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ABSTRACT 

We developed a numerical method of estimating not only 
cavitation erosion area but also cavitation intensity that depends 
on the impeller speed of pumps. Our numerical simulation code 
with a ‘bubble flow model’ simulates the bubble pressure and 
the bubble nuclei distribution in a cavitating flow in detail. We 
simulated impulsive bubble pressure that varied within 
microseconds in a centrifugal pump. The cavitation intensity 
was estimated by analyzing the bubble pressure and the bubble 
nuclei distribution. 

The erosion area on the impeller blade in our pump test 
was visualized by using a method involving dye. The plastic 
deformation rate of an aluminum sheet attached in the erosion 
area was measured, and the cavitation intensity was estimated 
using an experimental database. The erosion area and cavitation 
intensity were measured at high and low impeller speeds. The 
erosion areas were both located on the suction side of the 
impeller blade, and they were distributed between the shroud 
and the mid-point of the blade near the leading edge. The 
measured cavitation intensity at high-speed was twice that at 
low-speed.  

The predicted areas of high cavitation intensity agreed well 
with the erosion areas in the experiment though the predicted 
areas slightly shifted to the leading edge. The predicted 

cavitation intensity at high-speed doubled that at low-speed as 
well as the experimental result. Therefore, we confirmed that 
the numerical method of estimating cavitation intensity was 
accurate. 

Next, we added three calculations while changing the 
impeller speed to obtain a function of cavitation intensity 
variations. The predicted function was a function of the 
impeller speed to the power, and this also corresponded to the 
experimental. Our code is thus effective for estimating the 
cavitation intensity that increases on the suction side of the 
impeller blade in a centrifugal pump when the impeller speed is 
changed.  

INTRODUCTION 
Downsized pumps are needed to increase impeller speed to 

satisfy required specifications of the total head and flow rate. 
As the increase in impeller speed raises the risk of cavitation 
erosion, it is important to predict the cavitation erosion to 
maintain the reliability of pumps. Cavitation intensity is 
defined as the impact power per unit area when the cavitation 
bubbles collapse. The cavitation intensity should be 
experimentally or numerically estimated since it has a strong 
correlation with the cavitation erosion. 
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We developed an experimental method of predicting the 
maximum erosion rate in actual pumps [1]. This was based on a 
method involving the use of an aluminum sheet [2], and the 
following two contents were improved. The one was that a new 
scaling law on cavitation intensity between model and actual 
pumps was introduced. The other was that the relation between 
the cavitation intensity and the histogram on bubble impact 
force and frequency was also applied taking the threshold of 
impact force into consideration [3]. By using the developed 
method, the cavitation intensity can be estimated from the 
measured rate of plastic deformation of an aluminum sheet 
attached to an impeller blade. 
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A ‘bubble flow model’ is one of the most representative 
models of cavitation for numerical simulations. A remarkable 
feature is that abrupt time-variations in the radius and inner 
pressure of bubbles can be simulated by using the Rayleigh-
Plesset equation in a cavitating flow. The cavitation intensity 
can be estimated based on the bubble radius or the bubble 
pressure. Zima et al. evaluated the cavitation intensity by 
calculating an impact force of cavitation. The impact force was 
obtained based on the rate of variations in the bubble radius.  In 
their method, the distribution of bubble number density was not 
considered. They predicted the erosion area on the impeller 
blade of a mixed-flow pump [4]. We defined numerical 
cavitation intensity based on the time-variation in the bubble 
pressure considering the bubble number density, and predicted 
the erosion area on the impeller blade of a centrifugal pump [5]. 
However, variations in the cavitation intensity under different 
operating conditions have not yet been investigated. 

We attempted to predict not only the erosion area but also 
the variations in the cavitation intensity under different 
operating conditions by using the numerical simulation with the 
bubble flow model. The static pressure at the suction pipe was 
not reflected to the inlet boundary conditions for the bubble 
radius and the bubble pressure in the previous study [5]. The 
inlet boundary conditions were improved with the static 
pressure at the suction pipe to estimate accurately the cavitation 
intensity in the present study. The cavitation intensity 
depending on the impeller speed of a centrifugal pump was 
estimated, and was verified with that measured by using the 
aluminum sheet method [1]. We further investigated the power 
law of the cavitation intensity in terms of the impeller speed. 
The function we obtained from the simulation was compared 
with reference data from the Turbomachinery Society of Japan 
[6]. 
 
