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ABSTRACT

When planning optimal decisions for teams of agents acting in uncertain domains,

conventional methods explicitly coordinate all joint policy decisions and, in doing

so, are inherently susceptible to the curse of dimensionality, as state, action, and

observation spaces grow exponentially with the number of agents. With the goal of

extending the scalability of optimal team coordination, the research presented in this

dissertation examines how agents can reduce the amount of information they need

to coordinate. Intuitively, to the extent that agents are weakly coupled, they can

avoid the complexity of coordinating all decisions; they need instead only coordinate

abstractions of their policies that convey their essential influences on each other.

In formalizing this intuition, I consider several complementary aspects of weakly-

coupled problem structure, including agent scope size, corresponding to the number of

an agent’s peers whose decisions influence the agent’s decisions, and degree of influence,

corresponding to the proportion of unique influences that peers can feasibly exert.

To exploit this structure, I introduce a (transition-dependent decentralized POMDP)

model that efficiently decomposes into local decision models with shared state features.

This context yields a novel characterization of influences as transition probabilities

(compactly encoded using a dynamic Bayesian network). Not only is this influence

representation provably sufficient for optimal coordination, but it also allows me to

frame the subproblems of (1) proposing influences, (2) evaluating influences, and (3)

computing optimal policies around influences as mixed-integer linear programs.

The primary advantage of working in the influence space is that there are potentially

significantly fewer feasible influences than there are policies. Blending prior work on

decoupled joint policy search and constraint optimization, I develop influence-space

search algorithms that, for problems with a low degree of influence, compute optimal

solutions orders of magnitude faster than policy-space search. When agents’ influences

are constrained, influence-space search also outperforms other state-of-the-art optimal

solution algorithms. Moreover, by exploiting both degree of influence and agent scope

size, I demonstrate scalability, substantially beyond the reach of prior optimal methods,

to teams of 50 weakly-coupled transition-dependent agents.

xiii



CHAPTER 1

Introduction

A fundamental characteristic of any intelligent system, natural or artificial, is

its ability to make a rational decision when faced with a set of choices. As people,

our daily lives are filled with decisions, each of which involves reasoning about the

consequences of potential choices. Automating the decision-making process is the

topic of an extremely active area of research. The motivation is that, by outfitting the

automated decision-maker (or agent) with computational resources and developing

efficient and effective reasoning algorithms for it to make its decisions, we can realize

tremendously beneficial systems. For instance, decision-support software agents can

help doctors and nurses in a hospital’s intensive-care unit to make quick decisions

about treatment options; Agents controlling nodes of a power grid can conserve

energy by forecasting consumption and deciding where to route power and when; And

unmanned autonomous vehicles can deliver relief supplies and search for survivors in

the wake of a natural disaster. In each of these domains, there is uncertainty such that

an agent cannot predict the consequences of its decisions deterministically, but can

instead reason over a space of probabilistic outcomes. Further, each domain involves

multiple interacting agents whose individual choices may affect each others’ decision

consequences. Hence, achieving the most desirable outcomes requires coordination.

Conceptually, one might view the multi-agent coordination problem as planning

joint actions for the system of agents. That is, a centralized planner formulates a joint

decision rule that dictates, for any given state of the overall system, a harmonious

composition of individual agent actions. In this sense, the multi-agent problem is

much like controlling a single agent’s multiple arms. This centralized approach, taken

by much of the literature on multi-agent sequential decision-making, and as reviewed

in Section 2.3.1.2, implicitly achieves coordination since all agents’ actions are planned

together. However, there are limitations to solving the coordination problem in this

manner. From a computational standpoint, the number of composite action choices

1



grows exponentially with the number of agents, leading to poor scalability of methods

that plan every decision jointly. From a logistical standpoint, this method requires a

centralization of all problem information during the planning process, a requirement

that is not reasonable for systems maintaining a separation of information (either

because the infrastructure does not support transmission of all information to a central

entity, or because there are portions of information that need be kept private).

Building on prior work reviewed in Section 2.3.3, the research presented in this

dissertation studies an alternative approach to multi-agent coordination that decen-

tralizes the planning process. In particular, it applies the following insight. If some

individual agent decisions do not affect other agents in the system, these decisions

need not be jointly reasoned about. Instead of coordinating all decisions, the agents

only need to coordinate the individual choices that affect one another. This is a

standard method that people use to perform joint reasoning. For instance, when

scheduling a meeting, instead of describing their individual activities in full, it is

common for a group to communicate windows of availability. In doing so, they create

a layer of abstraction that separates the influence each individual has on the group

from the underlying joint decisions. The decisions around the meeting can then be

planned individually, thereby avoiding much of the complexity of fully-centralized

reasoning (and maintaining privacy of local decision information), yet still achieving

harmonious joint behavior. The focus of this dissertation is on the computational

aspects of influence abstraction: the development and evaluation of representations

and algorithms for coordinating agents’ abstract influences.

1.1 Multiagent Coordination Under Uncertainty

The label multiagent coordination under uncertainty could be used to describe a vast

array of problems with different assumptions studied under disparate circumstances.

This thesis focuses on one particular class of coordination problems with specific

properties. I begin by describing a motivating domain (in Section 1.1.1) wherein

problems from this class arise, and outlining the properties that define the class (in

Section 1.1.2).

1.1.1 Motivating Example

Consider a team of robots sent to explore the surface of Mars to gather scientific

data autonomously for a period of months with little or no human intervention. As in

past NASA missions, this team would likely include rovers situated on the planet’s

2



surface that move about and take various sensor measurements. The International

Mars Exploration Workgroup is presently exploring the use of an array of additional

robots and spacecraft equipped with other technologies to be deployed in future

missions (Beaty et al., 2008). For instance, the rover team could benefit from the

inclusion of orbiting satellites capable of collecting real-time imaging data for map-

building and rover localization. Imagine also a data processing center that safely

houses a database of scientific information (including data from past missions and

newly-collected data) as well as specialized hardware and software for image processing,

path planning, and forecasting of environmental conditions.
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Figure 1.1: Planetary Exploration example domain.

Together these components make up a system of agents with diverse capabilities

that act and interact in a shared environment. The example pictured in Figure 1.1

contains four such agents that gather scientific data by performing various high-level

activities. A satellite orbits the planet taking pictures and relaying information

between Earth and Mars. On the surface sits a base station that houses the data

center, whose activities include analyzing imaging data and compiling the data from

multiple sources into detailed surface maps. Two rovers, that are situated at the base

at the start of the mission, move about the surface and visit different sites of interest.

Rover 1 is equipped with tools and sensors that it can use to dig into the ground and

analyze the soil. Rover 2 is designed to travel more quickly and to position itself in a
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series of locations so as to compile 3-dimensional sensory data. Because of its speed,

it also has the capability of rapidly exploring unknown areas.

As the agents complete their activities, they fulfill various science-gathering ob-

jectives. Thus, associated with each successfully completed activity is some value,

and the overall productivity of the science-gathering mission may be quantified as

the summation of completed activity values. As new information is collected, new

objectives may present themselves. Imagine that with each new day comes a new

mission and associated objectives, which may differ depending on environmental

conditions and on analyses of past missions. In each such mission, the collective goal

of the agents is to maximize their expected accumulated values.

The agents can each gather and process data on their own, but benefit from

interacting with one another. Interactions occur through the pursuit of interdependent

activities (denoted by the lines in Figure 1.1). For instance, Rover 1 can visit site A

more efficiently if the data center agent first plans a path for it. By interacting in

this manner, the combination of their coordinated activities allows them to achieve

complex mission objectives like locating areas with unusual geographical features,

navigating rovers to those areas, analyzing soil samples, and storing the results in a

geological database. It is through such a composition of individual activities that the

team of agents achieves the greatest collective value, thereby making the most of its

time exploring the planet.

Successful coordination in this domain requires surmounting several difficult chal-

lenges. The agents’ objectives are temporally constrained with strict deadlines. In the

example from Figure 1.1, the satellite is constrained in when it can take pictures of

sites and areas of interest because it is orbiting about the planet. The rovers’ only

source of power is the sun, so each is constrained to complete activities by a deadline

related to the amount of energy it has stored and the time the sun sets. There are also

behavioral constraints that dictate that each agent can perform only one activity at a

time. For instance, the satellite imaging agent cannot simultaneously point its camera

at two different locations. In order to optimally coordinate the team’s behavior and

avoid wasting resources, agents’ activities should be carefully planned in advance.

Furthermore, there is uncertainty in the durations of various activities. For instance,

depending on the path planned for Rover 1 and on the obstacles encountered along

this path, it may take a variable amount of time to reach site A. In order to maximize

productivity in expectation, the agents’ plans should account for the uncertainty in

their actions and interactions.
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1.1.2 Core Problem Properties

The Mars exploration example, as with all problems considered in this dissertation,

may be characterized using the properties outlined here and in Section 1.2. This

description serves to clarify the context of this thesis and to preempt any broad mis-

conceptions. I begin by stating the fundamental properties of the class of coordination

problems addressed herein.

Property 1: Cooperative Multiagent System. The problem is to formulate

intelligent behavior for a team of coexisting agents that share a common goal: to

maximize the group’s joint value (of which there is some well-defined measure). In

the example from Figure 1.1, joint value is measured as the expectation of the sum

of qualities accrued from the successful completions of activities. For each agent,

there is no notion of personal gain, and consequently, issues of fairness, truth, and

incentivization do not arise in the development of solution methods.

Property 2: Model-Based Planning. Agents’ activities involve a significant

investment of resources over time, so decisions about which activities to perform for

what purposes, and when, should be carefully planned in advance so as not to waste

time and resources. For this purpose, there exists a (generative) model, known to the

team in advance, that the agents may use to make (probabilistic) predictions and plan

activities that maximize expected outcome utilities.

Property 3: Sequential Decision Making Under Uncertainty. The agents

interact with their environment and with one another by performing actions and

receiving observations. The model describing their behavior is a Markov decision

process (described more formally in Section 2.3.1) that associates an underlying system

state with any situation that the agents may encounter. As the agents take actions,

the model can be used to make (probabilistic) predictions about transitions of the

state and resulting observations. The model also describes the value of activities by

associating a reward with every state and combination of agents’ actions. Uncertainty

in an agent’s activities (such as the analysis of soil by Rover 1 in Figure 1.1) translates

to uncertainty in the system state and observation outcomes accounted for in the model

as transition probabilities and observation probabilities. The model also accounts

for constraints on when agents can successfully execute their activities as well as

for interdependencies between activities. The problem of optimal coordination then

becomes deciding how each agent should act given its observations, such that the

sequence of joint decisions maximizes the agents’ expected accumulation of rewards
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over a finite time horizon. The formulation of joint decisions is referred to as a joint

policy.

Property 4: Decentralized Awareness. While executing activities, the agents

do not (necessarily) have complete views of the system state, nor the actions taken

by other agents. Instead each is aware of, and bases its decisions on, only the subset

of information conveyed by its local observations. For instance, in the planetary

exploration domain, each rover agent observes only portions of information relevant to

its navigation of the terrain (such as a measure of its velocity and its sensor readings),

but it does not observe state information related to the satellite’s camera position or

the other rover’s sensors. Any runtime communication is modeled through agents’

transitions and observations. That is, an agent may transmit information to another

agent by taking an action that causes a transition of the system state, and a resulting

observation seen by the receiving agent.

1.2 Problem Statement

Together, the four properties described in Section 1.1.2 are closely aligned with

those of the well-established (Seuken & Zilberstein, 2008) finite-horizon Decentralized

Partially-Observable Markov decision process (Dec-POMDP), which I review in detail

in Section 2.3.1. Dec-POMDPs are powerful theoretical models capable of representing

a rich space of agent behaviors, interaction capabilities, and team objectives. However,

with their expressiveness comes a general NEXP computational complexity (Bernstein

et al., 2002). This result poses a substantial barrier in applying the Dec-POMDP

model practically to solve problems of significant size.

To overcome the complexity barrier, researchers have sought tractable Dec-POMDP

subclasses wherein agents are limited in their interactions. For instance, there has been

significant effort in developing more efficient, scalable solution methods for transition-

independent problems (Becker et al., 2004a; Kumar & Zilberstein, 2009; Marecki et al.,

2008; Nair et al., 2005; Varakantham et al., 2007), where agents interact by jointly

affecting the reward, but have independent affects on state transitions (as detailed

more formally in Section 2.3.2.3). Intuitively, transition-independent agents cannot

affect the outcomes of each others’ actions. Transition-independent problems are

believed to be fundamentally less complex (Allen, 2009; Goldman & Zilberstein, 2004)

than general Dec-POMDPs. Although empirical results demonstrate scalability of

quality-bounded1 solutions to teams of more than a handful of transition-independent

1I use the term quality-bounded to refer to solutions whose values are guaranteed to be within
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agents (Marecki et al., 2008), the drawback of these models is that they place a fairly

strong restriction on the way that agents may interact. The inability of the agents to

alter the consequences of each others’ actions means that many useful interactions

simply cannot be represented. For instance, we would expect that the act of the data

center agent from Figure 1.1 planning a path should reduce the outcome duration of

rover 1’s “visit site” activity. But this constitutes a transition-dependent interaction

and is outside of the scope of transition-independent models.

The research presented in this dissertation endeavors to concretely define a form

of transition-dependent interaction structure that can be exploited, and to develop

efficient2, scalable solution algorithms capable of exploiting it. While others have taken

steps in identifying transition-dependent structure, their models either (a) have not

been shown to compute solutions with guaranteed bounds on quality (Varakantham

et al., 2009), (b) have have not been shown to scale three beyond agents (Becker

et al., 2004a; Oliehoek et al., 2008b), or (c) impose limitations on agents’ individual

(noninteracting) behavior by restricting the transition or observation function (Beynier

& Mouaddib, 2005; Guestrin & Gordon, 2002; Marecki & Tambe, 2009, 2007). Alter-

natively, this dissertation focuses on identifying useful structure in agents’ interactions

without restricting agents’ individual behavior. To this end, I now introduce (and

formalize in Chapter 3) several additional problem properties.

Property 5: Factored Decomposability. The system model (described in Prop-

erties 2–3) conveys a complete description of the problem, containing information

regarding all agents’ action consequences, but the information is explicitly decomposed

into subproblem descriptions, each conveying the dynamics of a single agent’s behavior.

In particular, the world state is factored into (overlapping) local state partitions,

each composed of features relevant to an individual agent. In the example from

Section 1.1.1, images that a satellite is taking of one side of the planet do not factor

into the immediate decisions of a rover analyzing soil on the other side of the planet.

As such, independent local transition functions dictate that each agent’s actions may

exert immediate effects on the values of features within its local state but not those

outside of its local state. Observations are similarly factored such that an agent cannot

observe immediate changes to features outside of its local state. Further, the reward

function is composed of local reward functions that convey the immediate benefits of

each agent’s actions. Moreover, the overall value of a joint policy can be computed

some nontrivial, expressible bound of the optimal value.
2Given the daunting complexity of problems that I address, I use the term efficient here and

throughout this dissertation to mean relatively efficient (in comparison to the computation required
by other algorithms), but not necessarily polynomial.
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efficiently by evaluating some well-defined function of agents’ local policy values. For

instance, in the domain from Figure 1.1, the agents’ local values are accumulated from

their individual task completions, which in turn sum across the agents to yield the

joint value for the agent team. The factored state, transition, and reward structure

results in a natural decomposition of the joint decision model into local decision models

(though it is important to note that the local decision models are not necessarily

independent of one another due to the potentially overlapping local state partitions).

Property 6: Nonconcurrently-controlled Nonlocal features. Agents affect

outcomes of each others’ activities in the following manner. With the overlap of

agents’ local states (described in Property 5), there are some features that are directly

affected by one agent but that also appear in another agent’s local state. For instance,

in Figure 1.1, whether or not a rover visits a site depends upon whether or not the

data center agent has planned a path for it. From the rover’s perspective, we refer

to “path-planned” as a nonlocal feature because its value is altered by the actions of

another agent. In turn, the change in value will allow the rover to visit the site more

quickly and reliably. Through changes to nonlocal features, one agent may affect the

choices and consequences of another’s subsequent (but not concurrent) actions. For

instance, in Figure 1.1, the consequences of a rover’s actions taken after the data center

plans a path for it may be altered, but the actions taken by the rover while the data

center agent is planning the path are unaffected. The non-concurrence of interaction

effects may limit the space of representable interactions, but it vastly simplifies our

decomposition of the joint planning problem (as elaborated in Section 4.2.3).

Property 7: Temporal Synchronization. One implication of the sequential

interactions described by Property 6 is that successfully coordinated agents’ decisions

will anticipate interactions with other agents. For instance, if a rover knows that a

path will be planned for it in the near future, it can spend the interim time engaging

in a short activity instead of wasting time waiting or engaging in a longer but lower-

quality activity than the planned path would allow. This anticipation and resultant

coordination is made possible through the use of a synchronized clock signal. It is the

shared awareness of the current time that allows agents to decide when to perform

certain activities with assurance that they will be well-aligned with other agents’

activities. As such, time is an integral feature of the system state.

The structure identified by these additional properties is significant in that it

accommodates a broad spectrum of agent interaction. At one extreme of the spec-

trum, agents do not interact at all, translating to a factored model of system state
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(as described by Property 5) composed of independent, non-overlapping local state

factors: effectively, fully-independent POMDPs. In this degenerate case, there is

no need for coordination because the optimal joint policy is simply the combination

of independently-planned optimal local policies. Moreover, the decisions that each

agent makes cannot influence the decisions of its peers. With the addition of nonlocal

features (as described in Property 6), agents begin to influence each other’s decisions.

The coupling of the system (a metric developed formally in Section 3.5) describes the

degree to which agents may influence each others’ decisions. The expectation is that as

the degree of agent coupling increases, a greater degree of coordination is required, and

the coordination problem becomes harder to solve. It is on the weakly-coupled side of

the spectrum that agents should be able to compute solutions more efficiently and scale

their solution algorithms to larger problems (assuming they remain weakly-coupled).

The main problem that I address in this dissertation is how to solve the class

of cooperative, model-based, sequential, stochastic, decentralized, decomposable,

structured, temporal coordination problems outlined by Properties 1–7 in such a

way that will exploit interaction structure to solve weakly-coupled problems more

efficiently than strongly-coupled problems. The objective is a practical computational

methodology whose usefulness over existing approaches lies in its satisfaction of the

following desiderata:

� Exploitation of weak coupling for improved performance

The methodology should, in principle, compute optimal solutions to the entire

spectrum of coordination problems defined by Properties 1–7. Since not every

problem will be computationally tractable, the methodology should exploit

structure in problems that are weakly-coupled3, so as to require less computa-

tional overhead (measured by memory requirements and computation time) for

weakly-coupled problems than for strongly-coupled problems. Moreover, gradual

variations in agent coupling should lead to a gradual shift in the computational

overhead required to formulate solutions.

� Scalability in the number of agents

Much of the literature on multi-agent coordination under uncertainty restricts

consideration of models or experiments to just two agents. By scaling to more

agents, solution methods become more widely applicable (to domains with

multiple interacting decision-makers) as well as more effective in domains where

3Note that weakly-coupled is not a binary classifier. Throughout this dissertation, whenever I
qualify problems or agents as “weakly-coupled”, I am referring to the fact that the relative degree of
coupling falls towards the weak end of the coupling spectrum.

9



more agents means more diverse capabilities (such as in the planetary exploration

domain described in Section 1.1.1). In particular, the methodology should

produce optimal solutions to problems with dozens of transition-dependent

agents (under the assumption that the agents are sufficiently weakly-coupled,

though not transition-independent).4

� Flexibility of Approximation

Given the complexity of coordination under uncertainty, there exist many prob-

lems for which it is impractical to compute optimal solutions. Thus, it is

important that the methodology produce approximate solutions according to

computational restrictions. Moreover, the methodology should be amenable to

different degrees of approximation, thereby providing knobs that the practitioner

can turn so as to strike a desired balance between computational overhead and

solution quality.

1.3 Solution Approach

To provide satisfactory solutions that fulfill the desiderata in Section 1.2, I have

developed a principled framework for influence-based policy abstraction. My framework

formalizes the following simple intuition. Weakly-coupled agents, who have little

influence on each others’ decisions, can plan more efficiently by decomposing the joint

policy computation problem into (partially) decoupled subproblems: formulation of

individual agent policies and coordination of abstract influences. This is in stark

contrast to fully-centralized planning, which is the paradigm adopted by much of the

literature for solving Dec-POMDPs (reviewed in Section 2.3.1.2). Instead of a central

entity reasoning about all agents’ policy decisions together, my framework gives each

agent its own planning perspective through which to compute its own local policy.

However, the local policy formulation problems are not completely independent since

the optimal policy of one agent can depend on the decisions made by other agents.

Agents account for these dependencies by conveying, and coordinating over, only their

essential influences on each other.

Figure 1.2 provides a diagrammatic overview of influence-based policy abstraction,

wherein the blocks represent different components of the solution formulation process

and the arrows and lines depict information flow between the components. I introduce

each component below, describing how it fits into the overarching scheme as well as

4For a demonstration of scalability of optimal solutions to problems with 50 agents, see Section 6.6.
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Figure 1.2: Components of Influence-Based Abstraction methodology.

identifying the high-level research questions to which this dissertation is devoted to

providing answers.

Influence Modeling. The fundamental question that ignited this body of work was:

How should agents model each other? The system model (introduced in Properties

2–3) provides a representation of agents’ joint behavior, but not in a manner that

will allow an agent to efficiently infer how its decisions are impacted by those of its

peers. This portion of my work develops efficient local models that account for peers’

expected behaviors as they relate to the agent’s own decisions.

Intrinsic to the modeling problem is the question of: What does an agent need to

know about peers’ planned behavior in order to plan its own optimal local behavior in

response? Knowing all the policy decisions of all other agents would certainly suffice.

However, weakly-coupled agents that interact only in the context of certain activities,

and with only a subset of peers, need not model all decisions of all peers. There may be

many peer decisions whose consequences do not affect an agent i. With this insight, I

develop an abstraction of peer policies that I call an influence, referred to in Figure 1.2

as Γ6=i, which is a subset of peer policy information that conveys only the effects of

peers’ decisions as they relate to agent i’s own decision problem. For instance, whereas

the complete policies of the team of agents in Figure 1.1 would include information
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about all of the activities each agent plans to pursue in every foreseeable situation,

Rover 1 only cares about whether and when paths will be planned. Although influences

could be represented in any number of ways, the model that I adopt in this dissertation

takes the form of a probability distribution over interaction effects. For instance,

the influence ΓDataCenter of the Data Center on Rover 1 would include the probability

Pr(Path-to-Site-A|time) of the Data Center sending the Rover a planned path at

various times over the course of the mission.

(as the labels of the incoming and outgoing arrows in Figure 1.2 indicate). Upon

receiving the proposed influences Γ 6=i from its peers, agent i folds Γ6=i into a local

decision model (as portrayed in Figure 1.2 as “influence modeling”) which I refer to

as a best-response model, from which it can compute, among other things, optimal

local policies in response to peers’ proposed influences.

Constrained Local Policy Formulation. Agent i can also use the local “best-

response model” to reason its own influence Γi on its peers (given peer influences Γ 6=i).

Influence Γi provides an abstraction that conveys expectations about the effects of

agent i’s policy on i’s peers. Hence, using the abstraction involves translating back

and fourth between its policy and influence representations. For instance, the agent

may propose an influence by starting with a completely-specified local policy and

computing the influence that the policy exerts on its peers. More importantly, given

a proposed influence, the agent must implement a local policy that delivers on the

expectations conveyed by that influence. This evokes the question: How can an agent

enforce that its policy exerts a committed influence?

Prior approaches encourage the exertion of various forms of influence through

reward shaping (Mataric, 1997; Musliner et al., 2006; Varakantham et al., 2009),

which injects artificial rewards (or penalties) into the agent’s local decision model to

encourage (or discourage) desired behavioral outcomes. Although this method could

be employed to bias the agent to fulfill its committed influences, fulfillment is not

guaranteed, nor is the optimality of the agent’s local policy (as I prove in Chapter 5).

These results have motivated me to develop a new method for influence enforcement

that uses a fundamentally different strategy. Instead of biasing individual decisions to

push the agent into situations where it will interact as desired, the idea is to constrain

the policy directly to enforce the committed influence.

When associating influences with policy constraints, issues of overconstrainedness

arise. That is, a particular influence (or combination of influences) may not be

feasible for the agent to exert by any local policy. Thus, it is vital that an agent be
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able to efficiently identify the feasible influences that it could exert. In addition to

influence enforcement, the constrained policy formulation methodology that I develop

in Chapter 5 also addresses the problems of checking feasibility and identifying feasible

influences (without explicitly enumerating all individual policies).

Influence Coordination. The previous two components involve decentralized com-

putation by the individual agents in the system, wherein each agent reasons about

its own decisions and its own influences (on peers) as a function of potential peer

influences. Using these components, the agents can avoid explicit joint reasoning

about detailed policy decisions. Instead, they need only jointly consider their in-

fluences on one another. The “Influence Coordination” block at the center of the

diagram in Figure 1.2 forms the intersection of the individual agents’ decision-making

problems, addressing the following question. How can an agent team converge on a

set of influences that yield an optimal joint policy.

At a high level, I have recast the problem of policy-space search as one of influence-

space search. The motivation is that although a weakly-coupled agent may have a

very large number of policies, depending on the relative portion of its policy decisions

which do not affect its peers, the agent will have a proportionally smaller number

of unique influences that it can exert on its peers. In contrast to prior distributed

planning approaches that work directly with policies (Marecki et al., 2008; Nair et al.,

2003; Varakantham et al., 2009), approaching the problem in this manner offers its

own interesting challenges. For instance, the influence space (as defined more formally

in Chapter 4) is a continuous space of probability vectors. Further, since one agent’s

influence value changes the feasible influences of another agent, the order that the

team reasons about different influences can have significant effects on the completeness

and efficiency of the search algorithm.

1.4 Contributions

The primary contribution of this work is the design and evaluation of a principled

methodology for multiagent coordination under uncertainty, with a focus on efficiency

of solution generation and scalability to problems with many weakly-coupled agents

interacting in a structured manner. Out of this effort comes definitive evidence in

support of the hypothesis that coordinating using abstractions of structured interac-

tions can afford agents significant reductions in computational complexity, thereby

enabling solutions to problems that were previously thought to be intractable (Allen,
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Figure 1.3: Overview of dissertation contributions, indexed by chapter.

2009; Bernstein et al., 2002). An overview of the components of this thesis, indexed

by chapter, is shown in Figure 1.3. The primary contributions of each component are

as follows.

� Identification of Interaction Structure Amenable to Tractable Solutions

Given the computational complexity (Bernstein et al., 2002) of the general Dec-

POMDP where agents’ interactions are unrestricted, successful Dec-POMDP

applications beyond small, two-agent toy problems require exploitation of struc-

ture amenable to tractable computation of optimal or near-optimal solutions.

Akin to prior work that identifies transition-independent structure through which

agents affect each others’ rewards (Becker et al., 2004b; Nair et al., 2005), the

work presented in this dissertation identifies structure in the way that agents af-

fect each others’ transitions. The formalization of this structure (which I present

in Chapter 3 as a TD-POMDP) is novel in its combination of (a) explicitly dis-

tinguishing each nonlocal state feature (through which an agent is influenced by

a peer) from the local state features (that the agent controls), thereby facilitating

a natural decoupling of the joint model into local models, (b) enabling a system-

atic analysis and abstraction (in Chapter 4) of sequential transition-dependent

interagent influences, and (c) not imposing overly-restrictive constraints on

agents’ local behavior nor their ability to interact. Moreover, results indicate
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that for weakly-coupled agents, exploiting the structure I have identified can

yield exponential speedups over solution methods for general flavors of transition-

dependent Dec-POMDPs, not to mention scalability to teams of many more

agents. These traits make my structural model a useful candidate for researchers

to extend and for practitioners to adopt.

� Principled Framework for Nonlocal Abstraction

This dissertation develops a general, principled framework for abstracting agents’

transition-dependent influences from their policies. The practical contribution of

the framework is a novel influence model that compactly incorporates nonlocal

information (abstracted from peer agents’ committed policies) into a local

POMDP. The conceptual contribution is the idea that, by formally characterizing

this nonlocal information, an influence space emerges that is often more efficient

to search than the policy space, yet is still amenable to optimal solutions.

Furthermore, in developing and evaluating influence-based solution algorithms,

this dissertation sheds light on the impact of nonlocal abstraction, particularly

as it relates to the degree of agent coupling and the efficiency of solution

computation. Knowledge of the circumstances under which influence-based policy

abstraction provides the greatest computational gains can inform researchers

seeking to apply such techniques.

� Constrained Policy Formulation Methodology

This work extends the research of others (D’Epenoux, 1963; Dolgov & Durfee,

2005; Kallenberg, 1983) in applying linear optimization to sequential decision

making. The insight is that, since the probabilistic effects that influences encode

are intrinsically represented in the MDP dual linear program, agents can compute

policies that directly account for the influences that they exert on their peers.

In Chapter 5, I develop several flavors of (mixed-integer) linear programs for

constraining agents’ policies and exploring the space of possible influences. In

contrast with prior approaches geared towards enforcing interacting behavior, this

novel methodology enables an agent to (a) determine whether a desired influence

is feasible, if so (b) compute the optimal local policy that is constrained to exert

the influence, and (c) completely avoid any tuning of parameters associated

with influence enforcement. More generally, the contribution to the agent-

based optimization community is an arsenal of constrained policy formulation

techniques that may be adapted and extended to solve other decision-making

problems involving behavioral constraints.
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� Optimal Influence-Space Search Algorithms

In Chapter 6, I develop and evaluate efficient algorithms that employ the ab-

straction models of influence from Chapter 4 and constrained policy formulation

techniques from Chapter 5. The novelty of my algorithms is their use of influence-

based policy abstraction to compute optimal solutions for a general class of

transition-dependent problems. In addition to a depth-first search algorithm, I

extend and apply a method from constraint optimization to exploit graphical

structure in influences, which allows scaling of optimal solution computation to

teams of more than a handful of weakly-coupled agents. These algorithms, by

themselves, constitute a meaningful contribution to the Dec-POMDP commu-

nity because they demonstrably advance the state of the art in efficiency and

agent scalability for classes of commonly-studied transition-dependent problems.

Additionally, this dissertation contributes an empirical evaluation of benefits

and limitations of optimal influence-space search that may serve as a guide for

researchers and developers so that they may make informed decisions about the

suitability of influence-space search to the problems that they address.

� Flexible Influence Approximation

Lastly, this dissertation outlines several extensions of the influence-based ab-

straction methodology for coping with larger problems whose optimal solutions

are intractable to compute. In Chapter 7, I develop three different techniques

that agents may employ to trade solution quality for computational efficiency.

The first technique approximates the space of influence probabilities, ignoring

influences whose settings are close to those already considered. The second

technique approximates the structure of agents’ influence encodings, thereby

applying an extra layer of abstraction to reduce the number of parameters with

which influences are conveyed. In particular, I develop an abstraction wherein

agents represent their influences as single-parameter time commitments. The

third technique searches the space of time commitments greedily rather than

exhaustively for significantly faster convergence on approximate solutions. Al-

though less systematic than some of my earlier analyses, my empirical evaluations

of these techniques contribute evidence of the effectiveness of these variations

of influence-based abstraction at reducing computation while still achieving

near-optimal solutions (on average).
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CHAPTER 2

Background

In order to gauge the scope and magnitude of this dissertation’s contributions, we

must first consider the prior work that addresses related problems. Research in the

field of automated decision making has grown far too vast to recount in its entirety.

Instead I review the most closely related paradigms, problem formalisms, and solution

approaches. This chapter provides the reader with a brief survey of background work

to better understand the foundation on which my models and methodologies are built.

It motivates the remainder of this dissertation by noting the inadequacies of these

prior approaches in relation to the desiderata that I outlined in Section 1.2.

2.1 Overview

I have divided the background material into single-agent and multiagent decision

making research, reviewed in Sections 2.2 and 2.3 respectively. In Section 2.2, I begin by

describing the Markov Decision Process (MDP) and its partially-observable extension

(the POMDP). In addition to forming the basis for the multiagent models described

in Section 2.3, single-agent (PO)MDPs are employed by my solution approach for

the local portions of agents’ planning (referred to in Figure 1.2 as “constrained local

policy formulation”). As such, I also give an overview of MDP and POMDP planning

algorithms, digging into the details of those that I extend in later chapters, and review

the computational complexities of optimal MDP and POMDP planning. I also give a

brief survey of foundational single-agent work in decomposition and abstraction and

its relationship to my methodology.

In Section 2.3, I review the Decentralized POMDP (Dec-POMDP), a general

extension of the POMDP for teams of cooperative agents. After presenting the Dec-

POMDP formalism, the computational complexity of optimal Dec-POMDP planning,

and an overview of general-purpose planning algorithms, I focus the remainder of this
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chapter on work that exploits particular problem structure to improve efficiency and

scalability. In this vein, I give an overview of structural restrictions that researchers

have imposed, each of which has yielded planning algorithms with significant compu-

tational advantages over general-purpose algorithms, but whose scopes are limited to

problems in specialized Dec-POMDP subclasses. In particular, I characterize those

algorithms that exploit weakly-coupled1 problem structure, wherein agents’ limited

interactions engender an efficient decoupling of the centralized joint policy formulation

into largely-decentralized local planning problems.

My review of Dec-POMDP algorithms and subclasses in Section 2.3 exposes a

division of research thrusts in the field of Dec-POMDP planning, which I elaborate in

Section 2.4. On one side, there is work that remains general, assuming no particular

structure, so as to develop the most broadly-applicable Dec-POMDP theory and

algorithms. On the other side, there are those approaches that intentionally avoid

generality in favor of exploitability, each restricting consideration to a subclass that

exhibits particular structure amenable to efficient and scalable algorithms. Few

approaches are both generally applicable and efficient and scalable (subject to the

degree to which exploitable structure is present). In particular, there are no quality-

bounded algorithms for transition-dependent problems that have achieved scalability

beyond three agents.

2.2 Single-Agent Sequential Decision Making

Let us begin by considering a single agent inhabiting an environment, which we

call the world. Over the course of the agent’s lifetime, it encounters situations, which

we call states, wherein it must decide what action to take. The outcome of each action

an agent takes is a transition into a new state (according to the dynamics of the

world), where the agent faces another decision. With each transition is associated an

intrinsic value, called a reward, that depends on the agent’s state and action. As it

makes decision after decision, the agent’s objective is to maximize some function of

its rewards received. Such is the basic premise of sequential decision making, which

encompasses a wide variety of problems in Artificial Intelligence (Littman, 1996).

In this dissertation, I adopt the Markov Decision Process (Bellman, 1957), along

with its later-described extensions, as a general model for sequential decision making.

MDP planning can be thought of as a generalization of classical planning (Fikes &

Nilsson, 1971) (where the problem is finding a sequence of actions with deterministic

1I develop a more concrete definition of weak coupling later Section 3.5.
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Figure 2.1: MDP state, action, transition, and reward dynamics.

transitions that lead to a goal state), adding transition uncertainty as well as reward. It

can also be thought of as a generalization of (discrete-time) scheduling (Pinedo, 2008)

(where the problem is timing an agent’s decisions). In the subsections that follow, I

review the MDP formalism, an extension for partially-observable worlds, algorithms,

complexity results, and advanced solution strategies rooted in the single-agent MDP

literature that I use in my multiagent methodology.

2.2.1 Markov Decision Processes

I begin with a very brief introduction to MDPs, citing just a few results from other

authors’ more detailed treatments (Bellman, 1957; Kallenberg, 1983; Papadimitriou &

Tsitsiklis, 1987; Puterman, 1994; Sutton & Barto, 1998). A single-agent MDP may

be described by a 4-tuple 〈S,A, P,R〉 whose contents are as follows:

� S is a finite set of world states, called the state space, over which there is a

probability distribution ααα that specifies the probability that the agent will start

in any given state s0 ∈ S.

