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ABSTRACT 

The present work is concerned with direct numerical 
simulations for the shock-bubble and bubble-bubble 
interactions using the improved ghost fluid method in which 
the Riemann solutions are utilized to diminish numerical 
oscillations near interfaces. The influence of bubble size and 
bubble-bubble distance on the collapse of in-line two bubbles 
and in-line three bubbles are investigated to understand the 
conditions under which the bubble-bubble interactions 
accelerate or decelerate the bubble collapse. It is shown that 
when the in-line bubbles collapse by the incident shock wave, 
the collapse of the downstream bubble can be accelerated by 
the shock waves due to the collapse of upstream bubbles, while 
the collapse of the upstream bubbles is decelerated by the 
expansion wave cased by the reflection of the incident shock 
wave at the surface of the downstream bubbles. Also, there 
exists the bubble-bubble distance in which the collapse of the 
downstream bubble is most accelerated. When the downstream 
bubble is smaller than the upstream bubble, the downstream 
bubble collapses more violently than the single bubble at any 
distance between the bubbles. The phase of the downstream 
bubble at the impact of the shock waves generated from the 
upstream bubbles is important in determining the acceleration 
of the collapse of the downstream bubble. It is also shown that 
the pressure increase in liquid near the axis of symmetry around 
the downstream bubble increases with the increase of number 
of bubbles and with the decrease of the bubble-bubble distance 
because the pressure increase in liquid is caused by the 
superposition of the shock waves generated from all bubbles.  

INTRODUCTION 
Mutual interactions among bubbles in a liquid are a 

fundamental problem of cavitation, which must be clarified to 
understand phenomena such as material damage, noise, and 
performance drop of hydraulic machinery [1]. Recently, the 
phenomena related to bubble collapse are extended to various 
fields. For example, the material damage due to cavitation 
bubble collapse in the liquid-mercury target systems for high-
intense pulsed-spallation neutron sources is a big problem to be 
overcome in order to make a lifetime of the systems longer; the 

cavitation bubbles are generated by the negative pressure that is 
caused by the pressure waves generated in the mercury due to 
rapidly deposited heat energy from the proton beams that 
interact with the vessel wall. To reduce the cavitation inception, 
the injection of gas bubbles into liquid-mercury has been 
conducted, which reduces the pitting damage due to the bubble 
collapse [2, 3].  

In the medical applications, Extracorporeal Shock Wave 
Lithotripter (ESWL) has been widely used for urinary lithiasis. 
In ESWL, the shock waves generated outside of human body 
are utilized to crush the calculi in patients' body. When the 
calculi are crushed, however, cavitation bubbles are formed 
near the calculi. The cavitation bubbles cause tissue damages 
[4]. The acoustic cavitation is also utilized to crush the calculi. 
Matsumoto et al. (2005) [5] showed that using the ultrasound 
not only with high frequency for the individual bubbles in the 
bubble cloud but also with low frequency that agrees with the 
natural frequency of the cloud are effective in crushing the 
calculi. Also, the ultrasound has been used to increase the cell 
membrane permeability. The technique has been developed as a 
non-viral strategy for the intracellular delivery of the DNAs and 
anticancer drug [6,7]. The biophysical mechanism of the 
process using ultrasound is called “sonoporation.” The 
sonoporation is facilitated by the presence of microbubbles. 
However, due to the complexity of the interaction between the 
ultrasound, microbubbles, and cavitation bubbles generated by 
ultrasound, the mechanism has not been fully understood and 
the precise investigation is needed.  
 To investigate the mechanism of above phenomena, it is 
important to understand the collapse of interacting multiple 
bubbles. There are generally two theoretical approaches to the 
dynamics of a cluster of bubbles. One deals with the 
macroscopic motions of the bubble cluster by using the 
averaged equations of conservation of momentum and mass of 
liquid and gas [8-10]. In the analysis, the dynamics of bubble 
cloud is solved using the averaged equation for a bubbly liquid 
coupling with a set of equations for the single spherical bubble. 
The other is to analyze the microscopic motions of individual 
bubbles. Chahine and Liu (1985) [11] investigated collapse and 
growth of a bubble cluster using a singular perturbation method. 
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Figure 1:  Schematic of numerical model. 

