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ABSTRACT 

Two methods are considered for computer modeling of 
cavitating flow through a cascade of any foils. The first method 
consists of numerical modeling of non-circulation flows of a 
cascade of foils with subsequent analytical solution of plate-
cascades. The second method provides direct computer 
modeling using numerical algorithms for an isolated foil. It is 
shown, that both methods yield identical numerical results but 
the second one is more convenient for numerical algorithms 
and computing.     

INTRODUCTION 
Let a propeller rotates with angle velocity   and moves along 
the x-axis at speed U . Consider cylindrical coordinates 

,, rx . The Laplace equation in these coordinates is 
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If the propeller’s blade width is not too large then the radial 
components of speed should be much smaller than the others, 
and so the second and third terms in equation (1) can be 
neglected. Denoting, yr  , equation (1) is reduced to two-
dimensional Laplace equation  
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that is the flow on cylindrical surface of fixed radius r is similar 
to plane flow through a cascade of  blade sections at that radius 

with inlet velocity ),(1 rUV 


. All blades are arranged 
periodically along the y-axis with a spacing between blades 

NrT /2 , where N is the number of propeller blades.  
If the axial speed is much les than the others as in centrifugal 
pumps then equation (1) reduces to two-dimensional Laplace 
equation in polar coordinates  
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As the blades of a centrifugal pump are arranged periodically 
on a circle and the flow is radial from the x-axis, the only 
possible flow is a point vortex-source of the strength, 

iqm  , where   is the circulation, q is the amount of a 

fluid flowing through blades. Using transformation ez  , one 
can reduce the flow through a ring cascade to the flow through 

a strip cascade with inlet velocity  2/)(e 1
1  iqv i  and 

outlet velocity  2/e 2
2 qv i  . 

Also, investigation of a flow through cascade has a wide range 
of applications in many practical problems. The beginning of 
analytical researches was done by S.A. Chaplygin in 1914 [1]. 
The regular statement of the theory of cascades was given in [2] 
- [4]. It should be noted that exact analytical solutions have 
been obtained only for few configurations of cascade blades, 
but now there are many numerical methods applicable for 
calculating a considerable range of problems. Some numerical 
methods for cavitating flow using the speed potential have been 
considered in [5], [6].  
Below, the numerical method of direct iteration of single foil 
[7] – [9] is applied to a cascade of arbitrary foil with cavities. 
The numerical algorithm and calculation of the flow through a 
cascade of any blades, as well as for a single foil are, based on 
stream function and are very easy for computing.   

1.  PROBLEM STATEMENT  
A sketch of the flow is shown in Fig. 1. Usual kinematical 
conditions for the stream function, const , or for speed 
potential, 0/  n , at the blade/cavity boundary should be 
satisfied; and for cavitating flow, the dynamic condition for 
pressure constpp  0   at the cavity boundary must be 
fulfilled. As distinct from single foil, the outlet velocity in 
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infinity, 2
2

ieV  , differs from inlet speed 1
1

ieV    and could be 
found by solving the mathematical problem of flow through the 
cascade.  

  
The conservation law of fluid amount and circulation connect 
both speeds at the left and right sides: 

iii TeeVeV  /12
12   ,                     (4) 

where   is the circulation around blade, iTe  is the vector of 
cascade period. 
Hydrodynamic force is calculated as for a single foil by 

ieViiYX 0
0

  ,                     (5) 

where )(5.0 210
210

 iii eVeVeV   is the average speed. 
 
3. APPLICATION OF NUMERICAL ALGORITHM 
 FOR A FINITE NUMBER OF FOILS 
A flow around a finite number of foils is determined by the 
integral equation for speed distribution on foils [7] 

)Im(),()( zVecdszGsv i

C


   ,                   (6) 

where ||ln)2/1(),(   zzG  is the Green’s function for 
unbounded domain. The integral equation can be reduced using 
the boundary element method to a set of linear equations. 
Numerous examples of numerical calculations [9] show 
simplicity of computing and a sufficiently high precision.  
The integral equation for a cascade can be found from equation 
(5) used for a finite number of foils by increasing that number 
to infinity. Since the blades of cascade arrange a system of 
periodically located foils, the integration over all foil 
boundaries can be reduced to integration over a single foil, C. 
The kernel of integral can be found as a limit of the sum 
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In view of statement of the sine as infinite product [Gradstein 
&Ryzhik, 1962, 1.431,1], the later product can be written as 
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However, as for single foil, the inlet velocity should be the 
same as outlet one, i.e. 2

21
 iii eVeVVe  . Hence the 

circulation around a foil should be zero and the inlet speed as 
well as outlet one is directed along neutral axis 21bb .  Though 

equation (6) allows considering another inlet speed, 1
1

ieV , the 
outlet speed will differ from the real one. Two methods of 
numerical investigation of cavitating flow through a cascade of 
any foils are considered below: one is based on conformal 
mapping,  another on modified integral equation like (6).  