� A is a finite set of actions, called the action space, such that for each state s, a

specified subset As ⊆ A of actions are available for the agent to perform.

� The transition function P : S ×A× S 7→ [0, 1] specifies the probability, denoted

P (st+1|st, at), of the agent transitioning into state st+1 given that it takes action

at ∈ A in state st ∈ S.

� The reward function2 R : S × A 7→ R defines a local reward, denoted rt =

R (st, at), ascribed to the action at taken in state st.

2 In some other work, the reward function rt depends upon the previous state st−1, action at−1,
and resulting state st. This is simply a different convention than the one I present here, and both
are equally expressive (one not any more or less general than the other).
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In the above treatment, superscripts t and t + 1 denote any two successive de-

cision steps, which are depicted graphically in Figure 2.1 as a two-stage Dynamic

Bayesian Network (DBN) (Guestrin et al., 2003; Koller & Friedman, 2009), showing

the dependencies among the components of the MDP model. We will assume that all

of the functional components of the model are stationary (returning the same value

regardless of the particular value of t). As depicted in the DBN, the agent’s next state

st+1 depends only upon its latest state st and latest action at. The actions the agent

took or states that the agent encountered prior to arriving in state st cannot affect

st+1. This conditional independence of the future from the past conditioned on the

present is called the Markov property, and is what makes the MDP Markovian.

Example 2.1. Consider that a rover, shown in Figure 2.2, has three activities

that it can pursue as it explores a newly-visited portion of the Martian surface.

It can construct a map of the area using a lower-level mapping algorithm which,

due to the unknown complexity of the terrain, it estimates will take 1, 2, or 3

hours with equal probability. It can also excavate, which involves drilling into

the surface for approximately 1 hour and collecting various samples of rock and

dirt. However, with a small probability (0.1), the excavation will be unsuccessful

due to equipment malfunction or if the surface is too rocky. If successful, the

rover can bring the excavated samples back to base for analysis, which will take

approximately 2 hours.

Borrowing from the TÆMS modeling language (Decker, 1996), Figure 2.2

describes these activities as tasks with probability distributions (“Pr”) over

duration (“D”), and also over quality (“Q”), which measures the relative value

of completing each activity. For instance, the map area task is valued twice

as highly as the excavate task but may take the rover longer to complete. As

described, the durations represent hours of execution. Additionally, each task has

a window of feasibility. For instance, the rover can successfully map the area for

the next 4 hours, during which time the sunlight is ideal, and after which time

the rover will automatically stop mapping whether or not the map is complete.

The possible failure of a task is indicated with outcomes quality 0. The rover’s

completion of the excavate task with a positive quality (indicating that the rover

has collected samples) enables the rover to perform its analyze samples task.
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Figure 2.2: A simple example of a planning problem faced by a Mars rover.

Once the rover starts one of its tasks, it cannot stop until the task finishes (either

completing with positive quality or failing), and the rover cannot restart a task

which has previously failed. The rover’s objective is to maximize its accumulation

of qualities of the tasks it completes over the next 6 hours.

We can represent the rover’s decision problem using the MDP shown in

Figure 2.3, whose states model the time and task status information. At the

start, the agent has not started any of the three tasks and the time is 0. Each

hour, the rover acts by either beginning one of its tasks, continuing a task, or

idling. Figure 2.3 shows two steps of actions and transitions. In each state, the

available actions correspond to those that are allowed given task statuses and

window constraints. For instance, the rover cannot analyze samples until reaching

a state in which the “Excavate” task has completed. Figure 2.1 also shows the

terminal states, whose outgoing transitions are assigned positive rewards equal to

the sum of all completed task qualities.

2.2.1.1 Values and Policies

In addition to the reward function R(), which specifies the immediate reward

assigned to a particular state st and action at, we can also consider the long-term

value, or expected utility, of taking at in st. Expected utility in an MDP is typically

defined, with function U∗(st, at), as the maximal expected discounted reward, written

recursively as:

U∗(st, at) = R(st, at) + γ ·
∑
st+1∈S

[
P (st+1|st, at) · max

at+1∈A
U∗(st+1, at+1)

]
(2.1)
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State Representation: Mapping, Excavation, Sample Analysis, time, where 

 Mapping {N (not started), 0 (started at time 0), 1, 2, 3,  

           C (completed with positive quality), F (failed)} 

 Excavation  {N (not started), 0 (started at time 0), 1, 2, 3, 4, 5,   

                C (completed with positive quality), F (failed)} 

 Analysis  {N (not started), 0 (started at time 0), 1, 2, 3, 4, 5,   

           C (completed with positive quality), F (failed)} 

 time  {0, 1, 2, 3, 4, 5, 6} 

 

State Space: Mapping  Excavation  Analysis  time 

 

Start State Distribution:  (NNN0) = 1.0 

 

Action Space: 

  {  

    I (Idle : don’t execute any tasks for one time step) 

    M (begin or continue to map area),  

    E (excavate),  

    A (begin or continue to analyze excavated samples)  

  } 

 

Transition Function shown 

   (all unlabeled transition probabilities are 1.0) 

Reward Function:  

 𝑟 𝑠, 𝑎 =  
0, for nonterminal state where 𝑡𝑖𝑚𝑒 𝑠 < 6
sum of completed task outcome qualities
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Figure 2.3: The MDP for the rover in Example 2.1.

where the first term represents immediate reward, γ ∈ [0, 1] denotes the discount

factor, and the summation computes the expected future reward given the best action

is chosen in every subsequent state. Equation 2.1, which is commonly referred to

as the Bellman equation (Russell et al., 1996), presents the most general notion of

expected utility, where future rewards are discounted over a potentially infinite-length

sequence of decisions. In this dissertation, I focus on finite horizon problems, wherein

the agent’s objective is to maximize is accumulation of rewards within finite mission

deadlines. In this case, rewards are undiscounted (γ = 1).

An agent’s behavior is prescribed by an MDP policy π, which encodes how

the agent should behave in each world state. In general, an MDP agent may use a

randomized policy, which maps each state to a probability distributions over randomly-

selected actions (π : S × A 7→ [0, 1]). However, in this dissertation, I assume that

each agent adopts a deterministic policy π : S 7→ A, selecting a single unique action,

denoted at = π(st), for each state. For any MDP problem, there exists at least one

deterministic policy that is just as good as any stochastic policy (subject to the value

function V () I define below), so there is no loss in solution quality associated with

restricting attention to deterministic policies (Puterman, 1994).

When following a (deterministic) policy π, an agent’s expected utility of entering

a given state st is defined (using the notation from Equation 2.1) as:

Uπ(st) = R(st, π(st)) + γ ·
∑
st+1∈S

[
P (st+1|st, π(st))Uπ(st)

]
(2.2)
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Overall, the value V (π) of a policy π is the expected utility of following π from the

probabilistic distribution over initial states ααα specified in the MDP description:

V (π) =
∑
s0∈S

[
α(s0)Uπ(s0)

]
(2.3)

where α(s0) is the probability of starting in state s0.

MDP planning is the problem of, given a complete description of the MDP, finding

the optimal policy π∗, whose value is greatest:

π∗ = arg max
π∈Π

V (π) (2.4)

In Equation 2.4, Π denotes the agent’s policy space. The optimal policy π∗ is also

referred to as the solution to the MDP. Similarly, solving an MDP refers to the

process of computing π∗.

2.2.1.2 Solution Algorithms

Aside from simple enumeration of the policy space (as implied by the arg max in

Equation 2.4), a variety of more efficient solution methods are commonly used. For

instance, policy iteration and value iteration apply variations of the Bellman equation

(Eq. 2.1) to iteratively converge on an optimal policy and an accurate optimal value

function, respectively (Russell et al., 1996). In this dissertation, I make use of a Linear

Programming (LP) approach (D’Epenoux, 1963; Kallenberg, 1983), which frames an

MDP planning problem as the following linear optimization problem:

max
xxx

∑
s∈S

∑
a∈A

x(s, a)R (s, a)∣∣∣∣∣∣
∀st+1 ∈ S,

∑
at+1∈A

x(st+1, at+1)− γ
∑
st∈S

∑
at∈A

x(st, at)P
(
st+1|st, at

)
= α(st+1)

∀s ∈ S,∀a ∈ A, x(s, a) ≥ 0

(2.5)

where the vector xxx of variables {x(s, a),∀s ∈ S,∀a ∈ A}, often called the occupation

measures, denotes the total expected discounted number of times action a is performed

in state s. Upon solving this LP, we can straightforwardly compute the optimal policy
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π∗ from the computed optimal occupation measures:

π∗(s, a) =
x∗(s, a)∑
a′∈A x(s, a′)

(2.6)

If the LP algorithm simplex is used to solve the LP in Equation 2.5, it is guaranteed

to return a solution xxx∗ corresponding to deterministic policy as long as the components

of ααα are nonzero (Dolgov & Durfee, 2006). For MDPs wherein ααα contains zeros, and for

use of the MDP solution methodology with other LP algorithms, additional constraints

can be introduced into Equation 2.5 to guarantee that a deterministic policy is returned

(as I develop in Chapter 5).

The value V (π∗) of the optimal policy found by solving the LP from Equation 2.5

is simply the value of the objective function, which is equal to the dot product of

the occupation measures xxx∗ and the vector of rewards specified by the MDP reward

function R():

V (π∗) =
∑
s∈S

∑
a∈A

x∗(s, a)R (s, a) (2.7)

2.2.2 Partially-Observable MDPs

The MDP model reviewed above assumes the agent is able to sense its true state

of the world upon taking an action. For instance, the rover from Example 2.1 knows

whether or not its excavation has succeeded or failed. The partially-observably Markov

Decision Process (POMDP) relaxes this assumption, instead dictating that the agents

receive observations that are perhaps distinct from the true world state.

Example 2.2. Consider that the rover from Example 2.1 models its excavation

activity using a lower-level decision process, in order to decide how many holes to

drill and what samples to keep. In particular, the rover is looking for white-colored

rocks (which indicate a desirable chemical composition). There may or may not

be any white rocks in the ground at the dig site. Let us use a boolean feature,

white-rocks-exist, to represent the existence of white rocks at the dig site. In

the rover’s excavation, white-rocks-exist is an important, but partially-observable
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state feature. That is, the rover cannot see white rocks buried below the surface

until after digging them out. Moreover, if the rover drills a hole and does not

see any white rocks, that does not mean that white-rocks-exist=false, since there

may be white rocks buried just a few inches away. Instead, the rover receives an

observation, no-white-rocks-in-hole, that is correlated with the state white-rocks-

exist=false, but not necessarily equal to the true state value.

Partial observability makes the rover’s decision of whether or not to drill a

second hole, and then a third hole, and then a fourth hole, nontrivial. For instance,

the rover may be better off spending its time collecting other-colored samples from

the first hole than digging additional holes, depending on the relative values of

the various rock samples.

Formally, a single-agent finite-horizon POMDP is may be described by tuple

〈S,A, P,R,Ω, O, T 〉 whose contents are as follows:

� S is the state space, A is the action space, P () is the transition function, and

R() is the reward function, exactly as they were defined in the fully-observable

MDP (Sec 2.2.1).

� Ω is a finite set of observations, such that the agent receives an observation

o ∈ Ω with every transition that it makes.

� O : A× S × Ω 7→ R is the observation function, specifying the the probability,

denoted O (ot+1|at, st+1), that the agent receives observation ot+1 ∈ Ω after

taking action at ∈ A and arriving in state st+1 ∈ S.

� T ∈ N is the finite time horizon of execution, specifying that the agent faces

decisions at (discrete) time steps 〈0, 1, . . . , T 〉.

Figure 2.4 shows a DBN depicting the graphical relationships among the POMDP

variables, indicating that observations depend solely upon current state and latest

action. Notice that the POMDP specification above has also extended the MDP

specification with a time horizon T component (in addition to the observation-related

components). Without T , we would have an infinite-horizon decision problem. Al-

though the infinite horizon POMDP is well defined, researchers have found little use

for it due to its undecidability (as I describe more formally in Section 2.2.3). Similarly,

in this dissertation, I restrict consideration to finite-horizon problems.
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Figure 2.4: POMDP state, action, transition, observation, and reward dynamics.

2.2.2.1 Histories of Observations

Although the POMDP state transition dynamics are Markovian, as clearly depicted

in Figure 2.4, a POMDP agent does not necessarily know its true state at any given

decision step, and so it must rely on present and past observations to make the most

informed decisions. It can no longer safely forget the past (as it could in the case of

an MDP). If it did it would be throwing away potentially useful information about

the present (with which to disambiguate the present state).

Example 2.2 (continued). Assume that the rover drills one hole and observes

no white rocks, then drills another, again observing no white rocks, then a third,

still observing no white rocks. Should the rover dig again? If it bases its decision on

only the latest observation, forgetting all of its past failures to find white rocks, it is

likely to keep on trying and keep on failing. However, by considering all observed ev-

idence, 〈no-white-rocks-in-hole, no-white-rocks-in-hole, no-white-rocks-in-hole〉, it

can make a better informed decision about whether or not to try again or to

pursue a different-colored rock.

The information that a POMDP agent collects about the world from time steps 0

to t is captured by its history of observations ~o t = 〈o1, ..., ot〉 ∈ (Ω)t. Since, in general,

an agent’s optimal decisions may depend on past observations, a (deterministic)

POMDP policy π : (Ω)T 7→ A is a mapping of complete observation history3 to

action, prescribing an action at = π(~o t) for every possible sequence of observations ~o t.

The difficulty of such a representation is that it grows with every additional decision

step, making a POMDP agent’s policy space exponential in the time horizon T .

3 In the case that an agent is following a randomized policy, it must also base its decisions on its
history of actions. However, in this dissertation, I assume that the agent’s policy is deterministic,
implying that the agent can always recover its action history from its observation history.
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2.2.2.2 Belief State

Researchers have developed a useful strategy for combating the exponentially-

growing policy representation, which I briefly review now. It turns out that an

agent can forget past observations as long as it maintains a belief state that encodes

sufficient information about past observations and actions to make the best possible

predictions about future transitions. In a completely-observable single-agent MDP, the

current world state constitutes a sufficient belief state. In a POMDP, the probability

distribution over all possible current world states is sufficient (Smallwood & Sondik,

1973). Thus, the POMDP belief state is a vector bbb, containing a component for each

world state:

bt
(
st
)

= Pr
(
st|~a t−1

j , ~o tj
)
, ∀st ∈ S (2.8)

At the start of execution, before an agent takes a single action or receives a single

observation, the initial belief state is equal to the probability distribution over initial

world states bbb0 = ααα (where ααα is the probability distribution over start states specified

in the POMDP description from Section 2.2.1). As the agent takes actions and

receives observations, it updates each component of its belief state using the following

belief-state estimator :

bt+1
(
st+1

)
=
Pr(ot+1|at, st+1)

∑
st Pr (st+1|st, at) bt

(
stj
)

a normalizing factor
(2.9)

where bt
(
stj
)

is a component from the latest belief state, as derived by Smallwood

& Sondik (1973). Although the POMDP belief state representation bbb is still larger

than the MDP state in that it requires a probability value for every world state, it

takes only constant space to maintain as the agent makes more and more decisions.

In contrast, the history of observation grows with each new decision.

Example 2.2 (continued). Smallwood & Sondik’s theory dictates that the

rover can forget past observations as long as it maintains a value of bt =

Pr(white-rocks-existt = true). Let O(no-white-rocks-in-hole |white-rocks-exist =

true) = 0.5, indicating that if there exist white rocks at the dig site, the rover

is just as likely not to find them in a given hole than it is to find them. Let

the initial state distribution (i.e., the prior probability of white rocks existing)

α = 0.5. Table 2.1 below shows the world state, actions, and observations of

the previously-described execution trace, along with the rover’s estimated belief

state.
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step true state observation belief state action
ttt ststst ototot btbtbt atatat

0 white-rocks-exist=false — Pr(white-rocks-exist = true) = 0.5 drill-hole
1 white-rocks-exist=false no-white-rocks Pr(white-rocks-exist = true) = 1

3 drill-hole
2 white-rocks-exist=false no-white-rocks Pr(white-rocks-exist = true) = 0.2 drill-hole
3 white-rocks-exist=false no-white-rocks Pr(white-rocks-exist = true) = 1

9 drill-hole

Table 2.1: A sample execution trace for the rover in Example 2.2

Another benefit of the POMDP belief state is that its dynamics are Markovian.

Moreover, the space of all reachable POMDP belief states and their transition dynamics

(which are simply derived from Equation 2.9) together define a belief-state MDP, whose

solution is equivalent to that of the POMDP. In effect, the belief state representation

reduces the POMDP to a complicated but normal MDP. As such, a common approach

for solving a POMDP is to work entirely in the belief-state space, thereby solving the

equivalent belief-state MDP (Cassandra et al., 1996; Kaelbling et al., 1998; Littman

et al., 1995a). In a later chapter (Section 4.2), I will derive a more complicated belief

state representation that incorporates information about other agents in a multiagent

system, but that is based upon the same principles of sufficiency and MDP reducibility.

2.2.3 Complexity of Single-Agent Planning

I now briefly review some complexity results and their implications on the compu-

tation required by MDP and POMDP solution algorithms, foregoing the foundational

background of complexity theory such as Turing machines and complexity classes

(but I refer the reader to a textbook on complexity theory (e.g., Papadimitriou, 1994)

for a deeper understanding of the results in this section).

Completely-observable single agent MDPs have been proven to be polynomial,

implying that there exist algorithms for which, in the worst case, the time and space

taken to compute an optimal MDP policy is a polynomial function of the size of the

MDP problem description (Littman et al., 1995b; Papadimitriou & Tsitsiklis, 1987).

Formally, the size of the problem description is the amount of space required to store

the complete model specification (i.e., the tuple 〈S,A, P,R〉 in the case of the MDP,

and 〈S,A, P,R,Ω, O, T 〉 in the case of the POMDP). If the action space is significantly

smaller than the state space (‖A‖ � ‖S‖), then the MDP can be solved in time

and space polynomial in ‖S‖. In particular, the LP methodology that I reviewed in

Section 2.2.1.2 admits polynomial-time solutions.4

4Despite this result, polynomial time LP algorithms are rarely used to solve MDPs. Rather, the
worst-case-exponential simplex algorithm has been shown empirically to yield better average case
performance, as detailed by Littman et al. (1995b).
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Not surprisingly, theoretical results suggest that, in general, POMDPs are harder

to solve than MDPs. Papadimitriou & Tsitsiklis (1987) have proven the finite-horizon

POMDP to be in a higher complexity class, PSPACE, for which there are believed

to be at best exponential time (and polynomial space) solution algorithms (Allen,

2009; Papadimitriou, 1994). Consequently, under the assumption that {‖A‖ � ‖S‖,
‖Ω‖ � ‖S‖, and T � ‖S‖}, it is believed that the worst-case computation time

of computing an optimal (finite-horizon) POMDP solution is exponential, denoted

EXP (‖S‖), in the size of the state space ‖S‖. Lusena et al. (2001) have proven an

even stronger result, indicating that the time required to compute ε-approximately

optimal (finite-horizon) POMDP policies (whose values are within ε of the optimal

value) is also exponential.

In the case of infinite-horizon POMDPs (wherein the time horizon T is unbounded),

the problem of determining whether or not a given policy is optimal is undecidable

(Madani et al., 1999). The implication is that no general technique exists for computing

an optimal policy to an infinite-horizon POMDP.

2.2.4 Decomposition and Abstraction

Although this thesis is concerned with coordination in systems of multiple agents,

some of its central themes are routed in single-agent research. In particular, decom-

position and abstraction techniques have proven to be effective for improving the

efficiency of single-agent planning and reasoning. I now briefly review these concepts

and provide citations to pioneering work in decomposing and abstracting single-agent

sequential decision making.

Decomposition breaks one large problem into smaller, more manageable problems.

For example, Singh & Cohn (1998) study MDP models composed of concurrent

subprocesses with interdependent actions that can be solved in parallel and merged

to construct optimal global solutions. Meuleau et al. (1998) develop a method for

decomposing very large MDPs into independent subprocesses coupled by resource

constraints. Both of these works compute solutions efficiently by exploiting factored

structure. That is, they isolate subsets of actions and portions of the world state

that may be treated independently of one another. There has since been a lot of

work in developing efficient solution algorithms for factored MDPs (Boutilier et al.,

1999a; Guestrin et al., 2003; Kearns & Koller, 1999; Poupart et al., 2002). In the

multiagent methodology that I present in this dissertation, I too take advantage of

factored structure so as to decouple each agent’s local decision model from the joint

decision model.

29



Researchers have also reduced single-agent MDP complexity by solving smaller

(often approximate) models with knowledge or action representations abstracted from

the original models. For example, Dean (along with others) explores reduction of large

state and action spaces through heuristic prioritization (Boutilier et al., 1997; Dean

& Lin, 1995) and aggregation (Dean & Givan, 1997; Dean et al., 1998; Dearden &

Boutilier, 1997). There is also a large body of literature on hierarchical representations

that treat individual actions and states as abstractions of sequences of primitive actions

and state transition (Barto & Mahadevan, 2003; Jonsson & Barto, 2005; Osentoski &

Mahadevan, 2007; Sutton et al., 1999). I take a similar approach, abstracting expected

(nonnonlocal) transition sequences of an agent’s peers as local transitions in its local

model.

2.3 Multiagent Coordination

Propelled by the momentum gained and results achieved in single-agent sequential

decision making, researchers have developed a variety of multiagent extensions to

the MDP and POMDP models. Some extensions, such as the Partially-Observable

Stochastic Game (POSG) studied by Hansen et al. (2004), and Gmytrasiewicz &

Doshi’s Interactive POMDP (I-POMDP), represent agents as having their own objec-

tives and intentions, making these models appropriate for systems of self-interested

(non-cooperative) agents. In this dissertation, I restrict consideration to teams of

cooperative agents who share a common objective. As I cite in Section 2.3.1.1, the

problem of computing optimal behavior for cooperative agents under transition and

observation uncertainty is extremely challenging in and of itself.

Here I review the Decentralized POMDP (Dec-POMDP)5 as studied by Bernstein

et al. (2000), which has emerged as the most popular and the most general POMDP

extension for cooperative agents. Before delving into the details of the Dec-POMDP,

I now give brief mention of some other general models and their relationships to

the Dec-POMDP. Another name for the Dec-POMDP is the Partially Observable

Identical Payoff Stochastic Game (POIPSG), which was introduced by Peshkin et al.

(2000) in the same year as the Dec-POMDP’s inception. Additionally, the Multiagent

Team Decision Problem (MTDP) (Pynadath & Tambe, 2002) has been proven to

be equivalent to the Dec-POMDP (Seuken & Zilberstein, 2008), and differs only

5 Here and throughout this dissertation, I maintain the convention of abbreviating “Decentralized–”
with “Dec-” (using a lowercase e and c). Note that I am referring to the same models that appear in
some other work abbreviated as “DEC–” (e.g. “DEC-POMDP”).
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in its representation of policies6. Researchers have also developed extensions to

the Dec-POMDP and the MTDP models, called the Dec-POMDP-Com (Goldman

& Zilberstein, 2003) and MTDP-Com (Pynadath & Tambe, 2002), that represent

communication among agents distinctly from agents’ actions and observations. Both

of these extensions have been shown to be no more general (in representational power)

than the Dec-POMDP (Seuken & Zilberstein, 2008).

After reviewing the general Dec-POMDP formalism, general Dec-POMDP algo-

rithms, and Dec-POMDP complexity, I describe a variety of other more restrictive

models that may be considered as Dec-POMDP subclasses. These include, among

many others, the Multi-agent Markov Decision Process (MMDP) as described by

Boutilier (1996), and the Dec-MDP as described by Bernstein et al. (2002), both of

which impose restrictions on agents’ observations. I go on (in Sections 2.3.2–2.3.3) to

characterize these models by their restrictions as well as the problem structure that

their respective solution algorithms are designed to exploit. For other characteriza-

tions of Dec-POMDP models, subclasses, and algorithms, I refer the reader to the

treatments of Seuken & Zilberstein (2008), Allen (2009), and Oliehoek (2010).

2.3.1 Decentralized POMDPs

The qualifying prefix “Dec-” in Dec-POMDP refers to a decentralization both of

control and of observation of an underlying POMDP. Instead of one agent taking

actions and receiving observations, we now have a team of agents, each of which

independently takes its own action and receives its own observation at every time

step. Figure 2.5 shows a DBN, whose graphical structure illustrates the conditional

independencies among Dec-POMDP variables. The formal details of the Dec-POMDP

model are as follows.

𝒐𝟏
𝒕  

st st+1 

r t  

world 
state 

observations team reward 

actions 

transition 

ot 𝒐𝒊
𝒕 

𝒐𝟏
𝒕+𝟏 

𝒐𝒊
𝒕+𝟏 

𝒂𝒊
𝒕 

Figure 2.5: DBN describing relationships among Dec-POMDP variables.

6 The MTDP encodes policies as mappings from belief state to action rather than observation
history to action.
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Definition 2.3. A Dec-POMDP is specified by tuple 〈N , S, A, P,R,Ω, O, T 〉, where

� N is a team of n agents,

� S is the state space, a finite set containing all world states, with distinguished

initial state7 s0,

� A = A1 × . . .× Ai × . . .× An is the joint action space, wherein component Ai

refers to the finite set of local actions available to agent i,

� P : S × A 7→ [0, 1] is the transition function, specifying the probability

P (st+1|st, a) that the agents will transition into world state st+1 ∈ S given

that the agents performed joint action a = 〈a1, . . . , ai, . . . , an〉 ∈ A in state

st ∈ S,

� Ω = ×i∈NΩi is a finite set of joint observations, such that each agent i observes

an observation oi ∈ Ωi with every transition that it makes,

� O : A × S × Ω 7→ R is the observation function, specifying the probabil-

ity, denoted O (ot+1|at, st+1), is the probability that the agents receive joint

observation ot+1 = 〈ot+1
1 , . . . , ot+1

i , . . . , ot+1
n 〉 ∈ Ω after taking taking actions

at = 〈at1, . . . , ati, . . . , atn〉 ∈ A and arriving in state st+1 ∈ S,

� R : S × A 7→ Rn is the reward function, specifying the team reward, denoted

rt = R(st, at), ascribed to the joint action at ∈ A taken in state st ∈ S, and

� T ∈ N is the finite time horizon, specifying that the agents will face decisions at

(discrete) time steps 〈0, 1, ..., T 〉.

Interactions among agents are manifested in the Dec-POMDP’s transition, obser-

vation, and reward functions. The world state transition depends upon combinations

of agents’ actions. Similarly, an agent’s observation (which is separate from the

observation given to other agents) may depend on its own action, other agents’ actions,

and the new world state. A single team reward captures the immediate value of a

joint action and resulting world state. Note that, just as in the single-agent MDP

and POMDP, the reward is not explicitly observed, but simply provides a concrete

specification by which to evaluate outcomes and policies.

7 The conventional definition of the Dec-POMDP (Bernstein et al., 2002), for simplicity of
exposition, specifies a unique start state instead of a distribution over start states (ααα). Note, however,
that this does not restrict the representational power of the model.
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Whereas in the single-agent POMDP the term partial observability referred to

the agent’s observations as distinct from the world state, the term takes on a richer

meaning in the Dec-POMDP. Here, an agent’s observation gives it a partial view

of the world state as well as a partial view of the other agents’ actions. Further, it

may be the case that one agent completely observes part of the world state (where

by part I mean either some state features’ values or some regions of the state space)

while another agent completely observes another part of the world state. In this sense,

partial observability may also refer to the agents’ differing views of their shared world.

Just as in the single-agent POMDP case, each Dec-POMDP agent i bases its

decision at time step t on its local observation history, denoted ~o ti = 〈o1
i , ..., o

t
i〉 ∈ (Ωi)

t.

Definition 2.4. A local policy πi : (Ωi)
T 7→ Ai for agent i deterministically8 specifies

an action ati ∈ Ai that i will perform for each observation history ~o ti .

The objective of a set of Dec-POMDP agents is, as in the single-agent case, to maximize

the value function. In this dissertation (and in most finite-horizon Dec-POMDP

planning), the value refers to the expected cumulative reward E
[∑T

t=0R(st, at)
]
. In

this case, the value function is dependent upon all agents’ actions, as conveyed by the

joint policy.

Definition 2.5. A joint policy π = 〈π1, ..., πn〉 is a vector of all agents’ local policies.

Definition 2.6. The value of a joint policy π is the expectation of the summation

of rewards received by following π:

V (π) = E

[
T∑
t=0

R(st, at)|π

]
(2.10)

Although Dec-POMDP agents’ actions and observations are decentralized, the

Dec-POMDP planning process need not be decentralized. In fact, at the present

time, the vast majority of Dec-POMDP solution algorithms compute agents’ policies

centrally, either with a single computational process or by allowing arbitrary exchange

of information between agents during the planning process. It is not until agents

go off and execute their planned policies that the problem becomes “decentralized”.

During execution, agents do not explicitly share their observations nor communicate

8 As described in Section 2.2.1.1, I restrict consideration in this dissertation to deterministic
policies. Here and throughout, I will use the term local policy to mean an individual agent’s
deterministic local policy.
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their actions.9 Thus, even if the agents’ decisions are all planned together, this does

not guarantee that agents will necessarily execute these decisions in a synchronized,

well-coordinated manner because they cannot be certain about the other agents’ views.

The fact that the agents’ runtime awareness is disjoint but not independent makes

the problem of optimal Dec-POMDP policy computation extremely challenging.

2.3.1.1 Complexity

While it comes as little surprise that planning for teams of agents is harder than

planning for individual agents, it turns out that Dec-POMDP planning is in a whole

different complexity class from that of POMDP planning (reviewed in Section 2.2.3).

Bernstein et al. (2002) have proven the finite-horizon Dec-POMDP to be in complexity

class NEXP, which is believed (though not proven) to be strictly harder than NP, and is

widely considered intractable (Papadimitriou, 1994). Further, the NEXP-completeness

holds for Dec-POMDPs with as few as two agents (Bernstein et al., 2002). This

suggests10 that the computation time of an optimal joint policy (by any algorithm)

for a team of two Dec-POMDP agents is, in the worst case, doubly-exponential in the

size of the Dec-POMDP problem description.

2.3.1.2 General Solution Methods

Despite the daunting complexity of these models, several optimal solution ap-

proaches have been developed for the general class of finite-horizon Dec-POMDPs. For

instance, Bernstein et al. (2009) show that policy iteration using stochastic, correlated

joint controllers converges on the optimal Dec-POMDP solution. Other optimal

approaches include extensions of dynamic programming (Hansen et al., 2004) and

A∗ heuristic search (Szer et al., 2005). Not surprisingly, none of the three optimal

methods have been shown to scale beyond small 2-agent problems.

Approximate solution methods for the general class of Dec-POMDPs are more

abundant. Oliehoek et al. (2008a) extend Szer et al.’s multiagent A∗ search to

efficiently-computable approximate value functions. Seuken & Zilberstein (2007b)

introduce heuristics into Hansen et al.’s optimal dynamic programming algorithm to

reduce the number of joint policies considered. Nair et al. (2003) develop a policy-space

9 Implicit communication may, however, be manifested by the Dec-POMDP’s actions, observations,
and transitions. Alternatively, there are extensions to the Dec-POMDP framework that augment the
problem description with special communicative actions. I address these topics in a later chapter
(Section 3.4.2).

10Formally, the double exponentiality of optimal Dec-POMDP planning is contingent upon the
assertion that NEXP 6= EXP, which has yet to be proven.

34



search method, JESP (which I describe later on in Sec. 2.3.3), that converges upon a

joint policy that is a Nash equilibrium but is not guaranteed to be optimal. Similarly,

researchers have developed methods that search an approximate space by modeling

policies with fixed-size local controllers. For instance, Bernstein et al. (2005) perform

policy iteration on local stochastic finite-state controllers along with an additional

shared controller that correlates the stochastic actions of the agents. Alternatively,

Amato et al. (2007) optimize fixed-size local controllers using non-linear programming.

Kumar & Zilberstein (2009) extend point-based methods (Pineau et al., 2006; Spaan

& Vlassis, 2005) to approximate the Dec-POMDP belief-state space. Although these

general-purpose approximate algorithms have enabled researchers to tractably solve

problems with larger state and action spaces and longer time horizons than had the

optimal algorithms, they have not been shown to scale to problems with more than

two agents.

2.3.2 Structural Restrictions and Subclasses

With an eye towards avoiding the NEXP complexity of the general Dec-POMDP

problem class, researchers have identified a variety of Dec-POMDP subclasses that are

amenable to efficient, scalable solution methods, but that impose various restrictions

on problem structure. Here, I survey the most common structural restrictions along

with their associated Dec-POMDP subclasses.

2.3.2.1 Joint Observability

Intuitively, the difficulty of optimal coordination in Dec-POMDPs is due, in

part, to agents’ differing observations of their shared environment. The Multiagent

MDP (MMDP) (Boutilier, 1996) sidesteps this problem by assuming that all agents

completely observe the world state, effectively reducing the problem to a single-agent

MDP with a joint action, whose computational complexity is just polynomial in the

size of the problem description. An analogous assumption that agents receive the

same partial observations reduces the Multiagent POMDP to a single-agent POMDP

with a joint action (Messias et al., 2010).

A less restrictive assumption is the agents’ observations together fully determine

the world state. Bernstein et al. (2002) formalize this assumption as joint observability

(whose definition I restate below), calling the resulting Dec-POMDP subclass the

Dec-MDP.
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Definition 2.7. A Dec-POMDP is jointly observable if there exists a mapping

J : Ω 7→ S such that whenever O (〈ot1, ..., otn〉|at−1, st) > 0, then J (〈ot1, ..., otn〉) = st.

Although joint observability dictates that agents’ observations jointly determine the

world state, it does not imply that any one agent will ever be aware of the true world

state (since the agents are not assumed to share their observations during execution).

Moreover, an agent’s individual observation may not even be enough to establish

awareness of a portion of the true world state. As such, only in combination with

other structural restrictions (which I review in the subsections that follow) has joint

observability led to computationally-efficient solution methods.

2.3.2.2 Local Full Observability

Another branch of work assumes that each agent i observes (exactly or partially)

a portion of the world state s referred to as its local state si, where si consists of

a subset of the feature values that make up the world state s (Becker et al., 2004b;

Goldman & Zilberstein, 2004; Nair et al., 2005; Varakantham et al., 2009). In all of

these models, the state is factored such that every feature appears in at least one

agent’s local state, and each agent’s observations depend only on the values of its

local state features.

Problems in which agents observe their local states exactly are commonly referred

to as locally fully observable (Becker et al., 2004b; Goldman & Zilberstein, 2004),

whose definition I review below.

Definition 2.8. A Dec-POMDP is locally fully observable if:

∀i ∈ N , ∀oi ∈ Ωi, ∃si ∈ Si|Pr(si|oi) = 1, where Si is agent i’s local state space.

By Definition 2.8, an agent i’s current local state si is uniquely determined from

i’s observation oi, making local full observability a stronger assumption than joint

observability. Whereas a Dec-POMDP that is locally fully observable is also jointly

observable (Goldman & Zilberstein, 2004), the converse does not hold. In jointly-

observable problems, an agent’s individual observation alone might not determine any

portion of the world state (but only in combination with other agents’ observations

provide awareness of the agent’s local state).