Fujikawa and Takahira (1986) [12] studied the effects of the 
interaction on the pressure waves radiated from two spherical 
gas bubbles in a compressible liquid. Chahine and Duraiswami 
(1992) [13] investigated the dynamics of the multiple bubbles 
by using the boundary integral method. Takahira et al. (1994) 
[14] studied the dynamics of a cluster of bubbles theoretically 
using the series expansion of the spherical harmonics. Although 
a lot of theoretical or numerical works were conducted for 
bubble-bubble interactions in the microscopic view point, most 
of works were restricted to the cases for the collapse of 
spherical bubbles or slightly non-spherical bubbles, and for the 
nonspherical bubble collapse in incompressible liquids.  
 In the present work, to understand the influence of 
microscopic motion of each bubble on the macroscopic motion 
of bubble cluster, we conduct direct numerical simulation for 
the collapse of interacting bubbles in compressible liquids 
using the improved ghost fluid method (GFM) [15, 16]. In the 
method, the Riemann solutions are utilized to diminish the 
numerical pressure oscillations near the gas-liquid interfaces. 
Although the analysis of the shock-bubble/bubble-bubble 
interactions near a material boundary is important to investigate 
the material damage due to bubble collapse, the present study is 
restricted to the shock-bubble/bubble-bubble interactions in an 
infinite liquid to obtain the fundamental knowledge for the 
collapse of interacting multiple bubbles. In the present paper, 
the collapse of in-line two or three bubbles induced by an 
incident shock wave is investigated to clarify the influence of 
size and configuration of bubbles on the collapse.  

NUMERICAL METHOD 
The governing equations for the present analysis are the 

axi-symmetric Euler equations for compressible flows: 
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           (1) 

 

where t is time, r and z are the coordinates, ρ is the density, u 
and v are velocities in the r and z directions, respectively, E is 
the total energy per unit volume and p is the pressure. The 
subscripts t, r, and z indicate the differentiation with respect to 
t, r, and z, respectively. The third order TVD Runge-Kutta 
scheme and the third order ENO-LLF scheme [17] are used for 
time and space discretization of Euler equations, respectively. 

We use the following stiffened equation of state for air 

and water: 
 

( 1) ,p γ ρe γΠ                                                                    (2) 

 
where e is internal energy per unit mass, γ and Π are parameters 
for the characteristic of materials. The following γ and Π are 
utilized in the simulation: 
 
Air:          1.4,γ  0P Pa, 

Water:      4.4,γ  86 10 P  Pa. 

 
The level set function, φ,  is utilized to determine interface 

location. φ  is the signed distance function from the interface. 
The location of the interface is defined as a set of points where 
φ =0. We define that the region where φ <0 is for water (see 
Fig. 1). Thus the physical properties for water are utilized in the 
region where φ <0. The region where φ >0 is for air. After 
determining the region, φ  is advanced in time by solving the 
following equation: 
 
φ φ φ

0.u v
t r z

  
  

  
                                                              (3) 

 
To maintain φ  as a true distance function, the following 

reinitialization equation is solved [18].  
 

0
φ

(φ )(1 φ ) 0,
τ

S
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

                                                        (4) 

 
where 2 2

0 0 0(φ ) φ / φS h  is the sign function of 

0φ ( φ(τ 0))   with appropriate numerical smearing and h is 
the grid spacing. After solving Euler equations and Eq. (3), Eq. 
(4) is solved until it converges near the interface in fictitious 
time, τ.  Using the level set function, the unit normal at each 
grid point is defined as / .φ φ  n  We use the third order 
TVD Runge-Kutta scheme and the fifth order WENO scheme 
[19] for time and space discretization of Eqs. (3) and (4), 
respectively. In the advancement of the level set function with 
Eq. (3), the level set function is corrected by using the hybrid 
particle level set method [20] to conserve mass. The hybrid 
particle level set method is effective in conserving the mass of 
the collapsing bubble. 