NUMERICAL METHOD 
Bubble Flow Model and Cavitation Intensity 

The following assumptions concerning the bubbles in a 
flow were made in the simulation code. 

The liquid phase is uncompressible and the gas phase 
consisting of spherical bubbles is compressible. No coalescence 
or breakup of bubbles occurs. The bubbles are filled with vapor 
and non-condensable gas. The pressure of the non-condensable 
gas varies in the isothermal expansion and the adiabatic 
contraction processes that represent evaporation and 
condensation on the bubble surface [7]. The density and 
momentum of the gas phase are sufficiently small to be 
negligible. 

The governing equations are described in a generalized 
coordinate system as: the momentum equation of bubble flow, 
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where the liquid and gas velocities mean the relative velocities 
in a rotating coordinate system; the transport equation for the 
bubble number density is, 
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where the bubble number density, nG, is the number of bubbles 
in a unit volume, and a pressure equation is based on pseudo-
compressibility, which is derived from the conservation of the 
volumetric fractions of the liquid and gas phases, 
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The volumetric motion of a bubble is described by the 
Rayleigh-Plesset equation [8], 
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where both T (= 0.072 N/m) and pv (= 2300 Pa) are constant. 
The viscosity, µ, is assumed to be the same as that of water 
(µ = 1.0×10-3 Pa s). The specific heat ratio, κ, is 1.4. The non-
condensable gas pressure, pG, varies in the isothermal 
expansion and adiabatic contraction processes (Eqs. (6) and (7)) 
[7].  

The occurrence of cavitation is expressed as an increase in 
the void fraction, which is calculated by, 
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The void fraction is the product of the volume of a bubble by 
the bubble number density. 

The translational motion of a bubble is solved taking into 
consideration the force balance of the bubble,  
 ,      (9) 0=+++++ CeiCoiLiDipiAi FFFFFF 
where FAi is the added mass force, 
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β is a constant of 0.5 for a spherical bubble, and Fpi is the force 
of acceleration of the surrounding fluid, 
 
 
 
 
FDi and FLi are the drag and lift forces [9][10], 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where ωL is the vorticity vector. FCoi and FCei are the Coriolis’ 
force and centrifugal force, 
 
 
 
 
 
 
The velocity of a bubble relative to the liquid phase is solved 
using Eqs. (9)-(18). Further details on the governing equations 
and the algorithm for calculation are described by Tamura et al. 
[11].  

The Reynolds number for the flow in a centrifugal pump in 
the present study was over 4.6 10× 5, where the Reynolds 
number was based on the diameter of the suction pipe and the 
average liquid velocity in the suction pipe. However, no 
turbulent models were used in the simulation code to reduce the 
calculation time. 

The cavitation intensity, I, is numerically defined as 
 
 
 
where pBth is the threshold bubble pressure [5]. Equation (19) is 
similar to the generally defined cavitation intensity as follows,  
 
 
 
where pc is the bubble collapse pressure [3]. In the present 
simulation, the bubble collapse pressure was not calculated, but 
was represented by the bubble pressure. The bubble number 
density represents a bubble cluster. The threshold bubble 
pressure is analogous to the threshold of the impact force 
affecting the cavitation erosion [3]. We temporarily fixed the 
threshold at 0.3 MPa. When the bubble pressure exceeded the 
threshold, the cavitation intensity was estimated using Eq. (19) 
in the mesh nearest to the blade surface. 
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 Fig. 1 Simulated region and boundary conditions 

L

LGLG
bub

uur
µ

ρ ||2
Re

−
=  ,         (15)  

 
Pump Specifications and Calculation Conditions 25.0)

