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ABSTRACT 

A two-dimensional, time-accurate, homogeneous 
multiphase, preconditioned Navier-Stokes method is applied to 
solve steady and unsteady cavitating laminar flows over 2D 
hydrofoils. A cell-centered finite-volume scheme employing 
the suitable dissipation terms to account for density jumps 
across the cavity interface is shown to yield an effective 
method for solving the multiphase Navier-Stokes equations. 
This numerical resolution is coupled to a single-fluid model of 
cavitation that the evolution of the density is governed by a 
barotropic sate law. A preconditioning strategy is used to 
prevent the system of equations to be stiff. A dual-time implicit 
procedure is applied for time accurate computation of unsteady 
cavitating flows. A sensitivity study is conducted to evaluate 
the effects of various parameters such as numerical dissipation 
coefficients and preconditioning on the accuracy and 
performance of the solution. The computations are presented 
for steady and unsteady laminar cavitating flows around the 
NACA0012 hydrofoil for different conditions. The solution 
procedure presented is shown to be accurate and efficient for 
predicting steady/unsteady laminar cavitating/noncavitating 
flows over 2D hydrofoils. 

INTRODUCTION 
Cavitation can occur in a wide range of flows and this 

physical process is of particular interest for studying marine 
propellers, water crafts, turbine blades and low speed 
centrifugal pumps. This phenomenon strongly affects the flow 
field, the neighbouring structures and it plays an important role 
in the design of hydrodynamic machines. Several physical and 
numerical models have been developed to investigate steady 
cavitating flows. The reason for the absence of a more detailed 
explanation of the physics of cavitation is, of course, the need 

for a discussion of the unsteady viscous cavitating flow 
phenomena. The shape and collapse of the vapor structures 
usually fluctuate in time and this unstable behavior causes to be 
important for understanding of unsteady two-phase flow 
structure of cavitation. Most studies for unsteady cavitating 
flows known in the literatures are performed for turbulent 
flows, and a little work can be found for laminar flows. The lift 
disintegration is a major flow feature in cavitating flows and is 
due to the increased bubble size on the hydrofoil. Since the lift 
and especially drag calculations depend on viscous effects, thus 
the choice of turbulence model has a strong impact on the 
results. There is no widely acceptable turbulence model that 
can handle the uncertainties of unsteady cavitating two-phase 
flows. Inspection of the studies on laminar cavitating flows 
making it possible to model cavitation behavior in a physically 
more realistic manner. 

A numerical analysis of cavitating flow of viscous fluid is 
a challenging computational problem. In fact, one has to deal 
with localized large variations of density which are present 
within a predominantly incompressible liquid medium, 
interactions between phases, turbulence, irregularly shaped 
interfaces, compressibility effects and the stiffness in the 
numerical model. A number of different approaches have been 
developed to investigate cavitation numerically. Kueny et al. 
[1] described the vapor/liquid interface as a stream sheet at 
constant static pressure equal to the vapor pressure and 
simulated the steady sheet cavitation. Kubota et al. [2] 
described the behavior of small gas bubbles in the fluid by the 
Rayleigh-Plesset equation with the changing pressure field. 
Delannoy and Kueny [3] assumed that the liquid and gas phases 
are represented by a single continuous equation of state that 
strongly links the mixture density to the static pressure. This 
barotropic flow model has been applied by Song et al. [5] and 
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produced the results that agree very well with the experimental 
data and observations. (see Arndt et al. [6]). Several 
modifications have been investigated by Reboud et al. [7] and 
Coutier-Delgosha et al. [8,9,13] to improve this physical model. 
Merkle et al. [4] and Kunz et al. [10] proposed another 
development with considering two mass balance equations for 
liquid and vapor, instead of a single equation for mixture. Some 
papers deal with this topic that numerically simulated the 
laminar cavitating flows on pumps or low speed propeller 
blades. For example, Frobenius et al. [11] presented a 
numerical simulation of cavitating flow through a low speed 
impeller. Ventikos et al. [12] developed a numerical method 
that is based on a viscous flow solver and they examined it for 
the simulation of steady and unsteady laminar cavitating flows. 

