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ABSTRACT 
The presented work is about the detailed pressure, temperature 
and velocity distribution within a plane, cylindrical and 
spherical cavitation bubble. The review of Plesset & 
Prosperetti (1977) and more recently the review of Feng & 
Leal (1997) describe the time behavior of the gas within a 
spherical bubble due to forced harmonic oscillations of the 
bubble wall. We reconsider and extend those previous works by 
developing from the conversation laws and the ideal gas law a 
boundary value problem for the distribution of temperature and 
velocity amplitude within the bubble. This is done for a plane, 
cylindrical, or spherical bubble. The consequences due to shape 
differences are discussed. The results show that an oscillating 
temperature boundary layer is formed in which the heat 
conduction takes places. With increasing dimensionless 
frequency, i.e. Péclet number, the boundary-layer thickness 
decreases and compression modulus approaches its adiabatic 
value. This adiabatic behaviour is reached at lower frequencies 
for the plane geometry in comparison with cylindrical and 
spherical geometry. This is due to the difference in the volume 
specific surface, which is 1, 2, 3 times the inverse bubble 
height/radius  for the plane, cylindrical and spherical bubble 
respectively. For the plane bubble the analysis ends up in an 
eigenvalue problem with four eigenvalues and modes. The 
analytical result is not distinguishable from the numerical result 
for the plane case gained by a finite element solution. 
Interestingly if the diffusion time for the temperature 
distribution is of the order of the traveling time of a pressure 
wave no adiabatic behavior is observed. A parameter map for 
the different regimes is given. Since only the behavior of the 
gas within the bubble is considered the analysis is independent 

of the surface tension coefficient and the inertia of the 
surrounding liquid. For the plane bubble since there is no 
curvature there is no pressure change over the free surface. 
Despite of this a plane bubble is manly academic, since due to 
inertia the pressure within the fluid would have to be infinity if 
the liquid volume around the bubble is unbounded. 
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INTRODUCTION 
The concern of the presented work is to lead to a better 
understanding what happens on the interior side of an 
oscillating plane, cylindrical or spherical gas bubble. Owing to 
this claims the ideal gas law, the energy, the momentum and 
continuity equation must be solved coupled. For the aimed 
analytical solution, the set of equations which are dependent on 
time and place are linearised. Furthermore a separation ansatz 
eliminates the time dependence. Two ordinary coupled 
differential equations remain resulting in an eigenvalue 
problem. So far the treatment is pure analytical for all 
coordinate systems. This approach has origin from the analysis 
of the dynamic behavior of air springs (Pelz & Buttenbender 
(2004). Interestingly an air-spring can be considered as an up- 
scaled cavitation bubble. The cut-of frequency were the 
transition from isothermal to adiabatic compression happens of 
a typical passenger car air spring is of the order 

~)2/( πωγ 0.01 Hz. The cut off-frequency at which the 
change from isothermal to isentropic compression happens to 
be is determined by the balance between change of inner 
energy  during a half cycle and the heat transport rate over the 
boundary of the bubble, air spring respectively. Hence the cut-
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the plane (j=0), cylindrical (j=1) and spherical (j=2) bubble 
respectively. The heat transfer coefficient is denoted by , the 
specific heat is , the density 

k
pc 0ρ  and the isentropic exponent 

γ  (=7/5 for a diatomic gas). Here and in the following the 
geometry, state, and material variables at rest are denoted by 
the subscript 0. For small bubbles with 10/: 000 <= Darκ  the 

travelling time of a sound wave through the air volume   
is of the order of the thermal diffusion time  with the 

thermal diffusivity 
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00 RTa γ= , isentropic exponent 5/7=γ  for diatomic gas, 

gas constant R ). For an air spring or a “big” bubble κ  is 
much greater than 10. Hence the cut-off frequency scales as 