The TI-Dec-MDP (Becker et al., 2004b), the EDI-Dec-MDP (Becker et al., 2004a),

and the EDI-CR (Mostafa & Lesser, 2009), each of which I will describe in more detail

(in Sec. 2.3.2.3–2.3.2.5) after reviewing more structural restrictions, are all subclasses

that are locally fully observable.
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2.3.2.3 Transition and Observation Independence

In addition to factoring the world state into local states, researchers have also

imposed particular factored structure on the transition and observation functions. In

particular, they have identified problems in which agents cannot affect the values of

each others’ local states (Becker et al., 2004b; Nair et al., 2005). These problems are

referred to as transition-independent (Becker et al., 2004b).

Definition 2.9. A Dec-POMDP is transition independent11 if:

Pr
(
st+1
i |st, at

)
= Pr

(
st+1
i |sti, ati

)
By Definition 2.9, a transition-independent agent i’s next local state value st+1

i depends

only on its previous local state sti and latest individual action ati.

Along with transition independence, researchers have imposed observation inde-

pendence (Becker et al., 2004b; Nair et al., 2005).

Definition 2.10. A Dec-POMDP is observation independent if:

O (ot+1|at, st+1) =
∏
i∈N

Oi

(
ot+1
i |ati, st+1

i

)
Here, the Dec-POMDP observation function O() has been decomposed into a set

of local observation functions {Oi()}, one for each agent i, dictating probabilities of

individual observations which are assumed to be independent of peers’ observations.

In problems that are both transition and observation independent, an agent i

cannot affect the transitional outcomes of other agents’ actions, nor can it affect

other agents’ observations, through any actions that i takes. Thus, the only form of

interaction occurs through the reward function: one combination of agents’ actions

may be valued differently than another. Consider, for instance, a problem in which

the successful delivery (team reward +1) of a package is contingent upon both a

dockworker (agent 1) loading the package into a truck (action a1) and a driver (agent

2) (action a2) transporting the package to its destination.

Becker et al. (2004b) have identified the Transition-Independent Dec-MDP (TI-

Dec-MDP) class, which restricts problems to be locally fully observable (Def. 2.8),

transition independent (Def. 2.9), and observation independent (Def. 2.10). They

have also proven that the TI-Dec-MDP is NP-complete, putting it in a complexity

11Definition 2.9 is simplified slightly from that given by Becker et al. (2004b) in its omission of
global features s0 (also referred to as uncontrollable features (Goldman & Zilberstein, 2004), and
unaffectable state (Nair et al., 2005)), which do not depend on any agent’s action. Here, I treat such
features as jointly modeled in all agents’ local states.
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class (widely believed to be) easier than that of the general Dec-POMDP (Becker

et al., 2004b). Subsequently, other researchers have developed algorithms for solving

TI-Dec-MDPs approximately using mixed-integer linear programming (Wu & Durfee,

2006), and optimally using separable bilinear programming (Petrik & Zilberstein,

2009), which exploit the transition and observation independent structure.

Nair et al. (2005) have identified another class, the Network-Distributed POMDP

(ND-POMDP), that is transition and observation independent but not locally fully

observable, which has led to the development of a suite of exploitative algorithms

(Kim et al., 2006; Kumar & Zilberstein, 2009; Marecki et al., 2008; Nair et al.,

2005; Varakantham et al., 2007), and demonstrations of quality-bounded solution

computation for problems with up to 10 agents, thereby making a significant leap in

Dec-POMDP scaling. However, these algorithms remain limited in their applicability

to transition and observation independent problems, examples of which include the

control of distributed sensor networks wherein at each decision step agents choose

only where to point their sensors and cannot not affect each others’ observations or

local states.

2.3.2.4 Reward Independence

As an alternative to transition and observation independent problems, Becker et al.

(2004a) have developed a different class of problems that imposes a factoring of the

team reward into local rewards.

Definition 2.11. A Dec-POMDP is reward independent if there are functions f

and R1 through Rn such that

R (s, a) = f (R1 (s1, a1) , R2 (s2, a2) , ..., Rn (sn, an))

and

Ri (si, ai) ≤ Ri (si, a
′
i) ⇔ f (R1...Ri (si, ai) ...Rn) ≤ f (R1...Ri (si, a

′
i) ...Rn)

In Definition 2.11, Ri is agent i’s local reward function, valuing i’s local state and

individual action independently of the other agents’ local states and individual actions.

The reward composition function f , which is restricted to be monotonic, defines the

resulting team reward. Reward independence, in the context of the models described in

Section 2.3.2.5, has enabled researchers to decompose the Dec-POMDP value function

into local value functions, and to exploit the resulting factored structure.
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2.3.2.5 Event-Driven Interactions

Becker et al. (2004a) define a subclass called the Dec-MDP with Event-Driven

Interactions (EDI-Dec-MDP), which combines reward independence and local full ob-

servability with another property that restricts agents’ interactions to take a particular

form. Due to its similarity to the model that I develop in Chapter 3, I describe the

formal details of the EDI-Dec-MDP in Appendix A, which I briefly summarize here.

Each interaction takes the form of a special transition dependency. For an agent i

whose actions affect agent j, the EDI-Dec-MDP models a dependency that relates the

occurrence of an event, which is a transition of agent i’s local state, to the probability

of a subsequent transition of agent j’s local state.

EDI-Dec-MDP agents are always reward independent, and they are transition

independent in all world states except those explicitly represented with a dependency.

Using this insight, Becker et al. (2004a) develop a solution approach for EDI-Dec-

MDPs that iteratively solves nearly-independent local models augmented with nonlocal

event information, and demonstrate their algorithm to be much more efficient than

exhaustive joint policy search. However, no EDI-Dec-MDP algorithms to date have

been shown to scale beyond two agents.

2.3.2.6 Hierarchy of Methods With Fixed Execution Ordering

Another branch of work, in addition to requiring structured interactions, imposes

restrictions on agents’ local behaviors. The Opportunity-Cost Dec-MDP (OC-Dec-

MDP), introduced by Beynier & Mouaddib (2005) and studied by Marecki & Tambe

(2007), models a team of agents whose objective is to coordinate the execution times

of methods with stochastic durations. Unlike the other models reviewed thus far,

the OC-Dec-MDP specifies a fixed ordering over each agent’s method executions,

restricting the problem to one of determining only when to start each method and not

which order to execute the methods in.

OC-Dec-MDP interactions take the form of precedence constraints, each dictating

that a method executed by one agent will only complete successfully if a particular

method of some other agent has already completed successfully. In combination with

local full observability and the fixed ordering over method executions, this restricted

form of transition dependence makes the OC-Dec-MDP more practical for scaling

to problems with many methods (or many agents). Researchers have exploited this

specialized structure to compute approximate solutions containing over a hundred

methods (Marecki & Tambe, 2007).
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2.3.2.7 Other Subclasses

In addition to those described in the previous subsections, researchers have identified

several other specialized Dec-POMDP subclasses whose structure has allowed for

efficient computation of optimal solutions. For instance, Goldman & Zilberstein

(2004) defines a Goal-Oriented Dec-MDP (GO-Dec-MDP) wherein the objective is to

minimize the cost of agents’ actions en route to one of a subset of goal states, and

proves that, when combined with transition and observation independence, the Go-

Dec-MDP is polynomial. Guo & Lesser (2005) define a Partially-Observable Stochastic

Game with state-dependent action sets, wherein each agent controls a separate MDP

that is independent from the others except that the agent’s set of available actions

depends upon other agents’ MDP states, and demonstrate that for such problems

the joint policy space can be reduced significantly by iteratively removing dominated

local policies. Dolgov & Durfee (2006) defines a flavor of Dec-MDP for multiagent

resource allocation, wherein agents’ individual MDPs are completely independent with

the exception of constraints on joint actions that depend upon an initial allocation

of resources. Wu & Durfee (2010) extend Dolgov & Durfee’s formulation to the case

of sequential resource re-allocation, defining the multiagent resource-driven mission

phasing problem (M-RMP) and proving the computationally complexity of this subclass

to be NP-complete.

Meanwhile, others have defined subclasses with fewer structural restrictions, but

that have only been shown to accommodate efficient approximate solution methods. For

instance, Varakantham et al. (2009) define the Distributed POMDP with Coordination

Locales (DPCL), which requires only observation independence (Def. 2.10) and a

decomposition of the team reward into local rewards. The authors demonstrate that

by explicitly distinguishing all of those world states (or locales) in which agents can

interact, an efficient distributed algorithm can exploit the underlying structure to

compute solutions efficiently, but without guaranteeing optimality or near optimality.

Guestrin et al. (2001) define a hierarchical multiagent factored MDP whose structure

can be exploited by an efficient approximate linear programming algorithm. Lastly,

Oliehoek et al. (2008b) describe a generalization of Guestrin et al.’s model called

the factored Dec-POMDP, which explicitly represents factored value functions whose

components depend on subsets of state variables and subsets of agents’ actions. While

the structure in these more general subclasses has allowed efficient and scalable

computation of approximate solutions, no generally applicable algorithms have yet

been developed that can compute quality-bounded solutions for problems with more

than three agents.
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2.3.3 Decoupled Joint Policy Formulation

By and large, the successes (some of which are cited in Section 2.3.2) in scaling

planning to Dec-POMDPs with more than two or three agents have come though the

use of decoupled solution methods. In contrast to centralized planning algorithms

that formulate joint behavior by reasoning about all agents’ decisions in combination,

a decoupled algorithm breaks the computation up into coordinated local policy

formulations. I now review the infrastructural groundwork (on which my own solution

approach also rests), the results that others have attained, and the limitations of this

past work.

2.3.3.1 Best Response

Central to the decoupled solution approach is the use of local models to separately

compute each agent’s individual policy. As derived by Nair et al. (2003), any Dec-

POMDP can be transformed into a single-agent POMDP for agent i given that the

policies of its peers have been fixed. Agent i uses the single-agent POMDP to compute

its best response policy, which I will denote π∗i (π 6=i), that is optimal with respect to

the policies of its peers (π 6=i). The idea is to compute best responses to a series of

candidate policies of i’s peers, as illustrated in Figure 2.6.

Nair et al. (2003) provide a dynamic programming algorithm for computing best

responses to the general class of Dec-POMDPs. Though computationally less expensive

than computing a complete joint policy, Nair et al.’s best-response computation requires

that the agent reason about the space of possible observation histories of its peers,

which increases exponentially with the time horizon (T ) and with the number of peers.

Consequently, Nair’s general best response computation has failed to scale to problems

with more than two agents (Varakantham et al., 2009).

In a more restrictive context, researchers have devised best-response models that

provide substantial leverage (Becker et al., 2004b; Nair et al., 2005) in reducing

computational cost. They take advantage of the locality of agents’ interactions (Nair

et al., 2005), such that the agent reasons about only the observation histories of a

subset of peers’ and only a subset of state features. However, these specialized models

are only applicable to transition and observation independent Dec-POMDPs (Becker

et al., 2004b; Nair et al., 2005).
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Figure 2.6: Decoupled joint policy search.

2.3.3.2 Policy-Space Search

Given the decoupling scheme that the best response model provides, planning

the joint policy becomes a search through the space of combinations of optimal

local policies (each found by solving a local best-response model). Nair et al. (2003)

develop a general algorithm, Joint Equilibrium-based Search for Policies (JESP), for

searching the joint policy space in this manner. Using JESP, agents iteratively revise

their policies by computing best responses to each others’ best responses, ultimately

converging on a (Nash) equilibrium that is a local optimum but not necessarily a

(Pareto-efficient) global optimum. A subsequent extension to JESP, the Global Optimal

Algorithm (GOA), ensures that agents compute best responses to all interacting peers’

policies, and thus returns the optimal joint policy (Nair et al., 2005). However, GOA

is also limited in its scalability due to the intractable growth of the joint policy space.

Researchers have also employed joint policy search for solving problems in the ND-

POMDP class (Nair et al., 2005; Marecki et al., 2008; Kim et al., 2006; Varakantham

et al., 2007). By exploiting locality of interaction (Nair et al., 2005; Kim et al., 2006),

using smart pruning techniques (Varakantham et al., 2007), and replacing policies

with fixed-size controllers (Marecki et al., 2008), they have been successful in scaling

up the computation of joint policies to transition-dependent problems with 10 agents.

With one such algorithm, SPIDER (Varakantham et al., 2007), they have additionally

been able to bound the quality of the solutions returned. However, none of these

scalable algorithms are directly applicable to transition-dependent problems.

2.3.3.3 Adaptations

Researchers have developed other decoupled joint policy formulation methods by

maintaining the same paradigm as I have described, but by adapting the mechanics of

either the search process or the best response calculation. For instance, Varakantham
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et al. (2009) have designed an algorithm, Team’s REshaping of MOdels for Rapid exe-

cution (TREMOR), for computing approximate solutions to DPCLs (as described in

Sec 2.3.2.7). Like JESP (described in Section 2.3.3.2), TREMOR employs local models,

iteratively computing individual policies in response to candidate peer behavior, and

greedily converges on a local optimum. The difference is that instead of computing an

optimal best response, TREMOR uses social model shaping to compute approximate

best responses. Agents construct local models whose transitions have been shaped

to account for expected peer effects (upon entering into predetermined coordination

locales) and whose rewards have been shaped to encourage the agent to select har-

monious actions (in coordination locales). By foregoing optimality, TREMOR’s local

response calculation has been shown to scale to problems with 10 agents. However, it

provides no guarantees of near optimality, nor any bounds on the quality loss due to

the approximate best response.

Another adaptation, the Coverage Set Algorithm (CSA) (Becker et al., 2004a,b),

which was originally designed to solve TI-Dec-MDP problems, is built on the same

best-response concept as JESP, GOA, and SPIDER. Becker et al. (2004b) defines an

optimal coverage set as the set containing each local policy that is a best response to

some combination of peer policies. By considering all policies in the coverage sets of

all agents, CSA ensures that the optimal joint policy will not be overlooked, which

is the same insight behind GOA. The novelty of CSA lies in its exploration of the

coverage set. Policies are abstracted using a collection of parameters over which the

best-response value function is piecewise-linear and convex. CSA then searches the

parameter space by evaluating policies that correspond to hyperplane intersections

along the surface of the optimal joint value function. Such a parameterization was

first defined for TI-Dec-MDPs based on the joint reward structure (Becker et al.,

2003). Another parameterization was later defined for EDI-Dec-MDPs (Becker et al.,

2004a), but has since only been shown to be tractable on small two-agent event-driven

problem instances.

Petrik & Zilberstein (2009) have since reformulated CSA as an optimization

problem called a separable bilinear program, and developed a centralized solution

approach, which I will refer to as SBP, that has been shown to significantly outperform

the basic CSA implementation. SBP works by repeatedly solving an optimization

problem according to an approximation bound, successively refining the bound from

iteration to iteration. Aside from converging more quickly than CSA in practice, it

also has the advantage of allowing the agents to compute anytime solutions with

bounds on approximate solution quality. However, it has only been developed for
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solving problems with two agents. Extension to more than two agents is nontrivial by

nature, since the consequent mathematical formulation would no longer constitute a

“bilinear” program.

2.3.4 Coordinating Abstract Behavior

Another paradigm central to this dissertation is the coordination of abstract

interactions. Intuitively, agents don not always require detailed models of peers’

individual behavior in order to coordinate their decisions. Instead, they only need to

consider the portions of peers’ behavior relating to their interactions. In the context

of a decoupled solution approach (Sec. 2.3.3), agents can formulate coordinated joint

behavior by negotiating abstract commitments to interactions and planning local

behavior around those commitments.

Historically, this has been a dominant approach in multiagent planning. As

early as 1980, the Contract Net protocol (Smith, 1980) provided a convention for

agents to commit to executing necessary subtasks of a larger problem. Cohen &

Levesque (1990, 1991) use the commitment paradigm to develop a theory of Joint

Intentions by which agents commit to performing actions in states that will allow

achievement of persistent goals. Grosz & Kraus (1996) formalize commitments into a

model of agents’ simultaneous completions of plan components with their SharedPlan

framework. Durfee & Lesser (1991) develop a Partial Global Planning methodology

(subsequently generalized by Decker & Lesser, 1992), wherein agents coordinate their

interactions by exchanging group goals and integrating agents’ commitments in the

form of partial plans that can be used to complete those goals. Meanwhile, local

plans are formed around the promised partial plans and revised (when the need

arises) to adapt to dynamic environmental factors and unexpected circumstances.

More recently, researchers have used the concept of partial global planning to develop

algorithms wherein agents identify coordination points and coordinate using abstract

characterizations of their interactions (Clement et al., 2007; Cox & Durfee, 2003; Xuan

& Lesser, 1999). Other examples wherein agents coordinate abstract interactions

include Tambe’s Shell for Teamwork (STEAM ) (Tambe, 1997) based on Cohen’s theory

of Joint Intentions, Jennings’ Generic Rules and Agent model Testbed Environment

(GRATE* ) (Jennings, 1995) which defines an extension to Joint Intentions called

Joint Responsibility, and Rich & Sidner’s Collaborative Agent toolkit (COLLAGEN )

(Rich & Sidner, 1997), based on Grosz’s SharedPlans theory.

The principle of coordinating abstract interactions has received considerably less

attention in Dec-POMDP settings. Most of the decoupled policy formulation techniques
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described in Section 2.3.3 involve coordination through the exchange of complete poli-

cies, that represent both local and interacting behavior. Alternatively, CSA (Becker

et al., 2004b) employs abstraction by parameterizing one agent’s policies using expec-

tations about nonlocally-affecting events. However, this particular parametrization

is limited to the TI-Dec-MDP (Becker et al., 2004b) and the EDI-Dec-MDP (Becker

et al., 2004a). Musliner et al. (2006) develops a distributed planning algorithm wherein

agents communicate commitments about the timings of their interdependent task

executions, which are in turn modeled using local MDPs. However, this particular

form of commitment does not incorporate uncertainty in agents’ interactions, thereby

providing only an approximate model of interaction. Similarly, TREMOR (Varakan-

tham et al., 2009) employs approximate local models (using transition and reward

shaping) that abstract agents’ interactions. However, TREMOR’s search process

dictates that agents communicate complete policies without regard to the abstract

interactions that they entail, leading to convergence on local optima and no guarantees

that agents will consider any breadth of committed interactions.

2.4 Summary

In summary, I have reviewed work in single-agent sequential decision making

(Section 2.2) and multiagent sequential decision making (Section 2.3) that forms the

foundations of the work that I develop in this dissertation. I have also surveyed related

approaches to coordination under uncertainty, and drawn attention to the limitations

of past work when it comes to scalability, bounded solution quality, and applicability.

In particular, I find that researchers have developed several general algorithms, for

computing quality-bounded solutions to transition-dependent flavors of Dec-POMDPs,

that are limited to problems with just two or three agents (due to their computational

overhead). Alternatively, researchers have developed algorithms that demonstrably

scale to teams of 5 or 10 agents and guarantee bounds on solution quality, but that

are limited in their applicability to specialized subclasses with restrictive assumptions

(described in Section 2.3.2). There is no prior work that both solves a general

flavor of transition-dependent problems and scales to more than three agents whilst

guaranteeing bounds on quality.

The latter group of algorithms (that scale quality solution computation) have

achieved their scalability by decoupling the joint policy formulation problem (Sec-

tion 2.3.3) and by identifying and exploiting specialized structure in agents’ interactions.

It is important to identify instances of structure that lend themselves to efficient and
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scalable solution methods. However, in this pursuit, I find that there is a tendency in

past work for each instance of exploitable structure to be studied separately. This is

evident from the large number of Dec-POMDP subclasses reviewed in Section 2.3.2

(e.g., TI-Dec-MDPs, OC-Dec-MDPs, GO-Dec-MDPs, ND-POMDPs, EDI-Dec-MDPs,

EDI-CRs, DPCLs), each of which comes with its own set of restrictions, and each

of which is accompanied by its own specialized solution algorithms. The field of

multiagent sequential decision making lacks models that are both general (and hence

of interest to a broad group of researchers) and exploitable (and hence enable solution

methods that are efficient and scalable to the extent that exploitable structure is

present).12

12A notable exception is the factored Dec-POMDP (Oliehoek et al., 2008b), whose exploitable
structure I describe in the next chapter (Section 3.4.1).
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CHAPTER 3

Exploiting Transition-Dependent

Interaction Structure

In spite of the general intractability of Dec-POMDP planning, a large body of work

surveyed in the last chapter has shown us that there exist subclasses of Dec-POMDP

problems, even some involving more than two or three agents, that are tractable.

Moreover, this past work has provided us with tools to compute solutions efficiently

by exploiting restricted instances of problem structure. Inspired by the successful

solving and scaling of transition and observation independent problems (Nair et al.,

2005; Varakantham et al., 2007), and with the ambition of reproducing these results

under less restrictive conditions, I now introduce a new Dec-POMDP subclass that

is more general than other subclasses, along with a corresponding model description

that articulates exploitable problem structure. My class of Transition-Decoupled

POMDP (TD-POMDP) problems serves as the context for the remaining chapters of

this dissertation.

The TD-POMDP is named for its structure: it consists a set of transition-dependent

local POMDP models, one for each agent, that can be decoupled by fixing peer agents’

policies and abstracting their transition influences. Before developing the mechanics

of TD-POMDP decoupling and influence abstraction (in Chapter 4), here I provide a

formal description of the TD-POMDP’s exploitable interaction structure as well as

a theoretical motivation for exploiting this structure. Intuitively, the computational

leverage gained through decoupling and abstraction depends upon the extent to which

conditional independencies exist among agents’ decisions that render the agents weakly

coupled. Extending past work, I characterize three complementary aspects of weakly-

coupled interaction structure, relate each to the TD-POMDP problem description,

and derive bounds on the TD-POMDP’s computational complexity that depend upon

the degree of agent coupling.
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3.1 Overview

The contents of this chapter are structured as follows. I begin, in Section 3.2, by

presenting the formal details of the TD-POMDP model, expressed as properties that

constrain the Dec-POMDP formalism. The structure that these additional properties

induce leads me, in Section 3.2.4, to specify the TD-POMDP problem description as

a collection of interdependent local models whose mutually-modeled features (through

which agents interact) are treated as first-class entities. In Section 3.3, I formally

describe what it means to solve the TD-POMDP and how difficult this problem is.

Although just as complex as the general Dec-POMDP in the worst case, the

benefit of the TD-POMDP lies in its emphasis of exploitable structure. In Section

3.4, I contrast the TD-POMDP with other models, comparing the structure that

each articulates as well as the problem restrictions that each imposes. As a step

towards exploiting TD-POMDP interaction structure, in Section 3.5 I develop theory

for characterizing what it means for a problem to be weakly coupled, and for measuring

the degree to which it is coupled. My characterization includes three different aspects

of weak coupling that, when considered in concert, lead me to develop tighter bounds

on the complexity of computing optimal TD-POMDP solutions. I conclude, in Section

3.6, with a summary of the formalisms I have introduced and theoretical results I have

derived, and a discussion of their respective contributions.

Throughout this chapter, I refer to example problems of the form shown in

Figure 3.1 and described in Example 3.1 below. Like Example 2.1 (shown in Figure 2.2),

Example 3.1 is depicted in Figure 3.1 as a network of interdependent tasks whose

relationships, indicated by connecting lines, may be described using a variation of

the TÆMS modeling language (Decker, 1996). Figure 3.1 highlights one such task

relationship, which constitutes a structured transition-dependent interaction between

two TD-POMDP agents.

Example 3.1. Figure 3.1 presents a concrete example of a structured interaction

from the planetary exploration domain described in Section 1.1.1. Here, a satellite

agent (1) interacts with a rover agent (7) by building a path for the rover to travel

from its present location to site A. The path-building task (representative of a

lower-level path-planning routine) has two possible outcomes whose durations

(“D”), qualities (“Q”) and probabilities (“Pr”) are given. As shown, in the case

48



that the satellite completes task “Build-Rover-Path-A” successfully (with outcome

quality > 0), this influences the outcome of a rover’s task, “Visit-Site-A”, allowing

the rover to visit site A more quickly (in 3 time units instead of 6) with high

probability (0.9 instead of 0.1, as denoted by the arrow in the last column of the

“Visit Site A” task). This task relationship is just one example of an interaction

that may exist among the team of satellites and rovers shown in Figure 3.1.

D Q Pr 
2 1 0.8 
1 0 0.2 

Visit Site A 
out- 
comes :  
 
window : [2,8] 

D Q   Pr 
3 1 0  (0.9) 
6 1 1  (0.1) 

Forecast  
Weather 

Photo-  
graph R1 

Analyze  
Topography 

Plan Path B 

Visit C 

Recharge 

Search 
Region R2 

Visit A 

Compare 
Soil Sample 

Locate Site C 
 

Plan Path A 

Build Rover Path A 
outcomes :  
 
 
window : [0,10] 

7 

1 

5 

6 

2 3 

4 

D Q Pr 
2 1 0.8 
1 0 0.2 

Figure 3.1: Example of structured interaction among TD-POMDP agents.

3.2 TD-POMDP Formalism

Decentralized Partially-Observable Markov Decision Processes (Dec-POMDPs), as

reviewed in Section 2.3.1, provide a powerful, well-studied framework for multiagent

planning under uncertainty. Here I present a formal specification of the subclass of

Dec-POMDP problems that this thesis addresses: the Transition-Decoupled POMDP.

In Subsections 3.2.1-3.2.3, I specify precisely how the key problem characteristics

outlined in Section 1.2 translate into the formal properties that define the Transition-

Decoupled POMDP. Then, in Subsection 3.2.4, I bring all of these properties together

into a concise representation of TD-POMDP problem information.
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3.2.1 Factored Decomposability

The world state s is factored into state features (denoted as s = 〈b ∈ B, c ∈ C, d ∈
D, . . .〉, for instance), each of which represent a different aspect of the environment.

Equivalently, the world state space S may be represented as the cross product of

individual feature domains: S = (B×C×D× . . .). Factoring of the world state allows

us to express the conditional independence relationships that exist among the variables

(i.e., state features, observation features, actions, and rewards) of the decision model

(Boutilier, 1996; Guestrin et al., 2003). As reviewed in Chapter 2, factorization in

multi-agent sequential decision making is not original to this dissertation. However,

the way in which the TD-POMDP model is factored sets it apart from related models.1

The definitions that follow serve to formalize the factorization particular to the

TD-POMDP.

By factoring the world state, we can impose a distribution of environment informa-

tion among the agents. Different state features are relevant to different agents as they

make decisions about which activities to pursue. Moreover, some features may not be

available to an agent. Limited sensory capabilities may restrict the agent’s awareness

to only a small subset of features. Using Definition 3.2 below, not all features are

observable to all agents.

Definition 3.2. A state feature f , with domain F = {f, f ′, f ′′, ...}, is observable to

agent i if and only if i’s observation ot+1
i depends upon the concurrent value of f (for

some combination of state, action, and observation)2:

∃ot+1
i ∈ Oi, a

t ∈ A, 〈b, c, ..., f, ...〉t+1 ∈ S, 〈b, c, ..., f ′, ...〉t+1 ∈ S
such that

Pr
(
ot+1
i |at, 〈b, c, ..., f, ...〉

t+1) 6= Pr
(
ot+1
i |at, 〈b, c, ..., f ′, ...〉

t+1)
It is important to distinguish observability (Def. 3.2) from the (previously stated)

concept of full observability (as in Def. 2.8, and sometimes referred to as “direct

observability”). Whereas these previous terms refer to an agent’s awareness of the

exact value of a state feature f , Definition 3.2 makes no distinction between exact

observations and partial observations. As long as the agent’s observation oi is not

conditionally independent of the concurrent value of f (conditioned on other state

1A detailed comparison with closely-related models is deferred to Section 3.4.1, after the TD-
POMDP has been formally specified.

2 Just as in Chapter 2, here and throughout, the superscripts t and t + 1 simply refer to two
successive decision steps. Similarly, all components of model are stationary, such that they return
the same value regardless of the particular value of t. These superscripts should not be confused
with time, which is a feature of state, as described in Section 3.2.3.
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Figure 3.2: A simple satellite-rover example problem.

features’ values), f is observable to the agent. Throughout this dissertation, the usage

of “observes”, “observable”, and “observability” in relation to state features refers to

Definition 3.2.

Example 3.3. Figure 3.2 depicts a simplified version of the running example.

There are just two agents, a satellite and a rover, with a small number of activities.

The dotted lines between activities indicate the existence of local constraints. For

instance, the satellite cannot build a path for the rover until it has mapped the

region, and the rover cannot analyze the soil at site A after it has returned to

base. Moreover, neither agent can execute multiple tasks simultaneously. Here,

there may be a number of different state features that the agents can model.

Given that the rover performs all of its activities on the surface, and the satellite

is located far above the surface looking down, the two agents will have vastly

different perspectives of the world. Whereas the rover agent may be concerned

with the composition of the soil sample it has just analyzed, which I will denote

“soil-composition-at-site-A” (SCA), this is not relevant to the satellite agent’s

activities, nor is the satellite equipped with sensors for analyzing soil. “path-A-

built” (PAB), on the other hand, is a feature that is relevant to both agents. The

satellite should model PAB so that it does not perform redundant computations.

The rover should model PAB because this feature impacts the rover’s ability to

visit Site A (as indicated by the arrow in Figure 3.2). PAB is observable to both

agents during execution because the satellite broadcasts the completed path to

the rover .
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Figure 3.3: Example of local state representations and local observations.

Ultimately, it is the task of the problem designer to specify how the awareness

of various state information is distributed among the agents. By making a feature

observable to an agent, through manipulation of sensor infrastructure or communication

infrastructure (as discussed in Section 3.4.2), the designer can alter which information

is used for decision making by which agents as they execute their activities. For

this purpose, as in other related models (e.g., those discussed in Section 3.4.1), the

TD-POMDP world state s is aggregation3 of agents’ local states :

s = 〈s1, ..., sn〉 . (3.1)

The designer of a TD-POMDP problem indicates which features are relevant to each

agent i by specifying the agent’s local state si according to the constraints given in

Definition 3.4. Figure 3.3 portrays the local state representations for the satellite and

rover (from Example 3.3) in the form of a Dynamic Bayesian Network (DBN), where

the arrows represent dependencies between state feature variables and observation

variables.

Definition 3.4. The local state for TD-POMDP agent i, denoted si = 〈fi1, fi2...〉,
represents a subset of world state features, such that the following properties hold:

1. For every world state feature f , if f is not contained in si, f must be contained

within some other agent’s world state.

3Unlike related models (e.g., Becker et al., 2004a; Nair et al., 2005)), TD-POMDP agents’ local
states may share features.
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2. If a world state feature f is observable to agent i, f must be contained within

i’s local state representation.

Property 1 of Definition 3.4 requires that every world state feature be represented

in at least one agent’s local state. Property 2 implies that an agent may observe

(partially or fully) only those features that make up its local state. As such, agent i’s

local observation oi satisfies the following equality:

Pr
(
oti|at, st =

〈
..., sti, ...

〉)
= Pr(oti|at, sti). (3.2)

Local state thereby allows for a separation of features observable to one agent from

features observable to another agent. It is important to note that the separation

need not be strict. For instance, certain state features (such as “PAB” in Figure 3.3)

may be observed by more than one agent, and thus shared by more than one agent’s

local state representation. Equation 3.2 describes one aspect of the local observation

function fully specified in the following definition.

Definition 3.5. The local observation function Oi : Ai×Si×Ωi → R, functionally

denoted Oi

(
ot+1
i |ati, st+1

i

)
, dictates the probability with which agent i will receive

observation oti ∈ Ωi after taking action ati ∈ Ai and transitioning into local state

st+1
i ∈ Si. All agents’ local observation functions together define the probabilities of

joint observations:

Pr
(
ot+1

1 , ..., ot+1
n |at, st+1

)
=
∏

1≤i≤n

Oi

(
ot+1
i |ati, st+1

i

)
. (3.3)

The TD-POMDP’s local observation functions allow agents possible observability

of their local state features but not of features outside their local states. Although

factored, the agents’ observations are not necessarily independent (a requirement

of other related models (Becker et al., 2004b; Nair et al., 2005)). They may be

dependent on features shared across local states (as well as joint action choices that

are correlated because of features shared across local states). However, by Equation 3.3,

the observation probabilities are conditionally independent given values of the shared

state features. For instance, if two rover agents are traveling the same path looking

for a particular landmark, and if there is a probability that each agent will fail to

detect the landmark as it passes by, the probability with which rover 1 finds the

landmark and the probability with which rover 2 finds the landmark are assumed to

be conditionally independent of one another (conditioned on the current world state

53



and the agents’ latest actions).4

The reward function for the TD-POMDP is similarly decomposed into local reward

functions, each dependent on local state and local action.

Definition 3.6. The local reward function Ri(s
t
i, a

t
i) indicates the local component

of the immediate team reward, which is ascribed to agent i’s transition from local state

to next local state given local action. The agents’ local reward functions combine by

summation to yield the team reward (represented in the general Dec-POMDP model):

R
(
st, at

)
=

n∑
i=1

Ri

(
sti, a

t
i

)
. (3.4)

In the example problem, an agent’s local rewards are the qualities attained from the

tasks that the agents execute.

Not only is the team reward decomposable, but additionally, the value of any given

joint policy can be expressed as the composition of local values.

Definition 3.7. The local value Vi(π) is the expectation of the non-discounted

summation of local rewards (Def. 3.6) for agent i given that the team of agents adopts

joint policy π:

Vi(π) = E

[
T∑
t=0

Ri(s
t, at)|π

]
(3.5)

Theorem 3.8. The (joint) value V of a joint policy π is the summation of local

values:

V (π) =
n∑
i=1

Vi(π) (3.6)

Proof. This follows directly from the definition of Dec-POMDP value function (Def.

2.6) and the definition of the local reward function (Def. 3.6):

4 Without loss of generality, dependencies among TD-POMDP agents’ observations occur through
their shared state features. That is, arbitrarily-complex observational dependencies are representable
by sharing additional features among agents’ local states.
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V (π) = E

[
T∑
t=0

R(st, at)|π

]
by Definition 2.6

= E

[
n∑
i=1

T∑
t=0

Ri(s
t, at)|π

]
by Definition 3.6

=
n∑
i=1

E

[
T∑
t=0

Ri(s
t, at)|π

]
by the linearity of expectation

=
n∑
i=1

Vi(π) by Definition 3.7

Notice that local value is defined as a function of joint policy (and not simply

local policy). This is due to the combination of the following properties: (1) the

TD-POMDP local rewards are dependent on local state feature values, and (2) given

that local state features may be shared, local state values may be affected by other

agents’ actions (as described in detail in Section 3.2.2). As such, TD-POMDP agents

are not strictly reward independent (Def. 2.11).

3.2.2 Nonconcurrently-Controlled Nonlocal Features

The transition dynamics of the TD-POMDP are also factored in such a way that

enable agents to reason individually about the values of the features of their local

states. Before formally developing the TD-POMDP transition function, let me begin

by defining the concepts of controllability and affectability.

Definition 3.9. A state feature fix is controllable5 by agent i if and only if:

∃〈a1, ..., ai, ..., an〉 ∈ A, a′i ∈ Ai, st ∈ S
such that

Pr
(
f t+1
ix |st, 〈a1, ..., ai, ..., an〉

)
6= Pr

(
f t+1
ix |st, 〈a1, ..., a

′
i, ..., an〉

)
Definition 3.9 states that agent i can control a feature fix if the value of fix may

depend upon i’s latest action. However, it does not say anything about i’s actions in

previous time steps. By relaxing the condition from Definition 3.9, I define a slightly

more general concept that I refer to as affectability.

5My definition of controllability is an extension of Goldman & Zilberstein’s (2004) definition of
uncontrollable features. It is a departure from the concept of controllability developed in the control
theory literature (e.g., Ogata, 1997). Here, regardless of whether or not an agent can manipulate
a feature fix deterministically, and whether or not it can set the value of fix at its will, fix is
controllable as long as the agent can alter the probability of fix taking on some value in the next
time step.
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Definition 3.10. A state feature fix is affectable by agent i if and only if:

∃~ati ∈ (Ai)
t,~at′i ∈ (Ai)

t

such that

Pr
(
f t+1
ix |~ati

)
6= Pr

(
f t+1
ix |~at′i

)
A feature fix is affectable by an agent i as long as its value is dependent on past

actions taken by i. If a feature is controllable by i, it must also be affectable by i.

