THE UNIVERSIT Y OF MICHIGAN COLLEGE OF ENGINEERING Department of Meteorology and Oceanography Technical Report A STUDY OF THE INFLUENCE OF CARBON DIOXIDE ON INFRARED RADIATIVE TRANSFER IN THE STRATOSPHEREA.ND MESOSPHERE Charles Young E. S. Epstein Project Director ORA Project 04682 under contract with: NATIONAL SCIENCE FOUNDATION GRANT NO. G-19131 WASHINGTON, D.C. administered through: OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR March 1964

This report was also a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The University of Michigan, 1964.

ACKNOWLEDGMENTS The author wishes to thank all who assisted him during the progress of this study. The advice and guidance of Professor Edward S. Epstein, Chairman of the Doctoral Committee, is particularly appreciated. The author is also grateful to Professors E. Wendell Hewson, Leslie M. Jones, and Donald J. Portman for serving as members of the Committee and for their willingness to help. The constant interest and encouragement of my colleagues, particularly Mr. Carlton L. Mateer, Department of Meteorology and Oceanography, and Mr. S. Roland Drayson, High Altitude Engineering Laboratory, Department of Aeronautical and Astronautical Engineering, are greatly appreciated. The author is grateful for financial support received from the National Science Foundation under Grant No. G-19131 to the Department of Meteorology and Oceanography and from the National Aeronautical and Space Administration under Contract No. NASr-54(03) to the Department of Aeronautical and Astronautical Engineering, High Altitude Engineering Laboratory.

TABLE OF CONTENTS Page LIST OF TABLES v LIST OF FIGURES vii LIST OF SYMBOLS viii ABSTRACT x 1. INTRODUCTION 1 1.1 Aim of the Study 1 1.2 Importance of Infrared Radiative Transfer in the Stratosphere and Mesosphere 1 1.3 Approach to the Problem 5 2. REVIEW OF RESEARCH ON THE INFLUENCE OF CARBON DIOXIDE ON RADIATIVE TRANSFER IN THE STRATOSPHERE AND MESOSPHERE 5 2.1 Preliminary Remarks 5 2.2 Preview of Earlier Work 5 3. THE BASIC EQUATIONS AND PARAMETERS RELEVANT TO THE PROBLEM OF RADIATIVE TRANSFER IN THE STRATOSPHERE AND MESOSPHERE 9 3.1 The Basic Radiative Transfer Equations 9 3.2 Relaxation of the Carbon Dioxide Molecule 15 3.3 The Radiative Transfer Equation for a Vibrationally Relaxing Gas 21 3.4 The Evaluation of the Absorption Coefficient for Various Atmospheric Pressures 28 3.4ol Preliminary Remarks 28 3.4.2 Absorption Associated with Collisional Broadening 30 35403 Absorption Associated with Doppler Broadening 34 3.4.4 Absorption Associated with Natural Broadening 36 354.5 Comparison of Line Half-Widths 37 3.4.6 Absorption Taking into Account Collisional, Doppler and Natural Broadening 38 35~47 Practical Determination of the Absorption Coefficient for Various Atmospheric Pressures 41 iii c~b

TABLE OF CONTENTS (Concluded) Page 3.5 Models for Molecular Band Absorption 48 3.5.1 Preliminary Remarks 48 3.5.2 The Quasirandom Model 50 3.6 Approximations Used in Solving the Radiative Transfer Equation 56 3.6.1 The Curtis-Godson Approximation 56 3.6.2 Approximate Methods for Performing the Angular Integration in the Flux Equation 62 4. EVALUATION OF THE TRANSMISSIVITIES AND FLUXES IN THE STRATOSPHERE AND MESOSPHERE DUE TO CARBON DIOXIDE 66 4.1 Transmissivity Determination Using the Quasirandom Model 66 4.1.1 Transmissivity Determination and Comparison with Experimental Measurements 66 4.1.2 Test of Approximate Methods for Performing the Angular Integration in the Flux Equation 75 4.1.3 Test of Validity of Using the Lorentz Line Shape at Pressures Lower than 20 mb 78 4.2 Evaluation of the Source Function for Vibrationally Relaxing Carbon Dioxide 80 4.3 Flux Determination 91 4.4 Cooling Rate Calculations 94 4.5 Discussion of the Problem of Cooling Rate Determination 102 5. CONCLUSIONS 104 6. SUGGESTIONS FOR FURTHER RESEARCH 107 APPENDIX A. Physical Details of the Carbon Dioxide Molecule 109 APPENDIX B. Calculation of the Line Positions and Intensities for the Carbon Dioxide Bands in the 15micron Region of the Spectrum 116 REFERENCES 171 iv

LIST OF TABLES Table Page I. Values of radiative lifetime e for various bands. 17 II. Theoretical and experimental values for the vibrational relaxation of C02 and C02-N2 mixture. 18 III. aD in cm-1 for various temperatures and frequencies. 36 IV. Half-widths for collisional, Doppler and natural broadening. 37 V. Comparison of absorption coefficients evaluated using various formulae at pressures lower than 50 mb. 42 VI. Evaluation of absorption coefficient for various atmospheric pressures. 46 VII. Comparison between values of fAvdv calculated using the quasi-random model and experimentally measured by Burch et al. (1962b). 72 VIII. Values of I obtained using various approximations for the angular integration. 77 IX. Comparison between I evaluated using the Lorentz line shape and the Lorentz broadened Doppler line shape (the mixed line shape) at pressures below 20 mb. 79 X. Comparison between J/ E and 0/(G9+) for the U. S. Standard Atmosphere (1962). 89 XI. AF and F computed at several representative levels (U. S. Standard Atmosphere (1962)) for a cooling rate of 1~K day-1. 96 XII. Cooling rates up to 30 km for the U. S. Standard Atmosphere (1962) over the frequency ranges 507.5 to 857.5 cm 1 and 630 to 715 cm-l. 97 V

LIST OF TABLES (Concluded) Table Page XIII. Cooling rates above 80 km for U. S. Standard Atmosphere (1962). 100 XIV. Values for F(J"'). 118 XV. Vibrational quantum numbers, band centers, band intensities and IR factors for 14 bands in the 15micron region for a temperature of 300~K 121 XVI. Rotational line positions and intensities for the 14 bands in Table XV for six temperatures from 175 to 300~K. 123 XVII. Comparison between computed line positions and intensities and Madden's experimental values (T = 300~K). 170 vi

LIST OF FIGURES Figure Page 1. Illustrating some basic quantities occurring in radiative transfer. 10 2. Calculated and experimental transmissivities versus frequency for different pressures and optical masses. 69 3. fAvdv vs. optical mass for pressures of 1 and 0.2 atm. 73 4. J/E vs. pressure. 87 5. Temperature profile for warm mesosphere case, from Stroud et al. (1960). 88 6. Upward and downward fluxes for U. S. Standard Atmosphere (1962). 95 7. Possible vibrations for the carbon dioxide molecule and changes in electric moment. 109 vii

LIST OF SYMBOLS Av Cp E(v,T) F+ F F I(v,T,p) J(v,T) kv p P S Sj T u z GD yv(t,T) Cv 9 absorptivity specific heat at constant pressure black-body specific intensity upward directed flux downward directed flux net flux specific intensity source function absorption coefficient pressure band strength line strength temperature optical mass altitude Doppler half-width Lorentz half-width natural half-width transmissivity emission coefficient zenith angle, radiative lifetime viii

LIST OF SYMBOLS (Concluded) X vibrational relaxation time i cosine of zenith angle 8 v frequency (in cm-1) p density T optical thickness ix

ABSTRACT The main object of the study is to calculate cooling rates in the stratosphere and mesosphere due to the carbon dioxide vibration-rotation bands in the 12- to 18-micron spectral region. Carbon dioxide dominates the infrared radiative transfer in this region. Accurate values for atmospheric cooling rates are essential if the dynamics of the stratosphere and mesosphere are to be investigated in any detail. The first step in the investigation is the calculation of the positions and intensities of the rotational lines belonging to the 14 strongest carbon dioxide vibration-rotation bands in the 12- to 18-micron region. The rotational line intensities are evaluated for 6 temperatures in the range 175 to 300~K. The results of the calculation are included in the study. The basic radiative transfer equations relevant to the problem are considered in detail. The influence of vibrational relaxation of carbon dioxide on the transfer equations is discussed. It is shown that, at low pressures such as occur in the upper mesosphere, the source function is not given by the black body specific intensity. This means that local thermodynamic equilibrium breaks down in the upper mesosphere. An approximate method for calculating the source function for vibrationally relaxing carbon dioxide is presented. The source function is calculated for vibrational relaxation times of 10-5 and 10-6 sec (at 1 atm) using the U. S. Standard Atmosphere (1962) temperature profile. The calculated source functions show that vibrational relaxation of carbon dioxide must be considered in radiative transfer calculations starting between 60 and 75 km. The radiative transfer equation is integrated to give the upward and downward directed fluxes at various atmospheric levels. The cooling rates are obtained directly from the fluxes. The use of the auasirandom spectral band model permits integration of the transfer equations with a minimum of effort. A model allows the calculation of an average transmissivity for a finite frequency interval. An accurate knowledge of the absorption coefficient and its variation with presseure is essential for accurate transmissivity calculations. A scheme is presented whereby the absorption coefficient can be evaluated for any pressure. The Lorentz formula for the absorption coefficient is shown to be a poor approximation in flux calculations at pressure below 20 mb. This demonstrates that Doppler broadening must be taken into account once the pressure decreases to 20 mb. The atmosphere from the thesurface to 100 km is divided into 24 layers, and the transmissivities are calculated for each of the layers using the x

pressures and temperatures given by the Uo S. Standard Atmosphere (1962). The Curtis-Godsen approximation is used in the troposphere allowing the choice of a small number of thick layers. The fluxes and cooling rates are then calculated for each layero Cooling rates from 0.4 to 5~K days1 are calculated for levels up to 35 km. Above 55 km the calculations give unrealistically large values of tens of degrees per day for the cooling rates, If only the spectral region around the 15-micron fundamental band is considered the maximum cooling rate is reduced to 35~K day-1 at 55 kmo This is probably too large a value. A vibrational relaxation time of 10-5 sec (at 1 atm) leads to a cooling rate of 15~K day-1 in the vicinity of the mesopause while 10-6 sec (at 1 atm) results in a value about three times as great. An examination of the basic equations shows that extremely accurate flux values are required for the calculation of cooling rates above 50 km. A spectral band model is not accurate enough for cooling rate calculations. Direct integration over the spectral region of interest is necessary for accurate flux determination. Further progress in this field requires experimental determination of accurate values for the vibrational relaxation time of carbon dioxide-air mixtures so that accurate cooling rates in the upper mesosphere may be calculatedo xi

1. INTRODUCTION 1.1 AIM OF THE STUDY The study deals primarily with the influence of carbon dioxide on infrared radiative transfer in the stratosphere and mesosphere. A great number of the problems arising are common to the whole field of infrared radiative transfer and not restricted to the carbon dioxide problem. Consequently, most of the techniques discussed in the following sections would be applicable to the more general problem. The main objective of this study is to examine the feasibility of accurately determining cooling rates in the stratosphere and mesosphere. Accurate knowledge of atmospheric cooling rates is necessary if dynamical investigations of the stratosphere and mesosphere are to be undertaken in any detail. 1.2 IMPORTANCE OF INFRARED RADIATIVE TRANSFER IN THE STRATOSPHERE AND MESOSPHERE Infrared radiative transfer in the earth's atmosphere is associated with the three molecules, water vapor, carbon dioxide and ozone. In the troposphere water vapor is the more important of the three. Once the stratosphere is entered the importance of water vapor diminishes. Carbon dioxide and ozone then become the main infrared active gases. Ozone unfortunately has a variable concentration and a complicated band structure. Consequently the infrared transfer problem for ozone is 1

2 somewhat more involved that for carbon dioxide. Carbon dioxide, on the other hand, has a somewhat simpler band structure than ozone. It also has an almost constant concentration with height up to around 95 km where dissociation into carbon monoxide and atomic oxygen takes place. Ozone is very important in infrared radiative transfer in the stratosphere and lower mesosphere to about 60 km. Above that level carbon dioxide becomes the important infrared active gas. This section contains a brief discussion of the importance of infrared transfer in the meteorology of the stratosphere and particularly the mesosphere. This study was initially prompted by the problem of explaining the warm winter polar mesosphere observed at Fort Churchill using rocket borne instruments (cf. Jones, et al. 1959, Stroud, et al. 1960). Kellogg (1961) and Young and Epstein (1962) discussed the hypothesis that subsidence of atomic oxygen rich air from higher levels, with chemical energy being released by the formation of molecular oxygen from atomic oxygen, would provide the necessary energy source. Recent observations (Nordberg and Smith, 1963) at Wallops Island during the winter indicate that mesospheric warmings are not confined to the polar regions but are evident at more southerly latitudes. If subsidence of atomic oxygen rich air is the primary mechanism for mesospheric warmings then, as discussed by Young and Epstein (1962), a knowledge of mesospheric cooling rates is essential for any estimation of the subsidence rate. The study of the more general problem of the atmospheric circula

5 tion in the stratosphere and mesosphere demands an accurate knowledge of the sources and sinks of radiative energy. Murgatroyd and Singleton (l961), using results of Murgatroyd and Goody (1.958) on the disposition of the sources and sinks of radiative energy, calculated meridional circulations in the stratosphere and mesosphere neglecting eddy effects. Newell (1963) using the Meteorological Rocket Network data computed the zonal available potential energy generation and compared it with the kinetic energy for the 25 to 60 km layer. He took into account radiative energy sources and sinks using the results of Murgatroyd and Goody (1948), and Murgatroyd and Singleton (1.961) It is evident that an accurate knowledge of the sources and sinks of radiative energy is very desirable if any dynamical investigations of the stratosphere and mesosphere are to be pursued. One of the most important aspects of this problem is to determine the infrared cooling rates for the stratosphere and mesosphere. 1.3 APPROACH TO THE PROBLEM. The basic objective of this study is to examine the feasibility of obtaining mesospheric cooling rates with reasonable accuracy. Unfortunately a devious route must be travelled before cooling rates can be estimated. As is common in scientific research, the problem turned out to be more involved than orginally envisaged. It is impossible to separate the problem of infrared radiative transfer in the mesosphere from that in the stratosphere and troposphere. Also, other aspects of

4 infrared radiative transfer must be considered such as, line profile variation with pressure, spectral models for infrared bands, and so on. The attitude adopted in attacking this problem has been to examine critically and check, whenever possible, the various relations and approximations generally accepted in the literature. Section 2 is a rather brief survey of previous work in the field while Section 3 derives and critically examines the basic equations and parameters relevant to the problem. Necessarily the literature dealing with the particular aspect being studied is surveyed. Thus Section 3 is partly devoted to adding some detail to Section 2. In Section 4 are presented the main findings based on the techniques developed in Section 3. Again some of the relevant literature must be examined, particularly with respect to comparison of the values calculated in this study for transmissivities, fluxes, etc. Sections 5 and 6 are devoted to the conclusions and suggestions for further research. It was decided to include some of the material in the form of appendices. Appendix A. is a brief description of the carbon dioxide molecule, giving details of such things as its behavior in the infrared, allowed transitions, etc. In Appendix B the methods used to calculate the line positions and intensities of the carbon dioxide bands in the 15-micron region are described. Also included is a table of the line positions and intensities for 2080 rotational lines.

2. REVIEW OF RESEARCH ON THE INFLUENCE OF CARBON DIOXIDE ON RADIATIVE TRANSFER IN THE STRATOSPHERE AND MESOSPHERE 2.1 PRELIMINARY REMARKS The review presented in Section 2.2 of earlier research on radiative transfer due to carbon dioxide in the stratosphere and mesosphere is rather brief There are two main reasons for this brevity. One is that little effort seems to have been exerted in this direction compared to other areas of meteorological interesto The other reason is that in Section 5 where the basic equations and parameters relevant to the problem are derived and critically examined, it is necessary to review the previous research dealing with the particular item under consideration. Thus in Section 2.2 only a generalized picture will be presented with most of the detail being added in Section 3. 2.2 REVIEW OF EARLIER WORK The earliest work drawing attention to the importance of radiative transfer in the stratosphere appears to have been carried out by Gold (1909) and Humphreys (1909)o It is interesting to note that even at this early date in stratospheric and mesospheric research a fair amount of information was available and some quite accurate conjectures were made. This is all the more surprising since Teisserenc de Bort's balloon soundings extending from 1899-1,904 were just making their mark on meteorology. Both Gold and Humphreys pointed out that ozone was probably of importance 5

6 in infrared radiative transfer in the stratosphere. Gold considered carbon dioxide, water vapor and ozone in the stratosphere. He used the absorptivity measurements of Angstron in his calculations. The main assumption in his work was that the various absorbing gases acted as black bodies for emission. Humphreys, however, noted that this assumption might not be correct. Gold's main result was that the stratosphere does not absorb enough radiation to induce convection. Humphreys' paper is mostly a review and contains some suggestions for further research. After these two papers little effort was devoted to the problem until 1937 when Godfrey and Price investigated infrared radiation effects in the atmosphere above 100 km. They considered ozone, water vapor and oxygen. Unfortunately they did not consider the breakdown of local thermodynamic equilibrium due to the relaxation of the ozone and water vapor molecules. The importance of this had been noted by Milne (1930), who worked out the radiative transfer equation for a two-state relaxing gas. The neglect of relaxation invalidates Godfrey and Price's results. In the period from 1909 to 1937, while little effort was being devoted to infrared radiation in the stratosphere, considerable progress was being made in understanding the structure of molecular bands and measuring the absorptivities of the various molecular bands of atmospheric interest in the laboratory. The University of Michigan was one of theleaders in the field producing three classic pieces of research. Martin and Barker (1952) investigated the infrared spectrum of carbon

7 dioxide and Randall, et al. (1937) studied the absorption of water vapor. On the theoretical side Dennison (1931) published a very important paper discussing the infrared spectra of polyatomic molecules. The next study of the stratosphere was by Gowan (1947a,b) who investigated the influence of ozone on the radiation processes in the stratosphere. During the late forties and early fifties it was realized that carbon dioxide was a very important constituent of the stratosphere and mesosphere, probably moreimportant than ozone, with respect to infrared radiative transfer. Plass (1.956a,b) investigated the effects of the 9.6-micron ozone band and the 15-micron carbon dioxide band on atmospheric cooling rates, basing his calculations on laboratory transmissivity measurements. He showed that carbon dioxide was more important than ozone for radiative cooling of the stratosphere. The problem of extending infrared radiative transfer calculations to higher levels where relaxation must be considered was attacked by Curtis andGoody (1956). They investigated the importance of vibrational relaxation in the mesosphere and derived a radiative transfer equation for a vibrationally relaxing gas. This equation should be used above 65 km. They applied their technique to the 15micron carbon dioxide band and derived the cooling rates in the mesosphere due to this gas. Studies of the radiation budget of the stratosphere and mesosphere were published by Ohring (1958) and Murgatroyd and Goody (1958). Ohring

8 considered carbon dioxide, water vapor and ozone. He used Callendar's (1941) empirical, formulae for the carbon dioxide transmissivities between 12 and 18 microns. Murgatroyd and Goody considered only ozone and carbon dioxide but extended their calculations to higher levels in the mesosphere using the technique developed by Curtis and Goody (1956) to take account of vibrational relaxationo They, like Plass, found the cooling rates due to carbon dioxide to be greater than those due to ozone. The next major contribution was by Hitschfeld and Houghton (1961) who looked at radiative transfer in the lower stratosphere due to the 9.6-micron ozone band. They determined the fluxes and hence the cooling rates by evaluating them for narrow regions of the spectrum and then combining these results to give estimates for the whole band. They did not use a spectral model but integrated directly over the narrow intervals to obtain the fluxeso Their results for the cooling rates due to ozone were about twice those of Plass (1956a,b) which makes the cooling rates due to ozone in the vicinity of 45 km close to those due to carbon dioxideo However, at higher and lower levels carbon dioxide is still the more important gas for infrared radiative transfer.

5. THE BASIC EQUATIONS AND PARAMETERS RELEVANT TO THE PROBLEM OF RADIATIVE TRANSFER IN THE STRATOSPHERE AND MESOSPHERE 3.1 THE BASIC RADIATIVE TRANSFER EQUATIONS The basic equation appropriate to the transfer of radiation through a plane parallel atmosphere may be written dI(v,T,1) -) I(VYTI) - J(v,T) dT I(v,Tp,) the specific intensity J(v,T) = cv/kv, the source function cV the emission coefficient kv the absorption coefficient k = cos Q Q the angle which I(v,7T1) makes with n n the outward drawn normal to the plane parallel atmosphere T the optical. thickness defined by dT = -p kv dz p the density of the gas (molecules per unit volume) z the height measured from the earth's surface Figure 1 illustrates the relation between someof the quantities defined above - 9

10 n T=O T=T - - -- - -- I (v,T,p) TITg Fig. 1. Illustrating some basic quantities occuring in radiative transfer It should be noted by definition that T = 0 at the top of the atmosphere and increases downwards reaching amaximum Tg at the earth's surface. For convenience angles are measured from n, hence +p means that a beam makes an acute angle with n, and -I that it makes an acute angle with -n. Then I(v,T,+4) denotes an outward directed beam and I(v,T,-(t) denotes an inward directed beam. In the above discussion it has been assumed that the specific intensity does not depend on the azimuthal angle S. It is easy to write a formal solution for Eq. (3.1.1) (Cf., Chandrasekhar 1960, Sobolev 1963), I(V,T,+[1) = I(V )e \ S-(T -T)/1 + J(V,4 -(t-T)/p[ dt I(vT,+p): I(v,Tg,+I)e-(g- )/p + J(v,t)e - T (3.1.2a)

11 I(v,T,-1) = I(vO,-1)e + o ivte-(T-t)/[,. dt J~~~v~~t~~e -~1 (3.1.2b) where I(v,0,-[I) is the incident specific intensity at the top of the atmosphere T = 0 and I(v,Tg,++) is the specific intensity directed upwards at the base of the atmosphere where T = Tg. To obtain the upward and downward fluxes F+ (T) and F_ (T) respectively, Eqs. (3.1.2a) and (3.1.2b) must be integrated with respect to frequency and angle, viz., F+ (T) = F- (T) = 27t 2t 0 O TO +1 +1 0 I(V,T,+|X)I dv d[1 do V I(v,T,-4)i dv dp do v (3.1.3a) (3.1.3b) or, F+ (T) F_ (T) r+1 = 2i /+ +1 = 2i 0 O /I(v,T,+j)[ dv dp,T,-) d d I(v,T,-p)p dv do V (3.1.4a) (3 1.4b) The net flux at a level T is thus given by F (T) = F+ (T) + F_ (T) The heating rate dT/dt,due to radiative transfer at the same level z,

12 is then expressed by the flux divergence, dT 1 dF(T) ( ) dt cp p dz where p and cp are the density and specific heat at constant pressure of the air at height z. Equations (3.1.2a) and (3.1.2b) are sometimes expressed in a different form. It is sometimes convenient to define a transmissivity Yv(t,iT) by Yv(t,T) = e-(t-T)/[ = exp - / N kV dz (3.1.6) Thus (3.1.2a) and (3.1.2b) become I(V,T,+L) I(VTg,+P)7(Tg,T) - T J(v,t) Y(t, dt 6t T (35.1.7a) I(VT,-i) = I(VO,-p1)YV(TO) - J(v,t) 6~(Tt) dt f localb)hermodynamic equilibrium prevails then Kirchhoff law is applical thermodynamic equilibr prevails, then Kirchhoffs law is applicable, i.e., Cv/kv = E(v,T) (3.1.8)

13 where E(v,T) is the blackbody specific intensity given by -1 E(v,T) 2 hcv3[exp(h cv/kT)-l] (3.1.9) where h is Planck's constant, k Boltzmann's constant, c the velocity of light, T the temperature, and v the wave-number (in cm-1). Thus in the case of local thermodynamic equilibrium the source function J(v,T) is equal to the black-body specific intensity E(v,T). This is very convenient since E(v,T) is a readily calculable quantity and is, moreover, isotropico i.ee, independent of the angle Q. The important question is to decide what regions of the atmosphere are in local thermodynamic equilibrium. This question will be taken up in detail in Section 3.2 where the relaxation of carbon dioxide will be considered. However, for the moment, it is sufficient to state that from the surface up to about 65 km the atmosphere is, to a good approximation, in local thermodynamic equilibrium. Using Eqs. (3.1.4a) and (3.1.4b) the upward and downward directed fluxes may be written, F+(T =/2it g+1 (T_T)/ d d+2T +1 (tTd dtd F+(T) = 2 E(v,Tg) e (gdv+2 E(v,Tt) e-( /ddtdv V 0 V'T 0 (3.1.10a) F_(T) = 2t f E(v,Tt) f e di dt dv V 0 0 (3.1.10b)

where it has been assumed that I(v,O,-i) = 0 and I(v,Tg,+4) = E(v,Tg). The first assumption is equivalent to neglecting solar radiation at long wavelengths (near 15 microns). The second implies that the earth's surface is black in the wavelength region being considered which, of course, is only approximately correct. The integration over angle in Eqs. (3.1.10a) and (3.1.10b) may be carried out to give F+(T) Tg - 2 E(v,Tg)Ei3(Tg-T)dv + 21 S VV T E(v,Tt)Ei2(t-T)dt dv (3.1.lla) T F_(T) = 2t E(v,Tt)Ei2(T-t)dt dv V 0 (3.1.11b) where 00 Ein(y) = / 1 +1 -yt dt e = tn e -y/1 n-1 d_ ~e - y/ f~ -— ~ Extensive tables exist for the exponential integral (Ein(y)). Pagurova (1961) tabulates the function for n = 1 (1) 20 and for y = 0 (0.01) 2 (0.1) 10. However, the function may also be evaluated on the computer using one of a number of series expansions which are available (cf., Chandrasekhar 1960, Hastings 1955).

15 3.2 RELAXATION OF THE CARBON DIOXIDE MOLECULE In the infrared a molecule such as C02 has three forms of energy, translational, vibrational, and rotational. The translational energy is unquantized and may be freely interchanged in collisions, the gas taking up or losing translational energy at a rate depending only on the molecular collision rateo The vibrational and rotational energies are both quantized and thus are not freely interchanged with translational energy in collisions. The probability of a transfer of energy between vibration or rotation and translation during a collision is less than one and thus a molecule will normally undergo a number of collisions before it gains or loses vibrational or rotational energy. At tropospheric pressures collisions are frequent enough to provide an effective transfer of energy from translation to vibration and rotation and vice versa. Thus thermodynamic equilibrium is attained with the energy levels of the various vibrational and rotational states following a Boltzmann distribution. If the pressure is lowered, then a point is reached when the collision rate becomes smaller than the radiative lifetime of the vibrational or rotational states. In this case thermodynamic equilibrium will not be attained and the vibrational or rotational energy levels will not have a Boltzmann distribution. Thus vibrational or rotational relaxation has occurred. To use the energy distribution of the vibrational or rotational levels as a means for determining the temperature of a gas at low pressures is improper, if the problem of vibrational or rotational relaxation is not considered.

16 If Z* is the average number of collisions an excited mulecule experiences before losing one quantum, and if Z is the total number of collisions per molecule per second, then the relaxation time X is defined by Z* = Zx (3.2.1) Z* is a function of the level of excitation of the molecule and also the temperature. Thus if pi and P2 are two pressures then, at a given temperature, z = Zpl Pl = Zp2 kP2 giving ZP1 Pi2 ZP2 X1 however Z is proportional to the pressure, and therefore p1 XP2 = p2 1Pi (5.2.2) X is usually given for a standard pressure, 1 atmosphere, and for various temperatures. Curtis and Goody (1956) give a formula for determining the radiative lifetime of a vibration-rotation band, viz., 9-1 = 8 V0 f kv dv (5.2.3) v

17 where 0 is the radiative lifetime and vo the frequency of the band center. In deriving Eq. (3.2.5) it has been assumed that the blackbody specific intensity E(v,T) does not vary much across the band, a reasonable approximation. Equation (3.2.3) may be written e-1 =8 (3.2.4) C2 where S is the integrated absorption of the band. Table I lists values for 6 for the various C02 bands in the 15-micron region based on band intensities given by Madden (1961) where available and otherwise, the values given by Yamamoto and Sasamori (1958) are used. TABLE I VALUES OF RADIATIVE LIFETIME G FOR VARIOUS BANDS Band Center Band Intensity G Band Code* -1 -2 -1 - 1 (cm ) (cm2 atm ) (sec) 1 667.40 194. 4.12 (-1)* 2 618.03 4.27 2.19 (1) 3 720.83 6.2 1.11 (1) 4 667.76 30. 2.66 5 647.02 1.0 8.51 (1) 6 791.48 0.022 2.59 (1) 7 597.29 0.14 7.14 (2) 8 741.75 0.14 4.63 (2) 9 668.3 0.85 9.39 (1) 10 544.26 0.0040 3.01 (4) 11 581.2 0.0042 3.01 (4) 12 756.75 0.0059 1.05 (4) 13 828.18 0.00049 1.06 (5) 14 740.5 0.014 4.64 (3) *The band code is described in Appendix B. **For typing convenience, in most of the tables powers of ten are enclosed in parentheses, e.g., 4.12 (-1) = 4.12 x 101.

18 The vibrational relaxation time for the CO2 fundamentals have been measured by numerous researchers using various techniques (cf., Herzfeld and Litovitz, 1959; Lambert 1962). Unfortunately, most of the measurements have been made for pure CO2 or mixtures of CO2 and H2 or He. The relaxation time is greatly influenced by small amounts of water vapor, probably due to some catalytic effect. No reliable measurements appear to have been made for mixtures of CO2 and N2 or 02. Witteman (1962) measured the relaxation times for pure CO2. He obtained a value of 3.74 x 10 sec at 1 atm pressure and 440~K for the 15-micron fundamental. Extrapolating his results to 300~K a value of about 4.2 x 10 sec is obtained. Schwarz, Slawsky, and Herzfeld (1952), and Schwarz and Herzfeld (1954) have computed relaxation times for various gas mixtures. They consider that their estimates are only in error by a factor depending only on the geometry of the collisions. Their results relevant to this discussion are given in Table II. TABLE II THEORETICAL AND EXPERIMENTAL VALUES FOR THE VIBRATIONAL RELAXATION OF C02 AND C02-N2 MIXTURES (theory) (experimental) C02-CO2 4 x 10-4 sec (288~K) 4.2 x 10-6 sec (500~K) C02-N2 7.5 x 10-4 sec (2880K) *Witteman (1962).

19 The factor in the case of pure C02 is close to 100. Using this same factor for the C02-N2 mixture gives a value for the vibrational relaxation time of 7o5 x 106 seco Curtis and Goody (1956) suggest using a value of 15 x 10-6 sec at 220~K. They obtained this value using an argument similar to the one above but they used earlier experimental results. Due to the uncertainties involved in arriving at an accurate value for the relaxation time for C02 - air mixtures, it seems reasonable to assume that the value for the 15-micron fundamental lies between 10s5 and 10-6 sec at 1 atm for temperatures around 250~K. Thus calculations involving the relaxation time are carried out using these two approximate bounding values. Obviously the above state of affairs is highly unsatisfactory and more experimental measurements are badly needed The situation with respect to the overtone and other CO2 bands in the 15-micron part of the spectrum is even more unsatisfactory. No estimates of the appropriate relaxation times appear in the literature. However, as Table I shows, the radiative lifetime of all the bands is at least an order of magnitude greater than the fundamental and if band 4 is excluded, at least two orders of magnitude greater. Thus if the relaxation times for these bands are of the same order as for the 15-micron fundamental, then the relaxation would occur at higher levels in the atmosphere. For the 15-micron fundamental vibrational relaxation becomes significant between 65 and 75 km and if it is assumed that the same relaxation time holds for the other bands then it would be

20 come significant for band 4 between 85 and 90 km, and above 100 km for the remaining bandso Wittemanvs (1962) results indicate that the relaxation time for the 4.3-micron fundamental (v3 - mode or valence mode) is at least one order of magnitude smaller than that for the 15micron fundamental (v2 - mode or bending mode). This indicates that the bending energy follows the translational energy at a slower rate than does the valence energy. Since the other bands in the 15-micron region have different vibrational transitions than the fundamental, they might follow the translational energy at a faster rate and thus have a lower relaxation time. Thus it seems reasonable to assume that at the worst they have a relaxation time of the same order as that of the 15-micron fundamental. In this study is will be assumed that vibrational relaxation does not affect bands other than the 15-micron fundamental until 100 km is reached. The 15-micron fundamental is by far the strongest band as can be seen by examining Table XIV. Thus by the time the height is reached at which vibrational relaxation becomes of importance, the optical mass of carbon dioxide has become so small that only the 15-micron band will have much influence on the radiative transfer. The problem of rotational relaxation is somewhat simpler since rotational quanta are much smaller than vibrational quantao Thus the probability of a translation-rotation energy transfer occurring in collisions is that much greater. Typical values for the rotational relaxation time appear to be around 10-9 sec at 1 atm (cf., Lambert,

21 1962) and thus rotational relaxation can be neglected. 3.3 THE RADIATIVE TRANSFER EQUATION FOR A VIBRATIONALLY RELAXING GAS As discussed in Section 3.2 vibrational relaxation occurs when high enough levels of the atmosphere are reached, around 70 km. Thus local thermodynamic equilibrium is no longer attained and Kirchhoff's law is no longer applicable. This means that the source function is no longer equal to the black-body specific intensity. It is easy to see from physical considerations what form the source function should take. At fairly high pressures, as in the stratosphere and troposphere, the source function should be the same as the black-body specific intensity. As pressures decrease, ultimately the source function will be that for noncoherent scattering. In this case noncoherent scattering means that redistribution of frequency occurs within the particular molecular band under consideration, but no interchange of energy occurs between the various molecular bands due to vibrational relaxation. If the pressure is lowered until rotational relaxation sets in, then there will be no redistribution of frequency over the band only over the individual rotation lines. As noted in Section 3.3 rotational relaxation need not be considered for this problem since it occurs at heights greater than 100 km. The source function J(v,T) may be written, J(V,T) = 9,(T)E(V,T) + P(T)J*(V,T) (35*31)

22 where J*(v T) is the source function for noncoherent scattering with vibrational relaxation. From the above discussion, it is evident that Ca(T) + 1 as p + oo a(T) + 0 as p + 0 (3.3.2) P(T) + 0 as p oo P(T) + 1 as p + 0 Curtis and Goody (1956) have derived an expression for the source function for the situation described above. They give J(v T) - E(v,T) + ) (3.5.3) where p kV I(v,Ti) dv dc X P kv E(v,T) dv dw the integrations being over all frequencies of the band and over all solid angle. The source function given by Eq. (3.3.3) obviously satisfies the relations Eq. (5.3.2). Now consider the function X. This may be written A f / kV I(v,TT) sin 9 d9 dZ dv x = v ~ ~((3.3.5) A' "' kV E(v,T) sin 0 de dZ dv V-. 0 0

25 where the band extends from 7' to v'T. Since i = cos G and kv and E(v,T) are independent of angle 8, then 2VT v I I V 7 V! +1 kv I(v -1,T kv E(v,T) dv,T,4) dp dv (33555) v?? +1 V T - 2 V kv 2 J' vI kv I(v,T,p) do dv E(v,T) dv Now consider the denominator of Eq. (3.3.5). The black-body specific intensity is a slowly varying function of v, and to an excellent approximation is constant over a few wave numbers. If it is assumed constant over a band then V t k E(VT) dv E kv E(v,T) dv ~ E(voT), kv dv = E(vo,T) S (5.3.6) where vo is the band center and S the integrated band intensity. A better approximation is obtained by considering the following. At the heights where vibrational relaxation becomes of importance (above about 65 km) pressures are so low that the line profile is given by the Doppler formula. The Doppler half-width at 250~K for a wave

-1 -4 1 number of 600 cm is 5.122 x 10 cml. Now the spacing between the rotational lines of the P- and R-branches of the 15-micron fundamental is approximately 1.5 cm-1 and the rotational line spacing for the Q-2 -1 branch starts at 1.0 x 10 cm for the lowest wave numbers and increases to around 0.2 cm-1 for the weakest lines at the higher wave numbers. Thus the band may be considered as composed of nonoverlapping lines, even the lines making up the Q-branch. Therefore Vt I V7 n n kV E(v,T) dv'- [E(vi,T) kvi di] = E(Vi,T) Si 1= V 1iJ= (33..7) where n is the number of lines and the integration over vi means that the integral is evaluated only considering the ith line by itself. Hence Eqo (35353) may now be written +1 v'' J(v,7) 8 E(v,T) + XE(v,T) -1 V_ 9+% e+\ kv I(v,T,+[) dv d4 n > Si E(vi,T) =1 \ 2 i (3.3.8) +1,v V = a(T) E(v,T) + P(T) /1 -1 Vt kv I(v,T,4) dv dp where a(T) = (- and p(T) = G+;. kE(v,T) n 2(89+) Z Si E(vi,T) i= 1

25 Note that a(T) and P(T) satisfy the relations Eq. (3.3.2). To determine J(v,T) requires a knowledge of I(v,T,[), which is rather inconvenient since a knowledge of J(v,T) is required before I(v,T,pL) can be evaluated. The standard procedure is to derive the appropriate Milne integral equation (cf., Busbridge, 1960) for J(v,T). Equation (353.8) is rewritten +1 nV" J(v,T) = g(T)E(vT) + P(T) 0 V1 kv I(v,T,+t) dv dp (33..9) +1 V't + P (T) 0 V kv I(v,T,-t) dv d4 Equations (3.1.2a) and (3.1.2b) are then substituted into Eq. (3.3.9), giving V t I +1 J(V,T) = a(T)E(v,T)+P(T) kv v1' 0o [ I(V, T +P. )e-(TO-T)/l' +I(V,0-4)e-T/4 ]d1d rT0 V I +l (t-T)/ + P(T) k J(vt) -- / dd dv dt T V 0 rT v t +1 e-(T-t)/[ + P(T) k J(v,t) e dp- dv dt 0 JVt ^^0 Thus

26 VT? +1 J(v,T) = a(T)E(v,T) + P(T) k~ I(vTo +~[)e(T0- T)/idi dv V o 0 (3.3.10) T0 V1i + P(7T) kV J(v,t)Eil(lt-T ) dv dt 0 V1 where Eil is the first exponential integral (cf., Section 3.1), and it has been assumed that there is no incident radiation on the top of the atmosphere. Equation (353.10) is the Milne integral equation for the problem. However, this is more complicated than the ones usually obtained in that the right-hand side contains double integrals. An analytic solution is difficult to obtain even when only one integral appears on the right-hand side of the Milne equation, and then only for a limited number of cases. However, several numerical methods have been developed to deal with integral equations and a numerical method will be discussed in Section 4.2. Once J(v,T) has been determined, the specific intensities may be evaluated and the fluxes are then readily determined. It is interesting to note from Eq. (3.3.10) that J(v,T) must be a slowly varying function of frequency since only in the first term in the right-hand side is there any dependence on frequency, and since E(v,T) is a slowly varying function of frequency for small frequency intervals. This simplifies matters somewhat since over a band J(v,T) can be assumed to be approximately constant.

27 Curtis and Goody (1956) were able to derive a relation between the source function J(v,T) and the heating rate (~K day-l) viz., dT 1.99 (J7~) dt X J (E) (35.5.11) dt - where the bars denote average values of J(v,T) and E(v,T) over the band. Once J(r) has been determined, the evaluation of the heating rate is straight forward. It is interesting to note that if J(T) = E(T) for an atmospheric layer then there will be no heating (or cooling) of that layer due to radiative transfer. This is an interesting point and worth examining further. The atmosphere is certainly not in thermodynamic equilibrium, i.e., the state of the atmosphere as a whole is not derivable from the basic laws of thermodynamics. Thus Kirchhoff's law, E(v,T) = ev/kv, is not applicable to this system as a whole. The concept of local thermodynamic equilibrium provides a way round this difficulty. This is based on the assumption that the complete system may be divided into small regions, in each of these regions Kirchhoff's law may be applied. Consequently each of these small regions is in thermodynamic equilibrium, and the source function is given by the black-body specific intensity. Thus there will be no heating (or cooling) of this region due to radiative transfer. At levels in the atmosphere above 65 km, where vibrational relaxation becomes inportant, local thermodynamic equilibrium can no longer be assumed even for small regions

28 and the source function is not equal to the black-body specific intensity. At levels below 65 km the source function and black-body specific intensities are not exactly equal but to a first approximation may be assumed equal with very little error, this is evident from examining Eq. (3.353). If it were possible to accurately evaluate J(V,T) for the complete range of atmospheric pressures then Eq. (3.3.11) would provide a convenient method of obtaining the heating rate due to radiative transfer. Unfortunately determining J(v,T) involves an accurate knowledge of the relaxation time for the gas, a quantity which, as has been pointed out in Section 3.2, is not accurately known. 3.4 THE EVALUATION OF THE ABSORPTION COEFFICIENT FOR VARIOUS ATMOSPHERIC PRESSURES 3.4.1 Preliminary Remarks The absorption coefficient kV depends on pressure. For example, at high pressures collisional broadening is the most important process and the absorption profile for a spectral line is given by the Lorentz formula. At much lower pressures Doppler broadening of the spectral line is the important process and the absorption profile is given by the Doppler formula. It is important to consider how the shape and width of a spectral line varies with pressure. The shapes and widths of spectral lines have been under intensive investigation for some years, both theoretically and experimentally.

29 Most of the effort has been concentrated on the study of spectral lines associated with atomic transitions. There are probably two main reasons for this. The first one is that atomic lines are simpler to examine experimentally. They are more isolated than their molecular counterparts and thus can be examined without the wings of other lines modifying the true shape as happens with lines associated with molecular transitions. Second, theoretical computations involving atoms are inherently simpler than the corresponding ones for molecules. The meteorologist is interested in the heating and cooling of the atmosphere due to infrared radiative transfer. Therefore, the widths and shapes of lines associated with the three molecules C02, 03, and H20 need to be thoroughly investigated. The vibration-rotation bands of these molecules which are ofimportance to atmospheric heating and cooling are sufficiently far in the infrared to be associated with the electronic ground state of the molecule. Thus electronic transitions do not have to be considered. The line half-width for the individual lines of a particular vibration-rotation band is a very important parameter which needs to be known as accurately as possible. This is not necessarily a constant. Theline half-width associated with collisional broadening appears to depend on whther the collisions are between like or unlike molecules. The CO2 molecule provides a good example. For selfbroadened CO2 the line half-width associated with the 15-micron band

30 -1 is around 0.1 cm at 1 atm, whereas for nitrogen broadened C02 the line half-width is around 0.064 cm1 at 1 atm. Also, there is a dependence of the line half-width on the rotational quantum number of the lines making up the vibration-rotation band, depending on the polarity of the molecule. Two references which deal with spectral line shapes and have proved useful are Breene (1955) and Benedict et al. (1956). The first reference is an extensive review of the literature dealing with spectral line shapes while the second deals specifically with the widths and shapes of infrared lines. 3.4.2 Absorption Associated with Collisional Broadening For sometime it has been known that the width of a spectral line depends on the pressure. Oneof the earliest theories to give the line profile and thus the absorption coefficient for a pressure broadened line was developed by Lorentz. It is relatively easy to see why collisions should broaden spectral lines, although as would be expected a theoretical treatment is rather involved. An atom or molecule emits radiation when it drops from a higher energy level to a lower one and absorbs radiation if the reverse process takes place. If another particle passes close to the emitting or absorbing atom or molecule, it will perturb the energy levels and consequently the energeonsgy associated with the emission or absorption will be spread out over a greater frequency interval. Obviously, the rate of perturbing collisions will

31 depend on the pressure and consequently the higher the pressure the broader the line and vice versa. Some shift in the position of the line center and asymmetries of the line profile might be expected due to the perturbing influence of the collisions. These points will be taken up below. The line half-width would be expected to be dependent on the intermolecular forces. In the case of polar molecules the line halfwidth associated with collisional broadening varies with the rotational quantum number of the radiating moleculeo Also, the half-width may vary with the nature of the colliding particles, specifically it could be different for self-broadening and foreign gas broadening. Both of these effects have been found for CO2. Madden (1961) investigated self-broadened C02 and found a variation of the line halfwidth with rotational quantum number for part of the 15-micron CO2 vibration-rotation band. The half-width varied from 0.126 cm1 for J = 4 to 0.06 cm-1 for J = 56 (temperature 300~K, pressure 1 atm), for the P-branch of the 15-micron fundamental. Kaplan and Eggers (1956) obtained a half-width of 0.064 cm-1 (temperature 298~K, pressure 1 atm) for C02 broadened by nitrogen, again for the 15-micron fundamental. Thehalf-width measured by Kaplan and Eggers would seem to be the one most applicable for atmospheric investigations. The absorption coefficient for the classical Lorentz line shape is given by,

32 kv (v-vO)2L v I (v-V 0)2 +UL2 (3.4.1) where aL is the line half-width due to collisional broadening, S is the integrated line intensity and vo the frequency of the center of the line. It is easy to show that k dv = 0 -00 kv dv = S The theoretical evaluation of aL is difficult, so experimental values are used. Since the Lorentz line shape is associated with collisional broadening, then aL should be proportional to the number of collisions. From the kinetic theory of gases the number of collisions is proportional to p/fT whence o p To L -L Lpo0 T (3.4.2) where axL is the half-width at some standard pressure po and temperature To. As mentioned above, collisions may have three main effects on the line shape, viz., (1) the center of the line may be displaced toward lower frequencies by an amount proportional to the total pressure; (2) the line may become asymmetrical; and

33 (3) the line may be broadened, the broadening being proportional to the total pressure. Lindholm (1945) developed a theory for the pressure broadening of a spectral line due to atomic collisions which takes into account the above three effects. He considers that the frequency perturbation is associated with a van der Waal's type force, vizo, Av = -b/R6 where R is the distance between the radiating and perturbing atoms and b is a constant. Kleman and Lindholm (1945) have verified the Lindholm line shape for argon broadened sodium. However, there is some doubt if this line shape may be applied to infrared molecular lines. For close collisions only R-8 and other higher order terms need be considered. Also as Benedict et alo (1956) note, it would appear that vibration-rotation spectra will not show much asymmetry since the polarizabilities of the upper and lower states of the molecule are the same. Also they did not observe any asymmetries in their examinations of infrared spectrao However, there does appear to be an exponential die-away in the wings of a self-broadened CO2 line. This exponential die-away would have to be considered if infrared flux computations were being made for a pure C02 atmosphere, but it is doubtful if it need be considered for computations involving C02 in the earth's atmosphere, since no experimental evidence has been forthcoming regarding an exponential die-away for foreign gas broadened C02o At the

moment several groups are looking for such a die-away for foreign gas broadened C02 using very long path lengths (Benedict, 1962). Plass and Warner (1952), and Curtis and Goody (1954) have investigated the effects on infrared transfer in the atmosphere of assuming a line shape very close to Lindholmes. Thelatter authors conclude that due to the other inaccuracies involved it would not be useful to consider a non-Lorentzian line shape in infrared flux computations in the atmosphere. Plass (l954) noted that it was probably unrealistic to consider a line shape based on Lindholm's theory since, as noted above, infrared lines most likely do not follow such a shape. In conclusion, it appears that at the present time the Lorentz line shape is satisfactory for evaluating the absorption coefficient for collisional broadening. 354.3 Absorption Associated with Doppler Broadening If the gas pressure is low enough so that the collisional frequency is small, then line broadening due to the Doppler effect becomes significant. In this case the Doppler effect is associated with the thermal motion of the moleculeso Needless to say, close to the earth's surface the collisional frequency is very high and collisional broadening completely swamps any Doppler broadening. For C02 in the earth's atmosphere Doppler broadening becomes important around 30 km (about 10 mb)o The linehalf-width and the line shape associated with Doppler broadening are easily derived from the kinetic theory of gases

35 (cf., Aller, 1953). The absorption coefficient for a Doppler broadened line is given by kv = exp C (3.4.3) where a is the Doppler half-width given by VO ( T1/2 Ca,__ ^(^ 1/2(3.4.4) c m where m is the mass of the molecule. It is convenient to use half the Doppler width at half-maximum, qOD. From Eq. (3.4.3) it is easy to show that a = a(in 2)1/2 (.4.5) Also, it is easy to show that 00 00 / kV dv = kv dv = S 0 -00 From Eq. (3.4.5) and (3.4.4) (2(n2)kT1/ 3.58 x 10-7 vo (3.4.6) c m \M where M is the molecular weight. Equation (3.4.1) may now be written

36 k = S(.n 2)1/2 p (v-vo)2 In 22 (3.47) aD a J Dexp It is evident from Eqs. (3.4.3) or (3.4.7) that the curve kV vs. v follows a normal distribution. Table III gives values for aD for different frequencies in the 15micron region for CO2 and for different temperatures. TABLE III CD IN CM'1 FOR VARIOUS TEMPERATURES AND FREQUENCIES Temperature - (cm1) (OK) (_K) 500 600 700 800 300 4.675 (-4).6.545 (-4) 7.480 (-4) 250 4.268 (-4) 5.122 (-4) 5.975 (-4) 6.829 (-4) 200 3.817 (-4) 4.581 (-4) 5.344 (-4) 6.107 (-4) It is interesting to note that aD varies considerably with frequency but not as much with temperature. Since the spectral region of interest extends from 500 to 800 cm-1 it is thus necessary to take this variation with frequency into account. 3.4.4 Absorption Associated with Natural Broadening Natural broadening is caused by radiation damping and is due to the finite lifetime of the excited states of the atoms or molecules. The line half-width is given by

37 aN ce t (3.4.8) where t is the lifetime of the excited state. sec for the infrared region being considered. cm1. The absorption coefficient is given by t is approximately 10-4 Thus cN _- 2.65 x 10-8 k -v C — 2- (3.4.9) 1 + v(VO \aN (cf., Aller, 1953; Mitchell and Zemansky, 1934). 3.4.5 Comparison of Line Half-Widths It is instructive to compare the half-widths associated with collisional, Doppler and natural broadening. Table IV lists the halfwidths for comparison. TABLE IV FOR COLLISIONAL, DOPPLER, NATURAL BROADENING HALF-WIDTHS AND aL = 6.4 x 10-2 cm-1 (T = 500~K, 1 atm pressure)* CD = 5.610 x 10-4 cm-l (vo = 600 cm, T = 300~K)** aN = 2.65 x 10-8 cm-1 *** *Kaplan and Eggers (1956) value. **Taken from Table III. ***Using Eq. (3.4.8). This is probably the least accurate of the three.