0/)1(~ rj +γω . The typical length of an air spring is 0.1 m, 
the typical size of a cavitation bubble is 1 µm. Hence there is a 
scaling factor of  for the cut-off frequency, which is above 
1 kHz for a cavitation bubble. This fits to the cut-off frequency 
of  0.01 Hz for the vehicle air-spring
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Considering the equation of motion for a cavitation bubble, the 
Rayleigh-Plesset equation without viscous damping and 
diffusion reads as:  
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with the pressure at the interior side of the bubble wall , the 

pressure at infinity   , the liquid density 
Bp

∞p lρ , coefficient of 

surface tension  and bubble radius . In a perturbation 

analysis with  considering only linear terms in 

we end up for the spherical case with the characteristic 
equation  
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It is emphasized that the compression modulus changes with 
the frequency. By gaining the equation we have linearized  

using the complex compression moduls 
Bp

),( κPeK+  (Equation 
                                                           

)
1 On has to be carefully with the given scaling result, since if 
the cut-off frequency is dependent on ( γωγ ,,, 000 Darf=  the 

dimensional analysis would results in ( )γκωγ ,/ 0
2

0 fDr = , 
which is accordance with the boundary value problem (3) and a 
scaling law of  would result for “big” bubbles.  2

0~ −rγω

(7), Figures 2, 4). The dependence of the compression modulus 
on frequency is the main task of the presented work. 
We do not take the heat conduction within the liquid into 
account. This would result in an additional typical time scale, 
i.e. the temperature diffusion time within the liquid. Since this 
time is much smaller compared with the diffusion time within 
the gas, it is not considered here.  
   
THEORETICAL, ANALYTIC APPROACH 
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Figure 1: Geometry and boundary conditions for (i) the 
plane and cylindrical bubble, (ii) the spherical bubble. 
 
 

The analytic, numerical examination takes place in two steps. 
In the first place the conservation laws are solved for the plane 
case. The thought experiment consists of two half infinity 
plates with a gas filled gap. Due to symmetry the midplane is 
adiabatic and fixed. The bubble boundary has a constant 
temperature, i.e. the thermal diffusion time in the water is 
assumed to be much smaller than  the attenuation time ωπ /2  
due to the forced harmonic oscillation of the bubble boundary 
r+=1+h+cos(ωt).  (The spatial coordinate 0rrr +=  and the 
amplitude 0rhh +=  are measured with the typical length of the 

gas volume. The time is measured by ω/1 : ω/+= tt .) In a 
second step the examinations are enlarged on cylindrical and 
spherical geometry.  
To derive the coupled linearized differential equations to be 
solved a perturbation ansatz is used in the ideal gas law, the 
continuity, the momentum and the energy equation: 
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Here Φ  is the dissipation function, p the pressure, reuu rr

=  the 
velocity vector, which has for the assumed one-dimensional 
case only a component in the normal direction of the bubble 
wall, μ  the dynamic and dμ  the pressure viscosity of the gas. 
For the one dimensional case there appears only the 
combination dμμμ += 3/4ˆ  and is made dimensionless in 
form of the Prandtl number )/(ˆ:Pr 00Dρμ= . For vanishing 
pressure viscosity the Prandtl number is determined by  

[ ] 10/73/4)59/(4Pr =−= γγ  for a diatomic gas, which is 
assumed here for all results shown in the following figures. For 
a non vanishing pressure viscosity the results are gained in the 
very same way.  
  The system (1) becomes linear, if only small perturbations are 
considered. The ansatz  
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 ( 1−=i ) leads to two coupled differential equations for all 
three considered geometric cases for the plane, cylindrical and 
spherical bubble. By introducing the number j=0 for the plane, 
j=1 for the cylindrical and j=2 spherical bubble, the boundary 
value problem for the velocity amplitude φ(r+) and temperature 
amplitude θ(r+) reads in a comprehensive form as:  
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The boundary value problem (3) is merely dependent on the 
isentropic exponent γ,  the Péclet number or dimensionless 
attenuation frequency  were the cycle time is 
measured with the thermal diffusion time , the Prandtl 
number Pr, the already introduced dimensionless length 
κ=r