The main objective of the present study is to develop an 
efficient and accurate flow solver for computing 
steady/unsteady cavitating laminar flows. Herein, a dual-time 
implicit preconditioned Navier-Stokes method is used for this 
propose. A central difference finite volume method in 
conjunction with the modified Jameson’s type dissipation terms 
to account for density jumps across the cavity interface is 
employed to solve the multiphase Navier-Stokes equations. The 
development of cavitation is imposed and controlled through 
the evolution of the vapor pressure used in the cavitation 
model. A barotropic state law is applied to model 
steady/unsteady cavitating flow. This model considers the 
liquid-vapor mixture as a single fluid, characterized by a 
density that varies according to a state law. It is assumed that 
locally the velocities are the same for liquid and vapor in the 
interface and the interface is considered to be in a dynamic 
equilibrium. To validate the numerical results, the 
steady/unsteady noncavitating laminar flows are computed by 
setting a high cavitation number and the results for the NACA 
0012 hydrofoil are compared with the numerical solution by 
Hafez et al. [14]. Then, the steady/unsteady cavitating flow 
patterns over the NACA0012 hydrofoil at different conditions 
are presented. The influence of the numerical parameters such 
as dissipation terms on the results is also investigated and the 
overall capability and performance of the present modeling are 
assessed. The effects of preconditioning on the convergence 
rate of the solution of the cavitating flows are also examined. 
Some observations are presented concerning the unsteady 
cavitation flow condition. The results predicated by steady and 
unsteady cases are compared with the available results. The 
study shows that the numerical treatment is efficient and 
accurate for computing the steady/unsteady laminar 
noncavitating/cavitating flows over 2D hydrofoils. 

 
PROBLEM FORMULATION 

By assumption of thermal and dynamic equilibrium for the 
homogeneous single fluid approach, the Navier-Stokes 
equations are used to model cavitating flows without 
considering the energy conservation equation. The barotropic 
state law relates the pressure and density variables and 
completes the set of equations. The Navier-Stokes equations are 
written in the vector form as follows: 

 

v vU F G F G
x y x yτ

∂ ∂ ∂ ∂ ∂+ + = +
∂ ∂ ∂ ∂ ∂

 (1) 

Here τ  is the pseudo time-step. U  is the vector of dependent 
variables, F  and G  are the invicid fluxes and vF  and vG  are 
the viscous fluxes. This formulation is devoted to highly 
compressible flows. In cavitation flows that the most region of 
the flow field are low-compressible or incompressible, the 
efficiency of the formulation decreases dramatically, because 
the order of convective and acoustic eigenvalues becomes very 
different that makes the system of equations to be stiff. To 
rectify this problem, a preconditioning strategy is used. It 
consists in multiplying the temporal derivatives in the 
continuity equation by a preconditioning to obtain a well-
conditioned system. A pseudo time-derivative term of density 
is introduced in the equations from the work of Chorin [15]: 
 

m m p
p

ρ ρ
τ τ

∂ ∂ ∂=
∂ ∂ ∂

 (2) 

2m

p
ρ β∂ =
∂

 (3) 

where β  is the isothermal speed of sound and it is known as 
the pseudo-compressibility coefficient or the preconditioning 
parameter. To obtain an efficient time-marching numerical 
scheme, β  is selected in such a manner that to rescale the 
eigenvalues of the system such that the acoustic speeds are of 
the same order of the local convective velocities [16]. The 
resulting preconditioned multiphase Navier-Stokes equations 
can be expressed as: 
 

v vQ F G F G
x y x yτ

∂ ∂ ∂ ∂ ∂Π + + = +
∂ ∂ ∂ ∂ ∂

 (4) 
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 (5) 

where p  is the pressure, u  and v  are the flow velocities and 
ijτ  is the viscous stress tensor. Turkel [17] modified this 

preconditioning strategy by adding corresponding artificial 
time-derivative term to the momentum equations and 
introduced a coefficient such as uα . Coutier-Delgosha [13] 
computed the uα  locally according to the local void fraction α  
as follows: 
 

