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CHAPTER I

Introduction

This thesis develops innovative applications for making inference from data from

multilevel probability and from longitudinal sample designs. The first application

focuses on the problem of “weight trimming”, which is sometimes utilized in set-

tings where highly disproportional probability of selection or inclusion lead to highly

variable weights. Traditional methods utilize an ad-hoc cutpoint, whereas more prin-

cipled model-based approaches attempt to use the data to balance the decrease in

variance against the potential increase in bias caused by the trimming of the extreme

weights. Here we extend these methods to multi-level complex sample designs. The

second application focuses on developing changepoint or “stick-breaking” models

for mean and variance of a large longitudinal data set, in this case for the specific

application of modeling menstrual cycle lengths in the TREMIN cohort I data set

which follows the cycle lengths of 2350 women across their reproductive lifespan.

A multilevel model is used to develop both subject-specific and population-based

measures of menopausal transition at their late reproductive life. Further analysis of

the subject-level estimates using K-medoid clustering algorithm allows us to classify

women into different typologies of menopausal transition, providing insights as to

when existing menopausal staging criteria perform well and when they fail.

1
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Broadly speaking, these applications can be seen as a general application of “miss-

ing data” methods in multilevel settings, in the first case to obtain “complete data”

inference from a finite population in the survey sample setting, or more traditionally

in the second case from a sample with missing components due to sporadic reporting,

dropout, or censoring. Joint methods to obtain inferences from trends in both first

and second moments are considered in the second application as well.

1.1 Model based method of weight trimming in sample surveys

In population-based sample surveys, each sampled unit will represent a portion of

the total population of interest. In many surveys, units within the population have

unequal probability of being included in the sample, so an estimator simply based

on the values of the sampled units may be biased with respect to the corresponding

population quantity. We generally calculate a weight for each included unit equal

to the inverse of the probability of inclusion. The probability of inclusion may be a

known quantity, such as a probability of selection determined by the investigator, or

an estimated quantity, such as probability of response when non-response is present,

or the product of two or more known estimated probabilities. We then use these

weights to reduce bias in the estimation of population quantities of interest. For

example, the arithmetic mean of sampled units ȳ may be biased in estimating the

population mean Ȳ if there is an association between the probability of inclusion and

the values of y. Instead we may use the asymptotically unbiased Hájek estimator

(Basu 1971) ȳw =
∑

i∈s wiyi∑
i∈s wi

, where wi is the weight, yi is the value of the ith sampled

subject and s denotes the subset of population units sampled.

The Hájek estimator is an example of a design-based approach to estimate a

population quantity Q(Y ). Design-based approaches treat population values Y =
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(Y1, . . . , YN) as fixed and sampling indicators I = (I1, . . . , IN) as random. The goal

is to account for the sampling mechanism I in estimating the population quantity

Q(Y ), which exists independently of the data collected. Design-based approaches

use observed data from sampled subjects along with information about the sampling

mechanism to develop estimators q̂(y, I) and v̂(q̂(y, I)) which are at least approxi-

mately unbiased with respect to p(I | Y ) for Q(Y ) and V ar(Q(Y )) respectively.

An alternative form of finite population inference is the model-based approach,

which uses parametric models p(y|θ) to obtain inference about population quanti-

ties Q(Y ). These models can be embedded in the Bayesian framework to use the

posterior predictive distribution to draw inference about unobserved (un-sampled or

non-response) elements of the population: p(Y nobs|y).

Design-based and model-based approaches have complementary strengths and

weaknesses. Design-based approaches achieve better robustness but can reduce or

remove bias at a cost of very large variances. This is particularly likely when weights

are highly variable, when the sample size is small or when the correlation between

inclusion probability and data is weak.

Various methods have been proposed to balance the bias-variance tradeoff. Per-

haps the most popular method is weight trimming (Potter 1990), a design-based

approach, in which a pre-determined value w0 is chosen and weights larger than

w0 are set equal to w0. Alternative approaches including weight smoothing models

(Holt and Smith 1979, Ghosh and Meeden 1986, Little 1991, 1993, Lazzeroni and

Little 1998, Elliott and Little 2000, Elliott 2007) and weight pooling (averaging)

models (Elliott and Little 2000, Elliott 2008, 2009) have been developed to induce

weight trimming through a statistical model. These model-based approaches strat-

ify the data by the population of inclusion. These strata are called “weight strata”.



4

Weight smoothing models treat underlying strata means as random effects and al-

low estimates of strata means to borrow strength from each other to achieve weight

trimming. Simple weight pooling models assume distinct stratum means for smaller

weight strata and a common mean for the larger weight strata. Compound weight

pooling models are also called weight averaging models, which average the estimators

of a set of weight pooling models across all possible pooling patterns. In Chapter II

of this paper, we focus on developing model-based approaches for weight trimming

for sample surveys with clustered sample designs.

1.2 Analyzing patterns of women’s menstruation history

One goal for women’s menstrual studies is to identify associations between women’s

menstrual characters and women’s health. We study women’s menstruation because

it is the most easily observed event associated with women’s reproduction health.

Harlow (1995) suggested that menstrual cycles are the most easily observed marker

of changes of ovarian functions. They can provide important information for ovarian

aging, changes of endocrine system and endocrine risk factors for chronic diseases.

Studies have also suggested that alterations in menstrual bleeding are a significant

source of gynecologic morbidity, especially in women’s late reproductive life (Harlow

1995, Harlow and Campbell 2004, Mansfield and Voda 1997). The menopausal tran-

sition is a critical period in women’s late reproductive life. The physiological changes

and the timing, duration and characteristics during this transition may define in part

women’s long term chronic disease risk profile.

The biggest challenge in studying women’s menstruation is lack of precision. Pre-

vious studies have depended mostly on visual examinations and simple quantitative

criteria, thus motivating us to develop statistical models to better quantify and cap-
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ture women’s menstruation patterns.

1.2.1 Modeling women’s menstruation patterns

In order to study women’s menstruation patterns, it is important to consider both

the menstrual cycle lengths and the variability of the lengths. Complexities of lim-

ited information as well as menstruation physiology, hormone use and gynecological

surgeries make it difficult to study menstrual patterns across individual woman’s

reproductive life.

Luckily, two high quality data sets provide rich information about women’s men-

struation across their reproductive life. One of these data sets is the Tremin trust

data (Treloar et al. 1967), which comes from a 70-year, two-cohort longitudinal study.

Based on previous studies and observations (Treloar et al. 1967, Harlow 1995, Har-

low et al. 2007, Lisabeth et al. 2004a), it is known as women approach menopause,

the patterns of their menstrual segment lengths change. In order to study when

transitions in menstruation happen, in Chapter III, we develop a Bayesian change-

point model for mean segment lengths as well as for the variability of the lengths for

their late reproductive life (after age 35) based on the Tremin trust data. Our model

provides a thorough study of menstrual characteristics of menopausal transition in-

cluding its timing, duration and patterns of cycle variability. Use of a hierarchical

model allows us to estimate both population-level and individual-level menstrual

cycle characteristics. Furthermore, our model provides a method to assess associa-

tions of women’s menstrual cycle pattern with subject-level covariates. For example,

the model would enable comparisons between two Tremin cohorts representing two

generations of American women. These comparisons can provide valuable informa-

tion about whether secular trends exist in characteristics of menopausal transition.

Also, our model addresses two important methodological problems in the analysis of
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menstrual calendar data - how to account for intermittent missing data and how to

account for use of exogenous hormones or truncation by surgeries.

1.2.2 Comprehensive study of women’s menstruation patterns

The Bayesian changepoint model in Chapter III captures individual woman’s men-

strual patterns in their late reproductive life by eight characteristics: mean segment

length at age 35, mean slope of segment length before changepoint, mean slope of seg-

ment length after changepoint, mean changepoint age, log-variance of segment length

at age 35, slope of log-variance before variability changepoint, slope of log-variance

after variability changepoint, and variability changepoint age. To summarize the

rich information provided, it is helpful to identify subgroups of women with similar

menstruation patterns. Such summary will also allow us to link these characteristics

to previously defined transition markers.

It is known that women’s menstrual patterns are related to age at menopause

(Weinstein et al. 2003). In Chapter IV, we use accelerated failure time models

to assess the associations between our eight summary measures of menstrual cycle

patterns and age at menopause, and to consider the joint predictive ability of these

measures for age at menopause.

In 2001, the Stages of Reproductive Aging Workshop (STRAW) proposed a stag-

ing system for women’s menopausal transition, including different markers to char-

acterize early and late transition stages (Soules et al. 2001, Harlow et al. 2007).

These markers were mainly based on quantitative measures of sliding windows over

women’s menstruation history. Our model in Chapter III detects mean and variance

changepoints for individual woman which can serve as alternative measures for early

and late menopausal transition. Comparing the model-based changepoints with the

descriptive markers in Chapter IV shows that the changepoints are more accurate in
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describing menopausal transition because they use all of the data from a woman’s

late reproductive life, avoiding situations such as when a woman with highly variable

cycles has an outlying cycle length large enough to serve as a transition marker years

before onset of her transition.

Gorrindo et al. (2007) created a detailed classification system to categorize women’s

menstruation patterns to five types based on quantitative measures of cycle lengths

and their variability of sliding windows over age. They defined the quantitative

measures based on visual examination and prior epidemiology knowledge. It would

be interesting to include less prior information and let pattern features define their

own categories. Thus, in Chapter IV, we use a k-medoids algorithm to develop a

six-category classification based on the eight characteristics detected by our change-

point model. These categories differ by baseline variances as well as by early and

late changepoints, differences in the length of the early-to-late transition times, and

in the deliniation of the changepoint signals. These categories are helpful in deter-

mining whether a woman’s descriptive marker age corresponds well with her true

menopausal transition age, versus a woman whose descriptive marker does not con-

tain real transition information.

1.3 An outline of the dissertation

This dissertation is organized as follows. In Chapter II, an empirical Bayesian

mixed-effect model is developed to smooth over weight strata via random effects in

order to achieve estimators with smaller RMSEs and relatively small bias in sam-

ple surveys with cluster design and highly variable case weights. I further apply

this method to NHANES III data to study associations between LDL cholesterol

level and birth weight. This study extends weight smoothing method for population
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based sample surveys to surveys with clustered or cross-classed sample surveys. In

Chapter III, I develop a Bayesian changepoint model that includes separate mean

and variance parameters to describe the menstruation trajectory for each woman,

together with a hierarchical model to link them together. The model is designed

for TREMIN data. I include multiple imputation in the Bayesian estimation pro-

cedure to deal with different forms of the missingness in the data set. Our method

well quantifies individual women’s mean and variability changes over their late re-

productive life. Our imputation enables us to include many subjects which were

not included in previous researches, thus provide more information. In Chapter IV,

I develop an algorithm based classification to define subgroups of women’s men-

struation patterns based on the characteristics of women’s menstruation patterns

captured by the changepoint model. I further analyze these characteristics and link

them with age of menopause and previously defined transition markers, altogether

as well as by category. Our classification is the first algorithm based classification of

women’s menstruation patterns. Chapter IV provides a comprehensive analysis for

understanding the associations between women’s menstruation patterns and time of

menopause as well as other reproductive characteristics. We also propose two tran-

sition markers, mean and variance changepoints, and compare them with previously

defined transition markers.



CHAPTER II

Weight Smoothing Models in Clustered or Cross-Classed
Sample Designs

2.1 Introduction

2.1.1 Design-Based vs. Bayesian Model-Based Inference for Complex Sample Designs

In contrast to most other areas of statistics, randomization or ‘design-based’ in-

ference is standard for data from complex sample survey designs. Design-based

approaches treat population values Y = (Y1, ..., YN) as fixed , and sampling indica-

tors I = (I1, ..., IN) as random. In population-based inference, the goal is to make

inference about a population quantity Q(Y ).

In broad summary, design-based approaches use the observed data y = (y1, ..., yn)

to develop estimators q̂(y, I) that are at least approximately unbiased for the pop-

ulation quantity of interest:

EI |Y (q̂(y, I)) ≈ Q(Y )

Similarly, variance estimators of q̂(y, I) given by v̂(Y inc, I) are obtained where

EI |Y (v̂(y, I)) ≈ V arI |Y (q̂(y, I)).

In both cases expectation is taken with respect to the sampling mechanism that gen-

erates I, and the approximation is O(n−1) or better (Hansen and Hurwitz 1943)(Kish

1965)(Cochran 1977).

9
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Bayesian population inference is an alternative form of finite population inference

that also focuses on inference about population quantities Q(Y ), but allows for

the use of parametric models p(Y | θ) for population data based on the posterior

predictive distribution for the unobserved elements of the population p(Y nobs | y):

(2.1)

p(Y nobs | y) =
p(Y )

p(y)

=

∫
p(Y | θ)p(θ)dθ

p(y)

=

∫
p(Y nobs | y, θ)p(y | θ)p(θ)dθ

p(y)

=

∫
p(Y nobs | y, θ)p(θ | y)dθ

(Ericson 1969, Holt and Smith 1979, Little 1993, Rubin 1987, Scott 1977, Skinner

and Smith 1979). (We use the term “parametric models” loosely here to include

not only standard parametric models such as fixed-effect regression models but also

semi- or non-parametric methods that can also be construed as highly parameterized

models [e.g., B-splines].) Here the difficult task of developing a prior for the entire

population distribution p(Y ) is simplified by using the model p(Y | θ) and averaging

over the posterior distribution based on the sampled data p(θ | y).

Design and Bayesian model-based approaches have complementary strengths and

weaknesses, and debate about the merits of each approach continues. In the design-

based approach Y is treated as fixed, which has the advantage of robustness, as

no parametric assumptions are made about the data. Also, in probability samples

the distribution of I is under the control of the investigator (at least to a large

degree). Thus sample design is automatically accounted in inference, since the design

determines the repeated sampling characteristics of I.

But the design-based approach does not always work well (Kalton 2002). As Basu

(1971)’s jocular example of the circus statistician estimating the weight of an elephant
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troupe shows, unbiasedness of design-based estimators is sometimes purchased at the

cost of very large variances, leading to unacceptably large mean square errors. Small

area estimation (Ghosh and Lahiri 1988) typically requires some sort of sharing of

information across subdomains of the population, which can only be accomplished

with some form of modelling. A consistent reference distribution is lacking in the

design-based approach, as illustrated by the fact that a poststratified estimator of

a population mean from a simple random sample needs to condition on the sample

sizes nj within the j = 1, ..., J poststrata to obtain a non-infinite variance estimate

over the distribution of I (since there is a non-zero probability that some nj = 0),

whereas the sample mean that ignores poststratification is design-unbiased only if

the nj are treated as random (Little 2004).

In general, model-based approaches have the advantage of efficiency if the model

reasonably approximates the data. However, implicit in model-based inference based

on (2.1) is that the sampling indicator I need not be modeled. This requires:

1. p(I | Y ) = p(I | Y obs) and

2. p(Y nob | Y obs, I, θ) = p(Y nob | Y obs, θ).

Assumption (1) requires the distribution of I to to depend only on Yobs (note that in-

dependence from Y is a common special case) and is termed an “ignorable” sampling

design (Rubin 1987), and is usually satisfied in probability samples. Assumption (2)

requires a model for the data p(Y | θ) that is attentive to design features and robust

enough to sufficiently capture all aspects of the distribution of Y , or, at a minimum,

those relevant to Q(Y ). Hence Little (1983, 1991) argues that design-based proper-

ties should be taken into account in model formulation. Models should be restricted

to the class that give rise to approximately design consistent estimators (An estima-
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tor θ̂v of true parameter θv is consistent for a finite population under a given class

of designs if for any fixed ε > 0, limv→∞ Pr(|θ̂v − θv| > 0) = 0 with v indicating the

size of the population.). This approach provides optimal estimators if the model is

true, and provides protection against model misspecification to the extent that the

model fails.

2.1.2 Weight Trimming and Weight Smoothing

Analysis of survey data from unequal probability samples typically use case weights

to provide unbiased linear estimators of population values such as population means

or totals, or asymptotically unbiased non-linear estimators of population values such

as population regression parameters (Binder 1983). Case weights are set equal to

the inverse of the probability of selection: wi = 1/p(Ii = 1). Case weights may be

generalized to be the inverse of an estimated probability of inclusion by incorporating

non-response adjustments, which are equal to the inverse of the probability of re-

sponse (Gelman and Carlin 2002, Oh and Scheuren 1983), or calibration adjustments,

which constrain case weights so that weighted sample totals equal known population

totals, either jointly, as in poststratification or generalized regression estimation, or

marginally, as in generalized raking estimation (Deville and Sarndal 1992, Isaki and

Fuller 1982). The Horvitz-Thompson estimator (Horvitz and Thompson 1952) of a

population total is given by T̂ =
∑

i∈s wiyi; other estimators of population quantities

(means, quantiles, regression slopes, etc.) are typically obtained by replacing sample

totals with their Horvitz-Thompson estimators.

However, these fully-weighted estimators reduce or remove bias at a cost of in-

creasing the variance. This increase can overwhelm the reduction in bias, so that

the mean square error actually increases under a weighted analysis. This is par-

ticularly likely when the weights are highly variable, when the correlation between
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the probability of selection and the data is weak, or when the sample size is small.

The most common approach to deal with this problem is know as weight trimming

(Potter 1990), in which weights larger than some pre-determined value ω0 are set as

ω0 and the remaining weights adjusted upward by a constant so that the weighted

sample size remains unchanged. This manipulation of weights reflects a traditional

design-based approach to survey inference.

To accommodate unequal probability of selection in the model-based approach,

one option is to treat the weights as stratifying variables, where strata are defined

by the probability of inclusion (Little 1983, 1991, Rubin 1983). This yields a model

that satisfies assumption (2) in Section 2.1.1, since the population distribution is

independent of the sampling indicator distribution conditional on the stratum means.