0
2

0 /Pe Drω=

0
2

0 / Dr

0a0/D0 and the dimensionless oscillation amplitude h+=h/r0 . 
For convenience the spatial derivative is written as prime. As it 
was said the dimensionless canal height κ  can be considered  
to be the ratio of a temperature diffusion time r0

2/D divided by 
the travel time r0/a0 of a pressure wave. For small 10<κ   the 
diffusion time is of the order of the running time of the pressure 
wave. That accounts for the observed different behavior of the 
solution for this parameter value range. 
During the analytic analysis of these differential equations the 
eigenvalues λk and corresponding eigenvectors c1,k  and c2,k  
assume the form   
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Hence the analytic solution is  
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whereas the constants ak  are determined by the boundary 
conditions. To verify whether the behavior of the general 
solution is isothermal or isentropic the plane equations were 
also solved with the following assumptions. For the isentropic 
case 0ˆ == λμ   were set to zero so that friction and heat 
conductivity were removed. In the isothermal case the 
perturbation of temperature 0~ =T  were set to zero. 

RESULTS 
The solutions of the current investigation are the complete state 
variables and the velocity of the gas inside the bubble for plane, 
cylindrical and spherical bubble (j=0,1,2). Since doe to the 
linearity of the boundary value problem (3) the results are 
proportional to the attenuation amplitude. Hence, it is 
convenient to introduce a transfer function k+ between 
dimensionless oscillation amplitude h+ as input signal and the 
dimensionless pressure p+ as output signal:  
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The frequency response characteristic is a complex function. As 
result outcomes the value and the phase of the propagation. For 
a multi phase flow the compression modulus of the bubble is of  
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(ii) using the volume specific surface as typical length 
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Figure 2: Compression modulus K+ for the plane                                 
case j=0 numerical and analytical, cylindrical case j=1 
and the spherical case j=2 numerical (i) over  
Pe and (ii) over Pe/(j+1) (with the volume specific 
surface as typical length). All for γ=7/5,  high κ=10 5
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Figure 3: Transfer function at the fixed point r+=0 for  
the plane case j=0, the cylindrical case j=1 and the 
spherical case j=2 over Pe. All for γ=7/5,  high κ=10 5. 
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Figure 4: Compression modulus K+ for the spherical       
case j=3 over Pe with varying dimensionless length κ 
(γ=7/5). 
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Figure 5: Transfer function at the fixed point r+=0 for 
the spherical case j=3 over Pe with varying 
dimensionless length κ. ( γ=7/5). 
 

importance. It is defined as pressure change with volume 
change , which assumes the dimensionless 
form for the plane, cylindrical and spherical case is the 
boundary value of equation (6):  

dVVdpK /: −=
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In the following figures 2 to 5 the transfer functions are plotted 
for variable parameters. In figure 2 the  compression  modulus 
is  outlined  over the  Péclet number and the shape parameter j 
for high dimensionless typical length 51e=κ . Figure 3 
displays the  transfer   function evaluated at the plane/line/point 
of symmetry r+=0 for different j and the same  κ. Figure 4 and 
5 show the same only for decreasing κ and spherical geometry 
j=2.  
In figure 2 the compression modulus assumes the constant 
asymptotic value of K+=1 for low Pe and shows as expected 
the isothermal behavior for all cases. After the transient area 
that offsets to higher Pe with advancing j a second plateau is 
apprenticed that behaves isentropic with an absolute value 
K+=γ as expected.  
The shift of the cut-off frequency to higher Péclet numbers is 
well explained by the difference in the volume specific surface 
area of the bubbles. As it was shown in the introduction, the 
cut-off frequency and hence the Péclet number scales as 