The GFM is utilized in solving two kinds of fluids with 
different physical properties. In the method, ghost fluids are 
defined at every grid point in the computational domain so that 
each grid point contains the mass, momentum, and energy for 
real fluid that exists at that grid point, and a ghost mass, 
momentum and energy for the other fluid that does not really 
exist at that grid point [21]. In the present work, two kinds of 
ghost fluids are defined in the computational domain. Once the 
ghost fluids are defined, standard method for single-phase fluid 
can be utilized to update Euler equations. After updating Euler 
equations for each fluid separately, the level set function is 
utilized to decide which of the two fluids is valid at each grid 
point. The valid fluid is kept and the other is discarded so that 
only one fluid is defined at each grid point. 
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Figure 2:  Pressure contours for the collapse of in-line two bubbles (D0/R10=2.5 and w=1.0). 
 

 
 

Figure 3:  Pressure contours for the collapse of in-line two bubbles (D0/R10=4.0 and w=1.0). 
 

In the application of the GFM, to avoid unrealistic pressure 
oscillations due to the large sensitivity of the gas-liquid 
interface [22], the values on both sides of the interface are 
corrected by using the values at the neighboring nodes and the 
values obtained from the solutions of the Riemann problem at 
the interface [15, 16]. We corrected the values on both sides of 
the interface by using the one-dimensional Riemann solutions 
in each direction of the coordinates with iterative algorithm [15, 
16, 23]. In the improved GFM, the definition of ghost values is 
also modified as follows [15, 16]. For the ghost fluid of gas, the 
pressure as well as entropy and tangential velocity are 
extrapolated from real gas. For the ghost fluid of liquid, the 
normal velocity as well as entropy and tangential velocity are 
extrapolated from real liquid. We use the fast extension method 
based on the Fast Marching Method for the extrapolation [24]. 
In the Fast Marching Method, a physical variable I to be 
extrapolated is determined by using the following equation: 
 
φ 0.I                                                                            (5) 

 
The central difference is utilized to calculate spatial derivative 
in Eq. (5).  

RESULTS 
Interactions of Shock Waves with In-Line Two Bubbles 

The computational domain and bubble arrangement are 
shown in Fig. 1. The initial radius of the upstream bubble 
(Bubble 1) is R10 and that of downstream bubble (Bubble 2) is 

R20. R10 is taken to be 1.5 mm in the present analysis. The initial 
distance between the centroid of Bubble 1 and Bubble 2 is D0. 
The bubbles are initially at rest. An incident shock wave 
propagates from the left-hand side of the bubbles. The initial 
distance between the shock front and the bubble centroid is Lsb. 
The initial computational region behind the incident shock is 
Ls. The height of the computational domain is H and the width 
of the domain is W. The typical values used in the present 
computation are Lsb= 2.1 mm, Ls=2.4 mm, H = 6 mm, and W = 
18 mm. The domain is divided by a square mesh with 0.02R0. 
Symmetric boundary conditions are used at the centerline of the 
domain. Nonreflection boundary conditions are applied to the 
top, left and right boundaries. The pressure behind the incident 
plane shock wave is taken to be ps=100 MPa. The pressure and 
density of pre-shocked water are taken to be p0=101.3 kPa and 
998.6 kg/m3, respectively. The initial density and velocity of 
post-shocked water are determined from the Rankine-Hugoniot 
jump condition. The initial density of air is taken to be 1.26 
kg/m3. In the present analysis, the characteristic time of bubble 
collapse is evaluated with 0 10 / / st R p ρ   where p=psp0 
and s is the initial density behind the shock wave. Thus 
increasing p decreases t0. The other characteristic time is 
given by /D st D a  that is the time when the pressure waves 
pass through in-line bubbles where ( ( ) / )s s sa p Π ρ   is the 
speed of sound in a liquid. If 0/Dt t 1, the bubbles start to 
collapse under almost the uniform increase in pressure due to 
the propagation of the incident shock wave. However, if ps is 
large, the arrival time of the incident shock wave at each bubble 
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Figure 6: Vorticity distributions (top) and numerical Schlieren images (bottom) for the collapse of in-line two bubbles 
(D0/R10=2.5 and w=1.0). 

