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CHAPTER 1 

Introduction 

 Human activities and the natural carbon cycle are fundamentally linked.  Carbon 

dioxide (CO2) is considered the primary greenhouse gas of concern (Denman et al., 

2007), because of its abundance in the atmosphere, its ability to trap heat close to the 

surface and thus change climate, as well as the strong influence human activities have on 

the overall concentration of atmospheric CO2.  Emissions from human activities annually 

introduce a significant amount of mass of carbon to the atmosphere from carbon pools 

that would otherwise be stored as fossil fuel deposits or detrital carbon.   The ocean and 

terrestrial biosphere have responded unexpectedly, reabsorbing approximately 50% of 

human emissions even though the amount of carbon removed from the atmosphere by 

natural sinks varies from year to year. Since the amount of atmospheric CO2 is growing 

exponentially, both human and earth systems, including the natural carbon sinks that are 

counteracting human emissions, are increasingly vulnerable to changes in climate and 

biogeochemical cycles.  Locating natural sources and sinks, determining what processes 

are controlling these sinks, and predicting how they will be influenced by changes in 

atmospheric CO2 and climate are all domestic and international policy priorities.  In other 

words, this knowledge is essential for designing policies to stabilize atmospheric CO2 

concentrations. 

Much of what we know about carbon cycling, or surface flux exchange, has been 

derived from the information contained in observations.  Such observations include 

measurements of atmospheric CO2 mass taken at remote locations such as Mona Loa, 

Hawaii which contain clear signals of surface fluxes from hemispheric regions or 

latitudinal bands.  Thus, these observations provide valuable information regarding inter-

annual trends of atmospheric CO2.  Additionally, scientists have a good mechanistic 

understanding of how a plant will assimilate CO2 in response to light and water 
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availability from laboratory and plot-level measurements.  As such, carbon cycling at 

small and very large scales is considered well-known.   

Currently, CO2 fluxes cannot be directly measured at any scale larger than the 

approximately 1km2 footprint of an eddy-covariance flux tower, described in more detail 

in Chapter 2.  CO2 fluxes at larger spatial scales (e.g. 1km to 1000km) instead are 

provided by suite of different models.  Unfortunately, the estimates from various models 

disagree both in terms of the magnitudes of carbon fluxes, e.g. differences can be greater 

than 1 PgC/month for North America, and their seasonal behavior.  This lack of 

consensus indicates that our knowledge of carbon cycle processes associated with large 

resolutions is limited.    

A better understanding of CO2 flux at larger scales (e.g. at the scale of political 

entities like countries and individual states or provinces) is needed to develop climate 

change mitigation policies.   Specifically we must be able to budget CO2 fluxes and 

understand how they behave over time at resolutions that are useful for formulating and 

implementing carbon accounting programs.  These programs could enable the use 

agricultural or forest offsets for carbon credit systems if reliable carbon budgets were 

available at regional scales.   An understanding of the processes driving regional or 

continental fluxes is also essential for predicting future concentrations of atmospheric 

CO2, in order to evaluate interactions between the carbon cycle and climate change.  

Currently, the uncertainty associated with our understanding of carbon cycling at larger 

scales is hindering our attempts to forecast climate change and manage the carbon cycle 

through the protection and/or enhancement of natural sinks.   

 This dissertation challenges the perception that the atmospheric observations of 

CO2 and flux measurements are too limited to quantify surface fluxes (for carbon 

accounting) and improve process-based understanding at continental, regional, and local 

scales (for predicting future flux scenarios).  As such, statistical techniques are first 

employed to ascertain the information content of atmospheric observations of CO2 in 

regards to surface flux exchange.  Second, statistical methods are applied to fully take 

advantage of the observational constraint to estimate regional and continental sources and 

sinks.  Finally, statistical tools are developed to estimate the relationship of carbon flux to 
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the environmental drivers that appear the most dominant in controlling terrestrial carbon 

cycling at various spatial and temporal scales. 

1.0 What do we know about natural carbon cycling? 

 As mentioned, our current knowledge about carbon cycling at the global scale has 

been derived from CO2 observations from remote locations coupled with atmospheric 

transport models.  Since the mid-1950s, measurements of atmospheric CO2 

concentrations have been precise enough (Keeling et al, 1985; Bacastow et al., 1985) to 

provide a reliable measure of the annual increase of CO2 in the atmosphere (Le Quere et 

al., 2009), as well as an indication of the seasonality of natural sources and sinks.  These 

measurements, along with information related to surface flux exchange, such as 

vegetative indices from remote-sensing datasets, have furthered the understanding of 

global trends in carbon cycling. Some of the major advances in our understanding of the 

carbon cycle are listed below: 

(1) The oceans and terrestrial biosphere absorb roughly half of the annual of CO2 

emissions from human activities (Conway, et al., 1994), although the efficiency of 

these sinks may be declining (e.g. Canadell et al., 2007); 

(2) The majority of the terrestrial uptake of atmospheric CO2 occurs within the Northern 

mid-latitudes (Tans et al., 1990; Keeling et al, 1989; Fan et al., 1999).  However, 

there is some debate as to the magnitude and location of this sink (e.g. Ciais et al., 

2010); 

(3) Net uptake of CO2 by the terrestrial biosphere varies significantly from year to year 

(e.g. Le Quere 2010); 

(4) Shifts in the timing and amplitude of the seasonal cycle of both direct measurements 

of CO2 flux (e.g. Desai et al., 2010) and atmospheric CO2 concentrations (Running et 

al., 1999; Randerson et al., 1997; Field et al., 1998) suggest that the seasonality of 

terrestrial carbon exchange is changing (Running et al., 1999; Schwartz and Hanes, 

2010); 

(5) The global climate system has impacts on the terrestrial carbon cycle, as seen by the 

strong correlations between variations in the globally annually averaged growth rate 

of atmospheric CO2 to the El Niño–Southern Oscillation (Heimann and Reichstein, 

2008); and finally,  



4 
 

(6) The amount of CO2 in the atmosphere from human (a.k.a. anthropogenic) activities 

released into the atmosphere in 2008 was approximately 8.7+/-0.5 Pg/yr which is an 

increase of 2% from 2007, 29% from 2000, and 41% above anthropogenic emissions 

in 1990 (Le Quere et al, 2009). 

 We have also learned a great deal about the mechanics of terrestrial carbon 

exchange through small-scale laboratory experiments (e.g. Lloyd and Taylor, 1994; 

Farquhar et al., 1980; Montieth, 1966; Running et al., 2004), in situ biometric data 

collected at small field sites (e.g. Curtis et al., 2002), and plot-level studies such as the 

Free Air CO2 Enrichment (FACE) experiments (Schlesinger et al., 2006), which examine 

the effects of elevated CO2 on terrestrial ecosystems.  We know physiologically that 

gross productivity (i.e. photosynthesis) is primarily controlled by the interaction of light, 

water, temperature, and nutrients (Farquhar et al., 1980, Monteith et al., 1966) and that 

one or more of these factors can play a limiting role in the amount of carbon fixed by 

plants. We also know that several factors control how much plants and soils respire or 

release CO2 to the atmosphere (autotrophic and heterotrophic respiration, respectively), 

including the amount of photosynthate supplied to roots, substrate quality and 

availability, temperature, and soil moisture (e.g. Hibbard et al., 2005; Reichenstein et al., 

2003).   As a result, we have a thorough understanding of how photosynthesis and 

respiration instantaneously respond to climate variables.  What is less certain, is how 

these instantaneous changes or responses affect overall photosynthetic capacity, biomass 

allocation within plants and ecosystems, nutrient availability and the longevity of 

vegetation (Field, 2001). 

2.0 What information are we lacking in terms of natural carbon cycling? 

Even though we have an understanding of the carbon-cycling globally and at the 

physiological (small) scale, there still remains much uncertainty about how 

biogeochemical processes, disturbances, and climate influence surface exchange at large 

regional scales (e.g. 1km2 to continental scales) over diurnal, seasonal, annual, and inter-

annual timeframes (e.g. Denman et al., 2007; King et al., 2007, Dolman et al., 2006; 

Desai et al., 2010; Denning et al., 2005).  For example, we do not understand where and 

why the biosphere is reabsorbing a substantial portion of human emissions.  Figure 1.1 

presents a conceptual representation of the level of understanding related to terrestrial 
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carbon cycling at different spatial and temporal scales while Figure 1.2 shows that the 

largest gaps in our understanding of carbon-cycling are at spatiotemporal resolutions 

where we rely more on models than on observations.   

The models referred to in Figure 1.2 generally can be classified as either 

processed-based (aka biospheric) or atmospheric inversions.  Biospheric models and 

atmospheric inversions are used to quantify and identify carbon sources and sinks, 

whereas biospheric models additionally are used to learn more about the interaction 

between the eco-climatic variables and land-atmosphere carbon exchange in order to 

predict climate-carbon feedbacks.  Although models are important tools for furthering our 

understanding of the carbon cycle, they need to be validated against observational data.  

Hence, our greatest uncertainty of carbon cycling exists at regional and continental 

resolutions given the lack of validation data at these scales.  

 

 

Figure 1.1: A general pictorial summary of the state of knowledge in regards to 
terrestrial carbon cycling at different spatial and temporal scales.  Grey boxes 
indicate spatiotemporal scales that are currently not of interest to the scientific 
community.    
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Biospheric models estimate CO2 fluxes directly for large areas (approximately 

100km by 100km) by scaling up mechanistic understanding derived from experimental 

studies at smaller scales.  However, scaling up process-based understanding of surface 

flux is complicated by the heterogeneity in land cover and emergent processes 

encountered at larger scales. Recently, terrestrial biospheric model results were compared 

(Huntzinger et al., in prep) as part of a synthesis initiative of the North American Carbon 

Program (NACP).  The comparison clearly illustrates the spread of modeled estimates of 

net primary productivity (Figure 1.3) and thus the lack of understanding of the processes 

controlling large scale carbon cycling.   

Differences between modeled estimates from biospheric models are due in part to 

the various purposes for which the models were generated (e.g., carbon management or 

prediction), as well as the variety of forcing factors (e.g., land-use history, meteorology) 

used to drive the models (Huntzinger et al., in prep).  Differences can also be attributed to 

how physiological relationships are scaled within the models. For example, how leaf-

level relationships derived at specific field sites are scaled-up and applied to larger areas 

and ecosystems. 

 In contrast to biospheric models, inverse models trace back variations in measured 

atmospheric CO2 concentrations to the most likely configuration of surface sources and 

sinks with the aid of simulated atmospheric transport (Enting, 2002).  However, 

atmospheric mixing tends to make CO2 inverse problems ill-conditioned, so that it is 

impossible to identify a unique solution of surface flux estimates that can reproduce the 

available measurement data (e.g. Enting, 2002).   In addition, the limited number of in 

situ surface measurements results in an under-determined problem if the number of 

estimated fluxes is greater than the available measurement data.  To regularize the 

problem and to estimate a unique solution, most inversion methods use flux results from 

a biospheric model (henceforward referred to as explicit priors) (e.g. Enting, 2002).  As 

with biospheric models, inter-comparison studies focused on contrasting carbon budgets 

from atmospheric inversions show a lack of convergence among model estimates (e.g., 

Desai et al., 2010).  

Given that atmospheric measurements of CO2 are linked in an inversion to surface 

exchange fluxes using simulated atmospheric transport, some of the observed variability 
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among inversion estimates cannot be resolved until there are improvements in 

atmospheric transport modeling.  However, different setup choices, such as the use of 

observations, the regularization structure and choice of explicit prior flux estimates, as 

well as the resolution at which fluxes are estimated, also contribute to the spread of the 

estimates.  Numerical approximations used to limit the computational cost of estimating 

fluxes at resolutions finer than continents at sub-monthly timescales (Knorr, 2000) can 

also impact estimates.  Such approximations include reducing the number of estimates by 

solving sources and sink at continental scales and then down-scaling the estimates to 

smaller regions.  
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 To assess the impact of assumptions and model choices in both biospheric 

models and atmospheric inversions, we need to compare biospheric results to flux 

estimates that are largely based on observations, such as inventory-based assessments, 

direct measurements, or atmospheric CO2 observations.   Direct measurements of flux are 

spatially limited (i.e., only represent a 1km2 area around a flux tower site) while 

inventory-based assessments are temporally limited (i.e. only provide annual 

assessments).   There is also a common belief that atmospheric data, both atmospheric 

observations of CO2 and surface flux exchange measurements, are too limited at 

 

Figure 1.2: A schematic showing the application of models and observations that 
have been used to ascertain both (i) process-based understanding of sources and sinks 
and (ii) budget terrestrial carbon fluxes at various spatiotemporal scales.  The pie 
charts represent the approximate ratio of observations and models applied at each 
scale. Grey boxes indicate spatiotemporal scales that are currently not of interest to 
the scientific community.    
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resolutions greater than the plot-scale to provide information about the diurnal, seasonal, 

and annual behavior (e.g. Gurney et al., 2002, Schuh et al., 2010, etc.) of surface 

exchange.  As a result, most atmospheric inversions and process-based models use 

information or parameters derived from other models.  This interdependence complicates 

comparison studies aimed at identifying which factors and assumptions have the greatest 

influence on the spread of models estimates. 

 

3.0 Goals of the dissertation 

Reducing the uncertainty associated with regional and continental carbon budgets 

at various timeframes has become a policy priority (e.g. Canadell et al.; 2007, Rapauch et 

al., 2010; Le Quere 2010).  As such, over the past decade there have been several 

coordinated research endeavors such as the NACP (http://www.nacarbon.org/nacp/) and 

the CarboEurope project (http://www.carboeurope.org/).  The aim of these initiatives is to 

reduce the uncertainty associated with fluxes at resolutions greater than the plot-scale, 

 

Figure 1.3: Long-term mean (2000-2005) summer (June, July, and August) net 
ecosystem productivity (NEP) estimated from different terrestrial biospheric models for 
North America. Positive values indicate net terrestrial carbon uptake and negative 
values a net C release with respect to the atmosphere. Grey areas indicate areas not 
covered by a given model’s estimate of flux.  Courtesy of D.N. Huntzinger (Huntzinger 
et al., in prep). 
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specifically for ecosystem-scale fluxes.  From such activities and other initiatives, a 

variety of information is now available at multiple spatial and temporal scales.  These 

initiatives include NASA’s Earth Observing System (EOS) which has collected a variety 

of variables associated with carbon cycling (e.g. Leaf Area Index, Enhance Vegetative 

Index, etc.) over the past decade, the expansion of NOAA’s CO2 measurement network 

(http://www.esrl.noaa.gov/gmd/dv/site/site_table2.html), and the growth of FluxNET 

(Baldocchi et al., 2003).  The availability of data presents new opportunities to quantify 

and understand the dynamics of carbon cycling at a variety of spatiotemporal scales.   

Thus, the overarching goal of this research is to take advantage of the available 

measurements by applying geostatistical methods, which rely on relatively fewer 

assumptions compared to other widely used approaches and to infer surface fluxes that 

are independent of process-based models.  Specifically, this dissertation consists of three 

main objectives.  The first two objectives test whether or not atmospheric observations of 

CO2 contain enough information to help inform the types of carbon budgets of most 

interest to policy-makers.  In order to answer this question, statistical methods are applied 

to generate land-atmosphere carbon flux estimates. The methods employed are 

specifically designed to be independent of other approaches.  Thus inferred estimates can 

be compared to results from other methods to help reconcile differences among models 

and build consensus on our carbon cycle knowledge at regional and continental scales. 

The results can also be used to help identify the simplifying assumptions that have the 

largest impact on carbon budgets at different spatiotemporal scales.   

Objective three tests whether statistical methods can be used with flux 

measurements to assess how the relationships between carbon exchange and 

environmental factors, such as leaf phenology, change with temporal scale.  For example, 

the study explores whether the seasonal driver(s) of photosynthesis differ from those 

variables that control the synoptic uptake of CO2.  This study is conducted using direct 

measurements of flux representative of a local scale (~1km2).  Even though field studies 

have improved our understanding of carbon cycling at local scales, the temporal 

dependence of mechanistic relationships is less well-understood, particularly in terms of 

modeling these relationships at much larger spatiotemporal resolutions.  Being able to 
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ascertain which relationships can be “scaled-up” or “scaled-down” from one resolution to 

another may result in a better convergence of estimates from various models.    

These three objectives are summarized below.  In addition, Figure 1.4 shows how 

the objectives fit into the community-wide effort to reduce the uncertainty associated 

with large scale carbon cycling: 

(1) Objective 1: Estimate global monthly CO2 surface flux at a 3.75° latitude × 5° 

longitude resolution for 1997-2001. This research quantifies the degree to 

which the global observational network can inform the distribution of CO2 

fluxes at various spatial and temporal scales.  Another purpose of the work is 

to demonstrate the capability of the statistical approach used for this work (as 

presented in detail in Chapter 3), which limits the use of simplifying 

assumptions, relative to other inversion and biospheric methods, that are 

known to have a large impact on flux estimates; 

(2)  Objective 2: Assess the impact of additional (in space and time) CO₂ 

measurements in helping to constrain (i.e., diagnose) monthly fluxes for North 

America.  This component focuses on estimating 1°x1° surface fluxes for 

North America and their corresponding uncertainties at various temporal 

resolutions for 2008 using (i) 10 measurement sites of continental tower 

locations employed in various 2004 regional inversion studies, and (ii) 35 

measurement sites available in 2008.  This sensitivity analysis highlights the 

impact the measurement information has on budgeting both regional and 

continental CO2 in light of other inversion setup choices; and,   

(3) Objective 3: Assess drivers of CO2 variability at a landscape scale, as inferred 

by a statistical regression model.  This component develops a statistical 

framework using direct estimates of flux along with other 

micrometeorological and environmental datasets to infer the dominant 

controls on carbon flux at multiple temporal scales.  Flux measurements from 

the University of Michigan Biological Station (UMBS) tower site are used as 

a test case (described in detail in Chapter 3),  thus the method is also used to 

test current understanding of carbon cycling at this site (representing a mixed-

hardwood forest ecosystem) at the daily, weekly, and monthly timescales.    
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The dissertation is organized in the following manner:  Chapter 2 consists of a 

literature review providing the conceptual motivation for the statistical approaches used 

throughout the dissertation.  Chapter 3 presents the methods used in this study and 

Chapters 4 through 6 outline the specific contributions of the dissertation through the 

three objectives outlined above.  Finally, Chapter 7 summarizes the contributions from 

the individual chapters towards improving our understanding of carbon cycling at local, 

regional, and continental scales.  Chapter 7 also suggests future directions for the work 

presented in the 

dissertation.

  

 

Figure 1.4: A schematic showing how the specific objectives of the dissertation fall 
within the overall community-wide process of reducing the uncertainty associated with 
regional and continental fluxes. 
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CHAPTER 2 

Literature Review 

1.0 Scientific need for improved understanding of the carbon cycle 

Carbon dioxide (CO₂) is the primary greenhouse gas contributing to global 

climate change, and numerous studies have focused on developing a thorough 

understanding of the regional, continental, and global budgets of CO2.  As mentioned in 

Chapter 1, although significant progress has been made in understanding the processes 

controlling the sources and sinks of CO2, important questions still remain regarding their 

magnitude, timing and geographic distribution. 

In terms of natural carbon cycling, the science community has focused on 

answering the following questions at regional and continental resolutions over the past 

decade (King et al., 2007; Denning et al., 2005): 

(1) Where are sources and sinks and how are they changing with time? 

(2) What are the main drivers of natural fluxes at seasonal, annual, and inter-

annual scales? 

(3) What are the feedbacks between climate, vegetation, substrate availability, 

and atmospheric carbon exchange and do these feedbacks have 

spatiotemporal dependencies? 

(4) How much of human emissions do natural sinks absorb and does this vary 

throughout time? 

The ability to identify sources and sinks of carbon at regional and continental 

scales are important because a strong understanding of the carbon cycle is required to 

develop effective carbon management strategies.  While CO2 emissions from human 

activity are relatively small compared to those from the natural carbon cycle, their net 

contribution toward the amount of CO2 mass in the atmosphere is large given that the 

natural carbon fluxes should on average balance.  Given the large magnitudes of the 



14 
 

individual natural flux components of the land and oceans, relatively small changes in 

their behavior of CO2, due to climate-carbon feedbacks, can lead to disproportionate 

increases in atmospheric CO2 (Friedlingstein and Prentice, 2010).  Therefore, a better 

understanding of carbon cycle is required to enable policy makers to focus on policy 

driven questions such as: 

(1) What sort of policy options could be implemented to enhance natural sinks 

and reduce sources?  

(2) How do we monitor and assess carbon management schemes that aim to 

sequester atmospheric CO2? 

2.0 Approaches to understanding carbon cycling 

By definition, a terrestrial carbon budget of any area (local, regional, or global) at 

any timeframe (daily, monthly, annually, inter-annually) is the difference between its 

carbon gains and losses.  In general, terrestrial ecosystems gain carbon through 

photosynthesis, which assimilates carbon into vegetative biomass, and lose it primarily as 

CO2 through respiration which releases CO2 into the atmosphere.  Respiration can be 

further subdivided into its heterotrophic component from free-living soil microbes, 

animals, and fungi along with its autotrophic component from roots, mycorrhizae, leafs, 

stems and photosynthetic bacteria. These natural cycling processes are controlled not 

only by vegetation type and soils, but also by a number of environmental variables.  

These variables include the amount of available sunlight, water availability, nutrient 

cycling, and temperature. In addition, other processes such as disturbance (e.g. forest 

fires, windstorms, large-scale herbivory events), also have unique set(s) of drivers and 

associated scale of impact, constituting significant sources of atmospheric CO₂.  

Although photosynthesis and respiration are the two main components of terrestrial 

carbon cycling, disturbance (fire, herbivory losses) (Gough et al., 2007a) and the release 

of volatile organic compounds (VOCs) by vegetation (Brilli et al., 2007), can also 

contribute to losses of carbon to the atmosphere from an ecosystem.   

While small scale studies have enabled scientists to develop some theories with 

respect to the mechanics of photosynthesis and respiration, attempts to extrapolate this 

understanding to spatial scales larger than those of plot experiments have proven difficult 
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(e.g. West et al., 2009).  Quantifying and predicting terrestrial budges is difficult because 

we (i) do not have the means to directly measure CO2 surface exchange for areas larger 

than 1km2 and (ii) have limited understanding of how carbon and associated nutrients are 

used within photosynthesis and respiration as well as exchanged with the atmosphere at 

multiple spatial and temporal resolutions (e.g. Heimann and Reichstein, 2008).  Regional 

scales also often contain multiple landuse types, heterogeneous terrain, as well as urban 

areas which further complicate scaling plot-level understanding to these larger spatial 

scales.   

Attempts to study carbon cycling at these larger resolutions (1km2 to continental 

scales) are generally classified into three approaches.  The first of these approaches, i.e. 

“top-down” methods or inverse models, trace back variations in the measured 

atmospheric CO₂ signals to either (i) estimate the most probable net surface source and 

sink distribution or (ii) optimize biospheric model parameters with the aid of an 

atmospheric transport model (e.g. TM3, Heimann et al. (2003), STILT, Lin et al. (2003); 

Schuh et al. (2010)). The second can be characterized as "bottom-up" (e.g. biospheric 

models and inventory datasets), where each flux component is accounted for separately, 

i.e. gross productivity, respiration, fossil fuel combustion, land use change, and 

disturbance.  Biospheric or process-based models “scale-up” mechanistic relationships 

derived from controlled experiments (e.g. Simple Biosphere Model (SiB 3.0) Baker et al. 

(2008); the Carnegie Ames Stanford Approach (CASA) Potter et al. (1993)). The final 

approach involves estimating surface flux directly for an approximately 1km2 area using 

the eddy covariance (EC) method to study the diurnal, seasonal, and annual behavior of 

the local flux.  These estimates can also be compared to other datasets, such as leaf area 

indices (LAI) or temperature, to elicit carbon-climate interactions (e.g. Law et al., 2002; 

Curtis et al., 2003, etc.).  A few studies have combined more than one of these 

approaches (e.g. Pacala et al., 2001; Riley et al., 2009).   However, each of these 

approaches has limitations, primarily revolving around simplifying assumptions known to 

have a large impact on flux, as outlined in the following sections, which in part, provide 

the motivation for the data-driven methods employed in this dissertation. 

The following sections of this chapter provide a brief summary of main methods 

that have been used to inform our current knowledge of CO₂ flux at regional and 
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continental scales.  The purpose of presenting these approaches is to outline their 

advantages and drawbacks in order to show why the statistical methods employed in this 

dissertation are needed to help fill in the gaps in our understanding of natural carbon 

cycling.    

 2.1 Top-Down Approaches 

Observations of atmospheric concentrations contain information regarding 

sources and sinks at the Earth’s surface (Ciais et al., 2010).  Starting from a set of 

atmospheric CO2 concentration observations, coupled to an atmospheric transport model, 

it is possible to infer information on the distribution of surface carbon exchange.  This 

process is known as inverse modeling (also referred to as “top-down” approaches) and 

consists of finding a set of statistically optimal fluxes.  These methods were developed in 

an effort to make more use of the atmospheric data in estimating carbon budgets more 

consistent with the atmospheric signal (Enting, 2002).  For conservative tracers such as 

CO2, atmospheric chemistry does not need to be considered since the influence of surface 

fluxes on observations is modified only by transport.  The signal within the atmospheric 

observations is an integration of contributions from all flux components including natural 

sources and sinks and fossil fuel emissions at continental and regional scales (Ciais et al., 

2010).  

2.1.1 Budgeting of CO2 surface exchange fluxes at continental scales 

Traditionally, inverse modeling approaches have been employed to improve 

continental or large ocean estimates of carbon flux at monthly to annual timeframes using 

flask measurements from global observational networks (e.g 

http://www.esrl.noaa.gov/gmd/ccgg/globalview/).  The flask observations are taken 

weekly at remote locations, and therefore measure background air that represent fluxes 

from large continental or ocean areas.  Given the coarse temporal coverage of the 

observations and the fact that the measurement locations tends to be biased toward 

wealthier continents in the Northern Hemisphere, the network is considered limited in its 

ability to inform surface flux exchange. 

The nature of atmospheric transport (e.g., mixing, diffusion, influence of weather 

patterns) and its associated uncertainties limit the information content of available 
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observations.  As a result, atmospheric inversions are generally ill-posed, with 

substantially different flux distributions yielding similar modeled mixing ratios at 

observational network sites (Enting, 2002).  As a result, uncertainties in observational 

data and transport models lead to high uncertainties on estimated fluxes (Enting and 

Newsam, 1990; Brown, 1993; Hein et al., 1997). 

In order to circumvent this ill-posedness and to compensate for the assumed 

limited amount of information within atmospheric network in regards to surface flux 

exchange, additional information on CO2 sources and sinks is typically introduced into 

inversions in the form of explicit prior estimates of surface flux.  This approach, 

commonly referred to as synthesis Bayesian inversion, typically obtains these a priori 

flux estimates from process-based models and/or inventories (e.g., Kaminski et al., 1999; 

Rödenbeck et al., 2003; Gurney et al., 2004; Baker et al., 2006).  Process-based, or 

biospheric, models apply knowledge of small-scale causal mechanisms to predict carbon 

exchange at larger scales (e.g. Carnegie-Ames-Stanford Approach (CASA) model, 

Randerson et al., 1997; Lund-Postdam Jena (LPJ) Dynamic Global Vegetation Model, 

Sitch et al., 2003).   However, the introduction of explicit flux estimates has the ability to 

introduce biases in estimates of sources and sink because a posteriori estimates to revert 

to a priori assumptions in under-constrained regions.  Therefore, an error or bias in the 

explicit prior will be present in fluxes yielded from a synthesis Bayesian inversion. 

Because the current global CO2 monitoring network is sparse, some regions of the 

world remain poorly constrained even after the introduction of a priori assumptions about 

flux distributions.  Therefore, to avoid an under-determined problem, synthesis Bayesian 

inversions often estimate fluxes for a small number of pre-specified regions loosely based 

on continental boundaries (e.g. Gurney et al., 2003, 2004; Law et al., 2003; Baker et al., 

2006), or, more recently, based on biomes or land cover types (e.g. Peters et al., 2007), 

while keeping the flux patterns within regions fixed.  This approach can lead to 

aggregation errors (Kaminski et al., 2001), where the inferred net flux estimate from a 

region can be biased by any inaccuracies in the flux patterns assumed within that region.  

In a few cases, sources and sinks have been estimated at finer scales to reduce such 

errors, by including a covariance matrix that describes the assumed spatial 

autocorrelation between fluxes (e.g. Rödenbeck et al., 2003; Rödenbeck, 2005). 
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As with all models, flux estimates and uncertainties derived from atmospheric 

inversions are sensitive to setup choices, such as the selection of observations, the 

transport model, prior information, prescribed flux patterns, and error covariance 

parameters.  Although errors associated with simulated transport have a large 

contribution to the observed inconsistencies between reported flux estimates from various 

inversion studies due to varying rates of inter-hemispheric transport and vertical mixing 

(Gurney et al., 2003), different simplifying assumptions and setup choices also can have a 

large impact.  For example, there is a growing awareness of the strong influence of these 

assumptions, especially in regards to the use of explicit prior flux estimates from bottom-

up models to define the magnitude and spatial distribution of fluxes (e.g. Michalak et al., 

2004; Rödenbeck, 2005).  As mentioned earlier, this influence not only contributes to 

aggregation errors, but can also cause a posteriori flux estimates to revert to a priori 

assumptions in under-constrained regions.  More importantly, estimates from synthesis 

Bayesian inversions are not independent from their explicit prior estimates, and therefore 

cannot be used directly to reconcile process-based understanding of flux behavior with 

the information content of atmospheric observations.  The sensitivity of estimates to other 

assumptions and setup choices has also been recognized, with researchers attempting to 

systematically quantify the magnitude and impact of model-data mismatch and a priori 

flux uncertainties (e.g. Engelen et al., 2002, 2006; Krakauer et al., 2004; Michalak et al., 

2005).   

Due to the strong influence of inverse modeling assumptions on estimated sources 

and sinks, there is a need for an inverse modeling approach for CO2 flux estimation that 

can more directly reflect the information content of available atmospheric measurements.  