1 0 1

2 1 0 1u

if or

if

α α
α

α α

⎧ = =⎪⎪⎪= ⎨⎪ − < <⎪⎪⎩
 (6) 

l m

l v

ρ ρα
ρ ρ
−=
−

 (7) 

The subscripts l  and v  stand for the properties of pure liquid 
and pure vapor, which are assumed to be constant and mρ  is 
the mixture density. Herein, the influence of these coefficients 
on the numerical results is investigated. Note that these terms 
are of no physical meaning and they are cancelled at steady 
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state; thus they have no effect on the solution. The 
preconditioning matrix Π  is given by: 
 

2

2
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 (8) 

For simulation of the unsteady periodic nature of flows, a 
second-order implicit dual-time procedure is used [18]. In this 
method, the terms regarding the real time derivatives are 
considered in the system of equations and Eq. (6) is rewritten as 
follows: 

 

v vU Q F G F G
t x y x yτ

∂ ∂ ∂ ∂ ∂ ∂+ Π + + = +
∂ ∂ ∂ ∂ ∂ ∂

 (9) 

where, t  is the physical time step and U  is defined as: 
 

U u
v

ρ
ρ
ρ

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜⎝ ⎠

 (10) 

The integral form of the preconditioning multiphase Navier-
Stokes equations using the Gauss divergence theorem for an 
arbitrary control volume Ω  is written as: 

 

ˆ

ˆ 0v

Ud Qd H nd
t

H nd
τΩ Ω

∂ ∂Ω+ ∏ Ω+ ⋅ −
∂ ∂

⋅ =

∫∫ ∫∫ ∫
∫

 (11) 

Here, H  and vH  are the total inviscid and viscous flux 
vectors, respectively. 
 

CAVITATION MODEL 
In the present work, the two-phase flow is considered as 

only one fluid in which the variation of density in the flow field 
is governed by a barotropic state law [3,7-9,13]. The barotropic 
model is based on the assumption of the thermodynamic 
equilibrium and the neglect of velocity slip between liquid and 
vapor phases. Two phase fluid is considered as a single fluid in 
which the density varies from the liquid to the vapor with 
respect to the local static pressure. The barotropic state law 
( )pρ  is shown in Fig. 1. When the pressure is higher or lower 

than the vapor pressure ( )vapp , the fluid is considered as purely 
liquid or vapor, and a continuous variation of density between 
liquid and vapor phases is evaluated by using a sinusoidal curve 
as follows: 

 

min

2

2
( )

2 2
vapl v l v

m
l v

p p
Sin

c
ρ ρ ρ ρρ

ρ ρ
−+ −= + ×

−
 (12) 

 
where 2

min1 c  is the maximum slop of the curve that occurs at 

the vapor pressure and minc p ρ= ∂ ∂  is the minimum speed of 

 
Figure 1: The barotropic state law ( p )ρ  [13]. 
 
sound in the mixture. The measurement of speed of sound in 
cavitating flows is difficult and its value usually is set to be 
constant in computational approaches. It should be noted that 
the different value of minc  can significantly affect the results of 
numerical simulation [19,20]. 
 

NUMERICAL TREATMENT 
The governing equations are descretized using a central 

difference finite volume scheme and the domain is divided into 
a finite number of structured quadrilateral cells. The discrete 
form of Eq. (11) over a computational cell volume becomes: 

 

( ) ( ) 0j j j
d Q A R Q
dτ

+ =  (13) 

where jA  is the cell area and ( )jR Q  is the residual vector 
defined as: 
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∑  
(14) 

Here j  locates the particular cell, m  indicates cell faces and  
is the length of each cell face. Each variable quantity on the 
faces of a cell is evaluated by averaging from its values at the 
two control points located on the opposite sides of the cell 
interface.  