Standard weighted estimates are then obtained by treating the stratum means of

survey outcomes as fixed effects. Weight trimming can be effectively achieved by

treating the underlying stratum means as random effects (Holt and Smith 1979,

Ghosh and Meeden 1986, Little 1991, 1993, Lazzeroni and Little 1998, Elliott and

Little 2000, Elliott 2007). By treating the strata means as random variables, the

model allows estimates of strata means to borrow strength from each other to obtain

what Elliott (2007) termed weight smoothing. This approach is consistent with the

Bayesian model emphasis on prediction. If there are outlying data elements with

large weights that are poorly estimated, the hierarchial model will borrow strength

from the rest of the data to reduce unnecessary variability; if these outlying data

elements are well-estimated, there will be little smoothing of the means to preserve

bias reduction.

A more general form of the Bayesian weight smoothing model is

yhi|µh ∼ f(yhi|µh, σ
2)
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µ ∼ Nh(φ,G)

φ,G ∼ Π

where f(yhi|µh, σ
2) is an exponential family distribution with mean µh and scale

parameter σ2. Here h indexes the “weight strata” with constant or nearly constant

inclusion probability, µ = (µ1, ..., µH), φ = (φ1, ..., φH). G is the covariance matrix

for random effects of weight strata, and Π is the hyperprior distribution (Elliott 2007,

Elliott and Little 2000, Lazzeroni and Little 1998). Under this model, the posterior

mean of the population mean is given by

E(Ȳ |y) =
∑

h

[nhȳh + (Nh − nh)µ̂h]/N+

where nh is the number of subjects of each strata in the sampled data, Nh is the

number of subjects of each strata in the total population, N+ is the size of the total

population and µ̂h = E(µh|y) is the posterior mean of the weight strata (Elliott

and Little 2000). When G → 0, borrowing across the weight strata is large and

E(Ȳ |y) tends toward the unweighted mean y =
∑n

i=1 yi

n
. When G →∞, there is little

borrowing across the weight strata and E(Ȳ |y) tends toward the fully weighted mean

yw =
∑n

i=1 wiyi∑n
i=1 wi

. We can adjust the extent of weight smoothing effect by fitting models

with different structure of G. We can also adjust our modelling for µ̂h to make the

fixed effects fit the true data better. It was found in Elliott and Little (2000) that

when the variance of the data is large, weight smoothing models have smaller RMSEs

compared to design based methods. The models with autoregressive or exchangeable

covariance structures tend to reduce variances more than the non-parametric model

or the model with a fixed linear effect. However, the non-parametric model was the

most robust to a variety of mean structures, followed by the linear model.

Elliott (2007) generalized the findings of Elliott and Little (2000) to linear and
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generalized linear models. For linear models, the posterior mean of the population re-

gression parameter B is available in closed form and in negligible sampling fractions,

which is given by

B̂ = E(B|y, X) =

[∑

h

Wh

nh∑
i=1

xhix
T
hi

]−1 [∑

h

Wh

nh∑
i=1

(
xhix

T
hi

)
β̂h

]

where Wh = Nh/nh and β̂h = E(βh | y). Elliott (2007) found that the exchange-

able model and autoregressive model tends to be more biased when the variance of

the data increases, while the linear model and nonparametric model are approxi-

mately unbiased. Similar to Elliott and Little (2000), Elliott (2007) also found that

the exchangeable model and autoregressive model have larger reductions of RMSE

than the linear model and the nonparametric model, but the linear model and the

nonparametric model have better robustness.

In this paper, we extend the weight smoothing models of Elliott and Little (2000)

and Elliott (2007) to accommodate clustered sample designs. As in other settings

with clustered designs, we utilize random effects to induce correlation between sub-

jects sampled within a cluster. A delicate aspect of this extension is that the random

effects of the weight strata will often cross the random effects of the clusters, yielding

”cross-classified” random effects models (Rasbash and Goldstein 1994). We develop

specific models for population means and population linear regression parameters.

Section 2.2 develops models for population means. Section 2.3 considers the em-

pirical behavior of these models via simulation studies under a variety of scenarios

that closely mimic the full complexity of all probability sample designs. Section

2.4 extends the clustered weight smoothing models to the linear model setting and

considers an application to assess Barker’s hypothesis (Barker et al. 1993) that car-

diovascular disease development is associated with low birth weight using data from
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the National Health and Nutrition Examination Survey (NHANES) III (U.S. De-

partment of Health and Human Services 1997). Section 2.5 summarizes the results

of the simulations and application and considers how these findings relate to previous

work.

2.2 Weight Smoothing Models for Cluster Sample Designs

Previous work using random effects models to implement weight trimming have

focused on models that are strictly applicable only to disproportionately stratified or

post stratified samples without clustering. However, many sample surveys commonly

have more complex sample designs, such as single or multi-stage cluster samples or

strata that cross the weight strata. Here we develop models that accommodate both

case weights and clustered sample designs. For estimation of the population means,

the general form of the models we consider is

y | µ, aH , aQ, aHQ ∼ N(XHµ + ZHaH + ZQaQ
q + ZHQaHQ

hq , σ2In)

aH ∼ N(0, σ2
hIH), aQ ∼ N(0, σ2

qIQ), aHQ ∼ N(0, σ2
hqIHQ)

where µ are fixed effects of population mean, aH = (aH
1 , ..., aH

H)T are the random

effects associated with the weight strata, aQ = (aQ
1 , ..., aQ

Q)T are the random effects

associated with the sample design clusters, and aHQ = (aHQ
11 , ..., aHQ

HQ)T are random

effects associated with the cross section of clusters and strata to account for possible

correlation between weight stratum and design cluster random effects. We consider

aH , aQ, and aHQ to be mutually independent, while ZH , ZQ, ZHQ are index ma-

trixes which indicate whether one subject belongs to a specific stratum, cluster and

cross section of stratums and cluster. Under this model, the posterior mean of the
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population mean is

ˆ̄Y = E(Ȳ |y) = E(E(Ȳ |y, µ, aH , aQ, aHQ))

=
H∑

h=1

Q∑
q=1

Phq(X
H
h µ̂ + âH

h + âQ
q + âHQ

hq )

where Phq = Nhq/N , µ̂ = E(µ | y), âH
h = E(aH

h | y),âQ
h = E(aQ

q | y), and âHQ
h =

E(aHQ
hq | y)

We consider the following special cases of the model by varying the form of the

weight stratum fixed effects XH :

Exchangeable Stratum Effect(XSE):

XH = I

Linear Stratum Effect(LSE):

XH =




1 1

...
...

1 H




Spline Linear Stratum Effect(SLSE):

XH = (1, h, I1 × h, . . . , Ik × h) =




1 1 i11 × 1 . . . ik1 × 1

...
...

...
...

...

1 H i1H ×H . . . ikH ×H




The XSE model assumes that the means for the weight strata deviate around a

common overall mean (no trend relating the probability of selection of the mean of

the outcome). The LSE model assumes that there exists a linear trend of weights for

the observations, so we added weight strata as a fixed effect µH . The SLSE model

assumes the observed values are associated with weights in a linear spline pattern
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with k − 2 knots at weight strata. Thus, the coefficients of linear effects varies

between different weight strata. In the design matrix of fixed effects XSH , I1, . . . , Ik

are the indicator vectors corresponding to k different weights intervals which indicate

whether observations belong to corresponding weight intervals.

All of these models can be written in the mixed-effect form

y = Xµ + Za + ε

where X = NHXH , Z = (NHZH NQZQ NHQZHQ), a = (aHT
, aQT

, aHQT
)T ∼

N(0, G)) for

G =




σ2
hIH 0 0

0 σ2
qIQ 0

0 0 σ2
hqIHQ




, ε ∼ N(0, σ2In),

and NH , NQ, and NHQ are n×H, n×Q, and n×HQ “incidence” matrices relating

the distinct weight strata, clusters, and strata-by-clusters to the data (nH
jk = 1 if

yj is in weight stratum k and 0 otherwise). For the model parameter estimation,

we can use either a fully Bayesian approach to infer about the posterior predictive

distribution, or use empirical Bayesian (EB) methods obtained via ML or REML

estimation from standard linear mixed model methods (Laird and Ware 1982, Carlin

and Louis 1996). We pursue the empirical Bayesian approach in this manuscript. The

estimates of G, σ2, µ, a can be obtained by maximum likelihood (ML) or restricted

maximum likelihood (REML) methods. The corresponding log-likelihood functions

are as follows:

ML: l(G, σ2) = −1

2
log|V | − 1

2
rT V −1r − n

2
log(2π)

REML: lR(G, σ2) = −1

2
log|V | − 1

2
log|XT V −1X| − 1

2
rT V −1r − n− p

2
log(2π)

where V = ZGZT + σ2I and r = y −X(XT V −1X)−1XT V −1y.
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When the variance components G and σ2 are known, both the ML and REML

estimator of the overall mean is µ̂ = (X ′V̂ −1X)−1X ′V̂ −1y, and the estimator of the

random effects is â = ĜZ ′V̂ −1(y−Xµ̂). Estimates of G and σ2 can also be obtained

by EM algorithm or Newton-Raphson algorithm (Lindstrom and Bates 1988).

With regard to the variance estimation of ˆ̄Y = E(Ȳ|y), the empirical Bayesian

approach yields:

Var( ˆ̄Y ) = (Nhq − nhq)
T Var(µ̂− Ȳnob)(Nhq − nhq)

= (Nhq − nhq)
T (σ2Λ + ZGZT + ΓV ΓT − 2ΓZGZT )(Nhq − nhq)/N

2
+

(Holt and Smith 1979, Lazzeroni and Little 1998, Elliott and Little 2000), where

Λ = diag(Nhq − nhq)
−1, Γ = (I − ZGZT V −1)X(XT V −1X)−1XT V −1 + ZGZT V −1,

Nhq − nhq is a (H + Q + H × Q) × 1 vector of counts of unobserved population of

each cluster-strata cross section.

Another approach to variance estimation is the jackknife replication method

(Korn and Graubard 1999). Let θ̂ represent the estimate from the model based

on all the data, and θ̂(i) be an estimate from the model excluded the data from

ith cluster. The sample weights of the remaining data are multiplied by a factor

of Q/(Q − 1) when calculating θ̂(i). The jackknife variance estimator is given by

V̂ARJK(θ̂) = Q/(Q−1)
∑Q

i=1(θ̂(i)− θ̂)2. The jackknife estimator is more robust than

the model based estimator since it does not assume normally distributed data. How-

ever, simulation studies have shown that jackknife estimators are often conservative,

yielding confidence intervals that are too wide (Kish and Frankel 1974). In this work,

for robust property and convenience of computing, we estimate the variance using

the jackknife estimator.
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2.3 Simulation Study

2.3.1 Design of the simulation study

To study the performance of the proposed models, we develop a simulation that

approximates the design common in many household area probability samples. We

first generated Q = 1000 clusters, with the size of each drawn from a geometric

distribution Sq ∼ GEO(0.002). We then generated a random cluster effect aq ∼

N(0, ξ2). Each cluster can be thought of as primary sampling unit (commonly a

county or other geographic unit), and each element in the cluster can be thought

of as corresponding to a household. A household size variable sqi, i = 1, . . . , Sq was

generated from Poisson distribution:

s˜ = Poission(λq), λq = 8
exp(k1aq/range(aq))

1 + exp(k1aq/range(aq))

We generated a binary covariate associated with each household: xqi ∼ Bin(0.2).

The outcome for each member in the household was then generated from

(2.2) Yqi ∼ N(10 + k2sqi + aq, σ
2)

aq ∼ N(0, ξ2), ξ2 = cσ2

A sample was drawn from the generated population using a common three stage

design. The first stage sampled 20 clusters with probability proportional to cluster

size (PPS). The second stage sampled sq = 50 households within each sampled cluster

with probability pqi =
3xqi+1∑
i(3xqi+1)

. If there were less than 50 households in a sampled

cluster, all of the households in this cluster are sampled. The third stage samples

one element (i.e. one adult) from each sampled household.
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Weights are calculated as the inverse of the inclusion probability.

P (Iqi = 1) =
Cluster size

Population size
× Sampled households within cluster

Cluster size

× 1

Household size

=
sq × pqi

S
× 1

sqi

where Iqi is the inclusion indicator and S =
∑

q Sq. The weight wqi is then given by

wqi =
1

P (Iqi) = 1
= S × sqi

sq × pqi

The constant c tunes the size of the cluster effect. The cluster effect increases

as c increases. The constants k1 and k2 tune the correlation between outcomes

and weights. As k1 increases, the correlation between weight strata and cluster size

increases inducing correlation between outcomes and weights. As k2 increases, the

correlations between outcomes and weights increase directly. As σ2 increases, the

signal-to-noise ratio for the association between the probability of inclusion and the

outcome decreases. We conduct simulations under different cluster effects, when

c = 0.001, c = 0.01, c = 0.1. Under each cluster effect, we study the situations when

k1 = k2 = 0, k1 = 1, k2 = 2. Under each situation, we study population variance

σ2 = 0.1, 10, 1000.

In order to study the performance when the data is generated with a non-linear

relationship between the probability of selection and the outcome, we simulated a

set of quadratic population data and applied the same models. The model for the

data will be given by

(2.3) Yqi ∼ N(10 + k2sqi + k3s
2
qi + aq, σ

2)

aq ∼ N(0, ξ2), ξ2 = cσ2
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We set k3 = 0.5 to represent the nonlinearity and studied the situations when

k1 = 0, k2 = 0 and k1 = 1, k2 = 2. Similarly with simulations without model mis-

specification, under each situation we study population variance σ2 = 0.1, 10, 1000.

Two hundred samples are drawn from each population data set. The properties we

are interested in are root mean squared error (RMSE), bias, and coverage of nominal

95% confidence intervals. RMSE is estimated as
√∑200

i=1(µ̂i − µ)2/200, where µ is

the population mean and µ̂i is the estimate from the ith of the 200 samples.

To better describe the characteristics of weights and weight strata, we take one

sample data set of the population data with cluster effect parameter c = 0.001,

variance equal to 10 and correlation parameters k1 = 0, k2 = 0 for example. The

sample size is 1000 which represents a population of 2,361,115. We set separate

weight stratum according to every 0.05 quintile of weights, thus 20 strata are created.

The characteristics are depicted in Figure 2.1.

We can see from the figure more than 80% sample weights are less than 5,000,

while less than 20% weights ranged from 5,000 to 16,000.

2.3.2 Simulation Results

Simulation by linear model

Table 2.1, Table 2.2 and Table 2.3 summarize the relative bias, RMSE, and cov-

erage for the three model-based estimators described in Section 2.2, using the 18

simulated populations described in the tables. The data are generated under lin-

ear model (2). For the weight smoothing models, we use weights to estimate the

proportion of each cross section to the whole population, i.e., P̂hq = N̂hq/N̂ =

∑
i whqi/

∑
h,q,i whqi. For the Spline Linear Stratum Effect model (SLSE), we use 40

and 70 percentiles of the weights as our cut points. The variances are estimated by

the jackknife method. For comparison, we also consider the unweighted estimator of
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the mean, and two design-based estimators: a fully weighted estimator, an a trimmed

weight estimator. Weights are trimmed at three times the average weights for the

“crude” weight trimming method. We use the Taylor series expansion theory to esti-

mate the variance of weighted estimator ˆ̄Y = (
∑Q

q=1

∑nq

i=1 wqiyqi)/(
∑Q

q=1

∑nq

i=1 wqi),

where nq denotes number of subjects sampled in cluster q. Specifically, the pro-

cedure computes the estimated variance as V̂ar( ˆ̄Y ) = n(1−f)
n−1

∑Q
q=1(eq. − ē..)

2, where

eq. = (
∑nq

i=1 wqi(yqi− ˆ̄Y ))/(
∑Q

q=1

∑nq

i=1 wqi) and ē.. =
∑Q

q=1 eq./nq. f = n/N indicates

the sampling fraction.

When k1 = k2 = 0, the outcomes are not associated with weights and weight

strata. The weights are unnecessary, which is the favorable situation for unweighted

estimators. All of the estimators have good bias properties. Unweighted estimators

have best RMSE properties. In general, model based estimators have better per-

formance when cluster effect is small. XSE estimators tend to simulate unweighted

estimators. When cluster effect is small or moderate (c = 0.001 or c = 0.01), XSE

estimators have around 30% reduction in RMSEs relative to fully-weighted estima-

tors. When cluster effect goes larger (c = 0.1), the reduction of RMSEs of XSE

estimator relative to fully-weighted estimators is around 7-8%. LSE and SLSE esti-

mators are more close to fully-weighted estimators, with around (0-4%) reduction in

RMSEs when cluster effect is small or moderate (c = 0.001 or c = 0.01) and around

(0-2%) reduction when cluster effect is large (c = 0.1). The coverage properties of

the estimators are generally good.

When k1 = 1 and k2 = 2,the weights help to correct for the underrepresentation

of smaller observation in the sample, and the relationship between the mean and

the probability of selection is enhanced by inducing a relationship between the size

of the unobserved cluster component aq and the probability of selection. Thus the
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unweighted estimator suffers from bias and, when the variance is small, substantial

increases in RMSE over the weighted estimator. The trimmed weight estimators have

improved performance than unweighted estimators, but generally larger RMSEs than

model based estimators. XSE estimators here are not performing as well as fully-

weighted estimators. LSE and SLSE estimators are robust enough to capture the

relationship between the probability of selection and the mean, and yield RMSE

savings over the fully weighted estimators for 0-4%. Results does not differ much

under different cluster effects.