Such an approach, based on a geostatistical inverse modeling framework (as described in 

Chapter 3), was proposed by Michalak et al. (2004).  This method aims to reduce the 

influence of modeling assumptions that are known to have a strong influence on flux 

estimates by (1) avoiding the use of bottom-up flux estimates for defining the magnitude 

and spatial patterns of fluxes, (2) estimating sources and sinks at resolutions that 

minimize the risk of aggregation errors, and (3) using a rigorous statistical framework for 

quantifying model-data mismatch and the degree of spatial autocorrelation in the flux 

distribution.  In this manner, the approach yields CO₂ flux estimates that are more 
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strongly representative of the spatial and temporal variability of CO2 fluxes as seen 

through the atmospheric measurement network.  The research presented in Chapter 4 

represents the first application of the geostatistical inverse modeling approach for 

estimating CO2 fluxes using atmospheric observations.   

2.1.2 Budgeting of CO2 surface exchange fluxes at regional scales  

Until recently, inversions could not be used to budget CO2 at regional resolutions 

due to the spatiotemporal limitations of the global network atmospheric CO2 flask 

network and the coarseness of global atmospheric transport models.  However, within the 

past decade, regional scale “top-down” estimates (e.g. Gerbig et al., 2003a) have become 

possible due in part to recent improvements in meso-scale transport models (e.g. Lin et 

al., 2003; Nicholls et al., 2004; Nehrkorn et al., 2010), which are able to utilize 

meteorological information at fine spatiotemporal resolutions, far beyond those applied at 

global scales.  In addition, continuous concentrations from a number of land-based towers 

have been made available (e.g. NOAA, www.noaa.gov/esrl; Environment Canada, 

http://gaw.kishou.go.jp/cgi-bin/wdcgg/catalogue.cgi).  These measurements have much 

finer temporal resolution (e.g. hourly) and better spatial coverage than the observations 

from the flask network.  As such, several studies (e.g. Carouge et al., 2010a, Carouge et 

al., 2010b, Schuh et al., 2010, Gourdji et al., 2010, Butler et al., 2010) have estimated 

regional-scale fluxes for either the North American or European continents.   

However, regional atmospheric inversions are much more complicated than 

global inversions, thereby requiring additional assumptions to constrain estimates.  For 

example, the use of continuous measurements in regional inversions puts more demands 

on atmospheric transport models (Geels et al., 2007; Gerbig et al., 2003a), requiring 

higher spatial resolutions, as well as the ability to reproduce diurnal planetary boundary 

layer (PBL) dynamics and synoptic shifts in transport (Carouge et al. 2010a).  As such, 

errors associated with transport are assumed to be larger in regional inversions compared 

to global inversions, and, therefore, the choice of observations to use within the inversion 

can significantly alter final flux estimates (Gourdji et al. in prep).  Additional 

complications relative to global inversions include the need to specify atmospheric CO2 

boundary conditions for the region of interest to account for the influence of fluxes that 

occurred outside of the domain of interest.  Regional flux estimates have been shown to 
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be very sensitive to the choice of boundary conditions (Peylin et al., 2005; Schuh et al., 

2010).  Finally high frequency continuous CO2 measurements tend to be located both in 

highly productive areas but also near major urban centers.  As such, the observations tend 

to be much noisier than flask measurements and contain multiple scales of variability.  

Ascertaining long term temporal trends from small-scale frequency or fossil fuel spikes 

pose unique challenges to regional inversions that use these concentrations. 

  Aggregation error is likely to be more serious with the use of continuous data 

since continuous data have such strong diurnal and synoptic flux variability (Law et al., 

2002).  To reduce aggregation errors, most regional inversion studies estimate fluxes at 

finer spatial and temporal resolutions than global inversions in order to account for the 

potential responses of various vegetation types, resolve fine-scale variability in regional 

transport, and isolate anthropogenic emissions (e.g. Gerbig et al., 2003a; Peylin et al., 

2005; Lauvaux et al., 2008; Schuh et al., 2010; Gourdji et al., 2010; Carouge et al., 

2010a).  Gourdji et al. (2010) showed that the choice of temporal estimation scale has a 

large impact on the aggregation errors in a 2004 North American regional inversion 

studied using measurements from 9 different towers.   From this study, it was concluded 

that a temporal scale of estimation that accounted for the diurnal cycle was best for 

avoiding temporal aggregation errors for North America.  Hence, Gourdji et al. (2010) 

estimated an average four day diurnal cycle (discretized into 3 hourly bins) to account for 

flux variability throughout the day.  

It is widely assumed that more continental measurements, along with 

improvements in modeling of atmospheric transport, will help overcome some of the 

complications of regional inversions, especially in areas with dense measurement 

coverage (Peylin et al., 2005; Gerbig et al., 2009; Matross et al., 2006; Lauvaux et al., 

2008).  However, this hypothesis has not yet been tested due to sparseness of regional 

networks.  At present, regional inversion that have focused on the North American 

continent have only been able to use concentrations from at most 10 tower locations to 

constrain estimates (e.g. Schuh et al., 2010, Butler et al., 2010).   These different North 

American inversions have yielded a wide spread of both monthly and annual sources and 

sinks presumably from different choices (e.g. boundary condition, scale of estimation, 

etc.) employed in each study as well as the choice of atmospheric transport.  As such, 
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regional budgets from atmospheric inversions remain highly uncertain and the 

information content of continuous measurement to constrain regional carbon budgets is 

unknown. 

Since the number of locations that continuously sample atmospheric CO2 in North 

America increased by almost fourfold from 2004 to 2008, there is now the opportunity to 

assess whether the expanded network can constrain regional budgets at monthly and 

annual timescales.  It remains to be seen if additional measurements will help limit the 

sensitivity of flux estimates to inversion choices.  Without understanding the influence of 

these measurements on estimates of sources and sinks of CO2, especially in the context of 

the other modeling choices associated with regional inversions, it is impossible to assess 

the incremental net benefit of adding more observations as opposed to focusing other 

inversion refinements, such as improving boundary conditions and regional transport or 

minimizing temporal aggregation error.  It is also crucial that we understand what 

knowledge these measurements are able to provide in terms of both anthropogenic and 

natural carbon cycling, and to develop tools on how to best extract both the small and 

large scale variability from continuous observations from regional networks.  

The research presented in Chapter 5 explores the impact of the expanding 

continuous atmospheric CO2 measurement network on the estimates of surface flux at 

various spatial (1°x1° to continental) and temporal (monthly and annual) scales within 

the North American Continent for 2008.   

2.2 Bottom-up Approaches 

As noted in Chapter 1, bottom approaches include both biospheric models and 

inventory data.  Biospheric models generally "scale-up" biophysical and ecological 

processes (such as gross photosynthesis and respiration) using relationships derived from 

mechanistic studies performed at a leaf or plant scale and at shorter or sporadic 

timeframes (Chen et al., 2003). For regional carbon budgeting, these estimates are then 

combined with inventory emission data such as Vulcan (Gurney et al., 2009) or the 

Global Fire Emissions Database (GFED v2 Giglio et al. (2006)) which account for fossil 

fuel emissions, disturbance, land use change, and biomass burning. Using the knowledge 

of small-scale causal mechanisms, biospheric models estimate carbon exchange for areas 

ranging in size from a specific location to continental regions at short (3 hour or daily) 
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(e.g., Simple Biosphere Model (SIB3) available at 3-hour resolution, Baker et al. (2008)) 

to longer (monthly, annual) time scales (e.g. Carnegie-Ames-Stanford Approach coupled 

with GFEDv2 (CASA-GFED), (http://www.ess.uci.edu/~jranders/); Lund-Postdam Jena 

(LPJ) Dynamic Global Vegetation Model, Sitch et al. (2003)).  The ultimate goals of such 

modeling endeavors is to both diagnose current and past regional and local carbon 

budgets as well predict future carbon cycling scenarios (Huntzinger et al., 2010). 

However, as shown in Figure 1.2, there are large discrepancies between flux 

estimates from different biospheric models (Huntzinger et al., in prep.).  In addition, 

bottom-up flux estimates coupled with atmospheric transport models have difficulty 

reproducing measured atmospheric CO2 concentrations (Heimann et al., 1998; Nevison et 

al., 2008; Dargaville et al., 2002; Denning et al., 2003). Although there may be several 

reasons for these inconsistencies, the spread of estimates require testing certain 

simplifying assumptions, e.g. that relationships between flux and their mechanistic 

controls linearly scale to larger regions or to large temporal resolutions.  As such, there is 

a need to study the relationships between critical biophysical and ecological processes 

and carbon exchange at resolutions larger than the plot scale at different timeframes.   

2.3 Empirical methods employed in flux tower studies 

The eddy covariance (EC) method provides the opportunity to study relationships 

between environmental datasets and surface flux exchange at an approximately 1km2 

scale at various timeframes, because it provides a direct measurement of the flux density 

between vegetation and the atmosphere (Baldocchi at al., 2008).  These measurements 

are also referred to as the net ecosystem exchange (NEE).  NEE estimates are derived 

from the covariance of the deviations in atmospheric CO2 concentrations and vertical 

wind speed from their mean concentrations at a given flux tower site (e.g. Canadell et al., 

2000; Baldocchi et al., 2001).  Eddy-covariance measurements are generally continuous 

in time providing ample temporal coverage (e.g. 30 minute averages) for long durations 

(e.g. greater than 5 yrs).  In addition, the observations are made in situ so they are 

generally non-intrusive compared to other field equipment such as flux chambers.   

Today, numerous research groups collect EC measurements forming regional networks 

such as CarboEuroflux, AmeriFlux, Fluxnet-Canada, China-Flux, AsiaNet, Ozflux and 

LBA (Brazil) which further combined into a global network (FLUXNET).  Towers are 
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located on temperate conifer and broadleaf forest, tropical and boreal forests, crops, 

grasslands, chaparral, wetlands, and tundra as well as in urban areas (Baldocchi et al., 

2000). 

These long term measurements provide an integrated perspective of the 

environment they represent and reflect the response of total surface flux (i.e. 

photosynthesis and respiration) to climatic changes (e.g. increased temperature), 

maturation of the environment (e.g. age of trees) and disturbances (e.g. insect outbreaks 

or fire) (Barr et al., 2007, Bradford et al., 2006, Gilmanov et al., 2006, Houghton et al., 

2000).  Although there can be large uncertainties associated with these half-hourly 

measurements (Richardson et al., 2006), NEE estimates have been used to improve 

understanding of the temporal variability of CO2 surface flux of particular ecosystems 

through statistically inferred relationships at daily or longer temporal scales (Law et al., 

2002).   

One of the benefits of using high frequency eddy-covariance data to investigate 

the relationship between fluxes and environmental factors is that both long and short term 

trends can be inferred from the measurements (e.g. Stoy et al., 2009).  Statistical 

approaches such as neural networks (e.g. Stoy et al., 2009) and linear regression (e.g. 

Law et al., 2002; Hui et al., 2003) have been used to understand the climatic controls of 

both the inter-annual and seasonal variability of carbon cycling at flux tower sites. 

Regression methods have the advantage of providing statistical relationships between 

given variables and flux.  However, traditional regression approaches are limited by (1) 

the approach used to select the variables to include in the regression, (2) the assumption 

of independent and identically distributed residuals, and (3) assumptions regarding the 

dependent variable (i.e., how to best decompose NEE into photosynthetic uptake and 

respiration).  Each of these limitations is further described within the proceeding 

paragraphs. 

The first of these limitations centers on the methods used to select the variables to 

include in the regression model, referred to henceforth as the model of the trend.  

Frequently, only a subset of available variables is included in the analysis (e.g. PAR, soil 

temperature, air temperature, LAI, etc.) (e.g. Urbanski et al., 2007) while other 

potentially important data are not used (e.g. friction velocity, Normalized Difference 
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Vegetative Index (NDVI),  etc.).  From this subset, every variable is typically regressed 

individually against flux measurements to infer relationships (Law et al., 2002; Hui et al., 

2003).  Such an approach could lead to environmental variables obscuring each other's 

effects (Faraway, 2005). For example, Gross Ecosystem Exchange (GEE, which 

represents the photosynthetic component of NEE) is a function of both air temperature 

and light (Blackman, 1905).  If each variable is regressed separately, the effect of air 

temperature could mask the effect of light, making this second variable appear not to be 

significant (Faraway, 2005).  This problem can be avoided if joint contributions between 

auxiliary variables were allowed.  Although some studies have included more than one 

variable in regression analyses (e.g. Hibbard et al., 2005), sequential methods based on F-

tests for selecting the variables used in the regression do not account for the joint 

contributions of all possible combinations of variables.   

Second, it is likely that the CO2 flux regression residuals will be temporally 

correlated, especially at sub-monthly scales.  Ignoring this correlation can lead to a 

misrepresentation of the relationship between an environmental variable and flux (e.g. 

Hoeting et al., 2006).  As such, temporal correlation must be assessed and included in 

both the model selection scheme and the statistical regression.  Although noted as a 

limitation (Law et al., 2002), previous studies have not accounted for correlation in 

regression residuals.   

The final limitation is related to the eddy-covariance measurements themselves.  

Conceptually, NEE is the small difference between two large fluxes, namely 

photosynthetic carbon uptake via gross ecosystem exchange (GEE) and release of CO2 

into the atmosphere through a combination of heterotrophic and autotrophic respiration 

(Rh+a).  Each of these fluxes is affected differently by environmental controls. In addition, 

variables such as light, nutrient availability, and water stress have complex interactions 

with each other and with each flux component, making it difficult to ascertain the 

influence of a particular variable on either GEE or Rh+a.  In past studies, statistical 

regression methods (such as simple and multiple linear regression) have been used to 

infer relationships between flux components (GEE or Rh+a) and either a single 

environmental variable or some predetermined combination of variables (e.g. Law et al., 

2002; Urbanski et al., 2007).  This requires the measured NEE signal to be separated into 
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GEE and Rh+a prior to the analysis.  This is generally achieved using one of three 

methods: (1) by subtracting the night-time NEE from the day-time NEE signal (Urbanski 

et al., 2007), (2) by deriving Rh+a from a regression using night-time fluxes at high 

friction velocity and an exponential transformation of soil temperatures (e.g. Law et al., 

1999a; Hibbard et al., 2005), or (3) by modeling GEE using photosynthetically active 

radiation (PAR).  Some studies have shown that these methods for dividing NEE into 

separate parts lead to large uncertainties in the inferred Rh+a (e.g. Janssens et al., 2001), 

possibly biasing inferred relationships.    

The research in Chapter 6 involves a new application of a geostatistical regression 

(GR) (described in Chapter 3) algorithm designed to elucidate processes controlling 

carbon exchange at various temporal scales at eddy covariance towers at the University 

of Michigan Biological Station (UMBS).  UMBS is one of the few sites where concurrent 

biometric and NEE measurements have been conducted along with annual assessments of 

carbon storage based on accounting methods (e.g. Curtis et al., 2002; Gough et al., 2008).   

GR addresses the first two limitations described above by employing a method to select 

the variables to include within the regression while also accounting for temporal 

correlation.  In regards to the third limitation, the ability of the GR method to separate the 

auxiliary variables associated individually with carbon uptake and release is also 

investigated.  The extensive research that has been conducted at UMBS provides a unique 

context for interpreting the results of the GR analysis.      

  



26 
 

CHAPTER 3 

Methods 

1.0 Background of geostatistical methods 

Geostatistical techniques, as extensions of traditional statistical models, are 

powerful, "data-driven" methods used for inference and estimation. However, unlike 

traditional statistical models that assume that observations are independently and 

identically distributed (i.i.d.), geostatistics can account for the underlying spatial or 

temporal correlation in the measurements. In some cases, traditional statistical models 

use a linear combination of one or more variables (referred henceforward as a model of a 

trend) to account for correlation in observations.  A trend can also be used to estimate 

statistical relationships between the observation variable (i.e., dependent variable) and 

those variables in the trend (i.e., auxiliary variables).  However, a model of trend still 

may not be able to capture the full extent variability in the observations due to the lack of 

explanatory variables or the presence of nonlinear relationships, etc.  When this occurs, 

the residuals, or the portion of the observations that is not explained by the model of the 

trend, are not random.  Non-random residuals can result in biased estimates and Type II 

errors (e.g. inferring a significant inferred relationship between the dependent and 

auxiliary variable when it actually it is not significant) (Ravishanker and Dey, 2002).  

Geostatistical methods have the ability to account for the underlying autocorrelation of 

the data better than traditional statistics (Chilès and Delfiner 1999).   

Geostatistical methods are used in this research to improve the general 

understanding of natural carbon cycling between the atmosphere and the terrestrial 

biosphere from currently available data (e.g. NEE measurements, observations of 

atmospheric CO₂ concentrations, auxiliary variables such as air temperature). 

Specifically, geostatistical methods allow for (i) the investigation of relationships 

between surface flux and auxiliary variables (e.g. temperature, net solar radiation), (ii) the 

assessment of surface flux variability that is not explained by a model of the trend, and 
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hence (iii) the estimation of CO₂ surface fluxes and associated uncertainties. Importantly, 

each of these items can be assessed at various spatial and temporal scales using 

geostatistics so that simplifying assumptions that are known to have a large influence on 

flux estimates, such as the scaling up of a relationship from one resolution to another, can 

be avoided. This section provides the background of the geostatistical approaches that 

form the framework for the specific research components outlined in later chapters. 

2.0 The geostatistical model 

The geostatistical model views an observed dataset as a regionalized variable 

representative of a realization from a random, i.e. stochastic, process (Wackernagel, 

2003). In this dissertation, the random process refers to the distribution of CO2 flux in 

space and/or in time.  In this case, a model of the trend (also referred to as a deterministic 

component) cannot explain the regional variable to the extent to which the residuals 

exhibit completely random behavior.  The geostatistical model assumes that the 

correlation in the residuals, and therefore the underlying random process, is dependent 

upon location in both space and time, 𝑥 (Olea, 1994) of the observations.  In other words, 

measurements that are closer to each other tend to be more similar than the ones taken 

further apart. 

Theoretically, the model of the random process, 𝐒(𝑥) can be expressed as the sum 

of a deterministic component (𝛍(𝑥)), or expected value, and a stochastic term (εx) 

representing zero-mean residuals.  The first component represents the large scale mean 

structure and can possibly depend on some variables related to the random process, i.e. 

auxiliary variables (Huang et al., 2007) while the second seeks to describe the variation in 

𝑺(𝑥) that cannot be explained by the deterministic component. 

𝐒(𝑥) = 𝛍(𝑥) + 𝛆𝑥      (3.1) 

As with multi-linear regression, the deterministic component captures the 

structure of the random process using a model of the trend.  This model can range in 

complexity from a single average to a linear combination of many variables that are 

related to 𝑺(𝑥). The trend itself is represented as a matrix 𝐗 (𝑚 × 𝑘) of 𝑘 auxiliary 

variables that are scaled by a (𝑘 × 1) vector of unknown drift coefficients (𝛃).  The 

individual columns in 𝐗 also are sometimes referred to as basis functions.  Even though 
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the individual basis functions are linearly related to 𝐒(𝑥) the basis functions themselves 

can be either linear or nonlinear functions of auxiliary variables, e.g. 𝑒𝑥𝑝(temperature), 

𝑠𝑖𝑛(latitude), etc. (e.g. Erickson et al., 2005).   

Geostatistical methods can be used to estimate the unknown drift coefficients, 𝛃, 

and their corresponding uncertainties, 𝜎𝜷2 for inference studies.  However, in most cases, 

geostatistical models infer these relationships to help with estimation of the random 

variable, (e.g. CO2 flux) at specific unsampled locations and/or times.  The estimates, 𝐬�, 

are representative of a spatial or temporal resolution (e.g. monthly estimate of CO2 for a 

1°x1° area) henceforward referred to as the scale of estimation. 

As mentioned, the second part of equation (3.1) 𝜀𝑥, models the residuals or 

portion of the random process that cannot be explained by the model of the trend.  In 

traditional statistics, it is assumed that residuals are identically and independently 

distributed (i.i.d.) as well as Gaussian.  However, in most environmental processes, 

including the distribution of CO2 flux, the residuals are generally spatially and/or 

temporally correlated, especially as the scale of estimation becomes smaller.  If the 

residuals are second-order stationary, i.e. they have a constant mean and the covariance 

of a pair of residuals is only dependent upon the distance between their two locations 

(pictorially shown in Figure 3.1), the correlation in the residuals can be modeled using a 

stationary variogram (e.g. Cressie, 1993).  The variogram of the residuals is given by: 

𝛾(ℎ𝑖,𝑗) = (1/2)E[(𝜀(𝑥𝑖) − 𝜀�𝑥𝑗�)2]    (3.2) 

where ℎ𝑖,𝑗 is the scalar separation distance between locations 𝑥𝑖 and 𝑥𝑗, 𝛾(ℎ𝑖,𝑗) is the 

semivariance for points separated by a distance ℎ𝑖,𝑗, and E[ ] denotes the expected value 

operator.  
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    There are many types of variogram functions that are available to model the 

expected behavior of the residuals in equation (3.2) (e.g. Chilès and Delfiner, 1999).  

However, the exponential variogram function has been shown to aptly model the spatial 

semivariance of surface CO2 flux and their residuals (Michalak et al., 2004; Mueller et 

al., 2008; Gourdji et al., 2008) and is defined as: 

𝛾(ℎ𝑖,𝑗|𝜎𝐐2, 𝑙𝐐) = 𝜎𝐐2 �1 − 𝑒𝑥𝑝 �−�ℎ𝑖,𝑗
𝑙𝐐
���     (3.3) 

The practical range of correlation is approximately 3𝑙𝐐, beyond which 𝜎𝐐2 represents the 

expected variance of independent flux residuals.  An exponential model assumes spatial 

correlation while also allowing for continuous but not differentiable small-scale 

variability.  The corresponding covariance function is: 

𝑄𝑖,𝑗(ℎ𝑖,𝑗|𝜎𝐐2, 𝑙𝐐) = 𝜎𝐐2𝑒𝑥𝑝 �−�
ℎ𝑖,𝑗
𝑙𝐐
��     (3.4) 

The exponential variogram can be modified to model the temporal semivariance of CO2 

measurements and their residuals (Mueller et al., 2010) so that the corresponding 

covariance function becomes: 

 

Figure 3.1: Illustration of correlation of residuals is a function of their location.  
The colors of the circles in the left plot indicate different residual values.  The plot 
on the right represents the squared difference of the residual values as a function of 
their separation distance (equation 3.2). The plot is adapted from a version by Tyler 
Erickson. 
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𝑄�ℎ𝑖,𝑗|𝜎𝑛,𝑄
2 ,𝜎𝐐2, 𝑙𝐐� =  �

𝜎𝑛,𝑄
2 + 𝜎𝑄2,                        ℎ𝑖,𝑗 = 0

𝜎𝑄2𝑒𝑥𝑝 �−
ℎ𝑖,𝑗
𝜏𝑄
� ,             ℎ𝑖,𝑗 > 0

�    (3.5) 

where the practical temporal range of correlation is approximately 3τ, beyond which 

𝜎𝑛,𝑄
2 , +𝜎𝑄2 represents the variance of independent flux residuals. The nugget, 𝜎𝑛,𝑄

2 , 

represents variability at time scales below the averaging time used for the observation 

and measurement error.  The nugget, 𝜎𝑛,𝑄
2 , is not unique to temporal analysis, but is not 

included in Equation 3.4 as the variability at spatial distances that are less than the 

smallest separation distance between flux estimates is assumed to be zero and  

uncorrelated. 

3.0 Geostatistical approaches 

The specific applications used in this research are (i) geostatistical regression 

(GR) and (ii) geostatistical inversion modeling (GIM). The principle difference between 

these two methods is whether the random process that is being modeled is sampled 

directly (GR) (as with eddy-covariance measurements) or indirectly (GIM) (as with 

atmospheric observations of CO2).  This difference affects how each model is able to deal 

with the resolution of data and estimates.  For example, for GR, as with multilinear 

regression, all auxiliary and dependent variables have the same spatial and temporal scale 

and are collected at coincident locations and times.  Conversely, GIM (as is the case with 

all inversions) translates information across temporal and spatial scales because the 

observations are made at an earlier time and at a different location than either auxiliary 

variables or estimations.  In GIM, the observations are linked to the auxiliary variables 

and estimates using an atmospheric transport model. 

Both methods are considered best linear unbiased estimation (BLUE) methods 

where the estimates yield the lowest mean square error (e.g. Kitanidis, 1997).  Assuming 

that the residuals are normally distributed, both geostatistical regression (GR) and the 

geostatistical inverse approach (GIM) can be generally expressed mathematically 

(presented in a similar manner in Zhou et al. (2009)) as: 

� 𝛀 𝐅
(𝐅)𝑇 𝟎� �

𝚲𝑇
𝐌
� = �

𝛀𝐨
𝐅𝐨𝑇
�     (3.6) 

Table 3.1 defines 𝛀, 𝛀₀, 𝐅, and 𝐅₀ for each application: 
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Table 3.1: Components for Geostatistical Regression (GR) and Geostatistical Inverse 

Modeling (GIM) 

 

 𝛀 𝛀₀ 𝐅 𝐅o𝑇 

GR 𝐐(𝑛𝑥𝑛) 𝐐(𝑛𝑥𝑛) 𝐗(𝑛𝑥𝑘) 𝐗(𝑘𝑥𝑛)
𝑇  

GIM 𝐇(𝑛𝑥𝑚)𝐐(𝑚𝑥𝑚)𝐇(𝑚𝑥𝑛)
𝑇 + 𝐑(𝑛𝑥𝑛) 𝐇(𝑛𝑥𝑚)𝐐(𝑚𝑥𝑚) 𝐇𝐗(𝑛𝑥𝑘) 𝐗(𝑘𝑥𝑚)

𝑇  

 

In this table, 𝑚 denotes the number of flux estimates for the GIM approach while 

the number of observations is 𝑛 for both methods.  As such, 𝐐 represents the covariance 

matrix characterizing the spatiotemporal covariance of the residuals for GIM and GR 

using equation (3.4 or 3.5).  As mentioned in Section 2.0, 𝐗 defines the 𝑘 components, or 

covariates, of the spatiotemporal model of the trend and is (𝑚 × 𝑘) for GIM and (𝑛 × 𝑘) 

for GR.  𝛃 is a 𝑘 × 1 vector of unknown drift coefficients that scale the components in 𝐗.  

As such, 𝐗𝛃 is the resulting trend, where 𝛃  is estimated as part of the inversion process 

or regression. For GIM, 𝐇 is a 𝑛 × 𝑚 matrix defining the sensitivity of each CO2 

concentration measurement to an estimated surface flux location as derived from an 

atmospheric transport model.  The 𝐇 matrix is used in the inversion to translate 

observational information across temporal and spatial scales into flux space.  

The model data mismatch covariance matrix 𝐑 (which is only employed in GIM 

in this work) is usually modeled as a diagonal matrix which assumes the variances along 

the diagonal are independent from one another.  The diagonal entries 𝜎𝑅2 represent errors 

associated with measurement, transport, aggregation, and representation errors for each 

observation. As described in Chapter 2, Section 2.1, aggregation errors occur when fluxes 

are estimated at spatial and temporal resolutions that are too coarse to account for the 

sensitivity of observations only to a small portion of the underlying flux variability 

(Kaminski et al., 2001). Representation errors refer specifically to the mismatch in scale 

between a point-based measurement of CO2 and the coarser resolution of the transport 

model and driving meteorology (e.g. Tolk et al., 2008).  Further descriptions of each of 

these components as applied to the specific research of the dissertation are presented in 

relevant Chapters.     
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The set of covariance parameters (𝜃𝐐) can include 𝜎𝑛,𝑄
2 ,𝜎𝑄2, 𝜏𝑄 , 𝑙Q but the specific 

set depends on the specific geostatistical application. For GIM, the set of covariance 

parameters (𝜃𝑅) is the number of different 𝜎𝑅2 in the diagonal.  Parameters (𝜃𝐐,𝐑) for both 

the spatiotemporal covariance matrix (𝐐) and model data mismatch covariance matrix 

(𝐑) are optimized using the Restricted Maximum Likelihood method presented in Section 

5.0. 

For GIM, solving the linear system in equation 3.6 yields the weights 𝚲 (𝑚 × 𝑛) 

and Lagrange multipliers, 𝐌 (𝑘 × 𝑚).  𝚲 and 𝐌 and are used to define the flux estimates 

(𝐬�) using the measurements, 𝐳 (e.g. Kitanidis 1995; Michalak et al., 2004), as: 

𝒔� = 𝚲𝐳,       (3.7) 

Alternatively, the flux estimates (a posteriori) can be expressed in the same 

manner as equation 3.1.  That is, the fluxes can be considered as the sum of the 

deterministic model of the trend (𝐗𝛃�) and a spatiotemporally correlated stochastic 

component:   

𝐬� = 𝐗𝛃� + 𝐐𝐇𝑇(𝐇𝐐𝐇𝑇 + 𝐑)−1�𝐳 − 𝐇𝐗𝛃��     (3.8)  

The uncertainties associated with the flux estimates along with the covariances between 

flux uncertainties are provided the following covariance matrix (a posteriori):  

𝐕𝑠̂ = −𝐅₀𝐌+ 𝛀 − 𝛀o
𝑇𝚲𝑇      (3.9) 

The estimates of the drift coefficients, 𝛃�, and their uncertainty covariance (𝐕𝜷�) are 

calculated as in Chilès and Delfiner (1999), as: 

𝛃� = (𝐅𝑇𝛀⁻¹𝐅)⁻¹𝐅𝑇𝛀⁻¹𝐲      (3.10) 

𝐕𝜷� = (𝐅𝑇𝛀⁻¹𝐅)⁻¹      (3.11) 

where 𝒚 is either the best estimates in the case of GIM (i.e. 𝚲𝐳) or the measurements 𝐳, 

for GR.  The diagonal elements of 𝐕𝜷�  represent the uncertainties associated with the drift 

coefficients and the off-diagonal terms in 𝐕𝜷�  represent their error covariances between 

𝛃�’s. 

GIM will be used in Chapters 4 and 5 to assess the information content of both 

global and regional observational networks to estimate monthly flux at continental and 

regional scales, respectively.  Chapter 6 presents the first application of GR to investigate 
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the temporal scale dependency of the statistical relationships between auxiliary variables 

and eddy covariance flux estimates. 

4.0 Variable selection techniques 

    As mentioned, the model of the trend is one of two portions of the geostatistical 

model.  As such, it is important to correctly identify the variables to include within 𝐗.  As 

noted by Burnham and Anderson (1998), identifying the structure of the deterministic 

component is conceptually more difficult than estimating drift coefficients and associated 

uncertainties.  Traditionally, candidate models that include different sets of auxiliary 

explanatory variables are chosen based on mechanistic studies, or general knowledge of 

the problem.  The challenge is to choose the appropriate dimensionality of a model that 

will fit a given set of observations (Schwarz, 1978).  On one hand, as more variables are 

added to the model of the trend, the deterministic component is better able to capture the 

variability in the observations.  On the other hand, although the fit of the model to the 

data will invariably improve with additional parameters, some of these may serve only to 

reproduce spurious correlations (Forster, 2000), thereby confounding the analysis.  