To prevent odd-even decoupling in central-difference 
scheme and for stabling the numerical solution in computing 
high gradient of flow variables near the cavity interface, the 
artificial dissipation terms ( )jD Q  with suitable density and 
pressure sensors are used: 

 

( ) ( ) ( ) 0j j j j
d Q A R Q D Q
dτ

+ − =  (15) 

The artificial dissipation term ( )jD Q  is composed of two 
terms, respectively of second- and fourth-order differences with 
the coefficients which depend on the local gradients, as initially 
proposed by Jameson et al. [21]. The dissipation flux ( )jD Q  is 
defined as: 
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1/2, 1/ 2, , 1/2 , 1/2( )j i j i j i j i jD Q d d d d+ − + −= − + −  (16) 
For example, 1/2,i jd +  in the above relation is a blend of first and 
third-order differences and it is expressed as: 
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(17) 

where 2ε and 4ε are the coefficients associated to second- and 
fourth-order artificial dissipations, respectively as 
 
2 (2) (2)
1 , 1, , 1,,
2

max( , ) max( , )p i j i j i j i ji j
k kρε δ δ γ γ+ ++

= +  (18) 
4 (4) 2
1 1, ,
2 2

max(0, )
i j i j

kε ε
+ +
= −  (19) 

ijδ  and ijγ  are the pressure and the density sensors respectively 
to activate the second-difference dissipation in the regions of 
strong gradients such as the cavity interface, and to de-activate 
it elsewhere. These two sensors are defined as follows: 
 

1, , 1,

1, , 1,

2

2
i j i j i j

ij
i j i j i j

p p p

p p p
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1, , 1,

1, , 1,

2

2
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ij
i j i j i j
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ρ ρ ρ
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In this study, the effects of (2)
p
k , (2)kρ  and (4)k  on the numerical 

results of cavitating flows are investigated. 
 

IMPLICIT DUAL-TIME TEMPORAL DISCRETIZATION 
For computing unsteady flows, explicit techniques are 

extremely time-consuming, since the allowable time step is 
much more restrictive than that needed for an acceptable level 
of time accuracy. Therefore, an implicit temporal discretization 
is required. In this study, a second-order implicit dual-time 
procedure is used to compute unsteady laminar cavitating 
flows. In this scheme, the unsteady residual should be zero at 
each physical time step by using an inner iterations marching at 
the pseudo-time [18,21]. Using the multi-stage Runge-Kutta 
scheme, we have: 
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The parameters Nα  are taken as 1 4,1 3,1 2  and 1 . In addition, 
the local time stepping is used to accelerate the convergence 
rate of the solution and the time step is calculated as 

max

iCFL hτ
λ
×∆ =  (23) 

where ih  is the minimum face size for each cell and maxλ  is the 
maximum value of eigenvalues. 
 

BOUNDARY CONDITIONS 
For numerical simulation of the cavitating flows from 

incompressible perspective, suitable boundary conditions are 
required. The far field boundary conditions are used at a finite 
distance from the body surface. The velocity components and 
the density are specified at the inflow boundary and they are 
extrapolated at the outflow boundary, while the pressure is 
specified at the outflow boundary and it is extrapolated at the 
inflow boundary. Since the flow is viscous, no-slip condition 
for velocity components is enforced on the walls. The boundary 
conditions on the body surface are imposed by using dummy 
cells with appropriate values at each time step. 

 

RESULTS AND DISCUSSION 
A numerical solution of the multi-phase Navier-Stokes 

equation is applied to simulate steady/unsteady laminar 
cavitating/noncavitating flows around the two-dimensional 
hydrofoil. The present results are organized in two parts: The 
incompressible laminar flow is simulated over the NACA 0012 
hydrofoil for steady and unsteady noncavitating flows and a 
comparison with the existing numerical results of Ref. [14] is 
made. The noncavitating flow condition is computed by setting 
a high cavitation number, i.e., 10.0σ = . Then, the results of the 
steady/unsteady laminar cavitating flow around the NACA 
0012 hydrofoil are presented. The surface pressure distribution 
and convergence improvement by the preconditioning strategy 
are investigated. A sensitivity study is also performed to 
examine the effects of numerical dissipation terms on the 
results. 