Simulation by Quadratic Model

Table 2.4, Table 2.5 and Table 2.6 summarized the relative bias, RMSE, and

coverage for the unweighted, two design-based, and three model based mean esti-

mators, with the 18 simulated population data sets described in tables. The data

are generated under the quadratic model (3). The linear model here is misspecified.

Under each cluster effect (c = 0.001, c = 0.01, c = 0.1),we consider the simulated

populations from k1 = k2 = 0, and k1 = 1, k2 = 2.

Under all simulation settings, the unweighted estimators perform poorly with

respect to biases, RMSE and coverage, reflecting the substantial relationship between

the probability of selection and the mean. The fully-weighted estimator largely

eliminated this bias and restored approximately correct coverage.

When k1 = 0 and k2 = 0, XSE estimators have larger RMSEs than fully-weighted

estimators. LSE and SLSE estimators had similar results or some slightly reduction

in RMSE relative to the fully-weighted estimator (up to 2%) with modest and large

variances. Coverage was approximately correct for LSE and SLSE estimators for

smaller variances. The trimmed weight estimators have more bias and larger RMSE

relative to the model-based estimators. There is not much differences under different
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cluster effects.

Results were similar for the simulations with k1 = 1 and k2 = 2. RMSE savings

for model-based estimators relative to fully-weighted estimators decreased a little

when cluster effect is small and variance is large.

2.4 Application: Assessing Associations between LDL Cholesterol Level
and Birth Weight in a Population-Based Sample

Previous studies have assessed the relationship between low birth weight and

increased risk for cardiovascular disease and non-insulin-dependent diabetes later

in life. The proposed biological mechanism is that fetal malnourishment leads to

changes in fetal and placental hormones which will in turn lead to later life increased

expression of cardiovascular disease risk factors, such as increasing insulin resistance,

altering liver function and lowering blood vessel elasticity. However, the findings in

previous studies showed contradictory results (Forrester et al. 1996, Huxley and Law

2000, Huxley and A. Collins 2002, Owen et al. 2003, Matthes et al. 1994). Moreover,

few of these studies used well-defined national population. Few studies used data

from children and few of them treated blood lipid level directly as an outcome.

In this application, we assess the association between blood lipid levels and birth

weight (BW) in a multi-ethnic, population-based sample of 4-12 year old children.

Data were obtained from National Health and Nutrition Examination Survey III,

a cross-sectional probability sample of the United States population. Analysis was

restricted to the 4,151 subjects aged 4-12 for whom birth weight and lipid profiles

were available. Some of the measurements are invalid, we consider them as missing,

so the sample is restricted to 867 children. The data set has 98 pseudo PSUs, which

can be considered as clusters. Because the weights were nearly unique to each subject,

we stratified the data based on percentiles of the case weights. We compare three
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stratifications: 85 weight strata, 50 weight strata and 20 weight strata.

We assess the relationship between LDL cholesterol (LDL-C) level and birth

weight using a quadratic effect, to allow for the possibility that both low and high

birth weight may be associated with LDL-C level. Unweighted (UWT), fully weighted

(FWT), weight trimmed to three times the average weight (TWT), exchangeable

strata effect model (XSE), linear strata effect model (LSE), spline linear strata effect

model(SLSE) estimators of the slopes relating linear and quadratic terms of birth

weight to LDL-C are obtained. One method to account for unequal probability of

selection in linear regression is to include an interaction term between the weight

strata indicators and the covariates (just as the inclusion of the weight strata them-

selves in the mean model above can be thought of as in interaction between the

intercept term and the weight strata). The model then estimates a separate slope

for each probability of selection stratum, and averages these slopes in proportion to

their (known or estimated from case weights) fraction in the population. Little shar-

ing of information across the weight strata yields a fully-weighted estimator of the

population slope; larger degrees of sharing yield estimators that approximate weight

trimming Elliott (2007).

Similar to section 2.2, we can write these models in the mixed-effect model form;

notice that we are interested in estimating the coefficients for both intercept and

covariates of linear and quadratic ‘birth weight’:

LDL = Xβ + Za + ε

where

X = XH , Z = (ZH ZH∗bw ZH∗bw2

ZQ ZQ∗bw ZQ∗bw2

),

a = (aHT
, aH∗bwT

, aH∗bw2T
, aQT

, aQ∗bwT
, aQ∗bw2T

)T ∼ N(0, G))
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G =




σ2
hIH 0 0 0 0 0

0 σ2
h∗BwIH 0 0 0 0

0 0 σ2
h∗Bw2IH 0 0 0

0 0 0 σ2
qIQ 0 0

0 0 0 0 σ2
q∗BwIQ 0

0 0 0 0 0 σ2
q∗Bw2IQ




, ε ∼ N(0, σ2In)

LDL indicates the LDL cholesterol level and bw denotes the birth weight. We

assume the all random effects are independent of each other, i.e. exchangeable. Here,

ZH , ZQ are index matrices which indicate whether one subject belongs to specific

stratum, cluster. ZH∗bw, ZH∗bw2
and ZQ∗bw, ZQ∗bw2

are matrices of corresponding

covariates of linear and quadratic birth weights for each subject. Here we assume

the correlations between random effect of intercept and random effect of slope to be

zero, while Elliott (2007) assume they are correlated in the exchangeable model, but

not in the linear model.

We consider three models with different structure XH :

Exchangeable Stratum Effect(XSE):

XH = (1, bw, bw2) =




1 bw bw2

...
...

...

1 bw bw2




, β = (β0, β1, β2)

The fixed effects for intercept and birth weight are:

β∗I,h = β0, β
∗
bw,h = β1, β

∗
bw2,h = β2
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Linear Stratum Effect(LSE):

XH = (1, bw, bw2, h, h× bw, h× bw2) =




1 bw bw2 1 1× bw 1× bw2

...
...

...
...

...
...

1 bw bw2 H H × bw H × bw2




β = (β0, β1, β2, β3, β4, β5)

The fixed effects for intercept and birth weight are:

β∗I,h = β0 + β3h, β∗bw,h = β1 + β4h, β∗bw2,h = β2 + β5h

Spline Linear Stratum Effect(SLSE):

In this application, SLSE used 40% and 70% weight strata as splines, which is

indicated by vectors of I1 and I2 correspondingly.

XH = (1, bw, bw2, h, I1 × h, I2 × h, bw × h, bw × I1 × h, bw × I2 × h,

bw2 × h, bw2 × I1 × h, bw2 × I2 × h)

=




1 bw 1 i11 × 1 i21 × 1 1× bw i11 × 1× bw, i21 × 1× bw

...
...

...
...

...
...

...
...

1 bw H i1H ×H i2H ×H H × bw i1H ×H × bw, i2H ×H × bw

1× bw2 i11 × 1× bw2, i21 × 1× bw2

...
...

...

H × bw2 i1H ×H × bw2, i2H ×H × bw2




β = (β0, β1, β2, β3, β4, β5, β6, β7, β8)
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The fixed effects for intercept and birth weight are:

β∗I,h = β0 + β2h + β3ih1h + β4ih2h

β∗bw,h = β1 + β2h + β5ih1h + β6ih2h

β∗bw2,h = β1 + β2h + β7ih1h + β8ih2h

We will get estimators for each section β̂hq = (β̂0
hq, β̂

1
hq)

T after adding correspond-

ing random effects:

β̂0
hq = ˆβ∗I,h + âH

h + âQ
q

β̂1
hq = ˆβ∗bw,h + âH∗bw

h + âQ∗bw
q

β̂2
hq = ˆβ∗bw2,h + âH∗bw2

h + âQ∗bw2

q

The estimators for the population are then given by

B̂ = E(B|y, X) = [
∑

h

∑
q

Whq

nhq∑
i=1

xhqix
T
hqi]

−1[
∑

h

∑
q

Whq(

nhq∑
i=1

xhqix
T
hqi)β̂hq]

Here, β̂hq is the target estimator for each cross-section which combined the fixed

effect and random effects.

The results are summarized in Table 2.7. By assuming the fully weighted esti-

mator as unbiased, the MSEs for model based methods are calculated using method

described in Little et al. (1997), which is a refined MSE estimator. M̂SE = V̂ +

max{B̂2− V̂01, 0}, where V̂ is the jacknife variance estimate for model based param-

eters, B̂ estimates bias between the model based estimator and the fully weighted

estimator, V̂01 is the jacknife variance for the bias estimator B̂ which corrects for

upward bias of B̂2 as an estimate of the squared bias.

Generally, UWT, TWT and all model based estimators reduced estimates’ stan-

dard errors compared to FWT estimators. Because we assume the FWT estimator
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is the unbiased estimator, estimators more biased from FWT estimators will have

larger RMSEs. Since all estimators for quadratic birth weight term are similar, all

other estimators have much smaller standard error, thus much smaller RMSEs than

FWT estimators. For intercept and linear birth weight term, FWT and UWT esti-

mators are different, thus RMSEs of UWT estimators for these two terms are larger

compared with FWT estimator. As we look into the model based estimators, the

XSE estimates of these two terms are closer to UWT estimators. For intercept term,

the bias is not large enough to inflate RMSEs, thus XSE estimators for intercept

have smaller RMSEs compared with FWT estimators. For linear birth weight term,

estimated biases and standard errors are large, which inflated RMSEs of XSE esti-

mators. LSE and SLSE estimators for these two terms in the models with 20 and 50

weight strata are very close to FWT estimators, thus have reduced RMSEs compared

to FWT estimators. LSE and SLSE estimators of 85 weight strata model for these

two terms are between FWT and UWT estimators, but they have large reduction

in estimated standard error, thus they also have large reduction in RMSEs. As we

noticed, LSE and SLSE estimators in 85 weight strata model have larger bias toward

FWT estimators than these estimators in 20 and 50 weight strata. This difference

might be caused by the fact that there are too many parameters to estimate in 85

weight strata model. In this data set, the correlation between outcome and weights

are around 0.04. Consistent with our simulation results, LSE and SLSE model based

methods have superior performance with respect to variations when the outcome and

weights are correlated. FWT and TWT estimators suggest that low birth weight has

slight linear association with high LDL-C level, while other estimators do not show

significant linear association. For quadratic birth weight effect, the upper bound

of confidence intervals of all estimators are very close to zero, suggesting a possible
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weak association. To further assess whether there is an association between birth

weight and LDL-C level, we further conducted wald test for linear and quadratic

birth weight coefficients jointly. Results suggest that generally there is a significant

association of low birth weight and high LDL-C level. Thus in our study, we conclude

that there is a significant relationship between low birth weight and increased risk for

cardiovascular disease and non-insulin-dependent diabetes in one’s later childhood,

although this relationship is weak.

2.5 Discussion

The model developed in this paper extends the previous works of Elliott and

Little (2000), Lazzeroni and Little (1998), Elliott (2007) and others that build

weight smoothing models only for weight strata. This manuscript extends the weight

smoothing models to survey data with cluster designs.

As we can see from simulation, the model-based methods proposed here out-

perform design-based methods overall. When cluster effect is small and outcomes

are not associated with weights, XSE estimators largely reduced RMSEs relative to

FWT estimators. When the correlation is larger or model are misspecified, the RM-

SEs of XSE estimators go up. LSE and SLSE estimators have slightly reductions

in RMSEs relative to FWT estimators while generally maintaining good coverage.

Performances of LSE ad SLSE estimators are similar under different cluster effects

and correlations.

As we can see from the simulation and application results, the performance of

the weight smoothing models relative to the design-based estimators will depend on

the population structure. Smoothing by weight strata decreases MSE, but clustering

inflates MSE. If the variability of the weights is not large compared to the variability
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of clustering, the model-based estimators do not substantially outperform the design-

based estimators. When weights are unique or nearly unique and thus need to be

pooled to provide stable estimates, it is important to ensure that we have a sufficient

number of weight strata.

In this paper, we have pursued the empirical Bayesian approach because of the

memory limit of software R and because of time-saving considerations. Under this

approach, the variance estimation of Var(Ȳ |y) will be biased downward since it ig-

nores uncertainty in the estimates of G and σ2. The advantage of fully Bayesian

method is that the hyperprior of the random effect parameters will account for the

uncertainty in the prior parameters. This effect will be most important in smaller

samples than have been considered in this manuscript.

While applying the method to linear regression models, as in our application part

to assess associations between LDL cholesterol level and birth weight, it is necessary

to smooth over weight strata to estimate both intercept and slope coefficients. It is

also necessary to adjust for cluster effects for both intercept and slope coefficients.

Adjusting the cluster or weight strata effect only for the intercept coefficient may

not account for model misspecification or non-ignorable sampling and thus lead to

biased estimates of the slope coefficient.
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k1 = k2 = 0 V ar = 0.1 V ar = 10 V ar = 1000

Estimator %RB RMSE Cvr %RB RMSE Cvr %RB RMSE Cvr

UNWT 0.00 0.65 94.5 0.04 0.65 95.5 -0.63 0.68 95
FWT 0.01 1 92 0.08 1 94.5 -0.87 1 95.5
TWT 0.01 0.92 92 0.09 0.89 95 -0.86 0.89 95
XRE 0.00 0.68 93.5 0.03 0.68 95.5 -0.67 0.71 96
LSE 0.10 0.98 92 0.09 0.96 94 -0.80 0.97 96
SLSE 0.10 1.00 93 0.11 0.98 95 -0.62 0.96 95.5

k1 = 1, k2 = 2 V ar = 0.1 V ar = 10 V ar = 1000

UNWT -7.58 5.96 0 7.71 4.90 0 -8.63 1.41 60
FWT 0.09 1 94 0.24 1 93 -1.29 1 95.5
TWT -1.20 1.31 82.5 -1.21 1.14 93 -2.61 0.97 94
XRE -0.39 1.04 93 -0.74 1.07 88.5 -6.94 1.24 79.5
LSE -0.14 0.99 94.5 -0.04 0.98 92 -1.72 0.99 94.5
SLSE -0.13 1.00 94 -0.09 0.98 91 -1.92 1.00 95

Table 2.1: Simulation results: Population generated under linear model (2.2), small cluster effect
(c = 0.001). Results are based on 200 simulations. Relative bias to the true popula-
tion mean(%RB), square root of mean square error (RMSE) relative to RMSE of fully
weighted estimator, and true coverage of the nominal 95% confidence or credible interval
of population mean estimator (CVR). Population means are estimated via design based
unweighted (UNWT), fully weighted (FWT), and weight trimmed estimators (TWT),
and under the exchangeable (XSE), linear (LSE), and linear spline (SLSE) models.
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k1 = k2 = 0 V ar = 0.1 V ar = 10 V ar = 1000

Estimator %RB RMSE Cvr %RB RMSE Cvr %RB RMSE Cvr

UNWT 0.02 0.72 95 0.02 0.70 94.5 -0.12 0.72 95
FWT 0.00 1 92.5 0.07 1 96 0.20 1 95
TWT 0.00 0.91 94.5 0.08 0.94 94.5 0.61 0.91 96
XSE 0.01 0.74 94 0.00 0.77 95.5 -0.28 0.76 94.5
LSE 0.00 0.98 93 0.08 0.99 95.5 0.38 0.96 95.5
SLSE 0.00 0.98 94.5 0.08 0.98 95.5 0.18 0.99 95

k1 = 1, k2 = 2 V ar = 0.1 V ar = 10 V ar = 1000

UNWT -7.46 5.67 0 -7.70 4.93 0 -8.20 1.13 76.5
FWT 0.03 1 93 -0.40 1 94 0.88 1 93
TWT -1.35 1.35 84 -1.79 1.44 84.5 -1.23 0.90 94.5
XSE -0.50 1.05 91 -1.41 1.31 86.5 -5.69 0.99 84.5
LSE -0.20 1.00 92.5 -0.65 0.99 93 0.37 0.96 94.5
SLSE -0.18 1.01 94 -0.72 0.98 91 0.19 0.97 95

Table 2.2: Simulation results: Population generated under linear model (2.2), moderate cluster ef-
fect (c = 0.01). Results are based on 200 simulations. Relative bias to the true popula-
tion mean(%RB), square root of mean square error (RMSE) relative to RMSE of fully
weighted estimator, and true coverage of the nominal 95% confidence or credible interval
of population mean estimator (CVR). Population means are estimated via design based
unweighted (UNWT), fully weighted (FWT), and weight trimmed estimators (TWT),
and under the exchangeable (XSE), linear (LSE), and linear spline (SLSE) models.
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k1 = k2 = 0 V ar = 0.1 V ar = 10 V ar = 1000

Estimator %RB RMSE Cvr %RB RMSE Cvr %RB RMSE Cvr

UNWT -0.01 0.76 95 0.05 0.82 94.5 -1.40 0.79 94
FWT -0.01 1 93 1.18 1 93 -3.75 1 92.5
TWT -0.02 0.95 93 0.97 0.96 94 -2.26 0.93 92
XSE -0.01 0.92 94.5 0.93 0.93 94 -3.09 0.93 93
LSE -0.01 1.00 93.5 1.16 0.98 93.5 -3.76 0.98 92
SLSE -0.01 1.00 93.5 1.17 0.99 93.5 -3.74 0.99 92.5

k1 = 1, k2 = 2 V ar = 0.1 V ar = 10 V ar = 1000

UNWT -7.57 5.61 0 -7.86 3.66 2 -10.84 1.13 87
FWT -0.04 1 92 -0.44 1 92.5 -0.60 1 94.5
TWT -1.41 1.38 77 -1.75 1.23 91.5 -2.61 0.99 93
XSE -0.57 1.07 88.5 -1.36 1.16 93 -6.69 1.06 88.5
LSE -0.27 1.01 91.5 -0.70 0.99 92 -1.08 0.98 93.5
SLSE -0.24 1.00 92 -0.76 1.01 92 -1.24 0.99 93