Therefore, the overall aim is to balance the amount of variability explained by adding 

variables to the trend along with the loss of the degrees of freedom inherent to a more 

complex model. 

One of the most widely used model selection techniques is the Bayes Information 

Criterion (BIC) (Schwarz, 1978) because it is able to evaluate non-nested competing 

models and their joint probabilities (Ward, 2008).  This method does not use the 

traditional hypothesis testing paradigm and, therefore, cannot be used to make 

conclusions regarding the statistical significance of a parameter or reject a particular 

model.  Instead, BIC ranks how well the data supports each model, taking into account 

both the goodness of fit, i.e. sum of the squared residuals, and the number of variables in 

each candidate model.  BIC is generally favored over other information criteria methods 

when explanation and inference (not solely prediction) are of principle interest 

(Wasserman, 2000) because it penalizes the loss of degrees of freedom more than other 

methods, resulting in a smaller model.  

BIC is loosely based on the idea that candidate models should be compared by 

their posterior probabilities, which, when the prior odds of each model are equal is 
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equivalent to Bayes factors (Wasserman, 2000).  The BIC or Schwarz criterion (Schwarz, 

1978) of a particular model, 𝐗𝑗, of 𝑘𝑗 auxiliary variables and 𝑛 NEE measurements is 

given by: 

𝐵𝐼𝐶𝑗 = −2𝑙𝑛(𝐿�𝑗) + 𝑘𝑙𝑛(𝑛)    (3.12) 

Assuming that the residuals follow a Gaussian distribution, the likelihood of a particular 

model is given by: 

𝐿�𝑗�𝐗𝑗𝛃�𝑗|𝐲� = 
1

2π
1
n|Ω|

1
2
 𝑒𝑥𝑝 �− 1

2
(𝐲 − 𝐗𝑗𝜷)𝑇𝛀−1(𝐲 − 𝐗𝑗𝜷)�, (3.13) 

where 𝑛 is the number of observations, 𝐲 is either the best estimates in the case of 

geostatistical inversion modeling (i.e. 𝚲𝐳) or the measurements 𝐳 for geostatistical 

regression, and 𝛃 are the unknown drift coefficients. 𝛀 is the spatio-temporal covariance 

matrix given by equation (3.5) whose parameters (𝜃𝐐,𝐑), are estimated using Restricted 

Maximum Likelihood method presented in Section 5.0. The negative log-likelihood of 

equation (3.13) is: 

−𝑙𝑛𝐿�𝑗�𝐗𝑗𝛃�𝑗|𝐲� = 𝑛
2

ln(2𝜋) +  1
2

ln|𝛀| + 1
2

(𝐲 − 𝐗𝜷)𝑇𝛀−1(𝐲 − 𝐗𝜷).   (3.14) 

As seen in Kitanidis (1997) and Hoeting et al. (2006), the third term can be modified to 

remove any bias associated with the unknown drift coefficients, 𝛃, by setting 𝛃 =

(𝐗𝑇𝛀−1𝐗)−1𝐗𝑇𝛀−1𝐲.  After removing the constant term, replacing 𝛃, rearranging terms, 

and combining with equation (3.13), the newly adapted BIC equation that can account for 

correlated residuals becomes: 

𝐵𝐼𝐶𝑗 = ln|𝛀| +  [𝐲𝑇(𝛀−1 − 𝛀−1𝐗(𝐗𝑇𝛀−1𝐗)−1𝐗𝑇𝛀−1)𝐲] + 𝑘ln(𝑛). (3.15) 

For GR, in the special case of independent residuals, 𝛀 =  𝐐 = σ2𝐈, where I is an identity 

matrix, and equation (3.14) reduces to the more conventional form where RSS is the 

residual sum of squares: 

𝐵𝐼𝐶𝑗 = −𝑛ln 𝑅𝑆𝑆
𝑛

+ 𝑘ln(𝑛)     (3.16) 
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For conventional BIC applications, it is assumed that the set of true explanatory 

variables and the observations, conditioned on these variables, are independent and 

identically distributed, i.e. in the geostatistical regression case, 𝛀 = 𝐐 = 𝜎²𝐈.  However, 

as of yet, a BIC has not been applied for spatially nor for temporally correlated residuals 

(Huang, 2007).  This dissertation presents the first study of this modified BIC approach. 

  Equation (3.14) and the BIC approach for identifying the model of the trend is 

used in Chapter 6 to identify the set of variables that best explain the variability in eddy 

covariance fluxes at daily, seasonal, and inter-annual timescales.  The method was 

designed and developed for this dissertation and therefore, is an overall contribution of 

the research.  Note that the approach was further extended and applied to a geostatistical 

inversion approach mentioned in Chapter 5 but is not a part of this dissertation research.  

5.0 Restricted Maximum Likelihood (RML) 

Along with the deterministic component (𝐗𝛃) in equation (3.8) and equation 

(3.10), the model-data mismatch, 𝐑, (for GIM) and spatiotemporal covariance, 𝐐 (for 

GIM and GR) matrices, and thereby their respective covariance parameters, play a critical 

role in the geostatistical model.  The Restricted Maximum Likelihood (RML) approach 

(e.g. Kitanidis, 1995) provides an objective means for identifying covariance parameters 

that maximize the likelihood of available observations, 𝐳.  In practice, RML minimizes 

the negative logarithm of the likelihood of the available data with respect to a set of 

parameters 𝜃𝐐,𝐑 (e.g. in equation 3.4, optimizing for τ, 𝜎𝑛,𝑄
2 ,𝜎𝑄2) yielding the following 

objective function: 

 𝐿𝜃𝐐,𝐑 =

(1/2)𝑙𝑛|𝛀| + (1/2)𝑙𝑛|𝐅𝑇𝛀⁻¹𝐅| + (1/2)𝐳𝑇(𝛀⁻¹ − 𝛀⁻¹𝐅(𝐅𝑇𝛀⁻¹𝐅)⁻¹𝐅𝑇𝛀⁻¹)𝐳  (3.17) 

All terms are as described in Table 3.1.  RML accounts for the loss in degrees of 

freedom associated with the estimation of the deterministic component, i.e. 𝐗𝛃 and 

therefore, provides unbiased estimates of the covariance parameters (Swallow and 

Monahan, 1984).  RML is used in Chapters 4, 5, and 6 to optimize for the covariance 

parameters used in both GR and GIM.  
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6.0 Goodness of fit (𝝌²) test for GIM  

A goodness of fit test, i.e. 𝜒²  test, can be used with GIM to assess whether the 

optimized covariance parameters from RML, 𝜃𝐐,𝐑, are consistent with the amount of 

variability in the flux estimates.  The  𝜒²  is calculated using the covariance parameters, 

𝜃𝐑, (used to characterize the portion of the flux not explained observations) with the 

following equation: 

 𝜒² = (1/𝑛)(𝐳 − 𝐇𝐬𝑐𝑖)𝑇𝐑⁻¹(𝐳 − 𝐇𝐬𝑐𝑖)    (3.18) 

since the (𝐳 − 𝐇𝐬𝑐𝑖) from GIM should follow a 𝜒² distribution Michalak et al (2004). 𝐬𝑐𝑖 

are conditional realizations, 𝐳 are observations of atmospheric CO2 and 𝑛 is the total 

number of observations used in the inversion. A conditional realization is an equally 

likely flux distribution that follows the correlation structure, 𝐐, and reproduces the 

observations z within the measurement error as provided in 𝐑 (Michalak et al. 2004).  

Tarantola (2005) describes that the 𝜒² values are expected to be close to 1.  If the values 

of 𝜒²  are much larger than 1, the covariance parameters 𝜃𝐑  underestimate the ability of 

the inversion to reproduce the variability in the observations whereas if they are much 

lower than 1, the inversion is able to reproduce the measurements more accurately than 

the covariance parameters suggest.  As such, 𝜒²  values can provide a means to verify that 

the covariance parameters (as optimized by RML) are consistent with the inversion setup. 

7.0 Advantages and limitations of the geostatistical approach  

As shown throughout the Chapter, one of the distinct advantages the geostatistical 

approaches has over other Bayesian inversion and regression methods is that the 

approach maximizes the extent to which the observations can inform each component of 

the geostatistical model.  For example, covariance parameters that have been specified in 

previous studies using “expert knowledge” are optimized using the atmospheric 

observations using RML.  In addition, the geostatistical approach uses more statistical 

approach for selecting variables to include within the model of the trend compared to 

other regression studies.  As such, estimates (both fluxes and drift coefficients) as well as 

their associated uncertainties reflect the information content of the atmospheric 

observation to infer carbon cycling dynamics. 
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Because the estimates and uncertainties are data-driven they reflect the 

information regarding source and sink distribution contained within the observations 

including the limitations of the measurements.  For example, with GIM we expect that 

flux estimates in poorly-constrained regions to revert to the model of the trend while 

having wide associated uncertainty bounds.  In addition, any uncertainty associated with 

the relationship between flux and a variable in the trend in GR will be included in the 

uncertainty estimates.  That is, any error that is associated with an auxiliary variable will 

ultimately reduce the significance within the trend.  Therefore, the geostatistical approach 

is not the best choice for every study that aims to investigate carbon cycling.   

Nevertheless, the geostatistical methods are very useful for research, as with this 

dissertation, that involves assessing the degree to which atmospheric data themselves can 

constrain fluxes or statistical relationships.  The methods are also useful for obtaining 

more independent estimates from inversions, which is not possible using a synthesis 

Bayesian setup.  As mentioned in Chapter 1, independent estimates are necessary for 

inter-comparison studies with process-based models. 

The geostatistical approach, like any model, has assumptions in both the 

deterministic and stochastic components that have the ability to impact estimates.  First, 

the model of the trend in GR assumes a linear relationship between the variables and flux.  

As noted in Section 2.0, the model of the trend can contain nonlinear functions of 

auxiliary variables (e.g. 𝑒𝑥𝑝(temperature)) but if the nonlinear relationship is unknown, it 

may be difficult to detect using the geostatistical approach or any statistical method for 

that matter.   In addition, in GR, there is uncertainty associated with selecting a single 

“best” model of the trend when multiple sets of auxiliary variables provide comparable 

fits to the available observations.  Finally, for estimation, the model relies heavily on the 

statistical model of the trend, estimated by the observations in well constrained areas, to 

regions that are not well covered by the network.  If the relationship between an auxiliary 

variable and flux is significantly different in the under-constrained area, then fluxes will 

be biased in areas with few measurement locations.   

The other major assumptions of the geostatistical model involve the stochastic 

component.  For example, in GIM as in most inversions, the structure of the covariance 

matrices assumes that the errors associated with transport and measurement are random 
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and independent from one another.  At finer spatial and temporal scales (as will be used 

in Chapter 5), this assumption may be violated as we know that the simulated regional 

transport has systematic errors due to representing more complex atmospheric behavior 

such as development of the planetary boundary layer (PBL) height throughout the course 

of the day.  In addition, some observation, especially those made at a high frequency, 

may have calibration drifts.  Any systematic errors associated with measurements and 

transport could bias both flux and uncertainty results from GIM or from most inversion 

models for that matter.   

In addition, the spatiotemporal covariance matrix assume that the difference in the 

magnitudes of the fluxes decays exponentially in all directions (in either space as in GIM 

or in time as in GR) and becomes constant beyond a correlation range defined by the 

correlation length covariance parameter.  However, it is likely that fluxes have multiple 

scales of variability.  In this case, the optimized spatiotemporal covariance parameters 

would be overestimated or underestimated, negatively impacting both flux and 

uncertainty estimates.  Again, a violation of this assumption is more likely at finer 

spatiotemporal scales.   

Many sensitivity tests were conducted for each study presented in this dissertation 

to try to assess the impact of many of the assumptions of the geostatistical applications.  

Although not shown for the sake of brevity within each Chapter, most of the major 

limitations were assessed and addressed for each objective.  Chapter 7 will outline future 

work required to address the major limitations that remain in terms of applying the 

geostatistical approach to infer carbon cycling dynamics. 
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CHAPTER 4 

Global monthly averaged CO2 fluxes recovered using a geostatistical inverse 

modeling approach 

This Chapter addresses objective 1 of the dissertation and involves the use of atmospheric 

CO2 observations to estimate global monthly CO2 surface flux at a 3.75° latitude × 5° 

longitude resolution for 1997-2001. Overall, this research quantifies the degree to which 

the global observational network can inform the distribution of CO2 fluxes at various 

spatial and temporal scales.   

1.0 Introduction 

  As discussed in Section 2.1.1 in Chapter 2, flux estimates and uncertainties 

derived from atmospheric inversions are sensitive to a priori assumptions, such as the 

selection of observations, the transport model, prior information, prescribed flux patterns, 

and error covariance parameters. These differences lead to the observed inconsistencies 

between reported flux estimates from various inversion studies. There is a growing 

awareness of the strong influence of these assumptions, especially in regards to the use of 

explicit prior flux estimates from bottom-up models to define the magnitude and spatial 

distribution of fluxes (e.g., Michalak et al., 2004; Rödenbeck, 2005). This influence not 

only contributes to aggregation errors, but can also cause a posteriori estimates to revert 

to prior assumptions in underconstrained regions. As such, estimates from synthesis 

Bayesian inversions cannot be used directly to reconcile process-based understanding of 

flux behavior with the information content of atmospheric observations. The sensitivity 

of estimates to other assumptions has also been recognized, with researchers attempting 

to systematically quantify the magnitude and impact of model-data mismatch and a priori 

flux uncertainties (e.g., Engelen et al., 2002; Engelen, 2006; Krakauer et al., 2004; 

Michalak e al., 2005).  

Owing to the strong influence of inverse modeling assumptions on estimated 

sources and sinks, there is a need for an inverse modeling approach for CO2 flux 
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estimation that can more directly reflect the information content of available atmospheric 

measurements. Such an approach, based on a geostatistical inverse modeling framework, 

was proposed by Michalak et al. (2004). This method aims to reduce the influence of 

modeling assumptions by (1) avoiding the use of bottom-up flux estimates for defining 

the magnitude and spatial patterns of fluxes, (2) estimating sources and sinks at 

resolutions that minimize the risk of aggregation errors, and (3) using a rigorous 

statistical framework for quantifying model-data mismatch and the degree of spatial 

autocorrelation in the flux distribution. In this manner, the approach yields CO2 flux 

estimates that are more strongly representative of the spatial and temporal variability of 

CO2 fluxes as seen through the atmospheric measurement network.  

This work presents the first application of the geostatistical inverse modeling 

approach for estimating CO2 fluxes using atmospheric observations. The objectives of 

this work are to (1) explore the ability of the approach to constrain global fluxes with a 

level of uncertainty comparable to synthesis Bayesian inversions, (2) identify the 

information content of available observations with regard to the global CO2 flux 

distribution and its variability at various spatial and temporal scales, and (3) elucidate the 

impact of prior assumptions used in synthesis Bayesian inversions on flux estimates from 

previous studies. 

Monthly-averaged CO₂ fluxes are estimated at the resolution of the implemented 

atmospheric transport model, 3.75° latitude by 5° longitude, for 1997-2001, using 

observations from a subset of the NOAA-ESRL cooperative air sampling network.  To 

further avoid the use of a priori assumptions, fossil fuel fluxes are not assumed known, 

contrary to past inverse modeling studies.  Instead, this research estimates total flux, 

including biospheric, oceanic, and anthropogenic contributions, which avoids the 

possibility of aliasing the uncertainties and seasonality of fossil fuel emissions (Gurney et 

al., 2005) onto the estimated biospheric or oceanic flux signal.  Estimated fluxes are 

compared at various spatial and temporal scales to bottom-up estimates of biospheric 

(Randerson et al. 1997), oceanic (Takahashi et al., 2002), and fossil fuel (Brenkert 1998) 

fluxes, as well as estimates from the synthesis Bayesian inversion estimates of the 

TransCom3 Level 3 intercomparison (Baker et al., 2006) and the Rödenbeck et al. (2003) 

study.  A companion piece of work (Gourdji et al., 2008) explores the ability of auxiliary 
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environmental variables (e.g. air temperature, leaf area index, etc.) to further constrain 

flux distributions within the geostatistical inverse modeling framework, especially at fine 

spatial resolutions.  This companion work will not be presented as part of this dissertation 

but a summary of the findings from Gourdji et al (2008) is presented in Chapter 7. 

2.0 Methods 

The surface flux estimates presented in this chapter are obtained using a 

geostatistical inverse modeling approach (GIM); a full description of this method and the 

overall algorithm are presented in Michalak et al. (2004).  

The GIM approach involves minimizing the following objective function: 
 

𝐿𝑠,𝛽 = 1
2

(𝐳 + 𝐇𝐬)𝑇𝐑−1(𝐳+ 𝐇𝐬) + 1
2

(𝐬 + 𝐗𝛃)𝑇𝐐−1(𝐬 + 𝐗𝛃)    (4.1) 

where the vector 𝐳 (𝑛 × 1) represents the atmospheric CO2 measurements, and 𝐬 (𝑚 × 1) 

is the vector of unknown best estimates of surface fluxes. 𝐇 (𝑛 × 𝑚) contains the 

sensitivity of CO2 measurements to surface fluxes as derived from an atmospheric 

transport model (further described in Section 4.2), with units of ppm/(µmol/(m2s)).  

𝐗 is a known (𝑚 × 𝑘) matrix which is the model of the trend.  𝛃 are (𝑘 × 1) unknown 

drift coefficients, so that 𝐗𝛃� is the resulting trend. The two covariance matrices in the 

objective function, 𝐑 (𝑛 × 𝑛) and 𝐐 (𝑚 × 𝑚), balance the relative weight of the 

atmospheric data and the trend in the estimate on of fluxes, 𝐬�. The structure of 𝐑 and 𝐐 

covariance matrices are further described in Section2.4 and 2.5.   

Chapter 3 presents a further summary of the method presenting the system of 

linear equations (3.6) used to estimate the best estimates (𝐬�, 3.7), drift coefficients (𝛃� , 

3.10), and their associated uncertainties (𝐕𝑠̂, 3.9 and 𝐕𝜷� , 3.11).      

A schematic (Figure 4.1) is presented herein to help the reader understand the 

different model extensions.  In this work, the geostatistical approach is used to estimate 

monthly CO2 surface fluxes from January 1997 to December 2001 at a 3.75° latitude by 

5° longitude resolution.  Overall, the inversion estimates 3456 monthly fluxes for a total 

of 207,360 unknowns, using 2275 known observations from 44 measurement locations. 
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2.1 Observational data (𝐳) 

Fluxes are estimated using monthly-averaged CO2 concentration measurements 

from 44 of the measurement locations in the NOAA Earth System Research Laboratory 

(ESRL) Global Monitoring Division cooperative air sampling network (Tans and 

Conway, 2005) as shown in Figure 4.2.  The number of measurements for any given 

month ranges from 35 to 42, as some locations have missing data during the examined 

time period. 

The subset of the observational network used in this application is similar to that 

used in Rödenbeck et al. (2003), who used measurements from locations with 

observational data gaps of less than two months to ensure spatial and temporal 

consistency.  Although this approach limits the number of measurement sites used in the 

 

Figure 4.1: Schematic of geostatistical inversion components and algorithm.  White 
boxes indicate inversion inputs, light gray boxes indicate inversion steps, and dark 
gray boxes represent inversion outputs.  Gray circles indicate the sequence of steps in 
the algorithm. 
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analysis, it reduces the risk of flux estimates being unduly affected by monthly changes 

in the monitoring network (Law et al., 2003; Rödenbeck et al., 2003).  Two stations, SYO 

(Syowa Station, Antarctica, Japan) and GOZ (Dwejra Point, Gozo, Malta), are added to 

the measurement network used in Rödenbeck et al. (2003). 

 

2.2 Transport model (𝐇) 

Linear inverse modeling requires the formulation of a Jacobian matrix, H, 

representing the sensitivities of observations at each measurement location-month to a 

pulse of CO2 emitted at each estimation location-month.  This Jacobian matrix was 

derived from an adjoint implementation of the TM3 transport model (Heimann and 

Körner, 2003) which has a spatial resolution of 3.75° latitude by 5° longitude, 19 vertical 

levels and inter-annually varying winds derived from the National Centers for 

Environmental Prediction (NCEP) Reanalysis (Kalnay et al., 1996).  Transport 

information relating monthly-averaged CO2 observations to monthly grid-scale fluxes 

were calculated by Rödenbeck et al. (2003) for 1982-2001, and the subset for 1997 to 

2001 is used here. 

 

Figure 4.2: NOAA-ESRL cooperative air sampling network measurement 
locations (Tans and Conway, 2005) used in the current study.  Note that 
some locations do not have measurements for all months. 
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2.3 Model of the trend (𝐗𝛃) 

The flux distribution (𝐬) and the drift coefficients (𝛃) are estimated concurrently 

as part of the inversion.  The resulting estimated model of the trend (𝐗𝛃) represents the 

expected spatiotemporal pattern in the flux distribution: 

E(𝐬) = 𝐗𝛃       (4.2) 

The estimated a posteriori fluxes (𝐬�) are defined as the sum of this deterministic 

component (𝐗𝛃) and a stochastic component, which is a function of the a priori 

correlation structure in 𝐐 as described in Section 2.3.  Hence 𝐗𝛃, along with the a 

posteriori fluxes and uncertainties, largely reflects the information content of the 

atmospheric observations. 

For this application, the structure of the trend (𝐗) assumes a constant mean flux 

for all land and all ocean regions, as in the Michalak et al. (2004) study.  However, in this 

study, the mean land and ocean flux is allowed to vary seasonally, with a different 

average for each calendar month.  As such, the 𝐗 matrix has dimensions 𝑚 × 24, where 

within each column, all elements are zero except for ones corresponding to land or ocean 

gridcells for a given calendar month.  Thus, the expected value of surface fluxes for any 

gridcell and month is ultimately represented by a single unknown 𝛃, corresponding to a 

particular monthly mean of land or ocean flux.  Note that the Gourdji et al., 2008 

companion work incorporates auxiliary environmental variables into the model of the 

trend in order to better define grid-scale flux variability in the spatiotemporal trend. 

2.4 Spatial covariance matrix (𝐐) 

The covariance matrix 𝐐 (𝑚 × 𝑚) defines the a priori spatiotemporal 

autocorrelation of flux deviations from the unknown trend (𝐗𝛃) at the scale of the a 

posteriori flux estimates.  In the current implementation, spatial but not temporal 

correlation is assumed a priori.  Therefore, the 𝐐 matrix is block diagonal, with each 

block 𝐐𝑖,𝑖 having dimensions (𝑚𝑖 × 𝑚𝑖), where 𝑚𝑖 = 3456, i.e. the number of fluxes 

estimated every month at a 3.75° × 5° resolution.  Each block represents the spatial 

covariance between flux residuals at all pairs of estimation locations within a given 

month.  No a priori temporal correlation was assumed to avoid unrealistic smoothing of 
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relatively fast events such as leaf-out in spring.  The same block is repeated for all 

months of the inversion, i.e. 𝐐1,1 = 𝐐2,2 = ⋯ = 𝐐60,60: 

𝐐 =

⎣
⎢
⎢
⎡
𝐐1,1 𝟎 ⋯ 𝟎
𝟎 𝐐2,2 𝟎 ⋮
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝐐60,60⎦

⎥
⎥
⎤
      (4.3) 

  The covariance is assumed to decay exponentially with separation distance: 

Qi,j�ℎ𝑖,𝑗|𝜎2, 𝑙� =  𝜎𝑄2𝑒𝑥𝑝 �−
ℎ𝑖,𝑗
𝑙𝑄
�     (4.4) 

where ℎ𝑖,𝑗 is the separation distance between two estimation locations, 𝜎𝑄2 is the variance 

of flux residuals at large separation distances, and 𝑙 is the correlation range parameter 

such that the covariance approaches zero for separation distances on the order of 3𝑙.  The 

choice of the exponential covariance function is based both on the work of Michalak et 

al. (2004) and on a variogram analysis of the spatial variability of typical land and ocean 

bottom-up estimates.  An exponential model assumes spatial correlation while also 

allowing for continuous but not differentiable small-scale variability.  In this work, 

spatial correlation is assumed among land and ocean flux residuals but not between them, 

as different processes drive CO2 fluxes in each domain. 

The parameters  𝜎𝑄2 and 𝑙 are optimized using a Restricted Maximum Likelihood 

approach, as described in Chapter 3, equation 3.17.  Because the deterministic component 

of the flux distribution (𝐗𝛃) is constant for a given month for both land and ocean fluxes, 

the spatial covariance of the flux residuals simply represents the autocorrelation of the 

fluxes themselves for this particular application.  Note that this is not the case for a more 

complex model of the trend, as presented in the companion work (Gourdji et al., 2008).  

2.5 Model-data mismatch covariance matrix (𝐑) 

The model-data mismatch covariance matrix 𝐑 is a diagonal matrix whose 

elements represent the variances associated with measurement, transport, and 

representation errors (Engelen et al., 2002; Engelen 2006) for each observation location-

month.  In this study, the variances in 𝐑 are obtained by optimizing a single scaling factor 

(𝑐) applied to a vector of squared residual standard deviations (RSD's) for each 

measurement location.  The RSD's are monthly-averaged deviations from a smooth curve 
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fitted to all observations at every location (GLOBALVIEW-CO2, 2008).  This setup is 

similar to that used in Gurney et al. (2004), and assumes that the model-data mismatch 

uncertainty associated with each of the 44 locations scales proportionately with their 

squared RSD's.  This approach has been shown to yield results that are comparable in 

terms of residual statistics to more complex setups that separate measurement locations 

into multiple subgroups (Michalak et al., 2005).  In this setup, 𝐑 is defined as:   

𝐑 =  𝑐 ×

⎣
⎢
⎢
⎢
⎡𝜎𝐑𝑖,1

2 𝟎 ⋯ 𝟎
𝟎 𝜎𝐑𝑖,2

2 𝟎 ⋮
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝜎𝐑𝑖,𝑛

2 ⎦
⎥
⎥
⎥
⎤
     (4.5) 

where 𝜎𝑅𝑖
2  is the squared RSD for measurement location 𝑖. 

3.0 Results and Discussion 

3.1 Optimized covariance parameters 

     The optimized covariance parameters used to construct the a priori (𝐐) and 

model-data mismatch (𝐑) covariance matrices are presented in Table 4.1.  Results show 

that the inferred flux variability at a 3.75°× 5° resolution is higher for terrestrial fluxes 

relative to oceanic fluxes, with a land variance (𝜎𝐐𝑙𝑎𝑛𝑑
2 ) two orders of magnitude higher 

than that for the oceans (𝜎𝐐𝑜𝑐𝑒𝑎𝑛
2 ) and a terrestrial flux correlation length (𝑙𝑙𝑎𝑛𝑑) 

approximately half that of oceanic fluxes (𝑙𝑜𝑐𝑒𝑎𝑛).  This inferred regional variability is 

consistent with previous assessments of ocean and land fluxes that have shown that 

terrestrial fluxes are much more variable than their oceanic counterparts (e.g., Bousquet 

et al. (2000)).  Note that the variability at a 3.75°× 5° resolution may be different than 

that observed at finer spatial scales, because processes that drive small-scale fluxes, such 

as regional droughts or biomass burning, are averaged out over larger regions.   
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     The estimated correlation lengths presented here are longer than those used in 

Rödenbeck et al. (2003) (henceforth referred to as CR03), which were 1275 km for land 

and 1912 km for oceans.  These dissimilarities may be due to the differences in 

covariance parameter optimization schemes, bottom-up fluxes used to assess flux 

variability, and/ or other constraints.  For example, CR03 constrained the total amount of 

global a priori uncertainty to that reported for global land and ocean flux estimates by the 

IPCC (2001), and then downscaled this amount to the grid-scale.  The difference in 

correlation lengths implies that the scale over which measurements are assumed to be 

representative of the underlying flux distribution was smaller in the CR03 study relative 

to this work.  Because the spatial scales of flux variability may change from one 

geographic location to another, and different factors may drive this variability at smaller 

versus larger scales, it is difficult to directly validate the correlation length estimates 

presented in either of the two studies.  However, the differing assumptions regarding a 

priori information on a posteriori results from these studies will be further examined in 

Section 3.4.2. 

     The optimized scaling factor (𝑐), also presented in Table 4.1, produces model-data 

mismatch variances at individual measurement locations that range from 0.09 ppm to 5.3 

ppm.  The majority of these uncertainties are either similar to or somewhat higher than 

those employed by CR03 and Baker et al. (2006) (henceforth referred to as DFB06) for 

coincident locations (Figure 4.3).  One reason for the higher model-data mismatch 

estimates in the current work is the fact that DFB06 used smoothed Globalview 

(GLOBALVIEW-CO2, 2008) measurements, which are generally easier to reproduce 

Table 4.1: Optimized Model-Data Mismatch (𝐑) and Spatial Covariance 
Parameters (𝐐) with ±1 Standard Deviation.   
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than the flask measurements used here.  In addition, the geostatistical inversion presented 

in this work uses an a priori constant spatial mean for land and oceans per month, which 

may not be able to represent small-scale flux variability relative to studies using explicit 

prior flux estimates, particularly in under-constrained regions. 

     

The optimized scaling factor (𝑐) and the resulting model-data mismatch 

uncertainties were further evaluated using the 𝜒𝐑2 statistic for each measurement location 

using conditional realizations of the a posteriori flux distribution, as described in Chapter 

3, equation 3.18 and Michalak et al. (2005).  The 𝜒𝐑2 statistic averaged over all 

measurement locations is 1.0, indicating that measurements are reproduced to the degree 

assumed by the optimized model-data mismatch covariance matrix.  Because the 𝜒𝐑2 

 

Figure 4.3: Model-data mismatch standard deviation for observation locations used in 
this study and coincident locations used in CR03 and the DFB06. 
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statistic in this application is calculated using conditional realizations of flux, this statistic 

can also be evaluated for individual measurement locations (Michalak et al., 2005), as 

shown in Figure 4.4.  This figure demonstrates that most locations have 𝜒𝐑2 values that 

cluster around 1.0 with most deviating by less than +/- 0.5.  The 𝜒𝐑2 values for marine 

boundary layer sites have less scatter than for continental sites.  Two locations (Easter 

Island, Chile (EIC) and Hegyhatsal, Hungary (HUN)) in particular have relatively large 

𝜒𝐑2 values.  As such, the amount of uncertainty specified in the R matrix overestimates the 

ability of the inversion to reproduce measurements at these specific locations as noted by 

previous studies (e.g. Law et al. (2003)).  In future work, a more complex structure could 

be considered for the R matrix, similar to those examined in (Michalak et al., 2005), to 

account for the additional uncertainty at these locations. 

