1D case, for all the considered schemes large CFL

values can be used for non-cavitating flows; here, a CFL valueof
200 has been chosen for the different simulations. Since this
already led to very reduced computational times, a systematic
analysis of the actual stability limit has not been carried out for
these simulations. Actually, the initial flow for second-order sim-
ulations has been the final flow condition of the first-order com-
putation, but this has been done only for practical purposes, i.e.
to reduce the time to reach the steady solution.
The pressure coefficient distribution obtained on the hydrofoil in
the different simulations is shown in Fig. 5 together with the
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Figure 4. Zoom of the computation grid.

experimental data. It is clear that the second-order version im-
proves the accuracy of the results for both the Roe and the Ru-
sanov fluxes; indeed, the suction peak is correctly predicted in
the 2nd-order simulations, while in the 1st-order simulation this
peak is underestimated due to the excessive introduced numerical
viscosity. Concerning the first-order formulation, the Rusanov
scheme seems rather less accurate than the Roe one, however,for
the second-order case, the two schemes furnish similar results.
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Figure 5. Cp distribution for the TC1 test case (non-cavitating flow).
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Results for cavitating conditions

As previously observed for the 1D case, when cavitation oc-
curs, the stability properties of the schemes change dramatically.
For the first-order accurate formulations, the general behavior
observed for the cavitating 1D flow is recovered here. Indeed, for
the Roe scheme and for the Rusanov one with the first lineariza-
tion (18), the CFL coefficient is limited to about 0.01, while the
more complete Rusanov linearization permits to reachCFL= 25.
The increase in the maximum allowed CFL value is, here, of
more than three orders of magnitude, which is remarkable even
if it is lower than that obtained in the 1D case.

Only the simulations carried out with the most efficient ap-
proach, i.e. the Rusanov one with the more complete time lin-
earization, have been advanced in time sufficiently to obtain
meaningful results. For the results given by the Roe scheme,
although on a different grid, we refer to [10]. Fig. 6 shows the
Cp distribution on the upper side of the hydrofoil obtained with
the 1st-order accurate version of this scheme together withthe
relevant experimental data. The solid line is the distribution ob-
tained at a given time step, when a generally steady condition is
reached except for a small oscillation of the position of theend
of the cavitation zone. First of all, note the good agreementwith
the experimental data obtained in both cavitating and non cavi-
tating regions. The peak in theCp distribution at the end of the
cavitation zone is due to the previously mentioned oscillation in
time of the end of this region and this peak is indeed eliminated
by averaging theCp over several time steps (dashed line). This
unsteady behavior is also in agreement with the experiments, in
which the length of the cavitation bubble was found to oscillate
in time betweenx/c = 0.4 andx/c = 0.46. Conversely, it could
not be observed in the Roe simulations in [10], probably because
a too short time interval could be simulated due to the previously
discussed limitations of the allowable time step. Fig. 7 shows
the instantaneous iso-contours of the Mach number and of the
cavitation number obtained in these present simulations with the
Rusanov scheme. A rather large cavitation region, correspond-
ing to negative values of the cavitation number, is present in the
upper part of the hydrofoil, whose length is approximately 0.4 c,
again in good agreement with the experimental findings. Con-
versely, this length was significantly underestimated in the simu-
lations with the Roe scheme in [10], confirming that probablya
steady condition was not reached in those simulations. Notealso
how, very large Mach number values, up to approximately 28,
are reached in the cavitating region. This largely contributes to
render the numerical simulation of this type of flows particularly
stiff. Let us analyze now the results obtained with the 2nd-order
version of the Rusanov scheme with the more complete time lin-
earization. As for robustness, the maximum CFL value allowed
in this simulation by numerical stability was 0.6. This value is
is noticeably reduced with respect to the 1st-order versionof the
considered scheme, but it still more than one order of magnitude
larger than the one found for the 1-st order Roe scheme or for the
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Figure 6. Cp distribution for the TC2 test case (cavitating flow).

Rusanov one with the incomplete linearization. Moreover, the
sensitivity to some numerical parameters, such as the number of
iterations in the defect correction approach, ad-hoc designed lim-
iters or preconditioning of the linear system to be solved ateach
time step, are currently under investigation. This might give im-
portant insights on how to limit this efficiency reduction. As
a consequence of the time step limitation, the 2nd-order simu-
lation could not be advanced enough in time to reach a steady
situation, but the cavitation region is still growing in time. This
can be seen, for instance, in the averagedCp distribution in Fig.
8 or in the instantaneous iso-contours of the cavitation andMach
numbers in Fig. 9 (compare with Fig. 7), in which the size of
the cavitating region is smaller that in the 1st-order simulations.
Except for this problem, however, Fig. 8 shows that the effects of
the 2nd-order accuracy are noticeable only in a small zone near
the leading edge, while in the cavitating region theCp is almost
equal to that obtained in the 1st-order simulations. The discrep-
ancies in the rear part of the hydrofoil are again due to the lack
of convergence in the 2nd-order simulations; indeed, the values
of Cp in that zone have been observed to decrease in time, as the
cavitation region size increases.