Table 2.3: Simulation results: Population generated under linear model (2.2), large cluster effect
(c = 0.1). Results are based on 200 simulations. Relative bias to the true popula-
tion mean(%RB), square root of mean square error (RMSE) relative to RMSE of fully
weighted estimator, and true coverage of the nominal 95% confidence or credible interval
of population mean estimator (CVR). Population means are estimated via design based
unweighted (UNWT), fully weighted (FWT), and weight trimmed estimators (TWT),
and under the exchangeable (XSE), linear (LSE), and linear spline (SLSE) models.
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k1 = k2 = 0 V ar = 0.1 V ar = 10 V ar = 1000

Estimator %RB RMSE Cvr %RB RMSE Cvr %RB RMSE Cvr

UNWT -15.22 6.20 0 -15.12 5.68 0 -15.14 2.63 4
FWT -0.05 1 93 0.19 1 93.5 0.78 1 96.5
TWT -3.29 1.60 65.5 -2.91 1.38 70.5 -2.60 0.92 96
XSE -0.99 1.07 90 -0.90 1.04 88.5 -7.35 1.49 75
LSE -0.54 1.00 91 -0.33 0.97 92.5 -0.13 0.92 97.5
SLSE -0.41 1.01 91.5 -0.17 0.98 92 -0.35 0.93 98

k1 = 1, k2 = 2 V ar = 0.1 V ar = 10 V ar = 1000

UNWT -15.32 5.65 0.00 -15.12 4.87 0 -8.45 3.08 1.5
FWT 0.04 1 91.5 0.50 1 95 0.24 1 95.5
TWT -3.06 1.41 76.0 -2.71 1.20 83 -1.55 1.03 90
XSE -0.96 1.05 89.0 -0.53 0.99 96 -3.03 1.42 74.5
LSE -0.47 0.99 91.5 0.02 0.97 96 -0.25 0.99 97
SLSE -0.36 1.01 91.0 0.10 0.99 95 -0.40 0.98 96.5

Table 2.4: Simulation results: Population generated under quadratic model (2.3), small cluster ef-
fect (c = 0.001). Results are based on 200 simulations. Relative bias to the true popu-
lation mean(%RB), Square root of mean square error (RMSE) relative to RMSE of fully
weighted estimator, and true coverage of the nominal 95% confidence or credible interval
of population mean estimator (CVR). Population means are estimated via design based
unweighted (UNWT), fully weighted (FWT), and weight trimmed estimators (TWT),
and under the exchangeable (XSE), linear (LSE), and linear spline (SLSE) models.
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k1 = k2 = 0 V ar = 0.1 V ar = 10 V ar = 1000

Estimator %RB RMSE Cvr %RB RMSE Cvr %RB RMSE Cvr

UNWT -15.34 6.18 0 -15.54 5.95 0 -15.27 2.59 8.5
FWT -0.31 1 94 -0.40 1 92.5 -0.31 1 94.5
TWT -3.30 1.56 68 -3.73 1.64 65.5 -3.41 1.06 92.5
XSE -1.23 1.09 90 -1.52 1.14 87.5 -8.16 1.62 73.5
LSE -0.79 0.98 92 -0.93 0.98 90 -1.38 0.98 95.5
SLSE -0.59 1.00 95 -0.75 0.99 90 -1.49 0.99 95.5

k1 = 1, k2 = 2 V ar = 0.1 V ar = 10 V ar = 1000

UNWT -15.07 5.69 0 -15.19 4.84 0 -15.66 2.70 4.5
FWT 0.15 1 95 -0.36 1 91.5 -0.45 1 92
TWT -2.96 1.41 77.5 -3.35 1.36 77.5 -3.63 1.08 89.5
XSE -0.80 1.03 93 -1.41 1.09 90.5 -6.07 1.39 80
LSE -0.34 0.99 95 -0.85 0.99 93 -1.32 0.99 91.5
SLSE -0.27 1.00 95 -0.77 1.00 92 -1.54 1.00 92

Table 2.5: Simulation results: Population generated under quadratic model (2.3), moderate cluster
effect (c = 0.01). Results are based on 200 simulations. Relative bias to the true popu-
lation mean(%RB), Square root of mean square error (RMSE) relative to RMSE of fully
weighted estimator, and true coverage of the nominal 95% confidence or credible interval
of population mean estimator (CVR). Population means are estimated via design based
unweighted (UNWT), fully weighted (FWT), and weight trimmed estimators (TWT),
and under the exchangeable (XSE), linear (LSE), and linear spline (SLSE) models.
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k1 = k2 = 0 V ar = 0.1 V ar = 10 V ar = 1000

Estimator %RB RMSE Cvr %RB RMSE Cvr %RB RMSE Cvr

UNWT -15.05 6.04 0 -15.15 5.33 0 -13.79 1.43 69
FWT 0.14 1 96.5 0.10 1 90.5 1.00 1 97
TWT -3.14 1.48 78 -3.04 1.37 74 -2.24 0.95 95
XSE -0.87 1.03 94 -0.92 1.04 89 -6.77 1.14 91
LSE -0.33 0.98 95.5 -0.40 0.99 88.5 -0.03 0.98 97.5
SLSE -0.14 1.00 95 -0.33 1.00 89.5 -0.28 0.99 96.5

k1 = 1, k2 = 2 V ar = 0.1 V ar = 10 V ar = 1000

UNWT -15.14 5.08 0 -15.20 4.38 0 -16.67 1.96 41.5
FWT 0.01 1 95.5 -0.08 1 92 0.08 1 94.5
TWT -3.08 1.33 77 -3.05 1.24 80 -3.37 0.99 93.5
XSE -0.99 1.04 92 -1.06 1.04 88 -5.57 1.13 88.5
LSE -0.47 0.99 94.5 -0.57 0.99 91.5 -0.81 0.98 95
SLSE -0.29 1.00 96 -0.43 1.00 92 -0.98 0.99 94

Table 2.6: Simulation results: Population generated under quadratic model (2.3), large cluster ef-
fect (c = 0.1). Results are based on 200 simulations. Relative bias to the true popula-
tion mean(%RB), Square root of mean square error (RMSE) relative to RMSE of fully
weighted estimator, and true coverage of the nominal 95% confidence or credible interval
of population mean estimator (CVR). Population means are estimated via design based
unweighted (UNWT), fully weighted (FWT), and weight trimmed estimators (TWT),
and under the exchangeable (XSE), linear (LSE), and linear spline (SLSE) models.
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Method Intercept(95%CI) SE(Relative to FWT) RMSE(Relative to FWT)

FWT 2.85(2.76,2.94) 0.0445(1.00) 0.0458(1.00)
UWT 2.80(2.75,2.86) 0.0486(1.06) 0.0497(1.08)
TWT 2.86(2.78,2.94) 0.0406(0.89) 0.0406(0.89)

20 strata

XSE 2.81(2.75,2.87) 0.0306(0.67) 0.0323(0.70)
LSE 2.88(2.79,2.96) 0.0427(0.93) 0.0427(0.93)
SLSE 2.86(2.78,2.95) 0.0418(0.91) 0.0418(0.91)

50 strata

XSE 2.80(2.75,2.85) 0.0268(0.58) 0.0293(0.64)
LSE 2.88(2.79,2.96) 0.0421(0.92) 0.0421(0.92)
SLSE 2.86(2.77,2.94) 0.0418(0.91) 0.0418(0.91)

85 strata

XSE 2.80(2.75,2.86) 0.0279(0.61) 0.0300(0.65)
LSE 2.84(2.77,2.90) 0.0328(0.72) 0.0328(0.72)
SLSE 2.83(2.77,2.90) 0.0326(0.71) 0.0326(0.71)

Birth weight(1)(95%CI) SE(Relative to FWT) RMSE(Relative to FWT)

FWT -0.12(-0.21,-0.02) 0.0534(1.00) 0.0534(1.00)
UWT 0.00(-0.07,0.08) 0.0398(0.74) 0.1171(2.19)
TWT -0.11 (-0.20,-0.02) 0.0452(0.85) 0.0452(0.85)

20 strata

XSE -0.01(-0.14,0.11) 0.0615(1.15) 0.1085(2.03)
LSE -0.10(-0.21, 0.01) 0.0549(1.03) 0.0549(1.03)
SLSE -0.10(-0.22, 0.01) 0.0600(1.13) 0.0600(1.13)

50 strata

XSE -0.00(-0.09,0.09) 0.0459(0.86) 0.1137(2.13)
LSE -0.09(-0.19,0.01) 0.0501(0.94) 0.0501(0.94)
SLSE -0.08(-0.19,0.02) 0.0531(0.99) 0.0531(0.99)

85 strata

XSE 0.00(-0.07, 0.08) 0.0398(0.75) 0.1171(2.19)
LSE -0.03(-0.11,0.05) 0.0407(0.76) 0.0850(1.59)
SLSE -0.03(-0.11,0.05) 0.0400(0.75) 0.0970(1.63)

Birth weight(2)(95%CI) SE(Relative to FWT) RMSE(Relative to FWT)

FWT -0.03(-0.10,0.04) 0.0467(1.00) 0.0467(1.00)
UWT -0.04(-0.08,-0.00) 0.0192(0.41) 0.0192(0.41)
TWT -0.05(-0.10.0.00) 0.0296(0.63) 0.0296(0.63)

20 strata

XSE -0.04(-0.08,0.00) 0.0195(0.42) 0.0195(0.42)
LSE -0.03(-0.08,0.02) 0.0273(0.59) 0.0273(0.59)
SLSE -0.01(-0.08,0.05) 0.0306(0.66) 0.0306(0.66)

50 strata

XSE -0.04(-0.08,0.00) 0.0198(0.42) 0.0198(0.42)
LSE -0.03(-0.08,0.02) 0.0251(0.54) 0.0251(0.54)
SLSE -0.02(-0.07,0.03) 0.0256(0.55) 0.0256(0.55)

85 strata

XSE -0.04(-0.08,0.00) 0.0191(0.41) 0.0191(0.41)
LSE -0.05(-0.10,0.00) 0.0231(0.50) 0.0231(0.50)
SLSE -0.05(-0.10,0.00) 0.0296(0.63) 0296(0.63)

Table 2.7: Associations of non-HDL cholesterol level (mg/dL) and birth weight (lb.): Coefficients of
linear regression assessed for intercept, birth weight (Birth weight (1)), quadratic birth
weight (Birth weight (2)) among US 4-12 year-olds, by unweighted (UWT), fully-weighted
(FWT), trimmed weight (TWT), exchangeable strata effect model(XSE), linear strata
effect model(LSE), spline linear strata effect model(SLSE). 95% confidence interval in
parenthesis. Standard error (SE) is estimated by jacknife method. RMSE is root mean
square error, measured in both absolute values and values relative to FWT estimator (in
parenthesis). Data from National Health and Nutrition Examination Survey III.
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Figure 2.1: Characteristics of survey weights and weight strata of population with V ar = 10, k1 =
0, k2 = 0: The upper panel is the histogram of weights; the bottom panel shows the
number of subjects within each stratum.



CHAPTER III

Modeling Menstrual Cycle Length and Variability at the
Approach of Menopause Using Bayesian Changepoint

Models

3.1 Introduction

Menstrual cycles are the most easily observed markers of ovarian function through-

out female reproductive life. Changes in menstrual bleeding patterns are impor-

tant indicators of ovarian aging, endocrine disruption and endocrine risk factors

for chronic disease (Harlow 1995). The menopausal transition is increasingly rec-

ognized to be a critical period in women’s lives as physiologic changes and health

practices adopted during this period frequently define women’s long term chronic

disease risk profile (Wildman et al. 2008, Sowers et al. 2006, Avis et al. 2004). Given

this recent interest in the interface between reproductive and somatic aging, several

proposals for staging reproductive aging have emerged. The Stages of Reproductive

Aging Workshop (STRAW) recommendations (Soules et al. 2001), its modifications

(Harlow et al. 2007) and several other proposals (Mitchell et al. 2000, Taffe and Den-

nerstein 2002, Mansfield et al. 2004) define criteria primarily by menstrual bleeding

characteristics to determine onset of the transition, as well as the stages within the

transition period.

Information on the patterns of menstrual bleeding across the reproductive lifespan

41
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derives mainly from four seminal menstrual calendar studies, including three studies

from Caucasian populations (Chiazze et al. 1968, Treloar et al. 1967, Vollman 1977)

and one study from a Japanese population (Matsumoto et al. 1962, 1979). Treloar

(1981) was the first to estimate age at entry into the menopausal transition by vi-

sual inspection of menstrual cycle lengths for the 12 year period prior to the final

menstrual period (FMP). He observed that during the menopausal transition longer

intervals become mixed with shorter than usual intervals, increasing the variability

in cycle length. He defined onset of the menopausal transition as the age at which

variability in cycle length visually increased, and estimated median age of entry into

the transition at 45.5 years with a median duration of transition of 4.8 years. Bram-

billa et al. (1994) introduced the term “late perimenopause” and defined women as

being in the late stage of the transition by self-report of 3-9 months of amenorrhea or

menstrual irregularity. Subsequently, investigators from several longitudinal studies

(Melbourne Women’s Midlife Health Project [MWMHP] (Dennerstein et al. 1993),

Seattle Midlife Women’s Health Study [SWMHS] (Mitchell et al. 2000), TREMIN

(Treloar et al. 1967)) proposed various bleeding criteria to define the transition pe-

riod (Taffe and Dennerstein 2002, Mitchell et al. 2000, Mansfield et al. 2004, Lisabeth

et al. 2004a).

STRAW defined stages principally by changes in menstrual bleeding characteris-

tics and, to a lesser extent, by changes in serum follicle-stimulating hormone (FSH)

levels (Soules et al. 2001). STRAW divided reproductive life prior to menopause

into the reproductive years (3 stages) and the transition years (2 stages, early and

late transition). Entry into the early transition is characterized by increased vari-

ability in menstrual cycle length while entry into the late transition is characterized

by the occurrence of skipped cycles or amenorrhea. The STRAW recommendations



43

(Soules et al. 2001), although based on emerging results of the large cohort studies

of midlife women, were not data-driven. The multi-study ReSTAGE Collaboration

subsequently evaluated bleeding criteria that served as the basis of the STRAW rec-

ommendations and documented the extent to which the various proposed criteria

identified a similar moment in women’s reproductive life (Harlow et al. 2006, 2007,

2008). All of these proposals attempt to define bleeding criteria that identify a

change-point in women’s menstrual cycle histories. Notably, however, none of the

papers attempted to model these changepoints longitudinally.

Harlow et al. (2000) longitudinally modeled change in mean cycle length, as well as

in between-woman and within-woman variance across the reproductive lifespan and

found that within-woman heterogeneity in cycle length was an important source of

variation in menstrual patterns, especially after age 40. They fitted a bipartite cubic

spline model that modeled the risk of both very short and very long segments using

changepoints fixed at ages 34 and 40. Lisabeth et al. (2004b) used generalized esti-

mating equations to model changes in mean cycle length and variance independent

of the mean referenced to age at FMP and demonstrated that variance in menstrual

cycle lengths increase on average 2 to 6 years before increases in the mean, depending

on age at FMP.

Prior descriptive analyses also suggest that there is some heterogeneity in women’s

menstrual trajectories. Menstrual characteristics in young adult women are associ-

ated with fertility (Small et al. 2006) and the timing of menopause (Den Tonkelaar

et al. 1998, Wallace et al. 1979, Lisabeth et al. 2004b). A prior analysis of the

TREMIN data by (Wallace et al. 1979) reported that women with later menopause

had longer mean cycle length and greater variability two years before menopause than

women with earlier menopause. Lisabeth and colleagues (Lisabeth et al. 2004b) in
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a longitudinal analysis of the same data also reported that longer cycles were asso-

ciated with a later age of menopause. Another study (Den Tonkelaar et al. 1998)

reported that women with a late age at menopause (55-59) had a longer mean cycle

length in the nine years prior to menopause than women with an earlier menopause.

Weinstein et al. (2003) found that low serial irregularity, a measure of the variabil-

ity of the changes in cycle length, was associated with younger age at FMP, after

adjusting for age at menarche, number of births, and hormone use.

Our goal is to model how menstrual cycle length and variability change when

women approach menopause. We assume that there are underlying unknown mean

and variance changepoints for each individual woman and build a Bayesian hierar-

chical change point model to estimate distributions of these changepoints. Further-

more, we impute cycles that are missing due to hormone use, gaps in the menstrual

calendar, and gynecological surgery, allowing more subjects and information to be

included. Most prior reports have censored women when they began using hormonal

contraceptives or hormone therapy (HT)(Weinstein et al. 2003, Guo et al. 2006,

Harlow et al. 2006, 2008).

Statistically, the objective is to model both the mean and variance of a set of

curves. Several approaches have been proposed for correlated functional data of

this type, including the bipartite spline model proposed by (Harlow et al. 2000)

which modelled mean and between-subject variance by a linear random effect model

and used a two-stage log-linear regression to study within-subject variance vs. age.

Crainiceanu et al. (2007) proposed Bayesian penalized splines to model both mean

and variance by using a set of fixed knots for the splines with structural covariance

matrix and random effects to depict the heterogeneity of variance. Lisabeth et al.