 

3.2 Drift coefficients (𝛃�) and uncertainties (𝛔𝜷�) 

     The drift coefficients and their associated uncertainties, representing monthly 

averages of terrestrial and oceanic fluxes, are presented in Figure 4.5.  As emphasized in 

 

Figure 4.4: 𝜒𝐑2 for each observation location calculated from conditional 
realizations of the a posteriori fluxes resulting from inversion with 
optimized covariance parameters. The solid line represents 𝜒𝐑2 = 1.0, 
which is also the mean 𝜒𝐑2 across stations. 
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Chapter 3, Section 2.0, the drift coefficients are estimated as part of the geostatistical 

inversion and therefore reflect the information content of the atmospheric measurements. 

     The terrestrial drift coefficients representing monthly land averages, including 

both fossil fuel emissions and biospheric sources and sinks, show a seasonal cycle which 

is noticeably more representative of the behavior of the Northern Hemisphere fluxes.  

This is an expected result given that the Northern Hemisphere is better constrained by 

atmospheric measurements, and that a larger fraction of land mass is north of the equator.  

Conversely, the average ocean monthly fluxes lack a strong seasonality.  These drift 

coefficients indicate that the oceans act as significant net sinks of CO2 in March, July, 

August and September.  As will be discussed in Section 4.4.1, the magnitude of this sink 

may be partially due to aliasing of the Northern hemisphere photosynthetic signal onto 

the oceans during these months.  Nevertheless, the ocean coefficients generally agree 

with other estimates of average ocean source/sink behavior (e.g. Takahashi et al., 2002).  

The uncertainty bounds for the ocean coefficients are narrower relative to their terrestrial 

counterparts, primarily because the inferred oceanic flux variability is smaller than that of 

land fluxes as indicated by the longer correlation length, 𝑙𝑜𝑐𝑒𝑎𝑛, and smaller sill variance, 

𝜎𝑜𝑐𝑒𝑎𝑛2 parameters presented in Section 3.1.  This low variability implies that limited 

knowledge about oceanic fluxes is sufficient to inform their overall mean behavior. 
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3.3 A posteriori grid-scale flux estimates (𝐬�) and uncertainties (𝝈𝒔�𝟐) 

     The a posteriori flux estimates, including anthropogenic sources and their 

associated uncertainties, are shown in Figure 4.6 at the recovered flux resolution of 

3.75°× 5° for the sample months of January and July, 2000.  In well-constrained areas, 

particularly in the Northern Hemisphere, the geostatistical inversion is able to estimate 

 

Figure 4.5: Estimated monthly land and ocean constants (𝛃) (+/-𝜎𝛃) in solid lines 
and +/-2𝜎𝛃) in dashed lines).  For the model of the trend used here, these 
coefficients represent the average monthly flux (𝐗𝛃) for land and ocean. 
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fluxes that generally correspond well with current understanding of CO2 sources and 

sinks.  While the uncertainties are too large to make definite conclusions about the sign of 

the flux at the grid-scale resolution, especially given the limited measurement network 

used in this study, the main objective of estimating fluxes at this fine scale is to obtain a 

set estimates that can be aggregated to larger resolutions, in a manner that minimizes 

aggregation errors associated with estimating directly at coarser scales.  As expected, 

areas of low uncertainty are generally located around measurement locations in regions 

defined in the TransCom analysis (DFB06) as Temperate Asia, Europe and Temperate 

North America (Figure 4.7).   

     Note that the inversion was designed to estimate fluxes everywhere, including ice-

covered regions, which are generally assumed to have no significant sources or sinks of 

CO2.  Although these regions could easily have been left out of the inversion, including 

them provides an opportunity to assess the performance of the approach for areas where 

fluxes are considered well known.  If estimates for Antarctica had shown significant 

fluxes at any spatial and temporal resolution, for example, this would have indicated a 

bias in the inversion setup or transport model.  In the presented results, none of the grid-

scale estimates for ice-covered regions are significantly different from zero at the 1𝜎𝑠̂2 

confidence level.  This also holds true when estimates are aggregated to continental 

and/or annual scales, which lends support for the ability of the approach to accurately 

identify fluxes for these regions. 
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Figure 4.7: Locations of 11 land and 11 ocean TransCom regions (e.g. Gurney et al., 
2003). 

 

Figure 4.6: Flux estimates (𝐬�) for (a) January and (b) July, 2000, and (c, d) their 
associated uncertainties (𝜎𝐬�).  Observation locations for each month are shown as 
white dots.  Note that the grid-scale fluxes should be interpreted together with their 
standard deviations, because many areas have high a posteriori uncertainties (e.g. 
Antarctica). 
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3.4 Aggregated comparison to existing CO2 flux estimates 

     Fluxes and their associated uncertainties are aggregated to the regions used in the 

TransCom intercomparison study (Gurney et al., 2003, 2004; Law et al., 2003; DFB06) 

(Figure 4.7).  The aggregated a posteriori fluxes from this application are then compared 

to estimates from previous studies in order to evaluate the ability of each method to 

constrain continental-scale fluxes, and to identify areas where estimates are consistent 

with results from other studies.  Inferred fluxes are compared to (1) an aggregated set of 

bottom-up flux estimates (described in Chapter 2, Section 2.2) with regional corrections 

for deforestation and re-growth, (2) the TransCom 3 Level 3 intercomparison study 

(DFB06) where monthly flux deviations were recovered at the continental-scale using the 

set of bottom-up fluxes as a priori estimates, and (3) the CR03 study, which estimated 

monthly flux deviations at a 7.5° latitude by 10° longitude resolution from a different set 

of a priori fluxes (i.e., fossil-fuel component from (Olivier et al., 2001), NEP from (Sitch 

et al., 2000) and ocean fluxes from (Gloor et al., 2003)).  Table 4.2 outlines the major 

components used in these top-down inversions compared to the geostatistical approach, 

in order to clarify the assumptions used in each study. 

The geostatistical inversion method relies more heavily on the information 

content of the atmospheric CO2 measurements relative to the other examined studies.  

Therefore, consensus among results would indicate regions where fluxes can be assumed 

to be relatively well understood, and therefore insensitive to the assumptions inherent in 

each study.  In areas where the surface flux estimates vary, the impact of model 

assumptions on each estimate are explored.  However, future research and/or more 

measurements may be required in order to reconcile flux estimates. 
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Table 4.2: Comparison of Inversion Setups. 
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3.4.1 Continental-scale seasonal flux comparison for year 2000 

     The estimated flux seasonality and uncertainties for the sample year 2000, shown 

in Figure 4.8, are comparable to the aggregated set of bottom-up estimates and estimates 

from DFB06.  CR03 monthly flux estimates were not available and are therefore not 

shown.  The figure demonstrates that the seasonality of fluxes from DFB06 and the 

geostatistical inversion agree particularly well for better-constrained regions (e.g. Europe 

and Australia), suggesting that the seasonality in these areas is relatively well understood.  

However, even in regions that are not well constrained by the current observational 

network, such as in Northern and Southern Africa, these two sets of flux results generally 

have similar magnitudes and seasonal variation.  These results support the contention that 

a geostatistical inverse modeling approach can be used to recover fluxes with comparable 

accuracy and precision to existing synthesis Bayesian approaches, without relying on 

bottom-up flux estimates to define the magnitudes and spatial patterns of prior 

information. 

     In many under-constrained areas where there are differences between estimates, 

both the DFB06 and the geostatistical results tend toward their prior assumptions, which 

are respectively the bottom-up flux estimates and the geostatistical model of the trend 

(𝐗𝛃�).  An example of this can be seen in the Tropical East Pacific, South Pacific, and 

Tropical West Pacific, where there is a lack of atmospheric observations.  The 

geostatistical estimates for these regions covary strongly, principally because the fluxes 

themselves tend to revert to the model of the trend.  In particular, flux estimates in many 

of these regions follow the seasonality reflected in the oceanic mean flux (Figure 4.5).  

The DFB06 estimates, in contrast, reflect their prior flux estimates, i.e. bottom-up 

estimates from Takahashi et al. (2002).  Since Takahashi et al. (2002) fluxes are based on 

extrapolated ship-track data, the ocean uptake predicted by the geostatistical inversion for 

this region likely reflects a lack of observational data rather than a true departure from 

previous estimates.  Overall, however, this result suggests that flux estimates for the 

Tropical East Pacific obtained by previous inversion studies were strongly determined by 

a priori fluxes, while those obtained from the geostatistical inversion tend to reflect the 

globally-averaged oceanic mean for this under-constrained region. 
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     The continental-scale estimates for the Northern high latitude regions (e.g. Boreal 

North America, Boreal Asia, Northern Pacific, and Northern Atlantic) differ from past 

estimates, particularly in July, August and September.  As mentioned in Section 3.2, the 

geostatistical a posteriori estimates may be affected by aliasing of a terrestrial 

photosynthetic signal onto adjacent ocean areas during the Northern Hemisphere summer 

months.  This land-ocean aliasing cannot be directly measured, but it can be qualitatively 

seen most clearly in the North Pacific and North Atlantic, i.e. in ocean regions that are 

contiguous with land masses that exhibit strong flux seasonality.  This aliasing can also 

be observed to a limited extent in past synthesis Bayesian inversion studies (e.g. DFB06), 

but tight a priori constraints on ocean fluxes limit the size of this effect, despite the fact 

that the atmospheric observations do not have sufficient information to accurately 

partition land and ocean fluxes.  This observation points to difficulties in using an 

atmospheric transport model to correctly partition land and ocean signals during specific 

months in these regions.  However, there is also a possibility that a portion of the anti-

correlation between adjacent land and ocean regions observed in the current study is 

reflective of true flux variability.  Note that the constant monthly mean assumption for 

land and ocean regions used in this study is not the cause of this aliasing, because results 

shown in the companion work (Gourdji et al. 2008) illustrate that using a more complex 

model of the trend to capture more of the expected spatial variability of fluxes over land 

reduces the observed anti-correlation between land and ocean fluxes, but does not 

eliminate it. 

     Because the geostatistical method accounts for spatial correlation in the flux 

distribution, which effectively allows the application to use the measurement information 

over larger scales compared to the DFB06 study, the uncertainty bounds on the 

geostatistical flux estimates (𝜎𝑠̂2) are also typically either comparable to, or narrower 

than, those from the previous work at this aggregated scale.  The relatively small 

variability of the ocean fluxes, as inferred by RML and specified in the a priori spatial 

covariance matrix 𝐐, also translates into narrower a posteriori uncertainty bounds on the 

geostatistical ocean flux estimates.  Conversely, the geostatistical uncertainties are higher 

than those of the DFB06 study in a few well-constrained terrestrial regions (e.g. Europe 
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and Australia), principally because the TransCom study used more measurement 

locations in these areas. 

 

3.4.2 Inter-annual flux variability comparison 

     Figure 4.9 presents mean-deviated annual moving averages of the a posteriori 

flux estimates for the geostatistical inversion, DFB06 and CR03.  The estimates from the 

latter two studies include both fossil fuel emissions from Brenkert (1998) and an inter-

annual fossil fuel component from DFB06 for consistency.  The plot suggests that there is 

good agreement between the three studies with regard to the terrestrial inter-annual 

variability for most regions.  One exception is Tropical America, where the CR03 fluxes 

display much more inter-annual variability relative to the other two sets of estimates.  

This may be due to the higher a priori uncertainty used by CR03 for this region relative 

 

Figure 4.8: Monthly best estimates (𝐬�) aggregated to 22 TransCom regions with 1𝜎𝐬� 
confidence intervals for year 2000 for geostatistical inversion, DFB06, and bottom-up 
estimates (Randerson et al., 1997; Takahashi et al., 2002; Brenkert, 1998) used as 
priors in DFB06. DFB06 estimates include fossil fuels from Brenkert (1998) for 
consistency. 
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to both the DFB06 study and the amount of variability assumed by the a priori 

covariance for the geostatistical application.  As a result, the inter-annual variability of 

the DFB06 and geostatistical inversion results for this area may be more realistic.  For 

most other regions, the geostatistical inversion recovers inter-annual variability that is 

comparable to DFB06 and CR03, particularly in better-constrained regions. 

     For the ocean regions, the geostatistical mean-deviated fluxes show little inter-

annual variability relative to fluxes from DFB06 and CR03.  This difference is only 

significant in the Temperate East Pacific and South Pacific, where fluxes are highly 

influenced by the El Niño Southern Oscillation (ENSO).  In these regions, the DFB06 

results show a significantly greater CO2 uptake than the others from the beginning of 

1997 to the middle of 1998, and more outgassing in 2000.  DFB06 used a richer 

measurement network in this region than either of the other two studies, which may have 

helped to inform fluxes during these years (e.g. Patra et al., 2005). 

     As with the seasonal results presented in Section 3.4.1, the geostatistical inversion 

flux estimates have comparable uncertainty bounds (𝜎𝑠̂2) to those from CR03 or DFB06, 

except in regions where TransCom used a more extensive observational network (e.g. 

Temperate Asia, Australia, Tropical Asia, and Europe).  Differences in correlation length 

likely have little impact on the difference in a posteriori uncertainties between the 

geostatistical inversion and the CR03 study at this scale, because the geostatistical 

inversion was found to be relatively insensitive to this parameter (within the range 

examined by these two studies) for fluxes aggregated to continental resolutions.  Instead, 

differences in the a posteriori uncertainty relative to CR03 are likely due to the a priori 

uncertainties used in the two studies, and the fact that CR03 assumed a spatially-variable 

a priori land uncertainty (𝜎𝐐𝑙𝑎𝑛𝑑
2 ) proportional to Net Primary Production (NPP).  These 

results reinforce the fact that a posteriori uncertainties reflect not only the information 

provided by atmospheric measurements, but also the a priori covariance assumptions. 
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3.4.3 Annually averaged aggregated sources and sinks 

     Figures 4.10a and 4.10b present annually-averaged, aggregated land and ocean 

flux estimates for the 22 TransCom regions for the geostatistical inversion, DFB06, 

CR03, and the bottom-up fluxes.  All fluxes represent averages for the period 1997 to 

2001.  Unlike other presented results, annual averages of fossil fuel emissions from 

Brenkert (1998) were subtracted a posteriori from the geostatistical estimates, in order to 

make them comparable to the biospheric fluxes reported by CR03 and DFB06.  The 

uncertainty bounds, however, include the total uncertainty estimated for the sum of these 

two flux components.  Because annually-averaged fossil fuel emissions are better 

understood than their seasonality (Gurney et al., 2005), subtracting inventory fossil fuel 

 

Figure 4.9: Mean-deviated de-seasonalized fluxes with 1𝜎𝐬� confidence intervals for 
1997-2001 for geostatistical inversion, DFB06, and CR03. DBF06 and CR03 
estimates include fossil fuels from both Brenkert (1998) and an inter-annual 
component as specified by DFB06 for consistency.  Confidence intervals for all 
estimates are at 1𝜎𝐬� .  Estimates are presented for the 22 TransCom regions. 
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emissions from the geostatistical estimates at the annual scale should provide an accurate 

estimate of the biospheric fluxes inferred using the presented approach. 

     For seven TransCom continental regions (Boreal North America, Temperate 

North America, Northern Africa, Boreal Asia, Temperate Asia, Tropical Asia and 

Australia), none of the three inverse modeling studies yield fluxes that are significantly 

different from zero, and the estimated fluxes vary among themselves by less than one 

GtC/yr.  For three of the other continental regions (Tropical America, South America, 

Southern Africa), the large differences (significant at 1𝜎𝑠̂2 for the first region) in both sign 

and magnitude between DFB06 and CR03 may be due to their use of different terrestrial 

prior flux estimates (i.e. CASA estimates of net ecosystem exchange (NEE) (Randerson 

et al., 1997) in DFB06 vs. LPJ estimates of NEE (Sitch et al., 2000) in CR03).  For 

example, whereas LPJ estimates a 0.1GtC/yr sink in Tropical America, CASA predicts a 

0.56 GtC/yr source.  In contrast, given that the geostatistical estimates better reflect the 

information content of the atmospheric data, results tend to show intermediate values for 

these regions. 

     Estimates for the final terrestrial region, Europe, also vary between studies.  The 

use of different measurements for this relatively well-constrained region across studies 

most likely explains this discrepancy.  For example, an additional measurement location 

(GOZ) was used in the geostatistical inversion compared to the CR03 study.  The 

stronger European sink in the DFB06 study may also be related to their use of an 

expanded measurement network.  However, Michalak et al. (2005) also showed that flux 

estimates for Europe were highly sensitive to the choice of a priori flux and model-data 

mismatch uncertainties for synthesis Bayesian inversions.  Overall, the comparison points 

to the considerable influence of the choice of observations, inversion set-up and prior flux 

estimates on inferred fluxes, even for regions that are generally considered to be well-

constrained by the measurement network.  This is especially true when looking at net 

annual fluxes, which represent a relatively small residual between large seasonal sources 

and sinks. 

     For all ocean regions, the geostatistical annually-averaged fluxes show significant 

sinks with little variation between estimates.  Particularly, the Tropical Indian and the 

Tropical East Pacific ocean estimates reflect more neutral results than those from the 
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other studies, with DFB06 and CR03 reporting a significant source of around 0.6 GtC/yr 

for the latter region.  This is consistent with the seasonal results presented in Section 

3.4.1, which suggests that the geostatistical oceanic fluxes tend to be influenced by the 

estimated monthly mean for poorly-constrained regions.  An analysis of the off-diagonal 

a posteriori covariance terms (𝐕𝑠̂) aggregated to the 22 TransCom regions shows that 

oceanic flux estimates in poorly-constrained regions rely on the long correlation lengths 

specified in the a priori covariance matrix (𝐐) due to the lack of atmospheric 

observations.  The large positive a posteriori cross-covariances for adjacent ocean 

regions also suggest that the confidence bounds shown in Figure 10b may be 

underestimated for these regions. 

     Finally, note that the companion work (Gourdji et al., 2008) shows that the 

annually-averaged estimates presented here are consistent with those from an inversion 

that includes auxiliary environmental variables in the model of the trend for most 

continental-scale land regions. 
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4.0 Conclusions 

     This research presents the first application of a geostatistical inverse modeling 

approach for estimating global monthly fluxes of CO2 using atmospheric CO2 

concentration data, without the use of pre-defined flux patterns or a priori assumptions 

 

Figure 4.10a and 4.10b: Mean (a) biospheric and (b) oceanic flux (GtC/yr) for 
geostatistical inversion, DFB06, CR03, and bottom-up flux estimates (Randerson et 
al., 1997; Takahashi et al., 2002). Solid and dashed lines represent 1𝜎𝐬� and 
2𝜎𝐬� respectively. Fluxes from all studies are averaged from 1997 to 2001. Estimates 
are presented for the 22 TransCom regions. 
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about flux magnitudes. Results demonstrate that the existing atmospheric monitoring 

network can be used to estimate surface fluxes and their associated uncertainties at a 

3.75° × 5° resolution, which limits aggregation errors inherent to inversions conducted at 

coarser scales. A posteriori fluxes aggregated to the 22 TransCom regions have 

uncertainties that are comparable to those reported by previous synthesis Bayesian 

inversions at monthly and inter-annual time scales. Overall, this work demonstrates that 

the presented approach provides a valuable data-driven alternative to synthesis Bayesian 

inversion methods, by avoiding many a priori assumptions inherent to aggregation, 

uncertainty estimation, and the magnitude and spatial patterns of flux distributions. 

     At the grid-scale, geostatistical flux estimates are most influenced by the limited 

information content of the available atmospheric measurements, and therefore have 

correspondingly large uncertainties.  At this resolution, flux distributions reflect the 

assumption of a constant model of the trend, and rely more heavily on the inferred 

autocorrelation of the flux distribution, yielding smooth spatial variability.  Conversely, 

synthesis Bayesian inversions tend to revert to their own prior assumptions about flux 

variability at this scale, but this variability is prescribed a priori and is also not derived 

from the information provided by atmospheric data.   

     The value in the presented approach is that it provides strongly atmospheric data-

driven estimates of surface fluxes, which has several potential additional benefits.  First, 

the flux estimates and uncertainties provide a valuable basis for comparison to estimates 

from other inverse modeling studies, which can help explain the influence of model 

assumptions on recovered fluxes.  Second, by limiting the number of a priori 

assumptions, the geostatistical approach may highlight potential difficulties inherent to 

inverse modeling approaches that may otherwise go unnoticed.  The observed possible 

land-ocean aliasing provides one example, suggesting that either this behavior had been 

previously undetected or that the limited atmospheric measurement network used here is 

not able to fully differentiate land and ocean fluxes in Temperate North America, Boreal 

Asia and adjacent ocean basins.  In addition, results show that the limited atmospheric 

network does not provide independent information about ocean fluxes for large areas of 

the Earth, further highlighting the need for additional observations in the global oceans.  

Overall, the presented approach provides an ideal basis for further work towards 
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reconciling top-down and bottom-up estimates of fluxes, because, contrary to synthesis 

Bayesian inversions, it yields estimates that are independent of explicit prior flux 

assumptions based on bottom-up estimates. 
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CHAPTER 5 

Use of the 2008 continuous measurement network to estimate regional fluxes for 

North America 

This Chapter addresses objective 2 of the dissertation, by using atmospheric CO2 

observations to estimate 1° x 1° fluxes for the North American continent for 2008.  The 

work assesses the ability of the expanding network of continuous CO₂ measurements to 

constrain monthly fluxes for North America.     

1.0 Introduction 

Atmospheric CO2 inverse models, i.e. “top-down” approaches, have been used for 

carbon budgeting and to study carbon cycling at biome to continental scales at a variety 

of timescales. Top down approaches take advantage of the information available in 

atmospheric CO2 concentration measurements to infer both the spatiotemporal variations 

and the magnitudes of CO2 sources and sinks.  Since there is a time delay between a time 

at which a flux occurs and when it can be detected by an observation, inversion models 

rely on an atmospheric transport model to link carbon exchanges at the earth’s surface 

with atmospheric observations of CO2. Thus, the transport model translates a rate of 

carbon exchange at the surface from a given area at a specific time into a mixing ratio as 

measured by atmospheric CO2 concentrations at different tower locations.  Traditionally, 

global Eularian transport models have been used with flask samples of CO2 from mostly 

marine boundary sites representing background air in global inversions to infer 

continental scale fluxes (e.g. Gurney et al., 2003; Rödenbeck et al., 2003; Baker et al., 

2006; Mueller et al., 2008; Gourdji et al., 2008).   

More recently, regional inversions have used continuous data collection at 

continental sites to infer more fine-scale fluxes such as biome-scale sources and sinks 

(e.g. Carouge et al., 2010a, Carouge et al., 2010b,Schuh et al., 2010, Gourdji et al., 2010, 

Butler et al., 2010).  Monthly 1°x1°, biome, and continental fluxes from regional 

inversions have also been compared to estimates from mechanistic models, which scale-
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up process-based understanding of photosynthesis and respiration to larger scales 

(Gourdji et al., in prep.).  Such comparisons hope to show which bottom-up models and 

at what spatiotemporal scales are most consistent to fluxes estimated primarily from the 

atmospheric data (Gourdji, in prep.).  Hence, the use of continuous data within an 

inversion holds the promise of (i) quantifying carbon budgets and associated uncertainties 

at scales that may be informative for policy management and (ii) developing a means to 

reconcile CO2 flux estimates from mechanistic models and top-down approaches.  

The use of continuous measurements in an inversion requires careful 

consideration due to the unique characteristics associated with the towers and/or location 

of the towers that continuously sample atmospheric CO2.  Accurately linking 

measurements to fluxes via simulated atmospheric transport can be challenging for many 

of the tower locations.  For example, measurement locations in regional networks tend to 

be located in highly productive areas.  Towers also are more likely to be sited near major 

urban centers for easy accessibility.  Therefore, the observations tend to be noisier (i.e., 

contain greater random variability) than flask measurements. Theses tower measurements 

also incorporate multiple scales of variability or both near and far-field fluxes (e.g. 

Gerbig et al., 2009; Gourdji et al., in prep).   

Ascertaining long term temporal trends from small-scale measurement variability 

or fossil fuel spikes pose unique challenges to regional inversions that use continuous 

concentrations.  In addition, many of the new towers are sited in areas with complex 

terrain or meteorology, (e.g., tops of mountains or at the coasts). These are regions were 

atmospheric transport modeling is most challenging, particularly in terms of accurately 

representing atmospheric mixing (i.e., convective turbulence and advective winds) and 

boundary layer heights.  Finally, in 2007, some relatively short (less than 200m and in 

many cases less than 10m) AmeriFlux flux towers began to measure continuous CO2, 

which raises questions regarding the spatiotemporal representation of the measurements.  

It is also uncertain whether an atmospheric transport model can appropriately link a 

measurement from heights of 10m or less to a distribution of fluxes at spatial scales of 1° 

x 1° or greater. 

There are several studies (using both real and synthetic data) that have examined 

the relative impact of setup choices on the ability of a regional inversion to estimate 
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carbon flux (e.g., Carouge et al., 2010a; Carouge et al., 2010b; Lauvaux et al., 2008; 

Gourdji etal., 2010; Göckede et al., 2010).  Although Gerbig et al. (2009) argues that 

continuous measurements can only “see” fluxes near a tower, in a synthetic data study in 

Europe Carouge et al. (2010a) found with additional observations the error associated 

with regional estimates was reduced substantially.  However, these studies have only 

been able to use observations from a small number of tower locations given the limited 

size of continental networks.  Hence, most of the estimation domain remained under-

constrained by the observations, and, therefore, the inversions had to rely more on other 

constraints, such as the use of explicit prior flux estimates, to help constrain estimates.  

Thus, the conclusions regarding flux estimations drawn from previous works may have 

been more of a reflection of the specific a priori choices employed in each study rather 

than the ability of measurements to estimate regional fluxes.  More importantly, regional 

flux estimates from previous inversions that were based on limited measurement 

networks are too inconsistent to provide reliable annual carbon budgets at the biome and 

continental scale. 

Many earlier inversion studies have cited the lack of continuous measurements as 

one of the two the most important (along with simulated transport) limiting factors for 

carbon budgeting at regional scales using top-down methods (e.g. Cauroge et al., 2010a; 

Cauroge et al., 2010b; Schuh et al., 2010; Göckede et al, 2010; Gerbig et al, 2009).  

During 2008, the NA measurement network expanded from the 10 towers of 2004 

(10TN) to 35 continuous CO2 measurement locations or towers (35TN). Many of these 

new sampling locations are located in previously unconstrained regions. Thus, for the 

first time certain areas of the continent are now relatively well covered by the network 

such as the Mid-Continent Intensive (MCI) region in Wisconsin, Iowa, and Minnesota.  It 

is widely assumed that these additional measurements, along with improvements in 

modeling of atmospheric transport, will help improve the ability to locate and quantify 

terrestrial CO2 sources and sinks at smaller spatial scales at a variety of timeframes.  

However, the extent to which these measurements will improve inversion results is not 

yet known.  As such, there is a need to assess to what degree the continuous 

measurements from the expanded network can help constrain regional budgets at monthly 

and annual timescales for a range of spatial scales (e.g., from 1°x1° to the continental 
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scale).  Without understanding the impact of these additional measurements have on 

estimating fluxes, especially in context of the other inversion choices of regional 

inversions, it is impossible to assess the incremental net benefit of expanding the network 

as opposed to focusing other limitations, such as improving boundary conditions or 

regional atmospheric transport. 

2.0 Study objectives 

The goal of this study is to assess the impact of the expansion of the regional 

measurement network of continuous CO2 observations on top-down estimates, as 

opposed to other inversion choices known to have a large influence on inversion 

estimates. Specifically, this study tests the impact of the three choices: (1) selection of 

observations (in space and time); (2) the spatial and temporal scale at which to estimate 

fluxes, and (3) the selection of boundary conditions that specify atmospheric CO2 

contributions from fluxes outside of the regional domain. Geostatistical inverse model 

(GIM) is used to assess the influence of these three sets of choices, because GIM relies 

more directly on the atmospheric data to estimate fluxes at fine spatiotemporal scales, and 

optimize covariance parameters, relative to other Bayesian inversion approaches  (e.g. 

Baker et al., 2006; Peters et al., 2007; Butler et al., 2010). 

Thus, the analysis is designed to test two hypotheses.  The first hypotheses is that 

including more measurements (both spatially and temporally) improves flux estimates 

and reduces their corresponding uncertainties, especially in areas that previously were 

under constrained by the measurement network. The second hypothesis is that including 

more measurements helps minimize the impact of other inversion choices. This stems 

from the idea that carbon budgets should be based more heavily on observations than 

assumptions.  The results of testing these hypotheses will help determine how much 

information continuous measurements are able to provide in terms carbon budgeting at 

different spatiotemporal scales, and which setup choices are best to extract both the small 

and large scale variability from the additional observations. 

The study assesses the influence of three inversion choices on the estimated fluxes 

post-aggregated to various spatial and temporal scales: (1) at the monthly grid-scale, (2) 

at spatially aggregated areas at the monthly timescale, (3) at annually averaged and 

spatially aggregated areas.  Each of these spatiotemporal scales has relevance for 
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investigating carbon cycling dynamics.  The spatial patterns represented in grid-scale flux 

estimates help to reconcile “top-down” and mechanistic understanding of carbon flux 

(Gourdji et al., in prep.).  In addition, the monthly budgeting of regional areas at the size 

of states or biomes helps to improve our understanding of the behavior of ecosystem 

scale sources and sinks necessary both for predicting future flux scenarios developing 

carbon accounting schemes.  Finally, annual budgeting for the continent and for specific 

regions within the continent has policy relevance in terms of complying with 

international treaties such as the Kyoto protocol. 

Other setup choices, specifically the use of a particular atmospheric transport 

model and the choice of explicit prior estimates, are not considered in this study.  

Transport models are assumed to have a large impact on regional fluxes obtained from 

inverse models.  As mentioned, simulated transport links measurements to fluxes via 

simulated atmospheric transport but accurately modeling transport is challenging.  For 

example, atmospheric transport models have difficultly simulating rapid changes in 

planetary boundary height, advective winds, nighttime jets, and synoptic weather 

patterns, etc.  However, the choice of which observations to use throughout the day is 

indirectly coupled to transport error. As such, the study aims to use measurements at 

times of day when transport can be trusted.  The effect of the choice of an explicit prior is 

also not included in this analysis because GIM does not use explicit prior information to 

help constrain flux estimates, and thus avoids any potential biases associated with this 

assumption.  Regardless, the outcome of the work can help inform all regional inversions 

modeling approach for CO2 flux estimation so that estimates can more directly reflect the 

information content of available atmospheric measurements instead of the choices of 

selection of observations and the spatial and temporal scale at which to estimate fluxes. 