||
||

(59.0
LG

GL
L uu

r
C

−
=

ω  ,         (16) 
We again applied our simulation code to the centrifugal 

pump that was investigated in the previous study [5]. The 
impeller had six blades that had a shroud. The maximum 
diameter of the impeller was 302 mm, and the hub diameter 
was 78 mm. The pump had a volute casing downstream of the 
impeller. The flow rate at the best efficiency point was 7.6 
m3/min.  
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Figure 1 shows the numerical mesh and boundary 
conditions. The region between the pressure and suction sides 
of the impeller blades was investigated using periodic 
boundaries. A suction pipe of 180 mm was connected to the 
impeller section. A fan-shaped downstream channel of 50 mm 
in the radial direction was connected to the impeller section 
instead of the volute casing. There were a total of 184,000 grids. 
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The liquid and gas velocities, the bubble number density, 
the bubble radius and the bubble pressure were uniformly 
distributed on the inlet boundary. The inlet velocities of the 
liquid and gas phases were 2.12 m/s at the standard impeller 
speed, N0. The bubble number density was 2.39×1011 m-3. (The 
initial bubble number density in all simulated region was also 
2.39 × 1011 m-3.) The procedure for setting the values of the 
bubble radius and the bubble pressure will be explained in the 
next section in detail. The static pressure was uniform on the 
outlet boundary, and varied to adjust the NPSH conditions.  
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The rate of the impeller speed, N, against the standard 
impeller speed, N0, is called ‘impeller speed rate,’ N/N0, in the 
present paper. The simulation was conducted under conditions 
of N/N0 = 1.00, 1.17, 1.33, 1.50, and 1.67. The inlet velocity 
and NPSH were varied corresponding to the impeller speed in 
accordance with the pump similarity laws. 
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Bubble Radius and Pressure at Inlet Boundary 

The bubble radius in the previous study [5] was fixed at 
1.0× 10-5 m on the inlet boundary. The non-condensable gas 
pressure, pG, was assumed to be 1.0 10× 5 Pa on the inlet 
boundary, and the bubble pressure, pB, was given by Eq. (5). 
However, the bubble radius and the bubble pressure on the inlet 
boundary should be adjusted in response to the suction pressure 
depending on pump operating conditions. The bubble radius 
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and the bubble pressure on the inlet boundary in the present 
study were determined using the following procedure. 

Assuming the quasi-equilibrium concerning the liquid and 
gas phases, pB = pL is instantly achieved. Then, the following 
equations are derived from Eq. (5), 
 
 
 
 
 
where the subscript, ∞, means the point at infinity and the 
subscript 1 means the inlet boundary. The difference between 
pL∞ and pL1 is,  
 
 
 
Equations (6) and (7) are described as,  
 
 
 
 
 
 

At the infinity point, rG∞ = 1.0×10-5 m and pG∞ = 1.0×105 

- pv + 2T/rG∞ Pa (i.e., pB∞ = 1.0 10× 5 Pa) are assumed; pL∞ is 
then obtained from Eq. (19). When pL1 is known based on the 
numerical results, pG1 and rG1 are obtained by calculating Eqs. 
(21) and (22), or Eqs. (21) and (23), simultaneously. Finally, pB 
(= pL) is calculated with Eq. (20). 

Four stage calculations (a-d) were conducted in the present 
study: 
(a) Under all pump operating conditions, the flow in the pump 

was formed assuming the quasi-equilibrium concerning the 
liquid and gas phases. The tentative conditions of rG1 = 
1.0×10-5 m and pG1 = 1.0×105 Pa were given on the inlet 
boundary. At this stage, bubble pressure variations were 
not calculated in detail. 

(b) pL1 was extracted after stage (a). Then, pG1 and rG1 were 
obtained with the above procedure. 

(c) Assuming the same quasi-equilibrium at stage (a), the flow 
in the pump was re-formed under pG1 and rG1 conditions 
obtained at stage (b). 
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Fig. 4 Comparison of experimental erosion area and predicted high- 
cavitation intensity area (N/N0 = 1.17) 
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Figure 2 shows the cavitation performance of the 
centrifugal pump under conditions of N/N0 = 1.00 and Q/Qηmax 
= 0.6. The NPSH and total head were divided by Ut

2/(2g) to 
make them dimensionless, i.e., NPSH’ and ψ. In the experiment, 
the total head decreased when the NPSH’ was below NPSHRexp’ 
(= 0.094), while it remained nearly constant when the NPSH’ 
was over NPSHRexp’. The predicted NPSHRcal’ was 0.068, and 
the predicted total head variations qualitatively agreed with 
those from the experiment. The sheet cavitation was not 
precisely simulated in the present study because the cavity 
surface was not modelized. Therefore, the volume of the 
cavitating region was underestimated as NPSHRcal’ < NPSHRexp’. 
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The predicted total head exceeded the experimental one 
since the total head in the experiment included the effect of loss 
caused by flow in the volute casing. Although the predicted 
cavitation performance was not necessarily in good quantitative 
agreement with that from the experiment, the change in flow 
pattern caused by the occurrence of cavitation around the 
impeller blades was qualitatively simulated. 

The discussion in the following sections is based on the 
numerical results in Case 1 (N/N0 = 1.00) and other four cases 
under conditions of N/N0 = 1.17, 1.33, 1.50, and 1.67. In the 
latter four cases, the inlet velocity and NPSH conditions were 
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varied from those in Case 1 in accordance with the pump 
similarity laws.  
 