(2004b) modeled means and variances over time separately using independent gener-
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alized estimating equations. Gunn and Dunson (2005) modeled hormone patterns in

the menstrual cycles using a Bayesian hierarchical model and mapped the posterior

draws to a constrained space which guarantees that each curve increases monoton-

ically to an unknown changepoint and decreases afterwards. To model student test

achievement, Thum and Bhattacharya (2001) proposed a hierarchical Bayesian re-

gression model which included two-phase composite of yi ∼ N(β01 + β11xi, σ
2
1), i =

1, 2, . . . , k and yi ∼ N(β02+β12xi, σ
2
2), i = k+1, k+2, . . . , n where k was the unknown

change point. Hall et al. (2003) used unknown change points for the splines to cap-

ture individual cognitive function over time. These approaches estimated unknown

changepoints for the mean but did not model the variance function over time. David-

ian and Carroll (1987) proposed another approach for variance function estimation,

which models the variance as proportional to a power of the mean response. This

approach builds a separate function to model variance but did not include change-

points. Here we consider a Bayesian hierarchical model that estimates individual-

level mean and variance profiles with unknown changepoints. These changepoints

represent measures of menopausal transition, and, together with intercepts and pre-

and post-changepoint slopes, provide detailed summaries of the menstrual cycle data

that can be related to individual level covariates such as age at menarche, parity,

and secular cohort membership.

Our article is organized as follows. In section 3.2 we describe the TREMIN study

data. In section 3.3 we describe a Bayesian model to study the trajectories of women’s

menstrual cycle length that estimates unknown changepoints for both means and

variances and allows these changepoints to be functions of subject-level covariates.

In addition, we impute different forms of missingness in the data set and incorporate

the imputation in the Markov Chain Monte Carlo sampling used to estimate model
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parateters. In section 3.4 we give the results from fitted model to menstrual data,

along with Bayesian posterior predictive model checks. In section 3.5 we discuss how

our results compare to and extend previous menstrual cycle staging research, along

with possible extensions of our model.

3.2 The TREMIN Dataset

Our models are designed for the TREMIN data, one of only two data sets available

providing individual women’s menstrual calendar data across their reproductive life

span. The study, initiated by Dr. Alan Treloar (Treloar et al. 1967), recruited

the first cohort of TREMIN: 2350 college-aged women attending the University of

Minnesota between 1934 and 1939.

Definitions recommended by WHO (Belsey and Farley 1987) were used to sum-

marize the calendar data. A bleeding segment, analogous to the term menstrual

cycle, is a period of consecutive bleeding days and the subsequent bleeding-free days.

Bleed-free intervals had to consist of at least 3 days; 1-2 bleed-free days between 2

bleeding days were considered part of the bleeding episode. Bleeding segment length

is the dependent variable in our study. Age at menopause is determined by the

date of final menstrual period, which is attributed retrospectively after 12 months of

amenorrhea on the calendar cards (WHO 1996).

We used data from 617 women in the 1935-1939 cohort who were a) age 25 or

less at enrollment, b) used hormones for less than four years continuously, c) had

at least one observed segment before age 40, and d) were not censored before age

40 (Data tape TRUST998.FINAL, March 1993). We consider segment lengths be-

ginning at age 35. After this left truncation, the data set has a total of 95,246

observed menstrual segment records. Each record consists of woman’s age, bleed-
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ing segment length, and status indicators for pregnancy, hormone use and surgery.

Related subject-level information including age at menarche and parity are also avail-

able.

Pregnancy intervals as well as the first two segments after a birth and the first

segment after a spontaneous abortion are coded as non-menstrual intervals. Many

women used exogenous hormones at some point during their reproductive lives,

mainly as hormonal replacement therapy. When hormones are used, the bleeding

segment is coded as a treated interval, during which ovarian function is masked.

Thus, the segment data are considered to be missing when women use hormones. A

one-segment washout period after hormone use ended was also treated as missing.

Many studies of menstrual characteristics censor women when they begin hormone

use or ignore the time period during which women are using hormones. However,

Wegienka and Baird (2003) suggested that these strategies may introduce bias since

hormone users are not a random sample of menstruating women. Omitting these

women or portions of their data will provide an incomplete description of experi-

ences in the overall population. In our analysis, we consider these data as missing

and impute their values for hormone use gaps of up to four years. Studies have not

found that hormonal use influences menstrual segment length after stopping use and

allowing for a washout period (Taylor et al. 1977, Treloar and Behn 1971).

The 617 women included in our analysis each contributed between 15 and 321

non-missing segments to the analysis. The observed segment lengths vary from 4 to

366 days with a median of 27 days. Final menstruation periods were observed for

313 subjects (50.7%). Only 105 (17.0%) have complete data.

Figure 3.1 displays log segment lengths for four typical women in the TREMIN

data set. Subject A has complete data. She has a pregnancy gap which is not
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included in the analysis, no gynecological surgery or periods of hormone use, and

has an observed final menstruation period. Subject B was coded as using hormones

from age 36.07 to age 37.24, and her information for this period is treated as missing.

Her FMP is observed, however. Subject C has intermittent missingness at age 36.95.

She had a hysterectomy at age 45.78, thus her menstrual history was truncated at

this point and no FMP was observed. Subject D has intermittent missing at age

39.59 and from age 41.56 to 43.64. She began hormone therapy after age 50.21, with

no untreated bleeds recorded afterwards; thus no FMP was observed.

3.3 Modeling Menstrual Cycle Data

We construct a Bayesian change point model for the mean and variance of the

segment length.

3.3.1 Change Point Model for Mean and Variance

Let yit denote the tth menstrual segment length of subject i. Let ait denote the

age at the beginning of the tth menstrual segment of subject i, where i = 1, . . . , N ,

t = 1, . . . , Ti, N = 617.

We consider a log-normal model with a linear change point for both the mean and

variance for each subject:

log(yit)|µit, σ
2
it ∼ N(µit, σ

2
it)

µit = αµ
i + βµ

i (ait − 35) + γµ
i (ait − θµ

i )+

log(σ2
it) = ασ

i + βσ
i (ait − 35) + γσ

i (ait − θσ
i )+

The function (x)+ = x if x ≥ 0, (x)+ = 0 if x < 0; θµ
i and θσ

i are the unknown change

points of mean and variance for subject i. The change points create a linear spline
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for each mean and variance model. We denote these eight subject-level parameters

for each woman as Φi = (αµ
i , βµ

i , γµ
i , θµ

i , ασ
i , βσ

i , γσ
i , θσ

i )′.

To link the subject-level models, we postulate a multivariate normal prior for the

subject-level parameters:

Φi
ind∼ N(x′iΛ, Ω)

where xi are covariates associated with subject i. Thus Λ and Ω can also be consid-

ered as population level parameters, with Λ as the regression coefficients and Ω⊗ IN

as the covariance matrix for the regression of Φi on xi.

We complete the model specification by postulating an Inverse-Wishart hyperprior

for Λ and Ω:

p(Λ, Ω) = Inv-Wishart(Ω; 1, I)

which is completely flat for Λ and weakly informative for Ω.

3.3.2 Posterior Inference

Let zit = log(yit). The goal of our analysis is to obtain inference on the joint

posterior distribution of Φ, Λ, and Ω conditional on the observed data zobs. The

posterior based on the complete data z is given by
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p(Φ, Λ, Ω|z)

∝
N∏

i=1

[
Ti∏

t=1

p(zit|Φi)p(Φi|Λ, Ω)

]
p(Λ, Ω)

∝
[

N∏
i=1

[
Ti∏

t=1

1

σit

exp(−(zit − µit)
2

2σ2
it

)

]
|Ω|− 1

2 exp(−1

2
(Φi − x′iΛ)′Ω−1(Φi − x′iΛ))

]

× |Ω|− k+2
2 exp(−1

2
tr(Ω−1))

=

[
N∏

i=1

Ti∏
t=1

σ−1
it

]
|Ω|−N+k+2

2 exp

{
N∑

i=1

[
Ti∑

t=1

(zit − µit)
2

σ2
it

+ (Φi − x′iΛ)′Ω−1(Φi − x′iΛ)

]

+ tr(Ω−1)

}

We sample the parameters via a MCMC algorithm that uses Metropolis-within-Gibbs

sampling. Details of the procedure are in Appendix A.

Missing data are imputed under a missing at random (MAR) assumption (Little

and Rubin 2002) using a standard selection model. Imputation is embedded within

the MCMC algorithm. Details are provided in the next section.

3.3.3 Imputation of Missing Data

The majority (512 of the 617 women) have some form of missing data. For 313

women, their segment lengths are censored due to dropout while still menstruating,

surgical termination of menstruation due to hysterectomy or bilateral oophorectomy,

or hormone use that began before FMP and continued past FMP. For the remaining

207 women, missingness was only intermittent. Intermittent missingness occurred

due to sporadic non-reporting (women failing to report an individual segment or se-

ries of segments), or to periodic hormone use that stopped before one of the censoring

events.

There is concern that missingness, particularly missingness due to hormone use, is
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not missing completely at random. In order to deal with the different types of miss-

ingness, we impute the missing data under a missing at random (MAR) assumption.

To ensure that the imputation is proper (i.e., fully conditions on the observed data),

we need to ensure that the imputed segment lengths sum to the length of the gap be-

tween observed segments. In addition, when censoring is present, we need to estimate

the age of the FMP in order to terminate the imputation process.

When missingness is intermittent, we ensure that the imputed missing segment

lengths sum to the length of the gap using an importance sampling algorithm. For

notational simplicity, we assume that we have a single missing gap of length Li for

subject i, starting after segment yik. Conditional on Φi, the unobserved segment

lengths (yi,k+1, ..., yi,k+S)′ = ỹi in the gap are independent, subject to the constraint

that
∑S

s=1 yi,k+s = T . We obtain a draw log(yrep
i,k+1) ∼ N(µi,k+1, σ

2
i,k+1) where µi,k+1 =

αµ
i + βµ

i (ai,k+1 − 35)+ + γµ
i (ai,k+1 − θµ

i )+ and σ2
i,k+1 = exp(ασ

i + βσ
i (ai,k+1 − 35)+ +

γσ
i (ai,k+1−θσ

i )+) and ai,k+1 = aik+yik is the age of the start of segment yrep
i,k+1. A draw

of yrep
i,k+2 is then obtained as for yrep

i,k+1, where now ai,k+2 = ai,k+1 +yrep
i,k+1. This process

is repeated until we obtain yrep
i,k+S such that

∑S
s=1 yrep

i,k+s > Li. We then replace yrep
i,k+S

with ỹrep
i,k+S = Li−

∑S−1
s=1 yrep

i,k+s. Let (y
(t)
i,k+1, ..., y

(t)
i,k+S−1, ỹ

(t)
i,k+S) = ỹ

(t)
i be the tth vector

of imputations, t = 1, ..., 50. Finally, we draw one of the 50 sets with probability

pt =
f(ỹ

(t)
i |Φi)∑

t f(ỹ
(t)
i |Φi)

, where f(ỹ
(t)
i |Φi) =

∏S−1
s=1 φ

(
log(yi,k+s)−µi,k+s

σi,k+s

)
× φ

(
log(ỹi,k+S)−µi,k+S

σi,k+S

)
,

where φ(·) is the pdf of the standard normal distribution. On rare occasions where

yrep
i,k+s < 4, the imputed values were truncated to be 4; similarly yrep

i,k+s > 365 was

truncated to 365.

When subjects’ segment lengths are censored, we need to impute an FMP since it

is unobserved. We model the age at FMP Qi as a piecewise exponential distribution

with hazard hi(t) = ηk for Ak−1 ≤ t < Ak for knots k = 1, ..., K. Knots are set at age
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40, 42, 43, 44, 45, 46, 46.5, 47, 47.5, 48, 48.5, 49, 49.5, 50, 50.5, 51, 51.5, 52, 52.5, 53,

53.5, 54, 55, 56, 57, and 60. Assuming a prior of the form ηk ∼ GAMMA(a, b), obtain

a draw from p(ηk | Q) ∼ GAMMA(
∑

i I(Ak−1 ≤ Qi ≤ Ak)+ a,
∑

i I(Qi ≥ Ak−1)+ b)

for k = 1, . . . , K, where Q includes both the observed FMP and those imputed at the

previous iteration of Gibbs sampler (see Appendix B). As in the intermittent missing

setting, we then obtain a draw log(yrep
i,T rep

i +1
) ∼ N(µi,T rep

i
, σ2

i,T rep
i

) where µi,T rep
i

=

αµ
i + βµ

i (ai,T rep
i
− 35)+ + γµ

i (ai,T rep
i
− θµ

i )+ and σ2
i,T rep

i
= exp(ασ

i + βσ
i (ai,T rep

i
− 35)+ +

γσ
i (ai,T rep

i
− θσ

i )+), ai,T rep
i

= aiT rep
i −1 + yiT rep

i
is the age of the start of segment yrep

i,T rep
i

,

and T rep
i is the number of observed segments plus the number of imputed segments

in any intermittent missing gaps. Let Wi,1 be an indicator for whether this first

imputed cycle is FMP, we then obtain a draw Wi,1 from a Bernoulli distribution

with probability (see Appendix B)

P (ai,T rep
i
≤ Qi ≤ ai,T rep

i +1 | Qi > max(ai,T rep
i

, θµ
i , θσ

i ))

=





[
1− e

−ηk(a
i,T

rep
i

+1
−a

i,T
rep
i

)
]
I

[
ai,T rep

i
> max(θµ

i , θσ
i )

]

×I
[
Ak−1 ≤ ai,T rep

i
< ai,T rep

i +1 ≤ Ak

]

[
1− e

−{ηk(a
i,T

rep
i

+1
−Ak−1)−ηk−1(a

i,T
rep
i

−Ak−1)}]
I

[
ai,T rep

i
> max(θµ

i , θσ
i )

]

×I
[
Ak−2 ≤ ai,T rep

i
≤ Ak−1 ≤ ai,T rep

i +1 ≤ Ak

]

[
1− e

−{ηk+1(a
i,T

rep
i

+1
−Ak)+ηk(Ak−Ak−1)−ηk−1(a

i,T
rep
i

−Ak−1)}]

×I
[
ai,T rep

i
> max(θµ

i , θσ
i )

]

×I
[
Ak−2 ≤ ai,T rep

i
≤ Ak−1 < Ak ≤ ai,T rep

i +1 ≤ Ak+1

]

Note that the FMP must occur after both the last observed segment and the

latent mean and variance changepoints; also, since none of our knots are less than

six months apart, a segment can cover a maximum of 3 intervals. If Wi,1 = 1,
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yrep
i,T rep

i +1
is the length of the final FMP. If Wi,1 = 0, we draw log(yrep

i,T rep
i +2

) ∼

N(µi,T rep
i +1, σ

2
i,T rep

i +1
) and repeat the process s times until one of the following occurs:

Wi,s = 1, yrep
i,T rep

i +1
> 365 or arep

i,T rep
i +s

≥ 60. For the vast majority of subjects, the

FMP variable trigged the end of the imputation.

3.4 Results

We use the methodology described in section 3 to analyze TREMIN data using

MATLAB software. We ran two MCMC chains for 10,000 iterations each after

discarding the first 10,000 draws as “burn-in”. We assessed convergence using the

Gelman and Rubin statistic (Gelman et al. 2004), with a thinning interval of 5

segments. All of the population and 98% of the individual-level parameters had a

value of less than 1.2, indicating reasonable convergence.

3.4.1 Individual Level Parameters

To visually assess model fit at the individual level, Figure 3.2 plots the observed

segment lengths and predicted means and variances for the same four sampled women

described in Figure 3.1. The model appears to capture the trajectories well, with

approximately 5% of cycle lengths excluded from the 95% predictive intervals. The

uncertainty in the position of the variance changepoint is highlighted in (b) and (c).

Figure 3.3 plots the posterior means and 90% credible intervals of the mean

and variance changepoints for 50 randomly selected women. As noted by Treloar

(1981) and Lisabeth et al. (2004b), variability generally begin to increase before

mean length. Subjects with earlier changepoints averaged 4-5 years between mean

and variance changepoints, whereas subjects with later changepoints averaged only

1-2 years between mean and variance changepoints, consistent with the findings of

Harlow et al. (2008). Uncertainty in the variance changepoints is generally greater
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than in the mean changepoints.

Figure 3.4 plots the posterior medians of the mean and variance changepoints

against the final menstural periods for the 315 women with observed FMPs. FMPs

occured on average 3.6 years after the mean changepoint, with a standard deviation

of 1.4 years. FMPs occured on average 6.5 years after the variance changepoint,

with a standard deviation of 2.5 years. The mean time to FMP after the mean

changepoint was fairly constant with respect to age at mean changepoint; mean time

to FMP after the variance changepoint was considerably shorter in women with later

variance changepoints than in younger women.

3.4.2 Population Level Parameters

Table 3.1 summarizes the posterior means and associated 95% credible intervals

for the population level segment length mean and variance regression parameters.

The population mean age at the changepoint for segment length means is 46.20 years

(95% CI 45.87-46.54 years), older than the population mean age at changepoints for

segment length variability, which is 42.21 years (95% CI 41.84-42.58 years); thus

variability in segment length is predicted to begin increasing 3.24 years earlier (95%

CI 2.97-3.51 years) in the population than the mean segment length itself. Mean

segment length declined about 1% per year before the changepoint and increased

about 15% per year afterwards. Variability of log-segment length was stable before

the changepoint and increased by 79% per year after the changepoint.

Table 3.2 presents the posterior mean and associated 95% posterior predictive

interval for the correlation matrix corresponding to the covariance matrix Ω. The

95% credible intervals of correlations that exclude zeros are denoted in bold.

• Later changepoints for variance are highly associated with later changepoints
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for mean.

• Later changepoints for both mean and variance are also correlated with longer

and more variable segment lengths, and more rapid increases in mean and vari-

ance after the changepoint; consequently mean and variance slopes after change-

points are positively correlated.

• Greater mean length is associated with greater declines in variability before the

variance changepoint and greater increases in variability after.

• Larger segment variability is associated with longer mean segment length.

• Larger segment variability is highly associated with more rapid declines in vari-

ability before but larger increases in variability after the variance changepoint:

thus change in variability before and after the variance changepoint is negatively

correlated.