 

Noncavitating Flow 
The numerical results of Hafez et al. [14] are used for 

comparison of the steady/unsteady laminar incompressible flow 
over the NACA 0012 hydrofoil. The geometry and the near-
field details of the grid used for the computations is shown in 
Fig. 2. The O-grid size is (201 103)×  and the radius of the 
outlet computational domain is equal to 10 chords. In Figs. 3 
and 4, the results for the surface pressure coefficient and skin 
friction distributions at Re 500∞ =  and 10α =  are provided, 
respectively. For this case, the laminar flow over the hydrofoil 
has a steady behavior. As seen in this figures, the results are in 
good agreement with the other numerical results. As discussed 
before, a preconditioning strategy is used to ameliorate stiffness 
of the system of equations. Figure 5 illustrates the convergence 
rate of solution for the different values of the artificial 
compressibility parameter β  for the noncavitating laminar 
flow  over  the  NACA 0012  at  the  same  conditions. It can be  
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Figure 2: A close-up view of computational grid around 
NACA0012 hydrofoil. 
 

X

C
p

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

Hafez et al.
Present

 
Figure 3: Comparison of the pC  distribution on the NACA 

0012, noncavitating case, 10α =  and Re 500∞ = . 
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Figure 4: Comparison of the fC  distribution on the NACA 

0012, noncavitating case, 10α =  and Re 500∞ = . 
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Figure 5: Convergence history of the solution for different β , 
noncavitating laminar flow over the NACA 0012, 10α =  and 
Re 500∞ = . 
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Figure 6: v − velocity contours on the NACA 0012, 
noncavitating case, 20α = , Re 800∞ =  and 5time = . (a): 
Present (b): Hafez et al. 
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Figure 7: Comparison of time variation of the v − velocity at 

1.1, 0x y= =  behind the NACA 0012, noncavitating case, 
20α =  and Re 800∞ = . 
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Figure 8: Lift coefficient of the NACA 0012 hydrofoil as a 
function of dimensionless time, noncavitating case, 20α =  and 
Re 800∞ = . 
 
seen that the convergence rate is remarkably better for local 
calculating β  and it is shown that the preconditioning 
improves the convergence rate of the solution. 

The results of the unsteady flow at Re 800∞ =  and 
20α =  are provided now. The present v − velocity contours 

are plotted at 5t =  and compared with the numerical results of 
Ref. [14], as shown in Fig. 6. It shows the existence of a large 
vortex shedding towards trailing edge of the hydrofoil. The 
development of the v − velocity component with respect to the 
dimensionless time at point 1.1, 0x y= =  in the rear part of the 
NACA 0012 hydrofoil is given in Fig. 7. Because of the vortex 
shedding, the lift coefficient as shown in Fig. 8 oscillates at the 
Strouhal number of 0.55. Results show that the present 
computational method gives satisfactory agreement with the 
other numerical results for the simulation of steady/unsteady 

noncavitating laminar flows, and thus we next turn to predicate 
the cavitating flows for the same geometry. 

 

Cavitating Flow 
The results of the steady cavitating laminar flow over the 

NACA 0012 hydrofoil at Re 500∞ = , 4α =  and the 
cavitation number of 0.5σ =  are presented. To examine the 
sensitivity of the numerical solution to the dissipation 
parameters, the effects of the density sensor coefficient in the 
2nd-order term, (2)kρ , and the coefficient of the 4th-order 

dissipation term, (4)k , on the surface pressure coefficient 
distribution are studied. The pressure sensor coefficient is set to 
be zero, (2) 0pk = , because the computations have shown that 
this coefficient has no significant effect on the numerical 
simulation. Figure 9 indicates a comparison of the pC  