However, a feature that is affectable need not be controllable. For instance, feature

Rloc in Figure 3.4 is affectable by the satellite (since the satellite controls PAB and

the value of RLoc depends upon PAB) but not controllable by the satellite. Any

feature that is not affectable by agent i is unaffectable.

Definition 3.11. A state feature fix is unaffectable by agent i if and only if:

∀~ati ∈ (Ai)
t,~at′i ∈ (Ai)

t,

Pr
(
f t+1
ix |~ati

)
= Pr

(
f t+1
ix |~at′i

)
In the TD-POMDP model, each state feature can be controlled by at most one

agent (though it may be affected by more than one agent). Furthermore, if agent

i can control a feature fix, then that feature must be represented in i’s local state

(Definition 3.4). These properties induce a further decomposition of the state features

within each agent’s local state:

Definition 3.12 (Local State Constituents). Agent i’s local state si is comprised

of three disjoint feature sets, si =
〈
ūi, l̄i, n̄i

〉
, where:

� i’s unaffectable features ūi = 〈ui1, ui2, ...〉 are those features that are not

affectable by any agent, but may be observable by multiple agents. Examples

include time-of-day or temperature.

� i’s locally-controlled features l̄i = 〈li1, li2, ...〉 are those features that are

controllable by agent i. Features l̄i are not controllable by any other agent. For

example, a rover’s position is a locally-controlled feature. Additionally, l̄i may

contain features that are not controllable by any agent, but that are affectable

by agent i and are not contained within any other agent’s locally-controlled

feature set.6

6Special care must be taken in treating features that are not controllable by any agent but
affectable by multiple agents. For instance, an agent pushes the first domino, and 10 time steps later
the last domino falls. In this case, the “last-domino-down” feature could be included in agent i’s
locally-controlled feature set. However, if there are any other agents that can affect this feature,
these other agents must model it as a nonlocal feature (see below).
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� i’s nonlocal(ly-controlled) features n̄i = 〈ni1, ...〉 are those remaining fea-

tures, each of which is in the locally-controlled feature set of exactly one other

agent, and whose values may affect the transitions of i’s locally-controlled

features (formalized in Equation 3.9).

According to the composition of agents’ local states given in Definition 3.12, there

may exist world state features that are not modeled exclusively by a single agent. First,

a feature may appear as an unaffectable features in more than one agent’s local state.

Second, each nonlocal feature in agent i’s local state appears as a locally-controlled

feature in the local state of exactly one other agent. In the example from Figure

3.1, the rover models whether or not the satellite agent has planned a path for it,

so path-A-planned would be a nonlocal feature in the rover’s local state as well as

a locally-controlled feature in the satellite’s local state. I refer to such features as

mutually-modeled features. Conceptually, mutually-modeled features are aspects of

the environment that are relevant to more than one agent as they plan their decisions.

Definition 3.13. Agent i’s mutually-modeled features, m̄i, are those state fea-

tures that appear in i’s local state representation si, as well as one or more other

agents’ local state representations:

m̄i ≡ 〈f ∈ si|∃j 6= i, f ∈ sj〉 (3.7)

Mutually-modeled features make the TD-POMDP model transition dependent.

Referring back to Definition 2.9, transition independence is violated when the change

in value of nonlocal feature njx ∈ n̄j in agent j’s local state depends upon agent i’s

action:

Pr
(
nt+1
jx |st, ai, aj

)
6= Pr

(
nt+1
jx |st, a′i, aj

)
(3.8)

The transition dependencies that exist between TD-POMDP agents are structured

as follows. Within agent j’s local state sj = 〈ūj, l̄j, n̄j〉 = 〈fj1, ..., fjk〉, the transition

probability of any feature fjx ∈ sj at time t+ 1, denoted f t+1
jx , given that the agents

have just performed joint action at =
〈
at1, ..., a

t
j, ...a

t
n

〉
∈ A in world state s ∈ S at

time t is:
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Figure 3.4: Example of the dependencies among feature transitions.

Pr
(
f t+1
jx |st, at

)

=


Pr
(
f t+1
jx |ūtj

)
for unaffectable feature fjx ∈ ūj

Pr
(
f t+1
jx |stj =

〈
ūtj, l̄

t
j, n̄

t
j

〉
, atj
)

for locally-controlled feature fjx ∈ l̄j
Pr
(
f t+1
jx |sti, ati

)
for nonlocal feature fjx ∈ n̄j

(locally-controlled by agent i)

(3.9)

Equation 3.9 indicates that the transitions of all unaffectable features and locally-

controllable features depend on only the local state and local action. However, the

transitions of each nonlocal feature depend on world features outside of the local

state and on the actions of exactly one other agent (i, for instance), respectively. In

Figure 3.4, these dependence relationships are represented graphically with a 2-stage

DBN for the running example problem (Ex. 3.3). Here, the features are grouped by

agent as well as by feature type, with the mutually-modeled features labeled m̄. The

semantics of the DBN are such that a particular feature is conditionally independent of

all non-parent features conditioned on the feature’s parents. Although this particular

DBN is specific to the example problem, notice that its conditional independencies

(denoted by the absence of arrows) conform to Equation 3.9.

Additionally, as I formalize in Equation 3.10, the values for the three groups of

features
{
ūj, l̄j, n̄j

}
are conditionally independent of one another given the previous

state and joint action. Bringing the terms from Equation 3.9 together and generalizing

to multiple nonlocal features (dependent on one or more other agents) leads to a
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formal definition of the TD-POMDP’s factored transition function.

Definition 3.14. Agent j’s factored local transition function is the probability

distribution over j’s next local state conditioned on world state and joint action:

Pr
(
st+1
j |st, at

)
= Pr

(
ūt+1
j |ūtj

)
Pr
(
l̄t+1
j |l̄tj, n̄tj, ūtj, atj

)︸ ︷︷ ︸
locally-dependent component

Pr
(
n̄t+1
j |st,

{
at6=j
})︸ ︷︷ ︸

nonlocally-dependent

component

= PU
j

(
ūt+1
j |ūtj

)
PL
j

(
l̄t+1
j |stj, atj

) ∏
∀i|∃l̄ix⊂l̄i∧l̄ix⊆n̄j

PL
i

(
n̄t+1
jx ≡ l̄t+1

ix |sti, ati
)

(3.10)

denoted as the product of j’s unaffectable feature transition function PU
j (), j’s

locally-controlled transition function PL
j (), and other agents’ locally-controlled

feature transition probabilities.

Equation 3.10 factors the transition of j’s local state features, explicitly distin-

guishing between the features dependent on previous values of the local state (and

local action) and features dependent on nonlocal state and action. Moreover, the TD-

POMDP model explicitly specifies the locally-dependent factored transition function

components PU
j () and PL

j (). As shown, agent j’s nonlocally-dependent components

are encoded in the locally-dependent components of other agents.

The result of this factorization is a structured transition dependence whereby agents

may affect the consequences of each others’ actions sequentially but not concurrently.

An example of this is depicted graphically in Figure 3.5, where agent i may affect the

value of one of agent j’s nonlocal state features and agent j’s subsequent (but not

simultaneous) locally-controlled feature transitions are influenced by the new value. I

defer a discussion of the limitations of non-concurrent interactions to Section 3.4.3.1.

3.2.3 Temporal Synchronization

Included as a key feature of TD-POMDP world state is time, which is an unaffectable

feature with deterministic transitions, and which is mutually-modeled by all agents.

This feature serves to synchronize agents’ executions and to practically facilitate

coordination, particularly in domains where frequent communication is not possible.

Typically, time = 0 in the TD-POMDP start state. Similarly, successor states always

have a larger time value than their predecessors. A side effect is that the state space
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Figure 3.5: DBN illustrating the TD-POMDP’s structured transition dependence.

is non-recurrent: no world state may be visited more than once over the course of a

single execution.7

3.2.4 Decoupled Representation

The preceding subsections (3.2.1–3.2.3) described the TD-POMDP in the context

of the conventional Dec-POMDP specification, formalizing the structural properties

that delineate the TD-POMDP as a proper Dec-POMDP subclass, and along the way

introducing the essential structural components. In Section 3.4, I provide a detailed

discussion of the expressiveness of the TD-POMDP along with its representational

limitations that come with this added structure. Here I summarize the compilation of

components that specifies a TD-POMDP problem.

Definition 3.15. A TD-POMDP M is specified by the following tuple: M =〈
N , {Sj}, {Aj}, {Ωj}, {Oj}, {Rj}, {m̄j}, {PU

j }, {PL
j }, T

〉
, where

� N is a team of n TD-POMDP agents, indexed by j.

� Sj ⊆ Uj × Lj ×Nj is agent j’s local state space (Def. 3.4), which is (possibly a

subset of) the cross product of unaffectable, locally-controlled, and nonlocally-

controlled feature spaces (Def. 3.12), with explicitly distinguished initial state

s0
j ;

7My approach is also applicable to problems with recurrent state spaces, but I do not consider
those problems in this thesis.
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� Aj is j’s local action space (as in Def. 2.3);

� Ωj is j’s local observation space (as in Def. 2.3);

� Oj : Aj × Sj × Ωj 7→ [0, 1] is j’s local observation function (Def. 3.5);

� Rj : Sj × Aj 7→ R is j’s local reward function (Def. 3.6);

� m̄j is the set of j’s mutually-modeled features (Def. 3.13), where each feature is

explicitly associated with at least one other agent;

� PU
j : Uj × Uj 7→ [0, 1] is the unaffectable feature transition function (Def. 3.14);

� PL
j : Sj × Aj × Lj 7→ [0, 1] is the locally-controlled feature transition function

(Def. 3.14); and

� T ∈ N is the finite time horizon of execution (as in Def. 2.3).

Unlike the conventional Dec-POMDP specification, most of the TD-POMDP model

information is inherently distributed. For instance, instead of representing the world

state space with a set S, the TD-POMDP explicitly specifies individual local state

spaces. S may be recovered by aggregating all of the local state spaces (though

with mutually-modeled features, S is not simply a cross product of local state spaces

×1≤j≤n{Sj}). Transition, observation, and reward information is similarly distributed

into local components. The TD-POMDP model also distinguishes those local state

features that are mutually modeled, explicitly characterizing the type of feature as

well as the controlling agent (unless unaffectable). In fact, explicit in the TD-POMDP

specification is the notion of a local model that represents the dynamics of the world

as they relate to an individual agent j.

Definition 3.16. Agent j’s local model Mj for TD-POMDP M is specified by

tuple Mj =
〈
Sj, Aj,Ωj, Oj, Rj, m̄j, P

U
j , P

L
j , T

〉
, where each component is taken from

the joint model M.

Representing the joint decision model as a collection of local models has several

advantages. First, for problems involving agents that each deal (primarily) with a

different realm of their shared environment, it is natural to decompose the model

information as such. Specifying joint versions of the components (i.e., joint state,

joint action, joint transition, joint observation) would involve unnecessary aggregation

of largely-independent agent dynamics. Further, the space required to store the
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aggregated information (when näıvely represented such as in the conventional Dec-

POMDP specification) could be unnecessarily large. Instead, the TD-POMDP factors

the model information so as to break up an otherwise very large joint state space,

joint transition matrix, and joint observation matrix into potentially more compact

local components.

However the aforementioned advantages of the TD-POMDP begin to disappear as

agents’ mutually-modeled feature sets grow large relative to the number of features

in the world state. The more features are shared, the more information will be

duplicated in the TD-POMDP agents’ local models. Consequently, the TD-POMDP

representation is most appropriate for weakly-coupled problems (detailed in Section 3.5)

with a relatively low density of nonlocal features.

At first glance, agent j’s local model Mj closely resembles a single-agent POMDP

(defined in Section 2.2.2). However, it is important to note that Mj, when studied

in isolation from M’s other local models, does not constitute a proper POMDP. In

general, Mj will include nonlocal features whose transitions depend on other agents’

behavior. Mj does not include information about the transition probabilities of these

features. However, even ifMj were to include nonlocal feature transition information,

the local model would not constitute a POMDP due to the non-Markovian dynamics.

Recall that nonlocal features may depend on features not modeled in j’s local state,

and on other agents’ actions, that may in turn depend on histories of features in the

local state. As such, the agents’ local models are tied to one another by the transition

dependencies of their nonlocal features. Only in the absence of nonlocal features does

Mj define a proper POMDP.

However, as the name “(T)ransition (D)ecoupled POMDP” implies, the local

models can be decoupled from one another and be made into independently-evaluable

decision models. As developed formally in Chapter 4, decoupling is accomplished by

holding peer agents’ policies fixed and abstracting the transition influences. Once

decoupled, the local models can be used to plan individually in the context of a

distributed solution methodology (developed in Chapter 6).

3.3 Optimality and Tractability

Next, I discuss what it means to solve the TD-POMDP (in Section 3.3.1) and

express the worst-case time complexity of solving it (in Section 3.3.2). The result

is forbidding: just like the general Dec-POMDP, in the worst case, computing an

optimal policy for a problem in the TD-POMDP subclass is intractable. However,
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this complexity result does not mean that the TD-POMDP should be condemned as a

model that is less general than the Dec-POMDP and just as impractical. The merit of

the TD-POMDP lies in its emphasis and explicit representation of problem structure,

which I summarize in Section 3.3.3. By exploiting TD-POMDP structure, we will see

(theoretically in Section 3.5 and empirically in Chapters 4 and 6) that portions of the

TD-POMDP space yield efficiently-computable solutions.

3.3.1 Solution Concept

The solution concept that I adopt in this dissertation is that of maximizing expected

value. Thus, (optimally) solving a TD-POMDP problem involves computing a set of

agent policies that maximizes the team’s expected cumulative reward (Def. 2.6). This

set is referred to by the Dec-POMDP community as the optimal joint policy, whose

definition I now restate.

Definition 3.17. An optimal joint policy π∗ of a TD-POMDPM is a combination

of local policies
〈
∀i, πi : ~Oi 7→ Ai

〉
, each of which assigns an agent’s local action to

each of its local observation histories (as per Definition 2.4), that maximizes the joint

value function: π∗ ∈ arg max
π

V (π).

Henceforth, I use the term solution and optimal joint policy interchangeably, and

solving a TD-POMDP problem to mean optimally solving it by computing an optimal

joint policy. For certain problems, optimality may not be tractable. I refer to an

approximate solution as a joint policy that is returned by some planning algorithm,

but that is not guaranteed to be optimal. When optimal solutions are intractable,

the next best thing is to compute quality-bounded approximate solutions, which

are those that attain a solution quality (i.e., value) that is provably close (by some

standard of proximity) to the optimal solution quality. However, computing quality-

bounded approximate solutions—where the proximity of approximate solution quality

to optimal solution quality is bounded—may also be intractable, and provably as

hard as computing optimal solutions (as is the case for the general finite-horizon

Dec-POMDP problem class (Rabinovich et al., 2003)). As such, I will use the term

approximate method to refer to any solution method not guaranteed to return optimal

solutions, regardless of whether or not it produces quality-bounded solutions.

Note that optimality is defined in relation to, and is sensitive to, the problem

specificationM. That is, a policy is optimal if it maximizes the expected team utility

given each agent’s representation of features in its local state, constraints implied by

its local observation function, and so on. If two problems, specified by Ma and Mb
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respectively, differ only in one agent’s observability of one feature, a joint policy π∗

that is optimal for Ma may be suboptimal for Mb. Moreover, for two problems with

slightly different specifications, computing the solution to one may take seconds, but

computing the solution to another may take hours. I refer the reader to a classical

example comparing the Dec-POMDP model with the Multiagent MDP (MMDP)

model (Boutilier et al., 1999b), which is a Dec-POMDP having the property that each

agent observes the complete world state. Whereas the worst-case time complexity of

the MMDP class is polynomial in the size of the state space (Goldman & Zilberstein,

2004), the worst-case time complexity of the Dec-POMDP class is NEXP-complete,

even if we restrict consideration to Dec-POMDP problems where agents’ observations

collectively (though not individually) determine the world state (Bernstein et al.,

2002). The intuition behind why collectively-observable problems are so much harder

to solve (than completely-observable problems) is that, when agents receive different

(though not independent) observations, optimal joint behavior requires each agent

to reason about (the exponentially-growing space of) what other agents’ may have

observed in addition to what the agent itself observes.

3.3.2 General Complexity

I now turn to the worst-case time complexity of computing optimal solutions for

the class of TD-POMDP problems. The class of TD-POMDP problems is a subclass of

the finite-horizon Dec-POMDP class (as emphasized in Section 3.2), so its complexity

can be no greater than that of the Dec-POMDP. Further, the TD-POMDP imposes

several structural restrictions on top of the Dec-POMDP model, so one might expect it

to have a worst-case complexity strictly lower than that of the Dec-POMDP. Building

on the work of others (Becker et al., 2004a; Allen, 2009), I have derived that this is

unfortunately not the case. Instead, the TD-POMDP’s worst-case complexity has

the same asymptotic lower-bound and upper-bound as does that of the more general

Dec-POMDP.

Theorem 3.18. The TD-POMDP is NEXP-complete.

Proof. The NEXP-hard lower bound follows directly from the reduction of the EDI-

Dec-MDP (Becker et al., 2004a), proved to be NEXP-complete (Allen, 2009), to the

TD-POMDP. I present the reduction in Appendix A. The NEXP upper bound is

proven given that the TD-POMDP is subclass of the Dec-POMDP (and was formally

specified as such in Section 3.2). Therefore, the TD-POMDP is NEXP-complete.
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The fact that the TD-POMDP is in the same complexity class as the Dec-POMDP

suggests that, although the TD-POMDP requires additional problem structure beyond

that of the Dec-POMDP, it does not strongly constrain the problems that may be

represented (an issue discussed in detail in Section 3.4). The TD-POMDP can represent

problems that are (asymptotically) just as hard.

To be precise, the complexity result given in Theorem 3.18 is a statement relating

problem description size to the worst-case computation required to verify that a

solution is optimal. For NP-complete problems, such verification requires a number

of computations polynomial in the problem size. For NEXP-complete problems like

the TD-POMDP, verification requires a number of computations that is irreducibly

exponential in the problem size. Thus, computation time of optimal solutions to

NEXP-complete problem requires at least exponential time in the problem size, though

this lower bound relies on the successful reduction of NEXP to EXP. It is widely

believed (Papadimitriou, 1994) that NEXP and EXP are distinct complexity classes,

and that solving NEXP-problems requires time doubly exponential in the problem size.

For more information on this issue, I refer the reader to the theses of Daniel Bernstein

(2005) and Martin Allen (2009).

Observation 3.19. The worst-case computation time of optimal solutions for TD-

POMDP problems is believed to be doubly exponential in the size of the problem

description.

Theorem 3.18 and Observation 3.19, by themselves, do not say anything about how

the computation time of TD-POMDP solutions relates to the number of agents in the

system. Discussion of Dec-POMDP complexity in the literature is centered around

the complexity of 2-agent problems, wherein the size of a problem’s specification is

commonly interpreted (Allen, 2009; Bernstein, 2005) as the size of its state space

‖S‖ (under the assumptions that the size of the local action spaces, size of the local

observation spaces, and time horizon are each no larger than the size of the state space).

The focus of this dissertation is on scaling solution computation to problems with

more than two agents. In this context, let us be more concrete about the ramifications

of the NEXP complexity result.

Observation 3.20. If the size of the TD-POMDP world state space ‖S‖ ∝ n, the

TD-POMDP’s worst-case computation time is believed to be doubly exponential in the

number of agents n.

The assumption that the state space grows with the number of agents is not terribly

restrictive. By placing more agents in a shared environment, the number of combi-
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nations of agent circumstances (each specified by a state in the state space) should

increase linearly if not exponentially. Linear growth in the state space translates to

doubly-exponential worst-case solve times (by Observation 3.20).

All of these complexity results should be taken with a grain of salt. For instance,

from Observation 3.20, it is tempting to conclude that the class of problems that

I consider in this dissertation, for which I endeavor to scale solution computation

to many agents, do not admit tractable scalable solution methods, and that such a

pursuit is doomed to fail. However, recall that these are worst-case bounds. The

TD-POMDP’s ability to represent problems with doubly exponential solve times does

not imply that all TD-POMDP problems that we face will have this property. I prove

in Section 3.5 and demonstrate in Chapter 6 the existence of sets of problems that

avoid such menacing complexity and scale efficiently to large teams of agents. At the

meta-level, I have introduced the TD-POMDP model in order to provide the formal

specification of an umbrella class and the language with which to characterize its

underlying subspace.

3.3.3 Significance of Structure

The significance of the TD-POMDP lies in its emphasis of structure in problems

that can be exploited to yield tractable solutions. I now briefly summarize the key

elements of exploitable structure, referencing the details of their exploitation that

appear in subsequent sections of this dissertation.

Decoupled Representation. The TD-POMDP’s wholly factored representation

decouples the joint modelM into a set of local models {Mi} that are tied together by

the transition dependencies of agents’ nonlocal features. Local model Mi compactly

specifies the subset of problem dynamics relevant to agent i’s own behavior. When

augmented with information relating to other agents’ choices (as I detail in Section

4.2.2), Mi suffices as a complete local planning model that i can use to compute

its own policy without having to reason about superfluous details of other agents’

behavior. Hence, the benefit of the TD-POMDP’s decoupled representation is that

it enables efficient individual reasoning in the context of a distributed joint policy

search.8

8The degree to which individual reasoning is efficient depends upon a structural metric state
factor scope that I describe in Section 3.5.
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Locality Of Interaction. Through its explicit representation of mutually-modeled

features {m̄i} (Def. 3.13), the TD-POMDP specification emphasizes the team of agents’

locality of interaction. Each agent has a subset of other agents that it interacts with

and a subset of features through which it interacts. In Section 3.5.1, by accounting for

locality of interaction in the TD-POMDP, I derive a tighter complexity bound than

that last derived in Section 3.3.2. Additionally, in Chapter 6, I present an algorithm

that achieves the subsequent reduced complexity by exploiting this structure.

Distinguished Interaction Features. Within agents’ mutually-modeled feature

sets, the TD-POMDP distinguishes agents’ nonlocal features {n̄i ⊆ m̄i} (Def. 3.12).

It is through these nonlocal features that agents can influence one another. Moreover,

these features’ transitions constitute the information that TD-POMDP agents must

jointly address when coordinating their behaviors. Instead of coordinating over whole

policies, agents can coordinate over compact abstractions, which I term influences,

that encode nonlocal feature transition information. Before developing a methodology

for influence-based policy abstraction in Chapter 4, I derive in Section 3.5.2 that,

utilizing such an abstraction can yield a potentially substantial reduction in complexity

(on top of the reduction achieved by exploiting locality of interaction).

By leveraging each of the above structural characterizations, I demonstrate in

this dissertation that, despite its intractable general complexity, the TD-POMDP’s

landscape of representable problems contains rich regions whose solutions are efficiently

computable. In Section 3.5.1, I explore and characterize the landscape.

3.4 Expressiveness of the Representation

Having presented the formal details of the TD-POMDP model along with its worst-

case computational complexity, I now discuss the expressiveness of the TD-POMDP

specification. In particular, I address two issues relating to expressiveness: (1) the

space of problems that can be represented in the model, and (2) the problem structure

that the model’s specification makes explicit.

Section 3.2 began with the well-established, general Dec-POMDP model and

introduced several additional structural properties, each one potentially carving away

portions of the overarching Dec-POMDP class. What we are left with is a Dec-POMDP

subclass, the TD-POMDP, that is the focus of this thesis. With the progression from

Dec-POMDP to TD-POMDP, there is the danger that, even though each additional
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restriction individually appears reasonable, the combination of additional properties

narrows the representation to a space of problems that is no longer interesting.

In response to these concerns, I contend that the TD-POMDP class—although it

comes with some inherent restrictions—remains an interesting space, and that the TD-

POMDP model specification conveys a rich array of useful problem structure. I defend

this claim in Section 3.4.1 by contrasting my class with a variety of problem classes

studied by others, for many arguing (and for some proving) that the TD-POMDP is a

more general class and for others arguing that the TD-POMDP specification expresses

just as much (if not more) exploitable problem structure. I extend my comparison

in Section 3.4.2 to models explicitly representing communication, incorporating a

discussion of how to model agent communication in the TD-POMDP. Examining

the relationship of the TD-POMDP with existing models exposes its limitations. In

Section 3.4.3, I summarize the key representational restrictions and provide suggestions

of how they might be overcome in future work so as to expand the TD-POMDP (and

the methodologies presented in this dissertation) to a broader sphere of problems.

3.4.1 Comparison with Existing Models

Prior to the work presented in this dissertation, researchers have introduced a

variety of other Dec-POMDP subclasses (reviewed in Section 2.3.2). At a high level,

the motivation for defining these subclasses has been the same as mine: to identify

problem structure that can be exploited by solution methods to yield solutions tractably.

In some cases, the structure has allowed for impressive scaling of optimal solution

methods to systems of several agents (Beynier & Mouaddib, 2005; Marecki & Tambe,

2007; Nair et al., 2005; Varakantham et al., 2007). However, in such cases, not only

was problem structure identified, but the problem representation was also severely

restricted from that of the Dec-POMDP. Moreover, in such cases, generality was lost

to the extent that some Dec-POMDP problems with closely-related structure could

no longer be represented given the constraints of their specifications.

Other subclasses have sought to identify structure with little or no loss of generality

of the representation (Oliehoek et al., 2008b; Varakantham et al., 2009), but as-of-

yet have not achieved both scalability (to more than three agents) and optimality.

This is due, in part, to the unavoidable complexity that comes with considering a

general space of Dec-POMDPs. However, I posit that another reason is that the

specifications of these latter subclasses do not articulate enough identifiable structure

whose exploitation would allow scalability of optimal solution methods.

Inspired by the successful scaling achieved by the former group of (exploitable,
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yet restrictive) subclasses, I have collected what I see as the most useful elements

of problem structure (amenable to tractable scalability and optimality) and have

incorporated those into the TD-POMDP’s specification. However, I have done so in

such a way as to impose as few restrictions as possible on the problem representation.

In this sense, the TD-POMDP strives for a balance in its articulation of exploitable

structure and its loss of generality.

In the subsections that follow, I enumerate the most closely related Dec-POMDP

subclasses. For each, I contrast its representational restrictions, as well as the elements

of exploitable structure that it articulates (in the context of the problems that it can

represent), with those of the TD-POMDP.9 The results are summarized in Table 3.1,

whose rows are ordered roughly from the least general model to the most general

model. The second and third columns indicate the “representational restrictions”

and “exploitable structure” of each of the eight models. So as to provide a very

rough overview of the scalability of solution methods of each class, I have included

a “scalability results to date” column, populated with data taken from published

empirical demonstrations of solution computations to problems of more than two

agents.10 For cases in which only approximate solutions were computed, I prefix the

scalability results accordingly (giving priority to results involving quality-bounded

solutions if available).

Table 3.1 shows that, based on my analysis, the only problem classes that are more

general than the TD-POMDP have not been shown to scale optimally beyond three

agents. Additionally, many of the classes that are less general than the TD-POMDP

have not been shown to scale beyond two agents. We also see that, with the exception

of precedence relationships among methods, the TD-POMDP specification expresses

the same types of exploitable structure as do any of the other subclasses. This result

9 I have attempted to remain objective in my comparison of subclasses to the extent possible.
However, given that I am characterizing a diverse collection of models in like terms according to my
own dimensions (which were not necessarily those used by the authors of the respective works I am
characterizing), a degree of subjectivity is bound to have crept in. For a more complete description
of each model, along with the biases of its creators, see the respective papers I reference.

10 The “scalability results to date” are not meant to be compared to each other at face value.
Each result represents solution computation on a different set of problems. Some results were
published years before others. Although most classes of problems are defined around a set of agents,
the OC-Dec-MDP is defined around a network of methods (which could perhaps be distributed
among agents), as are the corresponding scalability results. Furthermore, developers of TI-Dec-MDP,
EDI-Dec-MDP, and EDI-CR algorithms emphasized aspects of performance other than scalability,
and did not extend their algorithmic implementations to more than two agents (Becker et al., 2004a,b;
Mostafa & Lesser, 2009; Petrik & Zilberstein, 2009). Nevertheless, this column provides a coarse
overview of published achievements that motivates the development of scalable TD-POMDP solution
methods.
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suggests that the TD-POMDP model defines a sweet spot where other models were

too restrictive, not optimally scalable, or lacking in explicit representation of useful

problem structure.

3.4.1.1 Opportunity Cost Dec-MDP (OC-Dec-MDP)

The OC-Dec-MDP (Beynier & Mouaddib, 2005; Marecki & Tambe, 2007) is a model

that exploits specialized structure for planning the execution times of agents’ activities,

called methods. Strictly less general than the TD-POMDP, its representation is

restricted in the following ways. First, the OC-Dec-MDP specifies a fixed ordering over

agents’ method executions, restricting the problem to one of determining only when to

start each method. More general models such as the TD-POMDP can also represent

the problem of determining which method to execute. Second, the observation function

of the OC-Dec-MDP takes a special form such that each agent observes exactly the

status of its own method executions. This particular observational restriction is a

special case of local full observability (LFO) (Def. 2.8). The TD-POMDP observation

function is less restrictive, allowing for partial observations that may depend upon the

values of any features (locally-controlled or nonlocally-controlled) in their local states.

The only kind of interaction that can be represented by an OC-Dec-MDP is a

precedence constraint dictating that a method executed by one agent will only complete

successfully if a particular method of some other agent has already completed. This

is strictly more restrictive that the TD-POMDP, which can represent more complex

method dependencies through the specification of nonlocal features. Nevertheless,

the OC-Dec-MDP’s method precedence relationships constitute powerful, though

specialized, problem structure that researchers have exploited to compute approximate

solutions to problems containing over a hundred methods (Marecki & Tambe, 2007).

3.4.1.2 Transition-Independent Dec-MDP (TI-Dec-MDP)

The TI-Dec-MDP (Becker et al., 2004b), like the TD-POMDP, represents factored

state dynamics that are exploited so as to decouple the joint model into local decision

models with local states, local transitions, and local rewards. Unlike the TD-POMDP,

the TI-Dec-MDP requires local full observability (Def. 2.8), restricting an agent to

observe its local state features exactly at every time step. Furthermore, the TI-Dec-

MDP requires transition and observation independence (Defs. 2.9-2.10), restricting

an agent’s local state transitions to be independent of other agents’ local states and

local actions. This property puts the TI-Dec-MDP in a different complexity class (NP
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instead of NEXP) than more general flavors of Dec-POMDPs (Allen, 2009). With

the TD-POMDP model, local state transitions (as well as local observations) can

depend on other agents’ states and actions by way of structured nonlocal feature

dependencies (Sec. 3.2.2). Alternatively, the TI-Dec-MDP models dependencies in

the reward function, whereby particular combinations of agents’ actions can result in

additional reward or penalty.11

Like the TD-POMDP’s nonlocal feature dependencies, the TI-Dec-MDP’s reward

dependencies emphasize agents’ locality of interaction (a concept that I develop

formally in Section 3.5.1), leading to a decomposition of the team’s value function

that can be exploited to yield efficiently-computable optimal solutions for problems

with two agents (Becker et al., 2004b; Petrik & Zilberstein, 2009) and likely more,

but scaling of TI-Dec-MDPs has never been demonstrated empirically. In contrast

to the TD-POMDP, whose reward is composed of a summation of local rewards, the

TI-Dec-MDP’s reward consists of a summation of local rewards and of special reward

dependency terms that account for agents’ joint actions.

3.4.1.3 Network-Distributed POMDP (ND-POMDP)

The ND-POMDP (Nair et al., 2005) is also less general than the TD-POMDP

in that it requires transition and observation independence like the TI-Dec-MDP,

but unlike the TI-Dec-MDP it does not require local full observability. Moreover,

instead of modeling individual reward dependencies, the ND-POMDP specifies a

particular decomposition of the team utility into local neighborhood utilities. This

utility structure, as with the TD-POMDP’s transition dependency structure, enables

an exploitation of locality of interaction by explicitly representing interactions among

groupings of agents. Exploiting the ND-POMDP’s locality of interaction along with

its factored, decoupled representation has led to efficient optimal solution methods

(Nair et al., 2005) and impressive scalability of quality-bounded solutions to teams of

7 agents (Varakantham et al., 2007; Marecki et al., 2008), not to mention efficiently-

computed (unbounded) approximate solutions to even larger agent teams (Kumar &

Zilberstein, 2009; Marecki et al., 2008).

11The TD-POMDP too can represent reward dependency, where agent i’s actions affect agent
j’s rewards, by (1) modeling two versions of each reward-dependent local state in j’s local state
space, (2) assigning separate local rewards to transitions into these states, and (3) modeling a special
nonlocal feature controlled by i that drives j’s transitions into these states.
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3.4.1.4 Dec-MDP with Event-Driven Interactions (EDI-Dec-MDP)

The EDI-Dec-MDP (Becker et al., 2004a), whose description I elaborate in Ap-

pendix A, is perhaps the most closely-related model to the TD-POMDP. Like the

TD-POMDP, the EDI-Dec-MDP decouples the joint model into (largely independent)

local models tied together by structured transition dependencies that are made explicit

by the problem specification. Where the EDI-Dec-MDP differs is in its representation

of the features involved in the transition dependencies. For an agent i whose transitions

affect agent j, each EDI-Dec-MDP dependency relates the occurrence of an event,

which is a transition of agent i’s local state, to a dependent transition of agent j’s

local state. The dependency is modeled by agent j using an unobservable boolean

variable denoting whether or not the event has occurred, which can be viewed as a

special type of nonlocal feature (Def. 3.12) whose dynamics and observability are

more restricted than those of the TD-POMDP. Like the TD-POMDP, this dependency

involves nonconcurrent interaction effects (a concept introduced in Section 3.2.2 and

formalized later in Section 3.4.3.1).

The EDI-Dec-MDP also requires local full observability (such that all locally-

controlled features are exactly observed), and reward independence (such that an

agent’s rewards are independent of all other agents’ actions conditioned on the values

of its locally-controlled features). Consequently, the EDI-Dec-MDP is less general

than the TD-POMDP (as I derive in Appendix A) and also, for some problems

that it can represent, more awkward to specify. In particular, for problems with

temporally-uncertain interactions, the TD-POMDP can be specified with a single

boolean nonlocal feature per interaction whereas the EDI-Dec-MDP requires several

boolean dependency features (one for each time at which the interaction could occur)

per interaction. Though its specification of dependencies captures some degree of

locality of interaction, EDI-Dec-MDP solution methods have not been shown to scale

beyond two agents (Becker, 2006).