38 It is evident that aL and aD become nearly equal at a pressure of about 10 mb (approximately 30 km) and thus above 30 km Doppler broadening should be considered. Only at pressures near 10-3 mb (approximately 90 km) does aL become of the order of aN, but at this pressure aD is much greater than either. 3.4.6 Absorption Taking into Account Collisional,Doppler, and Natural Broadening It is possible to obtain an expression for the absorption coefficient taking into account collisional, Doppler, and natural broadening. The appropriate equation is generally written (Mitchell and Zemansky, 1934), 00 - _X2 k = ko e (27 dx (3.4.10a) v Tr J a 2+(C-x) -00 + ) k r00 r y "! X4 -= "ft exp - ax - i cos cx dx (3.4.10b) where S 21/2 ko - = 7 a = aL (In 2)1/2 aD and o - v-vo (In 2)1/2 %D

39 Equation (3.4.10a) may be written in the form 00 -X ky a e-x _dx (3.4.11) ko J T_ a2+(_x)2 dx The right-hand side of this equation is the real part of the error function for complex argument, viz., 00 2 w(z) = - / - dx (3.4.12) ET Z-x -00 where z = u+i a and w(z) = u(ou,z)+iv(w,a). Tabulations of this function over a fairly wide range of C are a given by Faddeeva and Terentev (1961) with appropriate interpolation coefficients. A number of series have been developed to approximate the value of Eq. (3.4.10). Unfortunately no one series approximates Eq. (3.4.10) over the range of values of C and a, which is of interest in the atmosphere. A review of the various series which may be used to approximate Eq. (3.4.10) is given by Penner (1959). Two useful series expansions have been developed by Plass and Fivel (1953), and Harris (1948). The Plass-Fivel approximation is useful for small values of a; i.e., aD>aL+O. It may be written kv = ko [(cos 2wa+sin 2oa)exp(a -2 ) oo M An \a + l V (2m+n)!sinQ2 n +, L 22nn!m!wca2+n+l n=l m=o

I 1/2 = s n 2) [(cos 2oa+sin 2aa)exp(a2-c)2)] aD ~ t y (3.413 ) S+ __tU) 1+ 3 _2 i+ -5a2+a4 4 +.. (v-Vo)2 a 2 4 - 1 T((V-v "I w I __j~~~~~./ As will be discuss lower than 0.05 mb a up to 0.3 and C kv ko,ed later this approximation is useful for pressures. The Harris approximation is useful for values of in the range of 0 to 8.0. It may be written + a H1i(o) + a2 H2(w) +a3H3(LD) + a4 H14(W) +... = e -2 - Ho(cu) Ho (u) Hi ()) H2 (W) = (1-_22)e-2 H3(C) = f.2 (l-C)2)-2)(lH4(c0) = ( -5262+ - 2 e44e-U 2 3 _j, 2 C)2)F(w)) p6) F (co) = e 2 o t2 e dt = o e- (2-t2)dt It turns than 2.5 out that this approximation is useful for pressures lower mb and up to about 0.005 cm-1 from the line center.

41 5.4.7 Practical Determination of the Absorption Coefficient for Various Atmospheric Pressures The above discussion on the absorption coefficients due to the various physical broadening processes enables a decision to be made on what absorption coefficient to use at various atmospheric pressures. It is evident that for pressures greater than 20 mb the Lorentz formula is adequate. The problem remains of handling the absorption at pressures lower than 20 mb. From the results presented in Table V several conclusions can be drawn. At 20 mb the effect of Doppler broadening is beginning to be noticeable. Even at as low a pressure as 0.1 mb the Plass-Fivel approximation is not very satisfactory unless Av > 0.002 cm-l but as the pressure is decreased it becomes more useful toward the line center. The wings of the line, Av > 0.003 cm, can be approximated reasonably well using the Lorentz formula. The Harris formula may be used up to pressures of about 3 mb with reasonable accuracy. However, one difficulty with the Harris formula is the evaluation of the integral F(W). This integral may be expressed in terms of a series involving the incomplete r functiono It may more easily be evaluated by dividing the interval 0 to cw logarithmically and applying a seven point LegendreGauss quadrature in each of these subintervals. The pressure region from 3 to 20 mb poses some difficultyo No satisfactory approximation appears to be available. The method chosen was to abstract a small table from the larger Faddeeva-Terentev tables

TABLE V COMPARISON OF ABSORPTION COEFFICIENTS EVALUATED USING VARIOUS FORMULAE AT PRESSURES LOWER THAN 50 MB (The line intensity was chosen as 10O cm-2 atmt1, and the frequency was 600 cm-', temperature 250~K) 30 mb 20 mb 10 mb Av (c ) kVk (D) (L)(2) kV (FT)(3) kv (L) kv (FT) kv (L) kv (FT) 0o0001 8.191 (2) 1.653 (2) 1.569 (2) 2.472 (2) 2.223 (2) 4.855 (2) 3.668 (2) 0.0002 7.667 (2) 1.640 (2) 1.559 (2) 2.428 (2) 2.198 (2) 4.531 (2) 3.578 (2) 0,0004 5.886 (2) 1.589 (2) 1.520 (2) 2.266 (2) 2.100 (2) 3.577 (2) 5.247 (2) o.oo0006 3.789 (2) 1.510 (2) 1.459 (2) 2.039 (2) 1.952 (2) 2.647 (2) 2.782 (2) 0.0008 2.045 (2) 1.413 (2) 1.381 (2) 1.788 (2) 1.772 (2) 1.941 (2) 2,274 (2) 0.001 9.255 (1) 1.304 (2) 1,290 (2) 1.544 (2) 1.577 (2) 1.445 (2) 1.798 (2) 0.0014 1.117 (1) 1.082 (2) 109 (2) 1.132 (2) 1.202 (2) 8.597 (1) 1,081 (2) 0.002 1.250 (-1) 7.951 (1) 8,120 (1) 7226 1) 7(1) (1) 4.620 (1) 5.389 (1) 0,003 2.063 (-6) 4.817 (1) 4.880 (1) 3.830 (1) 4.037 (1) 2.165 (1) 2.331 (1) 0.004 4.158 (-13) 3.105 (1) 2.10 (1) 1.242 (1) 0.005 1.024 (-21) 2.131 (1) 1.530 (1) 8.017 (0) 0.01 0.000 5,894 (0) 4.009 (0) 2,029 (0) 0.02 0.000 1.514 (o) 1.014 (0) 5.o88 (-1) 0.03 0.000 6.763 (-1) 4.519 (-1) 2.263 (-1) 0.04 0.000 3.811 (-1) 2.544 (-1) 1.273 (-1) 0.05 0.000 2.441 (-1) 1.629 (-1) 8.147 (-2) 0.10 0.000 6.109 (-2) 4.074 (-2) 2.037 (-2) 4-O -r-7 (1) kv (D) is evaluated using the (2) kv (L) is evaluated using the Doppler formula. Lorentz formula. (3) kv (FT) is evaluated using the Faddeeva-Traentev tables.

TABLE V (Continued) 2 mb 1 mb Av (cm1) k (L) kV (FT) k (HAR)(1) kV (L) k (FT) kv (HAR) kv (PF)(2) 0.0001 1.544 (3) 6.665 (2) 6.721 (2) 1.445 (3) 7.259 (2) 7.398 (2) 1.571 (7) 0.0002 7.226 (2) 6.327 (2) 6.372 (2) 4.620 (2) 6.861 (2) 6.972 (2) 2.532 (5) 0.0004 2.310 (2) 5.148 (2) 5.159 (2) 1.242 (2) 5.482 (2) 5.507 (2) 5.124 (3) o.ooo6 1.083 (2) 3.678 (2) 3.659 (2) 5.595 (1) 3.787 (2) 3.738 (2) 9.380 (2) o.oo0008 6.207 (1) 2.340 (2) 2.309 (2) 3.163 (1) 2.280 (2) 2.204 (2) 3.722 (2) 0.001 4.009 (1) 1.360 (2) 1.335 (2) 2.029 (1) 1.217 (2) 1.154 (2) 1.654 (2) 0.0014 2.062 (1) 4.256 (1) 4.189 (1) 1.037 (1) 2.844 (1) 2.732 (1) 3.080 (1) 0.002 1.014 (1) 1.264 (1) 1.281 (1) 5.088 (0) 6.110 (0) 6.524 (0) 6.375 (0) 0.003 4.519 (0) 4.877 (0) 4.913 (0) 2.263 (0) 2.375 (0) 2.461 (0) 2.456 (0) 0.004 2.544 (0) 2.661 (0) 1.273 (0) 1.332 (0) 1.332 (0) 0.005 1.629 (0) 1.676 (0) 8.147 (-1) 8.383 (-1) 8.383 (-1) 0.01 4.074 (-1) 4.128 (-1) 2.037 (-1) 2.053 (-1) 2.052 (-1) 0.02 1.019 (-1) 5.093 (-12) 5.104 (-2) 0.03 4.527 (-2) 2.264 (-2) 2.266 (-2) 0.04 2.547 (-2) 1.273 (-2) 1.274 (-2) 0.05 1.630 (-2) 8.149 (-3) 8.154 (-3) 0.10 4.074 (-3) 2.037 (-3) 2.038 (-3) (1) kv (2) kv (HAR) (PF) is evaluated is evaluated using the Harris formula. using the Plass-Fivel formula.

TABLE V (Continued) 0.1 mb 0.01 mb AV (cm-) kv (L) kv (FT) kv (HAR) kv (PF) kv (L) kv (FT) kv (HAR) kv (PF) 0.0001 2.029 (2) 8.203 (2) 8.105 (2) 1.596 (6) 2.037 (1) 8.282 (2) 8.182 (2) 1.663 (5) 0.0002 5.088 (1) 7.670 (2) 7.592 (2) 2.640 (4) 5.093 (0) 7.739 (2) 7.659 (2) 3.426 (3) o.0004 1.273 (1) 5.867 (2) 5.847 (2) 1.049 (3) 1.273 (0) 5.903 (2) 5.882 (2) 6.363 (2) 0.0oo6 5.658 (0) 5.757 (2) 5.786 (2) 4.557 (2) 5.659 (-1) 5.759 (2) 5.789 (2) 35848 (2) 0.0008 5.185 (0) 2.019 (2) 2.064 (2) 2.217 (2) 5.185 (-1) 2.001 (2) 2.047 (2) 2.065 (2) 0.001 2.057 (0) 9.118 (1) 9.509 (1) 1.002 (2) 2.057 (-1) 8.883 (1) 9.282 (1) 9.33554 (1) 0.0014 1.039 (0) 1.185 (1) 1.286 (1) 1.322 (1) 1.039 (-1) 1.030 (1) 1.135 (1) 1.139 (1) 0.002 5.095 (-1) 7.410 (-1) 7.702 (-1) 7.551 (-1) 5.095 (-2) 4,645 (-1) 1.919 (-1) 1.904 (-1) 0,005 2.264 (-1) 2.472 (-1) 2.467 (-1) 2.264 (-2) 2,564 (-2) 2.558 (-2) 0.004 1.275 (-1) 1.557 (-1) 1.337 (-1) 1.275 (-2) 1.587 (-2) 13.86 (-2) 0.005 8.149 (-2) 8.416 (-2) 8.416 (-2) 8.149 (-5) 8.728 (-3) 8.728 (-3) 0.01 2.037 (-2) 2.057 (-2) 2.060 (-2) 2.057 (-3) 2.155 (-5) 2.136 (-5) 0.02 5.095 (-5) 5.125 (-5) 5.093 (-4) 5.313 (-4) 0.03 2.264 (-5) 2.275 (-3) 2.264 (-4) 2.359 (-4) 0,04 1.275 (-5) 1.279 (-3) 1.273 (-4) 1.327 (-4) 0.05 8.149 (-4) 8.185 (-4) 8.149 (-5) 8.489 (-5) 0.10 2.037 (-4) 2.046 (-4) 2.037 (-5) 2.122 (-5)

TABLE V (Concluded) 0.001 mb v (cm) kV (L) kV (FT) kv (HAR) kV (PF) 0.0001 2.037 (0) 8.289 (2) 8.189 (2) 2.329 (4) 0.0002 5.093 (-1) 7.746 (2) 7.666 (2) 1.128 (3) 0.0004 1.273 (-1) 5.907 (2) 5.886 (2) 5.951 (2) 0.0006 5.659 (-2) 3.760 (2) 3.789 (2) 3.797 (2) 0.0008 3.183 (-2) 2.000 (2) 2.045 (2) 2.048 (2) 0.001 2.037 (-2) 8.859 (1) 9.259 (1) 9.266 (1) 0.0014 1.039 (-2) 1.015 (1) 1.120 (1) 1.120 (1) 0.002 5.093 (-3) 1.068 (-1) 1.341 (-) 1.339 (-1) 0.003 2.264 (-3) 3.483 (-3) 3.476 (-3) 0.004 1.273 (-3) 1.883 (-3) 1.883 (-3) 0.005 8.149 (-4) 1.185 (-3) 1.185 (-3) 0.01 2.037 (-4) 2.896 (-4) 2.901 (-4) 0.02 5.093 (-5) 7.214 (-5) 0.03 2.264 (-5) 3.204 (-5) 0.04 1.273 (-5) 1.801 (-5) 0.05 8.149 (-6) 1.153 (-5) 0.10 2.037 (-6) 2.881 (-6) o —"

46 and use an interpolation procedure. This subsidiary table extends from a = 0.2 (.l)-2.6 and from w - 0.00 (0.02)-0.1 (.1)-5.0. It was found that linear interpolation gave fairly good accuracy but quadratic interpolation gave somewhat improved results and was thus used. From the above considerations, the scheme shown in Table VI was devised to evaluate the absorption coefficient for various atmospheric pressures. TABLE VI EVALUATION OF ABSORPTION COEFFICIENT FOR VARIOUS ATMOSPHERIC PRESSURES (All pressures in mb) 1000' P < 20 20 < P 2 2 < P' 0.05 p < 0.05 Lorentz formula. Interpolation from Faddeeva-Terentev tables to Av = 0.003 cm-1 with Lorentz formula for wings. Harris approximation to Av = 0.003 cm1 then Lorentz formula for wings. Doppler formula for center of line, up to AV = 0.0014 cm-1 Plass-Fivel approximation from 0.0014 cm-" to 0.003 cm-1 with Lorentz for wings. (The Plass-Fivel approximation is used rather than Harris's since it does not involve an integral and thus is simpler to evaluate.)

47 It is interesting to note that the integral occurring in Eqo (3.4.10) may be written in the form kf(x) dx kv = a e-x f(x) dx (3o4l5) ko x coo where =g,> 1 f(x) a2~o-x)2 a2+(WX)2 Now Eq. (3.4.15) is in the form suitable for applying Hermite-Gauss quadrature (cf., Kopal, 1961) since the weighting function is ex 2 This very tempting method was tried with no great successo It is satisfactory for pressures greater than about 20 mb but as the pres-X2 sure is reduced the peak in the curve e f(x) vs. x becomes very sharp for small values of X (proportional to Av), ioe., close to the line center. This means that the expansion of f(x) in terms of the Hermite polynomials is unsatisfactory for values of x near Wo Even using a seventeen point quadrature formula gave no noticeable improvement (cf., Rosser, 1950). However, the peak rapidly diminishes in intensity as the wings are approached and the Hermite-Gauss quadrature formula gives accurate results, but in this region the Lorentz formula is adequate, anyway.

3.5 MODELS FOR MOLECULAR BAND ABSORPTION 3.5.1 Preliminary Remarks The transmissivity at a given frequency was defined in Section 3.1 by yv(t,T) = e-(t-T) (5.5.1) = exp - Z N k dz It is necessary to know the value of Eq. (3.5.1) for all frequencies of the band so that Eq. (3.1.4a) and (3.1.4b) may be integrated over frequency to give the fluxes. Unfortunately due to the large number of rotational lines in a vibration-rotation band this would require a fantastic number of computations even for a fast digital computer. Thus attempts have been made to devise a "model" for the positions and intensities of the rotational lines so that the transmissivity could be evaluated analytically. Elsasser (L942) was one of the first investigators to try this. He assumed that the rotational lines are equally spaced with equal intensities and half-widths. Using this rather simple model it is not too difficult to obtain an expression for the transmissivity. Unfortunately, no important molecular band exhibits the regularity this model requires. Although the 15-micron CO2 fundamental comes closest. However, if the other weaker but still

49 important CO2 bands in this region are included, then the Elsasser model becomes most unsatisfactory. The next advance was by Matossi et al. (1946, 1949), who derived analytic expressions for the total absorption over a band assuming unequally spaced lines of unequal intensity. Unfortunately, their expressions only apply for moderately strong absorption and they are rather involved. However, their work is important since it contains the germ of the idea which is at the basis of the statistical spectral model. The statistical model (Goody, 1952) assumes a random disposition for the rotational lines in a band with the line intensities being specified by a probability function. This model was derived with the water vapor and ozone infrared bands in mind, these bands exhibiting considerable randomness in their rotational line positions. It suffers from the disadvantage of assuming an infinite interval. The next step was to combine the two models discussed above to give the random Elsasser model (Plass, 1958). Here the band is represented by a number of Elsasser bands randomly distributed in the interval with different line intensities and spacing in each Elsasser band. This is an obvious improvement on the two previous models. The latest model has been introduced by Wyatt et al. (1962). It is called the "quasirandom model." In this model the interval is divided into a number of smaller intervals in which the rotational

50 lines are assumed to be randomly placed. The lines in each of the smaller intervals are grouped by intensities. These groups can be made fine enough to simulate the real intensity distribution reasonably accurately. They were also able to derive an analytic expression for the transmissivity of a finite interval as well as one for the contributions from the wings of lines outside this interval. In both cases the Lorentz line shape was assumed. This model is the most realistic of the various models so far introduced and is discussed in considerable detail in the next section. 3.5.2 The Quasirandom Model In the quasirandom model, as noted above, the frequency interval is divided into a number of smaller intervals 6T. For convenience it is assumed that these subintervals are all of equal size. (This is not necessary for the theory, but in practice they would be so chosen.) Each subinterval contains nT lines with their line centers at frequencies vi (i = 1,2,...nk). Thus the transmissivity at frequency v due to these lines is nT i 7T(v) = - exp[-k(v,vi)u]dvi (5.5.2) where k(v,vi) is the absorption coefficient and u is the amount of absorbing gas per unit area (optical mass). The rotational lines are assumed to occur at random within each subintervals. As pointed out

51 by Wyatt et al. (1962), the transmissivity calculated using Eq. (3.5.2) applies at any particular frequency. However, since Eq. (3.5.2) corresponds to the average of all permutations of the positions of the spectral lines in T,' then the transmissivity may be assumed to be representative of the transmissivity of the whole interval -T, i.e., it may be called the "average transmissivity" for ET. A difficulty arises in evaluating Eq. (3.5.2) due to the large number of lines in a particular band. Wyatt et al, suggest dividing the lines in each bT into subgroups by intensity decades. The average intensities of the lines in each decade are used in the calculations of the transmissivities. Thus n ni Y7Tv) = ( I)^ exp[-k (v vi)u]dv (5 7t(v) =(V'Vi~ u (3.5.3) m where m is the number of intensity decades and nT = ni is the total i=l number of lines in eT. Now the transmissivity at v will naturally be influenced by the wings of lines outside. The wing transmissivities 7i are calculated assuming a random distribution for the spectral lines in the intervals ti. Thus the total transmissivity at v is the product of all the transmissivities since a random distribution is being considered, i.e., 00 y(v) = I 7Yj(v) (35.5-4) j=l

52 where 7j(v) is the transmissivity at v due to the nj lines in the interval 5 j. Wyatt et at. (1962), have given analytic expressions for the transmissivities due to the direct and wing contributions for the Lorentz line shape. Assuming a Lorentz line shape then, 7T(v) -= 1 /exp - SXL _ )dvT (3.5.5) it (v-vT)2+cL2 Now let SL P = 20iL/& = 2y/6 (3.5.6) e = 2z/6 y = vT-Vo - 1/2 b z = v-vO - 1/2 & where the frequency interval is [vo,Vo+t]. Thus Eq. (3.5.5) may now be written 1 P (5 YT(v) - [ rexp -dr (357) (E:-_)2+p2''

53 If the assumption is made that the interval &T is large compared to the half-widths of the lines, i.e. (E_-) >~p, then Eq. (3.5.7) may be easily integrated to give the transmissivity contribution due to the wings, i.e., yT(v) = +)exp( A) - (c-l)exp + ) 2 (c-l)J 3.5.8) -1 t1/2 A1/2 erf /2 ) er-l/2 2 - e+l J where A = p2,T. For the direct contribution to yT(v), if the frequency is taken at the center of the interval then 7T(v) = Q(TP) (35.9) where (, p) = exp [- l+ -1 p exp(13) [i 1 ^ i). i( 1 ^_ (~_~) (3.5.10) + 2p exp i) sin n o00 + p exp I n(T + 1n sin n+ n <! l "nl - 2 tan denotes the Bessel function of imaginary argument 4 = 2 tan p and In denotes the Bessel function of imaginary argument

54 and order n. A similar procedure to the above may be developed for the Doppler line shape. The transmissivity for this line shape is given by YT(v) -= 1 fexp STu(in )l/2 expy ( T in 2) d _ _ T e1x2 (v-v e In dv (5.5.11) Now let \21/2 T UD 7T y = vT-vO - 2 T = 2y/5 1/2 2= 2D(In 2) where the frequency interval is [vo,vo+b], and Eq. (3.5.11) becomes YT(V) = e T exp — dr (3.5.13) 2 -l PL TPJ Unfortunately no analytic value for this integral appears to be available. As noted in Section 3.4 the absorption coefficient evaluated using the Doppler line shape falls off very rapidly with the distance from the line center, the wings being given by the Lorentz formula. Thus if the transmissivity due to the wings needs to be evaluated Eq.

55 (3.5.8) would be satisfactory. The analytic expression for the transmissivity using the Lorentz line shape, Eq. (3.5.9), is a rather involved expression involving infinite sums of Bessel functions of imaginary argument. Also Eq. (3.513) appears tohave no analytic solution. For the line profile involving collisional, Doppler, and natural broadening, viz., Eq. (3.4.1) the expression becomes even more involved, 7T(v) 1 exp koa u e (-x dx dvT _ _ La2+ (~-x)2 (3.5.14) In view of the complexity of these three expressions for the transmissivity, it was decided to devise a numerical method for evaluating them. Equations (3.5.7) and (3.5.13) may be evaluated numerically using Legendre-Gauss quadrature. Unfortunately, due to the nature of the integrands in both Eqs. (3.5o7) and (3.5.13), it is necessary to divide the interval into subintervals and then to apply the quadrature formula in each subinterval. Seven subintervals were chosen and spaced as follows, o.o, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.o (3.5-7) The seven-point quadrature formula applied to Eq. (3.5.7) using the above subintervals gave exactly the same values as given by Wyatt et al. (1962), who used Eq. (5.5.10).

56 Unfortunately, no tabulations for Eq. (3.5.13) have been located. However, since the difference between the 7-, 15-, and 32-point quadrature formulae is so small as to be of probably no practical significance for this work, the 7-point formula should prove satisfactory. In the case of Eq. (35..15) p is constant (relating to Doppler broadening) once & has been set, unlike the p in Eq. (3.5 7)(relating to Lorentz broadening) which varies with pressure. Equation (3.5.14) may be evaluated using the numerical technique outlined above, except that the absorption coefficient cannot be evaluated as easily as in Eqs. (3.5.7) and (35o513)o The techniques discussed in Eqs. (3.4.6) and (3.4.7) would have to be used. One disadvantage of the quasirandom model is that it underestimates the transmissivity of the Q-branches. There are two reasons for this. The lines of a Q-branch are grouped close together and are neither uniformly nor randomly distributed over the averaging interval. This will cause the transmissivity to be underestimated (or the absorbtivity to be overestimated). Also the lines of a Q-branch are fairly evenly spaced. Thus the contributions due to the wings of the lines will cause the transmissivity to be underestimated. This will be pressure dependent decreasing in importance at low pressures. 3.6 APPROXIMATIONS USED IN SOLVING THE RADIATIVE TRANSFER EQUATION 5.6.1 The Curtis-Godson Approximation In the denser parts of the atmosphere where collisional broaden

57 ing is the most important broadening mechanism then the Lorentz formuila gives the appropriate line shape. The absorption coefficient associated with this line shape is k SCL 1 (. 6 1. kv r (v-o)2+.6.1) where cL is the line half-width due to collisional broadening, S is the integrated line intensity and vo the frequency of the line center. Collisional broadening has been discussed at some length in Section 3.4.2. As noted in that section aL depends on both the pressure and temperature, viz., aL = a p T (3.6.2) Po T It is evident that for an atmospheric layer where pressure and temperature vary over the layer the absorption coefficient cannot be evaluated using Eq. (3.6.1). In practice sufficiently thin layers must be considered over which pressure and temperature remain approximately constant. However, Curtis (1952), and Godson (1953) proposed an approximate method for dealing with thicker layers. If the gas considered has a constant mixing ratio, e.g., carbon dioxide, then the absorption coefficient may be evaluated for the layer using Eq. (3.6,1) with a mean pressure p used in Eq. (3.6.2) to derive a mean line half-width aL. This approximation becomes exact for the so-called "thick-layer" and

58 "thin-layer" cases. The thin-and thick-layer approximations are relatively simple to derive. The mean absorption for a single line over some interval Av may be writteno A = _1 - exp kv du dv (3.6.3) Av where u is the amount of absorbing gas per unit area. Substituting for kv from Eqo (3.6.1) gives eL Suu L du.... Av _ (v-v)2+a L A0 - 1 }d (3.6.4) Expanding the exponential term in the integrand of Eq. (3.6.3) gives A0 kc du -U1 u2 2 1 kdu- d 1v Av du - kVdu \... v ~~0 U1 1 If the absorption is small, as in the thin-layer case, - 1 r>00 rU2 A 1 - / k, du dv Av J -oo Ul = 1 _, k dv du 1 S du Av Av ul -oo Hu (3.6.5)

59 where S is the line intensity. S is generally given in cm-l (atm cm)-1 for a particular temperature. If an isothermal layer is considered then Eq. (3 6.5) becomes A _ 1 S(u2-ul) (3.6.6) Av For a sufficiently thick layer of absorbing gas complete absorption will occur near the line center and thus increasing the thickness of the layer will only increase the absorption in the wings of the line, In this case then (v-vo)2 > aL2 since only wings are being considered and thus CL2 can be neglected in the denominator of Eq. (3.6.1). Using Eq. (3.6o4) the average absorption for the thick-layer case can now be written, A = ^ - exp -I 2 S( duV- dv (3.6.7) Letting (v-vo) =z, Eq. (356.5) becomes * { l - exp )}dz (3.6.8) where ur2 c = - SaL du Ju Ul Writing A in the form

6o!- 0(1 -C e/ )z/Z2 A I - 1~ (1 - e-/z2) dzz + (1 - e ) d AV _00 o putting z = l/y, and integrating by parts, it is easy to show that A. -!2 cK ) 22 c Av 2 Av (3.6.9) u2 = 2 U12 1/2 = -( SUL du Av For a homogeneous layer Eq. (3.6.9) reduces to A'. 2 (S(u2-ul)mL)/2 (36.o) Av This approximation for ~ is sometimes called the "opaque line center approximation." The Curtis-Godson approximation hinges on choosing a mean oL, say 0L, in Eq. (3.6.10) such that the A's evaluated from Eqs. (3.6.9) and (3.6.10) are equal. It is also desirable to have the Curtis-Godson approximation valid for the thin-layer case. Then U2 S(u2-ul)SL = SaL du (3.6.11) Ul consequently

61 U2 U' ~L = S u2-U S(u2-u ) (3.6.12) VUtSaL du U' U2 | S du Ul using Eqs. (3.6.5) and (3.6.6). If it may be assumed to be isothermal. aL = aL where aL is the line half-width at standard temperature To. Therefore a fairly thin layer is chosen then Now P Jo Po \ T some standard pressure p. and Eq. (3.6.12) becomes u2 u p du S p du Ul Ul P = U2 (u2-Ul) | du u1 (3.6.135) since the layer (u2,ul) is isothermal. If a constant mixing ratio is assumed, as is true for carbon dioxide in the earth's atmosphere, then u = rp where r is a constant. Hence Eq. (3.6.13) now becomes P1+P2 P 2 2 (3.6.14) Euqations (3.6.13) and (3.6.14) are true in the limiting cases of thin

62 layers and thick layers, but are only approximate between these two cases. The accuracy of the Curtis-Godson approximation has been checked by Godson (1953, 1955) and Kaplan (1959) for transmissivity and flux calculations and by Walshaw and Rodgers (1962) for heating-rate calculations. It has been found reasonably satisfactory for transmissivities and Walshaw and Rodgers state that it is satisfactory for heating-rate calculations involving carbon dioxide. In this study the Curtis-Godson approximation is used, since the Walshaw and Rodgers check seem satisfactory. It will be used in the form given by Eq. (3.6.14), care being taken that the temperature variations over the layer considered are kept reasonably small. 3.6.2 Approximate Methods for Performing the Angular Integration in the Flux Equation As discussed in Section 3.1 the determination of the upward and downward fluxes requires an integration over frequency, angle, and optical thickness. For example, +1 F+(T) = 2t /E(v,Tg) 7v(Tg,T)P di dv (3.6.15) V T o Using a model for an absorption band, such as the quasirandom model

63 (cf., 3.5.2), makes the integration over frequency relatively simple. This is because the transmissivity obtained from such a model is an average transmissivity for a finite frequency interval. It would be convenient if the angular integration occurring in Eq. (3.6.15) could be disposed of, once and for all. The astrophsicists in their work perform the angular integration using Gaussian quadrature. Consider only the parts of Eq. (3.6.15) involving angular integration, viz., +1 2 et-t/4 dp where t has been written for (Tg-T) or (t-T) as the case may be. By introducing y = 24-1, 2 ej -t/ll ^d = - e 1t/(l/'2(y+l)) y+l dy o -1 (5.6.16) Legendre-Gauss quadrature may now be applied to Eq. (3.6.16) to give 1-t/(1/2(y+l)) y+ dy Hi e-t/(1/2(Yi+l)) Yi+l 2 2 i=l (5.6.17) n = Hi e-t/zi z i=l

64 where H. are the appropriate weights and zi = (yi+l)/2 with yi the Gaussian abscissae. It would be more convenient if an average value for 1/, say, could be determined such that,+1 2 e e-(t-T)/ p d. = 7v(t) (3.6.18) 0 where?IV (t e-(t -T) 7~(tT)i = e-^-^ Now e- (t-T) /1 i dp = Ei3 (t-T) 0 where Ei3 is the third exponential integral (cfo, 3.1). Roberts (1930) noting the similarity between 2Ei3 and an exponential suggested using 5 3/2~ Elsasser (1942) evaluating transmissivities using his band model found that 5 = 5/3 (or 1.66) appeared to give the best results. The value, - 5/3 is the value generally quoted in the literature. If ~ is determined from the transcendental equation 2Ei3(t) = e-ts then: ranges from 1 to 2 for t varying from zero to infinity. It is

65 possible using least squares to determine a suitable f, i.e., one which minimizes co (2Ei3s(t)-e- )2 dt 0 or makes -a X (2Ei3(t)-e-t)2 dt = 0 (3.6.19) After some manipulation Eq. (3.6.19) reduces to 24(1+0)ln(l+~) + 353 - 1352 - 24 = 0 (3.6.20) The value of f obtained by solving Eq. (3.6.20) is 1.543. However, it is dangerous to use this value of ~ as the effective value in Eq. (3.6.18) since, if a molecular band model is used, a mean transmissivity for a finite interval is used for yv(t,T). This mean transmissivity has already involved an integration of e-(t-T)/ over frequency, viz., yv(t,T) = 1 e-(t-T) / dv It would be desirable to compare these approximations experimentally. The method using Gaussian quadrature should be the most accurate. Thus in Section 4.1.2, a quantity proportional to the flux emitted by a slab to space is evaluated for various pressures and optical masses using 4and 2-point Gaussian quadrature as well as for = 1.54 and 1.66.

4. EVALUATION OF THE COOLING RATES IN THE STRATOSPHERE AND MESOSPHERE DUE TO CARBON DIOXIDE 4.1 TRANSMISSIVITY DETERMINATION USING THE QUASIRANDOM MODEL 4.1.1 Transmissivity Determination and Comparison with Experimental Measurements The quasirandom model was discussed in some detail in Section 3.5.2. This section deals with the practical evaluation of the transmissivities and the comparison with laboratory measurements. The interval, over which the average transmissivity was evaluated, was chosen as 5 cm-. This gave 70 intervals covering the region of interest, 505 to 855 cm. This choice of interval gives a reasonable resolution without involving excessive-eomputing time. The line intensities and positions were computed using the procedure described in Appendix B. These results were punched on cards which were then used as the data for a program which, (1) scanned across the spectrum of lines, dividing it into 5 cm intervals; (2) grouped the lines in each interval into 5 intensity subgroups; and (3) evaluated the mean intensity and counted the number of lines in each subgroup. This procedure was carried out for the six temperatures for which the line intensities were evaluated, and again, only shifting the measure66

67 ment grid by 2.5 cm-l (staggered grid). These results were also punched on cards to provide an input for the transmissivity program. The transmissivities were calculated using the procedures outlined in Section 3.5.20 Since computations were available for only six temperatures, viz,, 175, 200, 225, 250, 275, and 300~K, it was necessary to place the temperature at which the transmissivity was to be evaluated into one of six groups defined by, 162.5 to 187.5, 187.5 to 212.5, 212.5 to 237o5, 237.5 to 262~5, 262.5 to 287.5, and 287.5 to 312.5. The line profile used in the transmissivity calculations were chosen according to the procedure given in Section 3.4~7. Wyatt et al. (1962) used the Benedict modification of the Lorentz line shape in the great majority of their calculations (cf., 3.4.2). Some of the transmissivities were calculated using this modification for the wingso It gives an exponential die-away for the wings and only applies at distances exceeding 2.5 cm-1 from the line centero Most of the experimental results give absorptivities rather than transmissivities, and usually the total absorption for the band. The transmissivities calculated above are average transmissivities over a 5-cm-1 interval. Thus it is easy to calculate the integrated transmissivity or absorptivity for the band to compare with other calculations and experimental measurementso The experimental measurements made at Ohio State University and recently published by Burch et al. (1962a,b) are compared with the

68 theoretical calculations. Yamamoto and Sasamori (1958) have also carried out calculations of the integrated absorptivity for the 15micron carbon dioxide bands using a fairly detailed calculation scheme which would be rather difficult to adapt for machine computation. Figure 2 displays the results of the calculation and the measurements of Burch et al. (1962b). Burch et al. (1962b) used a wide slit in their measurements since they were interested in obtaining the integrated absorptivity for the whole band and for fairly large sections of the band. The calculations are presented in the form of a histogram since the calculated transmissivities are average values for an interval, in this case 5 cm-1. Use of the quasirandom model apparently underestimates the transmissivities for the Q-branches. At low pressures the model appears to underestimate the transmissivity for the whole band as shown in Figure 2(c)o However, at pressures as low as this, the experimental error becomes greatesto Table VII presents values for JA. dv calculated using the quasirandom model and taken from the experimental results of Burch et al. (1962b). Av is the absorptivity. The integration extends from 545 to 855 cm-1. Wyatt et al. (1962) have suggested computing the transmissivities using the staggered and unstaggered grids, then taking a running mean of both sets of values. This should give improved accuracy only if the transmissivity for a small interval were desired but should have very little effect on fAW dv. This was verified by calculation.

69 1'0 k' I I I I 1' I I "IN a /.9 Pressure = 624.67 mb Tmp = 300~K U = 3.14 atm. cm..8 -, --- Burch et al. (1962 b).7\ i --- This calculation L\ I II.7 I.5. I —-.4.3 I.2 *1, I I - 600 620 640 660 680 700 720 740 Frequency (cm-') (a) Figure 2. Calculated and experimental transmissivities vs. frequency for different pressures and optical masses. 760

70 1.0.9.8.7 >.6'0) _-.5 L. t-A.3.2.1 0 660 680 Frequency (cm-') (b) Figure 2 (Continued)

71 1.1 E V) L..9 O Pressure =0.52 mb. i - Temperature =300~ K l I U =0.58 atm. cm. --- Burch et al. (1962b) ~ - - This calculation, I I, I I, I, I, I, I.8.7 600 620 640 660 Frequency (c) 680 (cm-') 700 720 740 Figure 2 (Concluded)

72 TABLE VII COMPARISON BETWEEN VALUES OF fA1dv CALCULATED USING THE QUASIRANDOM MODEL, AND EXPERIMENTALLY MEASURED BY BURCH ET AL. (1962b) Pre s sure (mb) 0.520 1.386 5.025 8.377 20.793 40.254 84.772 207.93 405.20 1022.3 Temperature (~c) 26.5 27 27 27 27 27 27 27 27 27 Optical Mass (atm cm) 0.58 1.553 5.56 9.20 5.73 5.73 5.73 5.73 5.73 5.73 fAvdv (cm-l) Experimental Theoretical 3.37 5.80 8.86 10.07 21.7 26.71 32.6 39.34 34.6 43.29 43.8 53.95 54.7 67.33 69.5 83.62 81.9 93.98 95.3 103.86 Figure 5 displays fAv dv vs. the optical mass (in atm cm) for pressuresof 1 atm and 0.2 atm. In this figure the results of this calculation, the calculation of Yamamoto and Sasamori (1958) and the experimental measurements of Burch et al. (1962b) are presented. It is evident that Yamamoto and Sasomori's calculations agree best with the experimental results. Also the results given by Wyatt et al. (1962) agree more closely with the experimental results than this calculation does. In bouh these calculations the strength of the second strongest band (cf., Appendix B) is taken as 16.6 cm1 (atm cm)while Madden (1961) gives 30 cm-l (atm cm)l for this band. Madden's value was used in the present calculations. The Benedict modification of the Lorentz formula for the wings

75 160 140 120 IE -0 100 80 60 40 20.01.1 1 10 U (atm. cm. ) (a) 100 Figure 3. fAydv for pressures of vs. optical mass 1 and 0.2 atm.

74 160 ^ en IIII L.IViU I ivI I I va.tJ. U I W VI * u L. l III, 1 o Burch etal. (1962 b) Tmp 300 K A Yamamoto & Sasamori (1958) 140 x 120 E 100 80 x 60 40 20.01.1 1 10 100 U (atm. cm. ) (b) Figure 3 (Concluded)

75 will increase the transmissivity slightly or decrease the absorbitivity a little. On testing this modification of the Lorentz formula, it was found that it only reduced the integrated absorbtivity fAv dv by between 1 and 2 percent. This is inconsequential. It is disappointing that the calculated transmissivities are not closer to the experimental values. It would be possible, but not very satisfying, to apply an empirical correction to the transmissivities calculated for the Q-branches. If the frequency interval over which the average transmissivity is determined using the quasirandom model (in this case 5 cm l) were reduced to, say, 1 cm 1, then a corresponding increase in accuracy should be evident. Unfortunately, this would increase the computing time considerably. Since this study is essentially a pilot investigation, it was felt that this could be investigated later and the transmissivities calculated using the 5 cm1 intervals accepted, realizing their limitations. 4.1.2' Test of Approximate Methods for Performing the Angular Integration in the Flux Equation The theoretical bases for the various approximate methods for performing the angular integration in the flux equation were discussed in Section 3.6.2. The equation for the upward directed flux may be written (cf., Section 3.1)

76 +1 F+(T) = 2 / E(v,Tg) 7v(TgT)[ dp dv v o T +1 + 2n E(v,Tt) Y7v(tT) t d) dt d v Tg 0 If only a slab (T1,T2) is considered, then the upward directed flux at T1 due to the slab (T1,T2) where T1<T2 is given by, F+ (T1) = 2r T1 +1 E(v,Tt) T.2 0 aYV(t,1rl) Vi dki dt dv at If it is assumed that (T1,T2) and also that a mean value of E can be used for the slab E does not vary much with frequency then F+ (T) = T +1 2 T2 V T2 0 av(t'_Tl) 1i d4t dt dv at +1 = 2tE / / (7v(T1,T) - YV (T2,T1)) i dt dv V 0 (4.1.1) = ijE 1 - 2 / yV(T2,Tl) dJ dv UU- = rE 1 - 2 \ e- (2-Tl)/I dtI dv 0o

77 Now let I = - 1 - 2 e-(2-Tl)/ di d (4.1.2) -XJ I is proportional to the flux emitted by the slab to space. The angular integration in Eq. (4.1.2) was performed using 4- and 2-point Gaussian quadrature as well as for 5 = 1.543 and 1.66. The frequency integration was from 577.5 to 757.5 cm-1, since the transmissivities from 507.5 to 577.5 cm 1 and from 757.5 to 852.5 cm-1 were unity in all thecases considered. Table VIII lists the values of I* obtained using Eq. (4.1.2). TABLE VIII VALUES OF I* OBTAINED USING VARIOUS APPROXIMATIONS FOR THE ANGULAR INTEGRATION (I* is in cm-1 sterad and the temperature is 175~K) Gaussian = 1.543 = 1.66 4-point 2-point P = 10 101.92 101.9 2 2.45 100.26 101.78 U = 25.0 atm cm P = 1013 mb 4.01 4.11 3.33 3.57 U = 0.02 atm cm P = 20 mb 11.22 11.33 10.54 10.93 U = 0.6 atm cm It is evident from Table VIII that there is very little difference

78 between the 2- and 4-point Gaussian. ~ = 1.66 gives results closer to the 2- and 4-point Gaussian values than 5 = 1.543, thus confirming Elsasser's (1942) assertions. In this study the 2-point Gaussian quadrature formula is used to obtain acceptable accuracy with minimum computing. 4.1.3 Test of the Validity of Using the Lorentz Line Shape at Pressures Lower than 20 mb Plass and Fivel (1953) discussed the possibility of using the Lorentz line shape up to heights of 50 km (approximately 0.8 mb). They were able to show that for very strong lines the radiative transfer would be the same as calculated using the Lorentz line shape up to 50 km. The reason is that for a strong line only the transfer in the wings is important. As shown in Eqs. (3.4.6) and (3.4.7) the wings are described by the Lorentz shape for all pressures. Also for weak lines they found the Lorentz line shape was satisfactory up to 50 km. This is because the total emission of a weak line determines the radiation loss. However, for lines of intermediate strength they note that Doppler effects must be considered. Lines of intermediate strength are very important for radiative transfer. It was decided to test the possibility of using the Lorentz line shape at pressures lower than 20 mb (approximately 26.5 km). Now, as shown in Eq. (4.1.2) the quantity I is proportional to the upward flux from the slab (T1,T2). This is a convenient quantity

79 to use in the test of the approximation. Table IX shows the result of the calculation. I* was determined using 2-point Gnussian quadrature for the angular integration. TABLE IX COMPARISON BETWEEN I* EVALUATED USING THE LORENTZ AND THE LORENTZ BROADENED DOPPLER LINE SHAPE (THE SHAPE) AT PRESSURES BELOW 20 MB LINE SHAPE MIXED LINE - - - Pressure (mb) 20 10 5 2.5 1.25 0.625 0.35153 Height (km) 26.6 31.2 36. 41. 46.4 52. 57.5 Temperature (~K) 275 250 250 250 250 250 250 1.5 0.75 0.375 0.188 o.0938 0.0469 I* (cm-1 Lorentz 18.72 19.96 10.84 5.68 2.92 1.48 0.60 sterad) Mixed 20.78 21.80 12.70 7.67 5.08 3.88 3.30 The transmissivities for the mixed line shape were evaluated using the procedure outlined in Section 3.4.7. It is easy to see from Table IX that using the Lorentz line profile introduces considerable error when applied to a whole band at pressures lower than 20 mb. In this study, for pressures lower than 20 mb, the mixed line shape is used according to the procedure of Section 3.4.7. Actually, as seen in Section 3.4.6, Doppler effects begin to be felt as low as 30 mb, but the error involved in neglecting them from 30 to 20 mb is reasonably small.