βγ ~Pe . Indeed there is a shift of ~6 between j=2 and j=0 
and a shift of ~4 between j=1 and j=0 as it is expected from the 
dimensional analysis. Increasing the frequency and hence the 
Peclet number it comes to an oscillation which also behaves 
like the calculated isentropic case. The oscillations also offset 
to higher Pe. Furthermore the minima have greater values with 
advancing j and as well for advancing Pe. It is interesting, that 
the extremes in the analytical plane case appear in dependence 
to the dimensionless length κ. For the zero singularity with the  
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Figure 6: Spatial pressure distribution p+ divided by 
excitation h+ for the plane case j=0, for γ=7/5, high 
κ=105 and low Pe.   
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Figure 7: Spatial pressure distribution p+ divided by 
excitation h+ for the spherical case j=2, for γ=7/5,  
high κ=105 and low Pe .  
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Figure 8: Spatial temperature distribution θ divided 
by excitation h+ for the plane case j=0, for γ=7/5, high 
κ=105 and low Pe.  
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Figure 9: Spatial temperature distribution θ divided 
by excitation h+ for the spherical case j=2, for 
γ=7/5, high κ=105 and low Pe .   
 

prefactor π/2 and for the infinite singularity with π. This 
behavior is explained by the detailed analytical solution.  
At Pe = (π/2, 3/2π,...)κ a standing pressure wave with the node 
at the wall is observed. For Pe = (π, 2π,…)κ the node is in the 
center. It is assumed that a similar relation in the form  
Pe = (απ/2, 3α/2π,...)κ and Pe = (απ, 2απ,…)κ can be given for  
the cylindrical and spherical case but due to mere numerical 
results the shift factor α cannot be given exactly. For example  
it varies between α=1.2…1.6 for j=2. After the region of 
oscillations a second area with isothermal behavior is proven 
for the analytical plane case for Péclet numbers of the order 
Pe≈κ2. 
In figure 3 the transfer function is evaluated at the symmetry 
point r+=0. With low Péclet numbers it likewise has a plateau 
value 1 what is expected because at very low frequencies the 
pressure is spatially constant. Thereafter again a transition area 
appears that leads to a minimum before a second plateau 

develops. Here also the transient areas offset to higher Péclet 
numbers with increasing j and also the minima show lower 
values. Following the second plateau the transfer function 
strives to infinity. 
The figures 4 and 5 reveal the dependence of the transfer 
function and especially of the compression modulus on the 
dimensionless length κ. For all κ in both cases for r+=1 and 
r+=0 the first isothermal plateau stays unaltered. The transition 
area obtains a larger range for r+=1and stays almost unchanged 
for r+=0. The second isentropic plateau grows in either instance 
in length with increasing κ. Moreover the oscillation (r+=1) 
striving  to infinity (r+=0) is shoved to higher Péclet numbers. 
The behavior for lower κ <10 is slightly different. Here, too the 
first sections of the curves are quite similar but at the beginning 
of the transition area the developing changes increasing with 
decreasing κ. Especially for very low κ~1 the development of 
the graph gets complete different and is not understood yet but 
a reason could be that in this region the temperature diffusion 
time r0