3.4.1.5 Event-Driven Interactions with Complex Rewards (EDI-CR)

The EDI-CR model (Mostafa & Lesser, 2009), described by its authors as a hybrid

of the TI-Dec-MDP and the EDI-Dec-MDP, represents both reward dependencies

and event-driven transition dependencies. I argue that it is no more general than

the EDI-Dec-MDP because reward dependencies could be implemented as transition

dependencies by folding the additional rewards or penalties into transition-dependent

73



local state outcomes.12 Further, it is more restrictive in its local full observability,

and suffers from the same representational disadvantages as the EDI-Dec-MDP with

respect to event-driven nonconcurrent interaction effects. State-of-the-art solution

methods for the EDI-CR model support scaling to teams of more than two agents

(Mostafa & Lesser, 2009) in theory, however, this has not yet been demonstrated

empirically.13

3.4.1.6 Distributed POMDP with Coordination Locales (DPCL)

Like the TD-POMDP, the DPCL (Varakantham et al., 2009) is geared towards

exploiting structure and locality of interaction. It is less general than the TD-POMDP

in that it requires observation independence (Def. 2.10), whereas the TD-POMDP

allows an agent’s observations to depend on another’s actions. However, DPCL is

more general than the TD-POMDP in that it represents transition dependencies

with concurrent effects using structures that the authors refer to as “same-time

coordination locales”. The presence of same-time coordination locales appears to

complicate optimal planning. As of yet, researchers have not found a way to compute

optimal best responses efficiently for these problems. Instead, the DPCL has only been

shown to afford efficient heuristically-guided approximate solutions with no bounds on

solution quality. As I show in later chapters, by excluding problems with same-time

coordination locales, the TD-POMDP model can be decoupled into efficiently-solvable,

provably-optimal local best response models, thereby achieving both scalability and

optimality. Additionally, I suggest in Section 3.4.3.1 how the TD-POMDP might be

extended in future work so as to overcome the nonconcurrency restriction.

3.4.1.7 Factored Dec-POMDP

The factored Dec-POMDP, as studied by Oliehoek et al. (2008b), is fully gen-

eral, capable of representing any Dec-POMDP problem, but additionally allowing

exploitation of factored state, transition functions, and value functions. Oliehoek et al.

demonstrate how reductions in the scope of each value function component (to a small

subset of feature values and a small subset of agents), may be used to decompose

and tractably approximate the (otherwise intractable) overall value function. As such,

12Generality aside, there may be computational advantages to modeling certain types of reward
dependencies with EDI-CR joint reward structures as opposed to transition dependencies, though
this issue has never been explored in the literature, and is beyond the scope of my analysis.

13As I describe when presenting empirical comparisons in Section 6.5, the only available implemen-
tation of a EDI-CR solution method is restricted to two-agent problems.
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the factored Dec-POMDP specification emphasizes a locality of interaction inherent

in the structure of the problem. By exploiting this structure, Oliehoek (2010) has

demonstrated efficient computation of optimal solutions for 3-agent problems, not to

mention computation of (unbounded) approximate solutions to problems with many

more agents.

The TD-POMDP is a special case of a factored Dec-POMDP whose factorization

has the properties described in Sections 3.2.1-3.2.2. In effect, the factorization of world

state into local states and subsequent factorization of local state into locally-dependent

and nonlocally-dependent components controls the scope of the TD-POMDP’s fac-

tored value function. This particular factorization has the benefit of accommodating

decoupled efficiently-solvable local best response models (described formally in Section

4.2). However, the factorization requires that the TD-POMDP be restricted to non-

concurrent, pairwise agent interactions and a particular decomposition of the joint

value function into a summation of local value functions. In Section 3.4.3, I suggest

how these restrictions might be relaxed.

3.4.2 Communication

In addition to the models I enumerated in Section 3.4.1, researchers have developed

special Dec-POMDP classes that explicitly represent communication actions: the

Dec-POMDP-Com (Goldman & Zilberstein, 2003) and Com-MTDP (Pynadath &

Tambe, 2002) are notable extensions to the general Dec-POMDP, but there are also

communication models that extend some of the subclasses discussed above, such as

the ND-POMDP-Comm (Tasaki et al., 2010) and the TI-Dec-MDP-Com (Goldman &

Zilberstein, 2004). Using these models, agents plan what or when to communicate in

addition to planning their usual actions. The purpose of such communication is to

exchange information at runtime so as synchronize agents’ views. However, there is

typically a cost associated with communicating, such that the simple communication

policy that always communicates everything to everyone is not necessarily the optimal

communication policy.

For the Dec-POMDP-Com and related communicative models, agents are said

to employ direct communication14 (Goldman & Zilberstein, 2004) because they are

explicitly selecting communication actions that broadcast information over a special

communication channel. This is not the only means of exchanging information, however.

When agents perform actions that affect each other’s observations, this is referred

14 The concept of direct communication is often referred to as “explicit communication”, and
indirect communication as “implict communication” in other work (Seuken & Zilberstein, 2008).
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to as indirect communication. For instance, one agent applies the brakes of a car,

illuminating a brake light observed by another agent, implicitly communicating that

there is a speed trap ahead. It turns out that, from the standpoint of representational

power, these two forms of communication are equivalent; even though the Dec-POMDP-

Com specifies communication actions and communication observations in addition

to the usual Dec-POMDP actions and observations, it is no more general than the

Dec-POMDP (Seuken & Zilberstein, 2008).15

Likewise, the TD-POMDP implicitly includes agent communication, and is fully

capable of representing decisions about what and when to communicate. Here, the

channel over which information is communicated between agents is the set of nonlocal

features (Def. 3.12). Each nonlocal feature is controllable by one agent, the speaker,

and (partially) observable to another agent (the listener). Further, the TD-POMDP

can model a noisy communications channel by specifying that agents receive only

partial observations of these communication-specific nonlocal features. Similarly, the

TD-POMDP can model communication cost (or lack thereof) through the specification

of rewards associated with actions that set the nonlocal features. By instantiating

nonlocal features as such, the problem designer may outfit a group of TD-POMDP

agents with the desired communication capabilities.16

3.4.3 Overcoming Representational Limitations

The comparison of the TD-POMDP with related models (Section 3.4.1) exposed

restrictions that make it a less general representation than the subsuming Dec-POMDP

class. Specifically, the TD-POMDP requires nonconcurrency of interaction effects and

structured local utility decomposition. In the subsections that follow, I reintroduce

each restriction and discuss the degree to which it is an inherent limitation of this

work (on which the results of this thesis tightly hinge) rather than a detail imposed

15Although no more general, models with direction communication include additional structure
that may improve efficiency of planning communicative actions.

16 One could pose the question of what communication capabilities agents should be given. This is
a question of modeling, and not one that I address directly in this dissertation. Instead, I assume that
the TD-POMDP model’s state features, observations, and rewards have been determined exogenously.
However, the results that I present later on do shed some light on the issue of modeling. In particular,
my theoretical analysis presented in Section 3.5 and my empirical results presented in subsequent
chapters suggest the following: the more features that agents jointly observe and, by extension, the
more communication capabilities that agents are given, the harder the problem of planning becomes.
Intuitively, the more information agents share, the more strongly-coupled they are, and the more
computationally expensive it becomes to perform optimal decoupled planning and reasoning. On
the other hand, reducing agents’ communication capabilities may lead to problems whose optimal
solutions are of lower value.
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for the sake of convenience. I also suggest, for each, how it might be overcome in

future work and speculate on the implications of doing so.

3.4.3.1 Concurrent Interaction Effects

In its present form, the TD-POMDP model disallows concurrent interaction effects

by requiring that an agent’s locally-controlled feature values be independent of the

concurrent values of its nonlocal features (conditioned on its latest local action and

local state). Depicted graphically in Figure 3.5, and restated mathematically in

Equation 3.11 below, this concurrency property is a consequence of the TD-POMDP’s

factored local transition function (Definition 3.14).

Pr
(
l̄t+1
j |n̄t+1

j , stj, a
t
j

)
= Pr

(
l̄t+1
j |stj, atj

)
(3.11)

This means that the TD-POMDP cannot represent a problem in which a single

feature’s value at time t+ 1 is dependent on the actions taken at time t by more than

one agent. Each of agent i’s locally-controlled features may depend upon only i’s

latest action (and no other agent’s latest action), and each of i’s nonlocal features,

by definition, depend on at most one other agent’s action. Thus, only a single agent

initiates each TD-POMDP interaction. The reason that the TD-POMDP imposes

this nonconcurrency property is that it facilitates the decoupling of the joint decision

model into optimal local decision models.17

Example 3.21. A common toy example to illustrate Dec-POMDP dynamics,

the cooperative box pushing problem (Kube, 1997; Oliehoek, 2010; Seuken &

Zilberstein, 2007a), is centered around a concurrent interaction effect. Here, two

agents navigate a two-dimensional grid and receive rewards for pushing objects

from starting locations to goal locations. Among these objects are large boxes,

whose movement requires both agents to push simultaneously from adjacent grid

locations. The location of a box thereby depends upon the latest joint action (and

not just a single agent’s latest action).

17As I develop in Chapter 4, optimal decoupling is achieved by augmenting each agent’s local
model with compact influence information. If agents are allowed to concurrently control a given
feature, it is unclear how to distill one agent’s individual influence on that feature and incorporate
the respective nonlocal policy information into the other agent’s optimal local decision model without
exploding the computational complexity of the local model.
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Strictly speaking, the TD-POMDP is incapable of modeling concurrent interaction

effects. However, this does not rule out the possibility of transforming a problem with

concurrent interaction effects into a TD-POMDP problem. For instance, we can model

the box pushing problem from Example 3.21 as a TD-POMDP using two nonlocal

features {agent-1-pushing, box-pushed-by-both-agents}. The trick is to introduce a 1

time step delay. Consider that agent 1 executes its push action at time step t, in turn

setting agent-1-pushing to true at time t + 1, and agent 2 executes its push action

at time step t+ 1, in turn setting box-pushed-by-both-agents at time step t+ 2, and

causing the box to move. Nonlocal feature box-pushed-by-both-agents does not depend

on the agents’ concurrent actions, but instead depends on the 2-step sequence of agent

1’s action followed by agent 2’s action. Adding a delay does change the problem, but

it need not change the problem in any significant way if we consider time step t+ 1 as

an intermediate decision step whose real-world time value is arbitrarily close to that

of time step t.

Further investigation is needed to determine whether or not such a transformation

is applicable to any general class of concurrent interaction effects, and to ensure that

the solution returned by the equivalent TD-POMDP is realistically implementable.

As future work, formalizing the transformation from a Dec-POMDP with (structured)

concurrent interaction effects would ensure that my theoretical results and influence-

based policy formulation algorithms apply to a larger space of problem than I have

carved out here, thereby expanding the scope of this dissertation’s contributions.

3.4.3.2 Generalized Utility Structure

As indicated by Theorem 3.8, the TD-POMDP’s joint value function is the sum of

local values, each dependent on agent i’s local rewards:

V (π) =
n∑
i=1

Vi(π) . (3.12)

Another way of stating this property is that the agents’ quality aggregation function is

summation, which is a common assumption shared by much the cooperative planning

literature (Becker et al., 2004a; Beynier & Mouaddib, 2005; Guestrin et al., 2001;

Marecki & Tambe, 2009) and distributed constraint optimization literature (Atlas,

2009; Modi et al., 2005; Petcu & Faltings, 2005). Despite its frequent usage, this

property makes the TD-POMDP more restrictive than the general Dec-POMDP

model, which allows for arbitrarily complex aggregation of utility values.
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Generalizing to a broader class of quality aggregation functions is the subject of

future work. Intuitively, the crucial requirement of the TD-POMDP is that the value

decomposes, such that the planning problem can solved in a distributed, decentralized

manner. The applicability and usefulness of the model should be less dependent on the

actual aggregation function. For instance, I speculate that generalizing my solution

framework to a broader space of monotonic quality aggregation functions is possible.

However, this hypothesis has yet to be substantiated.

3.5 Weak Coupling

The TD-POMDP specification is quite general (as I argued in Section 3.4), but not

all problems in its expressible repertoire are efficiently solvable (as I proved in Section

3.3). In this section, I endeavor to illuminate the tractable subspace consisting of

problems that I call “weakly coupled”, driven by the realization that the TD-POMDP

actually emphasizes exploitable structure (summarized in Section 3.3.3) present in

these tractable problems. The structure is significant in that it decouples the joint

planning model into a set of local models that are bound together with the transition

dependencies of agents’ nonlocal features. By explicitly distinguishing those nonlocal

features, and acknowledging the resulting factoring of the agents’ transition and

observation functions, a specification emerges that, given sufficient factored structure,

is substantially more compact than the general Dec-POMDP specification. Likewise,

the exploitation of TD-POMDP structure during planning is shown in later chapters

to enable exponential gains in computational efficiency over prior methods.

Neither representational compactness nor computational efficiency are particularly

surprising, as these advantages are well documented consequences of factored models

in single-agent decision theoretic planning (Boutilier et al., 1999b; Guestrin et al.,

2003). (The interaction structure made explicit by the TD-POMDP is a special case

of factorization.) Less obvious, however, are the structural conditions under which the

TD-POMDP representation is advantageous. At one extreme, a multiagent problem

might involve no agent interaction (and hence no nonlocal features), represented in

the TD-POMDP framework as a collection of completely independent single agent

POMDP models, translating to an exponential reduction in (worst-case) time and

space complexity from the general Dec-POMDP representation. For problems with

relatively sparse interactions, there may be something to gain by explicitly representing

each nonlocal feature (as in the TD-POMDP) and exploiting the resultant conditional

independencies. However, for problems with dense agent interactions, where agents
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are heavily dependent on one another, and where the number of nonlocal features is

of the same order of magnitude as the number of world state features, it is not clear

that we could gain anything from representing the problem as a TD-POMDP.

Intuitively, the amount of advantage (over the näıve Dec-POMDP representation)

afforded by the TD-POMDP representation on any given planning problem depends

on the weakness of agent coupling. Outside of the TD-POMDP model, researchers

have previously used the term “weakly-coupled” (and alternatively, “loosely-coupled”)

to refer to multiagent sequential decision making problems under various structural

properties that impose conditional independencies among agents’ subproblems (Bern-

stein et al., 2001; Cavallo et al., 2006; Dolgov & Durfee, 2004b; Guo & Lesser, 2005;

Meuleau et al., 1998; Mostafa & Lesser, 2009). However, in all of these works, the

“weakly-coupled” qualifier specified either a binary classification (weakly-coupled versus

not weakly-coupled) or a qualitative assessment. Instead, I pose the question exactly

how weakly coupled is a given problem? in order to develop a quantitative scale that

can be used to determine the degree to which advantageous structure is present and,

ultimately, to predict the amount of computation needed to solve the problem. If

accurate, a quantitative measure of weak coupling could be extremely useful for the

meta-level control of systems with a variable amount of computational resources,

where predicting the relative complexity of a problem could determine an appropri-

ate allocation of resources for solving it. The measure could also be useful, when

facing a set of problems with diverse problem sizes, in deciding whether a problem

will be tractable to solve optimally or the system would be better off employing an

approximate solution method.

In the subsections that follow, I consider several aspects that contribute to my

formulation of a measure of weakness of coupling. For each aspect (in Sections

3.5.1-3.5.2), I describe its respective structural assumptions (referencing prior work

where appropriate), relate it to the TD-POMDP specification, and formalize how

it affects computational complexity, successively refining a bound on the worst-case

time required to compute optimal solutions to the TD-POMDP. In Section 3.5.3, I

summarize the results and their ramifications, and in Section 3.5.4, I contrast my

analysis with other work that relates problem structure to problem hardness.

3.5.1 Locality of Interaction

The first two aspects of weakness of coupling are both instances of a broader

concept referred to in the literature as locality of interaction (Kim et al., 2006; Melo,

2008; Nair et al., 2005; Oliehoek et al., 2008b; Tasaki et al., 2010). Interaction (in its
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most general form) in Dec-POMDP problems consists of arbitrary dependence of one

agent’s rewards, state-action outcomes, and observations, on another agents’ actions.

An interaction may be very broad in the sense that it involves all the agents’ actions

and all the features of the world state. Alternatively, an interaction may be relatively

local, involving only a small subset of agents that interact through a small subset of

features. Because the TD-POMDP explicitly distinguishes interaction features, each

of which inherently link pairs of interacting agents together, it serves as a natural

setting for formal analysis of locality of interaction.

In the subsections that follow, I decompose locality of interaction into agent scope,

which I refer to as the portion of the agent population on which an interaction

depends, and state factor scope, which I refer to as the portion of state features

on which an interaction depends. These two aspects affect the complexity of joint

planning along orthogonal dimensions. Before delving into the details of how agent

scope (Sec. 3.5.1.2) and state factor scope (Sec. 3.5.1.3) affects complexity, I establish

the preliminary background context in Section 3.5.1.1, where I relate Dec-POMDP

planning to constraint optimization.

3.5.1.1 Relationship to Constraint Optimization

The TD-POMDP complexity results that I present throughout this section rely

on a reduction of the planning problem to a constraint optimization problem (COP).

Here I briefly review the classical COP model as it was defined by Dechter (2003) and

show how any Dec-POMDP can be mapped into an equivalent COP.

Definition 3.22. A constraint optimization problem (COP) is specified as a

tuple C = 〈X,D,C〉, whose components and auxiliary notations I explicate:

� X = {x1, ..., xn} is a set of n variables,

� D = {D1, ..., Dn} is comprised of the domain Di of values assignable to each

variable xi,

� an assignment ā = 〈a1, ..., an〉 specifies a value ai ∈ Di for each variable xi,

� C =
{
C1, ..., C‖C‖

}
is a set of constraints, each taking the form of a cost

function18 Ck with scope Qk ⊆ {1, ..., n} such that Ck :
∏
k∈Qk

Dk 7→ {R,∞}

18 In my treatment of constraint optimization, I do not distinguish “hard” and “soft” constraints
since both flavors can be represented without loss of generality using cost functions that map
assignments to {real numbers, infinity}.
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and the application of Ck to the restricted scope of an assignment ā is denoted

Ck(ā) ≡ Ck(ai,∀i ∈ Qk),

� the global cost of an assignment ā is C(ā) =

‖C‖∑
k=1

Ck(ā), and

� a solution to C is an assignment ā∗ that minimizes the global cost.

Constraint optimization (Def. 3.22) is a useful formulation in that it emphasizes

particular problem structure. Each cost function is defined over a subset of variables,

and all costs are aggregated via summation to yield the global cost. This structure is

often depicted graphically using a constraint graph (Definition 3.23). An example of a

constraint graph is shown in Figure 3.6.

Definition 3.23. The constraint graph GC for a COP C is an undirected hypergraph

whose vertices V = {v1, ..., vn} contain a vertex vi for each variable xi ∈ X and whose

edges E =
{
e1, ..., e‖C‖

}
contain a hyperedge ek ⊆ {1, ..., n} for each constraint Ck ∈ C

that connects the vertices indexed {vi, ∀i ∈ Qk} by the corresponding scope Qk.

x1 x2 

x3 

C2 
C1 

x4 

C3 

𝒘∗ = 𝟐  

Figure 3.6: An example of a constraint graph.

In turn, solution methods for COPs exploit the graphical structure. One such method,

bucket elimination (Dechter, 1999), performs dynamic programming on an ordered

constraint graph (Def. 3.24), traversing edges from the bottom of the graph to the

top of the graph in order to eliminate individual variable assignments in an efficient

manner (thereby avoiding consideration of superfluous combinations of variables’

values). Bucket elimination is most efficient when the connectivity of the graph is

sparse. For the purpose of evaluating bucket elimination, Dechter (2003) quantifies

the sparsity of the constraint graph using a measure of induced width, the definition

of which I review below.
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Definition 3.24. An ordered graph 〈G, d〉 prescribes an ordering d = 〈v1, .., vn〉 of

the vertices V in G. In an ordered constraint graph, the parents of a vertex vj denote

those vertices preceding vj in the ordering that are connected to vj: parents(vj) =

{vi ∈ V | ((i < j) ∧ (∃ek ∈ E) ∧ ({i, j} ⊆ ek))}. The width w(G, d) of the ordered

graph 〈G, d〉 denotes the maximum number of parents of any vertex: ω(G, d) =

max
vj∈V
‖parents(vj)‖.

Definition 3.25. The induced width w∗(G, d) of an ordered graph is the width

obtained by processing nodes from last to first, such that a node is processed by

connecting its parents. The induced width w∗(G) is the minimum induced width of

any ordering of GC: w∗(GC) = min
d

[w(GC, d)].

The induced width of the constraint graph in Figure 3.6 is 2, which is the width of

the ordered graph that orders the vertices 〈x1, x2, x3, x4〉.
The details of Dechter’s analysis (Dechter, 1999) are beyond the scope of this

dissertation, but her results (which we will extend) are as follows. The worst-

case time and space complexity of bucket elimination for constraint optimization

is O
(
‖C‖ · ‖Dmax

i ‖w∗+1
)
, when applied to a problem with a maximum variable do-

main size of ‖Dmax
i ‖ = max

Di∈D
‖Di‖, ‖C‖ constraints, and induced width w∗ (Dechter,

2003). Notice that the complexity is not a function of the number of variables. The

asymptotic complexity is the same for problems with many variables as it is for prob-

lems with few variables as long as the induced width is equal, the maximum variable

domain sizes are equal, and the number of constraints is bounded. Since complexity

is exponential in the induced width, Dechter’s analysis suggests that problems with a

small induced width should be easier to solve. This general trend is intuitive: fewer

agents connected by a single constraint means fewer combinations of behavior to con-

sider in minimizing the constraint’s cost. In my analysis of TD-POMDP complexity

that follows, induced width will play a crucial role in characterizing a measure of weak

coupling.

In a constraint optimization problem, the objective is to minimize the summation

of local cost values of the variable assignments. For Dec-POMDP problems, the

objective is to maximize the expected utility value of the joint policy. Additionally,

for certain Dec-POMDP problems, and notably any TD-POMDP problem, the value

function can be decomposed into component value functions. The inherent similarity

between the two problems leads me to the following mapping of a Dec-POMDP to an

equivalent COP:
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Observation 3.26. A Dec-POMDP M, whose value function V (π = 〈π1, ..., πn〉) is

decomposable into component value functions {V1(π), ..., Vk(π)} such that V (π) =
k∑
i=1

Vk(π) may be reduced to a COP CM = 〈X,D,C〉 with the following specification:

� X {x1, ..., xn} contains exactly one variable xi for each agent,

� The domain Di of each variable xi is the set of agent i’s possible (deterministic)

local policies Πi,

� an assignment ā = 〈a1 ≡ πi, ..., an ≡ πn〉 specifies a joint policy (i.e. a policy

πi ∈ Πi for each agent),

� C = {C1, ..., Ck} consists of a single cost function Ci for each component Vi of

M’s value function, each taking the form Ci(ā = π) = −Vi(π).

Using the mapping in Observation 3.26, a solution assignment for CM equates to a

joint policy that maximizes the Dec-POMDPs value function. In the case that the

Dec-POMDP’s value function does not decompose into component value functions,

the COP will contain a single constraint (and the constraint graph a single edge) that

connects all vertices. However, the benefit of the COP representation, its potentially-

sparse graphical structure, is only present when the value function is decomposable

into local component value functions with limited scopes.

For the problems that I consider in this thesis, the TD-POMDP specification

explicitly factors the joint value function into agents’ local value functions (Def. 3.7).

Each Vi() corresponds to a single agent’s expectation of the summation of its local

rewards. Thus, for a TD-POMDP, the equivalent COP will contain a single constraint

for each agent. The scope of each constraint, equivalently the scope of each local value

function, is not immediately obvious. In section 3.5.1.2, I describe how the local value

scopes can be extracted from the TD-POMDP specification.

I am not the first to observe an equivalence between multiagent sequential decision

making and constraint optimization. In the context of the TI-Dec-MDP (reviewed

in Section 2.3.2), Becker et al. (2004b) propose a reformulation of their coverage set

algorithm as one of distributed19 constraint optimization (DCOP) (Yokoo et al., 1998)

with a mapping of variable domains to local policy sets identical to that given in

19 In distributed constraint optimization, the prefix “distributed” conveys a distribution of the COP
specification among multiple agents as well as distribution of computational resources for solving the
problem. In the case of the DCOP proposed by Becker et al. (2004b), each agent is charged with
computing its own policy and communicating that policy to a subset of other agents that are linked
to it via constraints.
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Observation 3.26. The authors describe special constraints that correspond to the

TI-Dec-MDP’s structured reward dependencies between pairs of agents. Nair et al.

(2005) map a related class of transition-independent problems that they call network-

distributed POMDPs (ND-POMDPs) into DCOPs containing local neighborhood utility

constraints. Like the mapping I suggest, their local neighborhood constraints each

involve a restricted scope of agents that contribute to a given component of the joint

value function. Nair and colleagues exploit the resulting locality of interaction in their

development of locally-optimal and globally-optimal solution algorithms (Kim et al.,

2006; Nair et al., 2005). Whereas these previous works both focus on classes involving

agents that interact through the reward function but that are transition-independent,

TD-POMDP agents interact through their transitions, complicating the analysis of

how individual agents affect the joint value. Thus, the study of value-based COP

constraints that I present here is intended to supplement these past works with more

general analysis.

More recently, Oliehoek et al. (2008b) describe an extension of local neighborhood

constraints to the more general class of factored Dec-POMDPs (reviewed in Section

2.3.2). Instead of mapping the overall planning problem to a static COP, they analyze

how the scope of local value functions change over the course of policy execution,

thereby uncovering a dynamic constraint structure (that is dependent not only on the

factored structure of the value function, but also on the particular decision stage).

The complexity analysis that I present in the following subsection is complementary in

that it too allows for general constraints, but assumes a static COP (wherein variables

represent complete policies) that could be extended to account for Oliehoek et al.’s

dynamics.

3.5.1.2 Agent Scope

The COP reformulation from Observation 3.26 touched upon the significance

of structure in the value function of multiagent planning problems. In particular,

worst-case complexity is heavily dependent on the agent scope, or the number of agents

whose decisions can affect a given component value function. To make this relationship

more concrete, we now turn to the TD-POMDP, where a careful examination of

problem specification allows for a formalization of agent scope and further analysis of

complexity.

As detailed in Section 3.2.2, the effects that TD-POMDP agents have on one

another are represented as nonlocal features shared by the agents’ local states. It is

through changes to these features that agents interact. We can depict their potential
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interactions graphically using an agent interaction digraph (as shown in Figure 3.7).

Definition 3.27. A agent interaction digraph20 DM for TD-POMDP M is a

directed graph with a vertex vi representing each agent i. For any two agents i and j,

there is an edge from vi to vj for each of agent i’s locally-controlled features that is

modeled as a nonlocal feature in agent j’s local state representation.

Definition 3.28. An agent i’s ancestors, denoted Λ(i), is the set of agents that

correspond to ancestor vertices of vertex i in the interaction digraph. Formally, for

any agent j 6= i, if there is a directed path from vj to vi in the interaction digraph,

j ∈ Λ(i).

Definition 3.29. An agent i’s descendants, denoted Ψ(i), is the set of agents that

correspond to descendant vertices of vertex i in the interaction digraph. Formally, for

any agent j 6= i, if there is a directed path from vi to vj in the interaction digraph,

j ∈ Ψ(i).

Note that here and throughout, I use the word peer to mean “some other agent”

without assuming or implying any graphical relationship between the agents. Alter-

natively, to indicate a graphical relationship, I will instead use the term ancestor or

descendant.

For a team of agents, the interaction digraph summarizes the interdependencies

that exist between agents’ activities. Each outgoing edge represents one attribute

through which an agent can affect another agent. And each incoming edge represents

one attribute through which an agent can be affected by its ancestors. For any two

agents i and j, there may be more than one edge leading from i to j, one for each

nonlocal feature controlled by i and affecting j. Note also that there are can be no

self-loops (leading both out of and into any given vertex) in the interaction digraph

because, by definition, a nonlocal feature nix modeled by agent i is controlled only by

another agent j (and not by i itself). The interaction digraph can, however, contain

directed cycles containing two or more nodes.

20This definition is adapted from that of Brafman and Domshlak’s agent interaction digraph (Braf-
man & Domshlak, 2008) used for multi-agent classical planning and that of Guestrin’s coordination
graph (Guestrin et al., 2002) for multiagent MDP coordination. It can be viewed as a generalization
of the former (Brafman’s digraph), where each edge represents a special kind of activity dependence:
the precondition of one agent’s planning operator is fulfilled by another agent’s operator. The edges
in the digraph presented here encode more general state feature dependencies. It extends the latter
(Guestrin’s coordination graph) in that it explicitly labels edges with the dependent features, and
contains one such edge for each dependent feature (whereas the coordination graph represents at
most one edge from i to j without specifying the particulars of the dependence).
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Figure 3.7: The interaction graph for Example 3.1.

As is the case with other graphical models (Dechter, 2003; Jordan, 1999; Koller

& Friedman, 2009), the motivation for representing the TD-POMDP problem using

an interaction digraph is to exploit structure in the connectivity of the graph. In

the literature on multiagent planning under uncertainty, there has been a variety of

work that exploits graphical interaction structure in specialized contexts (Beynier &

Mouaddib, 2005; Brafman & Domshlak, 2008; Dolgov & Durfee, 2004a; Guestrin et al.,

2002; Marecki & Tambe, 2009; Nair et al., 2005; Oliehoek et al., 2008b). Although

these prior methods are not directly applicable here, we can make use of common

concepts that have emerged.

The degree of agent coupling is directly related to the density of edges in the

interaction digraph. In the extreme case of weak coupling, the agents are uncoupled,

such that there are no nonlocal features and we are left with a graph of n unconnected

vertices. An isolated vertex refers to an agent whose policy formulation problem is

independent of all other agents’ problems, since the agent cannot be influenced by

others choices, nor can its own choices influence its peers. Thus, in the uncoupled

case, the optimal joint policy can be computed by simply combining the n optimal

local policies, each computed independently of the others.

In the extreme case of strong coupling, every locally-controlled feature in each

agent’s local state corresponds to a nonlocal feature in every other agent’s state. Let

there be n agents and k such local features per agent. In this case, all k · n features of

the world state are contained in every agent’s local state. The interaction digraph is

not only fully-connected (with edges running in both directions between every pair of

vertices), but each directed edge is duplicated k times, yielding a total of n · (n− 1) · k
edges. Because each agent in the system is interacting with every other agent, no
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single agent’s decision problem can be solved independently of any of its peers’ decision

problems (as in the uncoupled case). Moreover, no single local feature can be reasoned

about independently because its value affects peer agents’ decisions.

Both the unconnected and fully-connected cases are degenerate in the sense

that the former conveys complete independence and the latter does not convey

any conditional independence relationships whatsoever. The more interesting cases

are those falling in between the two extremes, where there are some conditional

independence relationships that can be taken advantage of, but the agents’ activities

are not completely independent. A simple example of one such case appears in

Example 3.31 and Figure 3.8.

Definition 3.30. The agent scope, denoted Qi, of a value function Vi() is the subset

of agents on whose policies its value depends. Equivalently, Vi :

[∏
j∈Qi

Πj

]
7→ R.

Example 3.31. Consider the interaction digraph in Figure 3.8, where two edges

connect three agents. The first edge indicates that agent 1’s activities can affect

the activities of agent 2 and the second edge indicates that agent 1’s activities

can affect the activities of agent 3. Notice that there is no directed path leading

from node 2 to node 3, implying that the outcomes of agent 2’s activities cannot

affect the outcomes of agent 3’s activities. As such, agent 3’s local value function

V3(π) is independent of agent 2’s policy decisions and can be rewritten V3(π1, π3).

Likewise, V2(π) ≡ V2(π1, π2).

Theorem 3.32. The only agents that can affect the values of the features in agent i’s

local state are i’s ancestors Λ(i) and i itself.

Proof. Mathematically, Theorem 3.32 states: ∀tPr(st+1
i |~at) = Pr(st+1

i |~ati,~atΛ(i)), where

~at is the joint action history, ~ati is agent i’s local action history, and ~atΛ(i) is the history of

actions performed by i’s ancestors. This is a statement about conditional independence

and, in particular, one that can be inferred from the DBN shown in Figure 3.5, which

captures the conditional independencies among the TD-POMDPs factored state and

action variables. It suffices to prove that, for any agent j /∈ ({i} ∪ Λ(i)), there cannot

be a path of any length n ≥ 1 in the DBN leading from variable at−n+1
j to st+1

i . I

prove this by induction on n.

Base Case (n = 1): By Definition 3.14, the only action variables whose edges lead
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Figure 3.8: An example of exploitable interaction digraph structure.

into st+1
i are actions ai and those actions of other agents who control i’s nonlocal

features (who are thus necessarily digraph ancestors of i by Definition 3.27). Since

j /∈ ({i} ∪ Λ(i)), there is no path leading from j to i.

Inductive Hypothesis (IH): For any agent j /∈ ({i} ∪ Λ(i)), there cannot be a path of

length n in the DBN leading from variable at−n+1
j to st+1

i .

Inductive Step: Here, we assume IH and deduce that, for any agent k /∈ ({i} ∪ Λ(i)),

there cannot be a path of length n+ 1 in the DBN leading from variable at−nk to st+1
i .

Let us assume that this deduction is false, or in other words, that there exists an agent

k /∈ ({i} ∪ Λ(i)) for which a path of length n+ 1 in the DBN leads from variable at−nk

to st+1
i . If this is the case, at−nk connects to another variable from which there is a

path of length n to st+1
i , which, according to the DBN from Figure 3.5, must be a

state feature variable f t−n+1. There are two possibilities for f :

1. f ∈ si: In this case, there is path of length n from st−n+1
i to st+1

i , and a

path of length 1 leading from at−nk to st−n+1
i . Since we were assuming that

k /∈ ({i} ∪ Λ(i)), this directly contradicts the result derived in our base case.

2. f 6∈ si. If there is such a path, we can deduce that f must be a nonlocal

feature, because the only DBN connections between two separate agents’ state

features are by way of nonlocal features. Further, we can deduce that f must be

controlled by k and is modeled by some other agent j. Using the same logic, we

can also deduce that j is in turn controlling a nonlocal feature, and that there

must therefore also be a path of length n from at−n+1
j to st+1

i . This contradicts

our inductive hypothesis.

Having derived a contradiction in both cases, the inductive step must be correct.
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Therefore, agents that can affect the values of the features in agent i’s local state are

i’s ancestors Λ(i) and i itself.

Theorem 3.33. For TD-POMDP agent i, the agent scope Qi of i’s local value

function Vi() does not include agents outside of i and i’s ancestors: Qi ⊆ ({i} ∪ Λ(i)).

Proof. By Definition 3.7, Vi(π) is an expectation of the summation of agent i’s local

rewards, each of the form Ri

(
sti, a

t
i, s

t+1
i

)
, and is thus a function of i’s local state si

and local action ai. It suffices to prove that the only agents that can affect i’s local

state and local action are ({i} ∪ Λ(i)):

1. By Theorem 3.32, the only agents that affect i’s local state are ({i} ∪ Λ(i)).

2. Agent i’s local actions are dictated by agent i’s policy πi, which is a mapping of

agent i’s local observation history ~oti to local action ati. By Definition 3.5, ~oti can

only depend on past values of agent i’s local state. By Theorem 3.32, the only

agents that affect i’s local state are ({i} ∪ Λ(i)). Thus, the only agents that can

affect agent i’s actions are ({i} ∪ Λ(i)).

Therefore, Vi(π) = Vi(πi, π̄Λ(i)), and equivalently Qi ⊆ ({i} ∪ Λ(i)).

When the agent scope is reduced (from the set of all agents), it implies a

conditional independence that can be exploited during individual agent reasoning.

Example 3.31 (continued). A practical consequence of the reduced agent scope

in the example problem (Figure 3.8) is that, given agent 1’s planned decisions,

agent 3’s decisions may be planned independently of agent 2’s decisions (without

sacrificing optimality of the agents’ planned policies). In other words, if agent 3

knows the policy decisions of agent 1, agent 3 does not need to reason about agent

2’s decisions in order to plan its local policy component of the optimal joint policy.

Nor does agent 2 need to reason about agent 3’s decisions. In other words, agent

2’s policy decisions are conditionally independent of agent 3’s policy decisions

given agent 1’s policy.