80 4.2 EVALUATION OF THE SOURCE FUNCTION FOR VIBRATIONALLY RELAXING CARBON DIOXIDE In section the radiative transfer equation for a vibrationally relaxing gas was discussed and an integral equation was derived for the source function, viz., VT J(V,T) = a(T)E(v,T)+P(T) ) ] V kv I(vTo,+[)e do dv 0 (4.2.1) + P(T) / ~ 0 V' kv J(v,t)Eil( t-T )dv dt As noted in Section 3.3, J(v,T) is a slowly varying function with frequency and it may be assumed to be approximately constant for the band. Also, as is evident from Eq. (4.2.1) J(v,T) is isotropic. Using these two facts Eq. (4.2.1) may now be written. J(T) = Ua(T)E(T)+P(T) k + P(T) 7 (t) I 0 V +1 / v I(v,To,+)e( o-( -)/ d dv 0 (4.2.2) kV Eil(lt-T )dv dt where J(T) band. and E(T) are average values of J(v,T) and E(V,T) for the Now kv is given by the Doppler formula at the heights where vibrational relaxation must be considered. The wings of the lines are

81 given by the Lorentz formula, but due to the low pressures the wing effects can be neglected to a reasonably good approximation. Thus, s D n 1/2 = v D n2 exp _ (v-v In 20 L_ CD2 n J (4.2.3) which is the equation appropriate for a normal distributiono It is well known that as the standard deviation of a normal distribution tends to zero, then the normal distribution may be represented by a Dirac delta function, b(x), which has the very useful properties, CO / &(x) dx = 1.00 00 / &(x-Xo)f(x) dx = f(xo) -00 -4 -1 The Doppler line half-width is quite small, around 5.6 x 10 cm and 00 1 V k dv = -00 1 Therefore we may write to a good approximation, kv = Ss(v-Vo) In other words,at very low pressures the individual rotational lines of the band, including even the Q-branch, may be considered as separate

82 and nonoverlapping. Equation (4.2.2) may now be written J(T) = C(T)E(T)+P(T) Sj / (v-Vj) I (v,o,+ )e-(~0-T)/ da dv j=l -00 ~ m + P(T) J(t) S (v- )Eii(|t-T|)dv dt o j=l (4.2.4) m 1 U(T)E(T)+P (T) S j I(V,,T,?+kt)eTT0 di + P(T) ~(to ) SiLEil(t-TI) dt " o n-=li I(vj,To0,+~) can be evaluated rather easily using Eq. (3.1.2a). It has to be only evaluated for the frequencies of the line centers and for the 15-micron fundamental.*. The level corresponding to To was taken as around 65 km. A program was written to perform this calculation. Account was taken of the wing effects due to neighbouring lines at the higher pressures. To perform the angular integration in Eq. *It was noted in Section 3.2 that at levels where vibrational relaxation must be considered the optical mass of CO2 has become so small that only the 15-micron band will have much influence on the radiative transfer.

85 (4e2,4), 4-point Gaussian quadrature was used. Thus I(vj,To,+~L) has to be evaluated for four angleso Not unexpectedly, it turned out that for the strong lines, I(v,To0,+|) was given by the black-body specific intensityo Now Eq. (4o2.4) can be written, J(T) = g(T) + (T) K(t,T)J(t)dt (4.2.5) To This is a Fredholm integral equation of the second kind, which is inherently simpler to solve than if it were of the first or third kind. The simplest method of solution is to use a quadrature method for evaluating the integral term. Thus, n m J(tk) = g(tk)-P(tk) n i ((tk) XSj Eil tj t)dt i=l ~til j=l (4.2.6) where tn refers to the top of the atmosphere and to to the level T0. If J(tk) is assumed constant over the intervals (ti,til), then n t m f / J(ti) X Sj Eil(ItJ-tkjl)dt i=l ti-l Jil (4.2.7) n m tj - lJ(ti) Sj Eil( _t )dt i=l j=l i-l

84 It is easy to show by integration by parts that b Eil(x)dx = (bEil(b) - a Eii(a))-(e -ea) a Thus Eq. (4.2.7) now becomes n m iJ(ti) ZSj(ti-tJ)Eil(|ti-t') i-=l j=l i~l j=~ - ( t)Eijjt I')-exp(-tlt oj)tk 1 — 1 1 k k (4.2.8) n + exp(-iti -1tk ) = - bki J(ti) i=l Equation (4.2.6) may now be written n J(tk) = g(tk)+P(tk) bki J(ti) i=l (4.2.9) It is convenient to take tk as the optical thickness (tk+tkl)/2. Now Eq. (4.2.9) may be expressed as Z ki - P k g(tk) 1Lki - (tk ((tk) (4.2.10)

85 This is a set of n simultaneous equations in the n unknowns J(ti). These equations may be written Ax = (4.2.11) where A is the matrix [aki] with aki = bki-6ki/3(tk). x is the vector [J(ti)] and c is the vector [-g(tk)/P(tk)]. It turns out that the matrix A has a rather special form. A is a diagonally dominant matrix. It thus has a unique inverse and consequently Eq. (4.2.11) has a unique solution. It was noted in Section 3.2 that the vibrational relaxation time for C02-air mixtures probably lies between 10 and 10 sec at 1 atm. The source function J was evaluated for the region 65 to 100 km using relaxation times of 10-5 and 10- sec at 1 atm. The U.S. Standard Atmosphere (1962) was used for this region. The relaxation times were assumed to be independent of temperature for the range of values encountered in the atmosphere. The region from 65 to 100 km was divided into 17 layers each approximately 2 km thick. Equation (4.2.11) therefore consisted of 17 simultaneous linear equations in 17 unknowns. They were solved on a digital computer using a Gauss-Jordan elimination technique. A convenient way to represent the results is to plot J/E vs. pressure. J is the source function calculated using the procedure outlined above and E the mean black-body specific intensity for the

86 layer. Figure 4 displays the results of this calculation as well as those obtained by Curtis and Goody (1956). In their calculation, Curtis and Goody used line strenths and temperatures which were different from those used in this study. They also used an essentially different method. Nevertheless there is fair agreement between the Curtis and Goody curve and the one obtained using a relaxation time of 10 sec. The results obtained with a relaxation time of 10 sec are similar to those of Curtis and Goody but displaced to higher pressures. Both the relaxation time and the radiative lifetime of the C02 molecule need to be known as accurately as possible so that the source function may be accurately computed. The results obtained in this study indicate that vibrational relaxation must be taken into account in radiative transfer calculations somewhere between 60 and 75 km. The source function was also evaluated for a warm mesosphere such as is observed over Fort Churchill during winter. The temperature profile for this case is shown in Figure 5. A relaxation time of 10-5 sec was used. For this situation the ratio J/E is very little different from that evaluated for the standard atmosphere except for pressures below 2 dynes cm2. Table X presents a comparison between J/E and G/(G+X) for selected levels.

1.0 - S - -- o Curtis & Goody (1956) X= 1.5 x 10-sec at ] A This calculation (Standard Atm) 5 o This calculation I atm..8.*~8 (Wrm Mesosphere) J @ This calculation X= 106sec at 1 atm. (Standard Atm).6.4.2 10 10 10 10 Pressure (dynes cm"2) 10 10 Figure 4. J/E vs. pressure.

88 100 90 80 70 60 50 * 40 30 20 10 X 10 190 200 210 220 230 2 190 ~ ~ ep2 TmIp (~ K) re 5. Temperature profi3e or war mesopere case, from Stroud aet (1960) 0 270

89 TABLE X COMPARISON BETWEEN J/ AND G/~+\) FOR THE U. S. STANDARD ATMOSPHERE (1962) the average pressures and temperatures foi (P and T are r 2-km layers) P(dynes 6.857 3.498 1.785 9.103 4.645 2.370 1.210 6.172 3.149 cm-2) (1) (1) (1) (-1) (-1) T(~K) 224 208 192 181 181 181 183 197 209 \(1 atm) = 10-5 sec -J/E _ GA /(+ A).74.74.59.59.44.42.29.27.19.16.12.o88.077.047.045.024.027.013 \(1 atm) = 10-6 sec E/( +\).97.97.94.94.88.88.80.80.68.66.55.50.41.34.27.20.17.11 The first term on the right-hand side of Eq. (4.2.2) is a((T)E(T) where a(T) = e/(G+\) The results presented in Table X clearly show that this is the dominant term in Eq. (4.2.2) with the remaining terms becoming of significance at lower pressures. It is instructive to examine the approximations which have been used in deriving the above results. The matrix A in Eq. (4.2.11) is very strongly diagonally dominant. The diagonal term for the first few rows is, in fact, about three orders of magnitude greater than the next largest element in the same row. The nondiagonal elements are the bki defined in Eq. (4.2.8). Tracing back to Eq. (4.2.1), the bki are formed to be associated with

90 T VI t o A kv J(vt)Eil( t-T|) dv dt o v T Vtt T S (t) kv Eil(It-Tl) dv dt o v The integration over frequency was performed by assuming that kv could be represented bytheDirac delta function. A rough calculation showed that the integral was overestimated for strong lines, approximately correct for intermediate strength lines -l -2 -1 1 (10 -10 cm (atm cm) ) and slightly underestimated for weak lines. However it would take a considerable error in the bki to influence the large diagonal terms. A similar statement applies to the bii in the diagonal elements. The diagonal dominance of A is the most important facet of the problem. The remaining term to be considered is -g(tk)/P(tk). Now g(tk) a(T)E(v,T) +- k I (VTo,+ki)e\ //) dTi dv P(tk) - P(T) 0 (4.2.12) The first term on the right-hand side of Eq. (4.2.12) can be accurately evaulated. It is of the order of the diagonal elements of A, about 104 at 65 km decreasing in value with increasing height. The delta function approximation was used to evaluate the second term. Again

91 a rough calculation shows that the integral is overestimated for strong lines, approximately correct for intermediate strength lines and slightly underestimated for weak lines. The errors would be most important at lower pressures; at higher pressures the first term is larger than the second term by about an order of magnitude. It is difficult to arrive at an accurate estimate for the errors introduced by the above method for determining the source function. The above discussion serves to point in what direction the errors lie. The difficulty in comparing these results with those of Curtis and Goody (1956) is that they use a somewhat different method. Essentially they compute the cooling rates and then use these values to determine the source function. To sum up, it appears from the results presented here that vibrational relaxation becomes of importance between 60 and 75 km. The lack of accurate values for the relaxation time and, to a lesser extent, the radiative lifetime for C02-air mixtures makes it difficult to accurately compute the source function. 4.3 FLUX DETERMINATION The equations needed for the flux determination were discussed in Section 3.1, They are

92 +1 F+(T) = 2t / J(v,Tg) / 7v(TgT) dp dv V 0 (4.3.la) T9 Fj +1 V(t T - 2 J(Vt) f ( dt dv V T 0 T +1 (T t) F_(T) =- 2-i J(vt) ( dT dt dv 6t v o o (4.53.lb) It is convenient to change from the optical thickness t, to the optical mass v. Equation (4.3.1) may now be written as F+(uj) +1 = 2t E(v,Uo) 7v(uo, uj) di d dv V 0 (4.3.2a) 0 ro +1 2n J(vv) 6Yv(v,uji) ai dvi dv av F_ (u~j) = -2rkt J (vv) 6v)i dt dv dvdv V Un 0 (4.3.2b) where uo corresponds to Tg and Un to To. Remembering that the transmissivities are average values over finite intervals then Eq. (4.3.2) may be readily evaluated by dividing the atmosphere into layers. The

93 angular integration may be performed using Gaussian quadrature. Then Eq. (4.5.2) becomes, 2 m F~(u ) = t H J( kuo)Yvk(uouj),k X (4.3.3a) Qm j-1 \ n + J(Vkui+l) (Yvk(ui+l'uj)-7vk(uiuj) )k) i1 i=o 2 m n-1 F (uj) = Hi Z J(vkui+l) (7vk(UjUi+l) (4.3.3b) YVk(Uj,ui))f 3 2 where HI and r are the Gaussian weights and abscissae, respectively. The optical masses and transmissivities are readily determined once the atmospheric model has been chosen. The carbon dioxide concentration was taken as 0.033% by volume (Glueckauf, 1951). Unfortunately there is some variation in the carbon dioxide concentration in the troposphere, but stratospheric and mesospheric concentrations probably remain more constant than tropospheric concentrations. The division of the atmosphere into layers poses some problems. It would be desirable to make the layers s thin as possible so that they would be more homogeneous. This introduces two difficulties.

94 First, the computing time for the transmissivities becomes excessive, and second, transmissivities for thick layers are required for the evaluation of the fluxes using Eq. (4.3.3). This is because the multiplication together of the transmissivities for the thin layers can introduce round-off error. The atmosphere was divided into 24 layers. Fairly thick layers, 8 in all, were chosen up to 10 mb. The remaining 16 slabs were obtained by dividing the previous pressure by 2. This gives layers about 3 to 4 km thick. The upward and downward directed fluxes were computed for the U.S. Standard Atmosphere (1962). The source functions above 60 km were obtained using the method discussed in Section 4.2. The fluxes were evaluated for the frequency interval 507.5 to 852.5 cm. Figure 6 displays the results of this calculation. These results agree reasonably well in shape with those given by Plass (1956b). It should be noted that the curves show very little change in slope at pressures lower than about.3 mb (around 55 km). This point will be taken up in the next section. 4.4 COOLING RATE CALCULATIONS The cooling (or heating) rate may be expressed in terms of the flux divergence dT 1 dF() (4.4.1) dt Cp p dz

95 100, I I I I I I I 90 80 70 60 - E50 40 I:3 Downward Upward 30 - Flux Flux 20 10 0.2.4.6.8 1.0 1.2 1., Flux (era crr2sec'1) Figure 6. Upward and downward fluxes for U. S. Standard Atmosphere (1962). 1.6 1.8 10 1.6 1.8x10

96 F(T) is the net flux at level T. Eq. (4.4.1) becomes Using the hydrostatic relation dT g dF(T) (4.4.2) dt Cp dp It is important to note that the evaluation of the cooling rate involves a differentiation. This will be a numerical differentiation. Unfortunately numerical differentiation can introduce appreciable error (cf., Hildebrand, 1956). Integration is a smoothing process but differentiation acts in the other direction accentuating any irregularities present in the data. It is useful to estimate what change in flux will give a reasonable cooling rate for a given pressure change. Table XI lists some values obtained using the fluxes obtained in Section 4.3. TABLE XI AF AND F COMPUTED AT SEVERAL REPRESENTATIVE LEVELS (U. S. STANDARD ATMOSPHERE (1962)) FOR A COOLING RATE OF 10K DAY-1 z p Ap F T = 1~K Day (km)..(dynes cm-2).(ergs cmf2 sec) Ffo AT = i K ay 4.6 (6).2 (6).775240 (5).338 (5) 20.5 (5).25 (5).120235 (6).299 (4) 35.5 (4).25 (4).152267 (6).299 (3) 50.625 (3).313 (3).163332 (6).374 (2) 65.781 (2).391 (2).167626 (6).465 (1) 81.489 (1).245 (1).168312 (6).292 96.306 (0).153.167751 (6).182 (-1) _

97 The Ap's correspond to 3 to 4 km thick layers. An examination of this table shows that the flux must be known as accurately as possible. The ratio AF/F is about 1.7 x 10-5 for a 10 K~day-1 cooling rate at 81 km, and about 2.8 x 10-4 for the same cooling rate at 65 km. These results imply considerable accuracy in the flux-evaluations. At higher pressures, due to the greater value of Ap for a given layer, AF/F becomes larger. For example at 55 km a AF/F of 9.8 x 10lO corresponds to a cooling rate of 5~K day-1 for the 3 to 4 km thick layer. Table XII presents the cooling rates computed using the fluxes determined in Section 4.3. TABLE XII COOLING RATES UP TO 30 KM FOR THE U. S. STANDARD ATMOSPHERE (1962) OVER THE FREQUENCY RANGES 507.5 TO 857.5 CM-' AND 630 TO 715 CM-' z p AT(~K Day-1) (km) (dynes cm-2) (507.5-857.5 cm-1) (630-715 cm-1) 1.89.8 (6) o.48 0.015 4.07.6 (6) 0.44 0.39 6.96.4 (6) o.4o 0.08 11.45.2 (6) 0.91 0.36 15.73.1 (6) 2.04 1.24 20.02.5 (5) 4.26 5.15 24.35.25 (5) 5.54 4.6 30.31.1 (5)

98 The cooling rates are given for the whole spectral region under investigation, 507.5 to 857.5 cm-1 and also for the region encompassing the 15-micron fundamental, 630-715 cm1-. Above 30 km the cooling rates become unrealistically large, for example AT(507.5-857.5 cm-1) equals 60~K day- around 50 km. At levels above 30 km the 15-micron fundamental will be the most important contributer to the infrared radiative transfer. By considering this band alone some of the "noise" introduced by the much weaker bands will be eliminated. Large cooling rates are still obtained with a maximum of 36~K day-1 at 55 km. This value is probably much too large. The cooling rate drops off rapidly above 60 km becoming almost zero around 70 km. Above 70 km a heating is indicated. This is probably spurious due to the influence of low pressures on the cooling rate calculations. Plass (1956b) gives cooling rates up to 70 km. His maximum cooling rate is about 6~K day-1 around 45 km. The values obtained in this study and those of Plass agree reasonably well up to about 30 km. Above 30 km the differences become more marked, Plass's maximum being about 1/5 that obtained for the 15-micron fundamental in this calculation. It is instructive to examine Plass's work in more detail. He evaluated the fluxes using essentially the same method as used in Section 4.3. Plass took laboratory measurements for the transmissivities instead of calculated values as used in this study. An important dif

99 ference between the two procedures is that Plass used the Lorentz line shape to 50 km. The mixed line shape was used above 25 km in this calculation. In Section 4.1.3 it was noted that using the Lorentz line shape above 30 km can introduce considerable error in flux calculations, the fluxes being underestimatedo Plass estimated the error in the upward and downward fluxes to be around 3% with the error for the cooling rates about 30% at 50 km becoming uncertain above 60 km. This error for the cooling rate might be somewhat optimistic due to the influence of Ap on cooling rate calculations at low pressures. A.25% error in the net flux at 50 km could correspond to a cooling rate o-e 10~K day-1. (cfa, Table XI) The transmissivity determinations are the main source of error in this calculation. The quasirandom model underestimates the transmissivity and unfortunately the flux calculations involve multiplying the transmissivities together to obtain transmissivities for thicker layers. Values for the transmissivities were only carried to 4 significant figures since the approximations used for the absorption coefficient at pressures lower than 20 mb do not justify greater accuracy. Much more accurate transmissivities are needed if fluxes accurate enough for cooling rate calculations are to be obtained. The logical solution is not to use a spectral band model but to integrate directly across the band to obtain the fluxes. If very thick layers are used the pressure change is large and the error can be reduced. For example, the cooling rate was 8.4~K

100 day-1 for the region 25 to 85 km calculated for the 15-micron fundamental. As noted in Section 5.3 Curtis and Goody (1956) give an expression for the cooling rate in terms of the source function, viz., dT _ 1.99 (J-E) dt X To use this expression it is necessary to know J as accurately as possible, particularly at the higher pressures. Table XIII presents the cooling rates obtained using this method above 80 km. TABLE XIII KM FOR U. S. STANDARD ATMOSPHERE (1962) COOLING RATES ABOVE 80 z (km) 80.5 82.5 84.5 86.5 88.0 90.0 91.5 93.5 95.5 97.5 99.5 p (dynes cm-2) 9.103 6. 50' 4.645 5.318 2.370 1.693 1.210 8.640 (-1) 6.172 (-1) 4.409 (-1) 3.149 (-1) AT(~K Day-1) X(1 atm) = 10-5 sec \(l atm) = 10-6 sec 22.8 64.8 17.6 58.7 13.4 47.9 9.5 45.o 7.2 37.9 5.4 30.2 4.2 26.8 3.8 26.8 3.2 24.4 2.6 21.2 2.2 18.3 The cooling rates below 80 km are very large and probably unrealistic. Also the cooling rates corresponding to x( 1 atm) = 10 sec are much

101 larger than those for <(l atm) = 10-5sec. The cooling rates are sensitive to the accuracy of J. If J is 10% too low then the corrected cooling rate at 80 km would be around 36~K day-1 and a 20% error would reduce the cooling rate to 12~K day-, both for M(l atm) = 10-6sec. In calculations of the type used to derive the source function J, it is probable that errors of this size could easily arise. It is difficult to decide on reasonable cooling rates for the atmosphere in the vicinity of the mesopause. The mesopeak at 50 km is situated at a temperature maximum. The temperature increases rapidly above the mesopause as the thermosphere is entered. Energy probably flows from these regions of higher temperature to the region of minimum temperature at the mesopause. Chamberlain (1962) investigated the nature of the mesopause but only considered conduction of energy from the thermosphere. His main conclusion was that 80 km should be the level of the mesopauseo He obtained cooling rates roughly comparable to those obtained by Curtis and Goody (1956). Unfortunately, energy may be transported by other means than conduction. Convection might be an important energy transporter from levels below the mesopause. In this case larger cooling rates might be in order. To sum up, it is evident that very accurate calculations are needed if reliable cooling rates are to be computed. It is possible that someof the errors might cancel giving a false impression of accuracy. Reasonable values for fluxes are not too dificult to obtain

102 but the accuracy required for the computation of flux divergences is much more difficult to achieve. Vibrational relaxation becomes of importance between 60 and 75 km but the source function J must be evaluated very accurately if cooling rates are to be determined with as little error as possible near the mesopause. 4.5 DISCUSSION OF THE PROBLEM OF COOLING RATE DETERMINATION In Section 4.4 it is demonstrated that the problem of calculating cooling rates in the stratosphere and mesosphere is difficult. As noted in the Introduction (Section 1) a knowledge of cooling rates is very important if dynamical investigations of the stratosphere and mesosphere are to progress beyond the most elementary stages. In this section the cooling rate problem is examined rather generally. If flux divergences could be measured in the atmosphere then an important advance would be made. Unfortunately this is a very difficult problem. An experiment designed to measure flux divergences would measure the upward and downward fluxes very accurately at two atmospheric levels. The flux divergences would then be calculated in the manner used in this study. As shown in Section 4.4 the net fluxes would have to be known very accurately if reliable flux divergences and cooling rates were to be obtained. The lower the pressure the greater the accuracy needed in the flux measurements. Kondrat'yev (1963) gives a complete discussion of the problem. His main conclusion is that only for very thick layers at lower pressures would it be pos

sible to experimentally determine reasonably accurate flux divergences. This is in agreement with the conclusions of Section 4.4 regarding theoretical, calculations based on essentially a similar procedure. The other method of calculating the cooling rate is based on an accurate knowledge of the source function J. It is probably only useful for the upper mesosphere. It was shown in Section 4.4 that an accurate knowledge of J must be known if precise cooling rates are to be determined. To calculate the source function accurate values for the vibrational relaxation time and radiative lifetime are required. Unfortunately both these quantities are not known very precisely at the moment. It will probably be some years before really good experimental measurements are available~ Equation (5e3.10) is the basic equation for determining the source function It is feasible to carry out the integrations over frequency by integrating numerically across the band. This is a task of great magnitu.deo This method of determining cooling rates might be inherently more accurate if good relaxation times and radiative lifetimes were known. It is interesting to note that if cooling rates for the upper mesosphere could be accurately measured then it would be possible to arrive at better values for the vibrational relaxation time for carbon dioxide.

5. CONCLUSIONS The foregoing study was initiated with the object of determining the possibility of accurately calculating mesospheric cooling rates. In the course of the investigation a number of more general problems associated with atmospheric infrared radiative transfer had to be examinedo It turned out that inherent inaccuracies in the methods employed limit the accuracy of the calculated cooling rates. Nevertheless the study has served to focus attention on aspects of the infrared transfer problem which require further study both experimental and theoretical. The main results are: (1) A table of the rotational line positions and intensities for 2080 carbon dioxide lines in the 12- to 18-micron spectral region. (2) The angular integration in the flux equations can be performed quite accurately using 2-point Gaussian quadrature. The use of an effective optical mass gives reasonable accuracy if sec O is chosen as 1.66, in agreement with Elsasser's (1942) result. (5) The use of the quasirandom model in cooling rate calculations is not satisfactory. The main reason is that at low pressures the model underestimates the transmissivities where they are needed as accurately as possible. 104

105 It also underestimates the transmissivities for the Qbrancheso This model is reasonably satisfactory if only estimates for fluxes and transmissivities are desired. An extension to the model was developed enabling it to be applied when Doppler broadening must be considered. (4) Using the Lorentz line shape at pressures lower than 20 mb can introduce appreciable error in calculations involving the whole band, for example, flux calculations. Plass and Fivel's (1953) conclusions that the Lorentz line shape can be used up to 50 km for strong and weak lines are valid. The importance of intermediate strength lines in calculations involving an entire band cannot be neglected. (5) The source function for vibrationally relaxing carbon dioxide was determined above 60 km for vibrational relaxation times of 10-5 and 10-6sec at 1 atm. The value of the source function and the level at which relaxation becomes of significance were greatly influenced by the choice of vibrational relaxation time. The results obtained in this study indicate that local thermodynamic equilibrium starts to break down between 60 and 75 kmo

Lo6 (6) Cooling rates in the stratosphere and particularly the mesosphere are difficult to obtaino This is due to the high accuracy required in the flux calculations and in the source function when vibrational relaxation is consideredo Values up to 30 km appear reasonable but increase to unrealistically large values above this height. A cooling rate of 804~K day-1 was determined for the very thick layer 25 to 85 kmor Above 80 km cooling rates evaluated using Eq. (3.3e11) and a relaxation time of 10- sec appear reasonable However, it is difficult to decide on reasonable cooling rates in the vicinity of the mesopause due to the complicated processes involved in energy transport in that region.

6. SUGGESTIONS FOR FURTHER RESEARCH The preceding investigation indicates that it would be desirable to evaluate fluxes by integrating directly across the band rather than use spectral band models. Unfortunately this is a time consuming task and would take considerable time even using present day digital computerso The use of spectral band models can introduce appreciable error. Consequently it is probably fruitless to attempt the development of more complicated models. The more complicated the model, the greater the computer time needed in using it to evaluate transmissivities. The quasirandom model consumed a considerable amount of computer time. A more accurate value for the vibrational relaxation time of CO2air mixtures is urgently needed. This is a very elusive quantity to arrive at either experimentally or theoretically. A precise knowledge of the quantity is necessary if worth while values for source functions and cooling rates are to be obtained for the upper mesosphere. Experimental measurements of the flux divergence at mesospheric levels would be extremely useful. Unfortunately, as noted previously, this is an exceedingly difficult task and some years will probably elapse before such results are obtained. One important aspect of the infrared radiative transfer problem should not be overlooked. More accurate laboratory measurements of 107

.08 carbon dioxide band strengths in the 15-micron region are required. High-resolution studies of the bands at low pressures would show the influence of foreign gases on the line shape. Most of the laboratory measurements to date have been made using either pure carbon dioxide or carbon dioxide-air mixtures with large percentages of carbon dioxide. Ideally, measurements should be made over long path lengths with. very low carbon dioxide concentrations.

APPENDIX A PHYSICAL DETAILS OF THE CARBON DIOXIDE MOLECULE The carbon dioxide molecule is a linear triatomic molecule. This linear structure of the carbon dioxide molecule makes it easier to deal with theoretically than, for example, water vapor and ozone, both of which have triangular structures (cf., Herzberg, 1.945). Since the activity of a molecule in the infrared depends on change of its electric moment, the manner in which it vibrates is very important. Figure 7 shows the possible modes of vibration for a linear molecule such as carbon dioxide. Change in electric moment 0 C O Mode none 0 V0 0- 0- 0 J V2 in out in I i A 0- 04 3 Figure 70 Possible vibrations for the carbon dioxide molecule and changes in electric momento In mode v1 the carbon atom does not move and thus the electric moment is zero and does not change with the vibration of the oxygen atoms Thus there are no pure rotation lines for carbon dioxide as 109

110 in the case of water or no vibration-rotation band at the frequency v1. The vibration V2 is the degenerate representation of two equal frequencies and the band corresponding to the fundamental of v2 is centered about 15-microns (667.3 cm-l). The v2 mode is sometimes called the bending mode. The v2 band has a strong Q-branch which indicates that the change in electric moment is perpendicular to the axis of symmetry. The fundamental associated with the V3 mode is around 4.3 microns (2349o3 cm-1), the v3 mode is sometimes called the valence modeo The Q-branch associated with this mode is weak indicating that the change in electric moment is parallel to the axis of symmetry. The fundamental vibration vi may be studied using the Raman effect. It is found that the intense Raman line at 1340 cm-1 is really two lines at 1285.5 cm- and 1388.3 cm-1. This puzzling effect is due to 2v2 being very close in frequency to v1, and a Fermi resonance thus takes place. The Fermi resonance effect occurs if two vibrational levels belonging to different vibrations (or combinations of vibrations) have nearly the same energy, then a "resonance" occurs which leads to a perturbation of the energy levelso The Fermi resonance causes many combination bands of carbon dioxide to be displaced from their normal positions. As shown in Herzberg (1945) the total vibrational energy is given by: E(V'lV2,VS,ooo) = h Vi(vl+l/2) + h v2(v2+1/2) + h V3(v3+l/2)+...

111 or the term values by G(vl,V2,V3,...) = l(1v + 2 ( + - 3 + -. where G(V1,V'2,V3*...) = E(v'1,vV3,..-)/hc The vi's are the vibrational quantum numbers and ui's are the classical vibrational frequencies. If the molecule is doubly degenerate, as is the carbon dioxide molecule, then two of the Cws would be the same. Stull et al. (1962) give a formula for the unperturbed energy levels of carbon dioxide to third order, viz., G(vlv2,V3:g) = X ivi + 1 d )+ ) Xij(i + d) Qj +Id 2 2 2 2 2 2 j=lj>ik>j where di is the degeneracy index associated with the vi mode (for carbon dioxide, di = d3 = 1, d2 = 2). The vibrational constants cl, xij, Yijk, g22, may be expressed in terms of the potential constants of the molecule but are usually determined experimentally. I is a quantum number associated with the degeneracy of one mode. It is the angular momentum (in units of h/2Tr) of the molecule about the symmetry

112 axis of the degenerate vibration (for carbon dioxide the v2 mode is degenerate) and has the values ~v ( vp2 ) (v2 -4 ).,~l or 0 Generally the positive and negative levels coincide but under the influence of rotation the levels split, this is i-type coubling. The vibrational transitions in the infrared are dipole transitions with the following selection rules applicable (Herzberg, 1945). Ai = 0 2 - even, vs - odd At = ~1 v2 - odd, vs - even These apply for symmetric molecules such as carbon dioxide. Figure 7 lists the vibration bands of importance in the 15-micron region of the spectrumro Levels for which all the vibrational quantum numbers vi are zero except one are called fundamental levels and naturally the ground state has all the quantum numbers zero. Thus a transition involving a fundamental level and the ground state is called a fundam.ental frequency and in absorption due to the greater population of the ground state, a fundamental frequency is the strongest. In Figure 7 only one fundamental frequency is evident, band 1, and it is also the strongest. When only one vi is different from zero but greater than one, then the level is called an overtone level; and when two or more of the vi's are greater than zero, then the level is called

113 a combination level. Transitions which end at levels higher than the ground in absorption are called difference frequencies or difference combinations. Thus in Figure 7 all the bands except for band 1 are difference combinations. Now if a vibration band of a molecule, such as carbon dioxide, is examined using a high-resolution spectrometer it is found to consist of a large number of individual lines. This fine structure is a consequence of the rotation of the molecule. The rotational energy of a linear molecule is given by (Herzberg, 1945), Fv(J) = BvJ(J+l) (A.2) where J is the rotational quantum number and B\ = Be - iv + (A.5) i where di is the degree of degeneracy of the vibration, ai are constants for each molecule and Be is the rotational constant. In the case of carbon dioxide i has a maximum value of 3. The rotational quantum number J corresponds to the total angular momentum and, in general, takes on the values, Q, ~ + 1, ~ + 2... For a molecule such as carbon dioxide (C1 02 is only being considered) the rotational levels are alternating symmetrical and antisymmetrical

114 and consequently J = 0,2,4,... when =- 0 This is because the ratio of the statistical weights of the antisymmetric and symmetric states is s/(s+l) where s is the quantum number for the nuclear spin. For 06 s is zero and consequently the statistical weight for the antisymmetric rotational levels is zero. For I greater than zero, each rotational level is doubly degenerate and thus alternate levels are present. Combining the effects of vibration and rotation gives the total energy of a level as T = G(v1,v2,V3:I) + Fv(J) (A.4) The frequency of a line in a vibration-rotation band is then given by v = Vo + Fv(J ) - Fv(J" ) (A.5) where vo is the frequency of the band center, J' is the rotational quantum number for the upper vibrational state and Jt that for the lower. As is to be expected certain selection rules must be obeyed, viz., (1) I = 0 in both upper and lower states (|| bands) AJ = ~ 1, only P- and R-branches, no Q-branch (AJ = +1 corresponds to a R-branch, AJ = -1 corresponds to a P-branch and AJ = 0 corresponds to a Qbranch)

115 (2) Al = ~ 1 (I bands) AJ = + 1, P-, Q-, and R-branches are present with the QAJ = 0 branch stronger than either the P- or R-branches. (3) A = 0, but ~ / 0 (I bands) AJ = + 1, P-, Q-, and R-branches are present with the QAJ = 0 branch weak Table XV lists the quantum numbers for the upper and lower states of the carbon dioxide bands in the 15-micron regiono For all the bands Al = ~1, hence the bands all have strong Q-branches.

APPENDIX B CALCULATION OF THE LINE POSITIONS AND INTENSITIES FOR THE CARBON DIOXIDE BANDS IN THE 15-MICRON REGION OF THE SPECTRUM The positions of the rotational lines of the various vibration bands in the 15-micron region may be determined using Eq. (A.5) with the following rotational constants (Stull, et al. 1.961) Be al a2 3 o.3925 0,00058 -0.00045 Oo00307 The intensity of an individual rotation line (if a rigid-rotator model is assumed) is given by v' AJ.' -le-ehc /kT) -hcFv.(J:)/kT SJ, - Q1jVO (l-e o/kT) (B1) where Sv: is the total band intensity, Qj the rotational partition function for a rigid rotator given by Qj = j(2-+l)e-hcFv(J )/kT j?? which may be approximated by (Herzberg, 1945), Q T + 1 hob+ + 4+ ehc\q 1+... (B.2) kT h l1 h 1 cBe 4 (h 1hcBe 51 T (B 2' T hcBe 5 15 kT 315 kT 515 kT1 116

117 gj,., is a weighting function given by gj~,, = (2J?+1) for PT 0 gj, I = 2(2J3+1) for' i 0 and g = 1 for It or P? = 0, g = 2 when neither ~' or P' = O. The jv? values of (AJp y, ) are tabulated by Penner (1959) using Dennison's (1931) valueso Equation (BIl) may now be written v -hcv/kT -hcFv(J' )/kT S t, F(J'')v(l-e )e Sj i = (B.3) Qjvo( l-e-hco/kT where F(XJ ) gj, (A.j, )/g Only certain values of F(JT7) are required, these are given in Table XIVo An interaction which slightly modifies Eqo (Bl) is the Coriolis vibration-rotation interaction. Madden (1961) notes that a consideration of the Coriolis interaction leads to Eq. (B.1) being multiplied by (li-m)2 where m is the ordinal number of the line and G is a parameter depending on the strength of the Coriolis interaction and the vibrational transition. Using experimental. data, Madden has obtained a value for

118 TABLE XIV VALUES FOR F(J") F(J") = (J" + 2)/2 AJ = +1 I" = 0 (2J" + 1)/2 AJ = 0 Al = +1 ( ( - 1)/2 J = -1 F(J") = - J"/2 AJ = +1 I' = 0 (2J" + 1)/2 AJ = 0 L = -1 L(J" + 1)/2 AJ= - F(J") = (J" 2~ J" = +1 4(J" + 1) O, Q=OI(2J" + 1) (J" + 1 + 1") (J"T 1") = O 4j"(J" + 1) A= + 1 (J - 1 + ") (J" 1") AJ=1 < = +0.0035 for the (020:0) - (010:1) band of CO2and Benedict has predicted < = +0.0016 for the 15-micron fundamental which has not yet been experimentally verified. In this work the Coriolis effect has been neglected. VI The band strength S,, is given by vI Sv = SJ J It has been shown (cf., Madden, 1961) that

119 V'TI 8T33N O [1-e-hcvo/kTl IRVt, 12g e-hcG(v',elt)/kT S, = --- (B.4) v 53hc qv where Qv is the vibrational partition function, No is the molecular V t density at 300~K and 1 atm, Rvtt is the vibrational transition moment and g is the weight factor given above. Qv may be represented by (Herzberg, 1945), oh0&T -di Qv = 1(1-e-vi/ ) i where vi are the frequencies of the fundamentals and di are the degrees of degeneracy of the vibration vi. When Eq. (B.3) is used to calculate the intensity of a rotational V! line a difficulty becomes apparent. The band strength Svr i varies with temperature and is generally given for just one temperature. This difficulty may be circumvented using a scheme given by Stull et al. (1961). Equation (B.3) may be written (vt, O) -hcv/kT -hcFv(J" )/kT C(vl, t,)F(J')v(l-e )e (B sj.. ------ (B.5) vo (l-e-hcvo/kT) where (V' ) v C(V, I T) = SI,/Qj (B.6), ~~V

120 (v7t f T) Using Eqs. (B.6) and (B.4) C(v?,?) for any vibrational transition (v,2R) and temperature may be related to C(v&,:, ) for another vibrational transition and temperature. Therefore (v' ~2? ) C (,r I )(T),9V TII (I C:)* Q((TT ) N (T) Fex hc v' - R (v I )*c(T No(To)Q(T) ep To (B.7) G(v,?.9 II Tl -hcvo/kT g vo(l-e- o/kT) g*vo*( l-e-hCo*/kTo) where Q is the total partition function Q = QV QJ and R (v' ) 2 (v', )* 2 IR = IR(v.. t)l / "I R(V,t'I ) I The * refers to some standard state. The value of the normalization constant C(vv?, )* has been determined by Stull et al. (1961). They give C 00:0) (300~K) = 0.69 It is reasonable to assume No(T) = No(To). Values of IR are given by Stull et alo (1961) based on data of Yamamoto and Sasamori (1958). Madden ( ) has given some newer data for Sv and R the vibrational transition (1961) has given some of the transitions considered by Yamaional transition moment for some of the transitions considered by Yamamoto

121 and Sasamori. If T = T. then from Eqs. (B.4) and (B.7) v' he C,, Vo*g* Svt exp s- ~-G(vtt,')*-G(V",i")r IR = (B.8) VO g Sv,,* If the * refers to the 15-micron fundamental then IR may easily be evaulated. Table XV gives value for IR computed by Stull et al. (1961) TABLE XV VIBRATIONAL QUANTUM AND IR FACTORS FOR NUMBERS, BAND CENTERS, BAND INTENSITIES, 14 BANDS IN THE 15-MICRON REGION FOR A TEMPERATURE OF 300~K Band Level Band Band Intensity (cm-2 atm'-) IR Ba nd Code Lower Upper Center Yamamoto and Madden Stull Corrected Sasamori et al. 1 000:0 010:1 667.40 212 194* 1.000 1.000 2 010:1 020:0 618.03 4.7 4.27 0.539 0.583 3 010:1 100:0 720.83 6.2 0.711 0.726 4 010:1 020:2 667.76 16.6 30 0.906 1.896 5 020:0 030:1 647.02 1.13 1.0 2.524 2.532 6 020:0 110:1 791.48 0.022 0.048 0.0455 7 020:2 030:1 597.29 0.157 0.14 0.218 0.244 8 020.2 110:1 741.75 0.14 0.194 0.196 9 020:2 030:3 668.3 0.85 1.177 1.322 10 100:0 030:1 544.26 0.0044 0.0040 0.016 0.0252 11 030:3 040:2 581.2 0.0042 0.150 0.185 12 030:3 120:2 756.75 0.0059 0.209 0.200 13 030:1 120:2 828.18 0.00049 0.024 0.0108 14 030:1 120:0 740.5 0.014 0.695 0.690 *Burch et al. (1962a) give 330 + 90 cm-2 atm-1 (300~K) for the intensity of band 1. Since their result is greater than most of the previous measurements, Madden's value is used.

122 as well as values computed using Madden's data where available and otherwise Yamamoto and Sasamori's (1958) data. Table XV displays the band intensities, vibrational quantum numbers for the upper and lower levels and a band code. Using the above procedures a program was written to compute the rotational line positions and intensities for bands 1 to 14. The intensities were computed for six temperatures from 175 (25) - 300~K. Lines of intensities less than 106 cm atm at 500~K were neglected. The results are shown in Table XVI in order of increasing wave number. The band code consists of five digits. The first two refer to the coded bands in Table XV. The third digit indicates a P-, Q-, or Rbranch; 0, 1 and 2 refer to P-, Q-, and R-branches, respectively. The last two digits indicate the rotational quantum number for the line. For example, 11244 means band 11, R-branch, J = 44 20 1 means band 2, P-branch, J = 1 Table XVII lists some of the line positions and intensities calculated using the above procedures and also from data published by Madden (1961). The agreement between observed and calculated values is satisfactory. This provides a check on the calculations.