2/D and the travel time r0/a0 of a pressure wave are of the 
same order. There, compared with the analytic isothermal 
solution, only isothermal behavior is shown. However at this 
point concerns must be risen because such low κ imply a 
typical lenth of 100nm. An infinite stiffness would result.  
Following the spatial pressure and temperature distributions 
divided by h+ for the plane and the spherical case are brought 
face to face. Therefore first the courses for low Péclet numbers 
will be discussed up to the end of the transition area. 
Afterwards the distributions for the maxima and minima, 
shown in figure 1, are considered. 
Figures 6 and 8 illustrate the dimensionless pressure amplitude 
p+ and temperature amplitude θ  both divided by h+ over the 
dimensionless length r+, for the plane case. For low Péclet 
numbers the pressure and temperature is constant over the 
whole region. This is in figure 2 and 3 the plateau that assumes 
the value one and behaves isothermal. With rising Péclet 
number the pressure amplitude at the plane of symmetry 
decreases to a minimum value before the second plateau is 
accomplished. This is the transition area in figure 3. Meanwhile 
the pressure at the oscillating wall rises from one thru the 
transition area in figure 2 to the value of the isentropic 
exponent γ. Thereby the boundary layer thickness decreases 
towards the moving wall. Due to the fact that the solution for 
the pressure is composed of one part with the first derivative of 
the velocity and another part consisting of the temperature (see 
eq. 6) there is a connection between the pressure and the 
temperature amplitude except for r+=1, there the boundary 
condition is a constant temperature. 
The temperature amplitude shown in figure 8 rises on the fixed 
adiabatic plane of symmetry from the spatial constant value of 
zero for low Péclet numbers to a plateau which has due to the 
boundary conditions no gradient at r+→0. The boundary layer 
too decreases. In doing so the gradient at the oscillation wall 
increases due to the fact that the amplitude at the wall with 
constant temperature must be zero. The influence on the 
pressure amplitude at the moving wall declines ever steeply 
with higher dimensionless frequencies Pe. It is fact that the 
pressure amplitude at the oscillating wall is only influenced by 
the first derivative of the speed (eq. 6). For the other cases this  
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Figures 8 and 9 show the same courses for the spherical  
case j=2. Basically the distributions show the same behavior is 
different.   
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Figure 10: Spatial pressure distribution p+ divided by 
excitation h+ for the plane case j=0 on the left column and 
for the spherical case j=2 on the right. First row shows 
the first minimum, second row the first maximum. 
Followed by the second minimum and the second 
maximum. All plotted for γ=7/5, high κ=105 . 

 
The center point the value of the pressure amplitude also 
decreases from a constant value of one to a this time lower 
minimum, then rises again to the same plateau value. This was 
already pointed out in figure 3. On the oscillating wall the 
pressure amplitude rises again from the value 1 to γ.  
All this is displaced to higher Péclet numbers as shown in 
figure 2 and 3. The temperature amplitude has greater values as 
in the plane case but likewise the boundary thickness decreases 
with rising Péclet numbers and the declination to zero is even 
steeper. This slightly different behavior is probably a result of 

the additional terms j/r and j/r2 which appear in the spherical 
and cylindrical case. The cylindrical case has the same courses 
and lies between the plane and spherical case. Up next the 
spatial pressure courses for the extremes in figure 2 will be 
considered for the plane and spherical case. The plots for the 
first two minima and maxima are shown in  
figure 10. On the left side the plane case is placed. The first 
minimum appears at Pe=πκ/2  calculated analytical. This 
standing wave has its node with the value of zero at r+=1 as 
expected from figure 1. Following the minimum a maximum 
develops for Pe=πκ with high values for the pressure amplitude 
at the plane of symmetry and at the oscillating wall. In the 
middle of the region resides the node of the standing wave with 
the value zero. The next two images show the second minima 
and maxima. With every new extremum an additive node 
appears in the standing wave. Moreover with every extremum 
of the transfer function the maxima of the standing wave rise to 
higher values. The same can be said for the distribution of the 
temperature amplitude. Only the absolute values vary but the 
courses are completely the same for the plane case. General the 
minima develop  at Pe = (π/2, 3/2π,...)κ and the maxima at  
Pe = (π, 2π,…)κ. For the analytical and numerical solution there 
is a discontinuity at the boundary due to the boundary 
condition. It is worthwhile to consider also the surrounding 
fluid as it was done before by Prosperetti. For the spherical case 
the results are different. There the nodes do not reach the value 
zero and when the minimum in the frequency response 
characteristic is developed the node is not at the oscillating wall 
but it has moved a bid further towards the center. It is assumed 
that this comes from discretisation errors produced by solving 
the equations with FE methods. The standing wave does not 
show such a regular behavior as in the plane case. Its 
maximums have the highest values at the center point. From 
there the pressure amplitude decreases to the point of the node 
and then rises again but to a this time lower maximum. The 
temperature amplitude has not the similar characteristic as in 
the plane case. It has nodes with the worth zero which are 
displaced related to the pressure ones. Despite these peculiar 
properties it is apparent that the pressure amplitude gets higher 
values for each extremum in the transfer function, even 
significant higher ones as in the plane case.      