We conducted a principal components analysis of Ω to determine if the relation-

ships among the eight parameters governing perimenopause segment lengths could

be summarized in a smaller number of dimensions. Table 3.3 shows that four com-

ponents explained 82% of the variance of the individual level parameters governing

menstrual segment length. The first component loads heavily on the inverse relation-

ship between the slope of the variances before and after the variance changepoint,

and on late mean and variance changepoints. The second component also loads on

the inverse relationship between the slope of the variances before and after the vari-

ance changepoint, but picks up a relationship between early changepoints in means

and variances and smaller increases in means after the mean changepoint. The third

and fourth components load on the relationship between the mean intercepts and

slopes: the third component relates longer mean segment lengths at age 35 with
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more rapid declines in mean length before the mean changepoint and less rapid in-

creases thereafter, while the fourth component relates shorter mean segment lengths

at age 35 with more rapid declines in mean length before the mean changepoint and

more rapid increases thereafter.

We also fit a two-covariate model, including parity and age at menarche. As

covariates showed no significant relationships with the eight parameters describing

the menopausal transition, we do not show the results here.

3.4.3 Posterior Predictive Model Check

We used posterior predictive distribution checks (Gelman et al. 1996) to assess

model fit. We calculated the χ2 discrepancy statistic for observed segment lengths

of each individual woman given by
∑

t
(yit−µrep

it )2

(σrep
it )2

, which will have a χ2
T obs

i
distribution

if the model is correct, where T obs
i is the total number of observed segments for the

ith woman. We assessed corresponding predictive p-values for these χ2 test statistics

based on 250 replications. Figure 3.5 shows the predictive p-values for all subjects.

No subjects had a posterior predictive p-values greater than 0.95 and only one subject

has a posterior predictive p-value smaller than 0.05. Review of subjects with low

posterior predictive p-values show that they contain one or two sporadic very short

or very long segments well before the onset of the increase in variability, suggesting

that these subjects contain outlying segment lengths rather than indicating more

general model failure. Subjects with high posterior predictive p-values generally

had relatively few observations with little variability – the variance estimates were

smoothed back toward larger values, yielding small χ2 discrepancy statistics.

To consider the appropriateness of the final menstrual period modeling, we plot

the observed and predicted FMPs together with the censoring ages for 100 randomly

selected women in Figure 3.6. The method for estimating FMP when not observed
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appears to have worked well, with the distribution for the predicted FMPs corre-

sponding closely to the observed FMPs when the censoring age is relatively early

and little information is usually available to predict FMP.

3.5 Discussion

In this article we have provided a Bayesian changepoint model for describing the

patterns of means and variances of women’s menstrual segment lengths as they ap-

proach menopause. Our model detects individual changepoints of mean and variance

of segment lengths for each individual woman. The model is applied to the TREMIN

data. Multiple imputations integrated with an MCMC chain are carried out to im-

pute the different kinds of missingness in the data set. Instead of setting splines at

a certain fixed point for all women and using traditional random effect models to

study menstrual patterns (Harlow et al. 2000), our model allows the changepoints

to be unknown parameters that vary for different subjects. This setting provides a

flexible way of capturing both the mean and variability of each individual’s segment

length trajectory.

Our work develops a data-driven definition of early and late transition defined

by subject-level variance and mean changepoints respectively. We observed a 3.2

year difference in age between mean and variance changepoints at the population

level, somewhat shorter than that of Lisabeth et al. (2004b), who reported a 3.9 year

difference between cycle lengths with standard deviations of 6 days and the first cycle

of 60 days or more. In addition, our results were consistent with those of Wallace

et al. (1979), Den Tonkelaar et al. (1998), and Lisabeth et al. (2004b), who found

that longer mean segment lengths were associated with later FMPs. Our results

were also consistent with those of Weinstein et al. (2003), who found that lower



58

variability was associated with early FMPs. We further found relationships between

rates of change in length and variability before and after changepoints themselves, in

particular that greater baseline variability was associated with more rapid declines

in variability before variance changepoints and greater increases thereafter; and later

mean changepoints were associated with greater increases in mean length and more

mean variability after mean changepoints. These data contribute to efforts to define a

staging system for reproductive aging as they further our understanding of the timing

and duration of the menopausal transition and describe the nature of heterogeneity

in women’s experience.

Our next step is to add the second TREMIN cohort data to assess changes of

women’s menstrual pattern in different generations by adding secular cohort (1935-

1970 vs. 1960-1995) as a population-level covariate to the model. Also, while model

checking showed that the model provides an adequate fit to the data, the model might

still be improved. Distributions of individual level variance parameters (not shown)

are somewhat skewed or heavy-tailed, suggesting a mixture distribution might be

more suitable than one normal distribution for all subjects. Thus, a latent class

model with subjects belonging to one of several underlying categories might fit the

data even better. Estimation in the presence of left censoring is also of interest as

many recent and ongoing studies enrolled prevalent cohorts including women who

had already begun the menopausal transition.

Carroll (2003), in a paper entitled “Variances are not Always Nuisance Param-

eters,” called for increased focus on developing methods for “variance structures”

in order to better understand how “systematic dependence of variability on known

factors” could yield both better prediction and improved inference. We agree with

Carroll that incorporating information from subject-level variability in longitudinal
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data settings is underutilized in clinical and epidemiological research settings, at least

in part because of the lack of methods for such analysis. In our application, it would

be of interest to identify sub-groups of women who experience distinct patterns of

variability during the menopausal transition and evaluate whether these subgroups

also differ in their risk for developing chronic disease. We believe the analysis pro-

vided here begins to fill in some of the gaps in this area.
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Parameter Λ (95%CI)
Mean intercept 3.313(3.306,3.321)
Mean slope before changepoint -0.007(-0.010,-0.003)
Mean slope after changepoint 0.139(0.124,0.155)
Segment length mean changepoint 45.95(45.66,46.24)
Log-variance intercept -4.814(-4.927,-4.704)
Log-variance slope before changepoint 0.016(-0.015,0.047)
Log-variance slope after changepoint 0.583(0.528,0.636)
Segment length variance changepoint 42.71(42.38,43.03)

Table 3.1: Posterior mean of population level regression coefficients (Λ) estimates and associated
95% posterior predictive intervals.
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Loadings
PC1 PC2 PC3 PC4

Mean intercept 0.22 -0.14 0.63 -0.32
Mean slope before changepoint -0.03 0.00 -0.61 -0.75
Mean slope after changepoint 0.24 -0.19 -0.44 0.55
Mean changepoint 0.45 -0.40 -0.01 -0.10
Log-variance intercept 0.36 0.45 0.09 -0.06
Log-variance slope before changepoint -0.42 -0.50 0.02 0.03
Log-variance slope after changepoint 0.51 0.16 -0.15 0.06
Log-variance changepoint 0.36 -0.55 0.00 -0.10
Cumulative percent variance explained 35.3 56.1 69.9 81.9

Table 3.3: Principal components analysis of menstrual segment length parameters.
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Figure 3.1: Four sampled women’s log-segment-length trajectory after age 35: subject (a) has no
missing data, the green gap is due to pregnancy and no imputation is needed. The
black dot at the end means that FMP was observed for this subject. Subject (b) used
hormones for a period of time, the red gap is due to hormone use. FMP is observed
for this subject. Subject (c) has two pregnancy gaps (green gaps) and intermittent
missingness at around age 36 (black circle). The red dot at the end represent that
the subject’s menstruation was truncated by surgery. Subject (d) has a pregnancy
gap (green gap), an intermittent missingness (black circle) and a loss of contact gap
(black gap). Her menstruation was censored due to hormone use (red line) and missing
afterwards.
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Figure 3.2: Changepoint model applied to the data for the four women in Figure 3.1: Red lines
represent posterior mean of the mean segment length and associated 95% credible inter-
vals; blue lines represent posterior mean for the upper and lower 2.5 percentiles for the
segment distribution and their associated 95% credible intervals. Black dots represent
log of observed segment lengths.



65

Figure 3.3: Posterior means and 90% posterior predictive intervals for mean changepoints and vari-
ance changepoints (100 randomly selected women).
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Figure 3.4: Posterior means of mean and variance changepoints versus final menstrual period for
313 women with observed final menstrual periods. Lines show loess fit.
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Figure 3.5: Histogram of p-values of subject level posterior predictive χ2 tests.
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Figure 3.6: Observed FMP (circle) and posterior medians (squares) and 95% predictive interval for
unobserved FMPs. X indicates age at censoring. (100 randomly selected women.)



CHAPTER IV

Patterns of Menstrual Bleeding and Their Relations to the
Onset of Menopause, Markers of Stages and Health

Outcomes

4.1 Introduction

Menstrual cycles can provide rich information about women’s health status. They

serve as markers for ovarian aging, endocrine disruption and endocrine risk factors

for chronic diseases (Harlow 1995). Changes in women’s menstrual patterns also

predict the onset of menopause. Weinstein et al. (2003) found that a decrease of

serial irregularity of menstrual cycles in late reproductive life is a strong predictor

for the onset of menopause. Small et al. (2006) found menstrual cycle characteristics

to be associated with fertility and spontaneous abortion.

Researchers have employed a range of methods to study menstrual patterns across

women’s reproductive lifespan (Treloar et al. 1967, Harlow et al. 2000). Most of these

analyses describe the usual or average pattern of change in menstrual function over

time. In Chapter III we quantified women’s menstrual patterns across women’s

reproductive life using a more formal statistical modeling strategy than has typically

been employed. We developed a Bayesian change point model with eight parameters

for each woman: mean cycle length at age 35, along with rate of change in mean

cycle length before and after a latent changepoint age; and equivalent parameters for

69
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cycle variability. Few researchers have attempted to understand how these menstrual

patterns may be classified into subgroups. Gorrindo et al. (2007) identified five types

of menstrual patterns based on several key features including:

• variability of two-year running medians;

• mean interquartile range (IQR) of medians of each 2-year window;

• IQR consistency;

• slope of 5 year medians;

• stability of medians, based on count of stable 5-year intervals.

The five types they defined are (type I) very stable and consistent histories, flat

(difference between 95th and 5th percentiles of less than 2 days) and with no evidence

of a definable menopausla transition (fourth largest group); (type II) stable but more

variable in cycle lengths, also flat, suggesting a muted menopausal transition experi-

ence (third largest group); (type III) oscillating or erratic cycles (difference between

95th and 5th percentiles of 2 or more but less than 5 days), with decreasing mean

cycle lengths toward age 50, but no apparent increasing trend in cycle lengths at the

approach of menopause (second largest group); (type IV) oscillating or erratic, with

medium to high median IQRs and increasing cycle lengths as menopause approaches,

which is the classic pattern with transition across age (largest group); (type V) highly

erratic (difference between 95th and 5th percentiles of 5 days of more) and variable,

typically driven by high early variability between age 15 and age 30 (smallest group

with very few subjects). Women with stable menstrual patterns (type I and II) had

later age of menarche and more births than women with more variable patterns (type

III, IV, V). While Gorrindo et al. (2007) have a detailed classification system, their

system was based on a visual inspection of cycle lengths over time, although spe-

cific quantitative measures of cycle length features were eventually used to classify
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subjects. Moreover, the timing of transition was not considered.

Our goal is to quantitatively define subgroups of women based on menstrual pat-

terns based on the eight characteristics defined in Chapter III and to study how

pattern characteristics can predict the onset of menopause. Section 4.2 reviews the

TREMIN data set used in this paper and the Bayesian changepoint model of Chapter

III, which generated the individual level summaries of menstrual cycle characteris-

tics. Section 4.3 discusses the relationship between individual summary measures

and standard transition markers. Section 4.4 introduces the K-medoids algorithm

used to cluster women to menstrual pattern subgroups based on the summary mea-

sures and relates these subgroups to age of menopause, age at menarche, number of

births, as well as standard transition markers. Section 4.5 concludes with a discus-

sion of the relationship between the clusters determined by our K-Medoids algorithm

and those determined by Gorrindo et al. (2007), as well as plans for future work.

4.2 TREMIN Study and Bayesian Changepoint Model

We base our analysis on the TREMIN study, initiated by Dr. Alan Treloar at the

University of Minnesota (Treloar et al. 1967). The study recruited the first cohort

of 2350 college-age women attending the University of Minnesota between 1934 and

1939. Chapter III created a Bayesian changepoint model to describe women’s men-

strual patterns during their late reproductive life, from 35 years old until onset of

menopause. Segments were assumed to follow a log-normal distribution with a linear

change point for both the mean and variance for each subject:



72

log(yit)|µit, σ
2
it ∼ N(µit, σ

2
it)

µit = αµ
i + βµ

i (ait − 35) + γµ
i (ait − θµ

i )+

log(σ2
it) = ασ

i + βσ
i (ait − 35) + γσ

i (ait − θσ
i )+

The function (x)+ = x if x ≥ 0, (x)+ = 0 if x < 0. The model used eight param-

eters for each women to describe their individual menstrual pattern, including mean

segment length at age 35 (αµ
i ), mean slope of segment length before changepoint (βµ

i ),

mean slope of segment length after changepoint (γµ
i ), segment length mean change-

point age (θµ
i ), log-variance of segment length at age 35 (ασ

i ), slope of log-variance

before variability changepoint (βσ
i ), slope of log-variance after variability changepoint

(γσ
i ), and segment length variability changepoint age (θσ

i ). These eight subject-level

parameters for each woman were denoted as Φi = (αµ
i , βµ

i , γµ
i , θµ

i , ασ
i , βσ

i , γσ
i , θσ

i )′.

Further, Chapter III used a multivariate prior Φi
ind∼ N(x′iΛ, Ω) to link the individ-

ual models, as well as a non-informative hyper prior p(Λ, Ω) = Inv-Wishart(Ω; 1, I).

Since no covariates were used, the prior parameter Λ and Ω can also be considered as

the population mean and covariance matrix. The analysis included 95,246 observed

menstrual segment records from 617 women in this cohort who were younger than

25 years old at enrollment, used hormones for less than four years continuously, had

at least one observed segment before age 40 and were not censored before age 40.

Missing segment lengths and missing final menstruation periods were imputed under

a missing at random (MAR) assumption. Posterior means from the individual level

parameter values are displayed in Figure 4.1.
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4.3 Changepoint Characteristics in Late Reproductive Life

4.3.1 Changepoint Characteristics and Age of Final Menstruation Periods

To study how characteristics of menstrual patterns are related to the onset of

menopause, we apply a linear accelerated failure time (AFT) model and semipara-

metric AFT model (Jin et al. 2006) to regress the eight identified characteristics of

menstrual patterns on women’s age at final menstruation periods (FMPs) separately

and jointly. To accommodate subjects with censored FMPs, accelerated failure time

models are used, which are parametric regression models assuming that the effect

of a covariate is to multiply the predicted event time by some constant (Klein and

Moeschberger 2003). In our application, we assume a linear relationship between

failure times and covariates, rather than log-transformed failure time. Linear AFT

model assumes that failure times are normally distributed. Semiparametric AFT

model assumes failure times are linearly related to the covariates while leaving the

error distribution unspecified. Jin et al. (2006) developed an iterative resampling

technique to get inferences from the semiparametric AFT model.

All individual level posterior means of the eight characteristic parameters are

standardized before analysis to facilitate comparisons of their influences of age at

FMP.

Table 4.1 shows the associations between each characteristic and age at FMPs. In

the linear AFT model, mean age at changepoints have the largest influence on FMP

with one standard deviation increase resulting in FMPs occuring 2.52 (95% CI: 2.35

- 2.70) years later on average. Mean age at variance changepoints have the second

largest influence on FMP, with one standard deviation increase associated with a

1.95 (95% CI: 1.70 - 2.19) year increase in age at FMP. Mean segment lengths at

age 35 have the third largest influence on FMP, with one standard deviation increase
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associated with a 1.12 (95% CI: 0.83 - 1.41) year increase in FMP. More rapid increase

in mean slope after changepoint is associated to an earlier age of FMP. More rapid

decrease in log-variance before changepoint is associated with an older age of FMP,

while larger variance at age of 35 is associated with an older age of FMP. The rate

of mean change before changepoint and rate of variance increase after changepoint

have no significant influence on age at FMP. The semiparametric AFT model results

are very similar to the linear AFT model.

As we model menstrual characteristics jointly, the story is different. Table 4.2

shows how all characteristics jointly influence age at FMPs. The influence of mean

segment lengths at age 35 and changes of mean segment lengths before changepoint

are no longer significant. Mean and variance changepoints’ influence on FMPs de-

creases somewhat to third and fourth largest, while the influence of variance slope

before and after changepoints substantially increases to the top two largest.

We next consider whether the changes in segment lengths and variability have mul-

tiplicative associations with age at FMP. Table 4.3 considers interactions between

the before and after changepoints slopes on age at FMP after applying backward

selection to eliminate non-significant influences. There is evidence of such a multi-

plicative effect for mean cycle lengths, with more rapid increases in segment lengths

after changepoints associated with more rapid decreases before the changepoints and

vice versa. No significant multiplicative effect was seen for variance slopes.

Finally, we consider the degree to which “early” measures of menopausal transition

predict age at FMP by considering only mean and variability of segment lengths at

age 35 together with the variance parameters. Table 4.4 suggests all of these five

characteristics have significant influence on age at FMPs. Changes in variability

before and after changepoint are still the top two most influential factors. Variance
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changepoint is the third largest influence on age of FMP, followed by the influence

of mean and variance of cycle lengths at age of 35.

From the three models jointly evaluating associations of women’s menstrual pat-

tern characteristics and their age of FMP (Table 4.2 - Table 4.4), we find that in

general, women with older age of FMP tend to have less rapid decrease in variance of

cycle lengths before changepoints, less rapid increase in mean and variance of cycle

lengths after changepoints, later mean and variance changepoints, smaller variance

ate age of 35, as well as less multiplicative effect of variance slopes before and after

changepoints.