TABLE XVI ROTATIONAL LINE POSITIONS AND INTENSITIES FOR THE 14 BANDS GIVEN IN TABLE XV FOR SIX TEMPERATURES FROM 175~ TO 3000K (Frequencies are given in cm-1 and the intensities in cm-1 (atm cm)-l) INTENSITY BNC CCCE WAVE NUMBER T=3COK T=275K T=250K T=225K T=200K T=175K 1C056 506.46.1119E-05.4032E-06.1158E-06.2462E-07.3456E-08.2683E-09 1CC54 5C7.60.1639E-05.6132E-06.1844E-06.4141E-07.6230E-08.5287E-09 1C052 508.76.2362E-05.9163E-06.2878E-06.6818E-07.1096E-07.1014E-08 1C050 509.93.3348E-05.1345E-05.4405E-06.1099E-06.1884E-07.1892E-08 10048 511.12.4667E-05.1939E-05.6612E-06.1733E-06.3161E-07.3437E-08 1C046 512.32.6397E-05.2745E-05.9730E-06.2673E-06.5174t-07.6072t-08 10044 513.54.8621E-05.3815E-05.1404E-05.4036E-06.8267E-07.1044E-07 10042 514.76.1142E-04.5206E-05.1984E-05.5959E-06.1289E-06.1744E-07 1C040 516.03.1487E-04.6973E-05.2749E-05.8604E-06.1960E-06.2835E-07 1C038 517.29.1902E-04.9163E-05.3731E-05.1215E-05.2906E-06.4479t-07 1C036 518.57.2391E-04.1181E-04.4959E-05.1676E-05.4201E-06.6876E-07 10034 519.87.2950E-04.1493E-04.6453E-05.2259E-05.5920E-06.1026E-06 10032 521.18.3573E-04.1850E-04.8216E-05.2974E-05.8126E-06.1486L-06 1C030 522.51.4246E-04.2246E-04.1023E-04.3822E-05.1086E-05.2088E-06 10028 523.85.4946E-04.2669E-04.1246E-04.4792E-05.1413E-05.2848E-06 1C026 525.21.5646E-04.3104E-04.1482E-04.5857E-05.17871-05.3765E-06 10024 526.58.6308E-04.3528E-04.1719E-04.6972E-05.2196E-05.4819E-06 10022 527.97.6890E-04.3916E-04.1945E-04.8075E-05.2618E-05.5967E-06 IC02C 529.37.7347E-04.4237E-04.2142E-04.9083E-05.3025E-05.7137E-06 1C018 530.79.7633E-04.4460E-04.2291E-04.9905t-05.3380E-05.8226t-06 10016 532.23.7704E-04.4555E-04.2373E-04.1044E-04.3641E-05.9114E-06 1CO14 533.68.7524E-04.4496E-04.2372E-04.1060E-04.3767E-05.9667E-06 10012 535.14.7068E-04.4262E-04.2273E-04.1029E-04.3721E-05.9757E-06 10010 536.62.6324E-04.3843E-04.2069E-04.9475E-05.3475E-05.9280E-06 100 8 538.12.5300E-04.3241E-04.1758E-04.8129E-05.3017E-05.8179E-06 1CO 6 539.63.4018E-04.2470E-04.1348E-04.6278t-05.2351L-05.6452E-06 100 4 541.16.2521E-04.1555E-04.8524E-05.3992E-05.1505E-05.4167E-06 11052 541.58.1069E-05.3158E-06.7153E-07.1137E-07.1112E-08.5422E-10 11C51 542.32.128CE-05.3848E-06.8903E-07.1453E-07.1467E-08.7463E-10 100 2 542.70.8656E-05.5352E-05.2942E-05.1382E-05.5235t-06.1457t-06 11050 543.05.1526E-05.4667E-06.1103E-06.1846E-07.1925E-08.1020E-09 11049 543.80.1811E-05.5637E-06.1359E-06.2334E-07.2511E-08.1385E-09 101 2 544.27.2171E-04.1342E-04.7379E-05.3467E-05.1313E-05.3654L-06 101 4 544.30.1904E-04.1174E-04.6436E-05.3013E-05.1136E-05.3144E-06 101 6 544.34.1759E-04.1081E-04.5899E-05.2747E-05.1028E-05.2821E-06 101 8 544.40.1632E-04.9974E-05.5409E-05.2500E-05.9273L-06.2513L-06 10110 544.47.1502L-04.9122E-05.4908E-05.2247E-05.8237E-06.2199E-06 11048 544.54.2142E-05.6777E-06.1668E-06.2934E-07.3255E-08.1868E-09 10112 544.56.1367E-04.8239E-05.4392E-05.1987E-05.7182E-06.1882E-06 10114 544.67.1229E-04.7338E-05.3868E-05.1727E-05.6137t-06.1574E-06 1C116 544.78.1090E-04.6438E-05.3351E-05.1473E-05.5135E-06.1284C-06 10118 544.92.9528E-05.5563E-05.2855E-05.1233E-05.4205E-06.1023E-06 102 0 545.04.1760E-04.1089E-04.5993t-05.2820t-05.1070E-05.2985t-06 10120 545.07.8213E-05.4732E-05.2390E-05.1012E-05.3369E-06.7941E-07 10122 545.24.6978E-05.3962E-05.1966E-05.8152E-06.2641E-06.6013E-07

TABLE XVI (Continued) INTENSITY B^NC COCE kAVE NUMBER 11047 10124 10126 10128 7C68 11046 10130 10132 10134 102 2 7067 11045 10136 10138 7066 11044 7065 102 4 11043 7064 11042 7063 11041 102 6 7062 11040 7061 11039 102 8 7060 11038 7059 11037 10210 7058 11036 7057 11035 7056 10212 11034 7055 11033 2083 7054 545.28 545.42 545.61 545.83 546.02 546.02 546.05 546.30 546.56 546.63 546.75 546.77 546.83 547.12 547.47 547.51 548.20 548.22 548.26 548.93 549.01 549.65 549.76 549.84 550.38 550.50 551.11 551.25 551.46 551.84 552.00 552.57 552.76 553.11 553.30 553.51 554.04 554.26 554.77 554.77 555.02 555.50 555.77 556.09 556.24 T=3COK.2522E-05.58436-05.4821E-05.3920E-05.1152E-05.2957E-05.3140E-05.2479E-05.1928E-05.3492E-04.1470E-05.3454E-05.14776-05.1115E-05.1867E-05.4017E-05.2362E-05.5121E-04.4652E-05.2976E-05.5365E-05.3736E-05.6161E-05.6576E-04.4670E-05.7046E-05.5815E-05.8024E-05.7798E-04.7212E-05.9098E-05.8909E-05.1027E-04.8746E-04.1096E-04.1155E-04.1343E-04.1292E-04.1639E-04.9395E-04.1440E-04.1992E-04.1598E-04.1129E-05.2412E-04 T=275K.8112E-06.3265E-05.2647E-05.2112E-05.3273E-06.9667E-06.1659E-05.1281E-05.9742E-06.2159E-04.4271E-06.1147E-05.7287E-06.5362E-06.5551E-06.1354E-05.7183E-06.3158E-04.1592E-05.9255E-06.1863E-05.11876-05.2171E-05.4039E-04.1517E-05.2518E-05.1929E-05.2906E-05.4765E-04.2442E-05.3340E-05.3079E-05.3820E-05.5309E-04.3865E-05.4349E-05.4831E-05.4928E-05.6011E-05.5658E-04.5558E-05.7448E-05.6238E-05.2907E-06.9186E-05 T=250K.2036E-06.1589E-05.1262E-05.9847E-06.7071E-07.2473E-06.7547E-06.5683E-06.42036-06.1186E-04.9490E-07.29906-06.30546-06.2179E-06.1268E-06.3597E-06.1685E-06.17306-04.4305E-06.2230E-06.5128E-06.2937E-06.6078E-06.2203E-04.3849E-06.7168E-06.5022E-06.8412E-06.25836-04.6520E-06.9822E-06.8424E-06.1141E-05.2855E-04.1083E-05.1319E-05.1387E-05.1517E-05.17666-05.3014E-04.1735E-05.22396-05.1975E-05.5587E-07.2824E-05 T=225K.3669E-07.6437E-06.4983E-06.3783E-06.1061E-07.4563E-07.2815E-06.2054E-06.14696-06.5574E-05.1474E-07.5645E-07.1030E-06.7082E-07.20366-07.6946E-07.2798E-07.8100E-05.85006-07.3824E-07.1034E-06.52016-07.1252E-06.1025E-04.70356-07.1507E-06.9467E-07.1805E-06.1193E-04.1267E-06.2149E-06.1687E-06.2544E-06.1307E-04.2235E-06.2996E-06.2945E-06.3508E-06.38596-06.1363E-04.4084E-06.5032E-06.4728E-06.7267E-08.6525E-06 T=200K.41946-08.2025E-06.1518E-06.1114E-06.9655E-09.5373E-08.7988E-07.5603E-07.3843E-07.2110E-05.1399E-08.6841E-08.2578E-07.1691E-07.2015E-08.8657E-08.2886E-08.3053E-05.1089E-07.4109E-08.1362E-07.5816E-08.1692E-07.3839E-05.6185E-08.2090E-07.1145E-07.2566E-07.4425E-05.1592E-07.3130E-07.2201E-07.37966-07.4787E-05.30266-07.4574E-07.41346-07.5478E-07.5615E-07.4924E-05.65206-07.75816-07.7710E-07.5528E-09.1018E-06 T=175K.25036-09.4440E-07.3196E-07.2243E-07.4294L-10.3330C-09.15346-07.10236-07.6650E-08.58736-06.6573L-10.4400E-09.4213E-08.2602E-08.9993t-10.5774E-09.1509E-09.8448E-06.7525E-09.2264E-09.97416-09.3375E-09.12526-08.1053E-05.4996E-09.1599E-08.73466-09.20276-08.11996-05.10736-08.2552E-08.1557E-08.3190E-08.1277E-05.2244t-08.3961E-08.3213E-08.4883E-08.45696-08.1290E-05.5978E-08.6453E-08.7266E-08.1954E-10.9054E-08 R r\) -Pr

TABLE XVI (Continued) INTENSITY BANC CCCE WAVE NUMBER 10214 556.44 11032 556.53 7053 556.98 11031 557.29 2081 557.51 7052 557.71 11030 558.04 10216 558.13 7051 558.45 11029 558.80 2C79 558.93 7050 559.19 11028 559.56 10218 559.83 7049 559.93 11027 560.32 2077 560.36 7048 560.67 11026 561.08 7047 561.41 10220 561.55 2075 561.79 11025 561.85 7046 562.16 11024 562.61 7045 562.90 2073 563.23 10222 563.29 11023 563.37 7044 563.64 11022 564.14 7043 564.39 2071 564.66 11021 564.91 10224 565.04 7042 565.13 11020 565.67 7041 565.88 2069 566.10 11019 566.44 7040 566.63 10226 566.81 11018 567.21 7039 567.38 2067 567.55 T=300K.9739E-04.1765E-04.2907E-04.1941E-04.2054E-05.3491E-04.2125E-04.9791E-04.4174E-04.2316E-04.3679E-05.4971E-04.2512E-04.9576E-04.5896E-04.2713E-04.6487E-05.6964E-04.2915E-04.8192E-04.9135E-04.1126E-04.3118E-04.9595E-04.3319t-04.1119E-03.1924E-04.8514E-04.3516E-04.1300E-03.3706E-04.1504E-03.3236E-04.3887E-04.7763E-04.1732E-03.4055E-04.1987E-03.5357E-04.4209E-04.2269E-03.6932E-04.4345E-04.2580E-03.8730E-04 T=275K.5811E-04.6969E-05.1128E-04.7748E-05.5595E-06.1379E-04.8572E-05.5780E-04.1679E-04.9437E-05.1059E-05.2034E-04.1034E-04.5586E-04.2454E-04.1127E-04.1969E-05.2948E-04.1222E-04.3525E-04.5258E-04.3602E-05.1319E-04.4195E-04.1416E-04.4971E-04.6475E-05.4829E-04.1512E-04.5864E-04.1607E-04.6885E-04.1144E-04.1698E-04.4333E-04.8048E-04.1784E-04.9364E-04.1988E-04.1864E-04.1084E-03.3802E-04.1937E-04.1250E-03.3394E-04 T=250K.3062E-04.2236E-05.3546E-05.2519E-05.1150E-06.4430E-05.2822E-05.3007E-04.5509E-05.3146E-05.2325E-06.6816E-05.3487E-05.2864E-04.8394E-05.3845E-05.4612E-06.1028E-04.4217E-05.1254E-04.2653E-04.8980E-06.4599E-05.1522E-04.4988E-05.1838E-04.1716E-05.2394E-04.5380E-05.2208E-04.5769E-05.2640E-04.3218E-05.6151E-05.2107E-04.3140E-04.6520E-05.3717E-04.5921E-05.6869E-05.4377E-04.1810E-04.7194E-05.5129E-04.1069E-04 T=225K.1366E-04.5443E-06.8416E-06.6230E-06.1625E-07.1080E-05.7090E-06.1321E-04.1378E-05.8022E-06.3560E-07.1749E-05.9023E-06.1236E-04.2209E-05.1009E-05.7640E-07.2774E-05.1122E-05.3464E-05.1123E-04.1606E-06.1239E-05.4304E-05.1361E-05.5318E-05.3306E-06.9916E-05.1486E-05.6535E-05.1611E-05.7987E-05.6666E-06.1737t-05.8523E-05.9708E-05.1861E-05.1173E-04.1316E-05.1980E-05.1411E-04.7139E-05.2093E-05.1686E-04.2546E-05 T=200K.4851E-05.9061E-07.1358E-06.1058t-06.1371E-08.1801E-06.1228t-06.4599E-05.2374E-06.1415E-06.3321E-08.3111E-06.1621E-96.4212E-05.4053E-06.1845E-06.7862E-08.5249E-06.2086E-06.6756E-06.3733E-05.1818E-07.2343E-06.8643E-06.2613E-06.1099E-05.4109E-07.3209E-05.2896E-06.1389E-05.3187E-06.1745E-05.9073E-07.3483E-06.2678E-05.2179E-05.3780E-06.2705E-05.1957E-06.4073E-06.3336E-05.2173E-05.4358E-06.4089t-05.4123E-06 T=175K.1243E-05.8769E-08.1262E-07.1051E-07.5534E-10.1746E-07.1250L-07.1150E-05.2401E-07.1476E-07.1526E-09.3278E-07.1731E-07.10236-05.4446E-07.2015E-07.4099E-09.5989E-07.2328E-07.8013E-07.8792E-06.1072E-08.2670E-07.1065E-06.3039E-07.1405E-06.2732E-08.7300E-06.3433E-07.1841E-06.3849E-U7.2397E-06.6778E-08.4282E-07.5867E-06.3098E-06.4726E-07.3977E-06.1637E-07.5175E-07.5070E-06.4568E-06.5622E-07.64186-06.3852E-07 rO nI

TABLE XVI (Continued) INTENSITY BANC CCCE WAVE NUMBER 11017 7038 10228 11016 7037 2065 11015 7036 11014 7035 10230 2063 11013 7034 11012 7033 2061 10232 11011 7032 2059 11010 7031 10234 7030 110 9 2057 7029 110 8 7028 110 7 10236 2055 7027 110 6 7026 110 5 10238 2053 7025 110 4 7024 110 3 2051 7023 567.98 568.13 568.59 568.75 568.88 569.00 569.52 569.63 570.29 570.38 570.39 570.45 571.07 571.14 571.84 571.89 571.90 572.20 572.62 572.65 573.36 573.39 573.40 574.03 574.16 574.17 574.83 574.92 574.95 575.68 575.72 575.87 576.29 576.44 576.50 577.20 577.28 577.73 577.76 577.96 578.07 578.72 578.85 579.24 579.48 T=300K.4462E-04.2922E-03.6067E-04.4556E-04.3294E-03.1400t-03.4626E-04.3697E-03.4669E-04.4131E-03.5207E-04.2210E-03.4684E-04.4596E-03.4671E-04.5090E-03.3432E-03.4386E-04.4627E-04.5612E-03.5246E-03.4555E-04.6159E-03.3627E-04.6728E-03.4454E-04.7889E-03.7316E-03.4326E-04.7918E-03.4176E-04.2945E-04.1167E-02.8528E-03.4008E-04.9141E-03.3832E-04.2350E-04.1699E-02.9750E-03.3667E-04.1035E-02.3551E-04.2433E-02.1092E-02 T=275K.2001E-04.1434E-03.3265E-04.2055E-04.1638E-03.5695E-04.2098E-04.1862E-03.2129E-04.2106E-03.2747E-04.9393E-04.2146E-04.2371E-03.2149E-04.2657E-03.1522E-03.2264E-04.2138E-04.2963E-03.2425E-03.2112E-04.3287E-03.1830E-04.3629E-03.2072E-04.3795E-03.3987E-03.2019E-04.4357E-03.1954E-04.1450E-04.5836E-03.4738E-03.1880E-04.5125E-03.1801E-04.1128E-04.8816E-03.5515E-03.1726E-04.5903E-03.1674E-04.1308E-02.6284E-03 T=250K.7487E-05.5980E-04.1520E-04.7742E-05.6937E-04.1895E-04.7955E-05.8005E-04.8120E-05.9190E-04.1248E-04.3294E-04.8233E-05.1050E-03.8288E-05.1192E-03.5620E-04.1002E-04.8286E-05.1348E-03.9406E-04.8223E-05.1515E-03.7883E-05.1694E-03.8100E-05.1544E-03.1884E-03.7921E-05.2083E-03.7691E-05.6068E-05.2487E-03.2292E-03.7421E-05.2506E-03.7127E-05.4576E-05.3928E-03.2726E-03.6845E-05.2947E-03.6648E-05.6086E-03.3169E-03 T=225K.2198E-05.2005E-04.5831E-05.2293E-05.2370E-04.4821E-05.2375E-05.2786E-04.2442E-05.3257E-04.4648E-05.8942E-05.2493E-05.3785E-04.2527E-05.4374E-04.1624E-04.3618E-05.2541E-05.5026E-04.2887E-04.2536E-05.5741E-04.2751E-05.6520E-04.2510E-05.5026E-04.7360E-04.2466E-05.8259E-04.2404E-05.2044E-05.8565E-04.9213E-04.2327E-05.1021E-03.2242E-05.1484E-05.1429E-03.1125E-03.2158E-05.1232E-03.2100E-05.2333E-03.1340E-03 T=200K.4628E-06.4981E-05.1715E-05.4879E-06.6031E-05.8486E-06.5104E-06.7255E-05.5298E-06.8674E-05.1317E-05.1706E-05.5457E-06.1030E-04.5575E-06.1216E-04.3350E-05.9857E-06.5648E-06.1427E-04.6425E-05.5675E-06.1663E-04.7186E-06.1925E-04.5654E-06.1203E-04.2215E-04.5585E-06.2531E-04.5471E-06.5107E-06.2201E-04.2873E-04.5320E-06.3239E-04.5144E-06.3539E-06.3930E-04.3627E-04.4968E-06.4034E-04.4846E-06.6853E-04.4455E-04 T=175K.6058E-07.8068E-06.3449E-06.6474E-07.1007E-05.8824E-07.6861E-07.1248E-05.7208E-07.1536E-05.2527E-06.1968E-06.7508E-07.1877E-05.7751E-07.2277E-05.4273E-06.1797E-06.7929L-07.2743E-05.9034E-06.8038E-07.3280E-05.1242E-06.3894E-05.8072E-07.1859E-05.4589E-05.8031E-07.5367E-05.7919E-07.8335E-07.3723E-05.6231E-05.7744E-07.7180E-05.7523E-07.5438E-07.7258E-05.8211E-05.7295E-07.9317E-05.7139E-07.1377E-04.1049E-04 rv P\

TABLE XVI (Continued) INTENSITY BANC CCCE WAVE NUMBER 10240 7022 2049 7021 111 3 111 4 111 5 111 6 111 7 11 8 111 9 11110 11111 11112 1113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 10242 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 7020 11136 11137 11138 11139 11140 11141 579.61 580.25 580.71 581.01 581.21 581.21 581.21 581.22 581.23 581.23 581.24 581.25 581.26 581.27 581.28 581.29 581.31 581.32 581.34 581.35 581.37 581.39 581.41 581.43 581.45 581.47 581.49 581.50 581.52 581.54 581.57 581.59 581.62 581.65 581.68 581.70 581.74 581.77 581.78 581.80 581.83 581.87 581.90 581.94 581.97 T=300K.1842E-04.1147E-02.3426E-02.1199E-02.1249E-04.2214E-04.3035E-04.3758E-04.4399E-04.4967E-04.5464E-04.5891E-04.6250E-04.6541E-04.6766E-04.6925E-04.7022E-04.7060E-04.7041E-04.6971E-04.6853E-04.6692E-04.6494E-04.6263E-04.6005E-04.5725E-04.5428E-04.1420E-04.5118E-04.4801E-04.4481E-04.4160E-04.3844E-04.3534E-04.3234E-04.2945E-04.2670E-04.2409E-04.1246E-02.2163E-04.1934E-04.1721E-04.1525E-04.1346E-04.1182E-04 T=275K.8606E-05.6652E-03.1907E-02.7002E-03.5886E-05.1042E-04.1426E-04.1762E-04.2058E-04.2317E-04.2541E-04.2731E-04.2886E-04.3008E-04.3098E-04.3155E-04.3183E-04.3183E-04.3156E-04.3105E-04.3033E-04.2941E-04.2834E-04.2713E-04.2580E-04.2440E-04.2294E-04.6446E-05.2144E-04.1992E-04.1842E-04.1693E-04.1548E-04.1409E-04.1275E-04.1148E-04.1028E-04.9169E-05.7328E-03.8134E-05.7181E-05.6309E-05.5516E-05.4800E-05.4157E-05 T=250K.3381E-05.3386E-03.9245E-03.3596E-03.2337E-05.4132E-05.5643E-05.6954E-05.8098E-05.9088E-05.9930E-05.1063E-04.1118E-04.1160E-04.1188E-04.1203E-04.1206E-04.1198E-04.1180E-04.1152E-04.1117E-04.1074E-04.1026E-04.9732E-05.91716-05.8586E-05.7989E-05.2448E-05.7387E-05.6790E-05.6205E-05.5637E-05.5092E-05.4573E-05.4085E-05.3629E-05.3206E-05.2818E-05.3796E-03.2463E-05.2141E-05.1852E-05.1594E-05.1364E-05.1162E-05 T=225K.1054E-05.1449E-03.3727E-03.1556E-03.7384E-06.1303E-05.1775E-05.2180E-05.2530E-05.2828E-05.3076E-05.3276E-05.3427E-05.3533E-05.3596E-05.3616E-05.3599E-05.3546E-05.3462E-05.3351E-05.3216E-05.3063E-05.2895E-05.2716E-05.2530E-05.2340E-05.2150E-05.7320E-06.1963E-05.1780E-05.1603E-05.1436E-05.1277E-05.1130E-05.9930E-06.8676E-06.7536E-06.6507E-06.1660E-03.5586E-06.4768E-06.4046E-06.3414E-06.2864E-06.2389E-06 T=200K.23926-06.4885E-04.1166E-03.5319E-04.1704E-06.2998E-06.4071E-06.4983E-06.5757E-06.6403E-06.69266-06.7328E-06.7616E-06.7792E-06.7865E-06.7841E-06.7729E-06.7540E-06.7283E-06.6970E-06.66116-06.6217E-06.5799E-06.5366E-06.49271-06.4490E-06.4061E-06.1577E-06.3647E-06.3251E-06.28786-06.2531E-06.2210E-06.1916E-06.1651L-06.1413E-06.1201E-06.1015E-06.57486-04.8517E-07.7103E-07.5885E-07.4846E-07.3965E-07.32246-07 T=175K.3449L-07.1172E-04.2542E-04.1299E-04.2509L-07.4402E-07.5953E-07.7252t-07.8331E-07.9206E-07.98851-07.1038E-06.1069E-06.1083E-06.1082E-06.1066E-06.1038E-06.9989E-07.9528E-07.8987E-07.8394E-07.7768E-07.7124E-07.6476E-07.5837E-07.5217E-07.4624E-07.2128E-07.4066E-07.3547E-07.3070L-07.2637E-07.2247E-07.1901E-07.1596E-07.1330E-07.1100E-07.90356-08.1427E-04.7366E-08.5962t-08.4791C-08.3822E-08.3028E-08.2382t-08 - - — 1

TABLE XVI (Continued) INTENSITY BANC CODE WAVE NUMBER 11142 11143 11144 11145 11146 2047 11147 11148 11149 11150 11151 11152 11153 11154 7019 11155 11156 7018 10244 2045 7017 112 3 7016 112 4 2043 10246 7015 112 5 7014 2041 112 6 7013 10248 112 7 7012 2039 112 8 5078 7011 112 9 10250 7010 2037 11210 5C76 582.01 582.05 582.09 582.13 582.17 582.19 582.22 582.26 582.30 582.35 582.39 582.44 582.49 582.54 582.55 582.59 582.64 583.31 583.40 583.68 584.08 584.35 584.85 585.14 585.17 585.33 585.62 585.93 586.40 586.66 586.72 587.17 587.26 587.51 587.94 588.15 588.31 588.57 588.71 589.10 589.21 589.49 589.65 589.89 590.00 T=300K.1034E-04.9000E-05.7803E-05.6736E-05.5791E-05.4746E-02.4957E-05.4225E-05.3587E-05.3032E-05.2552E-05.2139E-05.1786E-05.1485E-05.1287E-02.1230E-05.1014E-05.1322E-02.1075E-04.6463E-02.1350E-02.1795E-05.1371E-02.4251E-05.8654E-02.8011E-05.1382E-02.6965E-05.1385E-02.1139E-01.9743E-05.1378E-02.5869E-05.1247E-04.1360E-02.1473E-01.1509E-04.1134E-05.1333E-02.1753E-04.4228E-05.1295E-02.1872E-01.1976E-04.1984E-05 T=275K.3584E-05.3075E-05.2626E-05.2232E-05.1889E-05.2730E-02.1591E-05.1334E-05.1114E-05.9255E-06.7656E-06.6305E-06.5169E-06.4219E-06.7624E-03.3428E-06.2773E-06.7883E-03.4740E-05.3838E-02.8100E-03.8461E-06.8269E-03.2001E-05.5297E-02.3423E-05.8385E-03.3272E-05.8443E-03.7176E-02.4567E-05.8439E-03.2427E-05.5834E-05.8370E-03.9541E-02.7036E-05.2554E-06.8234E-03.8150E-05.1691E-05.8030E-03.1245E-01.9156E-05.4711E-06 T=250K.9844E-06.8299E-06.6961E-06.5809E-06.4823E-06.1377E-02.3985E-06.3276E-06.2680E-06.2182E-06.1768E-06.1425E-06.1143E-06.9124E-07.3982E-03.7248E-07.5730E-07 -4149E-03.1737E-05.2011E-02.4295E-03.3359E-06.4415E-03.7930E-06.2878E-02.1208E-05.4506E-03.1294E-05.4565E-03.4037E-02.1802E-05.4589E-03.8241E-06.2295E-05.4576E-03.5548E-02.2759E-05.4180E-07.4523E-03.3183E-05.5512E-06.4431E-03.7469E-02.3562E-05.8216E-07 T=225K.1982E-06.1635E-06.1342E-06.1095E-06.8882E-07.5828E-03.7168E-07.5753E-07.4592E-07.3645E-07.2878E-07.2260E-07.1766E-07.1372E-07.1758E-03.1060E-07.8148E-08.1850E-03.4973E-06.8915E-03.1932E-03.1061E-06.2003E-03.2500E-06.1334E-02.3306E-06.2061E-03.4069E-06.2103E-03.1952E-02.5648E-06.2129E-03.2150E-06.71686-06.2137E-03.2794E-02.8582E-06.4470E-08.2125E-03.9858E-06.1369E-06.2093E-03.3909E-02.1097E-05.9496E-08 T=200K.2605E-07.2092E-07.1669E-07.1324E-07.1044E-07.1938E-03.8178E-08.6369E-08.4930E-08.3793E-08.2900E-08.2205E-08.1666E-08.1251E-08.6167E-04.9340E-09.6931E-09.6565E-04.1015E-06.3142E-03.6934E-04.2448E-07.7266E-04.5752E-07.4970E-03.6372E-07.7550E-04.9332E-07.7779E-04.7671E-03.1291E-06.7944E-04.3905E-07.1631E-06.8037E-04.1155E-02.1942E-06.2663E-09.8053E-04.2218E-06.2337E-07.7986E-04.1695E-02.2454E-06.6234E-09 T=175K.1861E-08.1443E-08.1112E-08.8502E-09.6458E-09.4566t-04.4872E-09.3650E-09.2715E-09.2007E-09.1473E-09.1073E-09.7770E-10.5587E-10.1556E-04.3990E-10.2830E-10.1682E-04.1276E-07.7978E-04.1803E-04.3605E-08.1915E-04.8443E-08.1356E-03.7450E-08.2016E-04.1364E-07.2102E-04.22416-03.1878E-07.2171E-04.4230L-08.2359E-07.2219E-04.3600E-03.2792t-07.6880E-11.2245E-04.3165E-07.2337E-08.2246E-04.56236-03.3473E-07.1825E-10 [-J rD CX)

TABLE XVI (Continued) INTENSITY BANC CODE WAVE NUMBER 70 9 11211 70 8 2035 10252 5074 11212 70 7 11213 70 6 2033 5072 11214 10254 70 5 11215 70 4 2031 5070 11216 70 3 10256 11217 2029 70 2 5068 11218 11219 2027 5066 71 2 71 3 71 4 71 5 71 6 71 7 71 8 71 9 7110 7111 7112 7113 7114 7115 7116 590.27 590.69 591.04 591.16 591.18 591.43 591.49 591.82 592.28 592.60 592.66 592.87 593.08 593.16 593.38 593.88 594.16 594.17 594.31 594.68 594.94 595.16 595.48 595.68 595.72 595.75 596.29 597.09 597.20 597.20 597.29 597.30 597.30 597.30 597.31 597.32 597.32 597.33 597.34 597.35 597.36 597.37 597.38 597.40 597.41 T=300K.1247E-02.2176E-04.1189E-02.2336E-01.2997E-05.3418E-05.2350E-04.1122E-02.2498E-04.1047E-02.2863E-01.5795E-05.2618E-04.2090E-05.9654E-03.2710E-04.8796E-03.3444E-01.9670E-05.2776E-04.7950E-03.1434E-05.2815E-04.4063E-01.7247E-03.1588E-04.2828E-04.2819E-04.4701E-01.2567E-04.4039E-03.6988E-03.9559E-03.1189E-02.1402E-02.1595E-02.1769E-02.1922E-02.2055E-02.2166E-02.2256E-02.2324E-02.2372E-02.2399E-02.2407E-02 T=275K.7758E-03.1004E-04.7421E-03.1593E-01.1157E-05;8544E-06.1080E-04.7022E-03.1143E-04.6567E-03.1998E-01.1523E-05.1192E-04.7778E-06.6067E-03.1228E-04.5537E-03.2457E-01.2669E-05.1250E-04.5011E-03.5137E-06.1261E-04.2960E-01.4573E-03.4596E-05.1259E-04.1246E-04.3491E-01.7781E-05.2548E-03.4404E-03.6016E-03.7471E-03.8791E-03.9979E-03.1103E-02.1195E-02.1273E-02.1337E-02.1387E-02.1423E-02.1445E-02.1454E-02.1451E-02 T=250K.4298E-03.3889E-05.4127E-03.9847E-02.3616E-06.1585E-06.4162E-05.3917E-03.4380E-05.3674E-03.1271E-01.3001E-06.4542E-05.2327E-06.3402E-03.4649E-05.3112E-03.1605E-01.5576E-06.4704E-05.2820E-03.1468E-06.4709E-05.1982E-01.2577E-03.1017E-05.4668E-05.4585E-05.2392E-01.1819E-05.1436E-03.2479E-03.3380E-03.4189E-03.4917E-03.5566E-03.6134E-03.6621E-03.7024E-03.7343E-03.7579E-03.7733E-03.7809E-03.7811E-03.7744E-03 T=225K.2041E-03.1192E-05.1968E-03.5345E-02.8527E-07.1976E-07.1268E-05.1875E-03.1325E-05.1765E-03.7140E-02.4027E-07.1365E-05.5200E-07.1639E-03.1386E-05.1503E-03.9314E-02.8038E-07.1391E-05.1365E-03.3105E-07.1381E-05.1186E-01.1249E-03.1571E-06.1356E-05.1320E-05.1473E-01.3007E-06.6959E-04.1200E-03.1633E-03.2018E-03.2362E-03.2664E-03.2924E-03.3142E-03.3317E-03.3448E-03.3538E-03.3586E-03.3596E-03.3570E-03.3511E-03 T=200K.7835E-04.2646E-06.7598E-04.2426E-02.1365E-07.1426E-08.2794E-06.7277E-04.2897E-06.6879E-04.3384E-02.3186~-08.2957E-06.7786E-08.6413E-04.2976E-06.5898E-04.4598E-02.6956E-08.2957E-06.5370E-04.4337E-08.2903E-06.6082E-02.4922E-04.1483E-07.2820E-06.2711E-06.7828E-02.3090E-07.2742E-04.4718E-04.6406E-04.7893E-04.9202E-04.1033E-03.1129E-03.1206E-03.12651-03.1306E-03.1330E-03.1337E-03.1329E-03.1307E-03.1273E-03 T=175K.2221E-04.3712E-07.2170E-04.8534E-03.1257E-08.4714E-10.3882E-07.2092E-04.3983E-07.1988E-04.1258E-02.1186E-09.4019E-07.6579E-09.1863E-04.3996E-07.1720E-04.1801E-02.2905E-09.3919E-07.1571E-04.3352E-09.3796E-07.2502E-02.1443E-04.6928E-09.3634E-07.3440E-07.3371E-02.1609E-08.8041E-05.1380E-04.1868E-04.2292E-04.2659E-04.2970E-04.3223E-04.3419E-04.3557E-04.3640E-04.3671E-04.3653E-04.3590E-34.3488E-04.3353E-04 HJ ro \D

TABLE XVI (Continued) INTENSITY BANC CCCE hAVE NUMBER T=300K T=275K T=250K T=225K T=200K T=175K 7117 597.43.2397E-02.1437L-02.7613E-03.3422E-03.1228E-03.3190E-04 7118 597.44.2370E-02.1412E-02.7425E-03.3308E-03.1173E-03.3005E-04 7119 597.46.2327E-02.1377E-02.7188E-03.3172E-03.1112E-03.2804E-04 7120 597.48.2271E-02.1335E-02.6908E-03.3018E-03.1045E-03.2592-04 7121 597.50.2201E -02.1285E-02.6593E-03.2850E-03.9736E-04.2376E-04 7122 597.52.2122E-02.1229E-02.625CE-03.2672E-03.9003E-04.2158E-04 7123 597.54.2033E-02.1168E-02.5887E-03.2488E-03.8262L-04.19446-04 7124 597.56.1937E-02.1104E-02.5509E-03.2301E -03.7525E-04.1737E-04 7125 597.58.1836E-02.1038E-02.5124E-03.2113E-03.6804E-04.1539E-04 7126 597.61.1731E-02.9695E-03.4736E-03.1928E-03.6108E-0 4.1353E-04 7127 597.63.16230-02.9008E-03.4352E-03.1748E-03.5444E-04.1180E-04 7128 597.66.1514E-02.8325E-03.3976E-03.1574E-03.4819E-04.1021E-04 7129 597.68.1406E-02.7652E-03.3611E-03.1409E-03.42363-04.8770E-05 7130 597.71.1299E-02.6996E-03.3262E-03.1254E-03.3699E-04.7474t-05 7131 597.74.1194E-02.6364E-03.2929E-03.1109E-03.3208E-04.6322E-0O 7132 597.77.1092E-02.5759E-03.2616E-03.9746E-04.2763E-04.5307E-05 7133 597.79.9947E-03.5186E-03.2324E-03.8515E-04.23650-04.4423E-05 1094 597.80.1497E-05.3689E-06.6730E-07.8219E-08.5782E-09.18506-10 7134 597.83.9016E-03.4646E-03.2053E-03.7396E-04.2011E-04.3659E-05 7135 597.86.8134E-03.4142E-03.1804E-03.6386E-04.1699E-04.3005E-05 11220 597.89.2787E-04.1224E-04.4466E-05.1272E-05.2581E-06.3223E-07 7136 597.89.7306E-03.3674E-03.1577E-03.5482E-0 4.1426E-04.2450E-05 7137 597.92.6532E-03.3244E-03.1371E-03.4679E-04.1189E-04.1983E-05 7138 597.96.5814E-03.2850E-03.1186E-03.3971E-04.9853L-05.1594L-05 7139 597.99.5152E-03.2492E-03.1021E-03.3351E-04.81130-05.1272E-05 7140 598.03.4545E-03.2168E-03.8739E-04.2812E-04.6639E-05.1008E-05 7141 598.06.3992E-03.1878E-03.7443E-04.2346E-04.5399L-05.79290-06 7142 598.10.3491E-03.1619E-03.6307E-04.1947E-04.4363E-05.6195E-06 7143 598.14.3040E-03.1389E-03.5318E-04.1606E-04.3504E-05.4806E-06 7144 598.18.2636E-03.1187E-03.4461E-04.1318E-04.2797E-05.3702E-06 7145 598.22.22760-03.1009E-03.3723E-04.1075E-04.2219E-05.2833E-06 7146 598.26.1957E-03.8540E-04.3092E-04.8728E-05.1750E-05.2152E-U6 7147 598.31.1675E-03.7194E-04.2555E-04.7044E-05.1371E-05.1624E-06 7148 598.35.1428E-03.6033E-04.2101E-04.5655E-05.1068L-05.1217L-06 7149 598.39.1212E-03.5037E-04.1719E-04.4515E-05.8270E-06.9057E-07 7150 598.44.1025E-03.4186E-04.1400E-04.3585E-05.6364[-06.6695E-07 7151 598.48.8630E-04.3463E-04.1134E-04.2831[-05.4868L-06.4915t-07 7152 598.53.7236E-04.2853E-04.9144E-05.2224E-05.3701E-06.35836-07 7153 598.58.6042E-04.2339E-04.7337E-05.1738E-05.2797E-06.2595E-07 7154 598.63.5024E-04.1910E-04.5858E-05.1350E-05.2102E-06.1867E-07 5064 598.66.4084E-04.1294E-04.3193E-05.5637E-06.6287E-07.3638E-08 7155 598.68.4161E-04.1552E-04.4655E-05.1044E-05.1569E-06.13J33-07 11221 598.70.2736E-04.1193E-04.4314E-05.1216E-05.2435E-06.2989E-07 2025 598.72.5327E-01.4028E-01.28216-01.1783E-01.9797E-02.4403L-02 7156 598.73.3432E-04.)256E-04.3681E-05.8025E-06.1165E-06.94626-08

TABLE XVI (Continued) INTENSITY BANC CCCE WAVE NUMBER 7157 7158 7159 7160 7161 7162 7163 7164 1092 7165 7166 7167 7168 7169 11222 7170 7171 72 2 5062 2023 11223 72 3 1090 11224 72 4 5060 2021 11225 1088 72 5 11226 72 6 4087 5058 2019 1086 11227 72 7 4086 11228 72 8 5056 1084 2017 4084 598.78 598.83 598.88 598.94 598.99 599.05 599.10 599.16 599.20 599.22 599.28 599.34 599.40 599.46 599.50 599.53 599.59 599.65 600.11 600.25 600.31 600.44 600.60 601.12 601.22 601.57 601.77 601.92 602.01 602.01 602.73 602.80 602.99 603.03 603.30 603.42 603.54 603.59 603.70 604.36 604.39 604.50 604.83 604.84 605.11 T=300K.2819E-04.2306E-04.1879E-04.1525E-04.1233E-04.9922E-05. T955E-05.6353E-05.2962E-05.5053E-05.4003E-05.3159E-05.2482E-05.1934E-05.2666E-04.1515E-05.1177E-05.8115E-04.6394E-04.5909E-01.2582E-04.1808E-03.5772E-05.2484E-04.2854E-03.98501-04.6408E-01.2375E-04.1108E-04.3896E-03.2258E-04.4905E-03.1132E-05.1493E-03.6783E-01.2092E-04.2134E-04.5862E-03.1553E-05.2006E-04.6752E-03.2226E-03.3892E-04.6995E-01.2889E-05 T=275K.1012E-04.8114E-03.64796-05.5151E-05.4078E-05.3214E-05.2522E-05.1970E-05.7782E-06.1533E-05.1187E-05.9154E-06.7029E-06.5374E-06.1154E-04.4091E-06.3101E-06.5119E-04.2116E-04.4543E-01.1108E-04.1139E-03.1614E-05.1058E-04.1796E-03.3400E-04.5003E-01.1003E-04.3291E-05.2447E-03.9446E-05.3075E-03.2587E-06.5366E-04.5370E-01.6600E-05.8845E-05.3666E-03.3656E-06.8234E-05.4210E-03.8323E-04.1301E-04.5608E-01.7211E-06 T=250K.2897E-05.2269E-05.1768E-05.13726-05.1059E-05.8136E-06.6221E-06.4734E-06.1532E-06.3586E-06.2703E-06.2028E-06.1514E-06.1126E-06.4136E-05.8326E-07.6130E-07.2884E-04.5498E-05.3246E-01.3935E-05.6411E-04.3425t-06.3718E-05.1009E-03.9289E-05.3641E-01.3489E-05.7516E-06.1372E-03.3252E-05.1719E-03.4311E-07.1540E-04.3974E-01.1619E-05.3011E-05.2044E-03.6314E-07.2771E-05.2340E-03.2503E-04.3423E-05.4213E-01.1335E-06 T=225K.6138E-06.4669E-06.3533E-06.2659E-06.1991E-06.1483E-06.1099E-06.8098E-07.2055E-07.5937E-07.4330E-07.3141E-07.2267E-07.1627E-07.1153E-05.1162E-07.8258E-08.1398E-04.1035E-05.2103E-01.1085E-05.3102E-04.5033E-07.1012E-05.4872E-04.1859E-05.2412E-01.9381E-06.1208E-06.6609E-04.8630E-06.8257E-04.4714E-08.3270E-05.2687E-01.2839E-06.7884E-06.9780E-04.7211E-08.7153E-06.1115E-03.5632E-05.6539E-06.2902E-01.1661E-07 T=200K.8597E-07.6307E-07.4599E-07.3334E-07.2403E-07.1721E-07.1226E-07.8679E-08.1625E-08.6109E-08.4275E-08.2974C-08.2057E-08.1414E-08.2277E-06.9665E-09.6568E-09.5507E-05.1249E-06.1191E-01.2110E-06.1220E-04.4462E-08.1940E-06.1911E-04.2425E-06.1405E-01.1770E-06.1197E-07.2584E-04.1602E-06.3216E-04.2888E-09.4596E-06.1606E-01.3141E-07.1439E-06.3793E-04.4665~-09.1283E-06.4303E-04.8506E-06.8049E-07.1775E-01.1196E-08 T-175K.6669E-08.4669E-08.3246E-08.2242E-08.1538E-08.1048E-08.7097E-09.4772C-09.6042L-10.3187E-09.2115E-09.1394t-09.9125E-10.5935E-10.2745E-07.3834E-10.2461E-10.1615E-05.8009L-08.5568E-02.2498E-07.3568E-05.1922t-09.2253E-07.5572E-05.1716E-07.6811E-02.2014E-07.5957t-09.7503E-05.1785E-07.9293E-05.7738E-11.3580E-07.8046E-02.1798E-08.1568E-07.1090E-04.1341L-10.1367E-07.1228E-04.7269E-07.5287E-08.9160E-02.3944E-10

TABLE XVI (Continued) INTENSITY 8^NC CCOE hAVE NUMBER T=300K T=275K T=250K T=225K T=200K T=175K 11229 605.17.1875E-04.7621E-05.2534E-05.6447E-C6.1135E-06.1182L-07 72 9 605.18.7564E-03.4702E-03.2603E-03.1235E-03.4739E-04.1343E-04 4085 605.41.2122E-05.5146E-06.9204E-07.1097E-07.7492E-09.2307E-10 4083 605.82.3917E-05.1006E-05.1928E-06.2502E-07.1899E-08.6699t-10 5054 605.97.3266E-03.1268E-03.3991E-04.9494C-05.1537L-05.1436~-06 7210 605.97.8291E-03.5137E-03.2832E-03.1337E-03.5097E-04.1433E-04 11230 605.98.1743E-04.7014E-05.2304E-05.5773E-06.9975E-07.1013E-07 1082 606.24.7126E-04.2522E-04.7104E-05.1475E-05.2016t-06.1514E-07 2015 606.38.7007E-01.5681E-01.4326E-01.3029E-01.1891E-01.1002E-01 4C82 606.53.5291E-05.1398E-05.2772E-06.3749E-07.2991E-08.1130E-09 7211 606.77.8926E-03.5509E-03.3024E-03.1419L-03.5374t-04.1497L-04 11231 606.79.1613E-04.6419E-05.2082E-05.5136E-06.8703E-07.8624E-08 4081 607.24.7118E-05.1934E-05.3966E-06.5589E-07.4703E-08.1895E-09 5052 607.44.4713E-03.1898E-03.6242E-04.1566E-04.2712E-05.2762E-06 7212 607.56.9466E-03.5818E-03.3177E-03.1482E-03.55711-04.1537L-04 11232 607.61.1484E-04.5844E-05.1870E-05.4540E-06.7540E-07.7281E-08 1080 607.66.1285E-03.4807E-04.1447E-04.3260E-05.4932E-06.4224E-07 2013 607.92.6792E-01.5561E-01.4284E-01.3044E-01.1935E-01.1050L-01 4080 607.95.9539E-05.2664E-05.5648E-06.82891-07.7337E-08.3155E-09 7213 608.36.9907E-03.6062E-03.3293E-03.1526E —>-.5689E-04.1553E-04 11233 608.42.1359E-04.5291E-05.1670L-05.3989L-06.6488C-07.6101t-08 J 4079 608.66.1273E-04.3655E-05.8006E-06.1223E-06.1138E-07.5219E-09 r) 5050 608.92.6690E-03.2790E-03.9571E-04.2529E-04.4670E-05.5168E-06 1078 609.09.2280E-03.9006E-04.2893E-04.7058E-05.1179E-05.1148E-06 7214 609.16.1025E-02.6242E-03.3371E-03.15521-03.5732E-04.1548L-04 11234 609.24.1239E-04.4766E-05.1484E-05.3482E-06.5545E-07.5073E-08 4078 6C9.38.1693E-04.4993E-05.1130E-05.1795E-06.1755E-07.8577E-09 2011 609.46.6332E-01.5228E-01.4069E-01.2927E-01.1890E-01.1046L-01 7215 609.96.1050E-02.6358E-03.3413E-03.1559E-03.5706E-04.1522E-04 11235 610.06.1123E-04.427CE-05.1310E-05.3022E-06.4707E-07.4186E-08 4077 610.09.2242E-04.6790E-05.1586E-05.2621E-06.2691E-07.14000-08 5048 610.40.9338E-03.4029E-03.1439E-03.3996E-04.7850E-05.9409E-06 1076 610.51.3984E-03.1659E-03.5678E-04.1497E-04.2755E-05.3037E-06 7216 610.76.1065E-02.6414E-03.3420E-03.1550E-03.5615E-04.1478E-04 4076 610.81.2958E-04.9196E-05.2217E-05.3807E-06.4101L-07.2271t-08 11236 610.88.1014E-04.3807E-05.1151E-05.2607E-06.3969E-07.3429E-08 20 9 611.01.5622E-01.4675E-01.3670E-01.2668E-01.1745E-01.9824E-02 4075 611.52.3887E-04.12401-04.3084E-05.55011-06.62151-07.3658t-08 7217 611.56.1071E-02.6413E-03.3395E-03.1525E-03.5468E-04.1420E-04 11237 611.69.9107E-05.3376E-05.1005E-05.2235E-06.3325E-07.2788E-08 5046 611.89.1282E-02.5712E-03.2121E-03.6177E-04.1288L-04.1666t-05 1074 611.94.6852E-03.3004E-03.1094E-03.3109E-04.6289E-05.7827E-06 9075 611.99.1060E-05.2524E-06.4419E-07.5135E-08.3395 —09.1003E-10 4074 612.24.5087E-04.1665E-04.4270E-05.7908E-06.9364E-07.5854E-08 7218 612.36.1068E-02.6357E-03.3341L-03.1488L-03.5273L-04.1350c-04