Cavitation Erosion Area and Cavitation Intensity 
Distribution 

Figures 3 and 4 show the cavitation erosion area and the 
cavitation intensity distribution at N/N0 = 1.00 and 1.17. The 
erosion area on the impeller blade in the experiment was 
visualized by using a method involving dye. A blue dye was 
painted on the suction side of the impeller blade, and the pump 
was continuously operated for four hours at N/N0 = 1.00 and for 
three hours at N/N0 = 1.17. The erosion area was specified since 
the dye was locally peeled off under the influence of the 
impulsive high pressure generated when the cavitation bubbles 
collapsed. In both cases at N/N0 = 1.00 and 1.17, the oval-
shaped erosion areas were located at the center of the region 
between the throat and the leading edge of the blade, and were 
located between the shroud and the mid-point of the blade. The 
same distribution in the erosion area was caused by the 
similarity in flows. The shroud in Fig. 4 was temporarily 
removed when the photograph was taken. 

High cavitation intensity regions appeared in the numerical 
results between the shroud and the mid-point of the blade. The 
high cavitation intensity regions shifted to the leading edge of 
the blade compared to the erosion areas. Although there was the 
positional shift in the high cavitation intensity region to the 
reading edge, these results indicate that the erosion areas were 
accurately predicted as well as in the previous study [5]. The 
variations in the cavitation intensity depending on the impeller 
speed were investigated and are discussed in the following 
sections. 
 
Bubble Pressure, Bubble number density and 
Cavitation Intensity 

Figure 5 shows the time-variations in the bubble pressure 
at points A and B in Figs. 3(b) and 4(b), where the cavitation 
intensity was maximum on the suction side of the blade. The 
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bubble pressure had periodical impulsive peaks. The maximum 
value of the peak, pBmax, the half width of the peak, ∆tw, and the 
time duration of the neighboring peaks, ∆tp-p, are summarized 
in Table 1. With increasing impeller speed, pBmax increased 
while ∆tw and ∆tp-p, decreased. This means that the bubbles 
expanded and contracted more abruptly and frequently when 
the impeller speed was increased. 

Table 1 Peak characteristics of bubble pressure in Fig. 5
N /N 0 P Bmax  (MPa) Δt w (μs) Δt p-p (μs)
1.00 0.35 1 75
1.17 0.5 0.4 38

Figure 6 shows the distributions in the bubble number 
density at N/N0 = 1.00 and 1.17. The bubbles in both results 
were accumulated near the leading edge on the suction side of 
the blade, while the accumulation at N/N0 = 1.17 was just 
reduced compared with that at N/N0 = 1.00. The accumulated 
regions of the bubbles were distributed similarly with the high 
cavitation intensity regions in Figs. 3(b) and 4(b).  

The cavitation intensities at points A and B in Figs 3(b) and 
4(b) were estimated to reach 2.2 10× 5 W/m2 and 4.7 × 105 
W/m2. The cavitation intensity at N/N0 = 1.17 was 2.1 times 
that at N/N0 = 1.00 since the effect from the increase in the 
bubble pressure was larger than that of the decrease in the 
bubble accumulation as indicated in Figs. 5 and 6. 

The cavitation intensities in the experiment were estimated 
based on the plastic deformation rate of the aluminum sheet 
attached within the peeling area of the blue dye [1]. The 
measured cavitation intensity at N/N0 = 1.17 was 2.4 times that 
at N/N0 = 1.00. Although the predicted value of 2.1 times was 
slightly smaller than the experimental value of 2.4 times, we 
verified that the variations in the cavitation intensity depending 
on the impeller speed were quantitatively estimated with our 
simulation code. 
 
Dependence of Cavitation Intensity on Impeller Speed 

In the previous study [1], the following empirical equation 
was obtained from Ref. [6]: 
 ( )( ) ( )0

2
00 /// ww

bc PPNNII −=  .        (24) 
where b and c are the empirical constants as will be explained 
later. Pw is the water power of the pump at the best efficiency 
point. The subscript, 0, means the standard condition. Based on 
the pump similarity laws, 
 ( )3
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Equation (26) indicates that the cavitation intensity ratio, I / I0, 
is N/N0 to the power of the empirical constant, x.  

Figure 7 shows the cavitation intensity distributions at 
N/N0 = 1.33, 1.50, and 1.67. All the high cavitation intensity 
regions were distributed near the leading edge between the 
shroud and the mid-point of the blade as well as those at N/N0 = 
1.00 and 1.17.  