4. CONFORMAL MAPPING 
The numerical algorithms should consist of two parts: 
numerical calculation of non-circulation flow through a cascade 
and analytical solution of flow through the plate-cascade.  
The first part is identical to a conformal map of a foil-cascade 
onto the plate-cascade. Since the circulation around a foil is 
zero, the speeds at infinity on both sides of cascade are equal, 
and so design equations can be obtained from equation (6) with 
kern function (7). The inlet function should be directed along 
neutral line 21bb  but the value can be arbitrary. Let the x-
component of inlet speed be equal to the unity, 1xV , then the 
y-component cotyV is unknown and should be calculated 
from equation (6) 

CyxxycdszGsv
C

c  ,,cot),()(   .          (8) 

The latter equation using BEM can be written in matrix form  
   YVB  * ,                                        (9) 

where N-first components are the values of speed *
kV  and 

ordinates kY  at the nodal points; the last two components of the 

vector *V  are constants, *
1NV and tan*

2 NV , respectively; 
the last two components of the vector Y are equal to zero. The 
matrix-vector YBV  1* . 
The domain of complex potential   represents the plane with 

periodical horizontal slits of period ii eTVeT )(*
1

0   , Fig. 2; 

the slit length is 
k

kk lVl ||5.0 * . 

    

Figure 2: The flow through plate cascade: 
the sketch of flow on  -plane (a); 

unit circle on the parametrical  -plane (b) 

 

 

Figure 1: A foil-cascade with partial cavities: 
straight line 21bb  is neutral; line 21aa is directed 
towards the average speed    
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A conformity of slit abscissa   and curvilinear abscissa of 

blade S  can be found from equations dSVd * , or in 

discrete form, kkkk lV *
1   .  

4. FLOW THROUGH PLATE-CASCADE 
The second part of the method is a flow through plate-cascade, 
Fig. 2a, with inlet speed  
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The analytical solution of the flow problem is well-known and 
can be found in many books [Kochin at al 1955, Sedov 1966 
and others]. Here it is presented briefly for further application. 
The analytical solution can be found by conformal mapping the 
flow domain on the  -plain onto inside unit circle of the 
parametric  -plane, Fig. 2b. The mapping function is 
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where   ,*
1TVT ; unknown parameter   is found 

from equation for the split length 
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The speed on  the -plane is determined by 
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where constants A and 0k  are obtained satisfying the condition 
for inlet speed,  
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The circulation around the plate is expressed as 
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     (15) 
A speed distribution on the plate is found in parametric form 
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This is completely enough for determination of flow 
characteristics of foil cascade on the z-plane. The circulation 
around the given foil is the same as (15). The outlet speed and 
hydrodynamic forces are determined from equation (4) and (5), 
respectively.  
A speed distribution on foil can be calculated by 
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where aV  is an analytical speed on the flat plate, Eq. (16); *V  
is the velocity on a foil in non-circulation flow and found 
numerically using the BEM-method.  

5. CAVITATING FLOW 
For cavitating flow, the velocity at cavity boundary should be 
constant, constVVVa  0

* . The ordinate of cavity is included 

in velocity *V  only, and so the following condition on the 
boundary corresponded to a cavity should be satisfied: 

aVVV /0
*  .                                        (18) 

Now, a numerical algorithm of iteration manner can be used for 
calculating cavity ordinates and cavitating number at the given 
cavity length cL  and fixed abscissa of nodal points kX . An 
initial boundary of the cavity for partial cavitation may be used 
as the boundary of the foil or any other curves. Iteration should 
be in following way: 

.

,
)(correcting)(*)9()(*)18(

)()16()1()1(*)9()1(

nnn

n
a

nnn

YYV

VVY

 

  
    (19) 

It is to note that the analytical solution should be used at each 
iteration step only for correcting a speed at the cavity boundary. 
Besides, information about the velocity and boundary of the 
cavity is calculated at each step, and so an alteration between 
two steps can be graphically seen. Coincidence of these curves, 
as well as fulfilling the accuracy of cavitation number, 

   || )1()( nn , can be used to stop of iteration. 