TABLE XVI (Continued) INTENSITY BANC CODE WAVE NUMBER T=300K T=275K T=250K T=225K T=200K T=175K 11238 612.52.8143E-05.2980E-05.8735E-06.1905E-06.2768E-07.2250E-08 20 7 612.57.4675E-01.3910E-01.3091E-01.2266E-01.1498E-01.8547E-02 9074 612.71.1387E-05.3389E-06.6119E-07.7382E-08.5115E-09.1606L-10 4073 612.96.6632E-04.2226E-04.5885E-05.1131E-05.1403E-06.9306E-08 7219 613.16.1057E-02.6253E-03.3261E-03.1438E-03.5036E-04.1269E-04 11239 613.34.7247E-05.2617E-05.7548E-06.1614E-06.2288E-07.1803E-08 5044 613.37.1729E-02.7950E-03 3064E-03.9340E-04.2061E-04.2870E-05 1072 613.38.1160E-02.5346E-03.2067E-03.6324E-04.1402E-04.1964E-05 9073 613.43.1808E-05.4530E-06.8432E-07.1056E-07.7662E-09.2553E-10 4072 613.67.8611E-04.2964E-04.8071E-05.1609E-05.2089E-06.1470E-07 7220 613.96.1039E-02.6105E-03.3157E-03.1378E-03.4767E-04.1182E-04 20 5 614.12.3517E-01.2954E-01.2347E-01.1732E-01.1154E-01.6656E-02 9072 614.15.2347E-05.6031E-06.1157E-06.1502E-07.1141E-08.4032E-10 11240 614.16.6420E-05.2287E-05.6489E-06.1360E-06.1880E-07.1434E-08 4071 614.39.1114E-03.3928E-04.1102E-04.2277E-05.3092E-06.2305E-07 7221 614.77.1015E-02.5918E-03 3034E-03.1311E-03.4474E-04.1091E-04 1070 614.82.1933E-02.9354E-03.3835E-03.1260E-03.3056E-04.4801E-05 5042 614.86.2293E-02.1086E-02.4338E-03.1381E-03.3219E-0 4.4807E-05 9071 614.87.3035E-05.7993E-06.1579E-06.2126E-07.1689E-08.6326E-10 11241 614.98.5662E-05.1988E-05.5548E-06.1139E-06.1535E-07.1133E-08 4070 615.11.1435E-03.5185E-04.1497E-04.3206E-05.4551E-06.3593E-07 7222 615.57.9845E-03.5698E-03.2895E-03.1237E-03.4164E-04.9974E-05 9070 615.59.3910E-05.1055E-05.2145E-06.2992E-07.2487E-08.9859E-10 20 3 615.68.2189E-01.1844E-01.1471E-01.1090E-01.7307E-02.4243E-02 11242 615.80.4972E-05.1721E-05.4719E-06.9488E-07.1245E-07.8881E-09 4069 615.83.1841E-03.6813E-04.2025E-04.4490E-05.6659E-06.5562E-07 1068 616.26.3171E-02.1609E-02.6981E-03.2459E-03.6504E-04.1143E-04 9069 616.31.5016E-05.1386E-05.2901E-06.4191E-07.3638E-08.1526E-09 5040 616.36.2989E-02.1456E-02.6018E-03.1997E-03.4903E-04.7828E-05 7223 616.38.9492E-03.5450E-03.2743E-03.1158E-03.3844E-04.9039E-05 4068 616.56.2353E-03.8915E-04.2725E-04.6255E-05.9687E-06.8552E-07 11243 616.63.4346E-05.1482E-05.3994E-06.7857E-07.1003E-07.6914E-09 9068 617.03.6409E-05.1813E-05.3904E-06.5838E-07.5293E-08.2347t-09 7224 617.18.9097E-03.5180E-03.2582E-03.1077E-03.3520E-04.8120E-05 20 1 617.25.7457E-02.6293E-02.5029E-02.3736E-02.2512E-02.1464E-02 4067 617.28.2995E-03.1161E-03.3650E-04.8669E-05.1401E-05.1306E-06 11244 617.45.3782E-05.1271E-05.3362E-06.6470E-07.8037E-08.5344E-09 1066 617.70.5119E-02.2719E-02.1247E-02.4699E-03.1352E-03.2648E-04 9067 617.76.8157E-05.2362E-05.5229E-06.8091E-07.7654E-08.3585E-09 5038 617.86.3828E-02.1916E-02.8177E-03.2823E-03.7282E-04.1239~-04 7225 617.99.8667E-03.4893E-03.2414E-03.9945E-04.3200E-04.7233E-05 4066 618.00.3797E-03.1506E-03.4866E-04.1195E-04.2014E-05.1982E-06 21 2 618.03.3706E-01.3125E-01.2495E-01.1852E-01.1243E-01.7238E-02 21 4 618.04.6498E-01.5467E-01.4352E-01.3219E-01.2152E-01.1245E-01 21 6 618.05.9006E-01.7549E-01.5982E-01.4400E-01.2921E-01.1676E-01

TABLE XVI (Continued) INTENSITY BANC COCE WAVE NUMBER 21 8 2110 2112 2114 2116 2118 2120 2122 11245 2124 2126 2128 2130 9066 2132 2134 2136 2138 4065 2140 7226 2142 2144 2146 2148 11246 1064 2150 9065 2152 5036 2154 4064 2156 2158 22 1 7227 2160 2162 2164 11247 9064 2166 2168 4063 618.06 618.08 618.10 618.12 618.15 618.18 618.22 618.26 618.28 618.30 618.35 618.40 618.45 618.48 618.51 618.57 618.63 618.70 618.73 618.77 618.80 618.84 618.92 619.00 619.09 619.11 619.15 619.18 619.21 619.27 619.36 619.37 619.45 619.47 619.57 619.60 619.61 619.68 619.79 619.90 619.94 619.94 620.02 620.14 620.18 T=300K.1113E 00.1280E 00.1398E 00.1466E 00.1484E 00.1459E 00.1397E 00.1305E 00.3277E-05.1191E 00.1063E 00.9304E-01.7978E-01.1034E-04.6710E-01.5539E-01.4489E-01.3573E-01.4795E-03.2794E-01.8212E-03.2147E-01.1621E-01.1204E-01.8789E-02.2827E-05.8133E-02.6310E-02.1305E-04.4456E-02.4815E-02.3095E-02.6030E-03.2115E-02.1422E-02.7490E-02.7738E-03.9407E-03.6124E-03.3923E-03.2428E-05.1641E-04.2473E-03.1534E-03.7554E-03 T=275K.9283E-01.1061E 00.1149E 00.1194E 00.1196E 00.1162E 00.1098E 00.1010E 00.1084E-05.90736-01.7964E-01.68376-01.57466-01.3063E-05.4730E-01.3816E-01.3018E-01.2342E-01.1946E-03.1782E-01.4595E-03.13316-01.9760E-02.7025E-02.4965E-02.9206E-06.4518E-02.3446E-02.3956E-05.2349E-02.2472E-02.1573E-02.2502E-03.1035E-02.6692E-03.6320E-02.4290E-03.4251E-03.2653E-03.1627E-03.7781E-06.50856-05.9811E-04.5813E-04.3203E-03 T=250K.7312E-01.8291E-01.8899E-01.9140E-01.9045E-01.8661E-01.8051E-01.72806-01.2816E-06.6414E-01.5513E-01.4628E-01.3796E-01.6970E-06.3045E-01.2390E-01.1836E-01.1382E-01.64576-04.1018E-01.2242E-03.73496-02.5200E-02.3606E-02.2451E-02.2346E-06.2186E-02.1634E-02.9247E-06.1068E-02.1088E-02.6844E-03.85276-04.4302E-03.2653E-03.5050E-02.2070E-03.1605E-03.95256-04.5546E-04.1945E-06.12216-05.3169E-04.1777E-04.1121E-03 T=225K.5338E-01.59956-01.63616-01.6446E-01.6280E-01.5909E-01.5387E-01.4767E-01.5297E-07.4102E-01.3437E-01.2807E-01.2235E-01.1115E-06.1738E-01.1319E-01.9778E-02.7085E-02.1639E-04.5018E-02.9120E-04.3475E-02.2354E-02.1559E-02.1011E-02.4313E-07.8793E-03.6411E-03.1529E-06.3980E-03.39006-03.24186-03.2236E-04.14386-03.8370E-04.3751E-02.8307E-04.4770E-04.26626-04.1454E-04.3492E-07.2086E-06.7782E-05.40776-05.3034E-04 T=200K.3511E-01.3897E-01.4075E-01.4060E-01.3880E-01.3572E-01.3177E-01.2737E-01.63976-08.2287E-01.18566-01.14646-01.1124E-01.1100E-07.8398E-02.6112E-02.4335E-02.2997E-02.2879E-05.2020E-02.2887E-04.13286-02.8519E-03.5332E-03.3256E-03.5060E-08.2746E-03.1941E-03.1573E-07.1130E-03.1054E-03.6418E-04.4090E-05.3560E-04.1929E-04.2522E-02.2585E-04.1020E-04.5272E-05.2660E-05.3978E-08.2234E-07.1311E-05.6314E-06.5777C-05 T=175K.1990E-01.2175E-01.2233E-01.2177E-01.20296-01.1816E-01.1565E-01.1303E-01.4102E-09.1048E-01.8163E-02.6161E-02.4510E-02.54406-09.3203E-02.2209E-02.1480E-02.9630E-03.2987E-06.6091E-03.6390C-05.3746E-03.22406-03.1303E-03.7372L-04.3127E-09.5975E-04.4058L-04.8199E-09.2174E-04.1905t-04.11336-04.4473E-06.5748E-05.28396-05.1470E-02.5599E-05.1364E-05.63856-06.2909E-06.2366E-09.12286-08.1290E-06.5573E-07.6651E-06 1

TABLE XVI (Continued) INTENSITY BANO CODE WAVE NUMBER 2170 2172 7228 2174 1062 2176 9063 11248 2178 5034 4062 2180 2182 22 3 7229 2184 9062 2186 11249 4061 7230 1060 9061 4060 5032 11250 22 5 9060 7231 4059 11251 1058 9059 7232 4058 5030 11252 9058 22 7 7233 4057 1056 9057 4056 7234 620.27 620.40 620.42 620.53 620.60 620.66 620.66 620.77 620.80 620.87 620.91 620.95 621.09 621.17 621.23 621.24 621.39 621.40 621.59 621.63 622.04 622.06 622.12 622.36 622.38 622.43 622.75 622.85 622.85 623.09 623.26 623.52 623.58 623.67 623.82 623.89 624.09 624.31 624.33 624.48 624.56 624.98 625.05 625.29 625.30 T=300K.9371E-04.5633E-04.7253E-03.3333E-04.1272t-01.1941E-04.2056E-04.2077E-05.1113E-04.5946E-02.9425E-03.6284E-05.3492E-05.2212E-01.6762E-03.1910E-05.2564E-04.1029E-05.1769E-05.1171E-02.6273E-03.1957E-01.3185E-04.1449E-02.7206E-02.1500E-05.3574E-01.3940E-04.5790E-03.1786E-02.1267E-05.2962E-01.4855E-04.5318E-03.2193E-02.8567E-02.1065E-05.5957E-04.4779E-01.4861E-03.2681E-02.4413E-01.7280E-04.3264E-02.4421E-03 T=275K.3385E-04.1938E-04.3982E-03.1091E-04.7376E-02.6033E-05.6509E-05.6546E-06.3281E-05.3127E-02.4083E-03.1754E-05.9220E-06.1863E-01.3676E-03.4765E-06.8295E-05.2421E-06.5482E-06.5182E-03.3375E-03.1183E-01.1053E-04.6548E-03.3878E-02.4570E-06.3001E-01.1330E-04.3083E-03.8237E-03.3792E-06.1866E-01.1672E-04.2800E-03.1032E-02.4711E-02.3133E-06.2093E-04.3995E-01.2531E-03.1286E-02.2890E-01.2609E-04.1597E-02.2275E-03 T=250K.9774E-05.5276E-05.1900E-03.2796E-05.3758E-02.1454E-05.1604E-05.1604E-06.7419E-06.1417E-02.1466E-03.3716E-06.1827E-06.1485E-01.1733E-03.8818E-07.2098E-05.4177E-07.1317E-06.1908E-03.1572E-03.6341E-02.2730E-05.24726-03.1806E-02.1075E-06.2384E-01.3536E-05.1417E-03.3187E-03.8738E-07.1050E-01.4558E-05.1271E-03.4089E-03.2251E-02.7065E-07.5846E-05.3156E-01.1133E-03.5222E-03.1704E-01.7462E-05.6635E-03.1004E-03 T=225K.2092E-05.1051E-05.7516E-04.5176E-06.1611E-02.2495E-06.2831E-06.2812E-07.1178E-06.5264E-03.4096E-04.5451E-07.2470E-07.1101E-01.6757E-04.1096E-07.3829E-06.4767E-08.2252E-07.5500E-04.6036E-04.2891E-02.5129E-06.7346E-04.6937E-03.1793E-07.1758E-01.6849E-06.5358E-04.9760E-04.1420E-07.5078E-02.9096E-06.4727E-04.1290E-03.8924E-03.1119E-07.1202E-05.2313E-0I.4145E-04.1695E-03.8733E-02.1579E-05.2217E-03.3613E-04 T=200K.2970E-06.1365E-,6.2298E-04.6126E-07.5448E-03.2687E-07.3155E-07.3108E-08.1152E-07.1488E-03.8112E-05.4822E-08.1973E-08.7375E-02.2029E-04.7888E-09.4430t-07.3082E-09.2413E-08.1132E-04.1779E-04.1056E-02.6182E-07.1571E-04.2045E-03.1862E-08.1171E-01.8577E-07.1549E-04.2167E-04.1429E-08.1997E-02.1183E-06.1339E-04.2972E-04.2736E-03.1089E-08.1622E-06.1528E-01.1150E-04.4051E-04.3691E-02.2210E-06.5488E-04.9812E-05 T=175K.2344E-07,9600E-08.4866E-05.3829L-08.1313E-03.1487E-08.1825t-08.1778c-09.5626E-09.2847E-04.9825E-06.2073E-09.7437E-10.42826-02.4197E-05.2599E-10.2696E-08.8849E-11.1327E-09.1442E-05.3591E-05.2808E-03.3955E-08.2101E-05.4129E-04.9839E-10.67526-02.5764E-08.3049E-05.3041E-05.7242E-10.5846E-03.8342E-08.2569E-05.4373E-05.5813E-04.5294E-10.1199E-07.8717E-02.2149E-05.6245E-05.1185E-02.1712E-07.8859E-05.1784E-05

TABLE XVI (Continued) INTENSITY EA^C COCE kAVE NUMBER T=300K T=275K T=250K T=225K T=200K T=175K 5028 625.41.9986E-02 5602E-02.2743E-02.1120E-02.3562E-03.7937E-04 9056 625.78.8859E-04.3238E-04.9478E-05.2064E-05.2993E-06.2428C-07 22 9 625.91.5782E-01.4805E-01.3769E-01.2738L-01.1790E-01.1007E-01 4055 626.02.3957E-02.1974E-02.8390E-03.2883E-03.7392E-04.1248E-04 7235 626.12.4003E-03.2035E-03.8856E-04.3130E-04.8316E-05.1470E-05 1054 626.45.6467E-01.4399E-01.2714E-01.1470E-01.6659E-02.2337E-02 9055 626.51.1074E-03.4000E-04.1198E-04.2683E-05.4030E-06.3421E-07 4054 626.76.4778E-02.2428E-02.1056E-02.3729E-03.9896E-04.1747E-04 5026 626.93.1140E-01.6518E-02.3264E-02.1370E-02.4510E-03.1050E-03 7236 626.93.3607E-03.1812E-03.77666-04.2696E-04.7002E-05.1202E-05 9054 627.25.1296E-03.4919E-04.1507E-04.3469E-05.5393E-06.4785E-07 4053 627.49.5746E-02.2974E-02.1322E-02.4797E-03.1317E-03.24271-04 2211 627.50.6550E-01.5403E-01.4202E-01.3021E-01.1949E-01.1078E-01 7237 627.75.3235E-03.1604E-03.6774E-04.2308E-04.5858E-05.9761E-06 1052 627.92.9322E-01.6577E-01.4239E-01.2422E-01.1173E-01.4487E-02 9053 627.99.1558E-03.6022E-04.1886E-04.4461L-05.7173E-06.6648E-07 4052 628.23.6881E-02.3627E-02.1647E-02.6139E-03.1742E-03.3351E-04 5024 628.45.1274E-01.7413E-02.3790E-02.1631E-02.5546E-03.1346E-03 7238 628.57.2889E-03.1414E-03.5878E-04.1965E-04.4869E-05.7868L-06 9052 628.72.1864E-03.7339E-04.2349E-04.5706E-05.9484E-06.9173E-07 4051 628.97.8207E-02.4403E-02.2043E-02.7812E-03.2290E-03.4594E-04 2213 629.09.7067E-01.5781E-01.4449E-01.3158E-01.2006E-01.10876-01 1050 629.39.1322E 00.9658E-01.6493E-01.3906E-01.2017E-01.8382E-02 7239 629.39.2568E-03.1240E-03.5073E-04.1663E-04.4021E-05.6297E-06 9051 629.46.2222E-03.8904E-04.2911E-04.12586-05.1246E-05.1257E-06 4050 629.71.9746E-02.5320E-02.2521[-02.9889E-03.2993E-03.6254E-04 5022 629.98.1393E-01.8230E-02.4289E-02.1890E-02.6618E-03.1668E-03 9050 630.20.2637E-03.1075E-03.3590E-04.9182E-05.1628E-05.1711E-06 7240 630.21.2272E-03.1082E-03.4355E-04.1399E-04.3300E-05.5003E-06 4049 630.44.1153E-01.6400E-02.3095L-02.1245E-02.3887E-03.8457E-04 2215 630.68.7334E-01.5939E-01.4517E-01.3160E-01.1971E-01.1044E-01 1048 630.87.1843E 00.1393E 00.9751E-01.6163E-01.3386E-01.1523E-01 9049 630.94.3116E-03.1293E-03.4405E-04.1155k-04.2113E-05.2312E-06 7241 631.03.2001E-03.9402E-04.3720E-04.1171E-04.2691E-05.3947E-06 4048 631.18.1357E-01.7663E-02.3781E-02.1559E-02.5018E-03.1136E-03 5020 631.51.1485E-01.8907E-02.4724E-02.2128E-02.7651E-03.1996E-03 9048 631.68.3667E-03.1547E-03.5378E-04.1445E-04.2726E-05.3103E-06 7242 631.86.1755E-03.8128E-04.3161E-04.9741E-05.2181E-05.3092E-06 4047 631.92.1591E-01.9134E-02.4596E-02.1941E-02.6439E-03.1515E-03 2217 632.28.7365E-01.5897E-01.4424E-01.3044E-01.1860E-01.9589E-02 1046 632.35.2527E 00.1973E 00.1436E 00.9516E-01.5548E-01.2694E-01 9047 632.42.4297E-03.1842E-03.6533E-04.1798E-04.3496E-05.4135c-06 4046 632.67.1858E-01.1084E-01.5559E-02.24031-02.8211E-03.2006E-03 7243 632.68.1533E-03.6994E-04.2672E-04.8059E-05.1756E-05.2405E-06 5018 633.04.1543E-01.9378E-02.5054E-02.2321E-02.8552E-03.2302E-03

TABLE XVI (Continued) INTENSITY BAND CODE WAVE NUMBER 9046 4045 7244 1044 2219 9045 4044 7245 5016 9044 4043 7246 1042 9043 2221 4042 7247 5014 9042 4041 1040 7248 9041 2223 4040 7249 9040 5012 4039 1038 9039 7250 4038 2225 9038 5010 7251 4037 1036 9037 4036 7252 2227 9036 50 8 633.17 633.41 633.50 633.83 633.88 633.91 634.15 634.33 634.58 634.65 634.90 635.16 635.32 635.40 635.49 635.64 635.98 636.13 636.14 636.39 636.81 636.81 636.89 637.10 637.14 637.64 637.64 637.67 637.88 638.31 638.39 638.47 638.63 638.71 639.14 639.22 639.30 639.38 639.81 639.89 640.13 640.13 640.32 640.64 640.77 T=300K.5013E-03.2160E-01.1333E-03.3407E 00.7184E-01.5823E-03.2501E-01.1154E-03.1557E-01.6735E-03.2883E-01.9944E-04.4515E 00.7755E-03.6827E-01.3308E-01.8535E-04.1521E-01.8890E-03.3779E-01.5880E 00.7294E-04.1015E-02.6332E-01.4299E-01.6207E-04.1153E-02.1428E-01.4867E-01.7523E 00.1304E-02.5260E-04.5487E-01.5742E-01.1467E-02.1278E-01.4439E-04.6157E-01.9455E 00.1644E-02.6876E-01.3731E-04.5097E-01.1834E-02.1071E-01 T-275K.2184E-03.1280E-01.5990E-04.2743E 00.5679E-01.2577E-03.1504E-01.5106E-04.9579E-02.3027E-03.1760E-01.4332E-04.3744E 00.3538E-03.5321E-01.2050E-01.3659E-04.9453E-02.4116E-03.2376E-01.5016E 00.3076E-04.4765E-03.4861E-01.2740E-01.2574E-04.5490E-03.8960E-02.3145E-01.6592E 00.6294E-03.2144E-04.3593E-01.4334E-01.7180E-03.8078E-02,1778E-04.4084E-01.8499E 00.8150E-03.4619E-01.1468E-04.3778E-01.9204E-03.6811E-02 T=250K.7896E-04.6690E-02.2247E-04.2072E 00.4197E-01.9494E-04.8010E-02.1881E-04.5237E-02.1136E-03.9542E-02.1566E-04.2930E 00.1352E-03.3867E-01.1131E-01.1297E-04.5234E-02.1600E-03.1333E-01.4061E 00.1069E-04.1885E-03.3467E-01.1564E-01.8769E-05.2208E-03.5016E-02.1825E-01.5512E 00.2573E-03.7157E-05.2118E-01.3030E-01.2983E-03.4565E-02.5812E-05.2445E-01.7328E 00.3439E-03.2808E-01.4696E-05.2584E-01.3943E-03.3878E-02 T=225K.2225E-04.2959E-02.6630E-05.1437E 00.2834E-01.2738E-04.3624E-02.5424E-05.2447E-02.3350E-04.4413E-02.4413E-05.2123E 00.4076E-04.2558E-01.5343E-02.3570E-05.2484E-02.4931E-04.6434E-02.3066E 00.2873E-05.5931E-04.2242E-01.7703E-02.2299E-05.7093E-04.2413E-02.9169E-02.4330E 00.8433E-04.1830E-05.1085E-01.1912E-01.9968E-04.2221E-02.1448E-05.1277E-01.5976E 00.1171E-03.1494E-01.1140E-05.1588E-01.1368E-03.1905E-02 T=200K.44556-05.1041E-02.1405E-05.8870E-01.1692E-01.5642E-05.1311E-02.1118E-05.9217E-03.7100E-05.1641E-02.8834E-06.1383E 00.8880E-05.1488E-01.2041E-02.6940E-06.95396-03.1104E-04.2523E-02.2105E 00.5418E-06.1363E-04.1268E-01.3099E-02.4205E-06.1672E-04.9423E-03.3782E-02.3122E 00.2038E-04.3243E-06.4587E-02.1049E-01.2469E-04.8800E-03.2486E-06.5527E-02.4516E 00.2971E-04.6617E-02.1894E-06.8424E-02.3552E-04.76386-03 T=175K.5473E-06.2638E-03.1858E-06.4633E-01.8467E-02.7193E-06.3445E-03.1425E-06.2552E-03.9386E-06.4468E-03.1085E-06.7750E-01.1216E-05.72056-02.5753E-03.8208E-07.2708E-03.1565E-05.7356E-03.1260E 00.6165E-07.1999E-05.5922E-02.9338E-03.4599E-07.2535E-05.2734E-03.1177E-02.1992E 00.3191E-05.3407E-07.1473E-02.4707E-02.3989E-05.2600E-03.2507E-07.1830c-02.3060E 00.4949E-05.2257E-02.1832E-07.3623E-02.6095E-05.2292E-03 — 4

TABLE XVI (Continued) INTENSITY BANC COCE hAVE NUMBER 4035 7253 1034 9035 4034 7254 2229 9034 50 6 4033 7255 1032 9033 4032 7256 2231 9032 50 4 4031 7257 1030 9031 4030 7258 9030 2233 4029 50 2 1028 9029 7259 4028 9028 2235 7260 4027 51 2 51 4 51 6 51 8 5110 5112 5114 5116 5118 640.89 640.97 641.31 641.39 641.64 641.80 641.94 642.15 642.33 642.39 642.63 642.81 642.90 643.15 643.47 643.57 643.66 643.89 643.90 644.30 644.32 644.41 644.66 645.14 645.17 645.19 645.41 645.45 645.84 645.93 645.98 646.17 646.69 646.82 646.82 646.93 647.02 647.03 647.04 647.05 647.07 647.09 647.11 647.14 647.17 T=300K.7645E-01.3122E-04.1167E 01.2035E-02.8459E-01.2602E-04.4432E-01.2248E-02.8113E-02.9315E-01.2160E-04.1413E 01.2471E-02.1021E 00.1785E-04.3778E-01.2702E-02.5088E-02.1113E 00.1470E-04.1679E 01.2941E-02.1208E 00.1205E-04.3183E-02.3160E-01.1304E 00.1746E-02.1956E 01.3427E-02.9838E-05.1400E 00.3671E-02.2594E-01.8000E-05.1495E 00.4377E-02.3837E-02.3545E-02.3286E-02.3024E-02.2751E-02.2472E-02.2190E-02.1914E-02 T=275K.5199E-01.1207E-04.1074E 01.1034E-02.5821E-01.9871E-05.3222E-01.1156E-02.5188E-02.6485E-01.8040E-05.1331E 01.1285E-02.7187E-01.6520E-05.2690E-01.1422E-02.3265E-02.7923E-01.5263E-05.1616E 01.1564E-02.8688E-01.4230E-05.1711E-02.2200E-01.9475E-01.1123E-02.1921E 01.1861E-02.3385E-05.1028E 00.2013E-02.1763E-01.2697E-05.1108E 00.2816E-02.2462E-02.2267E-02.2090E-02.1911E-02.1725E-02.1535E-02.1346E-02.1162E-02 T=250K.3207E-01.3776E-05.9536E 00.4497E-03.3643E-01.3022E-05.2152E-01.5099E-03.2972E-02.4115E-01.2407E-05.1214E 01.5750E-03.4622E-01.1907E-05.1753E-01.6446E-03.1879E-02.5163E-01.1504E-05.1513E 01.7184E-03.5733E-01.1180E-05.7960E-03.1396E-01.6330E-01.6482E-03.1841E 01.8766E-03.9218E-06.6947E-01.9594E-03.1088E-01.7165E-06.7578E-01.1625E-02.1417E-02.1298E-02.1190E-02.1079E-02.9653E-03.8497E-03.7356E-03.6261E-03 T=225K.1737E-01.8928E-06.8058E 00.1588E-03.2008E-01.6953E-06.1285E-01.1833E-03.1471E-02.2307E-01.5386E-06.1061E 01.2102E-03.2635E-01.4150E-06.1015E-01.2396E-03.9350E-03.2990E-01.3180E-06.1364E 01.2714E-03.3373E-01.2424E-06.3054E-03.7824E-02.3780E-01.3236E-03.1710E 01.3414E-03.1838E-06.4209E-01.3791E-03.5889E-02.1386E-06.4655E-01.8112E-03.7049E-03.6424E-03.5844E-03.5251E-03.4642E-03.4031E-03.3436E-03.2873E-03 T=200K.7870E-02.1435E-06.6365E 00.4218E-04.9298E-02.1080E-06.6580E-02.4975E-04.5953E-03.1091E-01.8084E-07.8739E 00.5829E-04.1272E-01.6014E-07.5001E-02.6782E-04.3810E-03.1473E-01.4447E-07.1168E 01.7836E-04.1694E-01.3269E-07.8991E-04.3701E-02.1934E-01.1324E-03.1520E 01.1024E-03.2388E-07.2193E-01.1158E-03.2668E-02.1735E-07.2469E-01.3320E-03.2872E-03.2599E-03.2342E-03.2080E-03.1812E-03.1547E-03.1294E-03.1058E-03 T=175K.2763E-02.1329E-07.4567E 00.7451E-05.3358E-02.9581E-08.2703E-02.9040E-05.1808E-03.4050E-02.6859E-08.6617E 00.1088E-04.4849E-02.4877E-08.1956E-02.1301E-04.1167E-03.5761E-02.3444E-08.9306E 00.1542E-04.6792t-02.2416E-08.1814E-04.1373E-02.7945E-02.4081E-04.1269E 01.2117E-04.1683E-08.9221E-02.2450E-04.9365E-03.1165E-08.1062E-01.1023E-03.8799E-04.7893E-04.7028E-04.6144E-04.5256E-04.4391E-04.3580E-04.2847E-04 GO

TABLE XVI (Continued) INTENSITY 8ANC CCCE WAVE NUMBER T=300K T=275K T=250K T=225K T=200K T=175K 5120 647.21.1648E-02.9879E-03.5236E-03.2357E-03.8470E-04.2209t-04 5122 647.25.1399E-02.8263E-03.4303L-03.1895E-03.6631t-04.1670t-04 5124 647.29.1170t-02.6802E-03.3475E-03.1495E-03.5078E-04.1231t-04 5126 647.34.9647E-03.5510E-03.2756E-03.1156E-03.3803E-04.8850E-05 1026 647.35.2232E 01.2233E 01.2190E 01.2090E 01.1923E 01.1678E 01 5128 647.39.7835E-03.4391E-03.2148E-03.8761E-04.2785E-04.6200t-05 5130 647.44.6269E-03.3443E-03.1644E-03.6510E-04.1994E-04.4234E-05 9027 647.45.3909E-02.2165E-02.1043E-02.4181E-03.1300E-03.2813E-04 5132 647.5C.4942E-03.2657E-03.1236E-03.4742t-04.1396L-04.2818L-05 5134 647.56.3838E-03.2016E-03.9127E-04.3386E-04.9561E-05.1828E-05 5136 647.62.2937E-03.1506E-03.6620E-04.2370E-04.6401C-05.1156E-05 7261 647.66.6479E-05.2139E-05.55421-06.1040h-06.1253L-07.8007L-09 4026 647.69.1589E 00.1188E 00.8214E-01.5115E-01.2759t-01.1212E-01 5138 647.69.2214E-03.1106E-03.4716E-04.1626E-04.4190E-05.1122E-06 5140 647.76.1644E-03.7996E-04.3300E-04.1094E-04.2682E-05.4278E-06 52 0 647.80.3546E-02.2283E-02.1319E-02.6597E-03.2704E-03.8352E-04 5142 647.83.1202E-03.5686E-04.2268E-04.7211E-05.1678E-05.2504E-06 5144 647.91.8666E-04.3978E-04.1531E-04.4659E-05.1027E-05.1428E-06 5146 647.99.6152E-04.2737E-04.1015E-04.2951E-05.6145E-06.7941L-07 5148 648.08.4303E-04.1853E-04.6609E-05.1832E-05.3594E-06.4303E-07 515C 648.17.2964E-04.1234E-04.4226E-05.1115E-05.2056E-06.2272E-07 9C26 648.21.4140E-02.2313E-02.1127E-02.4580E-03.14481-03.3202t-04 5152 648.26.2012E-04.8087E-05.2655E-05.6651E-06.1149E-06.1169E-07 5154 648.36.1345E-04.5213E-05.1638E-05.3888E-06.6285E-07.5865E-08 4025 648.45.1678E OC.1266E 00.8848E-01.5582E-01.3060E-01.1373E-01 2237 648.46.2090E-01.1386E-01.8296E-02.4331E-02.1874E-02.6203E-03 5156 648.46.8859E-05.3305E-05.9921E-06.2228E-06.3359E-07.2867E-08 7262 648.50.5226E-05.1689E-05.4266E-06.7761E-07.8990E-08.5467E-09 5158 648.56.5748t-05.2062E-05.5904E-06.1252E-06.1756L-C7.1366E-08 5160 648.67.3674E-05.1265t-05.3450E-06.6891E-07.8971E-08.6340E-09 5162 648.78.2313E-05.7638E-06.1980E-06.3718E-07.4482E-08.2868E-09 3083 648.82.1684E-05.4317t-06.8259E-07.10701-07.8105L-09.2855c-10 1024 648.87.2493E 01.2538E 01.2541E 01.2488E 01.2363E 01.2149E 01 5164 648.89.1435E-05.4536E-06.1116E-06.1967E-07.2189E-08.1265E-09 9025 648.97.4358E-02.2457E-02.1210E-02.4980E-03.1601E-03.3614E-04 4C24 649.21.1763E 00.1341E 00.9469E-01.6048E-01.3368E-01.1542E-01 7263 649.34.4199E-05.1328E-05.3269E-06.5761E-07.6414E-08.3707t-09 52 2 649.38.7033E-02.4523E-02.2610E-02.1303E-02.5332E-03.1642c-u3 9024 649.73.45591-02.2592t-02.1290E-02.5376t-03.1755E-03.4044b-04 4023 649.98.140E 00.1412E 00.1006E 00.6507E-01.3678E-01.1717E-01 2239 650.09.1655E-01.1069E-01.6197E-02.3112C-02.1283C-02.3992L-03 7264 650.18.33600-05.1039L-05.2492t-06.4253t-07.4550E-08.2498E-09 1022 65C.40.2723E 01.2816E 01.2874E 01.2881E 01.2817E 01.26611 01 9023 650.49.4740E-02.2717E-02.1366E-02.5759E-03.1908E-03.44831-C4 3081 65C.72.3C65E-05.d312E-06.1701E-06.2393E-07.2010C-08.8088c-10

TABLE XVI (Continued) INTENSITY BAND CCDE WAVE NUMBER 4022 52 4 7265 9022 4021 2241 7266 1020 9021 4020 52 6 3079 7267 902Q 4019 2243 1018 9019 7268 4018 52 8 9018 7269 3077 4017 1016 2245 9017 4016 5210 9016 4015 3075 1014 9015 2247 4014 5212 9014 4013 1012 9013 3073 2249 4012 650.74 650.95 651.03 651.26 651.50 651.74 651.87 651.93 652.02 652.27 652.53 652.61 652.72 652.79 653.03 653.38 653.46 653.56 653.56 653.80 654.12 654.32 654.41 654.50 654.57 654.99 655.03 655.09 655.34 655.70 655.86 656.11 656.38 656.53 656.63 656.68 656.88 657.29 657.41 657.65 658.07 658.18 658.25 658.33 658.42 T=300K.1909t 00.1030E-01.2677E-05.4895E-02.1968E 00.1287E-01.2125E-05.2902E 01.5020E-02.2016E 00.1322E-01.5491E-05.1680E-05.5111E-02.2049E 00.9836E-02.3014E 01.5162E-02.1323E-05.2068E 00.1566E-01.5171E-02.1038E-05.9685E-05.2070E 00.3041E 01.7389E-02.5133E-02.2054E 00.1754E-01.5046E-02.2019E 00.1681E-04.2968E 01.4906E-02.5458E-02.1964E 00.1882E-01.4712E-02.1889E O0.2787L 01.4463E-02.2874E-04.3964E-02.1793E 00 T=275K.1476E 00.6611E-02.8101E-06.2828E-02.1533E 00.8084E-02.6287E-06.3047E 01.2922E-02.1581E 00.8448E-02.1573E-05.4857E-06.2996E-02.1619E 00.6002E-02.3206E 01.3047E-02.3737E-06.1644E 00.9957E-02.3072E-02.2862E-06.2927E-05.1656E 00.3273E 01.4374E-02.3069E-02.1652E 00.1108E-01.3034E-02.1633E 00.5354E-05.3229E 01.2966E-02.3129E-02.1597E 00.1180E-01.2863E-02.1543E 00.3060E 01.2725E-02.9628E-05.2198E-02.1471E 00 T=250K.1062E 00.3803E-02.1891E-06.1435E-02.1113E 00.4534E-02.1428E-06.3164E 01.1496E-02.1158E 00.4838E-02.3439E-06.1074E-06.1547E-02.1195E 00.3251E-02.3383E 01.1586E-02.8032E-07.1223E 00.5667E-02.1612E-02.5980E-07.6824E-06.1241E 00.3504E 01.2284E-02.1622E-02.1247E 00.6258E-02.1615E-02.1241E 00.1329E-05.3500E 01.1589E-02.1573E-02.1221E 00.6598E-02.1543E-02.1186E 00.3353E 01.1477E-02.2540E-05.1062E-02.1137E 00 T=225K.6948E-01.1892E-02.3124E-07.6121E-03 *73.62E-01.2187E-02.22836-07.3240E 01.6453E-03.7738E-01.2393E-02.5244E-07.1659E-07.6744E-03.8066E-01.1502E-02.3533E 01.6984E-03.1200E-07.8334E-01.2782E-02.7164E-03.8627E-08.1126E-06.8532E-01.3723E 01.1009E-02.7273E-03.8647E-01.3043E-02.7303E-03.8672E-01.2366E-06.3777E 01.7244E-03.6635E-03.85966-01.3172E-02.7089E-03.8413E-01.3667E 01.6833E-03.4873E-06.4267E-03.8116E-01 T=200K.3984E-01.7707E-03.3208E-08.20586-03.4280E-01.8570E-03.2249E-08.3255E 01.2199E-03.4558E-01.9682E-03.4872E-08.1567E-08.23296-03.4811E-01.5582E-03.3636E 01.2442E-03.1086E-08.5031E-01.1115t-02.2535E-03.7479E-09.1154t-07.5208E-01.3916E 01.3547E-03.2603E-03.5335E-01.1205E-02.2641E-03.5404E-01.2669E-07.40511 01.26466-03.2199E-03.54070-01.1238E-02.2614E-03.5338E-01.4000E 01.2542E-03.6033E-07.1331L-03.51926-01 T=175K.1894E-01.2361E-03.1671E-09.4924E-04.2071E-01.249BE-03.lll-09.3182E 01.5357E-04.2244E-01.2940E-03.2231E-09.7334E-10.5769E-04.2406E-01.1519E-03.3668L 01.6149E-04.4810E-10.25556-01.3344E-03.6481E-04.3134E-10.5995L-09.2683t-01.4063E 01.89866-04.6751E-04.2787E-01.3559E-03.6945E-04.2859E-01.15696-08.4309L 01.7048E-04.5170E-04.2896t-01.3589E-03.70476-04.2891E-01.4348E 01.6930E-04.3997E-08.2893t-04.2841E-01 O 0

TABLE XVI (Continued) INTENSITY BANC COCE hAVE NUMBER 5214 9012 4011 1010 9011 4010 2251 3071 5216 9010 40 9 10 8 90 9 40 8 2253 3069 90 8 5218 40 7 10 6 90 7 40 6 2255 90 6 5220 3C67 40 5 10 4 90 5 40 4 2257 90 4 5222 40 3 3065 10 2 2259 5224 11 2 11 4 11 6 11 8 1110 3063 1112 658.89 658.95 659.19 659.62 659.72 659.97 659.99 660.11 660.49 660.50 660.74 661.17 661.28 661.52 661.66 661.96 662.05 662.09 662.30 662.72 662.83 663.07 663.32 663.61 663.69 663.80 663.85 664.28 664.39 664.63 664.99 665.17 665.30 665.41 665.64 665.84 666.67 666.91 667.40 667.41 667.42 667.43 667.45 667.47 667.47 T=3GOK.1949E-01.4160E-02.1676E 00.2492E 01.3803E-02.1540E 00.2831E-02.4834E-04.1957E-01.3396E-02.1383E 00.2087E 01.2942E-02.1209E 00.1989E-02.8005E-04.2449E-02.1911E-01.1018E 00.1582E 01.1925E-02.8142E-01.1374E-02.1386E-02.1820E-01.1304E-03.6004E-01.9916E 00.8515E-03.3829E-01.9344E-03.3620E-03.1694E-01.1730E-01.2092E-03.3402E 00.6250E-03.1542E-01.8528E 00.7477E OC.6909E 00.6405E 00.5894E OC.3303E-03.5364E 00 T=275K.1210E-01.2551E-02.1381E 00.2758E 01.2342E-02.1273E 00.1517E-02.1702E-04.1202E-01.2099E-02.1148E 00.2324E 01.1825E-02.1006E 00.1028E-02.2957E-04.1523E-02.1160E-01.8499E-01.1770E 01.1201E-02.6811E-01.6844E-03.8663E-03.1090E-01.5049E-04.5033E-01.1114E 01.5334E-03.3215E-01.4476E-03.2272E-03.9997E-02.1454E-01.8473E-04.3831E 00.2877E-03.8955E-02.9601E 00.8397E 00.7730E 00.7130E 00.6519E 00.1398E-03.5887E 00 T=250K.6694E-02.1390E-02.1073E 00.3051E 01.1282E-02.9933E-01.7029E-03.4764E-05.6564E-02.1154E-02.8992E-01.2591E 01.1008E-02.7911E-01.4563E-03.8768E-05.8445E-03.6245E-02.6704E-01.1985E 01.6679E-03.5388E-01.2905E-03.4831E-03.5776E-02.1584E-04.3991E-01.1255E 01.2982E-03.2554E-01.1814E-03.1273E-03.5203E-02.1157E-01.2807E-04.4328E 00.1111E-03.4571E-02.1085E 01.9460E 00.8669E 00.7947E 00.7210E 00.4880E-04.6449E 00 T=225K.3174E-02.6472E-03.7702E-01.3375E 01.6007E-03.7171E-01.2685E-03.9827E-06.3064E-02.5437E-03.6523E-01.2894E 01.4770E-03.5765E-01.1653E-03.1941E-05.4015E-03.2864E-02.4905E-01.2234E 01.3188E-03.3956E-01.9966E-04.2314E-03.2598E-02.3754E-05.2939E-01.1420E 01.1433E-03.1886E-01.5880E-04.6129E-04.2290E-02.8561E-02.7111E-05.4913E 00.3397E-04.1965E-02.1231E 01.1070E 01.9753E 00.8874E 00.7974E 00.1319E-04.7051E 00 T=2 OK.1218E-02.2428E-03.4964E-01.3734E 01.2270E-03.4653E-01.7862E-04.1332E-06.1153E-02.2069E-03.4260E-01.3240E 01.1826E-03.3786E-01.4533E-04.2874E-06.1546E-03.1054E-02.3237E-01.2524E 01.1234E-03.2622E-01.2552E-04.8995E-04.9331E-03.6057E-06.1955E-01.1615E 01.5589E-04.1258E-01.1403E-04.2398E-04.8007E-03.5728E-02.1247E-05.5615E 00.7531E-05.6671E-03.1407E 01.1217E 01.1102E 01.9934C 00.8821E 00.2507E-05.7689E 00 T=175K.3455E-03.6688E-04.2743E-01.4134E 01.6314E-04.2594E-01.1576E-04.9919E-08.3191E-03.5806E-04.2394E-01.3642L 01.5166E-04.2143E-01.8348E-05.2397E-07.4405E-04.2836E-03.1844t-01.2872t 01.3538E-04.1502i-01.4305E-05.2594E-04.2432E-03.5640E-07.1126E-01.1854E 01.1620E-04.7274E-02.2160E-05.6978E-05.2016E-03.3321E-02.1292E-06.6480E 00.1055E-05.1617E-03.1624E 01.1397E 01.1254E 01.1116E 01.9764E 00.2882E-06.8355E 00 -- I —J

TABLE XVI (Continued) INTENSITY BANC CODE hAVE NUMBER T=300K T=275K 1114 1116 1118 1120 1122 1124 1126 41 2 1128 41 3 41 4 41 5 41 6 41 7 41 8 41 9 4110 4111 1130 4112 4113 4114 4115 1132 4116 4117 4118 4119 1134 4120 4121 4122 1136 4123 4124 4125 1138 4126 4127 4128 1140 4129 4130 12 0 4131 667.49 667.52 667.55 667.59 667.63 667.67 667.72 667.76 667.77 667.77 667.77 667.77 667.78 667.79 667.79 667.80 667.81 667.82 667.82 667.83 667.84 667.85 667.87 667.88 667.88 667.90 667.91 667.93 667.94 667.95 667.97 667.99 668.00 668.01 668.03 668.05 668.07 668.08 668.10 668.13 668.14 668.15 668.18.4820E 00.4272E 00.3734E 00.3217E OC.2732E 00.2286E 00.1885E OC.8782E-01.1532E 00.1520E 00.2079E 00.2586E 00.3049E 00.3469E OC.3847E OC.4180E 00.4469E 00.4711E OC.1226E OC.4906E 00.5056E OC.5160E 00.5220E 00.9672E-01.5238E 00.5216E 00.5157E OC.5065t OC.7516E-01.4942E 00.4792E OC.4619E 00.5754E-01.4426E OC.4218E OC.3998E 00.4340E-01.3769E OC.3535E 00.3299E 00.3225E-01.3063E C0.2829E 00.5241E 00.4597E 00.3970E 00.3375E 00.2824E 00.2326E 00.1885E 00.7390E-01.1503E 00.1277E 00.1745E 00.2167E 00.2550E 00.2895E 00.3201E 00.3468E 00.3694E 00.3880E 00.1179E 00.4024E 00.41281 00.4193E 00.4220E 00.9103E-01.4212E 00.4170E 00.4098E 00.39981 00.6914E-01.3875E 00.3730E 00.3569E 00.5167E-01.3393E 00.3207E 00.3014E 00.3799E-01.2816E 00.2617E 00.2419E 00.2748E-01.2224E 00.2033E 00 T=250K.5679E 00.4918E 00.4187E 00.3503E 00.2880E 00.2327E 00.1847E 00.5888E-01.1440E 00.1017E 00.1386E 00.1718E 00.2017E 00.2283E 00.2516E 00.2716E 00.2881 00.3012E 00.1103E 00.3109E 00.31313E 00.3204E 00.3205E 00.8296E-01.3178E 00.3124E 00.3048E 00.2950E 00.6130E-01.2836E 00.2707E 00.2566E 00.4450E-01.2417E 00.2262E 00.2104E 00.3173E-01.1946E 00.1788E 00.1634E 00.2222E-01.1484E 00.1341E 00.8807E 00.1204E 00 T=225K.6125E 00.5223E 00.4370E 00.3585E 00.2885t 00.2277E 00.1761E 00.4362L-01.1336E 00.7519E-01.1023E 00.1265E 00.1480E 00.1670E 00.18331 00.1970E 00.2079E 00.2162E 00.9934E-01.2218E 00.2249L 00.2255E 00.2239E 00.7241E-01.2202E 00.2147E 00.2075E 00.1990E 00.5175E-01.1894E 00.17891 00.1677E 00.3625E-01.1562E 00.1444E 00.1327E 00.2489E-01.1211E 00.1098E 00.9890E-01.1676E-01.8855E-01.7879E-01.1001E 01.6968t-01 T=200K.6567c 00.5492E 00.4495E 00.3600E 00.2820E 00.2161E -10.1619E 00.29231-01.11861 00.5030E-01.6829E-01.8415E-01.981E-01.1102E 00.1204t 00.1286E 00.1349E 00.1393t 00.8503E-01.1419E 00.14261 00.1418E 00.1395E 00.5959E-01.1358L 00.1310E 00.1252E 00.1186t 00.4084E-01.1115E 00.1039E 00.9613E-01.2737E-01.8823E-01.8038E-01.7269E-01.1793E-01.6526E-01.5818E-01.5151E-01.1149E-01.4528E-01.3955E-01.1146E 01.3430E-01 T=175K.6983E 00.5696E 00.4533E 00.3518E 00.2662L 00.1964E 00.1412L 00.1699L-01.9904E-01.2916E-01.3947t-01.4844E-01.5620E-01.6276E-01.68121-01.7226E-01.7519E-01.7696t-01.6769E-01.7762E-01.77241-01.7592E-01.73771-01.4509E-01.7092t-01.6747E-01.6357E-01.59321-01.2928E-01.5486E-01.5028E-01.4569E-01.1853E-01.41166-01.3678E-01.3260E-01.1143E-01.2866E-01.2500E-01.2164E-01.6874E-02.1859L-01.1584E-01.13261 01.13411-01 HJ \r) 668.18.6909E OC.7786E 00 668.21.2601E 00.1850E 00