 
Figure 4: Time histories of bubble radii and average 

pressures inside the bubbles when D0/R10=2.5 
and w=1.0. 

 
Figure 5: Time histories of bubble radii and average 

pressures inside the bubbles when D0/R10=4.0 
and w=1.0. 

affects the collapse of in-line bubbles. Thus the choice of ps is 
important in the bubble-bubble/shock-bubble interactions. A 
large value of ps=100 MPa is chosen in the simulations because 
the main concern in the present study is the violent bubble 
collapse induced by the strong shock wave as can been seen in 
the Extracorporeal Shock Wave Lithotripsy. The interactions of 
moderate or weak shock waves with bubbles will be simulated 
in the future works.  

Figure 2 shows the pressure contours when the initial 
distance between the centers of two bubbles is D0/R10=2.5. 
Also, the pressure contours in the case of D0/R10=4.0 are shown 
in Fig. 3. For both cases, the ratio of initial bubble radii, w, is 
w=R20/R10=1.0. The time indicated in the figure is normalized 
by 0t . 

When the incident shock impacts the bubble, an expansion 
wave is produced in water (Figs. 2(ii) and 3(ii)) because the 
acoustic impedance of air is smaller than that of water. When 
the incident shock wave interacts with Bubble 1, the 
deformation occurs on the bubble surface immediately after the 
shock impacts the bubble. The upstream surface is depressed 
and the liquid jet is formed on this side (Figs. 2 (iii) and 3(iii)). 
When the distance D0/R10 is short, the interface of the upstream 
side of Bubble 2 is elongated toward Bubble 1 because of the 
sink flow induced by the collapse of Bubble 1 (see (iii) and (iv) 
in Figs. 2 and 3). When the jet impacts the downstream surface, 
the shock wave due to the impact of liquid jet (SWJ) is formed 
at the point of jet-impact (Figs. 2(iv) and 3(iv)). When the 
bubble rebounds, the rebounding shock wave (RSW) is 
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Figure 7:  Pressure contours for the collapse of in-line two bubbles (D0/R10=2.5 and w=0.6). 
 

 
 

Figure 8: Pressure contours for the collapse of in-line two bubbles (D0/R10=4.0 and w=0.6). 

generated from the toroidal bubble. The SWJ and RSW impact 
Bubble 2 (Figs. 2(v) and 3(v)), which leads to the formation of 
a liquid jet on the upstream surface of Bubble 2 (Figs. 2(vi) and 
3(vi)). The jet impacts the downstream surface of Bubble 2 and 
the SWJ is generated at the point of jet-impact (Figs. 2(vii) and 
3(vii)). After that, the RSW is formed from Bubble 2. Both the 
SWJ and RSW propagate in the water (Figs. 2(viii) and 3 
(viii)).   

Figure 4 shows the time histories of (a) bubble radii and (b) 
average gas pressures inside the bubbles pg when D0/R10=2.5. 
The thick and thin solid lines denote Bubble 1 and 2, 
respectively. The time histories for D0/R10=4.0 are shown in 
Fig. 5. As the bubble volume becomes small, the internal gas 
pressure becomes high. In Fig. 4 (b), the maximum gas 
pressure of Bubble 2 is lower than that of Bubble 1. On the 
other hand, the maximum pressure of Bubble 2 is slightly 
higher than that of Bubble 1 in Fig. 5(b). Thus, whether the 
collapse of Bubble 2 is accelerated or not is dependent on the 
bubble-bubble distance. Since the expansion wave is reflected 
on the surface of the Bubble 2 after the incident shock wave 
hits the Bubble 2, Bubble 1 collapses under the lower pressure 
field than that without Bubble 2. Therefore, decreasing the 
bubble-bubble distance decelerates the collapse of Bubble 1; 
the collapse period in Fig. 4 is longer than that in Fig. 5; the 
maximum internal gas pressure of Bubble 1 in Fig. 4(b) is 
lower than that in Fig. 5(b); the shock waves generated from 
Bubble 1 is weaker in Fig. 4. Thus, the collapse of Bubble 2 is 
not accelerated in D0/R10=2.5.  