The definitions and theorems that follow formalize the conditional independence

relationships contained in the TD-POMDP agent interaction digraph and their impli-

cations on the multi-agent planning problem.
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Definition 3.34. An agent i is conditionally decision-independent of peer agent

j conditioned on the decisions of c ∈ {0, 1, ..., n − 2} other agents K = {k1, ..., kc}
if, in maximizing21 the joint value of the team, i’s optimal decisions do not differ

depending on j’s decisions (given any fixed settings of K’s decisions): ∀
{
πxj , π

y
j

}
⊂

Πj, ∀πk1 , . . . , πkc ,

arg max
πi∈Πi

V
(
πi, π

x
j , πk1 , . . . , πkc

)
= arg max

πi∈Πi

V
(
πi, π

y
j , πk1 , . . . , πkc

)
The equation in Definition 3.34 contains terms of the following form, with which

agent i can compute local policies that maximize the team’s joint value given candidate

policies of i’s peers:

π∗i (πj, . . .) = arg max
πi∈Πi

V (πi, πj, . . .) (3.13)

One such maximizing argument setting, π∗i (πj, . . .), is commonly referred to as agent

i’s best response to peer policies π 6=i = {πj, ...}. This is the same paradigm that was

reviewed in the discussion of decoupled solution methodologies (Sec. 2.3.3). As we will

see, conditional decision-independence may be exploited within a decoupled solution

method to substantially reduce the computational complexity of optimal planning.

Theorem 3.35. If (1) there is no directed path connecting (distinct) nodes i and j in

the interaction digraph and (2) nodes i and j share no common descendants, then i is

decision-independent of any agent j conditioned on i’s ancestors’ policies π̄Λ(i)

Proof. By definition, the theorem states that ∀πxj , π
y
j , ∀π̄Λ(i), arg max

πi

V
(
πi, π

x
j , π̄Λ(i)

)
=

arg max
πi

V
(
πi, π

y
j , π̄Λ(i)

)
. Recall, from Theorem 3.8, that the value function is com-

posed of local value functions: V (π1, ..., πn) =
∑

i Vi(π1, ..., πn). By the mono-

tonicity of summation, it suffices to prove that for each local value function Vk(),

∀πxj , π
y
j ,∀π̄Λ(i), arg max

πi

Vk
(
πi, π

x
j , π̄Λ(i)

)
= arg max

πi

Vk
(
πi, π

y
j , π̄Λ(i)

)
.

� Case A (k = i) : By Theorem 3.33, Vi : Πi×ΠΛ(i) 7→ R. Clause 1 of Theorem 3.35

states that there is no path connecting i and j. Thus, j 6∈ Λ(i), and consequently,

Vk=i() is independent of πj. Trivially, ∀πxj , π
y
j ,∀π̄Λ(k), arg max

πi

Vk
(
πi, π

x
j , π̄Λ(i)

)
=

arg max
πi

Vk
(
πi, π̄Λ(i)

)
= arg max

πi

Vk
(
πi, π

y
j , π̄Λ(i)

)
.

21 Here, I notate maximization with argmax
x

f(x), which returns the set of all values of argument

x that achieve the maximal value of the expression f(x) (to which argmax is applied). Elsewhere, I
use the notation arg max

x
(in plain, not bold, text) to refer to the maximization that returns a single

maximizing argument instead of a set.
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� Case B (k ∈ Ψ(i)) : Here, conversely agent i is an ancestor of k (i ∈ Λ(k)),

and hence Vk() may depend upon πi. By clause 2 of Theorem 3.35, i and

j cannot share any descendants, so j 6∈ Λ(k). Thus, Vk() is independent

of πj, and ∀πxj , π
y
j , ∀π̄Λ(i), arg max

πi

Vk
(
πi, π

x
j , π̄Λ(i)

)
= arg max

πi

Vk
(
πi, π̄(Λ(k)−i)

)
=

arg max
πi

Vk
(
πi, π

y
j , π̄Λ(i)

)
.

� Case C (otherwise) : Given that neither Case A nor Case B applied, it must

be that i 6= k and i 6∈ Λ(k). By Theorem 3.33, Vk() must be independent of πi.

Thus, ∀πxj , π
y
j ,∀π̄Λ(i), arg max

πi

Vk
(
πi, π

x
j , π̄Λ(i)

)
= arg max

πi

Vk
(
πi, π

y
j , π̄Λ(i)

)
.

Having derived the necessary arg max equality for all of the local value components

{Vk} of the joint value function V (), it must in turn hold for V () because the joint

value composition function, summation, preserves the order (including the arg max)

of input values for each parameter. Therefore, given clauses 1 and 2 of the theorem, i

is decision-independent of agent j conditioned on the decisions of the agents indexed

by Λ(i).

Given the preceding characterization of TD-POMDP agent scope and the accom-

panying conditional independencies, we can now relate it back to the COP mapping

developed in Section 3.5.1.1. Recall that maximizing the joint value of the TD-POMDP

is equivalent to minimizing the sum of costs of particular constraints pertaining to

component value functions. Converting the TD-POMDP into a COP thus involves

creating a constraint Ci for each local value function Vi(). Each constraint Ci con-

strains those variables that correspond to the policies of the agents in the respective

agent scope Qi. Similarly, the constraint graph for the mapped COP includes, for

each local value function, a hyperedge linking together those vertices in the respective

agent scope.

There are similarities between the constraint graph and the interaction digraph,

but also notable differences. Like the TD-POMDP interaction digraph, the constraint

graph contains a single vertex xi for each agent i. But whereas the interaction digraph

contains a directed edge for each nonlocal feature connecting a pair of vertices, the

constraint graph contains an undirected hyperedge Ci (connecting 1, 2, or perhaps

more vertices) for each local value function Vi. As dissimilar as the connections in the

two representations may appear, the translation from interaction digraph to equivalent

constraint graph is straightforward. By Theorem 3.33, in general, the agent scope

of a local value function Vi() includes i and Λ(i). Thus, for each agent i, there is

a hyperedge Ci in the constraint graph connecting i and i’s (interaction digraph)
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Figure 3.9: Examples of COP constraint graphs derived from interaction digraphs.

ancestors. To illustrate this translation, the interaction digraphs for Examples 3.1 and

3.31 are shown alongside their corresponding constraint graphs in Figure 3.9.

Definition 3.36. The induced width ω of a TD-POMDP M denotes the induced

width (Def. 3.25) of its (unordered) equivalent constraint graph GM (converted from

the interaction digraph DM).

There are also useful relationships to be drawn between the induced width and

agents’ scope sizes. In general, ω ≥ (maxk ‖Qk‖ − 1) (which follows from the defini-

tions of ω and Qk). I have observed ω ≈ (maxk ‖Qk‖ − 1) to be a robust estimate of

induced width for a wide variety of interaction digraph topologies (some of which are

shown in Figure 3.9). Although there do exist instances for which ω > (maxk ‖Qk‖ − 1),

as we will see later in Observation 3.37, approximating induced width from agent

scope enables the subsequent approximation of TD-POMDP complexity without the

need to first convert the TD-POMDP interaction digraph to a constraint graph and

evaluate its induced width.

Ultimately, gaining the advantages of reduced agent scope size (and reduced width
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in the COP reformulation) requires the use of a decoupled solution methodology (such

as is reviewed in Section 2.3.3) wherein each agent computes its local component of the

joint policy through a series of best response calculations in response to candidate peer

policies. While searching through the space of policies, decision independence allows

an agent to avoid reasoning about a peer’s policy decisions, effectively pruning an

entire cross-section of the joint policy space at no cost, as is the case for the problem

described in Example 3.31 and Figure 3.8.
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Example 3.31 (continued). Returning to the problem shown in Figure 3.8,

we can deduce from the interaction digraph (by Theorem 3.35) that agents 2 and

3 are decision-independent of one another conditioned on agent 1’s policy. By

definition, this means that given a policy π1 selected by agent 1, the optimal policy

of agent 2 does not depend upon the policy chosen by agent 3 (and vice versa):

∀πx3 , π
y
3 ,∀π1, arg max

π2

V (π1, π2, π
x
3 , ) = arg max

π2

V (π1, π2, π
y
3 , ) = arg max

π2

V (π1, π2)

= arg max
π2

[V1(π1) + V2(π1, π2)]

= arg max
π2

V2(π1, π2)

∀πx2 , π
y
2 ,∀π1, arg max

π3

V (π1, π3, π
x
2 , ) = arg max

π3

V (π1, π3, π
y
2 , ) = arg max

π3

V (π1, π3)

= arg max
π3

[V1(π1) + V3(π1, π3)]

= arg max
π3

V3(π1, π3)

Notice that each equation has been expanded to show the local value functions

with their reduced agent scopes. The two equalities describe a simple brute-force

method for computing the optimal joint policy. For each policy πi of agent 1,

agent 2 can compute its part of the optimal joint policy by evaluating each

of its policies in conjunction with π1 and creating a vector of best responses

〈π∗2(π1) = arg max(...)〉 of length ‖Π1‖. Here, agent 2 need only maintain a single

best response per policy π1 of agent 1.22 This computation involves ‖Π1‖ · ‖Π2‖
policy evaluations. Similarly, agent 3 can compute its part of the optimal joint

policy with another ‖Π1‖ · ‖Π3‖ policy evaluations, producing a vector of best

responses 〈π∗3(π1)〉 of length ‖Π1‖.
Finally, the optimal joint policy can be determined by iterating through the

two vectors and selecting the π∗1 (and associated π∗2(π∗1) and π∗3(π∗1)) that maximize

the joint utility value [V1(π1) + V2(π1, π2) + V3(π1, π3)]. When all is said and done,

the agents will have computed the optimal joint policy using just O
(
‖Πi‖2) policy

evaluations. In contrast, the worst-case complexity of a 3 agent problem (in the

absence of exploitable structure) is O
(
‖Πi‖3) (as per Observation 3.20).
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The solution process described in Example 3.31 is a simplified execution trace of

the bucket elimination algorithm (introduced in Section 3.5.1.1) for solving constraint

optimization problems (Dechter, 2003). A more detailed algorithmic description of

Bucket Elimination appears later on in Chapter 6 (where I develop an extension for

solving TD-POMDP problems).

The complexity reduction in Example 3.31 afforded by Bucket Elimination relies

on a very simple 3-agent graph structure and will certainly not hold for all 3-agent TD-

POMDPs. However, we can generalize our analysis by making use of the complexity

result cited in Section 3.5.1.1. Recall that the worst-case time and space complexity of

Bucket Elimination for constraint optimization is O
(
c · ‖Xmax

i ‖ω∗+1
)
, when applied

to a problem with a maximum variable domain size of ‖Xmax
i ‖, c (hard or soft)

constraints, and induced width ω∗ (Dechter, 2003). Instantiating each COP metric

with the corresponding details from the TD-POMDP specification results in the

following observation.

Observation 3.37. The worst-case time and space complexity of solving a TD-

POMDP problem is bounded by O (n · ‖Πmax
i ‖ω+1), where n is the number of agents,

Πmax
i is the largest policy space of any agent, and ω is the induced width of the

interaction digraph (Def. 3.36).

As indicated in Figure 3.9, the computed complexity ‖Πi‖2 of solving Example 3.31

is just as predicted by Observation 3.37. Even more substantial is the reduction in

complexity of Example 3.1 (whose interaction digraph is shown in Figure 3.9), which

has been tightened to O(‖Πi‖3), down from O(‖Πi‖7) when ignoring the problem’s

locality of interaction.

3.5.1.3 State Factor Scope

Locality of interaction manifests itself in a reduction of the scope of dependence of

individual agent subproblems. As my theoretical results suggest thus far, the fewer the

number of dependent agents (i.e. the smaller the agent scope), the simpler planning

joint behavior becomes. An analogous statement can be made about the number of

dependent world state features. The state factor scope (Guestrin et al., 2001; Oliehoek

22Recall that arg max (without the bold font) returns a single maximizing argument. Here, the
overarching problem is the computation of a single optimal joint policy, not all optimal joint policies.
Moreover, the reason that agent 2 can get away with maintaining a single best response per π1 is
that π2 does not appear at all outside of the term V2(π1, π2), indicating that maximizing V2(π1, π2)
once and for all, with any arbitrary best response, will maximize the joint value function V (). Given
two choices of best response π∗x2 (π1) and π

∗y
2 (π1) for which V2(π1, π

∗x
2 ) = V2

(
π1, π

∗y
2

)
, there is no

valuation that would differentiate π∗x2 (π1) and π
∗y
2 (π1).
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et al., 2008b) refers to the subset of world state features on which an agent’s local

value depends.23 Regardless of the number of agents involved, the state factor scope

controls the complexity of each individual agent’s reasoning.

To better understand how state factor scope affects the complexity of planning,

consider the derivation of the previous complexity result in Section 3.5.1.2, which was

based upon a reduction to a constraint optimization problem. Solving the equivalent

COP involved evaluations of the form arg max
πj

V (πi, πj, . . .) (as in Equation 3.13) that

constitute agent j’s best-response calculation to potential policy πi of peer agent i.

The complexity result in Observation 3.37 assumes a näıve algorithm for performing

this calculation: enumeration of all of i’s policies and, for each, an explicit evaluation

of Vi(πj). In a classical COP, enumeration of variable domains would be the only

way to compute a best response. However, the COP that we are solving involves

structured variable domains containing TD-POMDP policies. Instead of using simple

enumeration, an agent can calculate its best response by solving a special POMDP

model seeded with peers’ policy information (like the one that I develop later on in

Section 4.2). For a weakly-coupled TD-POMDP agent, its local best-response model

does not necessarily need to represent all world state features. Intuitively, there may

be world features that have no bearing on the value ascribed to the agent’s own

behavior.

Example 3.38. For instance, in the Example 3.31, whose TD-POMDP transition

structure is shown in Figure 3.10, whether or not Task F is enabled (encoded by

feature “Task-F-enabled”, appearing in agent 1’s local state) has no bearing on

agent 2’s computation of best response π∗2(π1). Using Definition 3.39 below, we

say that feature “Task-F-enabled” is not in agent 2’s state factor scope.

Definition 3.39. An agent i’s state factor scope Xi is a minimal set of features

that are sufficient for i to represent and reason about when computing a best response.

Definition 3.39 refers to a minimal set of features because, as I describe later on in

Section 4.2, there are various flavors of the best-response model that could be used to

compute the same best response but that represent different feature sets. Here, I am

most interested in those that exploit weakly-coupled problem structure by reducing

23 Here I refer to state factor scope in the particular context of agents’ local value functions. Note,
however, that it is a more general mathematical concept that can also be used to characterize other
functions (Guestrin et al., 2001; Oliehoek et al., 2008b).
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Figure 3.10: The TD-POMDP description for Example 3.31.

their modeled set of features as much as possible.

In addition to the set of features in the state factor scope, we can also discuss their

domains. The state factor scope magnitude is particularly useful because it serves as

a measure of the size of the state space of the best response POMDP model.

Definition 3.40. An agent’s state factor scope magnitude Xi is the product of

the sizes of the domains of the features in Xi.

Given this additional structure, we can refine our bound on computational complexity

of the TD-POMDP.

Theorem 3.41. The worst-case time and space complexity of solving a TD-POMDP

problem is bounded by O (n · EXP(Xmax
i ) · ‖Πmax

i ‖ω), where n is the number of agents,

Xmax
i is the largest state factor scope magnitude of any agent, Πmax

i is the largest

policy space of any agent, and ω is the induced width of the interaction digraph (Def.

3.36).

Proof. The derivation of the complexity result from Observation 3.37 entails every

best response computation requiring an arg maxπi to be taken, enumerating the local

policy space bounded by ‖Πmax
i ‖, for all combinations of policies of ω peers, yielding
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complexity ‖Πmax
i ‖‖Πmax

i ‖ω for each of the n agents. By replacing each best response

calculation with one POMDP solution, we can substitute the first term ‖Πmax
i ‖ in our

complexity computation with the complexity of solving a finite-horizon best-response

POMDP, which is known to be O(EXP (S) = EXP (Xmax
i )) (Bernstein et al., 2002)

given that the state space is bounded by Xmax
i (by Definitions 3.39-3.40).

For the TD-POMDP, it turns out that there is concrete measure of state factor

scope encoded in the problem specification. As I derive later on in Section 4.2, there

exists a best response model for any given TD-POMDP that requires agent i to

consider only (1) the values of features from its local state (Definition 3.12) and (2)

the history of values of features from its mutually modeled feature set (Definition

3.13). As such, for TD-POMDP problems, the scope magnitude can be replaced in

Theorem 3.41 with X = ‖Sj‖‖Mj‖T−1. For TD-POMDP problems that are locally fully

observable (Definition 2.8), a slightly stronger result holds: complexity is polynomial

in ‖Sj‖‖Mj‖T−1 (as I derive in Section 4.2.4).

Example 3.42. Let us examine the TD-POMDP specification for the problem

depicted in Figure 3.8. Agent 2’s local state consists of features {time, task-

D-execution-status, task-E-execution-status, task-D-enabled}, of which time and

task-D-enabled are mutually-modeled. The domain of time is the set of time

steps {0, .., 6} until the global horizon (T = 6). The domain of each task’s

execution status is {not-started,started-at-time-0,...,started-at-time-5,completed},
containing a total of 7 values. The last feature, task-D-enabled can be either

true or false. As such, the size of agent 2’s local state space is bounded by

‖S2‖ ≤ (7 · 7 · 7 · 2 = 686). The domain of agent 2’s mutually modeled features is

bounded by ‖M2‖ ≤ (7 · 27 = 896). We can bound agent 2’s scope magnitude by

the product of these two figures X2 ≤ 614, 656.

The relationship between complexity and scope magnitude supports an intuitive

characterization: the smaller the portion of the world state that an agent observes

and interacts with, the easier its local planning and reasoning becomes. Moreover, the

fewer the interaction features that it shares with other agents, the easier the problem

becomes.
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3.5.2 Degree of Influence

Locality of agent interaction is an important aspect of TD-POMDP structure whose

exploitation can lead to dramatic reductions in the complexity of optimal planning,

but it is not the only important aspect. So far we have looked at which agents in

the team can impact each others’ decisions as well the features through which they

interact. Next, I introduce a aspect of structure that characterizes the degree to

which agents impact each others’ decisions. With the addition of this metric, I extend

the theory from Section 3.5.1 so as to refine the bound on worst-case TD-POMDP

complexity.

Making use of Definition 3.34, for any two agents i and j, i is either decision-

dependent on j or decision-independent of j (conditioned on some other agents’

policies). Considering the rich space of dependencies that may exist between the

two agents, a binary relation such as decision-independent lacks the precision to

characterize weakly-coupled problems satisfactorily. For instance, i may be able to

reason independently of some of j’s decisions but not of others. Moreover, there may

be circumstances under which j’s decisions do not affect i’ decisions.

Example 3.43. Returning to the problem depicted in Figure 3.8, Agent 2 is

decision-dependent on agent 1, but only dependent on those decisions relating

to the execution of “Task A”. For instance, whether or not agent 1 idles for one

time step or executes “Task B” (which will necessarily take 1 time step) is of no

consequence to agent 2 as it plans its own decisions. Furthermore, after agent

1 has completed “Task A”, any decisions that it makes cannot impact agent 2’s

decisions in any way. In other words, any two of agent 1’s possible policies, πx1 and

πy1 , that differ only in the decisions made after completing “Task A” will induce

the same best response from agent 2.

Definition 3.44. Two policies, πai and πbi , of agent i are impact-equivalent, de-

noted πai
I≡̄
πK

πbi , conditioned on some other agents’ policies π̄K , if adopting πbi instead

of πai will not cause any other agent j 6∈ K to change its best response decisions:

πai
I≡̄
πK

πbi ⇔

[
∀j 6∈ K, arg max

πj∈Πj

V (πai , πj, π̄K) = arg max
πj∈Πj

V
(
πbi , πj, π̄K

)]

Definition 3.45. An impact equivalence class Eπ̄K
i,x (subscripted with the agent
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index i and class index x and superscripted by policies π̄K of other agents K) is a set

of impact-equivalent policies (conditioned on π̄K): ∀
{
πai , π

b
i

}
∈ Eπ̄K

i,x , π
a
i

I≡̄
πK

πbi .

In principle, an agent i’s local policy space could be partitioned into disjoint

equivalence classes, each of which can be thought to impact other agents in the system

in a different way, and thereby each inducing a different best response. Figure 3.11

illustrates the equivalence class partitions in a simple two-agent problem. Notice that

the influence classes in Figure 3.11 are each labeled using notation E1,x without any

superscript. Here, E1,x specifies an unconditional equivalence class containing a subset

of agent 1’s policies all of which induce an identical best response from agent 2. There

are no other agents in the system on which to condition the equivalence.

For problems with more that two agents, policies πa1 ∈ Π1 and πb1 ∈ Π1, for instance,

may induce the same best response from agent 2 only under the condition that agent

3 adopts πc3. In this case, we would write πa1
I≡
πc3
πb1. For example, whether or not a

colleague (agent 1) expresses interest in collaborating may only cause a researcher

(agent 2) to change her plans under the condition that a program funding manager

(agent 3) allocates the necessary funds. Alternatively, agent 1 might influence two

other agents, such that πa1 ∈ Π1 and πb1 ∈ Π1 evoke the same best response in agent 2,

but different best responses in agent 3. πa1 are impact-equivalent (and may in turn

be) only in the case that they evoke identical best responses in each and every other

agent.

Definitions 3.44-3.45 enable the discussion of a spectrum of varying degrees of

dependence. At one end of the spectrum, agent j is decision-independent (Def. 3.34)

of agent i conditioned on agents K, meaning that all policies that i could adopt induce

the same best response from agent j. This implies that, by Definition 3.44, any two

policies of agent i are impact-equivalent conditioned on any polices π̄K of agents K.

Moreover, all of agent i’s policies may be grouped into a single impact equivalence

class (Def. 3.45). At the opposite end of the spectrum, agent j is decision-dependent

on i in such a way that j’s best response is highly sensitive to the policy that i adopts.

At this extreme, no two policies of agent i are impact-equivalent and the minimum

number of i’s impact equivalence classes is equal to the size of its policy space ‖Πi‖.
In comparing the policy space to the impact equivalence class space, I am high-

lighting one of the primary intuitions of this work. When agents impact each other

with some of their decisions but not all of their decisions, they do not need to jointly

consider each and every joint policy. They really only need to coordinate the policy

decisions that matter, which are those that separate the different impact equivalence

classes from one another.
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E
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*
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Figure 3.11: Example of equivalence classes.

Example 3.43 (continued). Consider the problem shown in Figure 3.8. Agent

1 and agent 2 interact when agent 1 completes Task A thereby enabling agent 2 to

achieve a positive outcome quality for subsequent execution of Task D. Examination

of the possible policies of agent 1 and the corresponding best responses of agent 2

reveals the following impact equivalence classes.

• E1,1: For any policy in which agent 1 begins Task A at time 0, agent 2’s best

response is wait for one time step and then, at time 1, if Task D is enabled24 begin

Task D, but otherwise begin Task E. The probability (0.5) that Task D is enabled

at time 1 and the quality (12.0) of completing it before its deadline (4) are such

that the potential benefit of waiting outweighs the potential loss associated with

starting Task E a time step late. If D is not enabled at time 1, then agent 1 can

infer that Task A has not yet completed and will not complete until time 3, which

does not allow enough time to complete Task D before its deadline. In this case,

it should not wait any longer but instead begin Task E at time 1.
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• E1,2: For any policy in which agent 1 begins Task A at time 1, agent 2’s best

response is wait for two time steps and then, at time 2, if Task D is enabled begin

Task D, but otherwise begin Task E. The rationale is the same as before. In this case,

Task A will complete at either time 2 or time 4 with equal probability. Completion

at time 2 gives agent 2 enough time to complete Task D successfully. Agent 2’s

expected local utility using this best response is (1
2
)(12.0) + (1

2
)(1

3
)(6.0) = 7.0,

which is better than it would do if it began Task E at time 0.

• E1,2: For any policy in which agent 1 begins Task A any later than time 1,

agent 2’s best response is begin Task D at time 0. In this case, there is no chance

that D will be enabled early enough for agent 2 to complete it before its deadline.

Thus, agent 2 should begin its only other task, Task E, as early as possible to

maximize the probability of completing it successfully.

The policies contained within each partition are trivially impact-equivalent

with respect to agent 3’s best response. (Since Agent 3 only has a single task to

execute, its best response to any of agent 1’s policies is simply to begin Task F as

soon as F becomes enabled.)

By relating the magnitude of the equivalence class set to that of the local policy

space, I can now extend the theory developed in Section 3.5.1. Recall the COP

reformulation from Section 3.5.1.1, where the problem of optimal joint policy com-

putation was reduced to selecting the best combination of values for variables {xj},
each pertaining to an agent j’s local policy. As suggested in Section 3.5.1, agents can

solve the problem using bucket elimination by each iterating through the domains

D6=j of decision-dependent peers’ local policy variables and computing a best response

to each. The resulting set of best response policies is referred to in other work as

agent j’s coverage set (Becker et al., 2004b).

Definition 3.46. An agent j’s coverage set, denoted Cπ̄K
i (Πj), with respect to agent

i and a setting π̄K of other peers’ policies, is the set of policies that meets the following

condition: ∀πi,Cπ̄K
i (Πj) ∩

[
arg max
πj∈Πj

V (πi, πj, π̄K)
]
6= ∅.

The complexity results developed in Section 3.5.1.1 assume a brute force method

for computing agent j’s coverage set: enumeration of all possible combinations of

24 For this TD-POMDP problem, “task-D-enabled” is a nonlocal feature that is completely
observable to agent 2. As such, in any given state, agent 2 knows whether or not Task D has become
enabled, and can infer the corresponding outcome distribution of its Task D.
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peer agents’ policies and computation of a best response to each. If several of a peer

i’s policies are impact-equivalent (conditioned on a particular setting of other peers’

policies π̄k), then they will result in the same best response from agent j. Moreover, all

policies πi ∈ Eπ̄K
ix in an equivalence class will induce the same best response, suggesting

the possibility of redundant best response calculations that could be avoided by taking

into account equivalence class structure.

Lemma 3.47. In order to compute an agent j’s coverage set Cπ̄K
i (Πj), it suffices to

compute a best response to a single (arbitrarily selected) policy πix from each of i’s

impact equivalence classes Eπ̄K
ix .

Lemma 3.47, which follows directly from Definitions 3.45 and 3.46, implies that

the fewer the number of agent i’s equivalence classes, the fewer the number of j’s

necessary best responses. We can use this result to refine the bound on TD-POMDP

complexity, but before doing so, one other consideration must be addressed. Unlike

the locality of agent interaction, which can be directly and trivially assessed from a

TD-POMDP problem’s interaction digraph, the problem’s equivalence class structure

is not known a priori. As such, the solution process must itself perform a partitioning

of agents’ local policy spaces into equivalence classes in order to take advantage of the

underlying equivalence class structure.

Definition 3.48. An impact equivalence partitioning scheme P is a method

that takes as input an agent i and a setting of some other agents’ policies π̄K , and

partitions agent i’s local policy space into a set of disjoint impact equivalence classes

P(i, π̄K) =
{
Eπ̄K
ix

}
. I denote the complexity of the partitioning scheme with a term CP,

which refers to the worst-case computational complexity required for P to partition

any agent’s local policy space into equivalence classes conditioned on any other agents’

policies.

There are a variety of different partitioning schemes that could be used to partition

agents’ local policy space, each involving a different amount of computational overhead

and thus a different value of CP. In Chapter 5, I present a specific partitioning

scheme grounded in my influence-based policy abstraction methodology (Chapter 4)

and characterize its complexity. Another scheme requiring only constant time would

be to do nothing, thereby leaving each individual policy πix ∈ Πi in its own partition.

This scheme is valid in the sense that it creates classes of i’s policies {Eix} that are

equivalent, but it is not useful for reducing the number of best response calculations

that j must perform.

104



Definition 3.49. For a given problem, the degree of influence dP afforded by a

partitioning scheme P (Def. 3.48), is the maximal ratio of the number of impact

equivalence classes to the number of local policies:

dP = max
i=1,...,n

max
∀K,∀π̄K

∥∥Pπ̄Ki ∥∥
‖Πi‖

(3.14)

Example 3.43 (continued). For the example problem shown in Figure 3.8, we

derived earlier that a mere 3 partitions {E1,1, E1,2, E1,3} can be used to classify

all of agent 1’s possible policies. Even in this very simple problem, given the time

horizon 6 and agent 1’s three different tasks in addition to a “wait” action, agent

1 has a total of 483,729,408 possible policies.25 The degree of influence (given this

partitioning) is thus 3
483,729,408

≈ 2.067× 10−9.

The degree of influence quantifies the (worst-case) reduction in best-response

calculations achievable with a particular partitioning scheme. For any given problem,

there is a minimal number of equivalence classes that, if found by a partitioning

scheme, would minimize the degree of influence. However, the computation required to

execute the partitioning scheme with the lowest degree of influence may be prohibitive,

possibly canceling out the associated benefit of the reduced number of best response

calculations. Thus, in selecting a partitioning scheme, it is desirable to achieve a

balance in the degree of influence and the computational overhead of partitioning

(across all problems that the partitioning scheme is expected to face). Theorem 3.50

sheds some light on the problem of finding such a balance.

Theorem 3.50. The worst-case time and space complexity of solving a TD-POMDP

problem is bounded by:

O
(
n · EXP(Xmax

i ) · (dP‖Πmax
i ‖)ω + n · CP · (dP‖Πmax

i ‖)ω−1) (3.15)

where n is the number of agents, Xmax
i is the largest scope magnitude (Def. 3.40) of

any agent, dP is the degree of influence (Def. 3.49) given partitioning scheme P, Πmax
i

is the largest policy space of any agent, CP is the worst-case complexity of P, and ω is

the induced width of the interaction digraph (Def. 3.36).

25The number of possible policies was calculated by multiplying together the number of available
local actions in every reachable local state of the corresponding TD-POMDP.
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Proof. The complexity bound presented in Theorem 3.50 follows from the analysis of

my BE-OIS algorithm presented in Section 6.6.3.

Theorem 3.50 is an extension of the complexity results developed in Section 3.5.1.

The differences between Equation 3.15 and the bound in Theorem 3.41 are (1) a

reduction in the base of the exponent by a factor of dP and (2) the addition of term CP

accounting for the computational overhead of P (in the context of the bucket elimination

algorithm). The new bound suggests that, all else being equal, problems involving

agents with a low degree of influence (whose local policy spaces can be partitioned

into a relatively small number of influence equivalence classes) should be easier to

solve than problems with a high degree of influence contingent upon the efficiency

of impact equivalence partitioning. If the partitioning complexity CP is bounded

O
(
dP · EXP(Xmax

i ) · ‖Πmax
i ‖

)
, the second term of Equation 3.15 vanishes. However, if

it is of significantly larger magnitude, it overwhelms the first term, indicating that

the overhead of partitioning potentially outweighs any computational benefit of the

smaller local policy space search sizes.

Note that the bound given in Theorem 3.50 is no longer purely a statement about

the problem. That is, it includes information, CP and dP, specific to the algorithm

that is used to solve the problem. As such, it is actually a bound on the complexity of

exploiting influence structure, where the exploitation is inexorably tied to the solution

algorithm.

3.5.3 Summary of Weak Coupling Characterization

Over the course of this section, I have developed theory relating TD-POMDP

complexity to weakly-coupled problem structure. Subsections 3.5.1.2, 3.5.1.3, and

3.5.2 synthesize three key aspects of problem structure {agent scope, state factor scope,

and degree of influence} into an integrated characterization of weak coupling. The

end result is a refined bound on the worst-case time and space complexity of optimal

planning presented in Equation 3.15 that accounts for the three weak coupling aspects.

As I summarize in the list below, each aspect manifests itself in a different set of

problem parameters, and each affects the overall complexity in a different manner.

� Agent scope refers, conceptually, to which agents in the system are affecting

each others’ decisions (and hence, which peers’ influences need be reasoned in

order for the affected agent to plan its own behavior). In general, the fewer

the agents that affect one another, the smaller the worst-case computation
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time. With respect to agent scope, the strength of coupling of a problem can

be quantified as the induced width ω of the interaction digraph, which bounds

the number of peers that can affect any given agent. All else being equal, a

smaller value of ω indicates a more weakly-coupled problem. In the context

of a decoupled joint policy search method, worst-case computation time is

exponential in ω (regardless of the total number of agents).

� State factor scope refers to the portion of world state features that must be

reasoned about by an individual agent when planning its local policy (in the

context of a decoupled search method). With respect to state factor scope, I

quantify strength of coupling as the magnitude of the largest scope magnitude

Xmax
i (which is the largest number of combinations of values that may be taken by

the features in an agents’ state factor scope). In general, worst-case computation

time is exponential in Xmax
i . For TD-POMDP problems, Xmax

i is bounded by

Xmax
i ≤ max

j

[
‖Sj‖‖Mj‖T−1

]
. Thus, weak coupling is directly related to the

density of mutually-modeled state features m̄j ⊆ sj and the sizes of their joint

domain ‖Mj‖. For TD-POMDP problems in which agents directly observe their

local state, worst-case computation time is polynomial in max
j

[
‖Sj‖‖Mj‖T−1

]
.

� For agents that do affect each others’ decisions, the degree of Influence relates

to the proportion of unique ways that they can affect each other’s decisions. I

have derived, in Section 3.5.2, that all of agent i’s policies that have the same

impact on agent j’s decisions can theoretically be grouped together, thereby

partitioning agent i’s local policy space, so as to reduce the number of policy

combinations that need be jointly considered by the group of agents. Given

a partition scheme P, parameter dP quantifies a problem’s degree of influence

as the worst-case ratio of partitions to local policies. In regard to the worst-

case time complexity bound, which is exponential in the induced width, dP is

situated in the base of the exponent and thus has a potentially-significant effect

on computation time. More weakly-coupled problems, whose values of dP are

smaller, are likely to be easier to solve than problem with larger values of dP

(all else being equal). However, this statement is contingent on the efficiency of

the partitioning scheme P, whose complexity CP affects the overall worst-case

computation time polynomially.

The three problem parameters {ω,Xmax
i , dP} described above can be thought of

as orthogonal dimensions whose combination provides a concrete measure of the the
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degree of coupling of a TD-POMDP problem. A problem’s worst-case complexity

depends on where it lies along the spectrum of agent scope, along the spectrum of state

factor scope, and along the spectrum of degree of influence. For any two problems,

we can now compare their worst case complexities by evaluating (or estimating) the

values of the three parameters and positioning each in the 3-dimensional space.

Evaluating the first two parameters, ω and Xmax
i , is straightforward given the prob-

lem specification. The induced width ω may be obtained by converting the interaction

digraph (whose connectivity is made explicit by the TD-POMDP description M)

into a constraint graph (as described in Section 3.5.1.2) and computing its induced

width using one of the algorithms reviewed by Dechter (2003). The state factor scope

magnitude Xmax
i may be computed by evaluating max

j

[
‖Sj‖‖Mj‖T−1

]
, whose terms

are also explicitly described in M. A problem’s degree of influence dP is not readily

assessable from the TD-POMDP description, but it can be estimated heuristically. In

Section 4.6, I supplement this theoretical analysis by proposing and evaluating several

heuristics for estimating dP that are specific to my influence-based abstraction scheme

of partitioning.

Aside from the ability to compare problems’ worst-case computation times, the

theory that I presented in this section has broader consequences. In Section 3.3.2,

where I proved the intractable general worst-case complexity of the TD-POMDP class,

I argued that, given its explicit description of exploitable structure, the class contains

regions wherein problems can be solved efficiently. Within my three-dimensional

characterization of weakly-coupled problem structure lies a map for navigating the TD-

POMDP class and uncovering those efficient regions. For each of the three dimensions,

my analysis allows for determination of the worst-case complexity with respect to that

dimension, and for borders to be drawn between regions that fall into one complexity

class and those that fall into another. Worst-case complexity aside, my analysis

provides guiding signs that suggest the pitch and slope of problem difficulty, and

that can be used to better understand why some problems take hours to solve and

others seconds. Finally, with respect to the degree of influence, the theory presented

here justifies the exploration into influence-based abstraction that is the focus of this

dissertation.