We then compare the predictive ability of FMP for the last three models: acceler-

ated failure time model using all eight characteristics jointly (Model A), accelerated

failure time model using all eight characteristics and interactions after backward

selection (Model B), accelerated failure time model using with “early” information

(Model C). Leave one out cross-validation for subjects with observed FMP are car-

ried out to check the predictive ability. Table 4.5 calculates the mean square error

of predicted FMP as well as adjusted R2 measures of linear regression of predicted

FMP versus observed FMP, also referring to Figure 4.2 for a visual view of predicted

FMP versus observed FMP. All three models perform well. The model with “early”

information has the lowest predictive ability, while the model with all characteristics

and interactions after backward selection has the highest predictive ability. However,

the difference is small across models.

4.3.2 Changepoints and Bleeding Markers of the Menopausal Transition

In 2001, the Stages of Reproductive Aging Workshop (STRAW) proposed a stag-

ing system for defining the end of women’s reproductive life which includes early

and late menopausal transition stages (Soules et al. 2001, Harlow et al. 2007). In-
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creasing levels follicle stimulating hormone (FSH) is a signal of both early and late

menopausal transition. In menstrual pattern changes, entry into early transition is

characterized by increasing variability in menstrual cycle lengths (without skipping

cycles), while skipped cycles or amenorrhea are typical characteristics of entry into

the late transition. Different markers have been defined for early and late transi-

tion stages. We are interested in five markers based on menstrual bleeding data.

Three of these markers have been proposed for defining the onset of late menopausal

transition, including:

(a) D90: the first segment of at least 90 days (Brambilla et al. 1994);

(b) D60: the first segment of at least 60 days (Lisabeth et al. 2004a);

(c) RR10: the first instance of a running range of more than 42 days. The running

range is computed as the difference between the maximum and minimum length of

ten consecutive segments (Taffe and Dennerstein 2002).

Two of these markers have been proposed for defining the onset of early menopausal

transition:

(d) Irregularity: the occurrence of more than two menstrual cycles outside the 21

to 35 day range over 10 cycles (Taffe and Dennerstein 2002).

(e) Diff6p: the first segment length more than 6 days different from the previous

segment, and this magnitude of difference is observed again within 10 segments

(persistent > 6-day difference) (Mitchell et al. 2000).

We use correlations and loess regression to compare the mean and variance change-

points and the four markers (D60, D90, RR10, Irregularity, Diff6p). Only subjects

with observed markers are included in our analysis.

The characteristics of four markers are summarized in Table 4.6. We are in-

terested in comparing age at these markers with age at with mean and variance
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changepoints determined by the Bayesian changepoint model of Chapter III. Fig-

ure 4.3 through Figure 4.7 plot the markers against the changepoints, and Table

4.7 summarizes the correlations between markers and changepoints. All markers

are more strongly correlated with mean changepoints than variance changepoints,

even though mean changepoints are conceptually consistent with late transition and

variance changepoints are conceptually consistent with early transition. Marker D90

has the highest correlations with both mean and variance changepoints, followed by

RR10, D60 and Irregularity while marker Diff6p has lowest correlations with both

changepoints, suggesting late markers are more correlated with changepoints.

We consider the relationship between the markers and changepoints in more detail

after we discuss the clustering of model parameters with the K-medoids method.

4.4 Clustering of Change Menstrual Patterns in Late Reproductive Life

We use the K-medoids method to cluster women into different subgroups according

to their eight characteristic summary measures. We also compare three important

aspects of women’s reproductive lives by classification types: age at menopause, age

at menarche and number of births.

4.4.1 K-medoids Algorithm

The K-medoids method (Kaufman and Rousseeuw 1990) uses medoids to divide a

p-dimensional data set into different clusters using medoids. A medoid is considered

as the center of a cluster, defined as the elements with the average distance between

the medoid and other objects in this cluster is minimized. The algorithm attempts

to search medoids and to partition other objects to their nearest medoid. In order

to accelerate the computation, we apply random sampling and E-M algorithm to

identify medoids and clusters. The algorithm is as follows:
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Step 1. Calculate Mahalanobis distance matrix for 617 women:

{D(i, j) =
√

(Φi − Φj)T Ω−1(Φi − Φj) : i = 1, . . . , 617, j = 1, . . . , 617}

where Φ̂i = E(Φi|y) is the posterior mean of the eight summary characteristic

measures of subject i. Ω̂ = E(Ω|y) is the population level covariance matrix for

these eight parameters.

Step 2. Sample K subjects randomly from 617 women as temporary medoids:

{m1, . . . , mK}

Step 3. E-step: assign subjects to closest clusters by minimizing total distance to

cluster centers (medoids)

C(i) = arg min
1≤k≤K

D(i,mk)

Step 4. M-step: for a given assignment C, find the center in the cluster minimizing

total distance to other subjects in that cluster. This center is the new medoid

i∗k = arg min
{i:C(i)=k}

∑

C(i′)=k

D(i, i′)

Step 5. Iterate step 3 and 4 until the assignments do not change.

Step 6. Iterate from step 2 to step 5 until the combination of medoids do not

change.

We use silhouettes (Kaufman and Rousseeuw 1990) to choose optimal number of

clusters. For each subject in a given classification, we can calculate its silhouette.

For any subject i assigned to cluster A, a(i) is the average distance of subject i to

all other subjects in A. For any cluster C other than A, we define d(i, C) to be the

average distance of subject i to all subjects in C. We then calculate d(i, C) for all

clusters C 6= A and select the smallest of those: b(i) = minC 6=A d(i, C), which is the

average distance of subject i to all subjects of the closest neighbor cluster. For a given



79

number of clusters k, the average silhouette for all subjects is s(k) =
∑n

i=1 s(i)/n,

where s(i) = b(i)−a(i)
max{a(i),b(i)} . We then calculate the average silhouette for a variety of

numbers of clusters k. The one with the highest average silhouette is an appropriate

number of clusters for our data.

4.4.2 Classification of Women’s Menstrual Patterns

Using the K-medoids algorithm described above, we classify women into six pat-

tern categories based on the silhouette optimality criteria (see Table 4.8). The pa-

rameters of medoids of each category, i.e., for subjects at the center of each cluster,

are listed in Table 4.9. Figure 4.8 shows the observed segment lengths as well as pos-

terior means and the upper and lower 2.5 percentiles of segment lengths distributions

of the medoid subjects if FMP is observed, or subjects with an observed FMP that

has the smallest distance to the corresponding medoid subject if FMP is censored

for the medoid subjects. Figure 4.9 presents the category means (means of posterior

measures of all subjects in a certain category) for posterior means and the upper

and lower 2.5 percentiles of segment lengths distributions. Figure 4.10 describes how

menstrual characteristics are distributed for each category, corresponding to the col-

ors listed in Table 4.9. The number of subjects in each category as well as their

proportions can also be found in Table 4.9.

Category 1 has 74 (12.0%) subjects and category 2 has 80 (13.0%) subjects. They

represent subjects with early changepoints. The medoid variance changepoint is 40.5

years old and the medoid mean changepoint is at age 42.7. The biggest difference

is that category 1 has a generally stable pattern before changepoints and a rapid

increase in both mean and variability of segment lengths thereafter, while category 2

has generally stable variability before and after the changepoints. Examining Figure

4.8 and Figure 4.9, we can conclude that category 2 represents subjects with generally
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larger variability overall but less obvious changepoints compared to other categories,

thus less apparent transition and higher uncertainty of changepoints.

Category 3 has 187 (30.3%) subjects and category 4 has 76 (12.3%) subjects.

They represent subjects with medium changepoint ages. For category 3, the medoid

mean changepoint is at age 44.83 and the medoid variance changepoint is at age

41.45. For category 4, the medoid mean changepoint is at age 45.69 and the medoid

variance changepoint is at age 39.84. Their biggest difference is that category 4

has larger variability at age 35 and decreases before variance changepoints, while

category 3 has smaller variability at age 35 as well as a more stable pattern before

variance changepoints. Category 4 also has an exceptionally large difference between

late (mean) and early (variance) changepoints, which is nearly 6 years.

Category 5 has 87 (14.1%) subjects and category 6 has 113 (18.4%) subjects. They

represent subjects with older changepoint ages. Their medoids mean changepoints

are around age 48.5 while their medoids variance changepoints are around age 46.5.

The biggest difference here is that category 5 have smaller variability at age 35

and a more stable pattern before variance changepoints, while category 6 has larger

variability at age 35 and decreases before variance changepoints.

We can also observe from these results that subjects with early transitions tend

to have early FMPs and subjects with late transitions tend to have late FMPs.

4.4.3 Menstrual Pattern Categories in Women’s Late Reproductive Life and Women’s
Reproductive Characteristics

We compare three important aspects of women’s reproductive lives by these six

menstrual pattern categories: age at menopause, age at menarche and number of

births. We conduct analysis of variance and pairwise comparisons to study differences

between categories or groups of categories.
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Table 4.10 suggests that age at FMP differs between categories. From the compar-

isons between single categories and comparisons between women with early (category

1 and 2), medium (category 3 and 4) and late changepoints (category 5 and 6), it’s

very apparent that women with older changepoints tend to have older age at FMP

than women with younger changepoints. Women with similar changepoints generally

do not differentiate in age at FMP, except that women with early changepoints but

generally stable variability (category 2) have an FMP of 3.12 years later on average

than women with apparent early transition (category 1).

Table 4.11 suggests that age at menarche also differs between categories. However,

the difference is not significantly associated with changepoints. Pairwise comparisons

show that women in category 4 and category 6 tend to have older age at menarche.

These two categories share the same characteristics of having larger variability at

age of 35. We further compare age of menarche between category 4 and 6 with other

categories altogether and found that women with larger variability at age of 35 have

menarche at 1.58 years older on average.

Both analysis of variance and pairwise comparisons suggest that there are no

significant difference of number of births between categories.

4.4.4 Menstrual Categories and Transition Markers

Figure 4.3 through Figure 4.7 show how changepoints are associated with mark-

ers, as well as how categories of menstrual patterns are aligned with each markers.

These figures suggest that for most subjects there are strong linear associations be-

tween changepoints and markers, while some subjects’ changepoints have no clear

relationship with markers. For early transition markers, most of these subjects are

in categories 4 (cyan) and 6 (blue), as well as a few in category 2 (red). Category

4 and 6 share a similarity that they both have early larger variability. Thus their
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transition markers may occur early while their actual changepoints may occur much

later. Subjects in category 2 tend to have less apparent changepoints, ( i.e.), less

apparent transitions, thus it is reasonable that their transition markers may not

be well aligned with their changepoints. For early markers, most subjects without

clear linear relationship with changepoints are in categories categories 4 (cyan) 5

(magenta) and 6 (blue), indicating early markers are not quite linearly associated

with late changepoints. Similar with late transition markers, early transition mark-

ers may occur much earlier than their actual changepoints for subjects with early

large variability. These findings suggests that changepoints identified by Chapter III

tend to capture menstrual patterns over longer life span, while transition markers

concentrates more on local changes.

4.5 Discussion

In this paper, we use eight summary measures of individual woman’s menstrual

patterns defined by Chapter III to study associations between menstrual pattern

and other features of women’s late reproductive life. We find that women with later

changepoints, smaller variance of segment lengths at age of 35, less rapid decrease

in variance of segment lengths before changepoints, less rapid increase in mean and

variance of segment lengths after changepoints as well as less abrupt changes of

variance slopes before and after changepoints tend to have a later age at menopause.

We classify women’s menstrual patterns into six subgroups by K-medoids algo-

rithm. While previous classification by Gorrindo et al. (2007) was based on vi-

sual examination and simple statistics of 2-year sliding windows, our approach is

more deeply rooted in statistical modeling and features of menstrual patterns dur-

ing women’s late reproductive life. The two classifications also differ in the time
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frame of study. While classification by Gorrindo et al. (2007) was based on women’s

lifetime data, our classification only use data after 35 years old. Thus our classifi-

cation is based purely on women’s late reproductive life. The five types given by

Gorrindo et al. (2007) depended mostly on variability measures and on the trend

of cycle lengths changes overtime, which were based on their belief of key features

before conducting quantitative analysis. Our findings suggest that time of transi-

tions (changepoints) is the most important features with respect to classification,

while features such as early mean and variance of segment lengths, rate of changes

before and after changepoints also play a role. We further compare age of menopause

(FMP), age at menarche and number of births among different groups. While Gor-

rindo et al. (2007) found no significant associations between their categories and age

of menopause, we find age of menopause is strongly associated with menstrual tran-

sition time (changepoints) and women with older transition age tend to have older

age of menopause. While Gorrindo et al. (2007) suggested that women with stable

menstrual patterns tend to have later menarche than women with erratic patterns,

our findings suggest that the key factor here is early variability (variance of segment

lengths at age of 35), with women with larger early variability tending to have later

age at menarche. Gorrindo et al. (2007) found women with stable menstrual pat-

terns had fewer births than women with erratic pattern, but our findings suggest no

significant association between number of births and menstrual patterns.

To assess whether changepoints can serve as transition markers, we study their

associations with previously defined transition markers D60, D90, RR10, Irregu-

larity and Diff6p. Results suggest most mean and variance changepoints are well

aligned with transition markers, while some are less clearly associated. The lack of

association is due to time frame considered. Transition markers are calculated by
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sliding windows, which are local time frames. From the classification of subjects by

menstrual cycle patterns, we can see that women with highly variable cycles and/or

weakly defined transitions can “trigger” transition markers long before the true tran-

sition begin. Thus mean and variance changepoints, which are identified using data

throughout women’s late reproductive life, provide more comprehensive information

about menopausal transition than previously defined transition markers.
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Estimated Effects (95%CI)

Model 1 Model 2
Mean intercept 1.12(0.83,1.41) 1.12(0.83,1.41)
Mean slope before changepoint -0.34 (-0.67,0.00) -0.33 (-0.79,0.13)
Mean slope after changepoint -0.99 (-1.33,-0.65) -0.99 (-1.32,-0.66)
Log-variance intercept 0.34 (0.01,0.66) 0.33 (0.01,0.66)
Log-variance slope before changepoint -0.61 (-0.96,-0.26) -0.61 (-0.98,-0.23)
Log-variance slope after changepoint 0.25 (-0.13,0.63) 0.25 (-0.15,0.65)
Segment length mean changepoint 2.52 (2.35,2.70) 2.47 (2.26,2.68)
Segment length variance changepoint 1.95 (1.70,2.19) 1.93 (1.68,2.18)

Table 4.1: Influence of each menstrual pattern characteristics on age of final menstruation periods:
influences are assessed one character per model(not jointly); Model 1 is a Gaussian AFT
model with identity link which included censored FMPs; Model 2 is semiparametric AFT
model which included censored FMPs. Bold numbers represent significant associations.
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Estimated Effects (95%CI)

Model 1 Model 2
Mean intercept 0.08(-0.09,0.25) 0.07(-0.10,0.24)
Mean slope before changepoint 0.01(-0.15,0.18) 0.03(-0.20,0.25)
Mean slope after changepoint -0.60(-0.79,-0.42) -0.64(-0.85,-0.43)
Log-variance intercept -0.53(-0.84,-0.22) -0.54(-0.88,-0.20)
Log-variance slope before changepoint -2.01(-2.75,-1.28) -2.08(-2.99,-1.18)
Log-variance slope after changepoint -2.06(-2.63,-1.50) -2.14(-2.80,-1.48)
Segment length mean changepoint 1.80(1.24,2.35) 1.75(1.11,2.38)
Segment length variance changepoint 1.32(0.67,1.98) 1.37(0.65,2.10)

Table 4.2: Influence of each menstrual pattern characteristics on age of final menstruation periods:
influences are assessed jointly for all characteristics; Model 1 is a Gaussian AFT model
with identity link which included censored FMPs; Model 2 is semiparametric AFT model
which included censored FMPs. Bold numbers represent significant associations.
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Estimated Effects (95%CI)

Model 1 Model 2
Mean intercept - -
Mean slope before changepoint 0.05(-0.10,0.19) 0.06(-0.13,0.24)
Mean slope after changepoint -0.52(-0.70,-0.35) -0.53(-0.71,-0.35)
Log-variance intercept -0.44(-0.74,-0.14) -0.44(-0.76,-0.12)
Log-variance slope before changepoint -1.94(-2.64,-1.24) -1.94(-2.77,-1.11)
Log-variance slope after changepoint -2.08(-2.61,-1.54) -2.09(-2.69,-1.48)
Segment length mean changepoint 1.95(1.42,2.48) 1.94(1.34,2.55)
Segment length variance changepoint 1.19(0.56,1.81) 1.18(0.50,1.87)
Mean Slope (before*after) Changepoint -0.36(-0.49,-0.22) -0.37(-0.58,-0.17)
Log-var Slope (before*after) Changepoints - -

Table 4.3: Influence of each menstrual pattern characteristics on age of final menstruation periods:
influences are assessed jointly after backward selection for all characteristics as well as
before and after changepoints interactions; Model 1 is a Gaussian AFT model with
identity link which included censored FMPs; Model 2 is semiparametric AFT model
which included censored FMPs. All covariates are standardized. Bold numbers represent
significant associations.