distribution for different (2)kρ . The coefficient of the 4th-order 

dissipation term is set to (4) 1 64k =  for this study. It can be 

seen that the coefficient of density sensor has no significant 
effect on the accuracy of the results of laminar cavitating flows.  
The small values of (2)kρ  may lead the solution to instability, 
because of high gradient of the density at the cavity interface. A 
value of (2) 1 20kρ =  seems a suitable one for an accurate 

solution. With (2) 0pk =  and (2) 1/20kρ = , the sensitivity of the 
solution to the coefficient of the 4th-order dissipation term is 
studied now. The effect of this coefficient on the surface 
pressure distribution is illustrated in Fig. 10. It is demonstrated 
that this coefficient has a little effect on the numerical results. 
The study has shown setting the value of (4)k  to zero can cause 
oscillations in the solution which lead to divergence of the 
numerical simulation. The convergence history of the solution 
can be seen in Fig. 11 which shows nearly the same 
convergence rates for different conditions. 

Fig. 12 illustrates the effect of the preconditioning 
coefficient uα  on the convergence rate of the solution for the 
cavitating laminar flow over the NACA 0012 at 0.5σ = , 

4α =  and Re 500∞ = . It is concluded that the convergence 
rate of solution is improved with the calculation of 
preconditioning coefficient according to the local void fraction 
that it is evaluated based on the local mixture density at 
cavitating area. Fig. 13 shows a comparison of the pressure 
distribution for the present numerical solution of noncavitating 
and cavitating flows at different cavitation numbers over the 
NACA 0012 hydrofoil for 4α =  and Re 500∞ = . The 
computed density contours are also shown in Fig. 14. The 
results indicate that the predicated cavity length increases with 
decreasing the cavitation number with a lower pressure after the 
cavity region compared to the higher cavitation number case. 
Note that the pressure is nearly constant (equal to the vapor 
pressure) in the cavity region, 

With more decreasing the cavitation number or increasing 
the angle of attack, the cavity length and thickness are 
increased that cause the solution almost fluctuated and does not 
converge   to  steady  state.  This  is  because   the   existence   a  
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Figure 9: Comparison of the pC  distribution on the NACA 
0012 hydrofoil for different 2nd-order density dissipation 
coefficients, cavitating case, 0.5σ = , 4α =  and Re 500∞ = . 
 
recirculation zone which it is injected the flow to inside the 
cavity from its rear lower part with the formation of a strong re-
entrant jet and cause to shed bubbles. To show the overall 
capability and performance of the present numerical method in 
solving unsteady cavitating laminar flows, we perform an 
unsteady analysis of the cavitation over the NACA 0012 
hydrofoil for different cavitation numbers and angle of attacks. 
The cavitation bubble collapse is a rapid phenomenon and for 
the study of this behavior it should employ a small time step. In 
this study, the dimensionless time step is set to 0.0005t∆ = . In 
Fig. 15, one can see the density field for the several time steps 
at 0.5σ = , Re 2000∞ =  and 6α = . The visualizations 
present the cloud shedding and streamlines show the 
development of a re-entrant jet over upper surface of the 
hydrofoil, which is the main reason for the periodic shedding of 
vapor structures downstream from a cavity. At first, the rear 
part of the cavity deforms and the liquid phase column moves 
inside the vapor phase, then the cavity is quite short and it 
breaks up by re-entrant jet to form a cloud cavity. The cloud 
cavity can arrive at the tail of the hydrofoil before collapsing. 
The refraction of negative pressure wave around the trailing 
edge of hydrofoil may cause cavitation to occur in this section 
of hydrofoil. In Fig. 16, the results are illustrated for 0.6σ = , 
Re 2000∞ =  and 10α = . In this case, the cavity attached to 
the solid body grows up to the generation of a re-entrant jet. 
This leads to break-off of the downstream part of the cavity and 
because the angle of attack is higher than previous case, the 
resulting cloud of vapor is carried away by the main stream, 
until it enters to a higher-pressure zone and then collapses. Fig. 
17 shows the variation of lift coefficient with dimensionless 
time for this case. The v − velocity component with respect to 
the dimensionless time is plotted at point 1.1x =  and 0y =  in 
the rear part of the NACA 0012 hydrofoil in Fig. 18. The 
average Strouhal number of this periodical process is about 
0.23. When the lift coefficient is maximum, a cavitation bubble 
is generated at the point of minimum pressure near the leading  
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Figure 10: Comparison of the pC  distribution on the NACA 
0012 hydrofoil for different 4th-order dissipation coefficients, 
cavitating case, 0.5σ = , 4α =  and Re 500∞ = . 
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Figure 11: Convergence history of the solution for different 
dissipation coefficients, cavitating laminar flow over the NACA 
0012, 0.5σ = , 4α =  and Re 500∞ = . 
 