3.5.4 Related Work on Characterizing Weak Coupling

In contrast to related studies of weakly-coupled problems in sequential decision

making, the primary distinction of my analysis is that it synthesizes several different

aspects of weak-coupling into a single unified characterization. Each of these aspects
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have appeared individually in some shape or form in past work. For instance, the work

of Guestrin et al. (2001, 2003) on exploiting restricted scope in factored value functions,

though limited in context to approximate solution computation, plays a foundational

role in my analysis. Dolgov & Durfee (2004a) analyze structure in graphical multiagent

MDPs, relating agent scope to the complexity of optimizing local value functions.

Another branch of work characterizes agent scope for systems of transition-independent

agents, developing exploitative distributed joint policy search algorithms on which

my analysis is based (Nair et al., 2005; Kim et al., 2006), and relating complexity

of optimal planning to induced width (Kumar & Zilberstein, 2009). Oliehoek et al.

(2008b) measures locality of interaction as a function of both agent scope and state

factor scope, focusing on the complexity of joint planning stage-by-stage as a series of

collaborative graphical Bayesian games. To my knowledge, the last aspect of weak

coupling that I consider, degree of influence, has received no attention in the literature.

However, the theory I have developed might explain the performance of the Coverage

Set Algorithm Becker et al. (2004b), which effectively partitions each agent’s local

policy space (by way of a parametrization that encodes the effects of its policy on

other agents’ rewards).

Aside from the three aspects {agent scope, state factor scope, and degree of

influence} on which my analysis concentrates, researchers have performed similar

analyses relating other forms of Dec-POMDP problem structure to problem complexity.

For instance, Goldman & Zilberstein (2004) characterize the complexity of various

Dec-POMDP subclasses by classifying agents’ communication capabilities, whether or

not agents share any information during execution, and the agents’ objectives (e.g.,

whether they are maximizing rewards or striving to reach a set of goal states). Shen

et al. (2006) characterize complexity of optimal Dec-MDP planning according to the

complexity of the minimal encoding of agents’ local policies.

Allen (2009) takes a different approach to characterizing problem structure. With

the motivation of predicting the amount of computation required by optimal solution

methods and the value achieved by approximate solution methods, he develops an

information-theoretic metric, influence gap, that quantifies roughly the difference

in the degree to which each of two agents can affect world state transitions, joint

observations, and joint rewards in a Dec-POMDP. The meaning of influence in Allen’s

work is slightly different from that of my degree of influence, which refers to the degree

to which agents can impact each other. However, his results express the same general

sentiment that varying levels of impact result in varying problem complexity.

Lastly, there is a strong connection between my analysis and that of Brafman &
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Domshlak (2008). Whereas my analysis quantitatively characterizes weakly-coupled

sequential decision making problems (specifically TD-POMDPs), Brafman & Domshlak

(2008) quantitatively characterize “loosely-coupled” multiagent classical planning

problems. Note that, although the Dec-POMDP is an optimization problem, the

multiagent classical planning problem is one of satisfaction, whose solution is a joint

plan that satisfies a set of goal conditions. In their analysis of complexity, Brafman

& Domshlak (2008) take advantage of this fact to transform the planning problem

into a constraint satisfaction problem (CSP). Much like in my analysis of joint policy

computation as constraint optimization, they incorporate a parameter ω corresponding

to the induced width of the constraint graph. They describe the level of coupling of a

problem with one other variable δ that measures the number of potential coordination

points (wherein an agent can affect others by adding a “public” action to its plan).

Conceptually, this is similar to degree of influence, which dictates the number of

unique impacts that an agent can manifest on another.

3.5.5 Contribution Outside the Scope of the TD-POMDP

Researchers have developed a number of different algorithms for exploiting the

kinds weakly-coupled problem structure included in my characterization (Becker et al.,

2004b; Kim et al., 2006; Kumar & Zilberstein, 2009; Mostafa & Lesser, 2009; Nair et al.,

2003, 2005; Oliehoek et al., 2008b; Witwicki & Durfee, 2010). A broader contribution

of my characterization is that it can explain some of the trends observed in the

performance of these algorithms that are not easily explained without considering

combinations of weak coupling dimensions.

For instance, the successes of a family of ND-POMDP algorithms (Kim et al.,

2006; Nair et al., 2005) in scaling to many agents has been attributed to the reduced

agent scope associated with ND-POMDP agents’ local neighborhoods (Kim et al., 2006;

Kumar & Zilberstein, 2009; Nair et al., 2005). That is, as long as the agent scope

remains small, these algorithms are expected to be practical. However, a generalized

version of one of these algorithms (JESP (Nair et al., 2003)) has recently been reported

as intractable for a test set of Distributed POMDPs with Coordination Locales

(DPCLs) containing just two agents, even when generating an approximate solution

(Varakantham et al., 2009). A likely explanation for this phenomenon is contained

within Equation 3.15, which suggests that it was not the agent scope of the problems

that foiled JESP but instead the cost of JESP’s best response calculation. Whereas

ND-POMDP problems have an inherently restricted state factor scope due to the strict

separation of agents’ local states and transition and observation independence, DPCL
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problems involve transition-dependent agents that need to reason about each others’

state variables in order to compute optimal best responses (which JESP employs in

computing approximate solutions), making the DPCL more strongly coupled even in

its two-agent incarnation.

3.6 Summary

The main contribution of this chapter is a model for multiagent coordination that

emphasizes exploitable problem structure. While past work has defined a variety

of other structured models, the TD-POMDP expresses structure without imposing

overly-restrictive assumptions. In particular, the TD-POMDP accommodates rich

transition-dependent agent interactions and partial observability, yet it is able to

articulate aspects of structure previously exploited only in transition and observation

independent problems. The TD-POMDP’s structure is significant because it decouples

the joint model into a set of interdependent local POMDP models that are tied to

one another by their transition influences. As a consequence, the TD-POMDP is a

natural candidate for the application of decoupled solution algorithms that decompose

the computation of joint behavior into a series of simpler computations about local

behavior.

Despite the TD-POMDP model’s inherently-decoupled representation, the generally-

intractable computational complexity of the class of TD-POMDP problems brings

into question the efficiency of decoupled solution formulation. Certainly, some TD-

POMDP problems are intractable to solve, while others can be decomposed and solved

efficiently. I call this latter group of problems weakly-couped. Fortunately, the problem

structure expressed in the TD-POMDP’s description provides clues as to the efficiency

of solving any given problem. This insight has driven me to develop a characterization

of weakly-coupled problems, and to derive refined bounds on worst-case computa-

tional complexity that accounts for three different aspects of weakly-coupled problem

structure: agent scope, state factor scope, and degree of influence.

Whereas both agent scope and state factor scope have been analyzed in some shape

or form in prior work (though in more restricted problem contexts), I am the first

to formalize the degree of influence in any context. Unlike the other two aspects of

weak coupling, the degree of influence is not immediately discernible from the problem

description. When exploited, however, my weak coupling theory suggests that a low

degree of influence translates to significant improvements in computational efficiency.

The promise of efficient solutions, along with the elusiveness of evaluating the degree of
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influences, motivates the development and evaluation of a methodology for exploiting

influence structure. Such is the focus of the remainder of this dissertation.
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CHAPTER 4

Influence-Based Policy Abstraction

In the last chapter, I claimed that the TD-POMDP’s explicit representation of

problem structure makes it a natural candidate for modeling and solving weakly-

coupled problems efficiently. Guided by my characterization of degree of influence as

well as state factor scope, I now begin to address these claims with the development of a

methodology for exploiting the TD-POMDP’s weakly-coupled problem structure. The

primary insight of this chapter is that, when most agent decisions are independent of

peers’ decisions, the agents can avoid the complexity of coordinating their full policies.

They can optimize their joint behavior by instead coordinating policy abstractions

that convey only the essential influences. In connection with the theory presented in

Section 3.5.2, influences summarize classes of impact-equivalent policies (Def. 3.45).

Here, I examine what these influences are, how they can be represented compactly

without loss of optimality, and why their coordination has potentially significant

computational benefits over conventional policy search.

In answering these questions, this chapter contributes a formal characterization

of transition-dependent influence. We find that, in the context of the TD-POMDP

model, agent interaction can be conveniently modeled using probability distributions

over present and past values of shared feature values. Further, this representation

suffices for formulating optimal joint policies. The influence derivation and proof of

sufficiency presented herein serve as the theoretical foundation for the influence-based

solution methods developed in subsequent chapters. Practically, and in connection

with the remainder of the dissertation, this chapter also develops an important piece

of the influence-based solution methodology: the model that allows each agent to

efficiently compute its optimal local policy in response to promised influences of its

peers.

Despite the fact that the influence formalism I develop here has no direct application

outside of the TD-POMDP model, I believe that there is potential for farther-reaching
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impact. For instance, the formalism could be extended to represent concurrent

transition dependencies in the more general class of Dec-POMDPs. Moreover, the

idea of reducing nonlocal policies to probability distributions over local effects without

loss of information (sufficient for optimal reasoning) is itself a conceptual contribution.

This insight could inspire the development of similar approaches to reasoning about

uncertainty in multi-agent contexts other than Dec-POMDP planning.

4.1 Overview

In contrast to the general Dec-POMDP where each agent’s behavior may be

arbitrarily intertwined with all others’, TD-POMDP agents are coupled to one another

through structured feature dependencies between select individuals of the team. In

particular, for weakly-coupled agents whose decisions are largely independent of

one another (as in the interaction graph shown in Figure 3.7), the TD-POMDP

provides a succinct representation for their interactions. We can, in turn, exploit this

representation using a decoupled solution methodology (reviewed in Section 2.3.3)

that decomposes the joint policy formulation into a series of local policy formulations.

While substantial computational leverage has been obtained in using the decoupled

approach to solve problems where agents are transition and observation independent

(Becker et al., 2004b; Nair et al., 2005; Varakantham et al., 2007), less progress has

been made in applying the same techniques to problems where agents interact through

the transition model.

Much of the difficulty in decomposing transition-dependent agents’ policy formula-

tions is due to the complexity of formulating and solving best-response models. As

discussed in Section 4.2, computing a best response entails converting the joint problem

into a single-agent POMDP, wherein the agent uses a belief-state representation to

keep track of its knowledge about the system’s trajectory as it takes actions and

receives observations. In contrast to the single-agent POMDP belief state (Smallwood

& Sondik, 1973), a Dec-POMDP agent’s belief-state needs to include information that

it gains about other agents’ possible beliefs in addition to the information that it

gains about the Dec-POMDP world state. For a general Dec-POMDP agent whose

interactions are unrestricted, this entails maintaining a probability distribution over

the possible observations of interacting peer agents (as derived by Nair et al., 2003)

which is necessarily exponential in the number of peers. However, thanks to the

structure introduced in Chapter 3, TD-POMDP agents can make use of an alternative

belief-state representation, as I describe in Section 4.2.2 and derive in Section 4.2.3.
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This novel belief-state representation consists of a vector whose size depends not on

the number of peer agents, but instead on the state factor scope (described more

precisely in Section 3.5.1.3), making it advantageous for weakly-coupled agents with

sparse peer interactions.

What we find from the derivation of a TD-POMDP agent’s belief state is that

information about peers’ behavior can be represented quite compactly in the form of a

probability distribution over nonlocal feature values. Since the agent is influenced by

peers only through nonlocal features, the transition dynamics of all nonlocal features

constitutes a model of influence. In order to make optimal decisions, the agent does

not need to know the details of peers’ planned behavior as long as it knows the

resulting influences.

Before formally characterizing interagent influence in Section 4.3, I illustrate the

high-level concepts with an example.

Visit Site D
Visit Site A

Visit Site B

Visit Site C
outcome: 
win-
dow: 
[0,8]

D Q P
1 2 0.3
2 2 0.4
3 2 0.3

Prepare Site C
outcome: 

window : [3,4]

D Q P
1 1 1

Visit Site C
outcome: 

window : [5,8]

D Q P
2 1 0 (1)
2 0 1 (0)

(Rover 5) (Rover 6)

Figure 4.1: Example of limited influence.

Example 4.1. Figure 4.1 portrays a simple, concrete example problem involving

two rover agents. The rovers are each equipped with different hardware, so it is

necessary for rover 5, upon visiting site C, to prepare the site in order for rover

6 to gain any value from visiting the site. Apart from this interaction, the two

agents’ problems are completely independent. Neither of them interacts with any

other agents, nor do they share any observations except for the occurrence of site

C’s preparation and the current time. In a TD-POMDP, this simple interaction

corresponds to the assignment of a single boolean nonlocal feature site-C-prepared

that is locally-controlled by rover 5, but that influences (and is nonlocal to) rover

6. Thus, in planning its own actions, rover 6 needs to be able to make predictions

about site-C-prepared ’s value (influenced by rover 5) over the course of execution.
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Due to window constraints present in Example 4.1, the only information relating

rover 6’s behavior that is relevant to rover 5 is the probability with which site-C-

prepared will become true at time = 4. At the start of execution, site-C-prepared will

take on value false and remain false until rover 5 completes its “Prepare Site C” task

(constrained to finish only at time 4, if at all, given the task window in Figure 4.1). After

the site is prepared, the feature will remain true thereafter until the end of execution.

With these constraints, there is no uncertainty about when site-C-prepared will become

true, but only if it will become true. Hence, the influence of rover 5’s policy can be

summarized with just a single probability value, Pr(site-C-prepared = true|time = 4).

Aside from providing an elegant, compact1 representation of nonlocal policy informa-

tion, the influence abstraction (exemplified by Pr(site-C-prepared = true|time = 4))

engenders a potentially-significant reduction in the size of the search space for

optimal joint policies. As described more formally in Section 4.5, the influence

space clusters together those individual policies of each agent that exert identi-

cal influences on the agent’s peers. In Example 4.1, notice that any two policies

that differ only in the decisions made after time 3 will yield the same value for

Pr(site-C-prepared = true|time = 4). By considering only those influence values

achievable by some feasible policy, agents avoid jointly reasoning about the mul-

titude of local policies with equivalent influences. In Section 4.6, I corroborate this

claim with an empirical evaluation of influence space size over a systematically-explored

space of random problems.

4.2 Belief State and Influence

To decouple the joint policy computation into local policy computations, agents

require local decision models that incorporate the influences of their peers’ candidate

policies. The purpose of the local model is to allow an agent to reason about the

implications of its individual action choices given that all peers’ choices are assumed to

be determined. Doing so allows the agent to compute a best-response policy relative

to its promised peer policies. From the perspective of this decision-making agent,

once its peers fix their policies, they cease to be decision makers and instead become

processes of the stochastic environment. As such, the best-response model is really

a local POMDP whose construction (as discussed in Section 4.2.1) is derived from

the Dec-POMDP model, but whose observation signal is local (instead of joint) and

1Throughout this chapter, I use the word compact to refer to the fact that the encoding exploits
weakly-coupled problem structure to express the necessary information in fewer parameters (than
conventional representations).
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whose action selection is local (instead of joint).

Due to the partial observability of POMDPs, the agent cannot track its current

system state precisely. Instead, as is common practice when building and solving local

POMDP models, the agent maintains a belief state that summarizes the knowledge

it gains as it acts and observes the environment (Smallwood & Sondik, 1973). The

belief state encodes information sufficient for the agent to make predictions and to

select choices that are just as good as those that it could by remembering its complete

action-observation history. Figure 4.2 depicts the use of a belief state in place of

action-observation history.

belief state

belief state
estimator

Agent j

World

1t

j

t

jao


t

jb

action-
observation        

history
t

ja
action

t

jo

observation

j

Figure 4.2: Usage of belief state for POMDP agent reasoning.

For the purposes of a best-response POMDP conditioned on fixed peer behavior,

representation and maintenance of belief state are both nontrivial to operationalize and

computationally complex. With the goal of reducing the complexity of best-response

reasoning for TD-POMDP agents, this section develops a more efficient best-response

model that exploits weakly-coupled problem structure. I begin in Section 4.2.1 by

examining prior work (Nair et al., 2003) on belief state representations for agents whose

peers’ policies have been fixed. I refer to this general representation henceforth as the

General Best-Response Belief-State. Next, in Sections 4.2.2–4.2.3, I derive a condensed

version that takes advantage of the structure articulated by the TD-POMDP model

to improve computational efficiency of local (best-response) reasoning. Through this

derivation, I reveal nonlocal policy information in Section 4.2.5 that forms the basis for

my influence-based abstraction methodology (to which the remainder of this chapter
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is devoted).

4.2.1 General Best-Response Belief State

Let us begin by considering an existing formulation of best-response belief state

that Nair derived for the general class of Dec-POMDPs (which, at the time, he referred

to as MTDPs). Given the fixed, deterministic policies of an agent’s peers, the problem

of finding an optimal local best-response policy may be represented using a complex

but normal single-agent POMDP (Nair et al., 2003). Recall, from my review in Section

2.2.2.2, that the single-agent POMDP belief state (which I will denote bbb) summarizes

the agent’s action-observation history with a probability distribution over possible

world states: btj (st) = Pr
(
st|~a t−1

j , ~o tj
)
,∀st ∈ S, where j is the agent, st is a possible

current world state, and
{
~a t−1
j , ~o tj

}
is the action-observation history. This particular

belief state vector is a sufficient statistic for predicting future action-observation

consequences in single-agent problems (Smallwood & Sondik, 1973). However, in the

context of a best-response calculation, where peer agents are assumed to be executing

fixed policies conditioned on their own partial observations, a distribution over (Dec-

POMDP) world states is insufficient. Given that the agent’s local observations (and

actions) may be correlated with peers’ observations, information gained to inform

inference about peers’ beliefs may be lost with the translation of local observation

history to world state distribution.

Example 4.2. Consider two rovers (1 and 2) that receive a joint observation of

wind at their base station, which serves as partial information about the weather

conditions at the various sites that they might choose to visit. To rover 1, wind-

felt-at-base (the observation feature) serves as an indication of the possibility of

rain-at-site-A (the world state feature). Assume that rover 1 has planned a policy

that is particularly sensitive to this observation, dictating that if it ever observes

any wind, it will not travel to visit site A for the rest of the day. More precisely, it

will not perform action begin-trip-to-site-A for any observation history containing

observation wind-felt-at-base. In planning its behavior in response to rover 1’s

policy, rover 2 considers the scenario where it begins its day observing wind at

base at 9:00 and then travels to site A, observing directly that rain-at-site-A=false

at 12:00. For this scenario, rover 1’s policy dictates that, due to the existence of

wind over base in the morning, it will not make a trip out to
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site A at noon. But rover 2 will not be able to perform this reasoning based solely

on world state (rain-at-site-A=false). Rover 2 will need to reason instead that,

given its observations of wind three hours ago, rover 1 also observed wind and

therefore should not be expected to visit (regardless of whether or not it is raining

at site A). The is because rover 1’s beliefs about the world state differ from rover

2’s beliefs.

Nair ensures that information about peer beliefs is not lost by augmenting the

classical belief state with a probability distribution over peer observation histories

(Nair et al., 2003):

btj
(
st, ~o 6=j

)
= Pr

(
st, ~o t6=j|~a t−1

j , ~o tj
)
,∀st ∈ S,∀~o t6=j ∈ Ω1 × ...× Ωj−1 × Ωj+1 × ...Ωj+1

(4.1)

Equation 4.1 shows the multiagent belief state vector bbbtj that agent j associates with a

given action-observation history ending at time t, where each component represents

the probability of a unique world state (st) and combination of unique peer observation

histories (~o t6=j = {~o ti ,∀i 6= j}). By maintaining a joint distribution over world state

and peer observation histories, agent j is able to keep track of its belief about the

world state as well as the likelihoods of other agents’ possible beliefs.

Use of any belief state representation requires the agent’s ability to compute and

update its belief state as it performs actions and receives observations. Using Nair’s

belief state update function (Nair et al., 2003), BSU(), agent j can compute the

individual components of its belief state as shown in Equation 4.2. The initial belief

state bbb0
j , conditioned on agent j’s as-of-yet empty observation history, is simply the

probability distribution of world start states dictated by the Dec-POMDP problem

description. Subsequent belief states bbbt+1
j are a function of previous belief state, local

action, and local observation.

bbb0
j = BSU (∅) = 〈Pr (s0)〉
bbbt+1
j = BSU

(
bbbtj, a

t
j, o

t+1
j

)
=
〈
Pr
(
st+1, ~o t+1

6=j |bbbtj, atj, o
t+1
j

)〉
=

〈∑
st∈S[btj(st,~o t6=j)·Pr(st+1|st,〈atj ,π 6=j(~o t6=j)〉)·Pr(ot+1

j ,ot+1
6=j |s

t,〈atj ,π 6=j(~o t6=j)〉,st+1)]
a normalization factor

〉
(4.2)

With every new action agent j takes and observation it receives, it can calculate

each belief state component as in Equation 4.2 by looping over all possible last world

states st, for each adding the product of the three terms in the numerator, and
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world state space S =
{RA : not-rain-at-site-A,
RA : rain-at-site-A}

Individual observation space Oi =
{N : no-clouds-seen-at-base,
C : clouds-seen-at-base}

bbb02

bbb12

bbb22

Figure 4.3: One possible belief state trajectory of rover 2 from Example 4.2.

normalizing (since the component probabilities should all sum to 1). Calculation of

these three terms is straightforward using the Dec-POMDP model and the fixed peer

policies. The first term is the probability that the world was in state st at the previous

time step and that the other agents had observed the subsequence of observations ~o t6=j
from times 0 to t equal to those in the respective belief state component (as dictated

by the previous belief state). The second term is the probability that the current

world state st+1 is equal to that of the respective belief state component, conditioned

on previous state and previous joint action composed of the action taken by j and the

set of actions dictated by the other agents’ fixed policies applied to their respective

observation histories2 (as computed using the Dec-POMDP transition function P ).

2 This dissertation, as with Nair’s work, considers and computes policies that are deterministic.
(For any finite-horizon Dec-POMDP, there exists a deterministic joint policy that achieves the same
value as the optimal randomized joint policy.) Under the assumption that each peer agent’s policy is
deterministic, it need not be conditioned on action-observation history, but only on observation history.
This is because action history is uniquely determined from each observation history by stepping
through the observations and selecting the deterministic action choice. Furthermore, computation
of belief state relies on the property that peer policies map their observations histories to actions
(πi : ~O 7→ A), as opposed to mapping belief states to actions. Even though agents are planning
their policies using the belief state representation, the dynamic programming algorithm Nair uses
to compute best response policies enumerates all reachable observation sequences, recording those

120



And the third term is the joint probability of agent j’s new observation ot+1
j and the

new set of observations for the other agents associated with the respective belief state

component conditioned on the previous world state and joint action (as in the second

term) and new world state. Through successive applications of its belief state update

function (Equation 4.2), agent j can compute a belief state bbbtj given any sequence

of actions and observations
{
a0
j , ..., a

t−1
j , o0

j , ..., o
t
j

}
. A simplified example of one such

belief state trajectory is pictured in Figure 4.3.

Computing the best-response policy boils down to solving the fully-observable

MDP defined over the space of belief states. Figure 4.3 shows just one path through

this MDP. In general, there will be a branch for each combination of action that agent

j can take and observation that agent j might receive. The reward signal R′ of the

belief-state MDP is equal to the expected immediate rewards that the team would

receive (given uncertainty of the true system state).

R′
(
bbbtj, a

t
j

)
=

∑
〈st,~ot6=j〉

[
bbbtj
(
st, ~ot6=j

)
·
∑

st+1∈S Pr
(
st+1|st,

〈
atj, π6=j(~o

t
6=j)
〉)
R
(
st,
〈
atj, π6=j(~o

t
6=j)
〉
, st+1

) ]
U∗
(
bbbtj, a

t
j

)
= R′

(
bbbtj, a

t
j

)
+
∑

ot+1
j ∈Ωj

[
Pr
(
ot+1
j |bbbtj, atj

)
· max
at+1
j ∈Aj

U
(
BSU

(
bbbtj, a

t
j, o

t+1
j

)
, at+1

j

)]
(4.3)

Equation 4.3, as derived by Nair et al. (2003), shows the calculation of immediate

reward R′(), which agent j can calculate by invoking the Dec-POMDP model’s reward

function R(). The value U∗ associated with each belief state and action pair is defined

recursively as the sum of the immediate rewards and future rewards obtained by

taking the optimal action in every subsequent belief state.

The belief state space is continuous, containing an infinite number of possible

distributions over world states. However, given that the Dec-POMDP has a finite

horizon and finite state, action, and observation spaces (as is the case in the class of

problems this thesis considers), there are a finite number of possible state transitions

sequences which resulted in each reachable belief state, and thereby computing a policy that is a
function of observation histories. Were peer policies defined over belief states and not observation
histories, computation of this term would become much more complicated, ultimately requiring
recursive invocation of peers’ belief state update functions, which in turn would require invocation of
their peers’ belief state update functions.
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and observations, and hence a finite number of reachable belief states. Nair’s best-

response solution algorithm takes advantage of this fact by expanding only those belief

states that are reachable.

Although there are a finite number of belief states, the belief state vector itself

becomes computationally expensive to maintain as the problem size increases. A belief

state encountered by agent j at time t contains |S| ·
∏

i 6=j |Ωi|t components. Under

the assumption that all agents’ individual observation spaces are bounded by |Ωi|,
the worst-case space complexity is O

(
|S| · (|Ωi|t)n−1

)
: exponential in the number of

agents (as well as the problem time horizon). This exponential dependence carries over

to the time complexity of any solution algorithm that performs component-wise belief

updates (as in Equation 4.2, and depicted in Figure 4.3). Given that this computation

is all directed towards computing a single agent’s (best-response) policy, and the joint

policy space is exponential in the number of agents, the cost of finding optimal joint

policies in this manner is potentially doubly-exponential in the number of agents (in

the worst case).

4.2.2 Condensed Belief State for TD-POMDP Agents

The general best-response belief state representation discussed in the previous

section, while tractable for small problems involving two agents (as was demonstrated

by Nair et al. (2003)), does not scale well to teams of three or more agents (as was

shown empirically by Varakantham et al. (2009)). Though complete, its representation

contains a significant amount of belief information that may be irrelevant for an agent

in a weakly-coupled system. The intuition is that if most peer decisions have no

bearing on the agent’s local decision problem, then the agent need not distinguish

most peer observation histories, nor distinguish most state information relating to

peers’ activities. The structured agent coupling of the TD-POMDP model leads us to

define a representation of belief state that is more compact for such weakly-coupled

cases, and whose compactness depends upon on the scope of interaction. In the

extreme case of independent agents, the new belief state representation is equivalent

to the traditional single-agent POMDP belief state (Smallwood & Sondik, 1973). This

is accomplished by representing only that information which is necessary to make

optimal decisions.

First, consider the observational information in Equation 4.1: Pr
(
~o t6=j|~o tj ,~a t−1

j

)
.

For the general Dec-POMDP agents, belief state includes a distribution over peer

observation histories because of potential correlation between local observations and

peer observations (as was the case for the rover agents in Example 4.2). Although the
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general Dec-POMDP allows for arbitrary correlation of agent and peer observations,

the TD-POMDP makes explicit the structure with which observations can be correlated.

By Definition 3.5, each individual TD-POMDP agent j’s observation is a function

of its local state variables and local action. By Equation 3.3 in Definition 3.5, the

only way that j’s observation may be correlated with a peer i’s observation is if there

are state features common to both i’s and j’s local states. Moreover, the values of

these mutually-modeled features are the only information that links the two agents’

observations oi and oj . Instead of maintaining a distribution over all peer observation

histories, a TD-POMDP can instead maintain a distribution over just those mutually-

modeled state feature values. This is all that a TD-POMDP agent needs in order to

make distinctions between different peer observations (based on its own observations).

The other information represented by the general best-response belief state (Equa-

tion 4.1) is the world state distribution: Pr
(
st|~o tj ,~a t−1

j

)
. This conveys the information

necessary to predict how the system will progress from one time step to the next. For

a TD-POMDP agent j, relevant state features are contained within its local state sj.

The consequences of its action are both determined solely by local state feature values

and applied solely to (changes in) local state feature values. In planning its actions,

maintaining a distribution over the subset of world state sj ∈ s (in conjunction with

the distribution of mutually-observed state feature histories) is enough to optimize

its behavior given the fixed policies of its peers. This leads us to the following rep-

resentation of belief state, which we prove in Section 4.2.3 sufficiently summarizes a

TD-POMDP agent’s action-observation history.

Definition 4.3. The TD-POMDP belief state for agent j, denoted bbbj , represents

a joint probability distribution over current local state sj and histories of mutually-

modeled (Def. 3.13) features m̄j:

btj
(
stj, ~m

t−1
j

)
= Pr

(
stj, ~m

t−1
j |~a t−1

j , ~o tj
)

(4.4)

The mutually-modeled features m̄j are the only world state features that may be

mutually observable (Def. 3.2) because each is modeled in some other agent’s local

state, and the other agents’ observations do not depend on state features outside of

their local states, respectively. However, one should note that these features may be

only partially observable, or equivalently, indirectly observable (from observations of

dependent locally-controllable state features), or (in the degenerate case) completely

unobservable. Each feature f in tuple m̄j fits into one of the following categories:

1. f is locally-controlled by agent j and thus modeled as a nonlocally-controllable
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feature by some other agent i.

2. From j’s perspective f is nonlocally-controlled, and thus modeled by exactly one

other agent i as a locally-controllable feature.

3. f is an unaffectable feature that impacts both i’s and j’s local state transitions.

The novelty of the TD-POMDP belief state representation is its exploitation of

weakly-coupled problem structure. Unlike Nair’s belief state representation, which

is exponential in the number of agents, the length of the vector in Equation 4.4 is

exponential in the number of mutually-modeled state features irrespective of the

number of agents. For weakly-coupled problems where several agents interact through

a (proportionally) small number of world features, this new belief state representation

will be much more manageable than the general belief state.

The TD-POMDP belief state is updated in the same fashion as was the general

belief state (described in Equation 4.2). The new belief state update function is as

follows:

bbbt+1
j = BSU

(
bbbtj, a

t
j, o

t+1
j

)
=
〈
Pr
(
st+1
j , ~mt

j|bbbtj, atj, ot+1
j

)〉
=

〈
Oj(ot+1

j |atj ,s
t+1
j )

∑
st
j
−m̄t

j
PLj (l̄t+1

j |stj ,atj)PUj (ūt+1
j |stj)Pr(n̄

t+1
j |~mtj)btj(stj , ~m

t−1
j )

Pr(ot+1
j |~a t−1

j ,~o tj ,a
t
j) : a normalization factor

〉
(4.5)

I present a detailed derivation of Equation 4.5 in Section 4.2.3, and describe here

the individual terms, contrasting them with those of the general belief state update

function (Equation 4.2). The first term, Oj

(
ot+1
j |atj, st+1

j

)
, which is the probability

of the new observation given the action taken and the world state encoded in the

respective component of the belief state vector, roughly corresponds to the third term

in Equation 4.2. Due to the factored TD-POMDP observations, local observation is

not correlated with peer observations except in the values of the latest shared state

features, so need not depend on other agents’ actions nor observations, nor on world

features outside of the local state.

The second, third, and fourth terms, PL
j

(
l̄t+1
j |stj, atj

)
PU
j

(
ūt+1
j |stj

)
Pr
(
n̄t+1
j |~mt

j

)
,

appear inside of a summation over possible last values of unshared features (stj − m̄t
j).

The product of these terms constitutes the probability of new local state given last

local state, mutually-modeled history, and action: Pr
(
st+1
j |stj −mt

j, ~m
t
j, a

t
j

)
, but have

been factored into individual transition probability components according to Equation

3.10. The product roughly corresponds to the second term in Equation 4.2, but here
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need only represent the probability of new local state, and is consequently conditioned

on a different set of past state and action information.

The last term, btj
(
stj, ~m

t−1
j

)
, which too appears inside the summation, represents

prior probability information encoded in the previous belief state, serving the same

purpose as the first term in Equation 4.2, but invoking different set of belief state

information. This prior gets multiplied by the product of the previous three terms

to compute Pr
(
st+1
j |bbbtj, atj

)
. Just as in Equation 4.2, the denominator of Equation

4.5 can be treated as a constant factor for normalization since the variables that it is

conditioned on take on the same value for all nonzero components of the bbbt+1
j .

Most of the new BSU() terms are straightforward to compute from the TD-

POMDP problem description (via application of Oj(), P
L
j (), and PU

j ()). The only

exception is Pr
(
n̄t+1
j |~mt

j

)
. This is also the only term that that depends upon peers’

fixed-policy behavior. I will discuss this term further in Section 4.2.5 and Chapter 6.

For the moment, assume this term is efficiently computable given the TD-POMDP

model and the other agents’ fixed policies.

Using the new belief state update function, agents maintain a different belief state

representation, but the transition structure of the underlying MDP is congruent to

that of Nair’s belief state MDP. That is, each possible action-observation pair maps

to a transition in the belief state MDP. The difference between the two representations

is that Nair’s belief state update function might group different action-observation

sequences (together in one belief state) than would the TD-POMDP belief state

update function. Let us rewrite the belief state MDP’s reward function R′() (from

Equation 4.3) using our new belief state representation:

R′j
(
bbbtj, a

t
j

)
=

∑
〈stj , ~mt−1

j 〉

[
btj
(
stj, ~m

t−1
j

) ∑
st+1
j ∈Sj

[
PL
j

(
l̄t+1
j |stj, atj

)
PU
j

(
ūt+1
j |stj

)
Pr
(
n̄t+1
j |~mt

j

)
·Rj

(
atj, s

t+1
j =

〈
l̄t+1
j , ūt+1

j , n̄t+1
j

〉) ]]
(4.6)

Although the new belief state MDP reward function R′() has roughly the same

form as that described in Equation 4.3, its output differs in one important dimension.

Instead of associating joint rewards with the belief states and actions, the new

reward function takes advantage of the TD-POMDP’s reward decomposition to assign

immediate local values that are independent of the other agents’ behavior (as given by

Rj()). The repercussion of using this local reward valuation instead of a global reward
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valuation is that the best-response policy of agent j maximizes its expected local

utility instead of the expected joint utility. As proven in Chapter 6, this is satisfactory

given that the encompassing search process entails all agents computing local best

responses and combining their local utilities to evaluate each viably-optimal point in

the joint policy space.

While it was straightforward to reason about peers’ behavior and to see how their

fixed policies were used in the general best-response belief state update, transition, and

valuation from Section 4.2.1, it is less evident using the new belief state representation.

However, we have isolated a single term common to the reward function (Equation 4.6)

and belief state update function (Equation 4.5) that is dependent on nonlocal behavior:

Pr
(
nt+1
j |~mt

j

)
. As developed in the next section, this term expresses the influence that

is exerted on agent j by the other agents as they execute their policies. All other

pieces of agent j’s best-response model are independent of its peers’ policies. Moreover,

all other terms can be computed using only the local portions of the TD-POMDP

model, thereby maintaining a separation of the individual agents’ (potentially-private)

information.

The primary benefit of this TD-POMDP belief state representation is its compact-

ness and scalability. By taking advantage of the TD-POMDP’s useful properties such

as factorization of state observations and rewards that express agents’ independence,

and structured transitions that express their weakly-coupled dependence on their

peers, we are able to derive a best-response model that is more efficient to maintain.

Whereas the general best-response belief state representation grows exponentially with

the number of agents, the worst-case space complexity of this new representation is

O (|Sj| · |Mj|t) (where Mj represents the domain of agent j’s shared feature values)

irrespective of the number of agents. Although a distribution of histories of shared

features is maintained, this is expected to be much more compact than representing a

joint distribution of observation histories for several other agents (which was main-

tained by the general best-response model). Together with the reduction in space

complexity of the TD-POMDP best reponse belief state, the same reduction in time

complexity ensues for any policy formulation method that performs component-wise

belief state updates.