88

Estimated Effects (95%CI)

Model 1 Model 2
Mean intercept 0.22(0.06,0.38) 0.21(0.06,0.36)
Log-variance intercept -1.36(-1.59,-1.13) -1.37(-1.60,-1.13)
Log-variance slope before changepoint -4.44(-4.81,-4.07) -4.50(-4.93,-4.07)
Log-variance slope after changepoint -3.90(-4.25,-3.55) -3.99(-4.39,-3.59)
Segment length variance changepoint 3.36(3.16,3.57) 3.37(3.17,3.58)

Table 4.4: Influence of each menstrual pattern characteristics on age of final menstruation periods:
influences are assessed jointly for early characteristics; Model 1 is a Gaussian AFT model
with identity link which included censored FMPs; Model 2 is semiparametric AFT model
which included censored FMPs. All covariates are standardized. Bold numbers represent
significant associations.
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Model A Model B Model C
Adjusted R2 0.825 0.828 0.812
MSE 1.72 1.68 1.90

Table 4.5: Predictive ability of menstrual pattern characteristics for FMP: model A is the acceler-
ated failure time model adjusted for all eight characteristics; model B is the accelerated
failure time model adjusted for all eight characteristics and interactions after backward
selection; model C is the accelerated model adjusted for “early” characterstics, which
includes cycle length at age of 35 and all variability characteristics.
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Makers Stages Mean (SE) Number of Observations
D60 Late 46.96 (4.25) 443
D90 Late 48.80 (3.45) 359
RR10 Late 47.18 (3.96) 440
Irregularity Early 44.76 (4.51) 502
Diff6p Early 40.98 (4.24) 572

Table 4.6: Characteristics of transition markers.
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D60 D90 RR10 Irregularity Diff6p
Mean changepoints 0.61 0.86 0.69 0.48 0.28
Variance changepoints 0.47 0.68 0.55 0.39 0.17

Table 4.7: Correlations of mean and variance changepoints and menstrual transition markers.
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Number of Clusters (k) Silhouette
2 0.1431
3 0.1404
4 0.1265
5 0.1304
6 0.1434
7 0.1363
8 0.1351
9 0.1182
10 0.1287

Table 4.8: Average silhouette s(k) for clustering with different number of clusters.
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Pattern category 1 2 3 4 5 6 1 and 2 3 and 4
1 -
2 3.12 -
3 3.38 0.26 -
4 3.57 0.45 0.19 -
5 5.57 2.46 2.19 2.01 -
6 5.64 2.51 2.26 2.07 0.06 -
3 and 4 1.92 -
5 and 6 4.05 2.13
Overall analysis of variance: F5,611 = 89.05, P <= 0.001

Table 4.10: Pairwise differences in age at FMP by menstrual pattern category: entry in row i and
column j is (mean age at FMP in group i)-(mean age at FMP in group j); bold numbers
represent significant differences. Category 1 and 2 are women with early changepoints;
category 3 and 4 are women with medium changepoints; category 5 and 6 are women
with late changepoints.
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Pattern category 1 2 3 4 5 6 1 and 2 3 and 4 1,2,3,5
1 -
2 -0.17 -
3 -0.10 0.08 -
4 0.41 0.59 0.51 -
5 0.03 0.21 0.13 -0.38 -
6 0.27 0.45 0.37 -0.14 0.24 -
3 and 4 0.24 -
5 and 6 0.24 -0.00
4 and 6 1.58
Overall analysis of variance: F5,611 = 2.87, P <= 0.014

Table 4.11: Pairwise differences in age at menarche by menstrual pattern category: entry in row i
and column j is (mean age at menarche in group i)-(mean age of menarche in group
j); bold numbers represent significant differences. Category 1 and 2 are women with
early changepoints; category 3 and 4 are women with medium changepoints; category
5 and 6 are women with late changepoints; category 4 and 6 are women with larger
variability at age of 35; category 1,2,3,and 5 are women with smaller variability at age
of 35.
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Figure 4.1: Histogram of parameters for all subjects.
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Figure 4.2: Predicted FMP and observed FMP: model A is the accelerated failure time model
adjusted for all eight characteristics; model B is the accelerated failure time model
adjusted for all eight characteristics and interactions after backward selection; model C
is the accelerated model adjusted for “early” characterstics, which includes cycle length
at age of 35 and all variability characteristics. Predicted FMP are calculated using
leave-one-out cross-validation.
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Figure 4.3: D60 and changepoint: solid line is the loess regression line and dotted line is the diagonal
line. Corresponding medoids can be found in Table 4.9 by color names.
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Figure 4.4: D90 and changepoint: solid line is the loess regression line and dotted line is the diagonal
line. Corresponding medoids can be found in Table 4.9 by color names.
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Figure 4.5: RR10 and changepoint: solid line is the loess regression line and dotted line is the
diagonal line. Corresponding medoids can be found in Table 4.9 by color names.
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Figure 4.6: Irregularity and changepoint: solid line is the loess regression line and dotted line is the
diagonal line. Corresponding medoids can be found in Table 4.9 by color names.
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Figure 4.7: Diff6p and changepoint: solid line is the loess regression line and dotted line is the
diagonal line. Corresponding medoids can be found in Table 4.9 by color names.
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Figure 4.8: Profiles of medoids. Red lines represent of posterior mean of the mean segment length
and associated 95% credible intervals; blue lines represent posterior mean for the upper
and lower 2.5 percentiles for the segment distribution and their associated 95% credible
intervals. Panel titles represent category IDs.
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Figure 4.9: Cluster average pattern profiles. Red lines represent cluster mean of posterior mean
of the mean segment length and associated 95% credible intervals; blue lines represent
cluster mean of posterior mean for the upper and lower 2.5 percentiles for the segment
distribution and their associated 95% credible intervals. Panel titles represent category
IDs.
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CHAPTER V

Conclusion and Discussion

In this dissertation, I proposed statistical modeling in two different topics: weight

smoothing model for complex designed surveys and modeling women’s menstruation

history data.

5.1 Weight smoothing model for complex designed surveys

In sample surveys, highly disproportional sample designs may have large weights

or large variability of weights, which will lead to large variability in statistical esti-

mates of population quantities. Weight trimming, the most commonly used design

based approach, reducing variability of estimates by introducing some bias, however

has limitation that it does not use data to optimize bias-variance tradeoffs. Elliott

and Little (2000) and Elliott (2007) introduced model based method weight smooth-

ing to reduce variance of statistical estimates by allowing outlying data elements of

large weights to borrow strength from the rest of data. In Chapter II, I proposed

weight smoothing models for more complex sample design that include single or

multi-stage cluster samples or strata that “cross” the weight strata. Simulation sug-

gests that model based approaches have better bias-variance property than designed

based approaches in general. XSE estimators have best property when there is no

correlation between outcomes and weights, especially when cluster effect is small.
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When outcome and weights are associated, XSE estimators’ performance is not as

good as fully-weighted estimators. LSE and SLSE estimators are more robust and

have slightly reduction in RMSE compared to fully weighted estimators generally.

Similar techniques can be used in other situations wherever highly variable weights

present. For example, in open-label extension study of randomized controlled clinical

trials, only a subset of patients may choose to participate in the extension phase

(Wainwright 2002, Taylor and Wainwright 2005). Such choices are not made at

random, thus a complete analysis would suffer from selection bias, which could be

adjusted by inclusion probability (weights). Our model can be used to reduce MSE

when highly variable weights present.

Elliott (2008, 2009) further developed model averaging methods to average esti-

mators from a set of weight pooling models with all possible weight trimming levels.

This approach involves variable selection procedures and has high robustness. Fu-

ture exploration on this topic could extend model averaging method to surveys with

cluster design. The challenge here is that the number of weight strata in complex

designed surveys are usually large, which will rapidly increase the number of models

to be averaged. Thus, future research should develop a variable selection algorithm

to limit the number of models under consideration to the subset large enough to con-

tain most appropriate models but small enough to allow averaging in a reasonable

time frame.

5.2 Women’s menstruation history study

Women’s menstruation history provide rich information for women’s reproductive

health. TREMIN, the ongoing 70-year longitudinal study initiated by Dr. Alan

Trelore in 1967 provide a valuable data resource to study the nature of women’s
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menstruation and reproductive health. However, the biggest challenge for previous

researches is lack of precision. The statistical question here is how to comprehensively

model women’s menstruation pattern. The main contribution of Chapter III is to

provide a more precise method to capture women’s menstruation patterns. Chapter

IV uses results of Chapter III to quantitatively study women’s menstruation more

thoroughly. In Chapter III, we develop a Bayesian changepoint model that uses sep-

arate linear splines with unknown changepoints for individual women’s mean cycle

lengths and variability of cycle lengths, which are then tied together using a hier-

archical model to smooth parameter estimates for women with limited cycle length

data, and to provide population-level estimates. We also developed an algorithm

to impute various types of missingness, including imputation of final menstruation

periods. Results suggest the model captured well each individual woman’s men-

struation pattern, especially the mean and variability changepoints of cycle lengths

that can serve as late and early menopausal transition markers. The model also

provides a good summary of population level menstruation characteristics and their

associations.

The Bayesian changepoint model uses eight characteristics to describe individual

woman’s menstruation pattern. Quantitative estimates of these characteristics make

it possible to study the association of women’s menstruation patterns and their age

at menopause; to define subgroups of women with similar pattern characteristics and

their associations with age at menopause, age at menarche and parity; and to com-

pare mean and variability changepoints with previously defined transition markers.

We address these issues in Chapter IV. Gaussian accelerated failure time models

suggest women with late menopause tend to have later changepoints, smaller vari-

ance of cycle lengths at age of 35, less rapid decrease in variance of cycle lengths
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before changepoints, less rapid increase in mean and variance of cycle lengths after

changepoints as well as less multiplicative effect of changes of variance slopes before

and after changepoints. We next used a K-medoids algorithm to classify women’s

menstruation patterns to six categories. Category 1 has early changepoints and a

rapid increase in both mean and variability of cycle lengths after changepoints; cate-

gory 2 also has early changepoints, but the changes are not quite apparent compared

to other categories. Category 3 and category 4 have medium changepoints, but cat-

egory 4 has larger variability at age 35 with more rapid decrease in variability than

category 3. Category 5 and category 6 have late changepoints, but category 6 has

larger variability at age 35 with more rapid decrease in variability than category 5.

We also compared several health outcomes by different categories. Results suggest

that age at menopause is significantly positively associated with changepoints; age at

menarche is primarily influenced by early variability of menstruation cycle lengths,

with subjects with larger early variability have later age at menarche; and number

of births does not differ between different categories. The comparison of change-

points and previously defined transition markers suggests changepoints are better

associated with late transition markers. Subjects with larger early variability tend

to have early transition markers but not necessarily early changepoints, which means

changepoints are more comprehensive and better measures to capture menopausal

transition time.

The next step of our research is to include TREMIN corhort II data and compare

menstruation patterns between different generation of women, as well as adjusting

for more covariates such as BMI and smoking.

Methodologically, since we need to impute final menstruation periods, a possible

future extension to this work is to combine the menstruation pattern information
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with the age of FMP in a joint modeling approach. This approach will use pattern

characteristics to impute final menstruation periods. However, it could be more

complex and computationally intensive.
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APPENDIX A

Gibbs Sampling Algorithm for Chapter III

Gibbs sampling is used to draw from the posterior distribution p(Φ, Λ, Ω|z), where

Φi = (αµ
i , βµ

i , γµ
i , θµ

i , ασ
i , βσ

i , γσ
i , θσ

i )′. The algorithm outline is as follows:

1. Initialize Φ, Λ, Ω. Perform an initial imputation of missing data.

2. For i = 1, ..., n and zi consisting of both observed and imputed data:

2a.

(αµ
i , βµ

i , γµ
i |rest) ∼ N(U, V )

U = (Aµ′
i W−1

i Aµ
i + Ω−1

µ )−1(Aµ′
i W−1

i zi + Ω−1
µ x′iΛµ), V = (Aµ′

i W−1
i Aµ

i + Ω−1
µ )−1

where Wi = Diag(σ2
it), Aµ

i =




1 (ai1 − 35) (ai1 − θµ
i )+

...
...

...

1 (aiTi
− 35) (aiTi

− θµ
i )+




, and Λµ and Ωµ are

the corresponding part of prior multivariate normal mean Λ and covariance matrix

Ω conditional on other parameters.

2b.

p(ασ
i |rest) ∝ exp(−1

2
(

Ti∑
t=1

zit − (αµ
i + βµ

i (ait − 35) + γµ
i (ait − θµ

i )+)2

exp(ασ
i + βσ

i (ait − 35) + γσ
i (ait − θσ

i )+)
+

(ασ
i − µασ)2

Ωασ

))

× exp(−ασ
i Ti

2
)
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where µασ = x′iΛασ and Ωασ are the corresponding part of prior multivariate normal

mean and variance conditional on other parameters. The inverse CDF method is

used to obtain the conditional draws.

2c.

p(βσ
i |rest) ∝ exp(−1

2
(

Ti∑
t=1

zit − (αµ
i + βµ

i (ait − 35) + γµ
i (ait − θµ

i )+)2

exp(ασ
i + βσ

i (ait − 35) + γσ
i (ait − θσ

i )+)
+

(βσ
i − µβσ)2

Ωβσ

))

× exp(−1

2
βσ

i

Ti∑
t=1

(ait − 35))

where µβσ = x′iΛβσ and Ωβσ are the corresponding part of prior multivariate normal

mean and variance conditional on other parameters. The inverse CDF method is

used to obtain the conditional draws.

2d.

p(γσ
i |rest) ∝ exp(−1

2
(

Ti∑
t=1

zit − (αµ
i + βµ

i (ait − 35) + γµ
i (ait − θµ

i )+)2

exp(ασ
i + βσ

i (ait − 35) + γσ
i (ait − θσ

i )+)
+

(γσ
i − µγσ)2

Ωγσ

))

× exp(−1

2
γσ

i

Ti∑
t=1

(ait − θσ
i )+)

where µγσ = x′iΛγσ and Ωγσ are the corresponding part of prior multivariate normal

mean and variance conditional on other parameters. The inverse CDF method is

used to obtain the conditional draws.

2e.

p(θµ
i |rest) ∝ exp(−1

2
(

Ti∑
t=1

zit − (αµ
i + βµ

i (ait − 35) + γµ
i (ait − θµ

i )+)2

exp(ασ
i + βσ

i (ait − 35) + γσ
i (ait − θσ

i )+)
+

(θµ
i − µθµ)2

Ωθµ

))

where µθµ = x′iΛθµ and Ωθµ are the corresponding part of prior multivariate normal

mean and variance conditional on other parameters. The inverse CDF method is

used to obtain the conditional draws.
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2f.

p(θσ
i |rest) ∝ exp(−1

2
(

Ti∑
t=1

zit − (αµ
i + βµ

i (ait − 35) + γµ
i (ait − θµ

i )+)2

exp(ασ
i + βσ

i (ait − 35) + γσ
i (ait − θσ

i )+)
+

(θσ
i − µθσ)2

Ωθσ

))

× exp(−1

2
γσ

i

Ti∑
t=1

(ait − θσ
i )+)

where µθσ = x′iΛθσ and Ωθσ are the corresponding part of prior multivariate normal

mean and variance conditional on other parameters. The inverse CDF method is

used to obtain the conditional draws.

3.

Λ|rest ∼ N((X ′(Ω⊗ IN)−1X)−1X ′(Ω⊗ IN)−1Φ, (X ′(Ω⊗ IN)−1X)−1)

where X is the covariate matrix of all subjects, which consists of stacked rows of x′i,

and Φ consists of the stacked rows of Φ′
i.

4.

Ω|rest ∼ Inv −Wishart(Ω|(
N∑

i=1

(Φi − x′iΛ)(Φi − x′iΛ)′ + I))

5. Use the updated parameters to create a new imputation data set. Then go to

step 2.
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APPENDIX B

Piecewise Exponential Distribution for Chapter III

Assume that Qi, the age at FMP, follows a piecewise exponential distribution. The

baseline hazard is constant within each interval, so that

λ0(t) = ηk, t ∈ [Ak−1, Ak]

f(Qi = t : t ∈ [Ak−1, Ak]) = ηke
−ηkt

Here, A0, ...AK are a set of age knots, which are set at age 40, 42, 43, 44, 45, 46,

46.5, 47, 47.5, 48, 48.5, 49, 49.5, 50, 51.5, 52, 52.5, 53, 53.5, 54, 55, 56, and 57; we

define A−1 = 0 and AK+1 = ∞ and assume η0 = 0 (no risk of FMP before age 40).

We postulate a very weakly informative prior for ηk : ηk ∼ GAMMA(0.001, 0.001).

The posterior distribution for ηk is:

p(ηk|q̃) ∝ p(q̃|ηk)p(ηk) ∝ GAMMA(mk + 0.001, rk + 0.001)

where mk =
∑

i I(Ak−1 ≤ Qi ≤ Ak) is the number of women with FMPs that occur

between time Ak−1 and Ak and rk =
∑

i I(Qi ≥ Ak−1) is the number of women

without an FMP at time Ak−1.

The hazard function for each interval is

λ(t) = ηkI(Ak−1 ≤ t ≤ Ak)
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The cumulative hazard and survival functions are then given by

Λ(t) =

∫ t

0

λ(t)dt =
k−1∑
j=1

ηj(Aj − Aj−1) + ηk(t− Ak−1), t ∈ [Ak−1, Ak]

S(t) = exp(−Λ(t))

The probability that the event occurs in the interval [t1, t2] given that the event

has not occured by t1 is

P (Qi ∈ [t1, t2]|Qi > t1) =
S(t1)− S(t2)

S(t1)
= 1− S(t2)

S(t1)
=





1− e−ηk(t2−t1) if Ak−1 ≤ t1 < t2 ≤ Ak

1− e−[ηk(t2−Ak−1)−ηk−1(t1−Ak−1)] if Ak−2 ≤ t1 < Ak−1 ≤ t2 ≤ Ak

1− e−[ηk+1(t2−Ak)+ηk(Ak−Ak−1)−ηk−1(t1−Ak−1)] if Ak−2 ≤ t1 < Ak−1 < Ak ≤ t2
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