TABLE XVI (Continued) INTENSITY BANC COOE hAVE NUMBER T=300K T=275K T=250K T=225K T=200K T=175K 1142 668.21.2361E-01.1955E-01.1528E-01.1106E-01.7198E-02.4029E-02 4132 668.24.2380E 00.1674E 00.1076E 00.6126E-01.2956E-01.1126E-01 4133 668.26.2168E 00.1508E 00.9558E-01.5353E-01.2530L-01.9384L-02 1144 668.29.1703E-01.1369E-01.1032E-01.7153E-02.4409E-02.2301E-02 4134 668.30.1965E 00.1351E 00.8445E-01.4651E-01.2152E-01.7765E-02 91 3 668.31.2586E-02.1625E-02.9117E-03.4399E-03.1726E-03.5037L-04 91 4 668.31.4586E-02.2877E-02.1612E-02.7761E-03.3037E-03.b835E-04 91 5 668.31.6286E-02.3937E-02.2201E-02.1057E-02.4124E-03.1195E-03 91 6 668.32.7782E-02.4864E-02.2713E-02.1299E-02.5048E-03.1456[-03 4135 668.33.1773E 00.1205E 00.7423E-01.4016E-01.1818E-01.6378E-02 91 8 668.33.1029E-01.6397E-02.3545E-02.1685E-02.6487E-03.1848E-03 91 7 668.33.9111E-02.5681E-02.3159E-02.1508E-02.5833L-03.1672E-03 91 9 668.34.1132E-01.7016E-02.3874E-02.1833E-02.7017L-03.1985L-03 2261 668.34.4113E-03.1816E-03.6676E-04.1921E-04.3948E-05 5019E-06 9110 668.35.1220E-01.7539E-02.4146E-02.1952E-02.7426E-03.2083E-03 4136 668.36.1593E 00.1069E 00.6490E-01.3449E-01.1526E-01.5202E-02 9111 668.36.1295E-01.7969E-02.4362E-02.2043E-02.7717E-03.2146E-03 1146 668.37.1210E-01.9429E-02.6852E-02.4535E-02.2641E-02.1281E-02 9112 668.37.1355E-01.8306E-02.4525E-02.2106E-02.7897E-03.2175E-03 9113 668.38.1402E-01.8554E-02.4635E-02.2143E-02.79716-03.2172c-03 4137 668.39.1424E 00.9438E-01.5644E-01.2944E-01.1273E-01.4212E-02 9114 668.39.1435E-01.8714E-02.4695E-02.2156E-02.7947E-03.2142E-03 9115 668.41.1455E-01.8792E-02.4707E-02.2145E-02.7835L-03.2086E-03 9116 668.42.1463E-01.8791E-02.4676E-02.2114E-02.7644E-03.2009E-03 4138 668.43.1268E 00.8293E-01.4883E-01.2499E-01.1055E-01.3386E-02 9117 668.44.1459E-01.8718E-02.4605E-02.2064E-02.7384E-03.1914E-03 9118 668.45.1444E-01.8578E-02.4498E-02.1998E-02.7067E-03.1806E-03 1148 668.46.8468E-02.6389E-02.4466E-02.2819E-02.1547E-02.6951E-03 4139 668.46.1124E 00.7253E-01.4203E-01.2109E-01.8692E-02.2703E-02 9119 668.47.1420E-01.8379E-02.4359E-02.1918E-02.6704L-03.1687E-03 9120 668.49.1387E-01.8127E-02.4194E-02.1827E-02.6306E-03.1561E-03 4140 668.50.9916E-01.6313E-01.3598E-01.1770E-01.7114E-02.2142E-02 9121 668.51.1346E-01.7830E-02.4006E-02.1727E-02.5883E-03.1432E-03 5226 668.53.1375E-01.7844E-02.3921E-02.1643E-02.5402E-03.1256E-03 9122 668.53.1298E-01.7496E-02.3801E-02.1620E-02.5444E-03.1302E-03 4141 668.53.8712E-01.5469E-01.3065E-01.14776-01.5787E-02.1686c-02 1150 668.55.5839E-02.4259E-02.2859E-02.1717E-02.8858E-03.3676E-03 9123 668.55.1245E-01.7132E-02.3582E-02.1509E-02.4999E-03.1174E-03 4142 668.57.762CE-01.4716E-01.2598E-01.1226E-01.4678E-02.1317E-02 9124 668.57.1187E-01.6744E-02.3354E-02.1397E-02.4556t-03.1049t-03 9125 668.59.1125E-01.6340E-02.3121E-02.1283E-02.4122E-03.9303E-04 4143 668.61.6637E-01.4047E-01.2191E-01.1012E-01.3758E-02.1022E-02 9126 668.62.1061E-01.5927E-02.2886E-02.1171E-02.3702t-03.8182L-04 1152 668.64.3966E-02.2793E-02.1797E-02.1025E-02.4960E-03.1895E-03 9127 668.64.9958E-02.5509E-02.2653E-02.1062E-02.3301E-03.7139E-04

TABLE XVI (Continued) INTENSITY BANC CODE WAVE NUMBER 4144 9128 4145 9129 9130 4146 1154 9131 4147 9132 9133 4148 1156 9134 4149 9135 9136 4150 9137 1158 4151 9138 9139 4152 9140 4153 1160 9141 4154 9142 9143 4155 1162 9144 4156 9145 4157 1164 9146 3061 4158 9147 42 1 4159 9148 668.65 668.67 668.69 668.69 668.72 668.73 668.74 668.75 668.78 668.78 668.80 668.82 668.84 668.84 668.86 668.87 668.90 668.91 668.93 668.94 668.95 668.97 669.00 669.00 669.04 669.05 669.05 669.07 669.10 669.11 669.15 669.15 669.16 669.19 669.20 669.23 669.25 669.27 669.27 669.29 669.30 669.32 669.33 669.35 669.36 T=300K.5756E-01.9294E-02.4970E-01.8631E-02.7975E-02.4274E-01.2654E-02.7333E-02.3660E-01.6711E-02.6113E-02.31211-01.1750E-02.5541E-02.2650E-01.5000E-02.4492E-02.2241E-01.4016E-02.1136E-02.1887E-01.3575E-02.3169E-02.1582E-01.2796E-02.1321E-01.7271E-03.2456E-02.1099E-01.2148E-02.1871E-02.9105E-02.4583E-03.1622E-02.7511E-02.1401E-02.6171E-02.2845E-03.1204E-02.5130E-03.5050E-02.1031E-02.1597E 00.4116E-02.8792E-03 T=275K.3458E-01.5093E-02.2940E-01.4683E-02.4283E-02.2489E-01.1802E-02.3897E-02.20971-01.3527E-02.3177E-02.1759E-01.1144E-02.2846E-02.1469E-01.2538E-02.2252E-02.1221E-01.1988E-02.7144E-03.10111E-01.1747E-02.1528E-02.8325E-02.1330E-02.6828E-02.4389E-03.1152E-02.5576E-02.9932E-03.8524E-03.4533E-02.2653E-03.7281E-03.3669E-02.6191E-03.2956E-02.1577E-03.5240E-03.2265E-03.2371E-02.4414E-03.1345E 00.1894E-02.3702E-03 T=250K.1838E-01.2425E-02.1535E-01.2203E-02.1990E-02.1275E-01.1110E-02.1788E-02.1054E-01.1597E-02.1419E-02.8666E-02.6733E-03.1254E-02.7093E-02.1102E-02.9638E-03.5777E-02.8381E-03.4011E-03.4681E-02.7251E-03.6240E-03.3776E-02.5343E-03.3030E-02.2347E-03.4551E-03.2420E-02.3857E-03.3252E-03.19241-02.1349E-03.2728E-03.1521E-02.2277E-03.1198E-02.7614E-04.1891E-03.8326E-04.9383E-03.1563E-03.1072E 00.7315E-03.1285t-03 T=225K.8305E-02.9574E-03.6779E-02.8574E-03.7630E-03.5503E-02.6003E-03.6749E-03.4443E-02.5933E-03.5185E-03.3567E-02.3444E-03.4504E-03.2849E-02.3890E-03.3340E-03.2263E-02.2851E-03.1937E-03.1787E-02.24201-03.2042E-03.1404E-02.1714E-03.1098E-02.1068E-03.1430E-03.8533E-03.1187E-03.9794E-04.6598E-03.5772E-04.8037E-04.5075E-03.6559E-04.3882E-03.3057E-04.5323E-04.2395E-04.2954E-03.4297E-04.7950E-01.2236E-03.3449E-04 T=200K.3001E-02.2923E-03.2381E-02.2570E-03.2245E-03.1878E-02.2715E-03.1947E-03.1472E-02.1678E-03.1436E-03.1147E-02.1453E-03.1221E-03.8884E-03.1032E-03.8663E-04.6839E-03.7226E-04.7608E-04.5233E-03.5989E-04.4932E-04.3980E-03.4036E-04.3009E-03.3893E-04.3283E-04.2261E-03.2653E-04.2131E-04.1689E-03.1948E-04.1701E-04.1254t-03.1350E-04.9261E-04.9532t-05.1064E-04.4923E-05.6796t-04.8342E-05.5335E-01.4958E-04.6498E-05 T=175K.7879L-03.61801-04.6030E-03.5309E-04.4526E-04.4583E-03 o9518E-04.3829E-04.3459E-03.3215E-04.2680t-04.2593E-03.4660E-04.2218E-04.1931t-03.1822E-04.1485E-04.1428E-03.12031-04.2224E-04.1048L-03.9667t-05.7715E-05.7647E-04.6113E-05.5540E-04.1034E-04.4810E-05.3986E-04.3759E-05.2916E-05.2849E-04.4688E-05.2247E-05.20221-04.1719E-05.1426E-04.2071L-05.13061-05.6259E-06.9987L-05.9857E-06.3105C-01.6948E-05.7387E-06 H 4-p -p7

TABLE XVI (Continued) INTENSITY BAhC COCE hAVE NUMBER T=300K T=275K T=250K T=225K T=200K T=175K 1166 9149 4160 9150 4161 9151 1168 4162 9152 4163 669.39 669.40 669.41 669.45 669.46 669.49 669.51 669.52 669.54 669.57 9153 669.59 4164 669.63 9154 669.64 1170 669.64 9155 669.69 4165 9156 4166 12 2 1172 9157 4167 9158 4168 9159 669.69 669.74 669.75 669.75 669.77 669.79 669.81 669.84 669.87 669.89.1740E-03.7464E-03.3341E-02.6311E-03.2701E-02.5313E-03.1049E-03.2175E-02.4455E-03.1744E-02.3720E-03.1393E-02.3094E-03.6225E-04.2562E-03.1108E-02.2113E-03.8783E-03.1370E 01.3640E-04.1736E-03.6932E-03.1420E-03.5450E-03.1157E-03.2097E-04.4267E-03.9391E-04.7591E-04.3328E-03.2664E-03.1190E-04.6111E-04.2585E-03.4899E-04.1763t 00.2001E-03.1201E-01.3913E-04.6653E-05.1542E-03.3112E-04.1184E-03.2465E-04.3664E-05.9225E-04.3091E-03.1506E-02.2569E-03.1193E-02.2126E-03.5309E-04.9402E-03.1751E-03.7380E-03.1436E-03.5767E-03.1172E-03.3005E-04.9527E-04.4488E-03.7709E-04.3477E-03.1542E 01.1674E-04.6211E-04.2682E-03.4981E-04.2060E-03.3978E-04.9170E-05.1576E-03.3163E-04.2503E-04.1200E-03.1127E-03.4943E-05.1973E-04.9098E-04.1548E-04.1484E 00.6869E-04.6725E-02.1210E-04.2621E-05.5163E-04.9409E-05.3865E-04.7288E-05.1367E-05.4221E-04.1052E-03.5676E-03.8564E-04.4383E-03.6939E-04.2298E-04.3369E-03.5595E-04.2577E-03.4489E-04.1962E-03.3585E-04.12291-04.2849E-04.1486E-03.2253E-04.1121E-03.1742E 01.6456E-05.1773E-04.8412E-04.1389E-04.6283E-04.1082E-04.3331E-05.4671E-04.8395E-05.6481E-05.3457E-04.3935E-04.1688E-05.4980E-05.2546E-04.3808E-05.1182E 00.1866E-04.3286E-02.2898E-05.8399E-06.1362E-04.2195E-05.9888E-05.1655E-05.4105E-06.1587E-04.2754E-04.1684E-03.2187E-04.1261E-03.1727E-04.8079E-05.9396E-04.1357E-04.6964E-04.1060E-04.5134E-04.8239E-05.4030E-05.6369E-05.3765E-04.4897E-05.2747E-04.1977E 01.1971E-05.3745E-05.1994E-04.2849E-05.1439E-04.2156E-05.9446E-06.1034E-04.1623E-05.1215E-05.7386E-05.1063E-04.4438E-06.9051E-06.5249E-05.6706E-06.8756E-01.3712E-05.1339E-02.4942E-06.2044E-06.2611E-05.3623E-06.1827E-05.2643E-06.9226E-07.4560E-05.5031E-05.3595E-04.3872E-05.2592E-04.2962E-05.2133L-05.1858E-04.2252E-05.1323E-04.1702E-05.9374E-05.1279E-05.9754E-06.9551E-06.6601E-05.7091E-06.4621E-05.2260E 01.4362E-06.5233E-06.3216E-05.3839E-06.2225E-05.2799E-06.1907E-06.1530E-05.2029E-06.1462E-06.1046E-05.2021E-05.8152E-07.1048E-06.71156-06.7462E-07.5868E-01.4809E-06.4254E-03.5283E-07.3407E-07.3231E-06.3719E-07.21596-06.2602E-07.1392E-07.8916E-06.5498E-06.4801E-05.4064E-06.3295E-05.2984E-06.3741t-06.2247E-05.2176E-06.1521E-05.1576E-06.1024E-05.1133E-06.15301-06.8097E-07.6840E-06.5746E-07.4540E-06.2608E 01.6099E-07.4050E-07.2994E-06.2835E-07.1961E-06.1972E-07.2369E-07.1276E-06.1362E-07.9343E-08.8248E-07.2324E-06.8970E-08.6368E-08.5296t-07.4311E-08.3410E-01.3378E-07.9466E-04.28991-08.3310E-08.2140E-07.1936t-08.1347E-07.1285E-08.1190E-08 nJ1 uJ 1174 669.90 4169 669.93 9160 669.95 9161 670.00 4170 670.00 2263 1176 9162 4171 9163 42 2 4172 5228 9164 1178 670.02 670.03 670.06 670.06 670.11 670.11 670.13 670.15 670.17 670.17 4173 670.19 9165 670.23 4174 670.26 9166 670.29 1180 670.32

TABLE XVI (Continued) INTENSITY BANC CODE WAVE NUMBER 4175 9167 4176 9168 1182 4177 9169 4178 9170 4179 9171 1184 92 2 9172 4180 9173 4181 9174 4182 9175 42 3 4183 9176 4184 9177 4185 9178 3059 4186 4187 4188 12 4 4189 92 3 4190 42 4 2265 5230 92 4 42 5 12 6 3057 92 5 42 6 2667 670.32 670.35 670.39 670.41 670.46 670.46 670.47 670.53 670.54 670.60 67C.60 670.61 670.66 670.67 670.68 670.73 670.75 670.80 670.82 670.86 670.90 670.90 670.93 670.97 671.00 671.05 671.07 671.10 671.13 671.21 671.28 671.32 671.36 671.45 671.45 671.69 671.71 671.77 672.23 672.48 672.90 672.90 673.02 673.27 673.40 T=300K.9052E-04.1945E-04.6895E-04.1529E-04.1988E-05.5231E-04.1197E-04.3953E-04.9332E-05.2976E-04.7248E-05.1062E-05.7503E-02.5606E-05.2232E-04.4320E-05.1667E-04.3315E-05.1240E-04.2534E-05.1964E 00.9191E-05.1930E-05.6785E-05.1464E-05.4989E-05.1106E-05.7841E-03.3655E-05.2667E-05.1938E-05.2007E 01.1403E-05.7800E-02.1012E-05.2170E 00.1698E-03.1029E-01.8207E-02.2369E 00.2575E 01.1179E-02.8641E-02.2556E 00.1065E-03 T=275K.2881E-04.5620E-05.2138E-04.4316E-05.7016E-06.1580E-04.3300E-05.1163E-04.2512E-05.8520E-05.1904E-05.3542E-06.4718E-02.1437E-05.6217E-05.1080E-05.4517E-05.8082E-06.3267E-05.6022E-06.1651E 00.2354E-05.4468E-06.1689E-05.3300E-06.1206E-05.2428E-06.3609E-03.8580E-06.6077E-06.4286E-06.2254E 01.3010E-06.4900E-02.2105E-06.1821E 00.6873E-04.5646E-02.5148E-02.1985E 00.2880E 01.5648E-03.5411E-02.2138E 00.4119E-04 T-250K.7147E-05.1241E-05.5141E-05.9270E-06.1971E-06.3682E-05.6890E-06.2624E-05 *5097E-06.1861E-05.3752E-06.9292E-07.2650E-02.2750E-06.1314E-05.2005E-06.9237E-06.1456E-06.6462E-06.1052E-06.1314E 00.4500E-06.7564E-07.3119E-06.5414E-07.2151E-06.3857E-07.1393E-03.1477E-06.1010E-06.6869E-07.2539E 01.4652E-07.2749E-02.3135E-07.1447E 00.2276E-04.2693E-02.2883E-02.1574E 00.3229E 01.2288E-03.3024E-02.1690E 00.1292E-04 T=225K.1272E-05.1917E-06.8808E-06.1384E-06.4082E-07.6069E-06.9933E-07.4159E-06.7094E-07.2836E-06.5041E-07.1770E-07.1281E-02.3563E-07.1924E-06 *2505E-07.1298E-06.1752E-07.8718E-07.1219E-07.9715E-01.5823E-07.8440E-08.3870E-07.5813E-08.2558E-07.3982E-08.4259E-04.1683E-07.1101E-07.7167E-08.2871E 01.4642E-08.1326E-02.2991E-08.1068E 00.5766E-05.1065E-02.1388E-02.1159E 00.3632E 01.7415E-04.1452E-02.1241E 00.3061E-05 T=200K.1434E-06.1810E-07.9469E-07.1252E-07.5564E-08.6217E-07.8607E-08.4058E-07.5884E-08.2633E-07.3998E-08.2174E-08.5033E-03.2701E-08.1699E-07.1814E-08.1090E-07.1212E-08.6952E-08.8044E-09.6499E-01.4409E-08.5309E-09.2780E-08.3484E-09.1742E-08 *2273E-09.9443E-05.1086E-08.6728E-09.4145E-09.3266E 01.2539E-09.5202E-03.1546E-09.7125E-01.1011E-05.3261E-03.5432E-03.7706E-01.4104E 01.1769E-04.5665E-03.8220E-01.4937E-06 T=175K.8424E-08.8467E-09.5233E-08.5543E-09.4172E-09.3229E-08.3605E-09.1979E-08.2329E-09.1205E-08.1495E-09.1425E-09.1472E-03.9529E-10.7293E-09.6035E-10.4383E-09.3796E-10.2617E-09.2373E-10.3768E-01.1552E-09.1473E-10.9146E-10.9085E-11.5354E-10.5566E-11.1323E-05.3114E-10.1799E-10.1033E-10.3748E 01.5887E-11.1518E-03.3335E-11.4117E-01.1047E-06.6920E-04.1580E-03.4435E-01.4667E 01.2723E-05.1641E-03.4708E-01.4596E-07 4-' C(

TABLE XVI (Continued) INTENSITY BAhD CODE WAVE NUMBER 5232 92 6 42 7 12 8 92 7 3055 42 8 5234 2269 92 8 42 9 1210 92 9 4210 3053 5236 2271 9210 4211 1212 9211 4212 3051 5238 2273 9212 4213 1214 9213 4214 5240 3049 9214 2275 4215 1216 9215 4216 5242 9216 3047 2277 4217 1218 9217 673.40 673.81 674.06 674.48 674.60 674.70 674.85 675.03 675.09 675.40 675.64 676.06 676.19 676.43 676.48 676.66 676.78 676.98 677.23 677.65 677.78 678.02 678.26 678.30 678.48 678.57 678.82 679.24 679.37 679.62 679.94 680.03 680.17 680.18 680.41 680.84 680.97 681.21 681.59 681.77 681.80 681.89 682.01 682.43 682.57 T=300K.8650E-02.9063E-02.2727E 00.3050E 01.9453E-02.1745E-02.2879E 00.7138E-02.6573E-04.9798E-02.3010E 00.3418E 01.1009E-01.3119E 00.2540E-02.5785E-02.3994E-04.1032E-01.3204E 00.3667E 01.1048E-01.3267E 00.3636E-02.4605E-02.2388E-04.1059E-01.3306E 00.3797E 01.1062E-01.3322E 00.3603E-02.5121E-02.1060E-01.1406E-04.3316E 00.3813E 01.1051E-01.3289E 00.2770E-02.1036E-01.7092E-02.8148E-05.3243E 00.3725E 01.1016E-01 T=275K.4645E-02.5664E-02.2275E 00.3395E 01.5893E-02.8685E-03.2395E 00.3746E-02.2426E-04.6091E-02.2496E 00.3779E 01.6252E-02.2577E 00.1312E-02.2963E-02.1405E-04.6373E-02.2638E 00.4023E 01.6451E-02.2679E 00.1947E-02.2299E-02.7996E-05.6487E-02.2699E 00.4127E 01.6481E-02.2699E 00.1750E-02.2838E-02.6433E-02.4473E-05.2680E 00.4100E 01.6347E-02.2644E 00.1308E-02.6224E-02.4062E-02.2460E-05.2591E 00.3958E 01.6067E-02 T=250K.2159E-02.3158E-02.1794E 00.3783E 01.3276E-02.3685E-03.1882E 00.1694E-02.7193E-05.3375E-02.1954E 00.4178E 01.3451E-02.2009E 00.5820E-03.1301E-02.3930E-05.3503E-02.2048E 00.4406E 01.3530E-02.2069E 00.9017E-03.9789E-03.2108E-05.3533E-02.2073E 00.4470E 01.3510E-02.2061E 00.7215E-03.1370E-02.3464E-02.1109E-05.2034E 00.4385E 01.3397E-02.1994E 00.5210E-03.3309E-02.2040E-02.5729E-06.1940E 00.4172E 01.3203E-02 T=225K.8276E-03.1512E-02.1312E 00.4223E 01.1563E-02.1264E-03.1371E 00.6278E-03.1591E-05.1604E-02.1417E 00.4619E 01.1633E-02.1450E 00.2108E-03.4654E-03.8103E-06.1649E-02.1469E 00.4815E 01.1653E-02.1475E 00.3442E-03.3372E-03.4040E-06.1644E-02.1469E 00.4820E 01.1622E-02.1450E 00.2388E-03.5499E-03.1590E-02.1973E-06.1421E 00.4655E 01.1547E-02.1381E 00.1654E-03.1495E-02.8598E-03.9440E-07.1333E 00.4352E 01.1435E-02 T=200K.2435E-03.5875E-03.8654E-01.4726E 01.6047E-03.32351-04.8998E-01.1771E-03.2355E-06.6173E-03.9249E-01.5108E 01.6248E-03.9404E-01.5777E-04.1256E-03.1098E-06.6271E-03.9464E-01.5249E 01.6241E-03.9432E-01.1007E-03.8679E-04.5000E-07.6161E-03.9314E-01.5166E 01.6032E-03.9116E-01.5851E-04.1714E-03.58606-03.2224E-07.8846E-01.4893E 01.5649E-03.8513E-01.3847E-04.5404E-03.2848E-03.9668E-08.8128E-01.4475E 01.5131E-03 T=175K.4910E-04.1694E-03.4929E-01.5310E 01.1734E-03.5455E-05.5092E-01.3384E-04.1964E-07.1758E-03.5196E-01.5653E 01.1767E-03.5240E-01.1063E-04.2265E-04.8171E-08.1759E-03.5227E-01.5702E 01.1735E-03.5160E-01.2018E-04.1474E-04.3311E-08.16966-03.5042E-01.5491E 01.1644E-03.4879E-01.9323E-05.3725E-04.1579E-03.1306E-08.4678E-01.5072E 01.15036-03.4444E-01.5734E-05.1420E-03.6690E-04.5020E-09.4185E-01.4511E 01.1330E-03 -21 ---

TABLE XVI (Continued) INTENSITY BANC COCE WAVE NUMBER 4218 5244 9218 3045 2279 4219 8068 1220 9219 4220 8067 5246 9220 4221 3043 2281 8066 1222 9221 4222 8065 5248 9222 4223 2283 3041 1224 9223 8064 4224 9224 5250 8063 4225 3039 14061 1226 9225 8062 4226 9226 5252 4227 8061 1228 682.81 683.23 683.37 683.55 683.60 683.61 683.74 684.04 684.17 684.41 684.66 684.89 684.97 685.22 685.29 685.31 685.58 685.64 685.78 686.02 686.50 686.54 686.58 686.83 687.03 687.03 687.25 687.39 687.42 687.63 688.19 688.20 688.33 688.44 688.76 688.85 688.86 689.00 689.24 689.25 689.81 689.86 690.05 690.15 690.48 T=300K.3178E 00.2093E-02.9907E-02.9658E-02.4648E-05.3096E 00.1203E-05.3549E 01.9610E-02.3000E 00.1534E-05.1555E-02.9273E-02.2890E 00.1293E-01.2610E-05.1949E-05.3304E 01.8903E-02.2770E 00.2465E-05.1137E-02.8504E-02.2642E 00.1443E-05.1701E-01.3008E 01.8083E-02.3107E-05.2506E 00.7645E-02.8168E-03.3899E-05.2365E 00.2200E-01.1147E-05.2682E 01.7197E-02.4874E-05.2222E 00.6742E-02.5774E-03.2077E 00.6068E-05.2344E 01 T=275K.2523E 00.9595E-03.5880E-02.5710E-02.1330E-05.2443E 00.3395E-06.3721E 01.5666E-02.2350E 00.4431E-06.6911E-03.5430E-02.2249E 00.7880E-02.7069E-06.5758E-06.3413E 01.5176E-02.2139E 00.7450E-06.4888E-03.4907E-02.2024E 00.3694E-06.1067E-01.3058E 01.4627E-02.9598E-06.1904E 00.4341E-02.3396E-03.1231E-05.1782E 00.1419E-01.2912E-06.2680E 01.4051E-02.1572E-05.1659E 00.3762E-02.23171-03.1536E 00.2000E-05.2298E 01 T=250K.1876E 00.3688E-03.3081E-02.2979E-02.2904E-06.1801E 00.7288E-07.3860E 01.2946E-02.1719E 00.9781E-07.2559E-03.2800E-02.1631E 00.4263E-02.1445E-06.1306E-06.3478E 01.2646E-02.1537E 00.1737E-06.1741E-03.2486E-02.1441E 00.7057E-07.5979E-02.3057E 01.2322E-02.2298E-06.1342E 00.2157E-02.1161E-03.3026E-06.1243E 00.8216E-02.5506E-07.2623E 01.1993E-02.3966E-06.1145E 00.1831E-02.7594E-04.1049E 00.5173E-06.2200E 01 T=225K.1277E 00.1121E-03.1368E-02.1315E-02.4423E-07.1214E 00.1087E-07.3948E 01.1296E-02.1147E 00.1510E-07.7431E-04.1219E-02.1077E 00.1968E-02.2030E-07.2085E-07.3482E 01.1140E-02.1004E 00.2865E-07.4819E-04.1059E-02.9302E-01.9128E-08.2880E-02.2989E 01.9781E-03.3917E-07.8562E-01.8976E-03.3059E-04.5326E-07.7832E-01.4121E-02.7033E-08.2500E 01.8188E-03.7204E-07.7121E-01.7425E-03.1900E-04.6434E-01.9693E-07.2040E 01 T=200K.7699E-01.2468E-04.4837E-03.4617E-03.4106E-08.7237E-01.9834E-09.3962E 01.4527E-03.6753E-01.1425E-08.1545E-04.4206E-03.6255E-01.7304E-03.1704E-08.2053E-08.3401E 01.3881E-03.5752E-01.2939E-08.9443E-05.3557E-03.5252E-01.6907E-09.1127E-02.2835E 01.3237E-03.4185E-08.4762E-01.2927E-03.5632E-05.5923E-08.4288E-01.1697E-02.5240E-09.2297E 01.2628E-03.8334E-08.3836E-01.2345E-03.3279E-05.3408E-01.1166E-07.1810E 01 T=175K.39071-01.3429E-05.1235E-03.1169E-03.1879E-09.3617E-01.4353E-10.38701 01.1139E-03.3321E-01,66626-10.1995E-05.1041E-03.3024E-01.1986E-03.6848E-10.1013E-09.3209E 01.9446E-04.2732E-01.1530E-09.1129E-05.8504E-04.2449E-01.2431E-10.3283E-03.2576E 01.7598E-04.2295E-09.2178E-01.6737E-04.6219E-06.3420E-09.1922E-01.52741-03.1808E-10.2003E 01.5929E-04.5063E-09.1684E-01.5179E-04.3332E-06.1464E-01.7445E-09.1510E 01 FCO

TABLE XVI (Continued) INTENSITY BAND CCOE hAVE NUMBER 3037 9227 14059 4228 8060 9228 5254 4229 8059 1230 3035 9229 14C57 4230 8058 9230 5256 4231 1232 8057 9231 3033 4232 14055 8056 9232 5258 4233 1234 9233 8055 3031 4234 14053 9234 8054 4235 5260 1236 9235 3029 8053 4236 14C51 9236 69C.48 690.62 690.66 690.86 691.06 691.43 691.53 691.67 691.97 692.10 692.19 692.24 692.47 692.48 692.87 693.05 693.20 693.30 693.72 693.77 693.86 693.90 694.11 694.27 694.67 694.68 694.87 694.92 695.35 695.49 695.57 695.59 695.74 696.06 696.31 696.46 696.55 696.55 696.98 697.13 697.28 697.36 697.37 697.84 697.94 T=300K.2795E-01.6287E-02.1755E-05.1932E 00.75256-05.5836E-02.4015E-03.1789E 00.9293E-05.2009E 01.3488E-01.5392E-02.2642E-05.1649E 00.1143E-04.4959E-02.2747E-03.1512E 00.1690E 01.1401E-04.4540E-02.4274E-01.1381E 00.3913E-05.1709E-04.4139E-02.1849E-03.1256E 00.1395E 01.3756E-02.2077E-04.5139E-01.1136E 00.5700E-05.3393E-02.2514E-04.1024E 00.1224E-03.1131E 01.3052E-02.6062E-01.3030E-04.9183E-01.8168E-05.2734E-02 T=275K.1851E-01.3475E-02.4643E-06.1416E 00.2532E-05.3195E-02.1553E-03.1298E 00.3192E-05.1930E 01.2367E-01.2923E-02.7273E-06.1184E 00.4006E-05.2661E-02.1023E-03.1074E 00.1589E 01.5006E-05.2410E-02.2970E-01.9705E-01.1120E-05.6229E-05.2173E-02.6620E-04.8724E-01.1282E 01.1950E-02.7716E-05.3651E-01.7803E-01.1693E-05.1741E-02.9516E-05.6947E-01.4209E-04.1015E 01.1548E-02.4397E-01.1168E-04.61556-01.2514E-05.1369E-02 T=250K.1106E-01.1673E-02.9226E-07.9554E-01.67166-06.1520E-02.4872E-04.8655E-01.8677E-06.1804E 01.14586-01.1374E-02.1516E-06.7798E-01.1116E-05.1235E-02.3065E-04.6988E-01.1447E 01.1428E-05.1105E-02.1881E-01.6230E-01.2445E-06.1818E-05.9833E-03.1892E-04.5524E-01.1136E 01.8704E-03.2305E-05.2374E-01.4873E-01.38666-06.7665E-03.2907E-05.4276E-01.1146E-04.8730E 00.6715E-03.2932E-01.3650E-05.3733E-01.5995E-06.5854E-03 T=225K.5764E-02.6693E-03.1252E-07.5779E-01.1297E-06.5997E-03.1155E-04.5159E-01.1727E-06.1623E 01.7880E-02.5343E-03.2183E-07.4579E-01.22886-06.4732E-03.6874E-05.4040E-01.1262E 01.3014E-06.4167E-03.1052E-01.3544E-01.3724E-07.3950E-06.3649E-03.4005E-05.3091E-01.9578E 00.3177E-03.51496-06.1373E-01.2681E-01.6220t-07.2750E-03.6676E-06.2312E-01.2284E-05.7105E 00.2368E-03.1747E-01.8611E-06.1982E-01.1017E-06.2027E-03 T=200K.2491E-02.20786-03.1007E-08.3007L-01.1621E-07.1829E-03.1864t-05.26376-01.22426-07.1389E 01.3564E-02.1600E-03.1888E-08.22976-01.3080E-07.1391E-03.1035E-05.1987E-01.1037E 01.4208E-07.1201E-03.4970E-02.1709E-01.34586-08.57156-07.1031E-03.5610E-06.1460E-01.7553E 00.8793E-04.7716E-07.6752E-02.1239E-01.6184E-08.7452E-04.1036E-06.1045L-01.2970E-06.5359C 00.6276E-04.8929E-02.1382E-06.8764E-02.1079t-07.5252E-04 T=175K.8236E-03.4491E-04.3829E-10.1263L-01.1087E-08.3866E-04.1738L-06.1082E-01.1578E-08.1105E 01.1250E-02.3304E-04.7892E-10.9197t-02.2274E-08.2803E-04.8821E-07.77636-02.7846E 00.3255E-08.23616-04.1842E-02.6505E-02.1583E-09.46296-08.1975E-04.4358E-07.5411E-02.5412E 00.1640E-04.65376-08.2637E-02.4470E-02.3092L-09.1352E-04.9171C-08.3666t-02.2096E-07.3627c 00.1107E-04.3663t-02.1278E-07.2985-02.58746-09.9000E-05

TABLE XVI (Continued) INTENSITY 8AhC CCCE hAVE NUPeER T=300K T=275K T=250K T=225K T=200K T=175K 4237 698.19.8202E-01.5428E-01.3243E-01.1690E-01.7301E-02.2414E-02 5262 698.23.7980E-04.2630E-04.6806E-05.1276E-05.1536E-06.9815E-08 8052 698.25.3638E-04.1428E-04.4559E-05.1105E-05.1832E-06.1769E-07 1238 698.61.9011E 00.7878E 00.6572E 00.5152E 00.3708E 00.2362E 00 9237 698.76.2438E-02.1206E-02.5077E-03.1725E-03.4369E-04.7266E-05 3C27 698.96.7011E-01.5185E-01.3538E-01.2170E-01.1149E-01.4934E-02 4238 699.00.7293E-01.4765E-01.2802E-01.1433E-01.6045E-02.1938E-02 8051 699.14.4350E-04.1738E-04.5669E-05.1410E-05.2415E-06.2431E-07 9238 699.58.2165E-02.1057E-02.4381E-03.1461E-03.3612E-04.5826t-05 14C49 699.61.1151E-04.3668E-05.9115E-06.1626E-06.1840E-07.1086E-08 4239 699.82.6457E-01.4163E-01.2409E-01.1208E-01.4973E-02.1545E-02 5264 699.91.5118E-04.1615E-04.3967E-05.6978E-06.7755E-07.4474E-08 8050 7C0.C2.5179E-04.2106E-04.7013E-05.1789E-05.3165E-06.3320E-07 1240 700.25.7053E 00.6002E 00.4847E 00.3652E 00.2502E 00.1496E 00 9239 700.40.1914E-02.9221E-03.3762E-03.1230E-03.2967E-04.4638E-05 3025 700.63.79431-01.5981E-01.4171E-01.2627L-01.1438E-01.6443E-02 4240 7C0.64.5693E-01.3620E-01.2061E-01.1013E-01.4067E-02.1224E-02 8049 7CO.91.6142E-04.2541E-04.8635E-05.2259E-05.4123E-06.4502E-07 9240 701.22.1686E-02.8008E-03.3214E-03.1030E-03.2423E-04.3667t-05 14047 701.38.1595E-04.5255E-05.1359E-05.2545E-06.3060E-07.1953E-08 4241 701.46.4997E-01.3133E-01.1754E-01.8446E-02.3305E-02.9621E-03 5266 701.60.323CE-04.9748E-05.2269E-05.3737E-06.3825E-07.1986t-08 8048 701.79.7253E-04.3051E-04.1058E-04.2836E-05.5338E-06.6064E-07 1242 701.89.5426E 00.4488E 00.3503E 00.2532E 00.1647E 00.9210E-01 9241 702.04.1478E-02.6923E-03.2732E-03.8577E-04.1967E-04.28801-05 4242 7C2.29.4368E-01.2700E-01.1486E-01.7004L-02.2670E-02.7513E-03 3023 702.30.8808E-01.6743E-01.4798E-01.3096E-01.1748E-01.8147E-02 8047 702.67.853CE-04.3647E-04.1290E-04.3542E-05.6870E-06.8112E-07 9242 702.87.1290E-02.5958E-03.2311E-03.7104E-04.1587E-04.2246E-05 4243 703.11.3802E-01.2316E-01.1252E-01.5777E-02.2143E-02.5826E-03 14C45 703.14.2174E-04.7392E-05.1986E-05.3897E-06.4966E-07.3417E-08 5268 703.29.2007E-04.5782E-05.1273E-05.1960E-06.1843E-07.8583E-09 1244 703.53.4103E 00.3295E 00.2482E 00.1717E 00.1058E 00.5515E-01 8046 703.55.9990E-04.4340E-04.1565E-04.4399E-05.8788E-06.1078E-06 9243 7C3.69.1122E-02.5105E-03.1945E-03.5852E-04.1272E-04.1739E-05 4244 703.93.3296E-01.1977E-01.1050t-01.4738E-02.1710E-02.4487E-03 3021 703.95.9548E-01.7423E-01.5380E-01.3551E-01.2061E-01.9962E-02 8045 704.43.1165E-03.5142E-04.1889E-04.5435E-05.1117E-05.1422E-06 9244 704.51.9714E-03.4354E-03.1629E-03.4794E-04.1014E-04.1338E-05 4245 704.76.2845E-01.1681E-01.8761E-02.3865E-02.1356E-02.3432E-03 14043 7C4.89.2912E-04.1021E-04.2844E-05.5836E-06.1865E-07.5814E-08 5270 704.99.1227E-04.3371E-05.7012E-06.1006E-06.8677E-08.3612L-09 1246 705.18.3051L OC.2375E 00.1723E 00.1139E 00.6628E-01.3213t-01 8044 705.30.1353E-03.6065E-04.2269E-04.6678E-05.1412E-05.1863E-06 9245 705.34.8375E-03.3696E-03.1358E-03.3907E-04.8032E-05.1022E-05

TABLE XVI (Continued) INTENSITY BANC COCE hAVE NUMBER 4246 3019 9246 8043 4247 14041 5272 1248 9247 8042 3017 4248 9248 8041 4249 14039 5274 1250 9249 8040 3015 4250 9250 8039 4251 14037 5276 1252 9251 3013 8038 4252 9252 8037 4253 12054 5278 14035 1254 9253 3011 4254 8036 12053 9254 705.58 705.60 706.17 706.18 706.41 706.63 706.69 706.83 706.99 707.05 707.24 707.24 707.82 707.91 708.06 708.36 708.39 708.49 708.65 708.78 708.87 708.89 709.48 709.65 709.72 710.08 710.09 710.15 710.31 710.49 710.51 710.55 711.14 711.37 711.39 711.41 711.80 711.80 711.81 711.98 712.10 712.22 712.23 712.31 712.81 T=300K.2445E-01.1010E 00.7192E-03.1565E-03.2093E-01.3835E-04.7386E-05.2231E 00.6150E-03.1802E-03.1041E 00.1784E-01.5237E-03.2067E-03.1515E-01.4962E-04.4376E-05.1605E 00.4442E-03.2360E-03.1043E 00.1281E-01.3752E-03.2683E-03.1078E-01.6308E-04.2552E-05.1135E 00.3156E-03.1010E 00.3037E-03.9044E-02.2645E-03.3423E-03.7553E-02.1097E-05.1465E-05.7876E-04.7900L-01.2207E-03.9416E-01.6283E-02.3841E-03.1324E-05.1834E-03 T=275K.1422E-01.7965E-01.3124E-03.7120E-04.1198E-01.1384E-04.1932E-05.1681E 00.2629E-03.8320E-04.8315E-01.1004E-01.2202E-03.9679E-04.8386E-02.1841E-04.1089E-05.1169E 00.1837E-03.1121E-03.8420E-01.6970E-02.1525E-03.1292E-03.5768E-02.2402E-04.6029E-06.7982E-01.1261E-03.8239E-01.1482E-03.4751E-02.1038E-03.1692E-03.3897E-02.3101E-06.3282E-06.3075E-04.5356E-01.8504E-04.7743E-01.3182E-02.1923E-03.3810E-06.6938E-04 T=250K.7274E-02.5870E-01.1126E-03.2713E-04.6011E-02.3992E-05.3790E-06.1173E 00.9296E-04.3227E-04.6221E-01.4942E-02.7636E-04.3818E-04.4044E-02.5490E-05.2010E-06.7834E-01.6242E-04.4496E-04.6385E-01.3293E-02.5077E-04.5268E-04.2668E-02.7395E-05.1046E-06.5129E-01.4110E-04.6322E-01.6140E-04.2152E-02.3311E-04.7121E-04.1727E-02.6670E-07.5345E-07.9754E-05.3294E-01.2655E-04.6002E-01.1379E-02.8216E-04.8381E-07.2119E-04 T=225K.3136t-02.3955E-01.3166E-0O.8160E-05.2531E-02.8549E-06.5063E-07.7397E-01.2552E-04.9917E-05.4269E-01.2032E-02.2047E-04.1199E-04.1622E-02.1224E-05.2494E-07.4700E-01.1632E-04.1441E-04.4455E-01.1288E-02.1295E-04.1722E-04.1017E-02.1714E-05.1204E-07.2922t-01.1022E-04.4475E-01.2047E-04.7993E-03.8020E-05.2419E-04.6247E-03.9978E-08.5689E-08.2345E-05.1779E-01.6262E-05.4302t-01.4856E-03.2843E-04.1288E-07.4863E-05 T=200K.1069E-02.2355E-01.6325E-05.1774E-05.8379E-03.1215E-06.3990E-08.4055E-01.4950E-05.2215E-05.2602L-01.6526E-03.3852E-05.2748E-05.5053E-03.1831E-06.1793E-08.2421E-01.2979E-05.3389E-05.2772E-01.3889E-03.2290E-05.4153E-05.2975E-03.2690E-06.7869E-09.1412E-01.1750E-05.2835E-01.5059t-05.2262E-03.1330E-05.6124E-05.1710E-03.9058E-09.3375E-09.3852E-06.8036E-02.1004E-05.2768t-01.1285E-03.7366E-05.1210E-08.7539L-06 T=175K.2607E-03.1176E-01.7755E-06.2425E-06.1967E-03.9620E-08.1480E-09.1821E-01.5845E-06.3134E-06.1339L-01.1474E-03.4375E-06.4023E-06.1097E-03.1547E-07.5907E-10.10041-01.3252E-06.5128E-06.1465L-01.8111E-04.2402E-06.6491E-06.5955E-04.2419E-07.2296E-10.53881-02.1761E-06.1534E-01.8158E-06.4343E-04.1283E-06.1018E-05.3146t-04.4030E-10.8689E-11.3674E-07.2814E-02.9286E-07.1528E-01.2264E-04.1262E-05.5622E-10.6675L-07 H \-J

TABLE XVI (Continued) INTENSITY BANC COCE hAVE NUMBER 4255 8035 3186 12052 3184 1256 14033 9255 30 9 3182 4256 8034 12951 3180 9256 3178 4257 8033 3176 12050 3174 1258 14031 30 7 9257 3172 4258 8032 3170 12049 3168 9258 3166 4259 8031 3164 12048 3162 1260 30 5 14029 9259 3160 4260 3158 713.05 713.08 713.12 713.20 713.48 713.48 713.51 713.64 713.71 713.82 713.89 713.94 714.09 714.16 714.48 714.48 714.72 714.79 714.80 714.98 715.11 715.15 715.21 715.30 715.31 715.42 715.56 715.64 715.71 715.86 716.00 716.15 716.28 716.40 716.49 716.55 716.75 716.81 716.82 716.89 716.90 716.99 717.06 717.23 717.31 T=300K.5205E-02.4291E-03.1499E-05.1591E-05.2785E-05.5409E-01.9655E-04.1518E-03.8357E-01.5094E-05.4294E-02.4773E-03.1904E-05.9173E-05.1252E-03.1626E-04.3529E-02.5285E-03.2839E-04.2269E-05.4877E-04.3644E-01.1162E-03.6946E-01.1028E-03.8248E-04.2888E-02.5825E-03.1373E-03.2693E-05.2250E-03.8404E-04.3629E-03.2354E-02.6392E-03.5759E-03.3183E-05.8996E-03.2416E-01.5223E-01.1371E-03.6845E-04.1383E-02.1912E-02.2092E-02 T=275K.2587E-02.2174E-03.3513E-06.4662E-06.6919E-06.3531E-01.3860E-04.5636E-04.6921E-01.1340E-05.2094E-02.2448E-03.5679E-06.2551E-05.4558E-04.4776E-05.1688E-02.2742E-03.8788E-05.6887E-06.1590E-04.2287E-01.4748E-04.5786E-01.3670E-04.2827E-04.1354E-02.3056E-03.4942E-04.8316E-06.8491E-04.2942E-04.1434E-03.1082E-02.3390E-03.2380E-03.9996E-06.3883E-03.1456E-01.4369E-01.5721E-04.2349E-04.6224E-03.8605E-03.9805E-03 T=250K.1096E-02.9430E-04.6040E-07.1048E-06.1276E-06.2075E-01.1259E-04.1683E-04.5411E-01.2646E-06.8671E-03.1077E-03.1304E-06.5386E-06.1330E-04.1076E-05.6827E-03.1223E-03.2110E-05.1615E-06.4061E-05.1282E-01.1591E-04.4555E-01.1046E-04.7669E-05.5349E-03.1382E-03.1422E-04.1990E-06.2586E-04.8189E-05.4615E-04.4171E-03.1553E-03.8083E-04.2441E-06.1389E-03.7771E-02.3458E-01.1965E-04.6380E-05.2342E-03.3237E-03.3873E-03 T=225K.3755E-03.3323E-04.6870E-08.1654E-07.1581E-07.1060E-01.3134E-05.3757E-05.3919E-01.3565E-07.2888E-03.3862E-04.2113E-07.7874E-07.2887E-05.1703E-06.2209E-03.4462E-04.3610E-06.2684E-07.7493E-06.6182E-02.4090E-05.3327E-01.2207E-05.1523E-05.1682E-03.5125E-04.3033E-05.3392E-07.5914E-05.1678E-05.1129E-04.1273E-03.5853E-04.2112E-04.4263E-07.3868E-04.3531E-02.2542E-01.5210E-05.1269E-05.6935E-04.9587E-04.1218E-03 T=200K.9602E-04.8805E-05.4428E-09.1606E-08.1134E-08.4467E-02.5376E-06.5627E-06.2555E-01.2840E-08.7131E-04.1046E-04.2119E-08.6946E-08.4175E-06.1660E-07.5264E-04.1234E-04.3876E-07.2780E-08.8843E-07.2425E-02.7309E-06.2192E-01.3079E-06.1971E-06.3863E-04.1447E-04.4292E-06.3625E-08.9131E-06.2258E-06.1897E-05.2819E-04.1687E-04.3852E-05.4698E-08.7637E-05.1285E-02.1689E-01.9673E-06.1646E-06.1479E-04.2044E-04.2797E-04 T=175K.1618E-04.1553E-05.1269E-10.7789E-10.3730E-10.1431E-02.5421E-07.4765E-07.1434E-01.1068E-09.1148E-04.1897E-05.1072E-09.2978E-09.3380E-07.8089E-09.8098E-05.2301E-05.2140E-08.1465E-09.5513E-08.7080E-03.7766E-07.1247E-01.2381E-07.1383E-07.5672E-05.2771E-05.3379E-07.1989E-09.8040E-07.1666E-07.1863k-06.3946t-05.3313E-05.4201t-06.2682E-09.9227E-06.3411E-03.9711E-02.1080E-06.1158E-07.1973E-05.2727E-05.4106E-05 H5 RJ