Since the study assesses the information content of the measurements in the NA 

network for 2008, two networks are employed in the research, i.e. 35 towers (35TN) 

available in 2008 and 10 towers (10TN) available in 2004.  Some of measurement sites in 

the NA network have been used previously, including observations from tall (greater than 

300m), intermediate towers (between 30m and 300m) as well as marine boundary layer 

(MBL), to estimate fluxes for NA. For example, the measurement sites include the 10 

tower network in Gourdji et al. (2008); Gourdji et al. (in prep) and the 19 tower network 
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used by National Oceanic Atmospheric Agency’s (NOAA) Carbon-Tracker (CT) 

inversion (http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/).  These measurements are 

used in both a set of synthetic and real data inversion as will be explained in the 

following section.  

3.0 Methods and data 

This section provides the methods and data used to test the two hypotheses stated 

earlier, i.e. the extent to which more spatial and temporal observations improve inversion 

flux estimates as opposed to other inversion choices.  The section outlines the inversion 

method used for the analysis, the observations used within the study, and the different 

setup choices employed within the analysis. 

3.1 GIM approach 

The geostatistical inversion method (GIM) has been shown to provide strongly 

atmospheric data-driven estimates of surface fluxes at the continental scale (Mueller et 

al., 2008, Gourdji et al., 2008). The method can also be used at regional scales to yield 

monthly carbon budgets.  Two recent studies have proven the method at these finer 

scales.  First, GIM was applied to a NA regional domain (Gourdji et al. 2010) using 

synthetic observations. The synthetic observations were created for 9 tower locations 

from meteorological data for 2004 along with a known set of biospheric fluxes.  The 

results from this study demonstrated that GIM is able to infer relatively unbiased 

estimates of monthly net continental CO2 surface fluxes at the biome scales (Gourdji et 

al., 2010) in the absence of transport model error. GIM has also been used in conjunction 

with real data to infer monthly and annual carbon budgets for NA for both the biome and 

continental scales for 2004 (Gourdji et al., in prep.). 

GIM is used for the analysis presented herein precisely because it requires fewer 

assumptions known to influence estimates when compared to other Bayesian inversion 

methods, and is therefore better suited to extract the information content of the 

atmospheric observations. For example, GIM does not rely on an explicit set of prior flux 

estimates.  Other Bayesian inversion approaches use explicit prior fluxes as derived from 

a biospheric model and combined with fossil fuel inventories and fire emission estimates 

to help constrain flux estimates due to atmospheric mixing and the temporal and spatial 
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limitations of the atmospheric observations.  Instead, GIM employs a statistical trend 

where coefficients are optimized with the atmospheric data as part of the inversion.  If the 

trend is as simple as a set of mean fluxes in both time and space (as used at the global 

scale in Mueller et al. (2008)), and the inversion relies almost exclusively on the 

information content in the CO2 observations to budget fluxes.  The flux estimates from 

this type of inversion set-up, therefore do not incorporate any errors inherent to the 

magnitude or structure of the explicit priors (Gourdji et al., in prep).  In addition, the flux 

estimates and uncertainties provide a valuable basis for comparison to estimates from 

other “top-down” and mechanistic studies, because the budgets can be relatively 

independent of other methods.  Finally, by limiting the number of assumptions, the 

geostatistical approach highlights potential difficulties inherent to the inverse modeling 

approach that may otherwise go unnoticed (Mueller et al., 2008).  

There have been several applications of GIM at the global and regional scales.  A 

full description of the method and algorithm can be found in Michalak et al. (2004), 

Mueller et al. (2008), Gourdji et al.(2008), Gourdji et al. (2010),and Gourdji et al. (in 

prep.).  Chapter 3 also presented a summary of the method. 

The GIM approach involves minimizing the following objective function: 

𝐿𝑠,𝛽 = 1
2

(𝐳 − 𝐇𝐬)𝑇𝐑−1(𝐳 − 𝐇𝐬) + 1
2

(𝐬 − 𝐗𝛃)𝑇𝐐−1(𝐬 − 𝐗𝛃)   (5.1) 

where the vector 𝐳 (𝑛 × 1) represents the atmospheric CO2 measurements, and 𝐬 (𝑚 × 1) 

is the vector of unknown best estimates of surface fluxes. 𝐇 (𝑛 × 𝑚) contains the 

sensitivity of CO2 measurements to surface fluxes as derived from an atmospheric 

transport model (further described in Section 3.5), with units of ppm/(µmol/(m2s)).  𝐗 

is a known (𝑚 × 𝑘) matrix which is the model of the trend. 𝛃 is a vector(𝑘 × 1) of 

unknown drift coefficients, so that 𝐗𝛃� is the resulting estimated trend. The two 

covariance matrices in the objective function, 𝐑 (𝑛 × 𝑛) and 𝐐 (𝑚 × 𝑚), balance the 

relative weight of the atmospheric data and the trend in the flux estimate, 𝐬�. The structure 

of 𝐑 and 𝐐 covariance matrices are further described in Section 3.4. 

Minimizing equation 5.1 with respect to the unknown fluxes, 𝐬, and drift 

coefficients, 𝛃, yields a linear system of equations presented in Chapter 3, equation 3.6.  

The geostatistical inverse problem involves estimating both 𝛃� and 𝐬� (e.g. Michalak et al., 
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2004) using equations 3.8 and 3.10 in Chapter 3.  Thus, the best estimates of flux from 

the inversion can be regarded as a combination of a statistical trend (𝐗𝛃�) and a spatio-

temporally correlated stochastic component.  The a posteriori uncertainties associated 

with 𝐬� are a function of the covariance matrices, 𝐑 and 𝐐, the structure of 𝐗, and the 

transport matrices 𝐇, and are expressed by equation 3.9.  The a posteriori uncertainties 

associated with 𝛃�  as well are obtained from equation 3.10 in Chapter 3. 

Equations 3.8 and 3.9 provided in Section 3 are used to estimate fluxes as well as 

associated a posteriori uncertainties at a 1°×1° resolution for 2008, with the domain 

including all land grid cells within the range of 10°N to 70°N and 50°W to 170°W, 

yielding 2635 estimations locations.   

3.2 Temporal estimation scale 

Regional inversions that use continuous data are more susceptible to temporal 

aggregation errors, because continuous measurements have strong diurnal and synoptic 

flux variability (Law et al., 2002; Carouge et al., 2010a; Gourdji et al., 2010). Temporal 

aggregation error results when the estimation resolution is too coarse and cannot properly 

account for the variability in either the transport of fluxes or the fluxes themselves. 

Carouge et al. (2010a) suggested that 4-day flux estimates at a spatial resolution 

of 5° x 5° be post-aggregated to 10 days and approximately 10° x 10° to minimize 

temporal aggregation errors in a European synthetic data study.  Gourdji et al. (2010) also 

showed the impact of temporal aggregation errors when estimating flux in a NA synthetic 

data study at different temporal scales (e.g., 8-day, 4-day, 3hr etc.).  The Gourdji et al. 

(2010) study advocated for estimating 4-day fluxes that are divided into 3-hourly time 

blocks to account for the diurnal cycle (henceforward referred to as 4Ddiurnal).  The 

study also noted that a 3-hourly flux resolution would additionally reduce temporal 

aggregation errors, but the gain in flux accuracy may not be worth the large 

computational expense. 

Since many of the new tower sites in the NA network are located in areas with 

highly variable climate and synoptic weather patterns, the use of towers in the 2008 

network may exacerbate problems associated with temporal aggregation errors.  As such, 

this study employs two different estimation scales, 4Ddiurnal and 3-hourly, resulting in 
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the estimation of approximately 2 million and approximately 8 million flux estimations, 

respectively, for the entire year. 

Given that we estimate not only the fluxes, but also their full a posteriori 

covariances, computational challenges arise in estimating covariance parameters, 

performing variable selection, and running the inversion itself at these estimation scales.  

The yearly real data inversion using the 4Ddiurnal scale can be run in a single batch 

inversion.  However, the 3-hourly scale must be run monthly to obtain monthly a 

posteriori uncertainties.  The monthly inversions are run with a two-week overlap on 

either end of the month to ensure that fluxes for the month are constrained by the monthly 

observations.  Unfortunately, by running 12 monthly batch inversions, aggregated annual 

a posteriori uncertainties associated with the 3-hourly 𝐬� will be underestimated because 

the uncertainties do not consider covariance between flux uncertainties from different 

months.  As such, annual aggregated uncertainties will not be shown. 

3.3 Model of the trend (𝐗) 

The 𝐗 (𝑛 × 𝑝) matrix defines the statistical model of the trend in GIM where each 

column of 𝐗 is an individual component of the trend.  The 𝛃 values as estimated by the 

inversion define the linear statistical relationship between each component of the model 

of the trend and the estimated fluxes.  In this study, the inversion associated with a 

4Ddiurnal scale employs an 𝐗 that accounts for an average monthly diurnal cycle defined 

by 8, 3-hourly blocks.  Since the 4Ddiurnal inversion is run for a full year, 𝐗 consists of 

96 columns so that the diurnal cycle is allowed to vary monthly.  For the inversions that 

involve estimating 3-hourly fluxes, the model of the trend has only 8 columns to 

represent the monthly average diurnal cycle as the inversion is run separately for each 

month.  For both cases, the model of the trend is held constant in space for all times.  

3.4 Covariance matrices (𝐐,𝐑) 

The covariance matrix 𝐐 is an (𝑚 × 𝑚) matrix representing the spatiotemporal 

correlation structure of the component of the fluxes not explained by the model of the 

trend 𝐗𝛃, referred to henceforward as flux residuals. 

For the synthetic data inversions, the 𝐐 matrix has off-diagonal terms representing 

the a priori spatial and/or temporal autocorrelation of the flux distribution following 
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recommendations from Gourdji et al. (2010).  Conclusions from this earlier study showed 

that accounting a priori for both spatial and temporal covariance in the flux distribution is 

necessary for recovering accurate a posteriori uncertainty bounds on the estimated fluxes 

(Gourdji et al., 2010).  The autocorrelation is modeled by the following covariance 

function: 

𝐐�ℎ𝑥,ℎ𝑡|𝜎𝑄2, 𝑙𝑄 , 𝜏𝑄� =  𝜎𝑄2𝑒𝑥𝑝 �−
ℎ𝑥
𝑙𝑄
� 𝑒𝑥𝑝 �− ℎ𝑡

𝜏𝑄
�   (5.2)  

where ℎ𝑥 and ℎ𝑡 are the separation distances between grid-cells in space and lag in time, 

respectively.  The range of correlation between fluxes is three times beyond the 

correlation length parameter (𝑙𝑄) and the temporal correlation length parameter (𝜏𝑄) in an 

exponential model.  𝜎𝐐2 is the asymptotic variance of fluxes at large separation distances. 

Cross spatial-temporal covariance is not considered. 

For real data inversions, given the computational expense of accounting for 

temporal correlation with off-diagonal block terms for estimating the a posteriori 

uncertainties on the best estimates, only spatial covariance is considered.  Therefore, 

equation 5.2 becomes: 

𝐐�ℎ𝑥|𝜎𝑄2, 𝑙𝑄� =  𝜎𝑄2𝑒𝑥𝑝 �−
ℎ𝑥
𝑙𝑄
�    (5.3)  

It is assumed that the off-diagonal terms have more impact on the uncertainties 

than on the fluxes themselves, based on the work of Gourdji et al. (2010).   When 

temporal correlation is not taken into account, 𝐐 is a block diagonal matrix, with the 

same block describing correlation between grid-cells repeated for each time period in the 

inversion.   By not accounting for temporal correlations, it is expected that the uncertainty 

estimated for aggregated and 𝐬� will be underestimated.  

For both synthetic and real data inversions, spatial covariance parameters are 

allowed to vary by month, given that the spatial variability of fluxes have been found to 

have a strong seasonal cycle, which, in turn, influences the inferred flux estimates 

(Huntzinger et al., 2010; Gourdji et al., in prep). 

The other covariance matrix, i.e. the model-data mismatch covariance matrix (𝐑), 

is diagonal where the diagonal entries characterize the uncertainty errors associated with 

atmospheric transport, the measurement instruments, and aggregation errors (Kaminski et 

al., 2001).  These uncertainties determine the degree to which the transported flux 
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estimates (𝐇𝐬�) should match the observations (𝐳).  Following Gourdji et al. (2010) and 

Gourdji et al. (in prep), each tower has its own unique model-data mismatch covariance 

(𝜎𝑅𝑖,𝑚𝑜𝑛𝑡ℎ
2 ) parameter. The optimized model-data mismatch is allowed to change monthly 

to account for seasonal transport variability, resulting in approximately 360 optimized 

covariance parameters, because some towers do not have any observations for a given 

month. 

The covariance parameters in 𝐐 and 𝐑 are obtained in a statistically rigorous 

manner through the application of a Restricted Maximum Likelihood (RML-Inv) 

approach using the observational data (equation 3.17 in Chapter 3).  Using the 

observation data to obtain the covariance parameters in RML-Inv ensures that the 

inversion relies heavily on atmospheric data.  Thus, the approach avoids any bias in the 

results associated with a priori assumptions regarding the flux distribution or the ability 

of the inversion to match the observations.  

3.5 Atmospheric transport (𝐇) 

For this study, the Stochastic Time-Inverted Lagrangian Transport Model 

(STILT) is used in conjunction with high-resolution winds from the Weather Research & 

Forecasting (WRF), henceforward referred to as WRF-STILT.  A detailed description of 

WRF-STILT is provided in Nekhorn et al. (2010).  WRF uses a nested grid within the 

NA domain, with the inner nest having a 10 km resolution (Figure 5.1) and the outer nest 

having 40km spatial scale.  
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STILT links the sensitivity of an observation to a flux more realistically than 

more coarsely defined Eulerian models, especially in areas near the tower (Lin et al., 

2003).  Previous studies have used STILT in conjunction with continuous measurements 

sited in areas with high CO2 flux variability to estimate fluxes for regional areas in North 

America (e.g. Matross et al., 2006; Gourdji et al., in prep). 

Sensitivities (in units of ppm/(µmol/(m2s)) of observations to fluxes are 

estimated by releasing 500 particles from highest measurement location at each tower in 

the network for every measurement time period.  The particle trajectories are tracked 

backwards in time and space for 10 days.  The resulting sensitivities are the proportion of 

the 500 particles that reach a given flux estimation location (defined both in time and 

space).  Thus, the resulting sensitivity footprints describe how unit fluxes in a particular 

gridcell of the domain at a particular time affect a CO2 concentration at a particular tower 

location. Refer to Gourdji et al., (2010), Gourdji et al. (in prep), Nekhorn et al. (2010), 

 

Figure 5.1:  Locations of towers in the 35 and 10 tower networks with their associated 
classifications.  Domains of the different nested WRF winds used in the WRF-STILT 
transport model are also shown. 
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and Lin et al. (2003) for more details on WRF-STILT, including the physical schemes 

employed in the model and the derivation of sensitivities. 

The concentration footprints, 𝐇 (ppm/(µmol/(m2s)), provided by the WRF-

STILT atmospheric transport model are used to understand what portions of the continent 

can be seen by a particular tower.  To assess this, a method is adopted similar to 

Huntzinger et al. (in press) which assessed the ability of observations to detect 

differences in the spatial distribution of fluxes in the near- and far-field.  For each tower 

and each hour in the month of June, the land cells are sorted in terms of how sensitive the 

tower measurements are to surface fluxes from that cell. Cells are ordered from those 

having the greatest influence to those having the least.  The influences are cumulatively 

summed and divided by the overall or total sensitivity for that tower to the entire domain.  

The analysis provides a grid-cell percentage of coverage to show which areas of the 

continent are better constrained by observations from a given tower site.  

The overall ability of an inversion to trace back observations from tower locations 

to surface flux locations is highly dependent on the ability of the transport model to 

simulate synoptic and seasonal weather variability.   To identify areas where fluxes could 

be reliably interpreted throughout the year, the criterion used in Gourdji et al. (2010; in 

prep) is used.  To meet the criterion, on average, a 4-day flux of 1µmol/(m2s) must 

influence measured concentrations at all towers by a total of at least 0.1 ppm throughout 

the year 85% of the time.  The well-constrained, i.e. high sensitivity, areas (henceforward 

referred to as HighSens areas) using a 10 tower network covered roughly 30% of the 

continent.  With 35 towers in 2008, the well-constrained area is significantly larger, 

covering 70% of the NA domain (Figure 5.2). Thus, the monthly and annual 2008 carbon 

budgets for NA have the potential to be much better constrained by observations than for 

earlier years. 
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3.6 Atmospheric observations (𝐳) 

This study uses continuous calibrated CO2 measurements from the locations 

shown in Figure 5.1 and listed in Table 5.1.  The measurements are filtered to exclude 

data associated with any anomalous errors (measurement greater or less than 30 ppm over 

background air or observations associated with low-quality flags).  As with Gourdji et al. 

(in prep.), data are also excluded if their sensitivity to ocean fluxes is greater than 85% of 

their total sensitivity to all land and ocean locations.  The continuous measurements from 

all towers are averaged to a three-hourly timescale.   No effort was made to fill the short 

 

Figure 5.2: Regions used for the interpretation of flux estimates at spatially aggregated 
scales from both synthetic and real data inversions.  Note high sensitivity from the 10 
tower network is referred to as HighSens henceforward. The high sensitivity for the 35 
tower network is shown to illustrate the additional constraint provided by the expanded 
network.   
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and long gaps in the concentration series for certain towers, although it is noted that these 

gaps may introduce discontinuities into the inversions that could influence final flux 

estimates.   
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Table 5.1:  List of towers and the two different choices of times of the day for which to 
include observations for the real and synthetic data inversions (shortaft and 1pm/1am).  Data 
providers include (a) Arlyn Andrews, (b) Matt Parker (c) Marc Fischer, (d) Colm Sweeney, (e) 
Doug Worthy, (f) Bill Munger, (g) Ken Davis, (h) Danilo Dragoni, (i) Britt Stephens, (j) Bev 
Law, and (k) Ralph Keeling. 
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Gourdji et al. (in prep), partially validated the spatial pattern of the 2004 fossil 

fuel inventory dataset which was created from the version 1.4 Vulcan database for 2002 

(Gurney et al., 2009) for the United States, information from British Petroleum fuel 

statistics, remotely-sensed night lights, and the existing Carbon Dioxide Information 

Analysis Center (CDIAC) fossil fuel emission estimates (Oda and Maksyutov, 2010) for 

Canada, Mexico, and Central America.  The combined fossil-fuel dataset is scaled to 

2008 based on published rates of anthropogenic CO2 emissions (Raupach and Canadell, 

2010).  Given that the fossil fuel component is relatively well-known compared to the 

biosperhic component of flux, the fossil fuel dataset was transported from a 1°x1° 

monthly resolution to the observations using the WRF-STILT sensitivity matrices, and 

presubtracted from the 3-hourly averaged observations.  In this manner, the resulting flux 

estimates best represent biospheric fluxes. 

3.6.1 Selection of observations  

Given the expansion of the measurement network of continuous observations 

from 10TN 2004 to 35TN in 2008, there are many options of which observations to use 

(both in space and time).   However, given the tightly coupled nature of transport and 

measurements, it is important only to use observations when the simulated transport can 

be trusted.  Analysis of footprints for the tall tower sites indicates that the midday data is 

well-mixed and retains a signature of the fluxes from the past several days (A. Andrews, 

personal communications).  As a result, most regional inversions use only midday data 

but the times of day and averaging period varies per study (e.g. Peters et al., 2007; Butler 

et al., 2010).   However, if simulated transport can be trusted during other time periods, 

then the additional atmospheric data can provide further constraints on flux estimates.  

Some inversions, therefore, have included either 24 hours of observations or nighttime 

data at tall towers (Gourdji et al., 2010; A. Andrews, personal communication). There are 

concerns, however, that the atmospheric transport models cannot properly simulate the 

height of the nighttime planetary boundary layer (PBL) or characterize the transition of 

the PBL during morning and early evening hours at most locations.  Since the PBL has a 

large influence on the mixing of the CO2, misrepresentation of its height or behavior can 

have a strong negative affect the flux estimates (Denning et al., 1996).  
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There are also concerns about using observations from complex terrain or coastal 

sites where transport is difficult to model (e.g. Ahmadov et al., 2009).  For complex 

terrain sites, it is generally assumed that observations at 1am best represent background 

air as the variability of the topography results in the pooling of CO2 into valleys and the 

measurement location are located on mountain peaks.  

To better understand the behavior of the variability of measurements by tower, we 

analyzed the observational records, as well as the associated ΔCO2 (i.e. the observations 

minus the influence of CO2 variability originating outside of the examined domain, aka 

boundary conditions).  Understanding the measurement variability assists in determining 

which times of the day to use observations for different tower locations, as hours 

associated with high variability likely correspond to complicated transport which is 

difficult to model.  For tall towers, the measurements and corresponding ΔCO2 have 

consistent variability throughout the day.  However, for short and intermediate towers 

(Figure 5.3), a defined diurnal cycle is evident in both the observation records and 

corresponding ΔCO2.  The measurements associated with both the breakup of the night-

time PBL during the morning and the onset of atmospheric stability at night have very 

large variability throughout the month of June as with all the growing season months.  

The variability in observations from the short towers is particularly strong (e.g.  

measurements can differ by more than 150ppm in the early morning hours at LLB in 

June).  However, the measurements during the middle of the afternoon are more stable 

and display variability similar to observations from tall towers.   The strong diurnal 

variability at both the short and intermediate towers warrants caution in choosing which 

observations to include within the inversion.  



84 
 

 
The extra constraint from the addition of more measurements in space versus 

using more observations in time has not been previously investigated.  To assess the 

impact of including more observations in space and time, both a 10TN and 35TN are 

used in the synthetic and real data inversions.  In the synthetic data inversions, which 

assume close to perfect transport (i.e. 𝜎𝑅𝑖,𝑚𝑜𝑛𝑡ℎ
2  = 0.01 ppm2), three choices of 

observations throughout the day are considered. Note all choices are using the 3-hourly 

averaged observations.  The choices include:  (1) 24 hours of data (all), (2) approximately 

one to four observations throughout the day (shortaft) (Gourdji et al., 2010), and a single 

observation, either 1pm or 1am (1pm) (based on CT choices).  The specifics of the 

selection of data (i.e. shortaft versus 1pm) for each measurement location are defined by 

tower in Table 5.1.  For the real data inversions, only the shortaft and 1pm selection of 

data is considered for the 10TN and 35TN inversions since simulated transport cannot be 

trusted at all times of the day for all towers.  

3.6.2 Continental boundary conditions  

The influence of fluxes from outside the NA domain on the measurements is 

accounted for in regional inversions by the use of boundary conditions for each tower 

location.  In general, the boundary conditions are estimated by transporting the 

atmospheric concentration of CO2 defined at the boundaries of the domain to 

measurement locations using WRF-STILT.   These boundary conditions are pre-

subtracted from observations and the resulting ΔCO2 (i.e. 𝐳) are used in the inversion. 

 

Figure 5.3: Daily June 3-hourly averaged concentrations as measured at CVA (a short 
tower) and WKT (a tall tower), with the influence of GV-BCs pre-subtracted (a.k.a. 
ΔCO2).   The daily ΔCO2 records are overlaid on top of one another to highlight the 
diurnal variability.  Note that the use of CT-BCs creates a systematic constant downward 
offset of ~1ppm, but no change to the diurnal variability. 
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The choice of the specific set of boundary conditions to use in the inversion has a 

direct impact on the 𝐳 vector used to estimate fluxes.   Hence, many regional inversion 

studies have found flux estimates to be highly sensitive to the choice of boundary 

conditions (e.g. Schuh et al., 2010).  This study uses two plausible sets of boundary 

conditions for inversions using a 1pm daily observation. The first is from NOAA’s CT 

data assimilation system (CT-BCs) (Peters et al., 2007).  CT-BCs have been used in 

several NA regional inversion studies (e.g. Schuh et al., 2010, Butler et al., 2010, etc.).  

In contrast, the second set of boundary conditions (GV-BCs) is more empirically based in 

attempt to correct known biases in the CT-BCs (A. Andrews, personal communication). 

3.7 Outline of synthetic and real data experiments 

The measurements are used in both a set of synthetic and real data inversion as 

will be explained in the following section to assess the measurement information of the 

expanded network as well as the influence of the temporal estimation scale and boundary 

conditions.   Overall, several 1°x1° degree inversions are run using two different 

networks, i.e. 35 towers (35TN) available in 2008 and 10 towers (10TN) available in 

2004.  An outline of the specific inversions is presented in Figure 5.4. 
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Synthetic data studies help to isolate the impact of inversion setup choices by 

simplifying the problem because (1) 𝐇𝐬BMare only influenced by fluxes occurring within 

the NA domain, and therefore there is no need to specify boundary conditions for the 

selected domain (Gourdji et al., 2010), and (2) are absent of any errors associated with 

transport. For this study, synthetic observations are generated by multiplying a vector of 

3-hourly June2004 CASA-GFEDv2 (Randerson et al., 1997; Giglio et al., 2006) flux 

estimates by the sensitivity matrix 𝐇 for each tower derived from the 2008 WRF-STILT 

particle trajectories.  The multiplication results in modeled atmospheric CO2 observations 

(i.e. 𝐇𝐬BM) for each tower. Note that June2004 CASA-GFEDv2 fluxes are used for the 

analysis given that 2008 CASA fluxes were not available.  However, the choice of 

biospheric model is somewhat arbitrary for this analysis because the synthetic inversions 

are testing the ability of the inversion to recover a known “truth”.  As such, any plausible 

flux distribution could be used for this analysis. 

The real data inversions are similar to the synthetic data inversions, but involve 

the use of actual measurements to estimate fluxes throughout 2008.  Also, the real data 

 

Figure 5.4:  Schematic of the different geostatistical inversions for both the synthetic data 
and real data components of the research.  Gray boxes indicate the different setup choices 
tested as part of the work.  The shortaft and all data choices resulted in approximately three 
and eight times more temporal data coverage than 1pm respectively.  Note that the all data 
choice (A) was only used in the synthetic data experiments, and boundary conditions (B) 
were only used in real data experiments.  Overall, both the synthetic and read data 
experiments each involve 12 inversions.  
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inversions employ two different selections of temporal observations as described in 

Section 3.6.1. 

The results are analyzed for four different spatial areas: the entire NA domain 

(approximately 20 million km2), an area considered well-constrained using the 10TN (i.e. 

HighSens previously explained in Section 3.4) (approximately 5 million km2), the 

MidContinental Intensive (MCI) region, and the previously under-constrained area in the 

Pacific Northwest (UncNW). These areas are shown in Figure 5.2. 

The MCI region is a region (approximately 1 million km2) is located in the 

Midwest agricultural belt of the U.S.  The MCI is not subject to the complexities and 

small-scale variability associated with microclimates, population density, topography that 

plagues other areas in the continent.  In addition, the area is mostly flat and therefore 

atmospheric transport is easier to model in this region compared to others with mild to 

significant topographic relief.  The area also constitutes a significant portion of the most 

intensively farmed region of the continent and hence, the carbon cycling dynamics of in 

the MCI has been highly studied in 2007 and 2008 (see http://www.nacarbon.org/cgi-

nacp/web/investigations/inv_ic_profiles.pl for a list of ongoing projects).  

In contrast, UncNW (~400,000 km2) has significant small-scale to mesoscale 

variability in vegetation characteristics and complicated coastal transport that are difficult 

to model.  The crest of the Cascade Mountains roughly splits that region into a western 

part dominated by dense, managed Douglas-fir forests and agricultural crops which are 

highly productive, and a semiarid eastern part mainly consisting of open ponderosa pine 

forest and juniper-sagebrush-grass communities (Göckede et al., 2010). 

4.0 Results and discussion 

The study assesses the influence of three inversion choices (selection of data, 

scale of estimation, and boundary conditions) on the estimated fluxes post-aggregated to 

various spatial and temporal scales: (1) at the monthly grid-scale, (2) at spatially 

aggregated areas at the monthly timescale, (2) at annually averaged and spatially 

aggregated areas.  A sensitivity analysis is provided to show the observation coverage per 

tower, addressing concerns the extent of coverage provided by some of the new towers in 

the expanded measurement network.  The study then relies on synthetic data inversions 

results to assess the biases and limitations associated with the inversion choices at the 



88 
 

different spatiotemporal scales.  The inversions using real atmospheric data are then 

evaluated based the conclusions of the synthetic data experiments, to assess whether the 

conclusions are when robust using actual observations and real associated transport 

errors.       

4.1 Footprint analysis 

Over 50 percent of the total average June sensitivities for 1pm measurements are 

in areas that are approximately 700-1000 km away from most towers, indicating that 

observations contain more than just local information regarding sources and sinks (Figure 

5.5).  In fact, the sensitivities for the short towers cover areas similar to the intermediate 

towers.  The extent of the short tower footprints indirectly suggest that WRF-STILT used 

in this study is able to simulate well-mixed times of the day at these tower sites as the 

locations of these towers were chosen, in part, to capture well-mixed air during midday.  

In other studies (e.g. CT, Peters et al., 2007), particles are released at an artificial height 

(~200m) when estimating the sensitivity of short towers to surface fluxes when 

simulating transport.  For these other studies, the particles are released at a height much 

taller than the tower to avoid any problems with simulating transport associated with 

convective mixing.  As such, it appears that WRF-STILT is able to circumvent errors 

associated with releasing particles at heights that are different than those corresponding 

with the actual observation. 
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4.2 Synthetic data results for June 2008 

The synthetic data experiments provide a baseline for the best achievable 

performance of real-data inversions, and help to highlight the impact of setup choices that 

may be obscured by the additional complexity associated with using real data. 

4.2.1 Monthly grid-scale estimates  

Including more observations both in time and space enables the inversion to better 

reproduce the true grid-scale fluxes when using a 3-hourly estimation scale (Figure 5.6, 

subplot a compared to Figure 5.6, subplot f).  More importantly, when the number of 

towers is held constant, using observations from more times of the day substantially 

improves flux estimates relative to the use of measurements from more tower locations.  