The vorticity distributions (top) and numerical Schlieren 
images (bottom) are shown in Fig. 6 for the case of  D0/R10=2.5.  
The nondimentionalized vorticity 0t w w  is plotted in the 
figure. The positive and negative vorticities denote the 
counterclockwise and clockwise rotations, respectively. In the 
shock-bubble interactions, the vorticity is produced due to the 
misalignment of gradients in pressure and density by the 
following vorticity equation. 

 

2

d
( )

d

ρ p

t ρ

 
     

w
w u w u .        (6) 

 
After the incident shock wave passes through the bubble, the 
counterclockwise vorticity is generated for Bubble 1. The 
magnitude of the vorticity becomes large as the liquid jet 
develops (Fig. 6(a)). When the liquid jet impacts the 
downstream surface of Bubble 1, the high vorticity region 
spreads around the whole surface (Fig. 6(b)). After the jet 
impacts, the bubble becomes a toroidal shape and the 
circulation flow is induced around the bubble; the 
counterclockwise vorticity is observed around the thin gas layer 
ahead of the toroidal bubble (Fig. 6(c)). After the bubble 
rebounds, the clockwise vorticity is also produced around the 
bubble surface (Fig. 6(d)). For Bubble 2, in the same manner as 
Bubble1, the counterclockwise vorticity is generated, and 
becomes higher as the liquid jet develops (see Figs. 6(d), (e) 
and (f)). In the case of D0/R10=2.5, the magnitude of the 
counterclockwise vorticity is larger for the downstream bubble 
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Figure 11: The relationship between the initial distance 

between two bubbles and the maximum 
average pressure inside the bubbles (w=1.0). 

 

 
 
Figure 12: The relationship between the initial distance 

between two bubbles and the maximum 
average pressure inside the bubbles (w=0.6). 

 
Figure 9: Time histories of bubble radii and average 

pressures inside the bubbles when D0/R10=2.5 
and w=0.6. 

 
Figure 10: Time histories of bubble radii and average 

pressures inside the bubbles when D0/R10=4.0 
and w=0.6.

than that for the upstream bubble. This may be due to the 
impact of the shock waves generated from the upstream bubble 
on the downstream bubble. Although the vortex structure 
around bubbles is very important in the shock-bubble 
interactions and a lot of studies have been done for the 
production of the baroclinic vorticity [25, 26], we will not 
discuss on this hereinafter, because the increase in pressure due 
to the bubble-bubble/shock-bubble interactions is main concern 
in the present study. The detailed mechanism of the formation 
of the baroclinic vorticity will be discussed in the future works.  

Figures 7 and 8 show the pressure contours when 
w=R20/R10=0.6. The initial distance is taken to be D0/R10 =2.5 in 
Fig. 7 and D0/R10=4.0 in Fig. 8. Figure 9 shows the time 
histories of bubble radii and average pressures inside the 
bubbles pg for D0/R10=2.5. The time histories for D0/R10=4.0 are 
shown in Fig. 10. Although the expansion wave caused by the 
reflection of the incident shock wave on the surface of Bubble 2 
decelerates the collapse of Bubble 1, the influence of Bubble 2 
is weak in the case of w= 0.6 because the Bubble 2 is smaller 
than Bubble 1. However, the collapse of Bubble 1 affects 
Bubble 2 more strongly when the downstream bubble is smaller 
than the upstream bubble; the maximum pressure of Bubble 2 is 
much higher than that of Bubble 1 in both Figs. 9(b) and 10(b).  