TABLE XVI (Continued) INTENSITY BANC CCCE WAVE NUMBER 8030 3156 12047 3154 9260 3152 4261 8029 3150 3148 30 3 1262 12046 14027 3146 9261 3144 4262 3142 8028 3140 3138 12045 3136 9262 3134 3132 4263 8027 3130 3128 30 1 3126 1264 3124 12044 14025 3122 9263 3120 3118 3116 4264 3114 3112 717.33 717.54 717.63 717.77 717.83 717.99 718.07 718.18 718.20 718.41 718.47 718.50 718.51 718.58 718.60 718.67 718.79 718.91 718.97 719.02 719.14 719.30 719.39 719.46 719.51 719.60 719.74 719.75 719.86 719.87 719.99 720.05 720.11 720.18 720.21 720.26 720.26 720.31 720.35 720.40 720.48 720.55 720.60 720.61 720.67 T=300K.6981E-03.3113E-02.3747t-05.4558E-02.5553E-04.6565t-02.1546E-02.7589E-03.9301E-02.1296L-01.3249E-01.1576E-01.4393E-05.1586E-03.1776E-01.4487E-04.2393E-01.1245E-02.3170E-01.821 1E-03.4127E-01.5280E-01.51290-05.6636E-01.3612E-04.8192E-01.9927E-01.9989E-03.8841E-03.1181E 00.1377E OC.1106E-01.1575E OC.1012E-01.1764E OC.5963L-05.1797E-03.1933E OC.2895E-04.2070E OC.2163E OC.220CE OC.7982E-03.2173E 00.2073E 00 T=275K.3742E-03.1518E-02.1196E-05.2308E-02.1867E-04.3448E-02.6815E-03.4110E-03.5060E-02.7293E-02.2727E-01.9105E-02.1425E-05.6749E-04.1032E-01.1477E-04.1435E-01.5374E-03.1958E-01.4491E-03.2622E-01.3447E-01.1690E-05.4445E-01.1164E-04.5621E-01.6970E-01.4219E-03.4882E-03.8469E-01.1008E 00.9299E-02.1174E 00.5597E-02.1338E 00.1995E-05.7788E-04.1490E 00.9133E-05.1620E 00.1715E 00.1766E 00.3298E-03.1762E 00.1697E 00 T=250K.1736E-03.6284E-03.2979E-06 1.0000E-03.4947E-05.1561E-02.2500E-03.1930E-03.2390E-02.3587E-02.2166E-01.4622E-02.3618E-06.2373E-04.5279E-02.3818E-05.7616E-02.1922E-03.1077E-01.2135E-03.1492E-01.2026E-01.4373E-06.2694E-01.2933E-05.3507E-01.4470E-01.1471E-03.2347E-03.5574E-01.6796E-01.7401E-02.8099E-01.2697E-02.9425E-01.5259E-06.2799E-04.1070E 00.2242E-05.1183E 00.1273E 00.1330E 00.1120E-03.1344E 00.1309E 00 T=225K.6646E-04.2093E-03.5330E-07.3521E-03.9550E-06.5798E-03.7182E-04.7501E-04.9345E-03.1474E-02.1599E-01.1975E-02.6628E-07.6474E-05.2275E-02.7148E-06.3435E-02.5353E-04.5074E-02.8415E-04.7330E-02.1035t-01.8197E-07.1429E-01.5323E-06.1928E-01.2541E-01.3968E-04.9384E-04.3270E-01.4107E-01.5479E-02.5031E-01.1081E-02.6006E-01.1008E-06.7841E-05.6981E-01.3943E-06.7890E-01.8657E-01.9202t-01.2926E-04.9446E-01.9323E-01 T=200K.1952E-04.5166E-04.6053E-08.9318E-04.1193L-06.1641E-03.14741-04.2245E-04.2821-03.4734E-03.1068E-01.6657E-03.7752E-08.1246E-05.7754E-03.8591E-07.1239E-02.1057E-04.1933L-02.2565E-04.29411-02.4365L-02.9868E-08.6316E-02.6153E-07.8909E-02.1224E-01.7531E-05.2911L-04.1639E-01.2136E-01.3672L-02.2708E-01.3367E-03.3338E-01.1249E-07.1559E-05.3995E-01.4381E-07.4639E-01.5216E-01.5667L-01.5336E-05.5931E-01.5953E-01 T=175K.3932E-05.8320t-05.3592E-09.1641E-04.7995E-08.3149E-04.1872E-05.4633E-05.5882 —04.1069E-03.6188E-02.1600 —03.4777E-09.1456E-06.1890E-03.5483E-08.3251c-03.1277E-05.5438t-03.5418E-05.8847E-03.1399L-02.6312E-09.2150E-02.3736E-08.3211E-02.4658E-02.8649E-06.6289E-05.6560E-02.8965E-02.2135t-02.1188t-01.7307E-04.1526E-01.8281E-09.1902E-06.1897E-01.2528E-08.2280E-01.2645E-01.2956E-01.5820E-06.3171E-01.3253E-01 H.JA

TABLE XVI (Continued) INTENSITY BANC COCE hAVE NUMBER 8026 3110 31 8 31 6 31 4 31 2 12043 9264 4265 8025 1266 14023 12042 9265 4266 8024 32 1 9266 12041 4267 8023 1268 14021 9267 12040 32 3 4268 8022 9268 12039 4269 8021 14019 1270 9269 12038 32 5 4270 8020 9270 12037 8C19 4271 14017 1272 720.70 720.72 720.76 720.79 720.81 720.82 721.14 721.19 721.44 721.53 721.86 721.92 722.01 722.04 722.28 722.36 722.39 722.88 722.88 723.13 723.20 723.55 723.58 723.73 723.75 723.94 723.97 724.03 724.57 724.61 724.82 724.85 725.23 725.24 725.42 725.47 725.49 725.66 725.68 726.27 726.33 726.50 726.51 726.88 726.94 T=300K.9474E-03.1899E 00.1651E 00.1336E 00.9637E-01.5497E-01.6904E-05.2312E-04.6353E-03.1010E-02.6392E-02.1994E-03.7960E-05.1839E-04.5036E-03.1072E-02.1110E-01.1457E-04.9139E-05.3977E-03.1131E-02.3975E-02.2162E-03.1149E-04.1045E-04.3277E-01.3128E-03.1188E-02.9033E-05.1189E-04.2450E-03.1241E-02.2288E-03.2434E-02.7072E-05.1348E-04.5292E-01.1912E-03.1289E-02.5514E-05.1522E-04.1331E-02.1486E-03.2359E-03.1466E-02 T=275K.5280E-03.1567E 00.1371E 00.1115E 00.8075E-01.4617E-01.2345E-05.7134E-05.2567E-03.5680E-03.3382E-02.8785E-04.2744E-05.5549E-05.1990E-03.6078E-03.9332E-02.4298E-05.3196E-05.1536E-03.6468E-03.2008E-02.9673E-04.3314E-05.3705E-05.2749E-01.1180E-03.6845E-03.2545E-05.4276E-05.9029E-04.7203E-03.1038E-03.1172E-02.1946E-05.4912E-05.4426E-01.6879E-04.7537E-03.1481E-05.5617E-05.7838E-03.5218E-04.1084E-03.6728E-03 T=250K.2567E-03.1220E 00.1076E 00.8802E-01.6404E-01.3672E-01.6294E-06.1706E-05.8488E-04.2791E-03.1545E-02.3221E-04.7495E-06.1292E-05.6403E-04.3017E-03.7427E-02.9740E-06.8881E-06.4807E-04.3242E-03.8680E-03.3613E-04.7307E-06.1047E-05.2183E-01.3592E-04.3464E-03.5457E-06.1228E-05.2672E-04.3678E-03.3944E-04.4787E-03.4055E-06.1434E-05.3502E-01.1978E-04.3881E-03.3000E-06.1665E-05.4070E-03.1457E-04.4181E-04.2590E-03 T=225K.1040E-03.8788E-01.7825E-01.6451E-01.4719E-01.2715E-01.1234E-06.2905E-06.2147E-04.1146E-03.5800E-03.9248E-05.1501E-06.2130E-06.1567E-04.1254E-03.5498E-02.1553E-06.1817E-06.1137E-04.1364E-03.3046E-03.1061E-04.1127E-06.2186E-06.1612E-01.8215E-05.1474E-03.8130E-07.2617E-06.5903E-05.1583E-03.1182E-04.1567E-03.5837E-07.3115E-06.2574E-01.4219E-05.1688E-03.4169E-07.3687E-06.1788E-03.3000E-05.1276E-04.7893E-04 T=200K.3282E-04.5693E-01.5130E-01.4269E-01.3144E-01.1817E-01.1570E-07.3101E-07.3758E-05.3674E-04.1664E-03.1897E-05.1963E-07.2183E-07.2632E-05.4086C-04.3684E-02.1527E-07.2439E-07.1832E-05.4511E-04.8029E-04.2238E-05.1062E-07.3012E-07.1077E-01.1268E-05.4946E-04.7346E-08.3696E-07.8725E-06.5384E-04.2559E-05.3786E-04.5050E-08.4509E-07.1710E-01.5969E-06.5817E-04.3452E-08.5466E-07.6239E-04.4060E-06.2828E-05.1744E-04 T=175K.7245E-05.3169E-01.2900E-01.2443L-01.1815t-01.1055E-01.1079E-08.1700E-08.3890E-06.8284E-05.3249E-04.2407E-06.1396E-08.1135t-08.2583E-06.9398E-05.2142E-02.7530E-09.1795E-08.1704E-06.1058E-04.1407E-04.2945E-06.4962t-09.2291E-08.6236E-02.1116t-06.1182E-04.3249E-09.2904E-08.7267E-07.1309E-04.3479E-06.5932L-05.2113E-09.3655E-08.9829E-02.4699E-07.1439E-04.1365E-09.4569E-08.1568E-04.3018E-07.3962L-06.2436E-05 H-1

TABLE XVI (Continued) INTENSITY BANC CCCE AAVE NUMBER T=3COK T=275K T=250K T=225K T=200K T=175K 32 7 727.02.7073E-01.5889E-01.4635E-01.3384E-01.2229E-01.1268c-01 9271 727.12,4283E-05.1123E-05.2209E-06.2962E-07.2346E-08.8759E-10 12036 727.19.1710E-04.6392E-05.1924E-05.4340E-06.6585E-07.5671[-08 8018 727.32.1367E-02.8103E-03.4240E-03.1880E-03.6640E-04.1695E-04 4272 727.36.1150E-03.3942E-04.1069E-04.2122E-05.2745E-06.1926E-07 9272 727.97.3314E-05.8477E-06.1619E-06.2094E-07.1585C-08.5584L —10 12035 728.C5.1914E-04,7241E-05.2212E-05,5080E-06.7884E-07.69900-08 8017 728.14,.1396E-02,.8323E-03,.4388E-03,.1963E-03,.7012E-04,.1816E-04 4273 728.21.8872E-04.2965E-04,.7803E-05,.1493E-05,.1846E-06.1221E-07 14015 728.51.2363E-03.1098E-03.4292E-04,1332E-04,3013E-05,4336t-06 32 9 728.55.8551E-01.7078E-01.5532E-01.4005E-01.2610E-01.1465[-01 1274 728.63.8698E-03.3795E-03.1376E-03.3895E-04.7851E-05.9742E-06 9273 728.82.2554E-05.6371E-06.1181E-06.1472t-07.1065t-08.3537c-10 12034 728.91.2132E-04.8164E-05.2530E-05.5914E-06.9381E-07.8555E-08 8016 728.96.1416E-02.8495E-03.4509E-03.2035E-03.7345E-04.1928E-04 4274 729.06.6815E-04.2220E-04.5669C-05.1046E-05.1234L-06.7689L-08 9274 729.67,1960E-05.4768E-06.8573E-07.1030E-07.7111E-09.2225E-10 12033 729.76.2365E-04,9161E-05.2879E-05.6844E-06.1109E-06.1040E-07 8015 729.77.1428E-02.8611E-03.4601E-03.2093E-03.7631E-04.2029E-04 4275 729.91.5214E-04.1656E-04.4100E-05.7283L-06.8198E-07.4810E-08 3211 730.07.9681E-01 7955E-01.6164E-01.4415E-01.2840E-01.1567E-01 14013 730.13.2290E-03.1075E-03.4251E-04.1339E-04.3083E-05.4541E-06 1276 730.34.5079E-03.2105E-03.7172E-04.1883E-04.3452L-05.3794t-06 9275 730.52.1499E-05.3554E-06.6195E-07.7168E-08.4721E-09.1391E-10 8014 730.59.1430E-02.8668E-03.4660E-03.2136E-03.7860E-04.2115E-04 12032 730.61.2611E-04.1023E-04.3259E-05.78770-06.1303L-06.1254L-07 4276 730.77.3974E-04.1230E-04.2951E-05.5046E-06.5416E-07.2989E-08 9278 731.37.1142E-05.2637E-06.4456E-07.4963E-08.3117E-09.8636E-11 8013 731.40.1422E-02.8661E-03.4683E-03.2161E-03.8025E-04.2184E-04 12031 731.46.2870E-04.1137E-04.3669E-05.9013E-06.1521t-06.1503E-07 3213 731.58.1044E 00.8505E-01.6522E-01.4614E-01.2922E-01.1580E-01 4277 731.62.3017E-04.9093E-05.2114E-05.3478E-06.3558E-07.1845E-08 14011 731.75.2134E-03.1010E-03.4037E-04.1287E-04.3011E-05.4526L-06 1278 732.04.2919E-03.1148E-03.3670E-04.8913E-05.1483E-05.1439E-06 8012 732.21.1404E-02.8588E-03.4668E-03.2168E-03.8117E-04.2232E-04 12030 732.31.3141E-04.1257E-04.4110L-05.1025E-05.1765E-06.1787L-07 4278 732.47.2281E-04.6695E-05.1508E-05.2385E-06.2323E-07.1132E-08 8011 733.01.1375E-02.8445E-03.4613E-03.2156E-03.8130E-04.2258E-04 3215 733.08.1083E 00.H734E-01.6618E-01.4614E-01.2869E-01.1516E-01 12029 733.15.3422E-04.1384E-04.4580E-05.1160E-05.2034L-06.2110L-07 4279 733.33.1718E-04.4909E-05.1070E-05.1627E-06.1509E-07.6897t-09 140 9 733.36.1894E-03.9031E-04.3640E-04.1173E-04.2780E-05.4250E-06 1280 733.75.1652E-03.6151E-04.1843E-04.4134E-05.6229c-C6.5318E-07 8010 733.82.1336E-02.8233E-03.4518E-03.2123E-03.8061E-04.2259E-04 12028 733.99.3711E-04.1516E-04.5076E-05.1304E-05.2329E-06.2474E-07

TABLE XVI (Continued) INTENSITY BANC COCE kAVE NUMBER T=300K T=275K T=250K T=225K T=200K T=175K 4280 734.18.1289E-04.3584E-05.7561E-06.1105E-06.9740E-08.4175L-09 3217 734.57.1086E OC.8665E-01.6478E-01.4442h-01.2706E-01.1392E-01 80 9 734.62.1286E-02.7952E-03.4381E-03.2069E-03.7906E-04.2233E-04 12027 734.83.4005E-04.1652E-04.5595E-05.1458E-05.2650E-06.2879E-07 140 7 734.96.1575E-03.7550E-04.3064E-04.9959E-05.2386E-05.36974-06 4281 735.04.9636E-05.2605E-05.5317E-06.7459E-07.6251E-08.2510E-09 80 8 735.42.1226E-02.7604E-03.4205E-03.1995E-03.7665E-04.2181E-04 1282 735.46.9204E-04.3241E-04.9085E-05.1878E-05.2556E-06.1914E-07 12026 735.67.4303E-04.1791E-04.6134E-05.1620E-05.2995E-06.3325E-07 4282 735.90.7174E-05.1886E-05.3722E-06.5011E-07.3989E-08.1500E-09 3219 736.06.1059E OC.834CE-01.6141E-01.4133E-01.2460E-01.1228h-01 80 7 736.22.1156E-02.7193E-03.3990E-03.1900E-03.7339E-04.2101E-04 14164 736.22.1283E-05.3046E-06.5322E-07.6175E-08.4081E-09.1208E-10 14162 736.48.2006E-05.4975E-06.9158E-07.1132E-07.8106E-09.2657E-10 8171 736.48.1194E-05.3131E-06.6156E-07.8253E-08.6535E-09.2440t-10 12025 736.51.4601E-04.1932E-04.6688E-05.1790E-05.3362E-06.3812E-07 140 5 736.55.1184E-03.5702E-04.2326E-04.7611E-05.1838E-05.2878E-06 8170 736.63.1538E-05.4132E-06.8364E-07.1162E-07.9620E-09.3803~-10 14160 736.73.3086E-05.7985E-06.1546E-06.2033E-07.1572E-08.5692E-10 4283 736.76.5320E-05.1360E-05.2593E-06.3349E-07.2531E-08.8900E-10 8169 736.78.1974E-05.5429E-06.1131E-06.1628E-07.1408E-08.5888E-10 \ 8168 736.92.2522E-05.7103E-06.1522E-06.2268E-07.2048E-08.9057E-10 14158 736.98.4673E-05.1259E-05.2560E-06.3574E-07.2978E-08.1187E-09 80 6 737.01.1078E-02.6725E-03.3741E-03.1788E-03.6936E-04.1997E-04 8167 737.06.3210E-05.9254E-06.2039E-06.3143E-07.2963E-08.1384t-09 1284 737.18.5049E-04.1679E-04.4396E-05.8359E-06.1025E-06.6708E-08 8166 737.20.4070E-05.1200E-05.2719E-06.4334E-07.4260E-08.2100E-09 14156 737.21.6961E-05.1951E-05.4158E-06.6151E-07.5509E-08.2409E-09 8165 737.33.5139E-05.L550E-05.3608E-06.5944E-07.6090E-08.3166E-09 12C24 737.34.4895E-04.2073E-04.7251E-05.1965E-05.3750E-06.4338E-07 14154 737.44.1020E-04.2970E-05.6626E-06.1036E-06.9949E-08.4758E-09 8164 737.47.6463E-05.1993E-05.4765E-06.8110E-07.8655E-08.4742E-09 3221 737.54.1006E 00.7810E-01.5654E-01.3728E-01.2162E-01.1045E-01 8163 737.60.8096E-05.2552E-05.6263E-06.1101E-06.1223E-07.7054E-09 4284 737.62.3S30E-05.9759E-06.1798E-06.2227E-07.1597E-08.52476-10 14152 737.66.1471E-04.4442E-05.1035E-05.1709E-06.1754E-07.9147E-09 8162 737.73.1010E-04.3254E-05.8193E-06.1486E-06.1717E-07.1042E-08 80 5 737.81.9939E-03.6210E-03.3463E-03.1660E-03.6464E-04.18706-04 8161 737.85.1255E-04.4130E-05.1067E-05.1996E-06.2398E-07.15306-08 14150 737.87.2086E-04.6525E-05.1587E-05.2757E-06.3020E-07.1711E-08 8160 737.98.1553E-04.5218E-05.1382E-05.2667E-06.3328E-07.2230E-08 14148 738.08.2909C-04.9413E-05.2384E-05.4354E-06.5075E-07.3114E-08 8159 738.10.1915E-04.6566E-05.1782E-05.3544E-06.4592E-07.3230E-08 140 3 738.14.7366E-04.3558E-04.1457E-04.4788E-05.1163E-05.1834E-06 12023 738.17.5183E-04.2213E-04.7817E-05.2144E-05.4154E-06.4900E-07

TABLE XVI (Continued) INTENSITY BANC CCCE hAVE NUMBER 8158 14146 8157 8156 14144 4285 8155 80 4 14142 8154 8153 14140 1286 8152 14138 6062 3223 12022 8151 8150 14136 8149 14134 8148 4286 80 3 14132 8147 8146 14130 8145 14128 8144 140 1 14126 8143 12021 14124 8142 14122 8141 8140 14120 8139 14118 738.23 738.27 738.34 738.46 738.46 738.48 738.58 738.60 738.64 738.69 738.80 738.81 738.90 738.91 738.97 738.97 739.01 739.01 739.02 739.12 739.13 739.23 739.27 739.33 739.34 739.39 739.41 739.43 739.52 739.54 739.62 739.66 739.71 739.72 739.78 739.80 739.83 739.88 739.89 739.98 739.98 740.06 740.07 740.14 740.15 T=300K.2351E-04.3989E-04.2874E-04.3500E-04.5379E-04.2892E-05.4244E-04.9053E-03.7131E-04.5126E-04.6166E-04.9290E-04.2727E-04.7387E-04.1189E-03.1456E-05.9322E-01.5462E-04.8812E-04.1047E-03.1496E-03.1239E-03.1848E-03.1459E-03.2120E-05.8179E-03.2240E-03.1712E-03.2001E-03.2666E-03.2327E-03.3111E-03.2696E-03.2508E-04.3559E-03.3110E-03.5726E-04.3988E-03.3573E-03.4372E-03.4086E-03.4652E-03.4684E-03.5274E-03.4896E-03 T=275K.8225E-05.1334E-04.1026E-04.1274E-04.1855E-04.6976E-06.1575E-04.5666E-03.2534E-04.1938E-04.2374E-04.3396E-04.8556E-05.2896E-04.4467E-04.4792E-06.7128E-01.2350E-04.3517E-04.4252E-04.5764E-04.5117E-04.7295E-04.6131E-04.4965E-06.5126E-03.9050E-04.7312E-04.8682E-04.11OOE-03.1026E-03.1310E-03.1207E-03.1213E-04.1528E-03.1413E-03.2483E-04.1742E-03.1648E-03.1940E-03.1912E-03.2207E-03.2110E-03.2537E-03.2235E-03 T=250K.2287E-05.3512E-05.2921E-05.3713E-05.5071E-05.1241E-06.4697E-05.3167E-03.7178E-05.5913E-05.7407E-05.9954E-05.2088E-05.9233E-05.1352E-04.1238E-06.5066E-01.8380E-05.1145E-04.1414E-04.1800E-04.1737E-04.2345E-04.2124E-04.8530E-07.2869E-03.2991E-04.2583E-04.3127E-04.3732E-04.3765E-04.4553E-04.4512E-04.4979E-05.5429E-04.5380E-04.8932E-05.6320E-04.6383E-04.7179E-04.7534E-04.8848E-04.7944E-04.1034E-03.8552E-04 T=225K.4684E-06.6727E-06.6159E-06.8056E-06.1017E-05.1473E-07.1048E-05.1522E-03.1503E-05.1356E-05.1745E-05.2174E-05.3645E-06.2234E-05.3073E-05.2319E-07.3266E-01.2325E-05.2845E-05.3603E-05.4246E-05.4539E-05.5734E-05.5687E-05.9695E-08.1382E-03.7562E-05.7086E-05.8781E-05.9739E-05.1082E-04.1224E-04.1326E-04.1640E-05.1500E-04.1617E-04.2505E-05.1792E-04.1960E-04.2084E-04.2363E-04.2832E-04.2356E-04.3376E-04.2587E-04 T=200K.6299E-07.8323E-07.8589E-07.1164E-06.1332E-06.1002E-08.1569E-06.5943E-04.2080E-06.2101E-06.2798E-06.3168E-06.4014E-07.3702E-06.4706E-06.2788E-08.1842E-01.4570E-06.4870E-06.6369E-06.6816E-06.8278E-06.9622E-06.1069E-05.6246E-09.5409E-04.1324E-05.1373E-05.1753E-05.1773E-05.2223E-05.2313E-05.2803E-05.3996E-06.2934E-05.3512E-05.4993E-06.3619E-05.4374E-05.4334E-05.5413E-05.6658E-05.5035E-05.8138E-05.5664E-05 T=175K.4646E-08.5514E-08.6639E-08.9421E-08.9497E-08.3074E-10.1328E-07.1727E-04.1591E-07.1859E-07.2586E-07.2591E-07.2290E-08.3571E-07.4102E-07.1781E-09.8579E-02.5491E-07.4899E-07.6675E-07.6312E-07.9033E-07.9436E-07.1214E-06.1789E-10.1576E-04.1370E-06.1620E-06.2148E-06.1931E-06.2827E-06.2641E-06.3696E-06.6328E-07.3503E-06.4799E-06.6107E-07.4502E-06.6187E-06.5601E-06.7920E-06.1007E-05.6736E-06.1271E-05.7820E-06

TABLE XVI (Continued) INTENSITY BANC CODE WAVE NUMBER 80 2 4287 8138 14116 14114 8137 14112 8136 14110 141 8 8135 141 6 3225 141 4 141 2 8134 8133 1288 12020 8132 8131 6060 8130 8129 8128 8127 8126 4288 8125 8124 8123 8122 8121 8120 8119 8118 8117 8116 12019 8115 8114 8113 8112 8111 8110 740.18 740.20 740.22 740.22 740.28 740.30 740.34 740.38 740.39 740.43 740.45 740.46 740.47 740.48 740.49 740.52 740.59 740.62 740.66 740.66 740.73 740.79 740.79 740.85 740.91 740.97 741.03 741.06 741.08 741.13 741.18 741.23 741.27 741.32 741.36 741.40 741.43 741.47 741.48 741.50 741.53 741.56 741.59 741.61 741.64 T=300K.7453E-03.1548E-05.5953E-03.4982E-03.4921E-03.669CE-03.4696E-03.7484E-03.4302E-03.3741E-03.8334E-03.3027E-03.8447E-01.2184E-03.1246E-03.9239E-03.1019E-02.1450E-04.5972E-04.1120E-02.1224E-02.2242E-05.1332E-02.1442E-02.1553E-02.1665E-02.1776E-02.1126E-05.1884E-02.1988E-02.2087E-02.2178E-02.2260E-02.2331E-02.2389E-02.2434E-02.2462E-02.2472E-02.6196E-04.2464E-02.2436E-02.2387E-02.2317E-02.2225E-02.2111E-02 T-275K.4676E-03.3519E-06.2902E-03.2302E-03.2298E-03.3304E-03.2213E-03.3743E-03.2043E-03.1788E-03.4220E-03.1455E-03.6352E-01.1054E-03.6024E-04.4734E-03.5285E-03.4286E-05.2608E-04.5870E-03.6488E-03.7698E-06.7134E-03.7803E-03.8490E-03.9189E-03.9891E-03.2484E-06.1059E-02.1127E-02.1192E-02.1254E-02.1311E-02.1362E-02.1406E-02.1441E-02.1467E-02.1482E-02.2724E-04.1485E-02.1476E-02.1453E-02.1417E-02.1366E-02.1301E-02 T=250K.2620E-03.5834E-07.1201E-03.8935E-04.9033E-04.1389E-03.8798E-04.1598E-03.8200E-04.7234E-04.1828E-03.5920E-04.4425E-01.4307E-04.2470E-04.2081E-03.2356E-03.9735E-06.9464E-05.2652E-03.2970E-03.2092E-06.3308E-03.3663E-03.4033E-03.4415E-03.4805E-03.3971E-07.5199E-03.5591E-03.5975E-03.6344E-03.6693E-03.7014E-03.7298E-03.75401-03.7731E-03.7865E-03.9967E-05.7934E-03.7932E-03.7856E-03.7699E-03.7460E-03.7136E-03 T=225K.1264E-03.6348E-08.4002E-04.2750E-04.2824E-04.4716E-04.2788E-04.5526E-04.2629E-04.2341E-04.6438E-04.1931E-04.2783E-01.1413E-04.8128E-05.7457E-04.8587E-04.1557E-06.2683E-05.9830E-04.1119E-03.4167E-07.1265E-03.1422E-03.1589E-03.1764E-03.1946E-03.4135E-08.2133E-03.2323E-03.2512E-03.2699E-03.2879E-03.3049E-03.3204E-03.3342E-03.3458E-03.3548E-03.2854E-05.3608E-03.3634E-03.3624E-03.3576E-03.3485E-03.3353E-03 T=200K.4957E-04.3873E-09.9884E-05.6156E-05.6446E-05.1193E-04.6473E-05.1431E-04.6192E-05.5580E-05.1705E-04.4645E-05.1522E-01.3422E-05.1978E-05.2018E-04.2374E-04.1537E-07.5417E-06.2775E-04.3221E-04.5411E-08.3715E-04.4255E-04.4841E-04.5470E-04.6138E-04.2387E-09.6838E-04.7564E-04.8305E-04.9051E-04.9788E-04.1050E-03.1118E-03.1180E-03.1235E-03.1280E-03.5836E-06.1315E-03.1337E-03.1345E-03.1338E-03.1314E-03.1273E-03 T=175K.1448E-04.10341-10.1593E-05.8743E-06.9386E-06.1982E-05.9633E-06.2449E-05.9387E-06.85911-06.3005E-05.7238E-06.6816E-02.5380E-06.3127E-06.3659E-05.4424E-05.7618E-09.6739E-07.5310E-05.6325E-05.3816E-09.7479E-05.8777E-05.1022E-04.1181E-04.1355E-04.5938E-11.1541E-04.1739E-04.1947E-04.2162t-04.2380E-04.2597E-04.2809E-04.3010E-04.3196E-04.3360E-04.7377E-07.3496- 04.3598E-04.3661E-04.3680E-04.3649E-04.3566E-04 Hi \J1 CDO

TABLE XVI (Continued) INTENSITY ePNC CCCE AVE9 NUMPER 81 9 741.66 81 8 741.68 81 7 741.69 81 6 741.71 81 5 741.72 81 4 741.73 81 3 741.74 81 2 741.74 3227 741.92 142 1 742.06 12018 742.31 1290 742.35 6058 742.60 12017 743.13 3229 743.37 142 3 743.62 12C16 743.94 1292 744.08 82 2 744.C9 6056 744.40 12C15 744.76 3231 744.80 82 3 744.87 142 5 745.17 12014 745.57 82 4 745.64 1294 745.82 6054 746.19 3233 746.23 12013 746.38 82 5 746.41 142 7 746.71 82 6 747.18 12C12 747.19 3235 747.65 82 7 747.95 6052 747.98 12011 748.00 142 9 748.24 82 8 748.71 12010 748.81 3237 749.C6 82 9 749.48 12C 9 749.61 6050 749.75 T=3COK.1975E-02.1818b-02.1639E-02.1441E-02.1222E-02.9823E-03.7182E-03.4150E-03.7492E-01.2517E-04.6394E-04.7591E-05.3398E-05.6563E-04.651CE-01.7427E-04.6699E-04.3914E-05.833CE-04.5067E-05.6799E-04.5546E-01.1855E-03.1199E-03.6859E-C4.2928E-03.1987E-05.7432E-05.4634E-01.6879E-04.3995E-03.1602E-03.5027E-03.6856E-04.3801E-01.6005E-03.1072E-04.679CE-04.1937E-03.6914E-03.6680E-C4.3061E-01.7743E-03.6529E-04.1522E-04 T=275K.1221E-02.1127E-02.1020E-02.8982E-03.7634E-03.6148E-C3.4501E-03.2604E-03.5533E-01.1218E-04.2830E-04.2111E-05.1215E-05.2922E-04.4715E-01.3587E-04.3COCC-04.1022E-05.5225t-04.1884E-05.3062E-04.3933E-01.1163E-03.5774E-04.3105E-04.1832E-03.4868E-06.2870E-05.32141-01.3128E-04.2495E-03.7680t-04.3134E-03.3132E-04.2575E-01.3734E-03.4295E-05.3114E-04.9229E-04.4288E-03.3076E-04.2022E-01.4787E-03.3016E-04.6313E-05 T=250K.6727t-03.6233E-03.5656E-03.4996E-03.4257E-03.3435E-03.2519E-03.1459E-03.3771E-01.4996E-05.1043E-04.4456E-06.3467E-06.1085E-04.3139E-01.1469E-04.1122E-04.2002E-06.2928E-04.5636E-06.1153E-04.2554E-01.6507E-04.2355E-04.1176E-04.1024E-03.8832E-07.8986E-06.2032E-01.1192E-04.1391E-03.3116E-04.1743E-03.1200E-04.1582E-01.2071E-03.1405E-05.1199E-04.3718E-04.2370E-03.1189E-04.1206E-01.2636E-03.1171E-04.2154E-05 T=225K.3176L-03.2956E-03.2693E-03.2388E-03.2040E-03.1651E-03.1213E-03.7036E-04.2310E-01.1646E-05.3016E-05.6515E-07.7330E-07.3166E-05.1868E-01.4825E-05.3301E-05.2671E-07.1412E-04.1262E-06.3418E-05.1474c-01.3132E-04.7703E-05.3514E-05.4918E-04.1073E-07.2127E-06.1136t-01.3586E-05.6668E-04.1012t-04.8328E-04.3633E-05.8543E-02.9861E-04.3509E-06.3652E-05.1198L-04.1124E-03.3643E-05.6277E-02.1244E-03.3605E-05.5665E-06 T=200K.1213c-03.1136E-03.1040E-03.9261E-04.7944L-04.6447E-04.4749E-04.2760c-04.1222E-01.4009E-06.6241L-06.5750E-08.1025E-07.6626E-06.9537E-02.1172E-05.6983E-06.2103C-08.5538E-05.1898E-07.7303E-06.7244E-02.1226E-04.1860E-05.7578E-06.1920E-04.7513E-09.3429E-07.5357E-02.7802E-06.2596E-04.2425E-05.3230E-04.7968E-06.3859E-02.3807E-04.6049E-07.8071E-06.2838E-05.4318E-04.8106E-06.2709E-02.4754E-04.8073E-06.1042E-06 T=175K.3427L-04.3231E-04.2977E-04.2666E-04.2298E-04.1873E-04.1384E-04.8062c-05.5243E-02.6349E-07.80121-07.2468E-09.7960E-09.8631E-07.3909E-02.1848E-06.9220E-07.7790E-10.1618E-05.1616E-08.9768L-07.2826E-02.3574E-05.2912E-06.1026t-06.5578E-05.2395E-10.31931-08.1984t-02.1068E-06.7510t-05.3757E-06.9299E-05.1102E-06.1352L-02.1090E-04.6140E-08.1128b-06.4337E-06.1228E-04.1143L-06.8947E-03.1342E-04.1147E-C6.1149L-07 \-, k0

TABLE XVI (Continued) INTENSITY B^NC CCCE hAVE NUMBER 14211 749.76 8210 750.24 120 8 750.41 3239 750.47 8211 751.00 120 7 751.21 14213 751.27 6048 751.52 8212 751.76 3241 751.86 120 6 752.01 8213 752.51 14215 752.78 120 5 752.80 3243 753.25 8214 753.26 6046 753.28 12157 753.34 12156 753.46 12155 753.58 120 4 753.60 12154 753.69 12153 753.80 12152 753.91 8215 754.01 12151 754.02 12150 754.12 12149 754.23 14217 754.28 12148 754.33 120 3 754.39 12147 754.43 12146 754.52 12145 754.62 3245 754.63 12144 754.71 8216 754.76 12143 754.80 12142 754.89 12141 754.98 T=300K.2192E-03.8484E-03.6340E-04.2421E-01.9130E-03.6116E-04.2363E-03.2123E-04.9678E-03.1881E-01.5868t-04.1012E-02.2450E-03.5608E-04.1436E-01.1047E-02.2914E-04.1206E-05.1469E-05.1782E-05.5364L-04.2153E-05.259CE-05.3103E-05.1072E-02.37C3E-05.440CE-05.5206E-05.2458E-03.6135E-05.5192t-04.7199E-05.8412E-05.9787E-05.1078t-01.1134E-04.1C87E-02.1308E-04.1503E-04.1719E-04.3930C-04.1957E-04.2219E-C4.2505C-04.2814t-04 T=275K.1037E-03.52'27E-03.2938E-04.1558E-01.5604E-03.2842E-04.1108E-03.9112E-05.5916E-03.1178E-01.2733E-04.6161E-03.1138E-03.2617E-04.8735E-02.6341E-03.1292E-04.3214E-06.3991E-06.4935E-06.2508E-04.6075E-06.7445E-06.9083E-06.6457E-03.1103E-05.1334E-05.1606E-05.1128E-03.1924E-05.2430E-04.2295E-05.2725E-05.3221E-05.6360E-02.3790E-05.6511E-03.4439E-05.5175E-05.6004E-05.1797E-04.6934E-05.7969E-05.9116E-05.1038E-04 T=250K.4142E-04.2867E-03.1145E-04.9003E-02.3059E-03.1111E-04.4382E-04.3238E-05.3214E-03.6583E-02.1071E-04.3329E-03.4444E-04.10296-04.4716E-02.3407E-03.4772E-05.6444E-07.8193E-07.1037E-06.9875E-05.1305E-06.1635E-06.2039E-06.3448E-03.2530E-06.3124F-06.3839E-06.4348E-04.4694E-06.9587E-05.5710E-06.6913E-06.83276-06.3310E-02.9980E-06.3454t-03.1190E-05.1412E-05.1667E-05.6892E-05.1958E-05.2287E-05.2659L-05.3074E-05 T=225K.1320E-04.1346E-03.3540E-05.4508E-02.1429E-03.3450E-05.1379E-04.89496-06.1492E-03.3165E-02.3339E-05.1536E-03.13796-04.3215E-05.2173E-02.1560E-03.1383t-05.88506-08.1158E-07.1507E-07.3094E-05.1950E-07.2511E-07.3215E-07.15676-03.4095E-07.5187E-07.6536E-07.1327E-04.8190E-07.3010E-05.1021E-06.1265E-06.15596-06.1459E-02.1912E-06.15576-03.2331E-06.2826E-06.3407E-06.2091E-05.4084E-06.4869E-06.57716-06.6802E-06 T=200K.3087E-05.5111E-04.7972E-06.1854L-02.5387E-04.7807E-06.3175L-05.17516-06.5583E-04.12376-02.7589E-06.5699E-04.3116E-05.73356-06.80516-03.57406-04.2872E-06.72246-09.9795E-09.1320E-08.7081E-06.1769E-08.23566-08.31196-08.57126-04.4104E-08.5367E-08.6978E-08.2937E-05.9017E-08.6905E-06.1158E-07.1478E-07.18766-07.5112E-03.2365E-07.5619t-04.2965E-07.3693E-07.4571E-07.4596E-06.5622E-07.6873C-07.6349_-07. 1008-06 T=175K.4639E-06.1432E-04.1141E-06.57556-03.14966-04.1125E-06.46756-06.20916-07.1535E-04.3598E-03.10996-06.1551E-04.4482E-06.1068t-06.21876-03.1544E-04.3703L-07.2805E-10.3982e-10.5614E-10.1035E-06.78646-10.10946-09.1511t-09.1518E-04.2074E-09.2827t-09.3827E-09.4114E-06.5144E-09.10126-06.68686-09.91066-09.11996-08.1292E-03.1568E-08.14746-04.2036E-08.2625E-08.3362E-08.6377E-07.4275t-08.53976-08.6765c-08.8420E-08 6044 12140 12139 12138 12137 755.03 755.06 755.14 755.22 755.30

TABLE XVI (Continued) INTENSITY BANC CCCE hAVE NUMBER T=300K T=275K T=250K T=225K T=200K T=175K 12136 755.38.3149E-04.1176E-04.3536E-05.7971E-06.1209E-06.1040E-07 12135 755.45.3506E-04.1326E-04.4046E-05.9287E-06.1440E-06.1276E-07 8217 755.51.1C92E-02.6507E-03.3427E-03.1532E-03.5470E-04.1416E-04 12134 755.52.3887E-04.1487E-04.4605E-05.1076E-05.1705E-06.1555E-07 12133 755.59.4289E-04.1660E-04.5213E-05.1239E-05.2006E-06.1880E-07 12132 755.66.4710E-04.1844E-04.5870E-05.1418E-05.2344E-06.2256E-07 12131 755.73.5148E-04.2038E-04.6572E-05.1613E-05.2722E-06.2687E-07 14219 755.77.2395E-03.1086E-03.4120E-04.1234E-04.2669E-05.3628E-06 12130 755.79.5600E-04.2240E-04.7318E-05.1825E-05.3138E-06.3177E-07 12129 755.85.6062E-04.2450E-04.8102E-05.2051E-05.3595E-06.3728E-07 12128 755.91.653CE-04.2665E-04.8920E-05.2291E-05.4089E-06.4342E-07 12127 755.97.6998E-04.2884E-04.9763E-05.2543E-05.4620E-06.5017L-07 3247 756.00.7957E-02.4546E-02.2278E-02.9580E-03.3168E-03.7430E-04 12126 756.03.7461E-04.3103E-04.1062E-04.2805E-05.5182E-06.5752E-07 12125 756.08.7913E-04.3321E-04.1149E-04.3073E-05.5772E-06.6542E-07 12124 756.13.8347E-04.3533E-04.1235E-04.3345E-05.6382E-06.7381E-07 12123 756.18.8756E-04.3737E-04.1319E-04.3616E-05.7004E-06.8259E-07 12122 756.23.9134E-04.3929E-04.1400E-04.3883E-05.7629E-06.9165E-07 8218 756.26.1089E-02.6448E-03.3371E-03.1494E-03.5272E-04.1345E-04 12121 756.27.9471E-04.4105E-04.1476E-04.4139E-05.8246E-06.1008E-06 12120 756.32.9762E-04.4261E-04.1546E-04.4380E-05.8841E-06.1099E-06 ~_ 12119 756.36.9997E-04.4394E-04.1607E-04.4599E-05.9402E-06.1188E-06 12118 756.40.1017E-03.44991-04.1658E-04.4792E-05.9913E-06.1272E-06 12117 756.43.1027E-03.4573E-04.1698E-04.4951E-05.1036E-05.1349E-06 12116 756.47.1030E-03.4612E-04.1725E-04.5072E-05.1072E-05.1416E-06 12115 756.50.1025E-03.4613E-04.1736E-04.5148E-05.1099E-05.1470E-06 12114 756.53.1011E-03.4573E-04.1732E-04.5173E-05.1115E-05.1510E-06 12113 756.56.9875E-04.449CE-04.1710E-04.5144E-05.1119E-05.1532E-06 12112 756.59.9548E-04.4360E-04.1670E-04.5056E-05.1109E-05.1534L-06 12111 756.61.9124E-04.4184E-04.1610E-04.4904E-05.1084E-05.1514E-06 12110 756.64.8600E-04.3959E-04.1530E-04.4687E-05.1043E-05.1470E-06 121 9 756.66.7976E-04.3684E-04.1430E-04.4402E-05.9855E-06.1400E-06 121 8 756.68.7251E-04.3359E-04.1309E-04.4047E-05.9112E-06.1304E-06 121 7 756.69.6422E-04.2984E-04.1166E-04.3621E-05.8193E-06.1180E-06 121 6 756.71.5486E-04.2555E-04.1001E-04.3120E-05.7092E-06.1027[-06 121 5 756.72.4432E-04.2068E-04.8127E-05.2540E-05.5794E-06.8433t-07 121 4 756.73.3233E-04.1511E-04.5951E-05.1864E-05.4267E-06.6236E-07 121 3 756.74.1823E-04.8535E-05.3366E-05.1057E-05.2425E-06.3555E-07 6042 756.78.5211E-04.2455E-04.9756E-05.3091E-05.7175E-06.1068E-06 8219 757.C0.1078E-02.6339E-03.3289E-03.1443E-03.5034E-04.1265t-04 14221 757.25.2273E-03.1016E-03.3792E-04.1112E-04.2345E-05.3084E-06 3249 757.36.5774E-02.3191E-02.1537E-02.6156E-03.1915E-03.4155E-04 8220 757.74.1059E-02.6186E-03.3183E-03.1383E-03.4763E-04.1177E-04 8221 758.48.1033E-02.5994E-03.3058E-03.1315E-03.4469E-04.1086E-04 6040 758.51.6790E-04.3290E-04.1353E-04.4469E-05.1093E-05.1739:-06