CONCLUSIONS
The behavior of two different numerical fluxes, namely the

Roe and Rusanov schemes, has been investigated in the simu-
lation of cavitating flows through a numerical method based on
a finite-volume discretization in space and a linearized implicit
time advancing. For the Rusanov scheme, two different time
linearizations are proposed; in the first one the upwind partof
the flux function is frozen in time, while in the second one its
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Figure 7. Cavitating conditions and 1st-order simulations: instantaneous

iso-contours of the cavitation number (a) and of the Mach number (b).

time variation is taken into account, although in an approximated
manner. This may be important when the speed of sound has a
stiff change in magnitude, as typically occurs for homogeneous-
flow models in presence of cavitation.

The different schemes and linearizations have been first ap-
praised in the simulations of a quasi-1D flow in a convergent-
divergent nozzle, both in non-cavitating and cavitating condi-
tions. Exact solutions were available for these flows from pre-
vious works [18]. As a first-order scheme is generally more sta-
ble than the corresponding second-order one and we were mainly
interested in robustness, in this first set of simulations the first-
order version of the considered schemes was only used. The non-
cavitating simulations show that preconditioning is needed also
for the Rusanov scheme to overcome accuracy problems in the
low Mach limit and validate the adopted preconditioning proce-
dure. For non-cavitating flows a practically unbounded value of
the CFL number can be used for all the schemes, while, when
cavitation occurs, the Roe scheme and the Rusanov one with
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Figure 8. TC2: Cp distribution (averaged values). Comparison between

first- and second-order formulations.

the first linearization suffer of stability problems which limit the
maximum allowed CFL to very low values. Conversely, with
the Rusanov scheme and the more complete linearization this
limit is increased of five orders of magnitude. This confirms our
speculation that taking into account in the linearization the time
variation of the upwind part of the numerical flux is important
in cavitating conditions, due to stiff changes of several order of
magnitudes in the speed of sound. As for accuracy, the results
obtained with the Rusanov scheme show a similar and even bet-
ter accuracy agreement with the exact solutions than those given
by the Roe scheme, since the latter suffers of an entropy violation
problem, which should be cured by ad-hoc fix.

The different numerical formulations have then been applied
to the simulation of the inviscid flow around a hydrofoil mounted
in a wind tunnel both in cavitating and non-cavitating conditions.
For the 1st-order version of the schemes, as previously observed
for the 1D case, when cavitation occurs, the efficiency of theRoe
scheme and of the Rusanov one with the incomplete linearization
dramatically deteriorate and the CFL is limited to very low val-
ues. Conversely, for the Rusanov flux with the more complete
time linearization, this limit is increased of more than three or-
ders of magnitude, which is remarkable even if it is lower than
that obtained in the 1D case. The obtained results are in good
agreement with the experimental data, both for the pressuredis-
tribution over hydrofoil and the size and position of the cavitat-
ing region. When the 2nd-order accurate version of the Rusanov
scheme with the more complete time linearization is used, the
maximum reachable CFL value is only one order of magnitude
larger than the one found for the 1-st order Roe scheme. How-
ever, the sensitivity to some numerical parameters in the 2nd-
order formulation, such as the number of iterations in the defect
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correction approach, ad-hoc designed limiters or precondition-
ing of the linear system to be solved at each time step, are cur-
rently under investigation. This might give important insights
on possible ways how to limit this efficiency reduction. More-
over, 2nd-order accuracy is essential when dealing with viscous
flows. However, in this case complex interactions between the
cavitating region and the boundary layer occur, which leadsto
an unsteady flow behavior. In this context, the time step limita-
tions of the 2nd-order scheme might be not so critical. Anyway,
viscous simulations of the hydrofoil flow are in progress with the
Rusanov scheme (properly modified to deal with contact discon-
tinuities) together with a P1 finite-element discretization for the
viscous terms, and the results will be forthcoming.

NOMENCLATURE
L length of the computational domain (for 1D studies).

CFL Courant-Friedrich-Lewy condition:CFL = amax
∆t
∆x

in

which amax is the maximum speed of sound in the flow
field.

RO implicit linearized Roe formulation.
RC implicit linearized Rusanov formulation usingλi j from

(12) and the linearization (18).
RR implicit linearized Rusanov formulation usingλi j from

(13) and the linearization (18).
RRC implicit linearized Rusanov formulation usingλi j from

(13) and the linearization (24)-(25).

Cp pressure coefficientCp =
p− p∞
1
2ρ∞u2

∞

σ cavitation numberσ =
p− psat
1
2ρ∞u2

∞
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