edge of hydrofoil and then, it slides down the hydrofoil. When 
it arrives at the trailing edge of the hydrofoil, the lift decreases 
to a minimum and this process is repeated periodically. Some 
disparities in predication of cavity size and shedding 
frequencies were most likely due to simplifications made in the 
simulations, such as the assumptions of incompressible and 
laminar flow. 

 

CONCLUSION 
In this study, a dual-time implicit preconditioned Navier-

Stokes flow solver is developed to compute the steady/unsteady 
laminar cavitating/noncavitating flows over hydrofoils. The 
cavitation physical model is based on the single-fluid approach, 
and the two-phase areas are considered as a single fluid, whose 
density is managed through a  postulated  barotropic  state  law.  
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Figure 12: Convergence history of the solution for different uα , 
cavitating laminar flow over the NACA 0012 hydrofoil, 

0.5σ = , 4α =  and Re 500∞ = . 
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Figure 13: Comparison of the pC  distribution for the NACA 

0012 hydrofoil at different cavitation numbers, 4α =  and 
Re 500∞ = . 
 
To ameliorate the difficulty due to the stiffness of the system of 
equations and improve the performance of the numerical 
treatment in modeling cavitating flows, a preconditioning 
strategy is used. A cell-centered finite-volume scheme 
employing the suitable dissipation terms to account for density 
jumps across the cavity interface is shown to yield an effective 
method for solving the multiphase Navier-Stokes equations. A 
second-order implicit dual-time procedure is used to compute 
unsteady laminar cavitating/noncavitating flows. The accuracy 
of the results is verified by comparison with the available 
numerical results. Although, the preconditioning procedure 
presented may be used for different cavitation models, the 
performance of the numerical treatment should be checked 
through numerical experiments. The study demonstrates that 
the multiphase Navier-Stokes flow solver developed can be 
used for the simulation of steady/unsteady laminar 
cavitating/noncavitating flows over 2D hydrofoils. 

X

Y

0 0.2 0.4 0.6 0.8 1
-0.2

-0.1

0

0.1

0.2 σ = 10.0 (Non. Cav.)

X

Y

0 0.2 0.4 0.6 0.8 1

-0.1

0

0.1

0.2

σ = 0.6

X

Y

0 0.5 1

-0.1

0

0.1

0.2

σ = 0.5

  
Figure 14: Density contours over the NACA 0012 hydrofoil at 
different cavitation numbers, 4α =  and Re 500∞ = . 
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Figure 15: Evolution of the density field around NACA0012 
hydrofoil at 0.5σ = , Re 2000∞ =  and 6α = . 
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Figure 16: Evolution of the density field around NACA0012 
hydrofoil at 0.6σ = , Re 2000∞ =  and 10α = . 
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Figure 17: Lift coefficient of the NACA 0012 hydrofoil as a 
function of dimensionless time, unsteady cavitating case, 

0.6σ = , Re 2000∞ =  and 10α = . 
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Figure 18: The v − velocity component at 1.1, 0x y= =  behind 
the NACA 0012 hydrofoil, unsteady cavitating case, 0.6σ = , 
Re 2000∞ =  and 10α = . 
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