7. MODIFIED INTEGRAL EQUATION AND DIRECT 
ITARATION METHOD 

The above-mentioned method of conformal map is quite 
complicated for numerical investigation although the well 
known analytical solution is used. Simpler is the method based 
on modified integral equation. As mentioned above (Sec. 3) 
integral equation (6) with kern function (7) can be used by 
another inlet speed. Inasmuch as the inlet and outlet speeds are 
peer entities then two integral equations could be considered  
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Averaging both integral equations and taking into account 
equation (4), one can obtain required equation  
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Equation (20) differs from (9) by last item in the left part only, 
and so the both integral equations are solved numerically by the 
same algorithm. The second method allows calculating speed 
values at nodal points and the circulation simultaneously.  
 

6. NUMERICAL RESULTS 
For example, the cascade of Zhukovsky foil (h = 0.1, d = 0.05, 
c = 0) is considered; angle of attack 10 . The 
Riabouchinski model has been used by calculation; the trailing 
plate was supposed to be an element. 
Some numerical results for cascade are presented in table 1. and 
in Figs. 3 – 5. The angle of attack (the angle between inlet 
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speed and neutral axis of single foil), 10 ; the detachment 
point as well as the length of the cavity are fixed, 933.0ax  
and 465.0cL . All computations have been fulfilled for the 
number of elements, N=200.  
The influence of the grid spacing on main parameters is shown 
in table 1. The last array corresponds to a single foil. 
 

Table 1: Influence of grid spacing on main parameters. 
 

T   -  - 0x  XC  YC    

1 
2 
3 
4 
5 

10 
500 

0.758 
1.131 
1.403 
1.596 
1.734 
2.085 
2.574 

0.368 
0.584 
0.713 
0.796 
0.855 
0.994 
1.171 

0.607 
0.624 
0.637 
0.642 
0.645 
0.651 
0.660 

0.135 
0.170 
0.169 
0.159 
0.146 
0.099 
0.002 

0.736 
1.168 
1.425 
1.593 
1.709 
1.989 
2.341 

0.0008 
0.0008 
0.0009 
0.0007 
0.0008 
0.0009 
0.0004 

 
The cavities for three greed spacing, T = 1, 5 and 500, as well 
as speed distributions over foil for T = 1, are shown in Fig. 3.  

 
The dotted line on Fig. 3b is the velocity distribution on the 
foil, and the horizontal straight line corresponds to cavity 
boundary. The solid line is the speed distribution for non-
circulation flow around the same foil with cavity. 
One can see that the dotted line has a small height close to 
leading edge though the Villat condition is fulfilled. If the 
detachment point moves to the leading edge then the boundary 
of cavity intersects the foil boundary.  

An influence of angle   is shown in Fig. 4. It is interesting to 
notice that two modes of computing are possible: one is for 
interval  0 , another for   . The angle 
of inclination of neutral axis,  , is calculated by numerical 
algorithm and in that case  166.0 .  
Both methods give the same results, but the second method is 
easier and has been used for the most part. 

7. SUPERCAVITATING FLOW 
A cavity by full cavitating flow has two separate boundaries at 
which the same value of velocity is necessary to satisfy. For 
this purpose it is necessary to enter, in addition, a certain 
hypothesis at the end of a cavity; for example, to displace a 
critical point at a trailing plate. The cavities past a flat plates for 
three values, T = 200, 10 and 7, are presented on Fig. 5.  
 

  
Fig. 6 shows the cavity past Zhukovsky foil for one position in 
a cascade.  

 
Zhukovsky foil has been considered by fixed distance, T = 10, 
and some angles but results were almost the same.  

CONCLUSION 
The basic in the given work is the numerical methods which 
allow to investigate cavitating flow of a cascade of foils of any 
configuration. Numerical results are of a preliminary character 
and can be slightly changed at more detailed calculations. The 
numerical algorithm, especially for full cavitation requires 
additional research. Anyway, each foil demands individual 
research which is easier for carrying out by dialogue. 
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Figure 3: The cascade 
of Zhukovsky hydrofoil 

(h=0.1, d=0.05, c=0):  
the cavities for different 

spacing (a); the speed 
distribution on foil (b); 

 90,10    

a

b

 

Figure 5: The cavity shapes past plate in a cascade. 

 

Figure 6: The cavity past Zhukovsky foil in a cascade 

Figure 4: 
Dependence of the 

cavitation number, , 
the circulation, , and 
the center of pressure, 

ax , on the angle,   
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