Figures 11 and 12 show the relationship between the initial 
distance between two bubbles D0/R10 and the maximum 
average pressure inside the bubble max

gp  when w=1.0 and 
w=0.6, respectively. The maximum pressure is normalized by pc 
where pc is the maximum average gas pressure when the single 
bubble collapses by the same incident shock wave as that for 
the collapse of in-line two bubbles shown above. Thus, as 
D0/R10 tends to infinity, max /g sp p  tends to 1. The open triangle 
denotes the maximum pressure of Bubble 1 and the closed 
circle denotes that of Bubble 2. When w=1.0 in Fig. 11, max

gp  
for Bubble 1 decreases monotonically with the decrease of D0. 
This is due to the influence of expansion wave caused by the 
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Figure 13: Time histories of (a) water pressure in the case of 

w=1.0 at =0 and 45 degrees for D0/R10=2.5 and 

 
Figure 14: The maximum water pressure around 

Bubble 2 versus the initial distance 
between two bubbles when w=1.0.

reflection of the incident shock wave on the downstream 
bubble. The gentle maxima is seen at about D0/R10=4.0 in max

gp  
for Bubble 2 although the limiting tendency for D0/R10 1 and 
D0/R10   is the same as Bubble 1. On the other hand, when 
w=0.6, the local maxima is seen clearly at about D0/R10 =2.0 in 

max
gp  for Bubble 2. Also, max

gp  for Bubble 2 is always higher 
than pc for the single bubble. These results suggest that the 
collapse of the downstream smaller bubble than the upstream 
bubble can collapse violently owing to the interaction with the 
shock waves generated from the upstream bubble. Also, there 
exist the bubble-bubble distance in which the collapse of the 
downstream bubble is most accelerated. This condition depends 
on the phase of the downstream bubble at the impact of the 
shock waves generated from the upstream bubbles. Fujikawa 
and Takahira (1986) [12] showed that there exited a bubble-
bubble distance where the collapse of the initially smaller 
bubble was accelerated by the collapse of the initially larger 
bubble when two spherical bubbles collapsed in an infinite 
space. In their analysis, since the stepwise pressure increase 
was applied simultaneously around the bubbles, the 
acceleration of the initially smaller bubble was not achieved at 
the first collapsing stage. However, since the propagation of the 

incident shock wave causes the collapse of a bubble in the 
present situation, the collapsing phase of each bubble is not the 
same even though two bubbles with the initially same radii 
collapse. The difference of the collapsing phase of each bubble 
causes the acceleration of the downstream bubble. 

Figure 13 shows the time histories of water pressure pl at 
several points around Bubble 2 when w=1.0. The schematic of 
measuring points is shown in Fig. 13(c). The location of the 
measuring points is given by 20 102 cosθz z R   and 

102 sinθr R  where z20 is the initial location of the center of 
Bubble 2 in the z direction. The time histories at the points of 
0 degree (thin line) and 45 degree (thick line) are shown in 
Figs. 13 (a) and (b) which are corresponding to D0/R10=2.5 and 
D0/R10=4.0, respectively. When the incident shock wave 
reaches the measuring point, the sudden pressure increase, 
which is indicated by (i) in each figure, is observed. Then, the 
pressure increase due to the propagation of two kinds of shock 
waves (SWJ and RSW) generated from the Bubble 1 is 
observed (see (ii) in Fig. 13). Since the shock waves are 
reflected by the Bubble 2, this pressure increase is not clearly 
seen at 0 degree. After the liquid jet impacts the downstream 
surface of Bubble 2, the steep pressure peak due to the SWJ is 
seen in (iii) of Fig. 13.  Immediately after the arrival of the 
SWJ from Bubble 2, the RSW arrives at the measuring point at 
0 degree (see (iv)). The RSW from the Bubble 2 results in 
the maximum pressure at the point. After that, both the SWJ 
and RSW from Bubble 2 pass through the point of 45 degree 
(v), which results in the steep increase of liquid pressure. It 
should be noted that although the maximum internal gas 
pressure of Bubble 2 is higher in the case of D0/R10=4.0 than 
that in the case of D0/R10=2.5 (see Fig. 11), the liquid pressure 
at the point of 0 degree is higher in the case of D0/R10=2.5. 
This is because the pressure increase in water due to the 
upstream bubble is higher when the bubble-bubble distance is 
short. 