Furthermore, the extra constraint from adding more observations in time is only apparent 

 

Figure 5.5: Average 3-hourly June footprint for different towers as percentiles of the 
total sensitivity for a given tower.   
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with the use of the expanded network (refer to Figure 5.6, subplots d-f compared to 

subplots a-c).  Hence, using more observations throughout the day at the 35 towers has 

the largest impact on the performance of the inversion in being able to reproduce both the 

spatial patterns and overall magnitudes (e.g. ρ = 0.77 with 1pm (subplot c) versus ρ = 

0.83 (subplot a) with all using 35TN as shown in Figure 5.6).  This is an important result 

as most inversions use only one or two measurements per tower per day representing a 

multi-hour average, and may not benefit as much from using more spatial data compared 

to inversions that incorporate more observations in time.  Therefore, improving flux 

estimates using the expanded network involves incorporating observations from more 

times of the day, not just more towers. 
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Results show that estimating at finer temporal scales yields better flux estimates 

given the extent of the variability associated with regional synoptic transport.  Comparing 

Figure 5.6 and Figure 5.7, shows that the highest accuracy grid scale-estimates is 

obtained with native timescales (i.e. the native resolution of the fluxes and sensitivities 

used to create the synthetic data).  When using a coarser estimation scale (i.e. 4Ddiurnal), 

 

Figure 5.6:  Average June grid-scale biospheric fluxes from the synthetic data inversions 
using a 3hr estimation scale.  Also shown are the “true” CASA fluxes that were used to 
generate the synthetic data.  The grid scale monthly correlation coefficient (ρ) and RMSE 
are provided next to each grid scale difference plot.  Lower RMSE and higher correlation 
correspond to more accurate results. 
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the estimates are strongly affected by temporal aggregation error (Figure 5.7) as shown 

by the unrealistically strong sources and sinks in the recovered fluxes.  As mentioned 

earlier, temporal aggregation error results when the estimation resolution is too coarse 

and cannot properly account for the variability in either the transport of fluxes or the flux 

distribution itself.  Therefore an entire estimate is “shifted” up or down based on high 

variability associated with only a small portion of the estimate.   In Figure 5.7, temporal 

aggregation error substantially reduces the ability of the inversion to reproduce the both 

the spatial patterns and magnitudes of the true flux, especially when including more data 

in time (e.g. ρ = 0.62 with 1pm (subplot c) versus ρ = 0.46 (subplot a) with all using 

35TN as shown in Figure 5.7). By not taking into consideration temporal aggregation 

errors, one could come to the wrong conclusions and surmise that more spatial and 

temporal actually biases flux estimates when using the 35TN; a message directly opposed 

to that derived from the 3-hourly grid-scale results.    
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The 4Ddiurnal results show that using an estimation scale of 4 days with a 

resolved diurnal cycle post aggregated to a monthly timescale cannot appropriately 

account for the underlying variability of either the fluxes or transport, which yields biased 

grid-scale fluxes. This is in contrast the conclusions drawn by Carouge et al. (2010a), and 

discussed above in Section 3.2, and is most likely due to the fact that the previous study 

 

Figure 5.7:  Average June grid-scale biospheric fluxes from the synthetic data inversions 
using a 4 day diurnal estimation scale.  Also shown are the “true” CASA fluxes that were 
used to generate the synthetic data.  The grid scale monthly correlation coefficient (ρ) 
and RMSE are provided next to each grid scale difference plot.  Lower RMSE and higher 
correlation correspond to more accurate results. 
 



94 
 

employed a daily observation which averaged out diurnal variability.  Although the 

aggregation errors are significant for the choice of all 24 hours of data, they are less for 

the use of a single measurement per day at the 4Ddiurnal estimation scale.  The danger 

for inversions that use a coarser estimation scale with a single daily observation is that 

there may be a tendency to interpret the grid-scale temporal aggregation error with a 

mechanistic argument (e.g. presence of a non-existent fossil fuel source or agricultural 

feedlots, etc.), such as errors shown in Figure 5.7, subplots e or f. 

For the HighSens and MCI regions, adding in more data in time also helps the 

inversion reproduce both the spatial pattern and magnitudes of the “true” grid-scale flux 

estimates when using the expanded network (Figure 5.8).  As with the average monthly 

grid-scale results for all of NA, temporal aggregation error also plays an important role in 

the grid-scale flux estimates within each of these smaller regions.  In terms of the 

UncNW, it is assumed that the large variability in underlying fluxes in this region make it 

difficult for the inversion to reproduce the grid-scale fluxes even with the maximum data 

coverage using the finest estimation scale (Göckede et al., 2010).    
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Note, that because the synthetic data inversion assumes perfect transport, it is 

expected that including all data for the 35TN would yield the best results.  However, the 

synthetic data results also show that accurate carbon budgeting at different 

spatiotemporal scales can be achieved using the 35TN if we are able to trust transport for 

more time of the day.  In a real data inversion, the atmospheric transport models errors 

are diurnally dependent and thus may negate the advantages shown in Figure 5.6 and 5.8. 

4.2.2 Spatially aggregated monthly flux estimates  

As can be seen in Figure 5.9, the conclusions drawn from the synthetic grid-scale 

results (Section 4.2.1) generally continue to apply at spatially aggregated scales.  That is, 

 

Figure 5.8:  Root Mean Squared Error (RMSE) and correlation coefficient (ρ) between 
June grid-scale flux estimates for different regions from the synthetic data inversions and 
the “true” CASA fluxes.  Lower RMSE and higher correlation correspond to more 
accurate results. 
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with more observations in space and time, the better the inversion is able to reproduce the 

aggregated fluxes, but the ability of the inversion to replicate the “truth” diminishes as 

the size of the region decreases (e.g. Figure 5.9, UncNW region).  At the NA scale, the 

accuracy of the estimates from the inversion that uses the most measurements in time or 

in space is almost identical to those from the inversion that use the least amount of 

observations.  As the size of the region gets smaller, the additional measurements has a 

larger influence by allowing the inversion to better reproduce the truth.   

 
As with the grid-scale results in Section 4.2.1, estimating at a fine temporal 

resolution is a better choice for obtaining accurate fluxes at spatially aggregated scales 

 

Figure 5.9:  Spatially post-aggregated June fluxes estimates from the synthetic data 
inversions along with the “true” CASA fluxes.   The June fluxes are post-aggregated to 
NA, High Sens, MCI, and UncNW. 
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because this limits temporal aggregation error, but the extent of the influence also 

depends upon the size of the region. Therefore, the influence of the estimation scales and, 

hence, the presence of temporal aggregation is seen most clearly in the UncNW.  Other 

studies have concluded that temporal aggregation is negligible when fluxes are post 

aggregated to large regional areas (~5°x 5° grid-cells, Carouge et al. (2010a)).   However, 

as seen here, even at larger regional scales, temporal aggregation can have a large impact, 

especially if the region contains highly variable fluxes or experiences significant shifts in 

transport such as UncNW at monthly timeframes. 

4.3 Real Data Results for January – December, 2008 

With real data inversions, there is no means to directly assess CO2 flux estimates 

because there is no “truth” for comparison.  However, by performing a series of real data 

inversions with different setup choices, the sensitivity of flux estimates to a particular 

setup choice can be assessed in light of simulated transport errors. 

4.3.1 Monthly grid-scale flux estimates  

At the 3-hourly estimation scale, using atmospheric CO2 concentration data, 

adding more measurements at a given tower (i.e., more times of the day) has a greater 

influence on the grid-scale flux estimates than adding more observation locations 

(spatially) to the inversion.  As with the synthetic data results, the extra constraint 

provided by the additional observations is most apparent for flux estimates in both June 

and October using the 35TN using shortaft (Figures 5.10 and 5.11).  The impact of using 

more measurements per day on flux estimates is most obvious in areas that were 

previously under-constrained.   For example, the use of 24 hours of data at tall towers 

such as BAO, WGC, and BRW results in lessening of sinks in Northwestern states in the 

US and in the northern parts of Alaska.  In contrast, the expanded network appears to 

have little influence compared to the 10TN when using only a single measurement per 

day.   Although the synthetic data experiments did show small improvements in flux 

estimates with the use of a single measurement per day with the expanded network, the 

uncertainty associated with real data and transport (as inferred by RML), may weaken the 

flux signal in the observations.  As such, with real data, there are less benefits of 

including more spatial observations with limited temporal coverage.   
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At the 4Ddiurnal estimation scale, the strength of the grid-scale sources and sinks 

compared to the 3-hourly estimates indicates that the 4Ddiurnal fluxes are influenced 

 

Figure 5.11: Average October grid-scale biospheric fluxes from the real data inversions 
using a 3-hourly estimation timescale.   
 

 

Figure 5.10: Average June grid-scale biospheric fluxes from the real data inversions 
using a 3-hourly estimation timescale.   
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significantly by temporal aggregation errors (e.g. shortaft GV-BC results in Figures 5.12 

and 5.13 specifically in Midwestern states and northern Canadian provinces).  Including 

more observations throughout the day with the 35TN also impacts the 4Ddiurnal 

estimates but to a lesser extent than the scale of estimations.  Given the parallels between 

the flux estimate results from the synthetic and real data inversions, it can be concluded 

that inversions that estimate 3-hourly fluxes using more observations throughout the day 

are able to extract the most out of the expanded network in terms of estimating monthly 

grid-scale fluxes. 

 

 

Figure 5.12: Average June grid-scale biospheric fluxes from the real data inversions 
using a 4- day diurnal estimation timescale.   
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In contrast to the selection of observations, the choice of boundary conditions has 

negligible impact on the spatial patterns of the grid-scale fluxes at both the 3-hourly and 

4Ddiurnal estimation scale.  The CT-BCs result in slightly stronger sinks in June or 

weaker sources in October in the boreal areas compared to the flux estimates using GV-

BCs (Figures 5.12 and 5.13) most likely due to the limited tower coverage in these 

northern areas.  As such, the fluxes in these areas would be mostly constrained by the 

northwesterly inflow of air.  The minor impact of the boundary conditions suggest any 

errors associated with the choice of boundary conditions do not contribute to the 

inconsistencies in grid-scale flux estimates from different inversion studies. 

From these results, estimating 3-hourly fluxes using more spatial and temporal 

observations is the best setup to recover monthly grid-scale estimates.  Although results 

are shown for both the 3-hourly and 4Ddiurnal fluxes for June and October for 2008, the 

conclusions regarding inversion setup choices (i.e. selection of observation, the spatial 

and temporal scale at which to estimate fluxes, and boundary conditions) also apply to 

the grid-scale flux estimates from all other months in 2008 and therefore, are not 

seasonally dependent 

 

Figure 5.13: Average October grid-scale biospheric fluxes from the real data inversions 
using a 4-day diurnal estimation timescale.   
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4.3.2 Spatially aggregated monthly flux estimates  

The use of the 35TN yields flux estimates that have a weaker seasonal cycle, as 

can been seen especially in mild uptake of CO2 during the height of the growing season 

for NA (Figure 5.14).  This decreased sink is reasonable given the extra coverage of the 

35TN which constrains areas such as the Southwest and the Central West that are less 

productive than Midwestern areas constrained by the 10TN (shown in Figure 5.2).  Note 

that the inferred 𝛃� using a 10TN indicates stronger uptake during the growing season than 

the inferred 𝛃� using the 35TN (results not shown for brevity) as the inferred 𝛃� is mainly 

influenced by the smaller more productive areas of the continent sampled by the smaller 

measurement network. The inversions use the model of the trend, 𝐗𝛃�, to help further 

constraint estimates in areas that are poorly covered by the atmospheric data which 

explains why the seasonal cycle of all of NA appears to be weaker using the expanded 

network.  Thus, inversion studies that use a limited network to infer carbon cycle 

dynamics, particularly in areas that are only partially constrained by the atmospheric 

network, may be influenced more by inversion assumptions (e.g., explicit prior flux) 

rather than the information contained in the atmospheric data. 
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The number of observations (both in space and time) has the largest influence on 

the monthly budgets for each region in Figure 5.14 during the growing season compared 

to the other setup choices.  Observations from more times of the day from the 35TN yield 

the greatest uptake at the height of the growing season in all areas except for the UncNW.  

In contrast, the use of a single measurement per day with the 35TN at the height of the 

growing season yields the weakest sink.  The variation between the flux estimates from 

different choices of observations throughout the day is particularly apparent in the MCI.  

 

Figure 5.14: Seasonal cycle of monthly fluxes aggregated to NA, HighSens, MCI, and 
UncNW from real-data inversions.  Estimated fluxes are shown for two different 
choices of observations to include, two estimation timescales, and two networks.  All 
results are shown with the use of GV-BCs as the use of CT-BCs provides only a 
systematic downward offset for all regions of 0.1 to 0.5 μmol/m2s.  The shift is most 
prevalent during the growing season.  Carbon Tracker fluxes also shown only for 
comparison.    
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The information contained within a single daily afternoon measurement may be too small 

when combined with the errors associated with synoptic and diurnal transport to provide 

much information regarding the seasonality of regional fluxes particularly during the 

growing season.  

During the non-growing season for all regions, the timescale of estimation has the 

most impact on the spatially aggregated fluxes as can be seen in Figure 5.14 during 

January through March and October through December.   As with the synthetic data 

results, temporal aggregation error has less of an impact at the NA scale but the impact 

increases as the size of the region decreases.  As such, the UncNW exhibits the largest 

difference in flux estimates from 3-hourly and 4Ddiurnal estimation scale inversions.  

This implies that during the non-growing season, temporal aggregation errors may cancel 

out at larger spatial resolutions at the monthly timescale. 

Note that results with CT-BCs were not shown in Figure 5.14 as the inversion 

using CT-BCs yielded flux estimates that are marginally smaller in magnitude than those 

from the inversion using GV-BCs.  The difference was ~0.1μmol/m2s in the non-growing 

season months.  During the growing season, the difference was slightly greater 

(~0.3μmol/m2s).  The choice of boundary conditions did not change the seasonal 

behavior of the fluxes which is consistent with the findings of Schuh et al. (2010).  Even 

though the differences are small, they have the same magnitude and follow the seasonal 

pattern of the fluxes in each region.  This result is unexpected for the MCI region.  For 

the MCI, it was assumed that the flux would be constrained mostly by the differences in 

the ΔCO2 measurements among the towers in the area.   

4.3.3 Spatially aggregated annual flux estimates  

The choice of boundary conditions plays the largest role in the overall annual 

budgeting of CO2 for the NA continent (Figure 5.15).  In addition, the use of more 

observation throughout the day also has an impact on the NA budget (approximately 0.35 

PgC/yr), but it is minor compared to the choice of boundary conditions (approximately 

1.25 PgC/yr).  The strong agreement of estimates at smaller regional areas is likely an 

artifact of the units (PgC/yr) as the annual contribution to the overall NA carbon budget 

is marginal from regions such as the MCI and UncNW.  Given that the choice of BCs 

only have a minor influence at the seasonal aggregated scale, results from Figure 5.14 
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and 5.15 indicate that small differences at the monthly estimates can yield large 

differences at the annual scale.  As such, improving the seasonality of flux estimates is 

important for obtaining accurate annual budgets.     

 
Figure 5.15 points to the fact that the community must reach a consensus on 

boundary conditions before regional inversions can be used to provide reliable budgets 

given that the choice of boundary conditions has such a large impact on the estimates 

(greater than 1ppm difference for NA).  For each area, the choice of boundary condition 

contributes to a difference of more than 50%.  Although GV-BCs are more empirical, and 

 

Figure 5.15:  Spatially and temporally post-aggregated flux estimates from the real data 
inversions, together with Carbon Tracker fluxes shown for comparison.   Unlike the 
“true” CASA fluxes in Figure 5.9, the Carbon Tracker fluxes are presented simply to 
provide another set of possible flux estimates.  
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therefore assumed to be a better choice, CT-BCs have synoptic and longitudinal 

variability that is not present in the GV-BC product.  More importantly, the GV-BCs are 

currently only defined as a single curtain at the longitudinal boundaries of the domain. By 

comparison, CT-BCs are defined in four dimensions (latitude, longitude, altitude and 

time).  As a result, in estimating the CT-BCs using WRF-STILT, particles that have been 

released from a measurement location that have not completely exited the domain after 

the 10 days are assigned a CO2 value at their exact location.  In contrast, using WRF-

STILT, these particles are assigned a CO2 value associated with the nearest latitudinal 

curtain.  It is assumed that the errors associated with the calculation of GV-BCs is 

marginal compared to the biases in the CT-BCs because they are more empirically based 

(Andrews et al., personal communication).  Regardless, improving continental boundary 

conditions is an active area of research and is beyond the scope of this dissertation. 

4.3.5 Average monthly reduction in uncertainty using 35TN relative to the 10TN  

The average monthly reduction in uncertainty at the grid-scale resulting from the 

expansion of the observation network is calculated by comparing the results of the 10TN 

relative to the equivalent setup using a 35TN.  Thus, the term “reduction in uncertainty” 

is not used here in the same sense as in Bayesian studies, which calculate the percent 

reduction in the a posteriori uncertainties relative to the a priori uncertainties within the 

context of a single inversion.   The results in Table 5.2 indicate that adding data at new 

observation sites significantly reduces the uncertainty on the a posteriori flux estimates 

for both the grid-scale and spatially aggregated fluxes.  The largest relative reduction at 

the grid-scale is associated with using a single measurement per day.  However, by 

comparison, the reductions of uncertainties corresponding with inversions that use more 

observations throughout the day (i.e. shortaft) are less for both the grid and aggregated 

scales.  The result suggests that the use of more temporal measurements may already 

provide more constraint on monthly grid-scale estimates, and therefore adding more 

towers locations into the network.   
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4.3.6 Comparison of grid-scale monthly fluxes to other flux estimates 

The choice of more spatial and temporal measurements in conjunction with a 3-

hourly estimation scale not only helps the inversion yield more realistic seasonal spatially 

aggregated fluxes, but more importantly, the use of additional observations helps to 

inform more realistic grid-scale spatial patterns.  These conclusions are partially validated 

by the synthetic data results. Visually, the grid-scale 3 monthly mean grid-scale results 

for the growing season (July, August, and September) and non-growing season (October, 

November, and December) (Figure 5.16) for 2008 using additional data in space and time 

is most similar to grid-scale variability shown in mechanistic models (represented by 

CASA-GFED in Figure 5.18).  The grid-scale variability is also more similar to flux 

estimates from a 2004 application of GIM that uses auxiliary variables in 𝐗 to further 

constrain estimates (see details in Gourdji et al. (2004)).  Although Figure 5.15 compares 

flux estimates from different years, we expect the seasonal flux grid-scale patterns to be 

similar from year to year and thus a check on flux results.  The large sinks in the 

agricultural belt during the growing season exhibited in the 2008 GIM using shortaft is 

consistent with Crevoisier et al. (2010) which pointed to the Midwest as the location of 

the largest regional sink in NA.  The arid Southeastern United States is also more flux 

neutral as is expected.  As such, we are more confident that the flux estimates from more 

spatial and temporal data is providing more realistic monthly grid-scale flux estimates.  

Table 5.2: Average monthly grid-scale and aggregated-scale reduction in uncertainty.  The 
percent reduction is calculated as the reduction in the a posteriori variance for inversions 
using the 35 tower network relative to those using the 10 tower network.  Results are shown at 
the 3-hourly estimation scale with the use of GV-BCs since the results for 4-Ddiurnal and CT-
BCs were similar. 
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Figure 5.16:  Three-monthly average grid-scale biospheric fluxes from the 3hrly shortaft 
35TN inversion as compared to 3hrly 1pm 10TN using GV-BCs.  Also shown are 2004 
GIM inversion fluxes that use a 10TN, similar data choices as the 1pm, as well as NARR 
auxiliary variables in (X) to help further constrain grid-scale flux estimates. Grid-scale 
fluxes from CASA-GFED are also shown for comparison.  Please note the different scales 
for each season. 
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5.0 Conclusions 

The results of this study support the first stated hypothesis: including more 

measurements spatially appears to improve flux estimates and reduce their corresponding 

uncertainties, especially in areas that previously were underconstrained by the 

measurement network.  However, in order to extract the most out of the additional spatial 

coverage provided by the 35TN, it is necessary to include observations from more than 

one time of the day (e.g., 1 p.m. or a measurement representing an average of multiple 

hours in the afternoon) as in conventionally done in most Bayesian inversion studies.  

Although simulated transport may be more trustworthy when using an afternoon 

measurement during well-mixed conditions, measurements associated with these times 

may only contain a diffuse signal and thus, only may only be able to constrain very large 

areas.  Using observations from more times throughout the day helps to inform spatial 

patterns of sources and sinks that, when aggregated to larger spatial and temporal scales, 

impact flux estimates.  However, regional transport models need to be improved to make 

it possible to increase the number of observations per day within an inversion. 

Until regional transport models are improved, the number of observations to be 

used per day may need to be selected for each location on a case by case basis, and may 

need to be seasonally refined.  While the study demonstrates the advantages of using 

more data throughout the day with the 35TN, there is a potential of including 

observations that correspond to times when we expect systematic errors in simulated 

transport (e.g. the misrepresentation of the height of the night-time planetary boundary 

layer (PBL), transition of the convective PBL, nighttime jets, etc.) that can also bias 

inversion results.  However, if more observations can be used, there is a potential to 

significantly improve flux estimates at both the grid and aggregated scales.  New 

observational screening technique (Maki et al., 2010) may provide means to select 

observations to include into the inversion without biases the results with transport errors 

associated with times of the day that are difficult to model atmospheric transport. 

In addition, this study has demonstrated that fluxes should be estimated at the 3-

hourly scale to account for the variability of the underlying fluxes and atmospheric 

transport.  If the estimation scale is too coarse, as is the case with many Bayesian 

inversion applications, the estimations are subject to temporal aggregation errors even if 
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the estimates are post-aggregated to large spatial and temporal resolutions confirming 

findings in Gourdji et al. (2010).  The issue of temporal aggregation error is best 

illustrated with a geostatistical inversion because the shape of the diurnal cycle is not 

specified a priori.  However, temporal aggregation error will be problematic for estimates 

obtained from Bayesian inversions if the diurnal cycle of their explicit prior flux 

estimates is misrepresented.  This is likely to be of at least some concern, given the 

differences in the diurnal cycles predicted by different biospheric models.  Note, that it is 

recognized that a sub-daily estimation scale has large associated computational costs, but 

it is feasible to estimate monthly 3-hourly fluxes as shown in this application in a timely 

manner for an entire year with a 35TN network. 

Finally, this work has shown that boundary conditions play a large role budgeting 

annual sources and sinks at the continental scale, although their impact is less at the 

monthly scale.  The role of boundary conditions on even very well-constrained areas has 

some impact on monthly budgeting, partially disproving the second hypothesis, i.e. 

including more measurements helps minimize the impact of other inversion choices.  It 

was assumed that the 35TN would correct any inconsistencies in flux estimates 

associated with the choice of boundary conditions, since flux estimates would be based 

primarily on the difference between ΔCO2 from different tower locations.  The offset of 

the boundary conditions on observations would therefore be cancelled out in areas 

constrained by many towers.  A much larger measurement network would be needed to 

correct the offsets from currently available boundary conditions. 

Since more temporal measurements are essential for elucidating regional flux 

estimates, there is a possibility that the addition of other atmospheric data streams (such 

as aircraft observations, flask measurements, or even future XCO2 estimates from 

satellites based on a 1pm sampling time) may not improve regional grid-scale flux 

estimates as much as expected.  Given the results from this study, other atmospheric data 

streams might only constrain large areas unless there are improved means to leverage the 

data.   However, the atmospheric information within the continuous measurements is still 

limited and therefore, inversions will most likely require additional data to recover 

realistic fluxes at finer spatial resolutions until regional transport models are improved to 

use more temporal data.  As shown in Gourdji et al. (in prep.), GIM can use grid-scale 
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environmental datasets with a mechanistic relationship to CO2 flux to further improve the 

grid-scale pattern of flux estimates if incorporated into the inversion in a statistically 

rigorous manner (e.g. Gourdji et al. 2008; Gourdji et al., in prep.). 
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CHAPTER 6 

Attributing the variability of eddy-covariance CO2 flux measurements across 

temporal scales using a geostatistical regression 

This Chapter addresses objective 3 of the dissertation using direct estimates of flux to 

infer the drivers of CO2 variability at a landscape scale, as inferred by a statistical 

regression model at daily, weekly, and monthly timescales.    

1.0 Introduction 

The eddy covariance (EC) method estimates the flux of CO2, i.e. net ecosystem 

exchange (NEE), as the covariance of the deviations in atmospheric CO2 concentrations 

and vertical wind speed from their mean concentrations at a given flux tower site (e.g. 

Canadell et al., 2000; Baldocchi et al., 2001).  The eddy covariance (EC) method 

provides the opportunity to study relationships between environmental datasets and 

surface flux exchange at a ~1km2 at various timeframes because it provides the most 

direct measurement of the flux density between vegetation and the atmosphere 

(Baldocchi at al., 2008).  At present, the AmeriFlux network contains approximately 100 

active sites (http://public.ornl.gov/ameriflux/site-select.cfm) located in various 

ecosystems (e.g. deciduous forests, agricultural areas, grasslands, wetlands etc.) 

(Hargrove et al., 2003).  With this established network, a large amount of terrestrial 

ecosystem CO2 exchange data now exist, along with many other micrometeorological and 

biometric variables for different types of land cover.  Eddy-covariance measurements are 

generally continuous in time providing ample temporal coverage (e.g. 30 minute 

averages) for long durations (e.g. greater than 5 yrs).  As such, NEE measurements 

provide the opportunity to improve the understanding of the temporal variability of CO2 

surface flux of a particular ecosystem through statistically inferred relationships (Law et 

al., 2002). 

One of the benefits of using eddy-covariance data to investigate the relationship 

between fluxes and environmental factors is that both long and short term trends can be 
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inferred from the data because measurements are reported at a high frequency.  Statistical 

regression methods are commonly employed to understand the climatic controls of both 

the inter-annual and seasonal variability of carbon cycling (e.g. Law et al., 2002; Hui et 

al., 2003).  However, these approaches are limited by (1) assumptions regarding the 

dependent variable (i.e., how to best decompose NEE into photosynthetic uptake and 

respiration), (2) the approach used to select the variables to include in the regression, and 

(3) the assumption of independent and identically distributed residuals. 

This work in this Chapter involves the application of a geostatistical regression 

(GR) approach that can be used with eddy-covariance data to investigate the relationships 

between carbon flux and environmental variables at multiple timescales, ranging from 

monthly to daily.  The approach uses an adaptation of the Bayes Information Criterion to 

identify an optimal set of environmental variables that are able to explain the observed 

variability in carbon flux.  In addition, GR quantifies the temporal correlation in the 

portion of the flux signal that cannot be explained by the selected variables, and directly 

accounts for this correlation in the analysis.  This GR approach was applied to data from 

the University of Michigan Biological Station (UMBS) AmeriFlux site to identify the 

dominant explanatory variables for Net Ecosystem Exchange (NEE), Gross Ecosystem 

Exchange (GEE) and heterotrophic and autotrophic respiration (Rh+a) at different 

temporal scales.  The GR approach was also used to evaluate whether environmental 

variables can be used to isolate the GEE and Rh+a signals from the NEE measurements 

and to determine the impact of temporal scale on the inferred relationships between 

environmental variables and CO2 flux for the forest surrounding the University of 

Michigan Biological Station flux tower site. 

2.0 Site description 

UMBS is located in the northern portion of Michigan’s Lower Peninsula (45o 33' 

35.0'' N, 84o 42' 49.6'' W).  The station is home to a flux tower (Schmid et al., 2003; 

Curtis et al., 2002 & 2005; Gough et al., 2007 & 2008), part of the FLUXNET and 

AmeriFlux networks (Baldocchi et al., 2001), where NEE is measured at 10Hz and 

averaged to reported hourly estimates.  Data have been collected since 1999, together 

with many other environmental datasets. 
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The tower is located on lake-border plains in the transition zone between mixed 

hardwood and boreal forests (Curtis et al., 2005).  Within this footprint, big-toothed and 

trembling aspen (Populus grandidentata, P. tremuloides) are the dominant tree species, 

and red oak (Quercus rubra), American beech (Fagus grandifolia), red maple (Acer 

rubrum), white pine (Pinus strobus), and hemlock (Tsuga canadensis) are also present.  

Brackenfern (Pteridium aquilium) comprise the majority of the understory vegetation 

(Schmid et al., 2003; Curtis et al., 2005). 

UMBS is one of the few sites where concurrent biometric and meteorological 

measurements have been conducted along with annual assessments of carbon storage 

based on accounting methods (e.g. Curtis et al., 2002; Gough et al., 2008).  These data 

suggest that temperature and solar radiation exert strong controls on carbon exchange 

(e.g. Curtis et al., 2005; Gough et al., 2007 & 2008) at the site, similarly to other 

Northern deciduous forests. It is assumed that these constraints vary seasonally and 

depend on leaf phenological period (Gough et al., 2008), although this has not been fully 

evaluated at sub-annual time-scales.  The extensive research that has been conducted at 

UMBS provides a unique context for interpreting the results of the GR analysis.   

3.0 Study period, setup, and data 

The presented analysis explores the linear relationship between NEE, GEE and 

Rh+a, and environmental variables (a.k.a. auxiliary variables) at daily, 8 day, and 

monthly time scales. The examined period spans February 2000 to December 2004.   

The study uses auxiliary variables collected at UMBS as well as data from the Moderate 

Resolution Imaging Spectrometer (MODIS) on the TERRA satellite (Schmid et al., 2003; 

Curtis et al., 2005) (http://ladsweb.nascom.nasa.gov/), listed in Table 6.1. Note that two 

sets of LAI and fraction of photosynthetically active radiation (fPAR) data are used in 

this study. Site‐specific LAI data were derived from Vegetative Area Index (VAI) 

measurements using a Licor LAI 2000 Plant Canopy Analyzer and leaf litter trap 

estimates. In addition, the MODIS LAI data set was used (Myneni et al., 2002). Two 

fPAR data sets were also collected: one from MODIS and another by transforming 

site‐specific LAI using Beer’s Law (e.g., Campbell and Norman, 1998).  Both MODIS 

LAI and fPAR data were provided at 8 day 1 km scale, and the pixels within a 1 km 
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radius of the tower were averaged on the basis of the area of the pixel within this radius. 