Figure 8 shows the dependence of the cavitation intensity 
on the impeller speed. The predicted cavitation intensities were 
obtained at points A - E as shown in Figs. 3(b), 4(b), and 7, 
where the cavitation intensity was maximum under each N/N0 
condition. I0 means the predicted or measured cavitation 
intensity at N/N0 = 1.00. The solid line in Fig. 8 is the least-
squares line based on the five numerical results, 
 
 
Equation (28) shows that I / I0 is a function of N/N0 to the 
power. This means that the numerical results were valid 
concerning the power law. Furthermore, the power-law index, 
x, was investigated as follows. 

The TSJ Guideline [6] states that b = 1.58 was measured in 
a pump having a centrifugal impeller and a volute casing. The 
empirical constant, b, was obtained based on the measured 
cavitation intensities under different flow rate conditions. The 
constant, b, was not measured in the present pump. However,  
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b = 1.58 was adopted here since the type of present pump was 
similar to that in the guideline [6], i.e., both pumps were 
centrifugal volute pumps. 

The empirical constant, c, was the power-law index of the 
vibration acceleration measured on the volute casing by using a 
vibration acceleration sensor [6]. In the present pump, c = 3.14 
was obtained by the vibration acceleration measurement. 
Therefore, x = (c-2)b+3 = 4.80 was obtained by using Eq. (27) 
based on b = 1.58 and c = 3.14. The dotted line in Fig. 8 
indicates the values calculated with Eq. (26) at x = 4.80. The 
numerical results underestimated the cavitation intensity, and 
the difference between the predicted cavitation intensity and 
that calculated with Eq. (26) at x = 4.80 rose with increasing 
impeller speed. However, the predicted cavitation intensity 
agreed well with the data based on the guideline [6]. This 
means that the numerical results were valid concerning the 
power-law index. 

Fig. 8 Dependence of cavitation intensity on impeller 
rotational speed 

( ) 32 +−= bcx  .        (27) 
CONCLUSION 

Cavitation intensity variations depending on the pump 
impeller speed were predicted by using a cavitating flow 
simulation with the bubble flow model. The simulation was 
applied to a pump having a centrifugal impeller and a volute 
casing under improved conditions of the bubble radius and the 
bubble pressure on the inlet boundary. 
(1) When the impeller speed rate, N/N0, was increased from 

N/N0 = 1.00 to N/N0 = 1.17, the predicted cavitation 
intensity at high-speed was 2.1 times that at low-speed, 
while the measured cavitation intensity varied to become 
2.4 times. 

(2) The predicted cavitation intensity ratio at N/N0 = 1.00, 
1.17, 1.33, 1.50, and 1.67 was described as a function of 
N/N0 to the power, which corresponded to the empirical 
function. The predicted power-law index of 4.09 agreed 
well with that from the experiment of 4.80. ( ) 09.4

00 /06.1/ NNII =  .        (28) 

There results confirmed our simulation and method of 
estimating the cavitation intensity were valid. 

NOMENCLATURE 
c Coefficient for pseudocompressibility 
C Sound velocity in water (m/s) 
f Volume fraction (-) 
 Fluxes in ξ, η, and ζ directions 

F Force (N) 
GFE ˆ,ˆ,ˆ
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g Acceleration due to gravity (m/s2) 
H Head (m) 
Ĥ  Source term 
I Cavitation intensity (W/m2) 
n Bubble number density (m-3) 

NPSH Net positive suction head (m) 
p Pressure (Pa) 
Q Flow rate (m3/min) 
Q̂  Unknown vector 
r Bubble radius (m) 

Re Reynolds number (-) 
t Time (s) 
T Surface tension (N/m) 
∆t Time step (s) 
∆T Integration time (s) 

u, v, w Velocity (m/s) 
U, V, W Contravariant velocity (m/s) 

Ut Peripheral velocity at impeller blade outlet (m/s) 
∆V Mesh volume (m3) 
η Efficiency (-) 
κ Specific heat ratio (-) 
µ Viscosity (Pa s) 
Ω  Rotation speed (rad/s) 
ρ Water density (kg/ m3) 
ψ Head coefficient (-)  

Subscripts 
cal Calculation 
exp Experiment 

bub, B Bubble 
G Gas phase 
i x, y, and z directions 
j ξ, η, and ζ directions 
L Liquid phase 
R Three-percent drop in total head  
th Threshold 
v Vapor 
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