To understand the influence of bubble-bubble distance on 
the pressure increase in water shown in Fig. 13, the maximum 
water pressure max

lp  around Bubble 2 is plotted versus the 
initial bubble-bubble distance D0/R10 in Fig. 14. In the figure, w 
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Figure 15: Pressure contours for the collapse of in-line three bubbles (D0/R10=2.5 and w=1.0). 
 

 
 

Figure 16: Pressure contours for the collapse of in-line three bubbles (D0/R10=4.0 and w=1.0). 

(the ratio of Bubble 1 and 2) is 1.0 and the measuring points in 
Fig. 13 (c) are taken to be =0, 15, 30, 45, 60, 75, and 90 
degrees. It is found that the closer the measuring point is to the 
axis of symmetry, the higher the liquid pressure is for any 
D0/R10. The pressures at =0 and 15 degrees decrease 
monotonically with the increase of the bubble-bubble distance. 
On the other hand, the maximum liquid pressure takes the 
gentle local maxima for large These results show that the 
maximum pressure increase can be high with the decrease of 
the bubble-bubble distance although the pressure increase in 
liquid depends on the measuring points. 
 
Interactions of Shock Waves with In-Line Three Bubbles 

Figures 15 and 16 show the pressure contours of the 
collapse of three bubbles with the same initial radii (w=R20/ 
R10=R30/R10 =1.0, where R30 is the radius of Bubble 3). The 
most downstream bubble is called Bubble 3. In the following 
results, the initial distance between Bubbles 1 and 2 is always 
the same as that between Bubbles 2 and 3. Thus, we use the 

same expression of D0 for the initial distance between the 
bubbles as used in the in-line two bubbles (see Fig. 1). Figures 
14 and 15 correspond to the results when D0/R10=2.5 and 4.0, 
respectively. In the simulation for the collapse of three bubbles, 
the width of computational domain is taken to be W=24 mm. 
Figure 17 shows the time histories of bubble radii and average 
pressures inside the bubbles pg for D0/R10=2.5. The time 
histories for D0/R10=4.0 are shown in Fig. 18.  

Since the first collapsing stage of Bubble 1 ends before the 
expansion wave caused by the reflection of the incident shock 
wave on the interface of Bubble 3 arrives at Bubble 1, the 
collapsing behavior of Bubble 1 is not affected by the Bubble 3. 
When the distance between the Bubbles 2 and 3 is sufficiently 
large as in Fig. 16, the collapsing behavior of Bubble 2 is not 
also affected by the Bubble 3. Therefore, the collapsing 
behaviors of Bubbles 1 and 2 are very similar to those shown in 
Figs. 2 and 3 for in-line two bubbles. When D0/R10=2.5, the 
collapse of Bubble 2 is slightly affected by Bubble 3 because of 
the expansion wave caused by the reflection on the interface of 
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Figure 18: Time histories of bubble radii and average 
pressures inside the bubbles when D0/R10=4.0 
and w=1.0. 

 

 
 

Figure 17: Time histories of bubble radii and average 
pressures inside the bubbles when D0/R10=2.5 
and w=1.0. 

 

 
 

Figure 19:  Time histories of water pressure around Bubble 

3 when w=1.0: (a) D0/R10=2.5; (b) D0/R10=4.0. 

Bubble 3; the maximum internal gas pressure of Bubble 2 for 
in-line three bubbles is lower than that for in-line two bubbles. 
On the other hand, the collapsing motion of Bubble 3 is 
affected by both Bubbles 1 and 2. When D0/R10=2.5, the 
maximum internal gas pressure becomes higher than that of 
Bubble 2 due to the shock waves generated from the Bubble 2. 
However, the maximum internal gas pressure of Bubble 3 is 
lower than that of Bubble 1 because the shock waves generated 
from the Bubble 2 is not so strong. Although Bubble 2 for 
D0/R10 =4.0 collapses more violently than that for D0/R10 =2.5, 
the collapse of Bubble 3 is not so accelerated because the 
distance between the bubbles is long. Consequently, the 
maximum internal pressure of Bubble 3 is almost the same as 
that of Bubble 1. 