All data in Table 6.1 were quality controlled and averaged to daily, 8 day, and monthly 

scales. For variables with coarser than daily resolution (e.g., MODIS data sets), data were 

downscaled using linear interpolation.  Day and night averages of NEE were estimated 

using PAR values greater than zero as an indicator of daytime measurements.  The 

auxiliary variables were categorized into groups representing controls on surface CO2 

flux as shown in Figure 6.1.  Note that most variables have very similar seasonal cycles 

(Figure 6.2) 
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Table 6.1: Variables considered for the geostatistical regression analysis. The first 
superscript indicates the timeframe for which measurements are available, where 1 : 1999-
2004; 2 : 2000-2004; 3 : 2003-2004. The second superscript indicates the principal 
investigator responsible for compiling and/or sourcing the data, where a : Chris Vogel, 
Peter Curtis and HaPe Schmid (AmeriFlux Tower): b : Kim Mueller (data compilation 
only); c : Mary Anne Carroll (PROPHET Tower); d : NASA & Oak Ridge National 
Laboratory. 

 

Parameter Units
Wind Speed1,a m/s

Friction Veloctiy1,a m/s

Soil Temperature @ 7.5cm1,a °C

Daytime Soil Temperature @ 7.5cm1,a °C

Nighttime Soil Temperature @ 7.5cm1,a °C

Vapor Pressure Deficit1,b kPA

Photosynthetically Active Radiation (PAR)1,a μmol/m 2 s
Leaf Area Index (LAI, site-specific)2,a m 2 /m 2

fraction of PAR (fPAR) derived from site specific LAI2,b unitless

fPAR (from PAR sensors)3,b unitless

Ozone Concentration2,c ppbv

Normalized Vegetative Index (NDVI) from MODIS2,d unitless

Enhanced Vegetative Index (EVI) from MODIS2,d unitless

LAI from MODIS2,d m 2 /m 2

fPAR from MODIS2,d unitless

Soil Moisture @ 102cm1,a %H2O

Air Temperature1,a °C

Daytime Air Temperature1,a °C

Nighttime Air Temperature1,a °C

Precipitation1,a mm

Albedo from MODIS2,d unitless

Daily Accumulative PAR1,b μmol

Net Radiation1,a W/m 2

Shortwave Radiation1,a W/m 2

Shaded Air Temperature1,a °C

Soil Heat Flux3,a W/m 2

fPAR x Accumulative PAR2,a μmol

Average Bole Temperature2,a °C
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Figure 6.2: Sample of monthly averaged normalized auxiliary 
variables. 

 

Figure 6.1: Groups of auxiliary variables. Sensitivity tests were 
run where the starred variables were allowed to be selected in 
addition to another variable in their category, but these tests 
showed that more than one variable per category were never 
selected. 
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The hourly NEE data have many nonrandom gaps due to the lack of vertical air motion 

(e.g., atmospheric stability), or due to rain obscuring sensors. A gap‐filled data product 

available for UMBS (Schmid et al., 2003) was used as the primary data stream in the 

presented analysis. Note that the gap filling methods used at UMBS include (1) 

short‐term ensemble averages of hourly fluxes over the course of a day during leaf‐out 

periods and (2) parametric models during the growing season that define the relationship 

between ecosystem respiration and soil temperature and gross primary ecosystem uptake 

to PAR (Schmid et al., 2003). Because of the large proportion of data gaps at this site 

(>40%), the analysis was also repeated using non‐gap-filled data for comparison to 

ensure that results are not reflecting assumptions used in the gap‐filled model. 

The GR analysis was conducted separately on NEE, GEE, and Rh+a.  To obtain the 

GEE and Rh+a signals, the daily averaged nighttime observations of NEE were used to 

represent daily ecosystem respiration (i.e. average(NEEnight) = daily Rh+a), similar to the 

approach in Urbanski et al., (2007).  Daily GEE was then derived by subtracting the 

averaged NEE night measurements from the daily NEE average (i.e. GEE = 

average(NEE) – average(NEEnight).  Although this approach may under-predict GEE 

because daytime temperatures are higher than nighttime temperatures, alternative 

methods for separating GEE and Rh+a are based on assumed relationships between these 

flux components and auxiliary variables such as temperature.  Such parametric 

relationships may have biased our results where the selected variables may have solely 

mirrored the prescribed relationships used to separate fluxes.  For the non-gap-filled NEE 

analysis, if more than 50% of the nighttime NEE measurements were missing, then NEE, 

Rh+a, and GEE were not considered separately. 

Random gaps occurring in the environmental data sets within a day were not 

filled unless they were large (>50% of missing data for a given day). For such large data 

gaps, all data were excluded from the analysis. The averaged monthly, 8 day, and daily 

variables were evaluated against coincident gap‐filled data sets available from the Carbon 

Dioxide Information Analysis Center (ftp://cdiac.esd.ornl.gov/pub/AmeriFlux/data/), and 

no substantial differences were observed. 
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4.0 The geostatistical model 

As explained in Chapter 3, geostatistical regression (analogous to multiple linear 

regression (MLR) in classical statistics) expresses the dependent variable (in this case, 

NEE, GEE, and Rh+a measurements), 𝐳, as the sum of a deterministic component (µ) and 

a stochastic term, (𝜺), representing the residuals between the observations and the 

deterministic component.  However, instead of assuming that these regression residuals 

are independent (i.e. “white noise”), 𝜺 is modeled as a vector of correlated zero-mean 

residuals.  The deterministic component represents that part of the observations that can 

be explained using a set of covariates (i.e. auxiliary variables) (Huang et al., 2007), while 

the stochastic component describes the variability in 𝒛 that is not explained by the 

deterministic component:   

𝒛 = µ + 𝜺.       (6.1) 

The deterministic component takes the form of a model of the trend or expected 

drift (i.e. µ =  𝐗𝛃). This model can be as simple as a single overall mean, or can include 

any linear combination of variables related to 𝒛. The 𝐗 matrix contains vectors of k 

covariates that are scaled by the vector of unknown drift coefficients (𝛃).  Even though 

the individual columns in 𝐗 are linearly related to 𝒛, the columns themselves can 

potentially contain transformations of one or more auxiliary variables, e.g. 

exp(temperature) or lagged data.  GR (Section 3.4) is used to obtain the best estimates of 

the drift coefficients, 𝛃�, which represent the relationship between CO2 flux and each 

covariate, and their corresponding uncertainties, 𝜎𝛃�
2 . 

The covariance of the regression residuals, ε, is modeled as:  

𝑄�ℎ𝑖,𝑗� =  𝐸�𝜀(𝑡𝑖)𝜀�𝑡𝑗��,     (6.2) 

where ℎ𝑖,𝑗 is the time lag between times 𝑡𝑖 and 𝑡𝑗, 𝑄(ℎ𝑖,𝑗) is the covariance for points 

with a lag ℎ𝑖,𝑗, and 𝐸[ ] denotes the expectation operator.  Equation (6.2) assumes that the 

flux residuals are homoscedastic, although a model where the variance changes 

seasonally could be implemented if needed.   

As outlined in Chapter 3, Section 2, many covariance functions can be used to 

model the behavior of the residuals in equation (6.2) (e.g. Cressie, 1993), but a 
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combination of a nugget and exponential covariance function was found here to aptly 

model the temporal covariance of NEE, GEE, and Rh+a observations and residuals: 

Q�ℎ𝑖,𝑗� =  �
𝜎𝑛,𝑄
2 + 𝜎𝑠,𝑄

2                         ℎ𝑖,𝑗 = 0

𝜎𝑠,𝑄
2 𝑒𝑥𝑝 �− ℎ𝑖,𝑗

𝜏𝑄
� ,             ℎ𝑖,𝑗 > 0

�     (6.3) 

where the practical temporal range of correlation is approximately 3τ.  Beyond 3τ, the 

covariance between residuals is close to zero. The nuggets, 𝜎𝑛,𝑄
2 , represents variability at 

time scales below the averaging time used for the observation and measurement error.  

These parameters are estimated using Restricted Maximum Likelihood as discussed in 

Chapter 3, equation 3.17. 

4.1 Model of the trend, 𝐗 

As explained in Chapter 3, Section 4, to identify environmental variables to 

include in the model of the trend, Bayes Information Criteria (BIC) is modified so that 

equation that can account for correlated residuals becomes: 

𝐵𝐼𝐶𝑗 = ln|𝛀| +  [𝒚𝑇(𝛀−1 − 𝛀−1𝐗(𝐗𝑇𝛀−1𝑿)−1𝐗𝑇𝛀−1)𝒚] + 𝑘ln(𝑛). (6.4) 

For the special case of independent residuals, IQ 2σ= , where I is an identity matrix, and 

equation (7) reduces to the more conventional form, where RSS is the residual sum of 

squares: 

𝐵𝐼𝐶𝑗 = −𝑛ln 𝑅𝑆𝑆
𝑛

+ 𝑘ln(𝑛)     (6.5) 

In this study, most of the variables are highly correlated (more than 15 of the 27 variables 

considered for the trend had a pair which yielded a correlation coefficient greater than 

0.75).  This is not surprising given that many of the datasets represent similar quantities, 

such as temperature, radiation, and vegetation.  Therefore, these similar datasets are 

grouped into categories as presented in Figure 6.1, complementing the BIC with scientific 

understanding regarding their relationship to flux.  The BIC is then run by restricting the 

number of variables from each category to at most one, to avoid problems with excessive 

collinearity among the auxiliary variables, which could lead to large and opposing 

regression coefficients that do not reflect expected relationships to flux, and that have 

overly wide associated uncertainty bounds (Faraway, 2005).  Note that fully automated 

model building procedures are not recommended as a means for identifying the best 
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interpretable model, because such procedures can potentially select models that represent 

only spurious relationships, and therefore can fail when applied to comparable datasets 

(Judd and McLelland, 1989).  A condition number is used to diagnose collinearity 

(Faraway, 2005).  Finally, because correlation coefficients for variables in the trend 

provide a measure of the relationship among themselves and not the relative 

independence of the relationship of a variable into 𝐗𝛃 flux, the correlation coefficients of 

the drift coefficients, 𝛃�, for the selected variables are also estimated and compared. 

4.2 The geostatistical regression equations 

As shown in Chapter 3, equations 3.10 and 3.11, estimates of the drift 

coefficients, β̂ , and their uncertainty covariance (
βVˆ ) (e.g. Cressie, 1993) are calculated 

as: 

𝜷� = (𝐅𝑇𝛀⁻¹𝐅)⁻¹𝐅𝑇𝛀⁻¹𝒚      (6.6) 

𝐕𝜷� = (𝐅𝑇𝛀⁻¹𝐅)⁻¹      (6.7) 

where all variables are as previously defined, and the diagonal elements of 
βVˆ  are the 

variances representing the uncertainty of the drift coefficients.  The coefficient of 

determination R2 is calculated as: 

R𝟐 = 1 − (𝒛−𝑿𝛃�)𝑇(𝒛−𝑿𝛃�)
(𝒛−𝒛�)𝑇(𝒛−𝒛�) ,      (6.8) 

to quantify the portion of the observation variability explained by the model of the trend. 

5.0 Results  

The GR was performed for a 5 year time period, as well as for three distinct 

seasons (growing season, spring green‐up, and non-growing season). The goal was to 

identify the dominant variables that explain the variability in NEE, GEE, and Rh+a at 

different temporal scales. The study also investigated the feasibility of using auxiliary 

data to statistically separate flux components (i.e., GEE and Rh+a) in NEE measurements. 

Finally, this work explored the sensitivity of results to the use of remote‐sensing versus 

site‐based LAI and fPAR data and to the assumption of linearity between the auxiliary 

variables and flux observations. 
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Several sensitivity tests were performed to ensure that (i) the model selection was 

not unduly influenced by data from a particular year, (ii) using gap-filled data did not 

affect results, and (iii) the regression residuals were symmetric and close to Gaussian. 

Excluding individual years from the analysis negligibly impacts the presented results, as 

did the substitution of non gap-filled data in the analysis.  More importantly, the results 

using gap-filled data do not mirror the assumed relationships used in the NEE gap-filling 

algorithm (in particular, soil temperature was never selected as an important variable for 

respiration) (Section 2.2). Finally, regression residuals are symmetric. As such, results of 

these sensitivity tests are not shown for brevity.   However, the outcome from these tests 

provides evidence for the statistical validity of the results presented in the following 

sections. 

5.1 Explanatory variables in the monthly, 8-day, and daily NEE, GEE, and Rh+a 

trends  

Auxiliary variables were selected using the BIC algorithm outlined in Section 3.2 

for regression models for NEE, GEE, and Rh+a.  Drift coefficients and associated 

uncertainties were estimated for the resulting 9 models (3 dependent variables × 3 

temporal scales) using equations 3.10 and 3.11 presented in Chapter 3 (Table 6.2).  The 

correlation coefficients of the drift coefficients (𝛃�) for all models are less than 0.7 (unless 

noted otherwise in the text) with condition numbers less than 30, indicating that the BIC 

method, complemented with the grouping of variables, is able to avoid problems with 

excessive collinearity.  Note that a positive sign on the estimated drift coefficients 

indicates a positive correlation with CO2 flux (i.e. a source or a reduction in sink), while a 

negative sign indicates a negative correlation (i.e. a sink or reduction in source).    
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All selected models of the trends explain over 75% of the variability in measured 

fluxes (0.77 ≤ R2 ≤ 0.98, Table 6.2).  Note that the high R2 values are not solely reflecting 

the predictability of the seasonal cycle, because using a trend derived for a coarser 

timescale (e.g. monthly) to explain variability at a finer timescale (e.g. 8-day or daily) 

yielded a substantially lower R2 relative to the case where the timescale-specific trend 

was used.  For example, the monthly trend explains only 61% of the variability in the 

daily measurements compared to 77% explained by the daily trend.   

Overall, the variance explained is particularly high for Rh+a, which suggests that 

respiration can be more easily represented than photosynthetic uptake.  Photosynthetic 

uptake is also captured well, except for periods with exceptionally strong uptake, such as 

in July 2003 (Figure 6.3) and for the 8-day and daily cases in July 2001 (not shown), 

indicating that key variables needed to explain this anomalous uptake may be missing, or 

that nonlinear effects become important in these cases.  

Table 6.2: Selected Variables and Associated Drift Coefficients (𝛃�) as Estimated From the GR 
Algorithm at the Monthly, 8 Day, and Daily Temporal Scales. Units are mmolCO2/m2s. All drift 
coefficients as estimated by GR are significant at the 95% confidence level unless italicized in the 
table. Numbers in brackets indicate the reduction in explanatory power when the associated 
variables are removed from the model (ΔR𝑖

2) where a higher number signifies a more dominant 
variable. The variance explained (R2) and condition number of the trends are provided for each 
model. Note that other variables in Table 6.1 were never selected and are therefore not listed here. 
Dashes indicate categories of variables that were not selected for a particular model. 
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Vegetation (as represented by the sum of the LAI and fPAR contributions) has the 

strongest correlation to seasonal carbon cycling at UMBS across all temporal scales.  

This finding is expected given that the morphological, physical and chemical properties 

of vegetation have been shown to affect most processes of carbon and nutrient cycling in 

deciduous forests (e.g. Dorrepal, 2007).  This result is also expected because the UMBS 

 

Figure 6.3: Monthly flux measurements (solid lines) with 
estimated trends (dashed lines). Eight day averaged Gross 
Ecosystem Exchange (GEE) and Rh+a measurements, their 
associated trend 𝐗𝛃�, and the components of the Net 
Ecosystem Exchange (NEE) trend associated with carbon 
uptake (negative 𝛃�) or loss (positive 𝛃�). 
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forest is an overall net sink of CO2, such that variables associated with carbon uptake are 

expected to be important in explaining the overall signal.  At the finer (daily and 8-day) 

time scales, on the other hand, the influence of the amount of PAR intercepted and/or 

absorbed by the canopy (APAR = fPAR x Daily Accumulated PAR) also becomes 

significant in explaining carbon uptake, as represented by both the NEE and GEE 

measurements (Table 6.2).  As noted by Anderson et al. (2000), many other studies have 

demonstrated the linear relationship between the increase in canopy biomass and the 

amount of visible light intercepted or absorbed in the canopy (e.g. Monteith, 1966).  

However, as expected, these results indicate that Light Use Efficiency (LUE) plays a 

more important role at synoptic scales, whereas vegetation better explains seasonal 

carbon cycling. 

In addition to examining the regression coefficients associated with individual 

variables and their associated uncertainties, the explanatory role of selected variables was 

further examined by successively eliminating each variable from the trend, and 

quantifying the resulting reduction in R2 (Table 6.2), or ∆Ri
2.  Variables that result in a 

larger reduction in R2 explain more variability in the flux measurements.  For example, 

when LAI was excluded from the model of the trend for NEE at the monthly scale and 

regression coefficients were recalculated for the remaining variables, the ∆Ri
2 associated 

with LAI is 0.27. Removing fPAR at this scale has much less of an impact (∆Ri
2 is 0.09).  

Thus, LAI is a more important variable at this scale, and fPAR appears to be adjusting 

LAI to help fit the NEE measurements.  The magnitude and sign on the regression 

coefficients for these variables further confirm this result, because the drift coefficient of 

LAI is negative, corresponding to a sink of CO2, and explaining the main seasonality of 

carbon uptake.   

Conversely to NEE, the variables that best explain respiration, and their 

significance, are relatively scale independent (Table 6.2).  In terms of carbon sources at 

UMBS, Curtis et al. (2005) noted that losses from soils account for approximately 70% of 

the carbon respired between 1999 and 2003.  These losses include both root respiration 

and microbial respiration, which are, in turn, influenced by factors including 

photosynthetic supply to roots, substrate quality and availability, temperature and 

moisture (Hibbard et al., 2005). In addition, Curtis et al. (2005) noted only small inter-
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annual variation (< 6%) in soil respiration at UMBS, suggesting that there is little 

variation in these primary controls from year to year.  This finding at UMBS, coupled 

with results presented herein, suggests that the respiration signal is more consistent both 

spatially and temporally than previously understood (e.g. Hanson et al., 2000; Hibbard et 

al., 2005) for mixed Northern hardwood forests. 

The specific variables selected for the Rh+a model of the trend (including 

nighttime air temperature, vapor pressure deficit (VPD), and site-specific fPAR) are 

different from those identified as important controls in previous work (including soil 

temperature and moisture, substrate availability and quality, soil carbon decomposition 

and microbial growth dynamics, and soil hydraulic properties) (e.g.  Davidson et al., 

2002; Reichstein et al., 2005).  Although many of these variables were either not 

available or provided at scales that rendered them unsuitable for this analysis, the 

exclusion of soil temperature and moisture from the Rh+a model of the trend is 

unexpected.   These results may reflect the fact that the soil moisture data was collected 

at 1m depth, which tends to be less temporally variable than soil moisture closer to the 

surface.  Given that the soils at this site are well-drained spodosols (92% sand, 7% silt, 

and 1% clay) (Gough et al., 2008) with a shallow O horizon, a shallower soil moisture 

dataset might reflect moisture dynamics in the root zone.  Unfortunately, this data was 

also not available for the study.  In addition, nighttime air temperature (or air 

temperature) may be more representative of the actual temperature influencing 

heterotrophic respiration than soil temperature (which is measured at a depth of 7.5 cm).     

The significance of VPD in the respiration model may indicate that this variable 

acts as a proxy for the moisture available in the canopy where larger values indicate drier 

conditions that physiologically impede carbon efflux.  The effects of water stress on plant 

respiration often are mediated through loss of tissue turgor and stomatal closure (Aber et 

al., 1991), which can result in substantial reductions in respiration per plant (Davidson et 

al., 2006).   

The significance of fPAR in the Rh+a model of the trend (Table 6.2) is more 

difficult to interpret.  fPAR is likely acting as a proxy for another variable that was not 

included in the analysis.  For example, fPAR might be representing the amount of 

substrate available for heterotrophic respiration.  Other studies have found that using LAI 
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(which is closely related to fPAR) as a surrogate for site productivity across a range of 

temperate forests could help explain differences in annual respiration, hypothesizing that 

the larger the site LAI, the more substrate is produced for respiration (Reichstein et al., 

2003).  Otherwise, as discussed in Section 4.3, site-specific fPAR may simply act as a 

better proxy for overall seasonality than other available variables because it is a 

temporally smoother dataset.  Note that removal of fPAR from the model results in a 

smaller ∆Ri
2 relative to the removal of nighttime temperature, indicating that temperature 

explains more of the respiration variability.   

In addition to reflecting the general findings noted previously, the daily-scale 

analysis yields some unexpected results for all examined dependent variables.  For 

example, precipitation is associated with a source or a decrease in sink at the daily scale 

in the NEE and GEE trend models, but was not significant for the Rh+a model where it 

might be associated with soil moisture.  While this result may seem counterintuitive for 

this ecosystem type, precipitation may in fact be acting as a proxy for periods with 

significant cloud cover, and therefore for times with reduced sunlight for photosynthesis. 

This would have a larger impact at synoptic scales, whereas this effect may be averaged 

out at 8-day or monthly time resolutions.  Note that precipitation may have a lagged 

effect on carbon uptake by affecting water availability on different time scales, which 

could be investigated using a shallower soil moisture dataset, or by adding a lagged 

precipitation variable to the superset of variables considered for model selection.  

Variables such as friction velocity may also be helping the model of the trend capture 

some of the small scale flux variability that cannot be represented by the other variables 

that were collected at larger time scales, rather than informing some mechanistic 

understanding.  In all cases, these variables are associated with a smaller ∆Ri
2 relative to 

LAI, fPAR, and APAR, making conclusive attribution of their impacts more difficult. 

Note that at 8-day and daily time scales, accounting for correlation among the 

residuals using GR yields different models of the trend, regression coefficients, and 

uncertainties relative to a setup where such correlation is ignored (analogous to MLR), 

specifically for the NEE and GEE.  When temporal correlation was ignored, at least 2 or 

3 more variables are identified for the trend, because the underlying temporal correlation 

is misattributed to one or more of the candidate variables.  In addition, the significance of 
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the regression coefficients is reduced when MLR was applied. These results further 

emphasize the need to account for the covariance of residuals in regression analysis of 

flux data at sub-monthly resolutions.     

5.2 Isolating photosynthesis and respiration from NEE measurements 

The auxiliary variables selected for the NEE model can be used to partially isolate 

carbon uptake and release at the sub-monthly temporal scales.  At the monthly scale, 

none of the variables identified as being important for Rh+a are selected for the NEE 

model, indicating that Rh+a cannot be derived from the NEE observations using auxiliary 

variables.  This is likely due to the fact that the seasonality at UMBS dominates the 

monthly signal, which is primarily controlled by the seasonal cycle of photosynthetic 

activity at this site.  At the 8-day and daily time scales, however, results are more 

promising (Table 6.2), with air temperature (a variable similar to nighttime temperature 

important for Rh+a) also being selected for NEE.  Overall, the covariates that are 

associated with carbon uptake and release in the NEE model explain 90% of the GEE 

variability and 94% of the Rh+a variability at the 8-day scale (Figure 6.3), and 83% and 

86% at the daily scale (Figure 6.4), respectively.  This result indicates that NEE 

measurements at fine time scales can be used to identify variables that are important for 

photosynthesis and respiration separately.  This suggests that selected auxiliary variables 

can potentially be used to separate NEE observations and/or geostatistical inverse 

modeling total CO2 flux estimates (e.g. Michalak et al., 2004; Gourdji et al., 2008) into 

component fluxes.   
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5.3 Regression analysis for growing Season, spring green-out, and non-growing 

season 

The forest at UMBS is a net carbon source from early fall (late September) until 

late spring (mid May) (Gough et al., 2008), and this strong seasonality may be associated 

with changes in the significant auxiliary variables and/or their relationship to flux for the 

current analysis.  To investigate this question, the daily GR analysis was repeated for (1) 

the growing season, approximately day of year (DOY) 140-276, a period of increasing 

leaf density defined by the period for which soil temperature is above 5ºC (Schmid et al., 

2003), (2) spring green-up in May, a period of rapid leaf growth coinciding with dramatic 

shifts in atmospheric humidity, surface energy balance and the balance between 

respiration and photosynthesis, and (3) the non-growing season, approximately DOY 

295-117, a period of leaf senescence and limited growth due to lack of sunlight and cold 

temperatures, with an average air temperature below -1ºC. 

 

Figure 6.4: Daily-averaged GEE and Rh+a measurements, their associated 
models of the trend (𝐗𝛃�), and the components of the NEE model of the 
trend associated with carbon uptake (negative 𝛃�) or loss (positive 𝛃�). 
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The amount of available sunlight is found to drive photosynthesis during the 

growing season, consistent with current understanding (e.g Gough et al., 2007) (Table 

6.3).  Net radiation, the daily variation of which is similar to that of PAR during this time 

of the year (Oliphant et al., 2006) explains the majority of the variability in NEE and 

GEE, with some adjustments provided by vegetative indices (i.e. site-specific fPAR and 

site-specific LAI in the NEE and GEE trends respectively).  The selection of vegetation 

indices is reasonable, because seasonal changes in leaf area strongly affect the light 

environment of forest canopies, especially those dominated by aspen (Roden, 2003).  

However, it is unclear whether site-specific LAI or site-specific fPAR is most strongly 

associated with carbon uptake during this time period, because the fPAR dataset was 

derived from the LAI data, as described in Section 2.2. The other variables play a more 

minor role, but are generally consistent with those from the analysis presented in Section 

4.1.  The only notable exception is the absence of site-specific fPAR in the Rh+a model of 

the trend, which suggests that temperature controls are more dominant on respiration 

during this time period.   



130 
 

 
In May, on the other hand, the rapid change brought about by leaf-out in the 

spring results in the largest changes in both selected variables and estimated variables 

from the overall seasonal relationships presented in Section 4.1 (Table 6.3).  However, 

the amount of PAR absorbed or lost within the canopy remains the dominant explanatory 

variable of carbon uptake during this time period (i.e. ∆Ri
2 is largest when fPAR x 

Accumulated PAR was removed from the NEE and GEE May trends, among variables 

Table 6.3: Selected variables and their associated drift coefficients (𝛃�) in μmolCO2/m2s as 
estimated from the geostatistical regression algorithm at the daily temporal scale for the 3 
seasons (Growing, Green leaf-out, Non-growing).  All drift coefficients are significant at the 
95% confidence level unless italicized in the table. Numbers in brackets indicate the 
reduction in explanatory power when the associated variable is removed from the model 
(∆Ri

2) where a higher number signifies a more dominant variable.  The variance explained 
(R2) and condition number (K) of the trends are provided for each model.  Note that other 
variables in Table 6.1 were never selected and are therefore not listed here.  Dashes indicate 
categories of variables that were not selected for a particular model. 
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with an associated negative regression coefficient).  As with the growing season, air 

temperature (or nighttime temperature) captures the majority of the respiration signal in 

both the NEE and Rh+a models of the trend. 

Only NEE and Rh+a were evaluated for the non-growing season, because there is 

little growth during this period. Nighttime air temperature remains the dominant variable 

in the Rh+a model, and also becomes an important variable for NEE, providing further 

evidence that temperature controls carbon efflux for this forest ecosystem.  The other 

dominant variable, fPAR, appears to help the model of the trend better fit the seasonality 

of the respiration signal, and is therefore likely not directly acting as a proxy of some 

mechanism controlling respiration (Figure 6.5).   

 
Note that the regression residuals from the seasonal analysis are homoscedastic, 

whereas those in the full-year analysis showed some differences in variance with seasons.  

Given that the results of the seasonal analyses are generally consistent with those 

presented in Section 4.1 for the full year, heteroscadicity of these residuals does not 

appear to play an important role in the year-round analysis.   

 

Figure 6.5: Daily non-growing season Rh+a measurements and contributions (𝐗𝛃�) 
of nighttime temperature and fPAR. 
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5.4 Sensitivity analysis of LAI and fPAR  

A sensitivity analysis was performed to assess the impact of using site-specific 

versus remote-sensing-derived LAI and fPAR on the results presented in Section 4.1.  

This analysis is particularly important given the significant roles that LAI and fPAR play 

in the models of the trend at all temporal resolutions.  In addition, the fact that site-

specific LAI and fPAR are selected over the remote sensing data products at smaller 

temporal scales (and at all scales for Rh+a) raises questions about the use of satellite data 

products for eddy-covariance studies.  Figure 6.6 shows that the MODIS LAI appears to 

overestimate site specific LAI during the growing seasons, while the fPAR measurements 

are relatively consistent, although the onset and subsidence of the growing season differ.  

In addition, the MODIS LAI and fPAR datasets are inherently noisy, especially in the 

non-growing season when there is no vegetation activity at UMBS.  In the sensitivity 

analysis, the “preferred” LAI and fPAR datasets (defined as the LAI and fPAR selected 

for those models in Table 6.2), were removed from the analysis, the BIC was rerun, and 

the impact on the selected variables and their relationship to NEE, GEE and Rh+a was 

reevaluated (Table 6.4).  
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Figure 6.6: LAI and fPAR data sets from MODIS and from VAI 
field measurements scaled by total annual leaf area as estimated 
from site leaf litter traps at the (a) monthly and (b) daily time 
scales. 
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Although all models of the trends have slightly less explanatory power without 

the “preferred” LAI and fPAR datasets, MODIS and site specific LAI and fPAR explain 

similar seasonality in the monthly NEE and GEE measurements.  As the temporal scale 

decreases, however, MODIS EVI becomes a better substitute for site-specific LAI 

(“preferred” dataset) and site-specific fPAR (also a “preferred” dataset) over MODIS 

LAI and fPAR.  Since EVI is also inherently noisy, this substitution may be due to the 

difference in the resolution of these MODIS products, where LAI and fPAR were 

provided at the 1km scale, whereas the EVI data was available at a 250m resolution.  

These results suggest that the representativeness of the MODIS 1km products of a flux 

tower site may be adequate at monthly scales, but less so at finer temporal resolutions.  In 

addition, these results indicate that site-based estimates of LAI and fPAR based on 

Table 6.4: Selected variables and their associated drift coefficients (𝛃�) in μmolCO2/m2s as 
estimated from the geostatistical regression algorithm when the preferred sources of LAI and 
fPAR (Table 6.2) are removed the analysis.  All drift coefficients are significant at the 95% 
confidence level unless italicized in the table. Bold values identify variables that were not 
selected in the original analysis (Table 6.2).  The variance explained (R2) and condition 
number (K) of the trends are provided for each model.  Note that other variables in Table 6.1 
were never selected and are therefore not listed here.  Dashes indicate categories of variables 
that were not selected for a particular model. 
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relatively few measurements appear to be able to adequately represent properties of large 

areas (~1km2) at flux tower sites for the purposes of studying carbon cycling, which 

would be contrary to suggestions cited in previous work (e.g. Beerling and Quick, 1995). 