DISCUSSION 
In this work the compression modulus as a function of the 
dimensionless frequency Pe and the dimensionless length κ  is 
explained by solving the conservation laws for the gas within a 
plane, cylindrical and spherical bubble. The special 
distributions of pressure and temperature within the bubble give 
a clear picture of standing pressure and temperature waves. A 
critical parameter in doing so is κ which can be looked at as the 
ratio of a temperature diffusion time r0

2/D divided by the travel 
time r0/a0 of a pressure wave. For low κ the diffusion time is of 
the order of the running time of the pressure wave. 
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Hence an isothermal behavior is reasonable and indeed 
observed in the analysis for low κ. If this is the case for high Pe 
can not be judged. Further investigations can for example 
modify the temperature boundary condition at the oscillating 
wall taking the temperature diffusion within the surrounding 
water into account.  
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Figure 11: Parameter map for the solution of the boundary 
value problem (eqn. 3) for γ=7/5. 
 

The difference between plane, cylindrical and spherical bubbles 
is explained by the difference in the dimensionless volume 
specific surface area (see also the parameter map in figure 11). 
The dimensional analysis done in the introduction is very well 
capable to explain the observed shift in the cut-off frequency 
qualitative and quantitative. As it was shown by Pelz & 
Buttenbender [3] matching the solution of the boundary value 
problem (eq. 3) with a solution gained for homogeneous 
thermodynamic state 1 Nu/Pe / Nu/Pe +−=+ γγγ i-iK  
within the gas volume the Nusselt number is determined by 

3~/:Nu 0 βλkr= . This again confirms the above given 
scaling law (see figure 12). 
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Figure 12: Compression modulus for homogeneous 
thermodynamic state [3] for a Nusselt number of 3 and the 
solution of eq. 3 for j=0, γ=7/5  and high κ=105.9 . 

 

CONCLUSION 
Extending previous works on bubble dynamics by Prosperetti 
and on the first glance far away working areas like dynamic 
behavior of air springs in vehicle dynamics a scaling law for 
the cut-off frequency of an air spring is derived. The scaling 
law takes the bubble shape and the bubble size into account. Up 
to now the limiting case, were the thermal diffusion time is of 
the order of the wage traveling time, has not been considered 
close. Interestingly for such small bubbles there is no transition 
between isothermal and isentropic compression even at high 
frequencies.  
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NOMENCLATURE 
a0  : speed of sound 
cp  : specific heat capacity  
D  : thermal diffusity 
h   : oscillation amplitude 
h+  : dimensionless oscillation amplitude 
i    : root of minus one 
j    : geometry parameter 0,1,2 
k     : heat transfer coefficient 
k+   : transfer function 
K   : compression modulus 
K+  : dimensionless compression modulus 
p    : pressure 
p0    : constant pressure 
p~   : pressure disturbance 
pB   :  pressure interior side of the bubble wall 
p+   : place dependant dimensionless pressure amplitude 
Pe  :  Péclet number 
Pr  :  Prandtl number 
r0    :  constant radius/canal height 
r+  :  dimensionless coordinate 
R   :  gas constant, Bubble Radius 
S   :  coefficient surface tension 
t    :  time 
t+    : dimensionless time 
T    : temperature 
T0   : constant temperature 
T~   : temperature disturbance  
u    : velocity 
u~   : velocity disturbance 
V   : volume 
 
α   : geometry factor 
β   : geometry factor for the volume specific area 
φ   : place dependent velocity amplitude  
Φ  : dissipation function 
γ    : isentropic exponent 

λ    : heat conductivity, eigenvalue 
μ    : dynamic viscosity 
κ    : dimensionless length 
ω   : oscillation frequency 
ω0   : eigenvalue 
ω γ : cut-off frequency  
ρ    : density 
ρ0   : constant density 
ρl   : liquid density 
ρ~   : density disturbance 
θ    : place dependent temperature amplitude  

 
D/Dt: substantial time derivative 

) ( & : partial time derivative 
)' ( : partial spatial derivative 
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