TABLE XVI (Continued) INTENSITY BANC CCCE hAVE NUMBER T=300K T=275K T=250K T=225K T=200K T=175K 3251 758.72.4120E-02.2200E-02.1016E-02.3870E-03.1130E-03.2261t-04 14223 758.72.2106E-03.9270E-04.3396E-04.9739E-05.1996E-05.2531E-06 8222 759.21.1002E-02.5769E-03.2916E-03.1240E-03.4157E-04.9926E-05 122 3 759.87.2617E-05.1225E-05.4830E-06.1516E-06.3478E-07.5100E-08 8223 759.95.9657E-03.5515E-03.2762E-03.1161E-03.3836E-04.8991t-05 3253 760.06.2892E-02.149CE-02.6591E-03.2381E-03.6513E-04.1197E-04 14225 760.19.1908E-03.8257E-04.2964E-04.8294E-05.1648E-05.2009E-06 6038 760.24.8692E-04.4327E-04.1838E-04.6316E-05.1622E-05.2751E-06 122 4 760.64.6193E-05.2895E-05.1140E-05.3570E-06.8170E-07.1194E-07 8224 760.68.9251E-03.5240E-03.2598E-03.1079E-03.3512E-04.8074E-05 3255 761.40.1996E-02.9909E-03.4193E-03.1434E-03.3664E-04.6168E-05 8225 761.41.8810E-03.4948E-03.2428E-03.9959E-04.3191E-04.7189E-05 122 5 761.42.1014E-04.4732E-05.1859E-05.5809E-06.1325E-06.1929E-07 14227 761.64.1691E-03.7187E-04.2525E-04.6879E-05.1322E-05.1544E-06 6036 761.96.1093E-03.5582E-04.2444E-04.8722E-05.2348E-05.42306-06 8226 762.14.8343E-03.4644E-03.2255E-03.9128E-04.2878E-04.6349E-05 122 6 762.19.1418E-04.6602E-05.2588E-05.8061E-06.1832E-06.2653E-07 3257 762.73.1356E-02.6475E-03.2616E-03.8455E-04.2012E-04.3093t-05 8227 762.87.7858E-03.4334E-03.2081E-03.8311E-04.2576E-04.5561E-05 122 7 762.96.1815E-04.8429E-05.3294E-05.1023E-05.2314E-06.3332E-07 14229 763.09.1469E-03.6121E-04.2100E-04.5561E-05.1031E-05.1150E-06 0 8228 763.59.7362E-03.4021E-03.1909E-03.7517E-04.2289E-04.4832E-05 6034 763.67.1349E-03.7059E-04.3183E-04.1177E-04.3313E-05.6319E-06 122 8 763.72.2194E-04.1016E-04.3958E-05.1224E-05.2755E-06.3942E-07 3259 764.05.9061E-03.4157E-03.1601E-03.4880E-04.1079t-04.1510E-05 8229 764.31.6861E-03.3711E-03.1741E-03.6755E-04.2020E-04.4165E-05 122 9 764.49.2547E-04.1176E-04.4565E-05.1405E-05.3145E-06.4468E-07 14231 764.53.1250E-03.5103E-04.1708E-04.4385E-05.7826E-06.8310E-07 8230 765.03.6361E-03.3405E-03.1578E-03.6032E-04.1770E-04.3563E-05 12210 765.25.2871E-04.1321E-04.5105E-05.1563E-05.3478E-06.4901E-07 3261 765.36.5958E-03.2622E-03.9609E-04.2757E-04.5653E-05.7174E-06 6032 765.37.1634E-03.8750E-04.4055E-04.1550E-04.4552E-05.9163E-06 8231 765.75.5869E-03.3108E-03.1422E-03.5352E-04.1540E-04.3024E-05 14233 765.96.1044E-03.4168E-04.1358E-04.3375E-05.5782L-06.5826E-07 12211 766.01.3159E-04.1448E-04.5572E-05.1697E-05.3749E-06.5236E-07 8232 766.47.5388E-03.2822E-03.1274E-03.4720E-04.1331E-04.2547E-05 3263 766.67.3854E-03.1626E-03.5659E-04.1525E-04.2892t-05.3318t-06 12212 766.77.3410E-04.1557E-04.5961E-05.1804E-05.3956E-06.5472E-07 6030 767.06.1942E-03.1063E-03.5053E-04.1994E-04.6089E-05.1290E-05 8233 767.18.4922E-03.2549E-03.1136E-03.4137E-04.1143E-04.2129E-05 14235 767.39.8559E-04.3336E-04.1056E-04.2536E-05.4161E-06.3966E-07 12213 767.52.3623E-04.1647E-04.6270E-05.1886E-05.4100E-06.5612E-07 8234 767.89.4475E-03.2291E-03.1006E-03.3604E-04.9749E-05.1767E-05 3265 767.96.2454E-03.9904E-04.3270E-04.8261E-05.1445E-05.1494E-06 12214 768.28.3795E-04.1716E-04.64986-05.1941E-05.4183t-06.5661t-07

TABLE XVI (Continued) INTENSITY B^NC COCE kAVE NUMBER T=300K T=275K T=250K T-225K T=200K T=175K 8235 6028 14237 12215 3267 8236 12216 8237 14239 6026 3269 12217 8238 12218 8239 14241 3271 12219 6024 824C 768.60 768.75 768.80 769.03 769.25 769.31 769.78 770.02 770.21 770.43 770.53 770.53 770.72 771.27 771.42 771.61 771.80 772.02 772.09 772.12 12220 772.76 8241 772.82 14243 773.00 3273 773.07 12221 773.50.4049E-03.2263E-03.6888E-04.3927E-04.1538E-03.3647E-03.4019E-04.3269E-03.5444E-04.2583E-03.9483E-04.4074E-04.2918E-03.4092E-04.2592E-03.4227E-04.5756E-04.4075E-04.2886E-03.2292E-03.4027E-04.2018E-03.3225E-04.3438E-04.3951E-04.1769E-03.3152E-03.1544E-03.3849E-04.2022E-04.2419E-04.1342E-03.3725E-04.3360E-03.1170E-04.1161E-03.3582E-04.1784E-04 1.COOOE-04.34231-04.6670E-05.8580E-04.3489E-03.1293E-04.3252E-04.2048E-03.1263E-03.2618E-04.1767E-04.5930E-04.1822E-03.1799E-04.1613E-03.2015E-04.1469E-03.3490E-04.1813E-04.1421t-03.1809E-04.1246E-03.1522E-04.2018E-04.1790E-04.1670E-03.1087E-03.1757E-04.9435E-04.1128E-04.1148E-04.1711E-04.8152E-04.1853E-03.7011E-04.1655E-04.6413E-05.8207E-05.6001E-04.1589E-04.2005E-03.3523E-05.5113E-04.1515E-04.5861E-05.4336E-04.1436E-04.1903E-05.3660E-04.2110E-03.4110E-05.1352E-04.8869E-04.6154E-04.8046E-05.6649E-05.1854E-04.7774E-04.6724E-05.6778E-04.6001E-05.7320E-04.1031E-04.6728E-05.5878E-04.6666E-05.5071E-04.4383E-05.5630E-05.6545E-05.8497E-04.4352E-04.6371E-05.3715E-04.3137E-05.3016E-05.6152E-05.3155E-04.9613E-04.2666E-04.5894E-05.1586E-05.2200E-05.2241E-04.5606E-05.1058E-03.8183E-06.1875E-04.5294E-05.1512E-05.1560E-04.4965E-05.4144E-06.1292E-04.1132E-03.1019E-05.4625E-05.3121E-04.2501E-04.1862E-05.1971E-05.4382E-05.2687E-04.1977E-05.2299E-04.1336E-05.3058E-04.2276E-05.1961E-05.1956E-04.1926E-05.1655E-04.9370E-06.1158E-05.1873E-05.3642E-04.13921-04.1805E-05.1164E-04.6426E-06.5767E-06.1724E-05.9682E-05.4218E-04.8006E-05.1634E-05.2814E-06.4309E-06.6583E-05.1536E-05.4745E-04.1345E-06.5383E-05.1433E-05.2827E-06.4377E-05.1327E-05.6295E-07.3540E-05.5174E-04.1814E-06.1220E-05.8259E-05.7925E-05.2918E-06.4208E-06.7050E-06.6951E-05.4179E-06.5813E-05.1995E-06.1003E-04.3361E-06.4102E-06.4829t-05.3982E-06.3987E-05.1330L-06.1565E-06.3827E-06.1233E-04.3270E-05.3642E-06.2665E-05.8646E-07.7121E-07.3434E-06.2159E-05.1471E-04.1738E-05.3209E-06.3165E-07.5483E-07.1390t-05.2974E-06.1700E-04.1374E-07.1105E-05.2733E-06.3393E-07.8731~-06.2492E-06.5831E-08.6855L-06.1899E-04.2049E-07.2254E-06.1455E-05.1760E-05.2622E-07.5626E-07.6552E-07.1190E-05.5516E-07.9656E-06.1684E-07.2329E-05.2797E-07.5340E-07.7780E-06.5110E-07.6224E-06.1052E-07.1163E-07.4836C-07.2983E-05.4943E-06.4528E-07.3898E-06.6384E-08.4707E-08.4198E-07.3052E-06.3695E-05.2373E-06.3854E-07.1856E-08.3768E-08.1832E-06.3506E-07.4421E-05.7124E-09.1405E-06.3160E-07.2163E-08.1069E-06.2824E-07.2664E-09.8084E-07.5098E-05.1208E-08.2501E-07 8242 6022 8243 12222 3275 14245 8244 12223 6020 3277 8245 12224 14247 8246 12225 773.52 773.76 774.21 774.24 774.32 774.38 774.90 774.97 775.41 775.57 775.59 775.70 775.76 776.28 776.44 3279 776.81 8247 776.96 6018 777.05 14249 777.12 12226 777.16

TABLE XVI (Continued) INTENSITY BeNC CCCE kAVE NUMBLR 8248 777.64 12227 777.89 3281 778.04 8249 778.33 14251 778.48 12228 778.62 6C16 778.69 8250 779.00 3283 779.26 12229 779.34 8251 779.68 14253 779.83 12230 780.06 6014 780.32 8252 780.36 3285 780.47 12231 780.78 8253 781.03 14255 781.17 12232 781.50 8254 781.70 6012 781.94 12233 782.21 8255 782.37 14257 782.50 T=300K.7329E-04.3072E-04.3742E-05.6234E-04.9218E-05.2886E-04.3520E-03.5280E-04.2066E-05.2696E-04.4453E-04.6464E-05.2506E-04.3436E-03.3740E-04.1124E-05.2316E-04.3129E-04.4458E-05.2131E-04.2606E-04.3225E-03.1950E-04.2162E-04.3025E-05.1776E-04.1786E-04.2884E-03.1610E-04.1469E-C4.2019E-05.1452E-04.1204E-04.9824E-05.1304E-04.1326E-05.2414E-03.7985E-05.1165E-04.6463E-05.1036E-04.1829E-03.521CE-05.9174t-05.4183E-05 T=275K.3075E-04.1265E-04 ~101CE-05.2572E-04.2831E-05.1177E-04.2154E-03.2142E-04.5274E-06.1089E-04.1775E-04.1915E-05.1002E-04.2125E-03.1465E-04.2707E-06.9163E-05.1203E-04.1272E-05.8336E-05.9838E-05.2013E-03.7544E-05.8009E-05.8304E-06.6791E-05.6491E-05.1814E-03.6081E-05.5237E-05.5325E-06.5418E-05.4207E-05.3364E-05.4803E-05.3355E-06.1529E-03.2679E-05.4236E-05.2123E-05.3718E-05.1164E-03.1676E-05.3247E-05.1317E-05 T=250K.1064E-04.4281E-05.2060E-06.8723E-05.6733E-06.3937E-05.1172E-03.7115E-05.1005E-06.3599E-05.5775E-05.4362E-06.3270E-05.1171E-03.4665E-05.4811E-07.2953E-05.3749E-05.2771E-06.2652E-05.2999E-05.1121E-03.2367E-05.2386E-05.1727E-06.2101E-05.1890E-05.1020E-03.1855E-05.1490E-05.1055E-06.1628E-05.1169E-05.9121E-06.1422E-05.6327E-07.8664E-04.7086E-06.1235E-05.5478E-06.1066E-05.6636E-04.4215E-06.9161E-06.3227E-06 T=225K.2847E-05.1114E-05.2887E-07.2277E-05.1139E-06.1011E-05.5453E-04.1811E-05.1296E-07.9105E-06.1433E-05.7002E-07.8148E-06.5533E-04.1128E-05.5704E-08.7245E-06.8826E-06.4212E-07.6402E-06.6870E-06.5372E-04.5621E-06.5319E-06.2480E-07.4905E-06.4096E-06.4943E-04.4255E-06.3138E-06.1429E-07.3668E-06.2390E-06.1812E-06.3144E-06.8062E-08.4238E-04.1366E-06.2678E-06.1024E-06.2268E-06.3270E-04.7637E-07.1910E-06.5666E-07 T=200K.5350L-06.2024E-06.2417E-08.4150E-06.1208E-07.1803E-06.2046E-04.3199E-06.9790E-09.1595E-06.2451E-06.6949E-08.14011-06.2117E-04.1867C-06.3875L-09.1222E-06.1413E-06.3903E-08.1058,-06.1064E-06.2090E-04.9099t-07.7956E-07.2140E-08.7773c-07.5915E-07.1951E-04.6595E-07.4372E-07.1146E-08.5559E-07.3212L-07.2346E-07.4655E-07.5994L-09.1693E-04.1703E-07.3872C-07.1229E-07.3200E-07.1319E-04.88161-08.2628t-07.6287E-08 T=175K.6070E-07.2197E-07.9700L-10.4526E-07.6563E-09.1914L-07.5648E-05.3351E-07.3440E-10.1654t-07.2464E-07.3469E-09.1418t-07.5991E-05.1800E-07.1188L-10.1206E-07.1306E-07.1785E-09.1018t-07.9406E-08.6046E-05.8523L-08.6731E-08.8934E-10.7083t-08.4784E-08.5749E-05.5843E-08.3377E-08.4353E-10.4784E-08.2367E-08.1649E-08.3887E-08.2064C-10.5065E-05.11401-08.3136E-08.78351-09.2512E-08.3993E-05.5347t-09.1997E-08.3624L-09 H p 12234 8256 6010 12235 8257 14259 12236 8258 8259 12237 782.93 783.04 783.55 783.64 783.70 783.83 784.34 784.36 785.02 785.05 14261 785.14 60 8 785.15 8260 785.68 12238 785.76 8261 786.34 12239 60 6 8262 12240 8263 786.46 786.74 7e6.99 787.16 787.64

TABLE XVI (Continued) INTENSITY BAND CDCE hAVE NUMBER T=3COK T=275K T=250K T=225K T=200K T=175K 12241 787.86.8087E-05.2822E-05.7829E-06.1599E-06.2144E-07.1576E-08 8264 788.29.3345E-05.1030E-05.2460E-06.4181L-07.4457E-08.2440E-09 60 4 788.33.1146E-03.7320E-04.4193E-04.2078E-04.8436E-05.2577E-05 12242 788.55.7096E-05.2441E-05.6656E-06.1331E-06.1738E-07.1235E-08 8265 788.94.2664E-05.8025E-06.1865E-06.3069E-07.3142E-08.1632E-09 12243 789.25.6199E-05.2101E-05.5629E-06.1102E-06.1400E-07.9612E-09 6146 789.25.1377E-05.6100E-06.2252E-06.6521E-07.1353E-07.1744E-08 6144 789.44.1941E-05.8868E-06.3398E-06.1030E-06.2262E-07.3138t-08 8266 789.59.2114E-05.6224E-06.1480E-06.2241E-07.2201E-08.1084E-09 6142 789.62.2695E-05.1268E-05.5036E-06.1594E-06.3699E-07.5502E-08 6140 789.79.3685E-05.1784E-05.7330E-06.2420E-06.5912E-07.9404E-08 60 2 789.91.3931E-04.2516E-04.1446E-04.7188E-05.2931E-05.9005E-06 12244 789.94.5391E-05.1800E-05.4736E-06.9066E-07.1121E-07.7427E-09 6138 789.95.4964E-05.2469E-05.1048E-05.3599E-06.9240E-07.1566E-07 6136 790.11.6588E-05.3362E-05.1471E-05.5247E-06.1412E-06.2543E-07 8267 790.23.1670E-05.4806E-06.1058E-06.1628E-07.1533E-08.7155E-10 6134 790.25.8612E-05.4503E-05.2029E-05.7498E-06.2110E-06.4022E-07 6132 790.39.1109E-04.5935E-05.2748E05.1050E-05.3082E-06.6202 —07 6130 790.52.1407E-04.7694E-05.3657E-05.1442E-05.4402E-06.9321E-07 12245 790.63.4669E-05.1535E-05.3964E-06.7419E-07.8918E-08.5698E-09 6128 790.64.1760E-04.9815E-05.4779E-05.1941E-05.6149E-06.1365-06 6126 790.76.2167E-04.1232E-04.6134E-05.2562E-05.8399E-06,1949E-06 6124 790.86.2630E-04.1521E-04.7735E-05.3314E-05.1122E-05.2713E-06 8268 790.87.1314E-05.3695E-06.7909E-07.1177E-07.1062E-08.4690E-10 6122 790.96.3145E-04.1848E-04.9582E-05.4203E-05.1465c-05.3680E-06 6120 791.05.3705E-04.2210E-04.1166E-04.5226E-05.1872E-05.4867E-06 6118 791.13.4303E-04.2601E-04.1394E-04.6373E-05.2339E-05.6277E-06 6116 791.20.4925E-04.3013E-04.1639E-04.7622E-05.2860E-05.7893E-06 6114 791.26.5558E-04.3436E-04.1893E-04.8943E-05.3421E-05.9681E-06 6112 791.32.6188E-04.3861E-04.2151E-04.1030E-04.4007E-05.1159E-05 12246 791.32.4025E-05.1303E-05.3301E-06.6037E-07.7051E-08.4360E-09 6110 791.37.6802E-04.4278E-04.2405E-04.1165E-04.4599E-05.1355E-05 61 8 791.41.7393E-04.4680E-04.2652E-04.1297E-04.5181E-05.1550E-05 61 6 791.44.7976E-04.5075E-04.2894E-04.1426E-04.5749E-05.1741E-05 61 4 791.46.8633E-04.5513E-04.3158E-04.1565E-04.6352E-05.1941E-05 61 2 791.47.9848E-04.6304E-04.3621E-04.1801E-04.7342E-05.2256E-05 8269 791.51.1030E-05.2829E-06.5885E-07.8457E-08.7308E-09.3054E-10 12247 792.01.3455E-05.1101E-05.2735E-06.4886E-07.5540E-08.32830-09 62 0 792.26.7976E-04.5111E-04.2940E-04.1464E-04.5980E-05.1842E-05 12248 792.69.2954E-05.9254E-06.2255E-06.3932E-07.4326E-08.2467E-09 12249 793.37.2514E-05.7745E-06.1850E-06.3147E-07.3357E-08.1840E-09 62 2 793.82.1581E-03.1012E-03.5812E-04.2890E-04.1178E-04.3620E-05 12250 794.05.2130E-05.6453E-06.1510E-06.2504E-07.2590E-08.1363E-09 12251 794.73.1798E-05.5351E-06.1226E-06.1982E-07.1985E-08.1003E-09 62 4 795.37.2314E-03.1478E-03.8465E-04.4194E-04.1702L-04.5201t-05

TABLE XVI (Continued) INTENSITY BANC COCE hAVE NUMBER T=300K T=275K T=250K T=225K T=200K T=175K 12252 795.40.1511E-05.4418E-06.9908E-07.1561E-07.1513E-08.7327E-10 12253 796.08.1264E-05.3630E-06.7967E-07.1222E-07.1146E-08.5317E-10 12254 796.75.1054E-05.2970E-06.6374E-07.9516E-08.8624E-09.3832L-10 62 6 796.91.2967E-03.1887E-03.1076E-03.5302E-04.2138E-04.6472E-05 13037 797.76.1033E-05.3924E-06.1205E-06.2787E-07.4366E-08.3921E-09 62 8 798.44.3513E-03.2223E-03.1260E-03.6159E-04.2460E-04.7359E-05 13036 798.62.1154E-05.4439E-06.1384E-06.3261E-07.5229E-08.4838E-09 13035 799.48.1283E-05.4997E-06.1581E-06.3793E-07.6221E-08.5925E-09 6210 799.97.3933E-03.2473E-03.1390E-03.6733E-04.2657E-04.7828E-05 13034 800.34.1420E-05.5596E-06.1796E-06.4386E-07.7352E-08.7204E-09 13033 801.19.1564E-05.6235E-06.2030E-06.5041E-07.8632E-08.8692E-09 6212 801.49.4217E-03.2630E-03.1465E-03.7013E-04.2728E-04.7889E-05 13032 802.04.1714E-05.6911E-06.2280E-06.5757E-07.1007E-07.1041E-08 13031 802.89.1869E-05.7620E-06.2547E-06.6536E-07.1166E-07.1237E-08 6214 802.99.4362E-03.2696E-03.1485E-03.7014E-04.2682E-04.7590E-05 13030 803.74.2028E-05.8356E-06.2829E-06.7373E-07.1341E-07.1459E-08 6216 804.49.4377E-03.2676E-03.1455E-03.6767E-04.2538E-04.7005E-05 13029 804.58.2189E-05.9114E-06.3124E-06.8264E-07.1532E-07.1707E-08 13028 805.42.2351E-05.9885E-06.3429E-06.9204E-07.1737E-07.1982E-08 6218 805.99,4272E-03.2581E-03.1383E-03.6321E-04.2319E-04.6223E-05 -' 13027 806.26.2511E-05.1066E-05.3740E-06.1018E-06.1956E-07.2283E-08 13026 807.10.2668E-05.1143E-05.4055E-06.1119E-06.2186E-07.2607E-08 u 6220 807.47.4066E-03.2424E-03.1279E-03.5729E-04.2051E-04.5333E-05 13025 807.94.2818E-05.1218E-05.4368E-06.1221E-06.2425E-07.2954E-08 13024 808.77.2960E-05.1290E-05.4675E-06.1323E-06.2669E-07.3318E-08 6222 808.94,.3781E-03.2221E-03.1151E-03.5047E-04.1759E-04.4417E-05 13023 809.60.3090E-05.1358E-05.4969E-06.1424E-06.2915E-07.3694E-08 6224 810.41.3439E-03.1988E-03.1010E-03.4328E-04.1464E-04.3541E-05 13022 810.44.3206E-05.1420E-05.5246E-06.1520E-06.3158E-07.4077E-08 13021 811.26.3305E-05,.1475E-05.5498E-06.1611E-06.3393E-07.4459E-08 6226 811.87.3063E-03.1740E-03.8661E-04.3616E-04.1185E-04.2750E-05 13020 812.09.3384E-05.1521E-05.5718E-06.1693E-06.3614E-07.4830E-08 13019 812.91.3440E-05.1557E-05.5901E-06.1765E-06.3815E-07.5181E-08 6228 813.32.2674E-03.1491E-03.7254E-04.2945E-04.9327E-05.2070E-05 13018 813.74.3471E-05.1581E-05.6040E-06.1824E-06.3989E-07.5501E-08 13017 814.56.3474E-05.1592E-05.6127E-06.1867E-06.4129E-07.5779E-08 6230 814.76.2289E-03.1250E-03.5940E-04.2341E-04.7145E-05.1512E-05 13016 815.37.3447E-05.1589E-05.6158E-06.1892E-06.4230E-07.6002E-08 13015 816.19.3388E-05.1571E-05.6126E-06.1898E-06.4285E-07.6158E-08 6232 816.20.1922E-03.1028E-03.4758E-04.1817E-04.5330E-05.1072E-05 13014 817.00.3296E-05.1536E-05.6026E-06.1881E-06.4287E-07.6237E-08 6234 817.62.1585E-03.8283E-04.3730E-04.1378E-04.3874E-05.7385E-06 13013 817.81.3169E-05.1484E-05.5856E-06.1841E-06.4233L-07.6227E-08 13012 818.62.3008E-05.1414E-05.5612E-06.1776E-06.4116E-07.6119E-08 6236 819.04.1283E-03.6546E-04.2863E-04.1020E-04.2745E-05.4941E-06

TABLE XVI (Continued) INTENSITY BANC CCCE kAVE NUMPER T=3COK T=275K T=250K T=225K T=200K T=175K 13011 819.43.2812E-05.1328E-05.5294E-06.1685E-06.3936L-07.5908E-08 13010 820.24.2582E-05.1224E-05.4901E-06.1569L-06.3689L-07.5587E-08 6238 82C.45.1021E-03.5075E-04.2152E-04.7387E-05.1896E-05.3212E-06 130 9 821.04.2319E-05.1103E-05.4436E-06.1427E-06.3377E-07.5155E-08 130 8 821.84.2026E-05.9666E-06.3902E-06.1261E-06.3001E-07.4614E-08 6240 821.85.7979E-04.3860E-04.1585E-04.5228E-05.1277E-05.2030E-06 130 7 822.64.1707E-05.8163E-06.3306E-06.1072E-06.2565[-07.3970E-08 6242 823.25.6129E-04.2882E-04.1144E-04.3619E-05.8390E-06.1248E-06 130 6 823.44.1364E-05.6541-06.2656E-06.8648E-07.2078E-07.3234E-08 130 5 824.23.1006E-05.4832E-06.1967E-06.6424E-07.1549E-07.2423E-08 6244 824.63.4628E-04.2112E-04.8088E-05.2450E-05.5379E-06.7457E-07 6246 826.01.3436E-04.1520E-04.5607E-05.1623E-05.3365E-06.4335E-07 13143 826.23.1097E-05.3831E-06.1064E-06.2177E-07.2927E-08.2160E-09 13142 826.32.1260E-05.4466E-06.1263E-06.2640E-07.3646E-08.2786E-09 13141 826.41.1441E-05.5183E-06.1491E-06.3183E-07.4514E-08.3567L-09 13140 826.49.1641E-05.5986E-06.1751E-06.3816E-07.5553E-08.4536E-09 13139 826.57.1861E-05.6881E-06.2046E-06.4550E-07.6789E-08.57286-09 13138 826.65.2101E-05.7872E-06.2378E-06.5394E-07.8247E-08.71816-09 13137 826.73.2361E-05.8963E-06.2751E-06.6358L-07.9956E-08.8939E-09 13136 826.81.2642E-05.1016E-05.3165E-06.7452E-07.1194E-07.1105E-08 13135 826.88.2942E-05.1145E-05.3622E-06.8684E-07.1423E-07.1356i-08 0b\ 13134 826.95.3262E-05.1285E-05.4122E-06.1006E-06.1686E-07.1651E-08 13133 827.02.3600E-05.1435E-05.4668E-06.1159E-06.1983E-07.1997E-08 13132 827.09.3955E-05.1594E-05.5256E-06.1327E-06.2318E-07.2397E-08 13131 827.16.4324E-05.1762E-05.5887E-06.1510E-06.2692E-07.2856E-08 13130 827.22.4705E-05.1937E-05.6556E-06.1708E-06.3105E-07.3378E-08 13129 827.28.5C94E-05.2120E-05.7262E-06.1920E-06.3558E-07.3965E-08 13128 827.34.5489E-05.2306E-05.7997E-06.2146E-06.4048E-07.4619E-08 6248 827.37.2508E-04.1074E-04.3811E-05.1051E-05.2054E-06.2451E-07 13127 827.40.5884E-05.2497E-05.8756E-06.2383E-06.4575E-07.5339E-08 13126 827.46.6276E-05.2688E-05.9531E-06.2629E-06.5134E-07.6123E-08 13125 827.51.666CE-05.2877E-05.1031E-05.2882E-06.5721E-07.6968E-08 13124 827.56.7029E-05.3063E-05.1109E-05.3139E-06.6329E-07.7865E-08 13123 827.61.7378E-05.3241E-05.1185E-05.3395E-06.6950E-07.8806E-08 13122 827.66.7701E-05.3410E-05.1259E-05.3648E-06.7575E-07.9778E-08 13121 827.70.7991E-05.3565E-05.1328E-05.3891E-06.8194E-07.1076E-07 13120 827.75.8244E-05.3704E-05.1392E-05.4121E-06.8793E-07.1175E-07 13119 827.79.8451E-05.3824E-05.1449E-05.4332E-06.9360E-07.1271L-07 13118 827.83.8607E-05.3920E-05.1497E-05.4519E-06.9880E-07.1363E-07 13117 827.86.8708E-05.3990E-05.1535E-05.4676E-06.1034E-06.1447E-07 13116 827.90.8746E-05.4031E-05.1561E-05.4798E-06.1072E-06.1521L-07 13115 827.93.8718E-05.4040E-05.1575E-05.4879E-06.1101E-06.1583E-07 13114 827.96.8619E-05.4015E-05.1575E-05.4916E-06.1120E-06.1629E-07 13113 827.9 9.8447E-05.3954E-05.1560E-05.4903E-06.1127E-06.1658 -07 13112 828.02.8199E-05.3854E-05.1529E-05.4837E-06.1121E-06.1667.-07

TABLE XVI (Continued) INTENSITY BANC COCE hAVE NUMBER 13111 13110 131 9 131 8 131 7 131 6 131 5 131 4 131 3 131 2 6250 132 1 6252 132 2 132,3 6254 132 4 6256 132 5 132 6 6258 132 7 132 8 6260 132 9 13210 6262 13211 6264 13212 13213'214 Z15 3216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 828.04 828.07 828.09 828.11 828.12 828.14 828.15 828.16 828.17 828.17 828.73 829.74 830.09 830.52 831.30 831.43 832.07 832.77 832.85 833.62 834.09 834.39 835.15 835.41 835.92 836.68 836.72 837.44 838.02 838.20 838.95 839.71 840.46 841.21 841.96 842.70 843.45 844.19 844.93 845.67 846.40 847.13 847.87 848.59 849.32 T=300K.7873E-05.7469E-05.6989E-05.6432E-05.5801E-05.5098E-05.4324E-05.3477E-05.2542E-05.1469E-05.1801E-04.2669E-05.1272E-04.2947E-05.3281E-05.8834E-05.3624E-05.6037E-05.3955E-05.4266E-05.4060E-05.4549E-05.4800E-05.2686E-05.5016E-05.5195E-05.1749E-05.5336E-05.112CE-05.5437E-05.5500E-05.5524E-05.5512E-05.5464E-05.5383E-05.5273E-05.5134E-05.4972E-05.4788E-05.4587E-05.4371E-05.4144E-05.3909E-05.3670E-05.3428E-05 T=275K.3717E-05.3539E-05.3323E-05.3068t-05.2774E-05.2444E-05.2077E-05.1673E-05.1225E-05.7086E-06.7456E-05.1288E-05.5083E-05.1421E-05.1581E-05.3404E-05.1744E-05.2240E-05.1900E-05.2045E-05.1448E-05.2175E-05.2289E-05.9198E-06.2385E-05.2461E-05.5741E-06.2518E-05.3522E-06.2556E-05.2574E-05.2573E-05.2554E-05.2518E-05.2466E-05.2400E-05.2322E-05.2233E-05.2135E-05.2030E-05.1919E-05.1805E-05.1688E-05.1571E-05.1454E-05 T=250K.1482E-05.1417E-05.1336E-05.1238E-05.1123E-05.9926E-06.8457E-06.6825E-06.5005E-06.2899E-06.2539E-05.5276E-06.1659E-05.5815E-06.6460E-06.1064E-05.7112E-06.6687E-06.7733E-06.8303E-06.4123E-06.8807E-06.9237E-06.2494E-06.9587E-06.9855E-06.1480E-06.1004E-05.8621E-07.1014E-05.1015E-05.1009E-05.9954E-06.9750E-06.9484E-06.9163E-06.8796E-06.8390E-06.7953E-06.7493E-06.7017E-06.6534E-06.6049E-06.5568E-06.5096E-06 T=225K.4715E-06.4536E-06.4298E-06.4000E-06.3644E-06.3231E-06.2761E-06.2234E-06.1641E-06.9522E-07.6668E-06.1735E-06.4138E-06.1910E-06.2119E-06.2513E-06.2328E-06.1494E-06.2525E-06.2702E-06.8699E-07.2856E-06.2984E-06.4958E-07.3083E-06.3153E-06.2766E-07.3194E-06.1511E-07.3206E-06.3190E-06.3148E-06.3083E-06.2995E-06.2889E-06.2766E-06.2630E-06.2483E-06.2329E-06.2170E-06.2009E-06.148E-06.1690E-06.1535E-06.1386E-06 T=200K.1101E-06.1067E-06.1017E-06.95191-07.8716E-07.7762E-07.6658E-07.5404E-07.3980E-07.2313E-07.1224E-06.4219E-07.7123E-07.4640E-07.5137E-07.4046E-07.5631E-07.2244E-07.6088E-07.6491E-07.1215E-07.6831E-07.7100E-07.6428E-08.7295E-07.7414E-07.3321E-08.7458E-07.1675E-08.7430E-07.7333E-07.7174E-07.6958E-07.6693E-07.6386E-07.6046E-07.5680L-07.5297E-07.4903E-07.4506E-07.4112E-07.3726E-07.3353E-07.29971-07.2661E-07 T=175K.1653E-07.1615E-07.1552E-07.1464L-07.1349E-07.1208E-07.1041E-07.8485E-08.6271E-08.3653E-08.1349E-07.6674E-08.7223E-08.7328E-08.8093E-08.3764E-08.8842E-08.1909E-08.9521E-08.1010E-07.9423E-09.1057E-07.1092E-07.4528E-09.1114E-07.1123E-07.2118L-09.1119E-07.9648E-10.1104E-07.1079E-07.1043E-07.9997E-08.9493E-08.8935E-08.8337E-08.7713L-08.7077E-08.6441E-08.5816E-08.5209E-08.4630E-08.4083E-08.3574E-08.3105E-08

TABLE XVI (Concluded) INTENSITY BANC COCE WAVE NUMBER T=300K T=275K T=250K T=225K T=200K T=175K 13228 850.05.3187E-05.1339E-05.4639E-06.1244E-06.2347E-07.2677E-08 13229 850.77.2949E-05.1226E-05.4199E-06.1110E-06.2056E-07.2291E-08 13230 851.49.2716E-05.1118E-05.3781E-06.9846E-07.1789E-07.19461-08 13231 852.21.2490E-05.1014E-05.3386E-06.8681E-07.1547E-07.1641E-08 13232 852.93.2272E-05.9152E-06.3016E-06.7610E-07.1329E-07.1374E-08 13233 853.64.20641-05.8220E-06.2673E-06.6632E-07.11351E-07.1142E-08 13234 854.36.1866E-05.7348E-06.2356E-06.5747E-07.9627E-08.9427E-09 13235 855.07.1680E-05.6537E-06.2066E-06.4952E-07.8114E-08.7725E-09 13236 855.77.1506E-05.57871-06.1802E-06.4242E-07.6796E-08.6285E-09 13237 856.48.1344E-05.5100E-06.1564E-06.3614E-07.5657E-08.5077E-09

170 TABLE XVII COMPARISON BETWEEN COMPUTED LINE POSITIONS AND INTENSITIES AND MADDEN'S EXPERIMENTAL VALUES (T = 300~K) Madden's Values Est. Computed Band Branch J v(cm-) SJ( Error, (,-l) SJ", m (Cm2 atm'- )'fo v (cm-2 atm- l) 1 P 4 664.29 4 P 8 661.52 1 P 8 661.18 4 P 9 660.81 4 P 34 641.65 4 P 35 641.65* 1 P 50 629.46 2 R 13 628.91 1 P 52 627.99 2 R 11 627.38 1 P 54 626.51 2 R 9 625.83 1 P 56 625.05 2 P 7 612.56 2 P 9 611.00 2 P 11 609.42 2 P 13 607.84 2 P 15 606.27 2 P 17 604.70 2 P 19 603.13 2 P 21 601.56 2 P 23 599.98 2 P 25 598.40 1.00 0.106 2.24 0.140 0.105 0.095 0.143 0.0750 0.101 0.0695 0.0704 0.0613 0.0481 0.0565 0.0627 0.0682 0.0712 0.0715 0.0692 0.0656 0.0614 0.0568 0.0522 6 664.3 15 661.5 6 661.2 15 660.7 20 641.6 20 640.9 7 629.4 7 629.1 7 627.9 7 627.5 7 626.4 7 625.9 7 625.0 3 612.6 3 611.0 3 609.5 3 607.9 3 606.4 3 604.8 3 603.3 3 601.8 3 600.2 3 598.7 0.992 0.121 2.088 0.158 0.0846 0.0765 0.132 0.0707 0.0932 0.0655 0.0647 0.0578 0.0441 o.o468 0.0562 0.0655 0.0679 0.0701 0.0699 0.0678 0.0641 0.0591 0.0555 *Obvious misprint in Madden's paper.

REFERENCES Aller, L. H., 19535 Astrophysics, the atmospheres of the sun and stars. Ronald Press Company, New York, 412 pp. Benedict, W. So, 1962: Private communication., Ro Herman, G. E. Moore and S. Silverman, 1956: The strengths, widths and shapes of infrared lines. I. General considerations. Can. J. Phys., 34, 830-849. Breene, R. G., 1955: The shift and shape of spectral lines. Geophysical Res. Papers, No. 41, G.R.D., Air Force Cambridge Res. Labs. Burch, D. E., Do A. Gryvnak and D. Williams, 1962a: Total absorptance of carbon dioxide in the infrared. Appl Optics, 1, 759-765., 1962b: Absorption by carbon dioxide. Infrared absorption by carbon dioxide, water vapor and minor atmospheric constituents. G.R.D. Research Report, AFCRL-62-698, Air Force Cambridge Res. Labs. Busbridge, I. W., 1960: The mathematics of radiative transfer. Cambridge Univ. Press, 143 pp. Callendar, Go S., 1941: Infrared absorption by carbon dioxide, with special reference to atmospheric radiation. Q.J.RoM.S., 67, 263-274. Chamberlain, J. W., 1962: Upper atmospheres of the planets. Ap. J., 136, 582-5935 Chandrasekhar, S., 1960: Radiative transfer. Dover, New York, 393 pp. Curtis, A. R., 1952: Discussion of Goody's, "A statistical model for water-vapour absorption." Q.J.R.M.S. 78, 638-640. and R. M. Goody, 1954: Spectral line shape and its effect on atmospheric transmissions. Q.J.RoM.S., 80, 58-67. and R. Mo Goody, 1956: Thermal radiation in the upper atmosphereo Proc. Roy. Soc., 236A, 193-206. Dennison, D. M., 1931~ The infrared spectra of polyatomic molecules. Ref. Mod. Phys., 3, 280-345. 171

172 Elsasser, W. Mo, 1942: Heat transfer by infrared radiation in the atmosphere. Harvard Meteorological Studies, No. 60 Faddeeva, V. N., and N. M. Terentev, 1961: Tables of the probability integral for complex argument. Pergamon Press, London, 280 pp. Glueckauf, E., 1951: The composition of atmospheric air. Compendium of meteorology, edo T. Fo Malone, American Meteorological Society, 3-10. Godfrey, G. H., and W. L. Price, 1937: Thermal radiation and absorption in the upper atmosphere. Proc. Roy. Soc., 163A, 228-249. Godson, W. L., 1953: The evaluation of infrared radiative fluxes due to atmospheric water vapour. Q.J.R.M.S., 79, 367-379., 1955: The computation of infrared transmission by atmospheric water vapour. J. Met., 12, 272-284. Gold, E., 1909: The isothermal layer of the atmosphere and atmospheric radiation. Proc. Roy. Soc., 82A, 43-70. Goody, R. M., 1952: A statistical model for water-vapour absorption. Q.J.R.MoS., 78, 165-169. Gowan, Eo H., 1947a: Ozonosphere temperatures under radiative equilibrium. Proco Roy. Soc., 190A, 219-226., 1947b: Night cooling of the ozonosphere. Proc. Roy. Soc., 190A, 227-231. Harris, D. Lo, 1948: On the line-absorption coefficient due to the Doppler effect and damping. App. J., 108, 112-115. Hastings, Co, 1955: Approximations for digital computers. Princeton University Press, 201 pp. Herzberg, Go, 1945: Infrared and Raman spectra of polyatomic molecules. Van Nostrand, New York, 652 pp. Herzfeld, K. F., and T. A. Litovitz, 1959: Absorption and dispersion of ultrasonic waves. Academic Press, Inc., New York, 555 pp. Hildebrand, F. B., 1956: Introduction to numerical analysis. McGrawHill, New York, 511 pp.

173 Hitschfeld, W., and Jo T. Houghton, 1961: Radiative transfer in the lower stratosphere due to the 9.6 micronband of ozone. Q.J.R.M.S., 87, 562-577o Humphreys, W. J., 1909: Vertical temperature gradient of the atmosphere, especially in the region of the upper inversion. Ap. J., 29, 14-32. Jones, Lo M., J. W. Peterson, E. J. Schaefer and H. F. Schulte, 1959: Upper-air density and temperature: some variations and an abrupt warming in the mesosphere. J. Geophys. Res., 64, 2331-2340. Kaplan, L. D., 1959: A method for calculation of infrared flux for use in numerical models of atmospheric motion. The atmosphere and sea in motion, edo B. Bolin. Oxford University Press, 509 pp. and D. F. Eggers, 1956: Intensity and line width of the 15micron C02 band, determined by a curve of growth method. J. Chem. Phys., 25, 876-883. Kellogg, W. W., 1961: Warming of the polar mesosphere and lower ionosphere in the winter. J. Met., 18, 373-381. Kleman, B., and E. Lindholm, 1945: The broadening of Na lines by argon. Ark. Mat. Astron. och Fys., 32B, No. 10. Kindrat'yev, K. Ya., 1965: On the possibility of the direct measurement of radiative divergence. Problems of the physics of the atmosphere, Collection 1, Leningrad State University, NASA Technical Translation, TTF-184, 1-25. Kopal, Z., 1961: Numerical analysis. Wiley, New York, 594 pp. Lambert, J. D., 1962: Relaxation in gases. Atomic and molecular processes, edo, D. R. Bates. Academic Press, Inc., New York, 904 pp. Lindholm, Eo, 1945: Pressure broadening of spectral lines. Ark. Mat. Astrono ocho Fys. 52A, No. 17. Madden, R. P. 1961: A high resolution study of C02 absorption spectra between 15- and 18-microns. J. Chem. Phys., 35, 2083-2097. Martin, P. Eo, and E. F. Barker, 1932: The infrared absorption spectrum of C02. Phys. Rev., 41, 291-303, Matossi, F., R. Mayer and E. Rauscher, 1946: Uber die Gesamptabsorption in linienreichen Spektren. Naturwisso, 23, 219-220.

174 Matossi, F., R. Mayer and E. Rauscher, 1949: On total absorption in spectra with overlapping lines. Phys. Rev., 76, 760-764. _, and E. Rauscher, 1949 Zur Druckabhangigkeit der Gesamptabsorption in ultraroten Bandenspektren. Zeit. fur Phys., 125, 418422 Milne, E. A., 1930: Thermodynamics of the stars. Handbuch der Astrophys., 3, 1st half, 65-255. Mitchell, A.C.G., and Mo W. Zemansky, 1934: Resonance radiation and excited atoms. Cambridge Univ. Press, 338 pp. Murgatroyd, R. J., and R. M. Goody, 1958~ Sources and sinks of radiative energy from 30 to 90 km. Q.JoRoMSo, 84, 225-234. Murgatroyd, R. J., and Fo Singleton, 1961: Possible meridional circulations in the stratosphere and mesosphere. Q.J.R.M.S., 87, 125-135. Newell, R. E., 1963: Preliminary study of quasi-horizontal eddy fluxes from meteorological rocket network data. J. Atmos. Sci., 20, 213225. Nordberg, W., and W. Smith, 1963: Rocket measurements of the structure of the stratosphere and mesosphere. Proceedings of the international symposium on stratospheric and mesospheric circulation. Abhandlungen Institut ftfr Meteorologie und Geophysik der Freien Universitat Berlin, 26, 391-408. Ohring, G., 1958: The radiation budget of the stratosphere. J. Met., 15, 440-451. Pagurova, V. Jo, 1961: Tables of the exponential integral. Pergamon Press, New York, 151 pp. Penner, S. So, 1959 Quantitative molecular spectroscopy and gas emissivities. Addison-Wesley, Reading, Mass., 587 pp. Plass, G. N., 1954: Spectral line shape and its effect on atmospheric transmissionso Q.JoR.M.S., 80, 452-454., 1956a: The influence of the 9.6 micron ozone band on the atmospheric infrared cooling rate. Q.J.R.M.S., 82, 30-44., 1956b: The influence of the 15 micron carbon dioxide band on the atmospheric infrared cooling rate. Q.J.R.M.S., 82, 310-324.

175 Plass, G. N., 1958: Models for spectral band absorption. J. Opt. Soc. Am., 48, 690-703., and D. Warner, 1952: Influence of line shift and asymmetry of spectral lines on atmospheric heat transfer. J. Met., 9, 333-339. and D. I. Fivel, 1953: Influence of Doppler effect and damping on line-absorption coefficient and atmospheric radiation transfer. Ap. J., 117, 225-233. Randall, H. M., D. M. Dennison, N. Ginsberg and L. R. Weber, 1937: The far infrared spectrum of water vapor. Phys. Rev., 52, 160-174. Roberts, O.F.T., 1930: On radiative diffusion in the atmosphere. Proc. Roy. Soc., Edinburgh, 50, 225-242. Rosser, J. B., 1950: Notes on zeroes of the Hermite polynomials and weights for Gauss mechanical quadrature formula. Proc. Am. Math. Soc., 1, 388-389. Schwarz, R. N., Z. I. Slawsky and K. F. Herzfeld, 1952: Calculation of vibrational relaxation times in gases. J. Chem., Phys., 20, 15911599., and K. F. Herzfeld, 1954: Vibrational relaxation times in gases (three-dimensional treatment). J. Chem. Phys., 22, 767-773. Stroud, W. G., W. Nordberg, W. R. Bandeen, F. L. Bartman and P. Titus, 1960: Rocket grenade measurements of temperature and winds in the mesosphere over Churchill, Canada. J. Geophy. Res., 65, 2307-2323. Stull, V. P., P. J. Wyatt and G. N. Plass, 196l: The infrared absorption of carbon dioxide. Aeronutronic Division, Ford Motor Company, Report No. U-1505. Sobolev, V. V., 1963: A treatise on radiative transfer. Van Nostrand New York, 319 pp. Walshaw, C. D., and C. D. Rodgers, 1963: The effect of the CurtisGodson approximation on the accuracy of radiative heating-rate calculations. Q.J.R.M.S., 89, 122-10. Witteman, W. J., 1962: Vibrational relaxation in carbon dioxide, II, J. Chem. Phys., 37, 655-661. Wyatt, P. J., V. R. Stull and G. N. Plass, 1962: Quasi-random model of band absorption. J. Opt. Soc. Am., 52, 1209-1217.

176 Yamamoto, G., and T. Sasamori, 1958: Calculations of the absorption of the 15 micron carbon dioxide band. Science Reports, Tohoku Univ., 5th Series (Geophysics), 10, 37-57., 1961: Further studies on the absorption by the 15 micron carbon dioxide bands. Science Reports, Tohoku Univ., 5th Series (Geophysics), 13, 1-19. Young, C., and E. S. Epstein, 1962: Atomic oxygen in the polar winter mesosphere, J. Met., 19, 435-443.

UNIVERSITY OF MICHIGAN 3I IHE11N3l2974l 3 9015 03529 7434