For Rh+a, when site-specific fPAR was removed from the analysis, site-specific 

LAI was always selected as a substitute, with minor changes to the overall fit of the 

model, indicating that the process characterized by fPAR is best represented by site-

specific vegetation variables at all temporal scales. 

For all models (NEE, GEE, and Rh+a), most other variables remain consistent with 

those selected in Section 4.1, suggesting that the relationship between these parameters 

and flux is relatively independent of the representativeness of the LAI and fPAR datasets. 

The fact that their associated inferred drift coefficients are similar both in signs and 

magnitudes further supports this finding, supporting the robustness of the results 

presented in Section 4.1. 

5.5 Testing the linearity assumption  

The GR models built in this work assume a linear relationship between NEE, 

GEE, or Rh+a, and the selected auxiliary variables.  This assumption was tested by 

examining scatter plots of flux as a function of individual selected variables for the 

monthly, 8-day, and daily analyses.  An example of 8-day averaged GEE and Rh+a plotted 

against a subset of auxiliary variables is presented in the top row of Figure 6.7.  These 

scatter plots reveal possible non-linear relationships.  However, these nonlinear 

relationships either vanish, or are significantly reduced in the residuals from the GR 

models (bottom row of Figure 6.7).  This result indicates that relationships that appear to 

be nonlinear when fluxes are regressed against individual variables can in fact be 

explained using linear relationships when multiple auxiliary variable are considered, due 

to the co-variability among the key auxiliary variables.  The analysis presented in Figure 

6.5 also supports the use of a linear model for the analyses presented in this work, and 

further cautions against using single variable statistics to infer relationships with NEE, 

GEE, or Rh+a, because such single-variable regressions may lead to incorrect conclusions 

about the nonlinearity of the relationship between environmental variables and flux. 
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6.0 Discussion and lessons learned 

6.1 Are results consistent with existing understanding of the controlling factors of 

photosynthesis and respiration at UMBS?  Do they provide new insight into carbon 

cycling at this site? 

In general, the results of this study are consistent with current understanding of 

carbon cycling for this forest ecosystem, including the strong correlation between 

respiration and temperature, and the influence of solar radiation on carbon uptake during 

the growing season (Gough et al., 2008).    

However, this study has also identified additional variables to the expected ones 

mentioned above, that explain variability in GEE and Rh+a.  First, fPAR appears to act as 

a proxy for other important variables that were not considered in this analysis to capture 

the overall seasonality in Rh+a, such as potentially the amount of litter substrate available 

for heterotrophic respiration, or the amount of substrate available for root respiration.  

This finding is consistent with the fact that the UMBS soil is nutrient poor, making 

substrate availability important in terms of respiration (Gough et al., 2008).  Second, light 

and LAI are important for explaining, and therefore potentially controlling, sink 

processes at UMBS.  APAR is more important at fine temporal scales, although LAI and 

fPAR remain the most important auxiliary variables.   This suggests that, despite the 

 

Figure 6.7: Scatterplots of GEE and Rh+a as a function of a representative 
sample of auxiliary variables. All variables are 8 day averaged. (top) GEE 
and Rh+a; (bottom) GEE and Rh+a residuals from the estimated trend. 
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complexity of this ecosystem, CO2 uptake is regulated mostly by vegetation response to 

large scale energy input (Albertson et al., 2001), and, therefore, can be represented using 

simple linear relationships to a few key environmental variables. Third, the variance 

explained for the Rh+a models is higher than those for NEE and GEE for all examined 

cases.  This is an unexpected result given the current relative lack of understanding of 

processes controlling respiration, and implies that unexplained variability in GEE may 

contribute to large uncertainties in annually averaged predicted uptake. 

Finally, site-specific and remote-sensing LAI and fPAR data do not appear to be 

interchangeable, especially at finer temporal scales.  This is likely due to either the poor 

spatial representativeness of coarser remote-sensing data products relative to site-specific 

data, or to noise within these MODIS datasets.  These results are important because the 

choice of data, especially for vegetative indices, in empirically-based models, is the 

subject of much debate, with some studies electing to use EVI (e.g Sims et al., 2006) 

while others prefering LAI (e.g. Lindroth et al., 2008), fPAR (e.g. Running et al., 2004) 

and/or Land Surface Water Index (LSWI) (Mahadevan et al., 2008), all generally 

provided or derived from MODIS products, as proxies for gross productivity.  This work 

suggests that the spatial representativeness of data at relevant spatial and temporal scales 

may be as important as the choice of the specific vegetative indices to be used.   

6.2 To what extent can NEE be used to understand processes controlling 

photosynthesis and respiration at UMBS?  Are results applicable at other sites? 

If the variables selected for the NEE model of the trend were consistent with those 

selected for GEE and Rh+a, then the NEE signal could be used directly to understand the 

processes controlling component fluxes.  Conversely, if there were no relationship 

between variables selected for NEE, GEE, and Rh+a, this would indicate that NEE 

contains little direct information about component fluxes.  Because sink activity 

dominates at UMBS, the monthly NEE model of the trend contains similar variables to 

those selected for GEE, and does not include variables that capture Rh+a.  However, at 

smaller resolutions (8-day and daily), results suggest that auxiliary variables may provide 

an alternative means to separate photosynthesis and respiration from the NEE 

measurements. 
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The relative amount of sink and source activity should be considered in assessing 

the ability of the geostatistical algorithm to partition the NEE signal using auxiliary 

variables.  Given that the relationship between respiration and primary production would 

be different at every flux site, it is difficult to determine whether estimated NEE models 

would yield similar results at other sites.  However, it seems reasonable that at longer 

scales, the dominant activity (i.e. sink or source) would be better represented by the 

selected variables within a model. 

6.3 To what extent does GR provide insight into factors that influence carbon 

cycling?  

One advantage of statistical approaches for studying carbon cycling is that they 

can identify key relationships among available observations and environmental datasets, 

with relatively little reliance on assumptions about controlling processes.  This can lead 

to the identification of important variables that would otherwise be overlooked. Statistical 

approaches can also be seamlessly applied across temporal scales, thereby providing a 

method for evaluating the validity of mechanistically-derived relationships at different 

temporal resolutions.  

This study suggests that simple linear regression methods used in previous flux 

studies relying on relationships between carbon flux and individual auxiliary variables, 

yield derived relationship may be a result of the correlation in the seasonal cycles of flux 

and individual auxiliary variables, rather than a true explanatory relationship.  Such a 

correlation could eclipse the true relationship between an auxiliary variable and flux.  

This work confirms conclusions from other studies (e.g. Stoy et al., 2009) that concluded 

that the statistical relationship between an auxiliary variable and flux can be scale-

dependent, as well as seasonally-varying.  These results emphasize the need to explicitly 

interpret statistical models only at the scales at which relationships were derived.  

Similarly, studies that use biospheric models that ‘scale-up’ or ‘scale-down’ relationships 

inferred at one resolution to another resolution should verify whether the processes and 

parameterizations used by the model are scale-dependent.   

This study also demonstrates the need to account for temporal correlation in 

residuals in statistical regressions, especially for analyses at fine temporal scales (i.e. sub-

monthly), where residuals have correlation lengths that span multiple time periods (e.g. 
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the Qτ  for the NEE and GEE 8 day residuals was 6 and 6.5 8-day periods, respectively, 

compared to a Qτ  for Rh+a residuals of 1.25).  Correlation is quantified using the 

Restricted Maximum Likelihood (RML) method, further limiting model assumptions that 

could otherwise bias estimates. 

This work relied on an assumption of linearity between the examined auxiliary 

variables and flux.  Although this is contrary to the functional forms of the relationships 

between these variables and flux as implemented in many biospheric models (which are 

applicable at a physiological level), results presented in Section 4.4 show that a linear 

model is able to reproduce what initially appear to be nonlinear dependency when 

variables are examined individually.  Note that there is a possibility that the linear 

assumption in the model could eclipse a “true” nonlinear relationship between a variable 

and flux (such as the Q10 exponential relationship between temperature and heterotrophic 

respiration), as mentioned in Section 7.0, Chapter 3.   However, this work suggests that  

the linearity assumption is justified for this analysis, and further emphasizes the potential 

for inferring erroneous relationships between variables and flux when examining 

variables individually.   

 Finally, although statistical methods can be powerful tools for studying complex 

systems such as carbon cycling, these analyses do not in and of themselves prove 

causality.  Instead, they highlight dominant relationships and patterns that can, when 

reaffirmed with additional results and scientific knowledge, illuminate process-based 

understanding.  One limitation of the approach presented in this work is that the BIC 

method used here selects a single “best” model of the trend.  In some cases, multiple 

similar sets of auxiliary variables provided comparable fits to the available observations, 

although dominant variables remained consistent.  Approaches for accounting for the 

uncertainty associated with the form of the model of the trend are explored in related 

work (Yadav et al., in press). 

Note that although the focus of this work is on statistical inference, a further 

analysis was performed to see how well the GR method could perform in predicting daily 

NEE for a given year, relative to multiple linear regression.  In this analysis, data from 

one year were removed from the analysis, and the remainder of the data were used to (i) 

select variables, (ii) estimate regression coefficients, and (iii) predict fluxes for the 
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missing year.   The results show an improvement in prediction (as evaluated using R2) 

over multiple linear regression.  The majority of the improvement is attributed to the 

more representative set of variables that are selected by the BIC method when temporal 

correlation is considered in the GR approach.   

7.0 Conclusions 

This research presents a GR approach for studying the complex biosphere-

atmosphere exchange of CO2 at eddy-covariance measurement sites, and applies the 

proposed approach to the AmeriFlux site at UMBS.  The GR approach is shown to be a 

useful method for exploring the relationships between auxiliary variables and NEE, GEE, 

and Rh+a at this flux tower site across temporal scales.   

Overall, conclusions about carbon cycling from this study at UMBS are consistent 

with current understanding, including the strong correlation between respiration and 

temperature, and the influence of solar radiation on carbon uptake during the growing 

season.  However, the study also highlights the influence of other variables such as 

precipitation, VPD, and fPAR on both carbon uptake and release across multiple 

temporal scales.   Results also confirm that many relationships between flux and auxiliary 

variables are scale-dependent.  In addition, the study showed that site-specific and 

remote-sensing LAI and fPAR data are not interchangeable at finer temporal scales, 

indicating that the choice of the specific vegetative indices used in an analysis is as 

important as their spatial and temporal representation. Finally, results show that a linear 

GR model is able to capture what initially appear to be nonlinear relationships, due to the 

co-variability among individual auxiliary variables in the model. 

In addition, GR is found to be able to identify variables that partially isolate GEE 

and Rh+a from the NEE signal at smaller time scales.  Therefore, GR can be used to infer 

process-based information from observations of NEE using other available datasets, 

without having to separate the signal into component fluxes, thereby avoiding a possible 

source of error.  This result also suggests that a similar approach may be useful for 

geostatistical inversion studies (e.g. Michalak et al., 2004; Gourdji et al., 2008) that use 

atmospheric measurements along with auxiliary data and an atmospheric transport model 

to infer CO2 surface fluxes, because the auxiliary data used in such studies may help 

isolate the photosynthetic and respiration signals.    
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The GR model as presented herein could be extended to account for the 

uncertainty of selecting a single “best” model of the trend when multiple sets of auxiliary 

variables provide comparable fits to the available observations (Yadav et al., 2010).  In 

addition, instead of separating the data by seasons, heteroscedasticity in the residuals 

could be modeled using a more complex temporal covariance matrix,𝐐. Finally, 

nonlinear or lagged relationships could also be included to further improve the fit of the 

model to the data.  
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CHAPTER 7 

Conclusions and Future Directions 

This section summarizes the objectives and findings of the contributions of this 

dissertation, provides a synopsis of the collaborations with fellow researchers connected 

to this work, and also suggests directions for future work.  

1.0 Contributions 

The overarching goal of this dissertation is to infer carbon cycling dynamics that 

more directly reflect the information content of the available atmospheric measurements. 

To achieve this goal, the dissertation involved applying and further developing two 

different geostatistical methods:  an inversion (GIM) and a regression (GR) applied at 

different spatial and temporal resolutions. GIM uses the variability in atmospheric CO2 

concentrations to infer the most likely distribution of surface CO2 fluxes while GR uses 

direct NEE measurements to infer relationships between carbon flux and environmental 

variables. The following sections summarize the major contributions from each of these 

objectives.  

1.1 Objective 1: Global geostatistical inversion study 

Objective 1 involved estimating global monthly CO2 surface flux at a 3.75° 

latitude × 5° longitude resolution for 1997-2001 to quantify the degree to which the 

global observational network can inform the distribution of CO2 fluxes at various spatial 

and temporal scales with limited model assumptions.  The main conclusions and 

contributions from Objective 1 are listed below. 

 Contrary to assumptions in the carbon cycle community, the existing atmospheric 

monitoring flask network can be used to estimate surface fluxes and their 

associated uncertainties at a 3.75° × 5° resolution.  The grid-scale fluxes reflect 

the general knowledge of the seasonality of surface flux exchange; 

Conclusions: 
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 The geostatistical gird-scale flux estimates are most influenced by the limited 

information content of available atmospheric measurements, and therefore have 

correspondingly large uncertainties.  The grid-scale flux distributions also reflect 

the assumption of a constant model of the trend used in GIM.  As such, the grid-

scale fluxes rely more heavily on the inferred autocorrelation of the flux 

distribution, yielding smooth spatial variability.  As such, the purpose of 

estimating fluxes at a 3.75° × 5° resolution is to post aggregate to larger regions 

so that estimates are more accurate so they can be compared to other estimates of 

flux from both “top-down” and “bottom-up” methods; 

 Contrary to the widely help assumption that additional information is needed with 

the limited network, the a posteriori fluxes aggregated to continental regions have 

uncertainties that are comparable to those reported by previous synthesis Bayesian 

inversions at monthly and inter-annual time scales;  

 For poorly constrained continental regions such as Tropical America, South 

America, and Southern Africa, the large differences between the fluxes estimated 

by GIM and estimates from other Bayesian inversions studies illustrate the strong 

influence of explicit terrestrial priors used in synthesis Bayesian inversions; and,   

 Estimates for the relatively well-constrained European region were also shown to 

vary between studies indicating that the partition of Northern Hemisphere sink is 

still not well understood. 

 The study was the first real application of GIM to estimate surface CO2 fluxes; 

and 

Contributions: 

 Unlike estimates from other Bayesian inversions, the flux estimates from GIM are 

relatively independent from process-based models and thus can be used in inter-

comparison studies of both bottom-up and top-down estimates. 

Overall, Objective 1 demonstrates that GIM can provide a valuable data-driven 

alternative to synthesis Bayesian inversion methods, by avoiding many a priori 

assumptions inherent to aggregation, uncertainty estimation, and the magnitude and 
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spatial patterns of flux distributions.  However, more research is needed to develop a 

better understanding of the significant differences between the GIM estimates and those 

from other studies such as in the Northern mid-latitudes in order to ascertain which 

assumptions are having the largest impact.  Such understanding is important to locate, 

protect, and possibly enhance natural sinks of atmospheric CO2. 

1.2 Objective 2: North American regional geostatistical inversion study 

     Objective 2 entailed assessing the ability of the expanding network of continuous 

CO2 measurements to constrain monthly and annual fluxes at a 1° latitude × 1° longitude 

resolution for North America in 2008.  The main conclusions and contributions from 

Objective 2 are listed below. 

Conclusions:

 Although most regional inversions only use one measurement per day, including 

more temporal measurements when simulated transport can be trusted can 

significantly improves flux estimates once there is more spatial coverage.  

However, the estimation scale must be sub-daily to account for the variability of 

the underlying fluxes and transport;   

  

 If the estimation scale is too coarse, as is the case with most inversion 

applications, the estimates are subject to significant temporal aggregation errors 

even at aggregated spatial and temporal scales;   

 Although simulated transport may be more trustworthy during the mid-afternoon 

hours when well-mixed conditions prevail, an atmospheric CO2 observation from 

this time of the day appears to contain a diffuse signal in terms of surface 

exchange.  Thus, mid-afternoon observations may only constrain carbon budgets 

for very large areas.  The result may have implication for the use of aircraft, flask, 

and continuous measurements in regional inversions that are limited in both space 

and time; and, 

 As with other studies, boundary conditions were found to play a large role only at 

budgeting monthly and particularly annual sources and sinks at the continental 

scale in regional inversions.  The difference of the North American annual 

budgets due to the choice of boundary conditions was over 1PgC/yr. 
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Contributions:

 The study is the first to use measurements from the expanded measurement 

network (i.e. 35 tower locations in North America) to estimate fluxes for 2008; 

  

 As part of the study and collaborative efforts (specifically of Vineet Yadav 

(University of Michigan), Sharon Gourdji (University of Michigan), and Charles 

Antonelli (University of Michigan)), published code, algorithms, and 

documentation of GIM has been made freely available to the scientific 

community (http://www.puorg.engin.umich.edu/); and, 

 Also as part of the study and collaborate efforts (specifically of Sharon Gourdji 

(University of Michigan), Mike Trudeau (NOAA), Abhishek Chatterjee 

(University of Michigan) and Yoichi Shiga (University of Michigan)), the WRF-

STILT particle trajectory and derived sensitivities for 2004 and 2008 North 

American domain, generated as part of the regional inversion, have also been 

made freely available via ftp (http://www.puorg.engin.umich.edu/) to the 

scientific community.    

Objective 2 demonstrated that setup choices must be considered to best extract the 

information content on CO2 flux exchange within the expanded regional continuous 

measurement network.  The work showed that more research is needed to help determine 

what times of the day to include measurements from different tower sites as errors 

associated with simulated transport can bias flux results.  In addition, more research is 

needed to reach a consensus on a set of boundary conditions to use in regional inversions 

as they have a large impact, particularly on continental annual carbon budgets.   

1.3 Objective 3:  Flux tower geostatistical regression study 

Objective 3 involved assessing drivers of CO2 variability at a landscape scale and 

the temporal dependency of the inferred statistical relationships between environmental 

variables and surface CO2 exchange at the University of Michigan Biological Station 

(UMBS).   The main conclusions and contributions from Objective 3 are listed below. 
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Conclusions:

 Overall, conclusions about carbon cycling from the GR study at UMBS are 

consistent with current understanding, including the strong correlation between 

respiration and temperature, with respect to the influence of solar radiation on 

carbon uptake during the growing season.  The consensus partially validates the 

use of the method to infer carbon dynamics at flux tower sites;  

  

 The study also highlights the influence of other variables such as precipitation, 

VPD, and fPAR on both carbon uptake and release across multiple temporal 

scales.  These variables previously had not been noted as being important for 

carbon cycling at this site but identified by others (e.g. Anderson et al., 2000) as 

important controls of CO2 exchange for Northern hardwood forests; 

 Results confirm that many relationships between flux and auxiliary variables are 

scale-dependent.  The result confirms conclusions from other studies (e.g. Stoy et 

al., 2009) that found that the statistical relationship between an auxiliary variable 

and flux can be scale-dependent, as well as seasonally-varying;  

 The work showed that site-specific and remote-sensing leaf area index (LAI) and 

fraction of photosynthetically active radiation (fPAR) data are not interchangeable 

at finer temporal scales, indicating that the choice of the specific vegetative 

indices used in an analysis is as important as their spatial and temporal 

representation;     

 The results show that a linear GR model is able to capture what initially appear to 

be nonlinear relationships due to the co-variability among individual auxiliary 

variables in the model. The results suggest that simple linear regression methods 

used in previous flux studies relying on relationships between carbon flux and 

individual auxiliary variables yield derived relationships that may be a result of 

the correlation in the seasonal cycles of flux and individual auxiliary variables, 

rather than a true explanatory relationship; and,   

 Finally, GR is found to be able to identify variables that partially isolate GEE and 

Rh+a from the NEE signal at smaller time scales.  Therefore, GR can be used to 

infer process-based information from observations of NEE using other available 
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datasets, without having to separate the signal into component fluxes, thereby 

avoiding a possible source of error.   

Contributions:

 The study involved developing the Bayes Information Criteria (BIC) model 

selection to include correlated residuals.  The study is the first to apply GR at a 

flux tower site to infer statistical relationships between flux and environmental 

variables; and, 

  

 As part of the study and collaborative efforts (specifically of Vineet Yadav and 

Charles Antonelli (University of Michigan)), published code, algorithms, sample 

data and documentation of GR has been made freely available to the scientific 

community (http://www.puorg.engin.umich.edu/).    

Objective 3 demonstrated that the GR algorithm can provide valuable insights into the 

controlling variables of flux at different temporal scales including the need to explicitly 

interpret statistical models only at the scales at which relationships were derived.  The 

temporal scale dependency of a relationship between a variable and flux is only one 

example of the ways that GR inform process-based modeling of complex carbon 

dynamics at different spatiotemporal resolutions.  The method could be expanded to GIM 

which uses atmospheric measurements along with auxiliary data (e.g. Michalak et al., 

2004; Gourdji et al., 2008; Gourdji et al., in prep.) and an atmospheric transport model to 

infer CO2 surface fluxes.  In GIM, the method could be used elicit the spatial dependence 

of the relationship between flux and a variable as seen by the atmospheric network. 

1.4 Overall contributions    

The value in the statistical approaches developed and applied in this dissertation is 

that they provide strongly atmospheric data-driven estimates of surface fluxes and 

statistical relationships between carbon flux and environmental variables.  Overall, the 

work demonstrates that geostatistical methods can provide a means of isolating the 

information content of the atmospheric measurements while highlighting potential 

problems associated with model assumptions that otherwise could go unnoticed.  On the 

whole, the dissertation addresses the specific gaps in our knowledge in the carbon cycle 
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at different spatiotemporal scales as shown in Figure 7.1.  Importantly, the work 

presented in this dissertation specifically fits into the community-wide effort to reduce 

the spread of flux estimates from different models (as shown in Figure 1.5) by: 

 Providing independent estimates of CO2 flux and associated uncertainties at 

continental scales; 

 Showing promise in providing independent estimates of CO2 flux and associated 

uncertainties at regional scales; and, 

 Providing the means to test assumptions in process-based models (such as the 

scale dependency of a particular variable and flux) at the various spatiotemporal 

scales where the assumptions are applied. 
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Figure 7.1: A schematic showing the specific contributions this dissertation addresses in 
terms of estimating flux and learning about processes influencing surface exchange at the 
different spatiotemporal resolutions. 

2.0 Collaborative research  

The research presented herein was a collaborative effort and part of a series of 

work that involved developing and applying geostatistical methods to infer carbon cycle 

dynamics.  The following paragraphs summarize the other work, credit the collaborators, 

and explain how the collaborative research connects to the work of the dissertation. 

In terms of GIM, a companion piece of work (Gourdji et al., 2008) to the global 

study presented in Chapter 4, explored the ability of auxiliary environmental variables 

(e.g. Air temperature, leaf area index, etc.) to further constrain flux distributions within 

the GIM framework, especially at fine spatial resolutions.  Overall, the auxiliary variables 

allowed the inversion to recover more realistic CO2 flux variability at the grid-scale with 
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lower a posteriori uncertainties relative to a setup relying exclusively on the limited 

atmospheric CO2 measurement network.  For regional inversions, addition work has been 

conducted with GIM to provide insight into the spread of mechanistic models estimating 

the biospheric component of land-atmosphere carbon exchange specifically over the 

North American continent for 2004 (Gourdji et al., in prep).   

For GR model, the work presented in Chapter 5 was extended to account for the 

uncertainty of selecting a single “best” model of the trend when multiple sets of auxiliary 

variables provide comparable fits to the available observations (Yadav et al., 2010).  The 

GR method was applied to six different flux towers sites in North America to assess the 

temporal scale dependencies between GPP and environmental variables representing 

plant function and climate. This work demonstrates and quantifies how the importance of 

environmental variables included in the model of the trend of GPP varies across temporal 

scales. In addition, the GR method was also used to assess differences in the 

environmental drivers that appear to have the greatest control over the spatial variability 

of process-based fluxes (Huntzinger et al., 2010).  The approach highlighted those 

environmental variables that correlate to flux as predicted by each examined model, and 

provides a means for identifying the strength of the relationship between these variables 

and predicted flux.  

3.0 Future directions 

The following section provides future directions specifically for each objective of the 

dissertation.  The section also provides some future directions for the carbon cycle 

community at large.   

3.1 Global geostatistical inversion study 

Objective 1 demonstrated that GIM can provide relatively independent estimates of 

CO2 flux and associated uncertainties at continental scales compared to other synthesis 

Bayesian methods.  Future work could include: 

 Applying linear algebra techniques so that RML is computationally feasible to 

optimize for covariance parameters from solely atmospheric data.  In this manner, 

the global GIM estimates would be completely independent of biospheric models; 
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 Using the RML method to optimize for individual model-data mismatch 

covariance parameters for each measurement location instead of a single scaling 

parameter.  This would allow the inversion to improve assessments of errors 

associated with transport, aggregation, and representation instead of using the 

RMSD of the observations at the measurement sites  as a proxy for these model-

data mismatch errors; 

 Using a global application of GIM to determine boundary conditions to be used 

for a GIM regional inversion for North America.  The two inversions could be 

combined to solve for finer spatiotemporal fluxes for the North American 

continent while being consistent with one another; and, 

 Extending the method to estimate fluxes for more than 5 years.  In this manner, 

fluxes could be compared to estimates from other inversion studies, and 

biospheric models to investigate assumptions regarding inter-annual variability. 

3.2 North American regional geostatistical inversion study 

Objective 2 showed that GIM has the potential to provide independent estimates 

of CO2 flux and associated uncertainties at regional scales for monthly and annual fluxes 

timescales using an expanded network for North America.  Future work could include: 

 Assessing that assumptions (as mentioned in Chapter 3, Section 7) of stationary 

residuals, Gaussian distribution of residuals, isotropic structure of the 

spatiotemporal covariance matrix, and independent transport errors do not have a 

large impact on GIM flux estimates.  Note that most of these assumptions are also 

made in other inversion applications so a sensitivity analysis would help partially 

validate the use of inversion methods to infer carbon fluxes at resolutions 

associated with more complexity; 

 Developing better methods for selecting observations to include in the inversion 

as well as diagnostic techniques to assess the validity of regional flux estimates.  

The latter may include a comparison of continental budgets from regional 

inversions to those from global inversions; and, 

 Using other information associated with carbon exchange (Gourdji et al., 2008; 

Gourdji et al., in prep.) within the model of the trend to further refine carbon 
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budgets and to infer statistical relationships between a variable and flux at 

regional scales.  Besides environmental data, there is an opportunity to learn more 

about fossil fuel emissions by analyzing the inferred coefficients on any flux 

variables included within the model of the trend, e.g. individual sectors from a 

fossil fuel inventory database, given the expansion of the measurement network.  

These flux variables can also be broken out spatially to identify how consistent is 

the atmospheric signal within the fossil fuel inventories by region of the 

continent.  Such an analysis could provide policy makers an understanding of 

where inventory data are most consistent with the atmospheric data.  

3.3 Flux tower geostatistical regression study 

Objective 3 confirmed that GR could be used to test assumptions in process-based 

models (such as the scale dependency of a particular variable and flux) at the various 

spatiotemporal scales where the assumptions are applied.  Future work could include: 

 Modeling the heteroscedasticity in the residuals using a more complex temporal 

covariance matrix,𝐐 instead of separating fluxes by seasons.  In this manner, the 

onset of different growing seasons would not need to be assumed a priori; 

 Conducting a sensitivity test to ensure that the linear assumption in GR does not 

eclipse a “true” nonlinear relationship between a variable and flux (such as the 

Q10 exponential relationship between temperature and heterotrophic respiration); 

and 

 Nonlinear or lagged relationships could also be included to further improve the fit 

of the model to the data. 

3.2 Community-wide future directions 

As mentioned in Chapter 1 and 2, the carbon-cycling community is focused on 

better understanding the natural sinks of atmospheric CO2 and their controls at regional 

scales.  To do this, the spread of regional and continental flux estimates from both “top-

down” and “bottom-up” methods must be reduced.  Without reducing the spread, carbon 

budgets from any model (including GIM or GR) will always be questioned.  In addition, 

future predictions carbon cycle feedbacks within climate models will always be limited 
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by large uncertainties.  However, as mentioned throughout the dissertation, minimizing 

the spread is not easy because some of uncertainty associated with flux estimates 

currently is irreducible due to errors in transport models.  In addition, there are no means 

to assess which of the estimates are more “correct” or “incorrect” as the community does 

not have ways to measure CO2 flux estimates at large scales or diagnose model output.  

As such, the community is faced with a problem that will require a multi-pronged 

approach.   

First, as discussed earlier, there needs to be a commitment to existing long-term 

measurements as well as improved measurement coverage.  One of the most important 

conclusions from this dissertation is that measurements have the potential to inform 

carbon cycling dynamics at spatiotemporal scales where, in the past, researcher have 

relied more heavily on assumptions regarding the behavior of flux exchange.  Although 

coordinated efforts (e.g. NEON) are already underway to synthesize a variety of data 

streams at local scales across spatial gradients, long term measurements (such as eddy-

covariance measurements) are also essential for assessing decadal trends that currently 

cannot be determined with available datasets except at the global scale.  Additional 

measurements will further reduce the reliance on assumptions but the observations, due 

to a variety of factors such as the impact of clouds and aerosols on satellite measurement 

coverage, will always have some limitations. 

The limitations of both indirect and direct estimates of CO2 flux, along with other 

complications such as atmospheric mixing, will always necessitate the use of assumptions 

within models.   The goal of future research should not be to eliminate the use of 

assumptions, but instead understand where and when assumptions have the most 

influence on estimates.  In this way, it can be better known what part of an estimate is 

based on observation and what portion rests on other assumptions of carbon cycling.  In 

addition, obtaining estimates that are independent from process-based models is essential 

for assessing which assumptions of carbon dynamics are consistent with the atmospheric 

observations.  Since direct estimates of CO2 flux are not available at large spatial scales, 

such a comparison is crucial for building consensus on regional scale flux behavior.  

Ultimately, this will allow researchers to identify which parts of process-based models 
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are “correct” and which need to be modified to better predict future carbon cycling 

scenarios. 

Regardless, the ability of the carbon science community to extract the information 

in the atmospheric observations of CO2 will always be dependent on the capability to 

leverage the measurements through simulated model atmospheric transport.  There is 

much work to be done in both improving models and making them more computationally 

efficient to be more useful and accessible to the scientific community.  Nevertheless, in 

terms of this multi-pronged approach to further understanding natural carbon cycling at 

regional and continental scales, it has been demonstrated within this dissertation that 

geostatistical methods play an important role.   
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