Figures 19 (a) and (b) show the time histories of water 
pressure around Bubble 3 when D0/R10=2.5 and 4.0, 
respectively. The measuring points of the pressure in water are 
the same as Fig. 13; the pressures at the points of 0 degree 
(thin line) and 45 degree (thick line) are shown in Fig. 19. As 
has been noted in Fig. 13 for in-line two bubbles, the sudden 
pressure increases due to the incident shock wave (i), the SWJ 
and RSW from Bubble 1 (ii), and the SWJ and RSW from 
Bubble 2 (iii) are seen in the pressure histories for in-line three 
bubbles. The steep pressure peaks indicated by (iv), (v), and 
(vi) are generated by the SWJ and RSW from Bubble 3. The 
comparison between Fig. 13 with Fig. 19 shows that the 
maximum liquid pressure for in-line three bubbles is higher 
than that for in-line two bubbles.  

Figures 20 and 21 show the comparison of the maximum 
pressures in water around the downstream bubble between 
three cases of the single bubble, in-line two bubble, and in-line 

three bubbles at various measuring points. The results for 
D0/R10 =2.5 and 4.0 are shown in Figs. 20 and 21, respectively. 
In all measuring points, the maximum pressure for in-line three 
bubbles is higher than that for in-line two bubbles; in particular, 
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Figure 20: The maximum pressures in water at various points 

around the downstream bubble for the collapse of 
a single bubble (1 bubble), in-line two bubbles (2 
bubbles), and in-line three bubbles (3 bubbles) 
(D0/R10 =2.5 and w=1.0). 

 

 
Figure 21: The maximum pressures in water at various points 

around the downstream bubble for the collapse of 
a single bubble (1 bubble), in-line two bubbles (2 
bubbles), and in-line three bubbles (3 bubbles) 
(D0/R10 =4.0 and w=1.0). 

 

the pressure on the axis of symmetry is prominent. Also, the 
maximum pressure near the axis becomes higher with the 
decrease of the distance between the bubbles. This may be 
because that the pressure increase is induced by the 
superposition of pressure increase generated by the shock 
waves from all bubbles. These results indicate that the higher 
liquid pressure can be achieved near the axis of symmetry with 
the increase of number of bubbles and with the decrease of the 
distance between the bubbles. 

CONCLUSION 
In the present study, direct numerical simulations were 

conducted for the shock-bubble and bubble-bubble interactions 
by using the improved ghost fluid method in which the 
Riemann solutions were utilized to diminish numerical 
oscillations near interfaces. The collapse of in-line two bubbles 
and in-line three bubbles were simulated to clarify the 

conditions under which the bubble-bubble interactions 
accelerate or decelerate the bubble collapse. The influence of 
bubble size and bubble-bubble distance on the bubble collapse 
was discussed. It was shown that when the in-line bubbles 
collapse owing to the interaction with the incident shock wave, 
the collapse of the downstream bubble can be accelerated by 
the shock waves induced by the collapse of upstream bubbles. 
On the other hand, the collapse of the upstream bubbles was 
decelerated by the expansion wave cased by the reflection of 
the incident shock wave at the surface of the downstream 
bubbles. Also, it was found that there exists the bubble-bubble 
distance in which the collapse of the downstream bubble is 
most accelerated. It was also found that when the downstream 
bubble is smaller than the upstream bubble, the downstream 
bubble collapses more violently than the single bubble at any 
distance between the bubbles. The phase of the downstream 
bubble at the impact of the shock waves generated from the 
upstream bubbles is important in determining the acceleration 
of the collapse of the downstream bubble. The acceleration of 
the collapse of the downstream bubble is dependent on the 
phase of the collapse of the downstream bubble when the shock 
waves generated from the upstream bubbles impact the 
downstream bubble. The pressure increase in liquid around the 
downstream bubble was also discussed. The results showed that 
the liquid pressure increases near the axis of symmetry with the 
increase of number of bubbles and with the decrease of the 
bubble-bubble distance because the pressure increase in liquid 
is caused by the superposition of the shock waves generated 
from all bubbles.  
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