Furthermore, if the problem exhibits local full observability (Definition 2.8), the

belief state representation need not represent a probability distribution. That is, if

each agent’s current observation fully dictates the current local state, all that must

be maintained is a unique history and not a probability distribution over all possible

histories (since only one history will have positive probability).
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4.2.3 TD-POMDP Belief State Sufficiency

Here, I prove the claim that the TD-POMDP agent belief state representation

presented in Definition 4.3 sufficiently summarizes a TD-POMDP agent j’s action-

observation history a0....ot. Before descending into the proof, I begin with a supporting

definition and lemma.

Definition 4.4. A belief state vector bbbtj is a sufficient statistic (for making predic-

tions) if it encodes all of the information gained by agent j as it executes from time 0

to time t required for making predictions about future information that will be gained

after time t.

Lemma 4.5. If, by maintaining a belief state vector bbbtj and forgetting its past ac-

tions and observations
〈
~a t−1
j , ~o tj

〉
, agent j can accurately evaluate all future action-

observation probabilities, then bbbtj is a sufficient statistic:

bbbtj sufficient

⇐⇒
∀
{
t ≤ T, k ≤ (T − t+ 1),~a t+k−1

j , ~o t+kj

}
,

P r
(
ot+k+1
j |~a t+k−1

j ,
〈
~o t+kj , at+kj

〉)
= Pr

(
ot+k+1
j |bbbtj,

〈
a tj , o

t+1
j , ..., a t+k−1

j , ot+kj

〉
, at+kj

)
Proof. I prove this lemma by analyzing how information is gained by agent j. Prior

to execution, j has its decision model (the TD-POMDP, in this case) and promised

peer policies. The information that j obtains during execution from times 0 to t is

that it performed a series of actions ~a t−1
j and received a series of observations ~o tj .

Subsequently, from time t to time t+ 1, the only additional information gained is that

action atj resulted in observation ot+1
j . A complete information state would therefore

be a record of all actions taken and observations received.

If, as the premise of the lemma states, j can accurately evaluate future action-

observation probabilities, then j can accurately evaluate the probabilities of all future

information states. Any prediction that j might want to make must depend only on

information state (and the prior information contained in the decision model and

peer policies). Therefore j can make every prediction about future information (as

accurately as it could have by recording its information state
〈
~a t−1
j , ~o tj

〉
exactly). By

definition, bbbtj is a sufficient statistic.

The result of Lemma 4.5 can be stated simply as follows. Because the agent

interacts with the system only by performing actions and receiving observations,

(probabilistically) predicting future action-observations allows prediction of anything

else that the agent could dream of predicting. In other words, agent j’s belief state
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MDP constitutes a generative model of future action-observation consequences. As

such, this model suffices for the agent to plan optimal decisions given fixed policies

of its peers. In proving sufficiency of the TD-POMDP belief state, we will also have

proven that the TD-POMDP belief-state methodology enables computation of optimal

local best-response policies.

Theorem 4.6. The TD-POMDP belief state (Def. 4.3), bbbtj =
〈
Pr
(
stj, ~m

t−1
j |~a t−1

j , ~o tj
)〉

,

is a sufficient statistic.

Proof. By Lemma 4.5, to prove that the belief state representation bbbtj is a sufficient

statistic, it suffices to prove that for any action-observation history
〈
~a t−1
j , ~o tj

〉
, the

probabilities of all future observations obtained by taking any future actions (given

action-observation history) can be determined directly (and exactly) from the belief

state vector. I prove this by reverse induction over history length t:

Base Case (t = T ):

At the problem horizon (time T ), agent j has taken all of the actions and received

all of the observations already. Hence, there are no future predictions to be made.

Trivially, bbbTj is a sufficient statistic for predicting the empty set of probabilities of

future action-observation consequences.

Inductive Step:

Next, we derive that if bbbt+1
j is sufficient for computing all future action-observation prob-

abilities given
〈
~a tj , ~o

t+1
j

〉
, this implies that bbbtj must also be sufficient (given

〈
~a t−1
j , ~o tj

〉
).

The following equation expresses the belief state vector at time t+ 1.

bt+1
j

(
stj, ~m

t+1
j

)
= Pr

(
st+1
j , ~mt

j|~a tj , ~o t+1
j

)
= Pr

(
st+1
j , ~mt

j|~a t−1
j , ~o tj , a

t
j, o

t+1
j

)
by Definition 4.3, and expansion of the action-observation history vectors

=
Pr
(
ot+1
j , st+1

j , ~mt
j,~a

t−1
j , ~o tj , a

t
j

)
Pr
(
ot+1
j ,~a t−1

j , ~o tj , a
t
j

)
by definition of conditional probability

=
Pr
(
ot+1
j |st+1

j , ~mt
j,~a

t−1
j , ~o tj , a

t
j

)
Pr
(
st+1
j , ~mt

j,~a
t−1
j , ~o tj , a

t
j

)
Pr
(
ot+1
j |~a t−1

j , ~o tj , a
t
j

)
Pr
(
~a t−1
j , ~o tj , a

t
j

)
by two applications of the definition of conditional probability

=
Oj

(
ot+1
j |atj, st+1

j

)
Pr
(
st+1
j , ~mt

j,~a
t−1
j , ~o tj , a

t
j

)
Pr
(
ot+1
j |~a t−1

j , ~o tj , a
t
j

)
Pr
(
~a t−1
j , ~o tj , a

t
j

)
by definition of the TD-POMDP local observation function Oj (Def. 3.5)
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=
Oj

(
ot+1
j |atj, st+1

j

)∑
stj∈Sj

Pr
(
st+1
j , stj, ~m

t−1
j ,~a t−1

j , ~o tj , a
t
j

)
Pr
(
ot+1
j |~a t−1

j , ~o tj , a
t
j

)
Pr
(
~a t−1
j , ~o tj , a

t
j

)
by the law of total probability

=
Oj

(
ot+1
j |atj, st+1

j

)∑
stj
Pr
(
st+1
j |stj, ~mt−1

j ,~a t−1
j , ~o tj , a

t
j

)
Pr
(
stj, ~m

t−1
j |~a t−1

j , ~o tj , a
t
j

)
Pr
(
ot+1
j |~a t−1

j , ~o tj , a
t
j

)
by applications of the definition of conditional probability, and cancellation

=
Oj

(
ot+1
j |atj, st+1

j

)∑
stj
Pr
(
st+1
j |stj, ~mt−1

j ,~a t−1
j , ~o tj , a

t
j

)
Pr
(
stj, ~m

t−1
j |~a t−1

j , ~o tj ,��SSa
t
j

)
Pr
(
ot+1
j |~a t−1

j , ~o tj , a
t
j

)
because current state is independent of future action

=
Oj

(
ot+1
j |atj, st+1

j

)∑
stj
Pr
(
st+1
j |stj, ~mt−1

j ,~a t−1
j , ~o tj , a

t
j

)
btj
(
stj, ~m

t−1
j

)
Pr
(
ot+1
j |~a t−1

j , ~o tj , a
t
j

) (4.7)

by substitution of the appropriate belief state component (Definition 4.3)

We can further simplify Equation 4.7 by targeting the second term in the numerator,

which specifies the conditional probability of the local state at time t+ 1 dependent

on actions, observations, and various feature values at previous time steps. This term

may be expanded as follows by taking into account the TD-POMDP’s factorization of

local state and local transition developed in Section 3.2.2. Recall that local state sj is

composed of locally-controllable features l̄j, unaffectable features ūj, and nonlocally-

controllable features n̄j.

Pr
(
st+1
j |stj, ~mt−1

j ,~a t−1
j , ~o tj , a

t
j

)
= Pr

(
l̄t+1
j , ūt+1

j , n̄t+1
j |stj, ~mt−1

j ,~a t−1
j , ~o tj , a

t
j

)
= Pr

(
l̄t+1
j |ūt+1

j , n̄t+1
j , stj, ~m

t−1
j ,~a t−1

j , ~o tj , a
t
j

)
Pr
(
ūt+1
j , n̄t+1

j |stj, ~mt−1
j ,~a t−1

j , ~o tj , a
t
j

)
by application of Bayes’ rule

= PL
j

(
l̄t+1
j |stj, atj

)
Pr
(
ūt+1
j , n̄t+1

j |stj, ~mt−1
j ,~a t−1

j , ~o tj , a
t
j

)
by substitution of the factored local feature transition function PL

j (Eq. 3.10)

= PL
j

(
l̄t+1
j |stj, atj

)
Pr
(
ūt+1
j |n̄t+1

j , stj, ~m
t−1
j ,~a t−1

j , ~o tj , a
t
j

)
Pr
(
n̄t+1
j |stj, ~mt−1

j ,~a t−1
j , ~o tj , a

t
j

)
by application of Bayes’ rule

= PL
j

(
l̄t+1
j |stj, atj

)
PU
j

(
ūt+1
j |stj

)
Pr
(
n̄t+1
j |stj, ~mt−1

j ,~a t−1
j , ~o tj , a

t
j

)
by substitution of the unaffectable feature transition function PU

j (Eq. 3.10)

= PL
j

(
l̄t+1
j |stj, atj

)
PU
j

(
ūt+1
j |stj

)
Pr
(
n̄t+1
j |~mt

j

)
(4.8)
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The last step in the derivation of Equation 4.8 relies on the property that, given a

history over mutually-modeled feature values ~mt
j, new nonlocally-controlled feature

values n̄t+1
j are conditionally independent of remaining local state feature values, local

observation history, and local action history. It is straightforward to reason that n̄t+1
j is

independent of the latest local action. Since each feature in n̄t+1
j is controlled by some

other agent i, its value would depend only on i’s latest action ati (dictated by a fixed

policy over i’s past observations ~o ti ) and i’s latest values of state features sti, none of

which can be affected by atj until the next time step t+1 at the earliest. Justification of

the other conditional independencies requires an intimite look at the factored structure

of TD-POMDP feature transitions (described formally in Section 3.2.2).

Relationships among TD-POMDP variables may be represented graphically by

2-stage DBN in Figure 4.4, which divides all of the world state features into five distinct

sets. The lower-most state variable, s⊆j, represents those (unshared) features from

agent j’s local state which do not appear in any other agent’s local state. Working

our way upwards, agent j’s mutually-modeled features m̄j appear within the grey box,

and are further decomposed into shared locally-controlled features l̄j ⊆ m̄j, shared

unaffectable features ūj ⊆ m̄j, and shared nonlocally-controlled features n̄j ⊆ m̄j.

The state features that remain are features that appear in other agents’ local states

but not j’s local state and are represented above the grey box as variable s 6=j. The

observations are also divided into agent j’s observations oj and those of the other

agents o6=j . Actions are similarly divided, with all other agents’ policies assumed to be

fixed (because agent j is the one computing a best response). The connecting arrows

follow from the definitions of the TD-POMDP state transitions and local observation

function developed in Sections 3.2.1–3.2.2.

Captured within the DBN in Figure 4.4 are a number of different conditional

independence relationships (Russell et al., 1996). The relationship that we will take

advantage of is one of direction-dependent separation (Pearl, 1988), or d-separation

for short. In review, a directed path from a node x to a node y is blocked given a

set of evidence nodes E if the path contains a node in E. A set of evidence nodes E

d-separates a node x from another node y if all paths between x and y are blocked.

If E d-separates x from y, y is conditionally independent of x given E. From the

shading of Figure 4.4, it is plain to see that every path leading from any node in

{s⊆jt,~a t−1
j , ~o tj , a

t
j} to nt+1

j to nt+1
j passes through evidence set ~mt

j (highlighted in grey).

Hence, every node in the set {s⊆jt,~a t−1
j , ~o tj , a

t
j} is d-separated from nt+1

j by evidence

set ~mt
j (highlighted in grey). This implies the conditional independence relationship:

Pr
(
n̄t+1
j |stj, ~mt−1

j ,~a t−1
j , ~o tj , a

t
j

)
= Pr

(
n̄t+1
j |~mt

j

)
. And therefore, the last step in the
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Figure 4.4: A DBN expressing CI relationships among TD-POMDP variables.

derivation of Equation 4.8 holds.

Intuitively, this conditional independence relationship is made possible by the

nonconcurrency of agent influence. There is no path leading from action atj to nt+1
j

because agent j cannot influence the transition probabilities of other agents’ locally-

controlled features until the next time step. This is reflected in the path leading from

at−2
j to lt−1

j , and continuing on to st6=j . Similarly, agent j cannot influence other agents’

actions until first effecting a change in its local feature values.

Plugging Equation 4.8 back into Equation 4.7 results in the following simplified

expression for belief state bt+1
j :

bt+1
j

(
st+1
j , ~mt

j

)
= Pr

(
st+1
j , ~mt

j|~a tj , ~o t+1
j

)
=
Oj

(
ot+1
j |atj, st+1

j

)∑
stj−m̄tj

PL
j

(
l̄t+1
j |stj, atj

)
PU
j

(
ūt+1
j |stj

)
Pr
(
n̄t+1
j |~mt

j

)
btj
(
stj, ~m

t−1
j

)
Pr
(
ot+1
j |~a t−1

j , ~o tj , a
t
j

)
(4.9)

The first thing to note is that the denominator in Equation 4.9 is equal for all

components of the vector (because all are conditioned on the same action-observation

history). Thus, it can be treated as a normalizing constant which is equal to the sum,
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over all components, of their respective numerators:

Pr
(
ot+1
j |~a t−1

j , ~o tj , a
t
j

)
=∑

〈st+1
j , ~mtj〉

[
Oj

(
ot+1
j |atj, st+1

j

) ∑
stj−m̄tj

PL
j

(
l̄t+1
j |stj, atj

)
PU
j

(
ūt+1
j |stj

)
Pr
(
n̄t+1
j |~mt

j

)
btj
(
stj, ~m

t−1
j

)]
(4.10)

Turning back to Equation 4.9, determining belief state at time t+ 1 given action and

observtion history only involves computations of the five terms in the numerator. The

first three terms are simply applications of the TD-POMDP agents’ local observation

function and local transition functions (contained in the TD-POMDP model). The

fourth term is not so straightforward to calculate, but it does not depend on knowledge

of the action-observation history. Nor does the fifth term. In fact, the numerator

can be computed using only knowledge of the previous belief state btj and without

keeping track of the action-observation history. That is, next belief state is a function

of current belief state and next action-observation pair. Equation 4.9 thereby serves

as a belief state update function for TD-POMDP agents. Further, the derivation of

Equation 4.9 implies that the process as defined over belief states is Markovian.

Recall that, for the purposes of this proof, we assumed that bbbt+1
j was sufficient for

determining probabilities of action-observation pairs from time t+1 onward. Under this

assumption, bbbtj must be sufficient for determining probabilities of action-observation

pairs from time t onward. Such predictions at time t (whereby an action a tj induces

an observation o t+1
j ) are performed by Equation 4.10, which is based solely on belief

state bbbtj without the need to remember past actions and observations. Predictions

at time t+ 1 and beyond may be made by applying Equation 4.9 to determine the

next belief state, which can in turn (given our inductive assumption) can be used to

determine all action-observation probabilities from times t+ 1 to the end of horizon

T . Thus, our inductive step holds. This completes the proof that for all values of t, bbbtj

is a sufficient statistic for the action-observation history
〈
~a t−1
j , ~o tj

〉
.

The implication is that agent j can make optimal decisions by basing its action

choices solely on the probability distribution expressed by Equation 4.4. As it takes

actions and receives observations, it can safely forget past actions and observations

as long as it updates its new belief state from its previous belief state with every

new observation (using Equation 4.9). Although every action-observation history

maps to a single belief state, not every representable belief state (of which there are

infinitely many) corresponds to an action-observation history. Just as with the general

best-response belief state representation (Sec. 4.2.1), several histories may map to
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the same TD-POMDP belief state. In other words, the reachable belief state space

is potentially significantly smaller than the number of possible action-observation

histories.

4.2.4 Complexity of Best Response Computation

In Section 4.2.2, my comparison against the general best-response belief state

focused on the efficiency of updating the condensed TD-POMDP belief state represen-

tation, a result based solely on the relationship between the number of components

in the belief state vector and the number of shared state features. There is yet

another distinct, and arguably more significant computational advantage to using the

TD-POMDP belief state relating to the overall complexity of planning best response

policies. Recall that the purpose of instantiating the belief state formalism is to

facilitate the solving of a single-agent POMDP model (as portrayed in Figure 4.2).

That is, once an agent’s peers’ policies have been fixed, the peers become anonymous

facets of a single-agent environment, and bbbtj encodes the agent’s belief about the state

of the single-agent POMDP that represents that environment. Using the condensed

representation I developed, the best-response POMDP need only model a subset of

those features from the original TD-POMDP world state.

To see this, let us rewrite the TD-POMDP belief state update equation (Eq. 4.5),

replacing the belief state component index with a variable xtj =
〈
stj, ~m

t−1
j

〉
.

bt+1
j

(
xt+1
j

)
= BSU

(
bbbtj, a

t
j, o

t+1
j

)

=

Oj

(
ot+1
j |atj, st+1

j

) ∑
stj−m̄tj

PL
j

(
l̄t+1
j |stj, atj

)
PU
j

(
ūt+1
j |stj

)
Pr
(
n̄t+1
j |~mt

j

)
btj
(
xtj
)

a normalizing factor

by substitution of xtj=〈stj , ~mt−1
j 〉 into Eq. 4.5

=
Oj

(
ot+1
j |atj, st+1

j

)∑
stj−m̄tj

Pr
(
st+1
j |stj, atj, ~mt−1

j

)
btj
(
xtj
)

a normalizing factor

by collection of transition terms, given Eq. 3.10

=
Oj

(
ot+1
j |atj, st+1

j

)∑
stj−m̄tj

Pr
(
st+1
j , ~mt

j|stj, atj, ~mt−1
j

)
btj
(
xtj
)

a normalizing factor

because ~mtj is included in the conditional information {stj , ~mt−1
j }

(4.11)
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=
Oj

(
ot+1
j |atj, st+1

j

)∑
stj−m̄tj

Pr
(
xt+1
j |stj, atj, ~mt−1

j

)
btj
(
xtj
)

a normalizing factor

by substitution of xt+1
j =〈st+1

j , ~mtj〉

=
Oj

(
ot+1
j |atj, st+1

j

)∑
〈stj , ~mt−1

j 〉 Pr
(
xt+1
j |stj, atj, ~mt−1

j

)
btj
(
xtj
)

a normalizing factor

because, for the additional combinations of values of 〈stj , ~mt−1
j 〉 considered

by the summation, Pr(xt+1
j |stj ,atj , ~m

t−1
j )=0

=
Pr
(
ot+1
j |atj, st+1

j , ~mt
j

)∑
〈stj , ~mt−1

j 〉 Pr
(
xt+1
j |stj, atj, ~mt−1

j

)
btj
(
xtj
)

a normalizing factor

by Def. 3.5 and the conditional independence of observation ot+1
j on past

state information given 〈atj ,st+1
j 〉

=
Pr
(
ot+1
j |atj, xt+1

j

)∑
xtj
Pr
(
xt+1
j |xtj, atj

)
btj
(
xtj
)

a normalizing factor

by substitutions of xtj

(4.12)

Comparing the simplification in Equation 4.11 with the single-agent POMDP belief

state (reviewed in Section 2.2.2.2), we see that the TD-POMDP best-response belief

state is identical to that of a single-agent POMDP with state xtj =
〈
stj, ~m

t−1
j

〉
. More-

over, the TD-POMDP best-response model is itself a POMDP with state
〈
stj, ~m

t−1
j

〉
,

a subset of the world state representation st of the joint decision model (Def. 3.15).

Observation 4.7. The state of the single-agent POMDP used for the TD-POMDP

best response need only represent features
{
stj, ~m

t−1
j

}
.

Combining POMDP complexity theory from Section 2.2.3 with Observation 4.7, I

deduce the following result.

Observation 4.8. In the worst case, planning a best response for a TD-POMDP

agent j requires time exponential in ‖Sj‖ · ‖Mj‖T−1, denoted EXP
(
‖Sj‖‖Mj‖T−1

)
.

Simply put, the size of the state space of the best response POMDP is at most

‖Sj‖ · ‖Mj‖T−1, and all known (general POMDP) solution algorithms have a worst-

case time complexity exponential in the size of state space.

A stronger result holds for TD-POMDP problems with local full observability

(Definition 2.8), wherein the belief state encodes the exact value of
〈
stj, ~m

t−1
j

〉
(instead

of a probabilistic distribution over values). For such problems, the best-response
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model is an MDP, for which the complexity is known to be polynomial in the size of

the state space.

Observation 4.9. For a locally-fully observable TD-POMDP, the worst-case time

to plan agent j’s best response is polynomial in ‖Sj‖ · ‖Mj‖T−1.

Observation 4.9 follows directly from the MDP’s polynomial complexity (Papadimitriou

& Tsitsiklis, 1987), a result reviewed in Section 2.2.3.

Just like the size of a TD-POMDP best-response belief state, the complexity of a

TD-POMDP agent’s best-response computation depends upon the number of shared

state features ‖m̄j‖ and the time horizon T but not necessarily on the amount of

state information for the entire team of agents. For problems in which the world state

space grows exponentially with the number of agents, I expect the computational

savings afforded by the TD-POMDP best response model to be substantial, enabling

scaling of the best response computation to larger problems with more agents than

was possible with the general best response representation.

4.2.5 Influence Information

Aside from the complexity of local planning reasoning, another benefit of the

TD-POMDP belief state is that it distinguishes nonlocal information dependent on

other agents’ policies from local information independent of other agents’ policies.

The nonlocal information serves as an abstraction of peers’ policies and, as I develop

in Section 4.5, facilitates an efficient partitioning of the nonlocal policy space into

impact equivalence classes (Def. 3.45).

The only component of a TD-POMDP agent’s best-response model (Section 4.2.2)

that is dependent on the policies of the agent’s peers is one term, Pr
(
n̄t+1
j |~mt

j

)
, found

in both the transition probabilities (Eq. 4.5) and the reward function (Eq. 4.6) of the

best-response POMDP. As such, the probability distribution Pr
(
n̄t+1
j |~mt

j

)
represents

exactly the information that j needs (prior to execution) in order to model (and

compute best response policies to) planned behavior of its peers. All of the other

information required for best-response decision making is contained within j’s local

model (Def. 3.16) and is independent of other agents’ decisions.

The consequences of a peer agent i’s decisions with respect to j manifest themselves

exclusively in the values of Pr
(
n̄t+1
j |~mt

j

)
. As such, we call Pr

(
n̄t+1
j |~mt

j

)
the influence

of agent j’s peers on agent j. By altering its plans, a peer i might change its influence,

in turn changing j’s best response.
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4.3 Characterization of Transition Influences

In the last section, I derived a condensed representation of belief state for TD-

POMDP agents, deriving a local best response model and contrasting the size of its

representation and the computational complexity of its employment (for formulating

best responses) with those of the general best-response belief state representation.

Another important distinction is that the TD-POMDP best response model is not

seeded with fixed peer policies, but instead with fixed influences. That is, in order to

compute a best response to agent i’s policy πi, agent j may not need to know all the

details of πi (which were necessary when using the general belief-state representation

in Section 4.2.1). Instead it only needs to know the influence of πi.

Definition 4.10. The influence of agent i’s policy πi on agent j, denoted Γjπi , is

information summarizing πi that is sufficient for agent j to plan a best response

π∗j (πi, π̄K) to πi (and the policies π̄K of i’s other peers K):

∀j,∀π̄K ∈ ×k∈(N−{i,j})Πk,
[
π∗j
(
Γjπi , π̄K

)
= π∗j (πi, π̄K)

]
.

The objective of influence-based abstraction is to reduce the amount of information

that agents need to exchange and coordinate over (during planning). By abstracting

away inessential details of agent i’s policy πi, Γjπi should compactly encode the conse-

quences of i’s behavior as it relates agent j’s decisions. With such an abstraction, agent

i need not broadcast its full policy containing a multitude of decisions (exponential

in the number of possible sequences of observations), nor disclose intimate details of

plans that have no bearing on j’s decisions.

Figure 4.5 depicts the usage of the influence-based abstraction, wherein agent j’s

best response calculation takes as input the influence Γjπi abstracted from peer policy

πi and returns agent j’s consequent optimal local policy π∗j
(
Γjπi
)
.

𝜋𝑖

𝑗  𝜋𝑗
∗ 𝜋𝑖

𝑗  𝜋𝑖 
policy influence 

best response 
computation 

Influence 
abstraction 

Figure 4.5: Abstracting influences from policies.

In the context of TD-POMDP agent coordination, the “best response” block refers to

the solving of the POMDP model described in Sections 4.2.2-4.2.4, whereas details of

the “influence abstraction” block are presented later on in Chapter 5. The focus of this

section is on the identification of the content and structure of influence information.
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The concept of influence-based abstraction is quite general, deriving inspiration

from work in multiagent classical planning (Durfee & Lesser, 1991; Smith, 1980; Tambe,

1997; Xuan & Lesser, 1999) as well as methodologies for solving other specialized

classes of Dec-POMDPs (Becker et al., 2004a; Musliner et al., 2006). And though

the discussion here will remain centered around TD-POMDP agents’ influences, the

development of characteristics and formulations of influence models that follow may

be more broadly applicable. This dissertation constitutes the first endeavor at a

general characterization of influence in the context of sequential decision making,

which subsumes several related influence models (noted and cited where appropriate).

In the subsections that follow, I systematically categorize influences, revealing

a language through which agents can convey the policy information essential to

coordination. My development of influence terminology culminates, in Section 4.3.5,

with a formal characterization of a complete influence model for TD-POMDP agents.

4.3.1 Transition Influences

In the TD-POMDP, the only way that agent i can impact j is through the

manipulation of nonlocal features. As such, information about the expected transitions

of nonlocal features sufficiently summarizes πi. Let us call this particular type of

influence a transition influence.

Definition 4.11. The transition influence of TD-POMDP agent i’s policy πi on

TD-POMDP agent j’s nonlocal feature njx, is a probability distribution Γjπi (njx) =〈
Pr(nt+1

jx |...)
〉

that serves as a sufficient summary of πi for j to predict the (probability

distribution over) values of nt+1
jx for any action-observation history

〈
~a t−1
j , ~o tj , a

t
j

〉
that

j may encounter.

By representing influences of peers’ policies using probability distributions, agents

can straightforwardly construct transition models for each of their nonlocal features.

In general, modeling the transitions of a Dec-POMDP state feature would require a

transition probability for every value of the feature conditioned on every feature of the

world state and every joint action. However, given the factorization of TD-POMDP

state, modeling the transitions of a TD-POMDP agent’s nonlocal feature often requires

substantially less information.
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Example 4.1 (continued). Turning back to the 2-agent problem shown in Figure

4.1, consider the influence of rover 5’s policy on rover 6, which may be modeled

using a transition influence Γjπi (site-C-prepared) =
〈
Pr(site-C-preparedt+1|...)

〉
.

In this particular problem, rover 6 does not need a complete probability distribution

that is conditioned on all features. In fact, the only features that rover can use to

predict the value of site-C-prepared are time and site-C-prepared itself. Although

site-C-prepared is dependent on other features from rover 5’s local state, rover 6

cannot observe any evidence of these features except through its observations of

site-C-prepared and time. Thus, all other features can be marginalized out of the

distribution Pr(site-C-prepared|...).
Furthermore, the only influence information that is relevant to rover 6 is the

probability with which site-C-prepared will become true conditioned on time = 4.

At the start of execution, site-C-prepared will take on value false and remain

false until rover 5 completes its “Prepare Site C” task (constrained to finish

only at time 4, if at all, given the task window in Figure 4.1). After the site

is prepared, the feature will remain true thereafter until the end of execution.

With these constraints, there is no uncertainty about when site-C-prepared will

become true, but only if it will become true (at time = 4). Hence, the influ-

ence of rover 5’s policy can be summarized with just a single probability value,

Pr(site-C-prepared = true|time = 4), from which rover 6 can infer all transition

probabilities of site-C-prepared.

4.3.2 State-Dependent influences

The influence in Example 4.1 (Figure 4.1) has a very simple structure due

to the highly-constrained transitions of the nonlocal feature. By removing con-

straints, we can more generally categorize the influence between rover 5 and rover 6.
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Example 4.1 (continued). Let the window of execution of “Prepare Site C”

be unconstrained: [0, 8]. With this change, there is the possibility of rover 5

preparing site C at any time during execution. The consequence is that a single

probability is no longer sufficient to characterize rover 5’s influence. Instead of

representing a single probability value, rover 6 needs to represent a probability

for each time site-C-prepared could be set to true. In this case, a set of proba-

bilities
〈
Pr(site-C-preparedt+1 = true|site-C-preparedt = false, timet = t),∀t

〉
is

required, each of which is conditioned on features site-C-prepared and time.

Definition 4.12. A transition influence Γπi(njx) is state-dependent with respect

to a subset of features f̄ ⊆ s if its summarizing distribution need be conditioned only

on f̄ ’s latest value: Γπi(njx) = Pr
(
nt+1
jx |f̄ t

)
.

The set of probabilities
〈
Pr(site-C-preparedt+1|site-C-preparedt, timet)

〉
in Exam-

ple 4.1 is an abstraction of rover 5’s policy that conveys both the probability of the

interaction taking place and its potential timing. Definition 4.12 extends past develop-

ment of more restrictive forms of state-dependent influences called commitments, which

accounted for time but not probability (Musliner et al., 2006) or probability but not

time (Witwicki & Durfee, 2007). More generally, state-dependent influences may be

conditioned on features other than time. For instance, as I describe in Example 4.13,

agents’ influence might need to be conditioned on other jointly-observable features

such as weather.

4.3.3 History-Dependent Influences

Generalizing further, the probability of an interaction may differ based on both

present and past values of state features.

Example 4.13. Consider the satellite and rover from Figure 3.1, and consider

that they jointly observe a feature weather that is unaffectable, but that may

affect their interaction. For instance, if it is cloudy in the morning, this prohibits

the satellite from taking pictures, and consequently lowers the probability that it

builds a path for the rover in the afternoon. Thus, by monitoring the history of

the weather, the rover could anticipate the lower likelihood of help from the

139



satellite, and might change some decisions accordingly. Using Definition 4.14, we

say that influence Γπi(path-A-build) is history-dependent with respect to feature

weather.

Definition 4.14. A transition influence Γπi(njx) is history-dependent w.r.t. fea-

tures f̄ ⊆ s if its summarizing distribution need be conditioned on the history of

values of f̄ : Γπi(njx) = Pr
(
nt+1
jx |~f t

)
.

Becker et al. (2004a) employ a special case of history-dependent influences in

their Event-driven Dec-MDP solution algorithm, wherein agents augment their local

decision models with event histories, thereby representing the probability of future

nonlocal events conditioned on the histories of past events.

4.3.4 Influence-Dependent Influences

Transition influences may also be interdependent.

Example 4.15. For instance, in the interaction digraph in Figure 3.7, agent R4

has two arcs (labeled n4b and n4c) coming in from agent SAT3, indicating that

agent 3 is exerting two influences, such as if agent SAT3 could build two different

paths for agent R4. In the case that agent 3’s time spent building one path leaves

too little time to plan the other path, the nonlocal features n4b and n4c are highly

correlated, requiring that their joint distribution be represented.

Definition 4.16. Two transition influences Γπi(njx) and Γπi(njy) are influence-

dependent if Γπi(njx) = Pr
(
nt+1
jx |...

)
need be conditioned on concurrent values of njy

or vice versa, thereby necessitating a joint distribution Γπi(njx, njy)=Pr
(
nt+1
jx , n

t+1
jy |...

)
.

4.3.5 Comprehensive Influence DBN

With the preceding terminology, I have systematically introduced an increasingly

comprehensive characterization of transition influences. A given TD-POMDP influence

might be history-dependent with respect to one feature and state-dependent with

respect to another. There may also exist chains of influence-dependent influences.
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Example 4.17. In Figure 3.7, agent R7 models two nonlocal features, one (n7a)

influenced by agent SAT1 and the other (n7b) influenced by agent R6. The

additional arc between agents SAT1 and R6 forms an undirected cycle that implies

a possible dependence between n7a and n7b by way of n6b. The only way to

ensure a complete influence model is to incorporate all three influences into a joint

distribution.

In general, for any team of TD-POMDP agents, their influences altogether con-

stitute a Dynamic Bayesian Network (DBN) whose variables consist of the nonlocal

features as well as their respective dependent state features and dependent history

features. Figure 4.6 illustrates the influence DBNs for the four examples presented in

this chapter along with their implied conditional probability tables (CPTs). Once all

of the influences associated with an agent i’s nonlocal features have been decided, i

can extract the corresponding conditional probabilities and inject them into its local

best-response model (replacing the term Pr
(
n̄t+1
i |...

)
identified in Section 4.2.5).

The connections between the variables in the influence DBN are dictated by my

characterization of state-dependence, history-dependence, and influence-dependence.

That is, the scope of a variable nt+1
ix in the influence DBN (which refers to the subset

of variables f̄ for which an arrow is drawn from f to nt+1
ix ) is such that the DBN

encodes sufficient information for agent i to model the probabilities of nix’s transitions

given that i’s peers hold their policies still.

Note that the influence DBN is very different from the DBN that I presented

in Section 4.2.3 (Figure 4.4) to describe the conditional independencies in the joint

model. I will refer to the previously-described DBN as the TD-POMDP DBN because

it represents all variables in the TD-POMDP model. In contrast, the influence DBN

has a smaller width than the TD-POMDP DBN, modeling only the transitions of

nonlocal features. However, in the case of history-dependent influences, the influence

DBN has a greater depth of connectivity than does the TD-POMDP DBN, connecting

variables indexed with time step t+ 1 to those indexed with t, with t− 1, with t− 2,

an so on.3

3Essentially, the influence DBN is the result of variable elimination performed on the TD-POMDP
DBN. In particular, a variable xi (which may refer to a feature in agent i’s local state, agent i’s action,
or agent i’s observation) that is eliminated is marginalized out due to the fact that is it unobservable
to all other agents in the system except through the observations of mutually-modeled features. The
inclusion of history features in the influence DBN is the direct result of such elimination.
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Given history- and influence-dependence, the influence DBN could potentially

grow to be more complex than the TD-POMDP DBN, encoding a larger number of

probability parameters to encode than there are elements in the TD-POMDP transition

matrix. Indeed, as TD-POMDP agents’ interactions become more complicated, more

and more parameters involving more and more variables are needed to encode their

effects. However, due to the TD-POMDP’s decomposable transition structure, the

DBN need contain only those critical variables that link the agents’ POMDPs together.
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Figure 4.6: The influence DBN for each previously-presented example.

Theorem 4.18. For any given TD-POMDP, the influence Γjπi(njx) of agent i’s policy

πi on agent j’s nonlocal feature njx need only be conditioned on histories of mutually-

modeled features ~mj (Def. 3.13).

Proof. This follows directly from the proof of belief state sufficiency presented in Sec-

tion 4.2.3. In review, the belief state bbbtj =
〈
Pr
(
stj, ~m

t−1
j |~a t−1

j , ~o tj
)
,∀stj, ~mt−1

j

〉
was
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proven to be sufficient for computing agent j’s best response using the update

rule: bbbt+1
j =

〈
Oj(ot+1

j |atj ,s
t+1
j )

∑
st
j
−m̄t

j
PLj (l̄t+1

j |stj ,atj)PUj (ūt+1
j |stj)Pr(n̄

t+1
j |~mtj)btj(stj , ~m

t−1
j )

a normalization factor

〉
. Here,

the first term is j’s local observation function (Def. 3.5), the second and third terms

are locally-dependent components of j’s local transition function (Def. 3.14), and

the last term is j’s previous belief state. The remaining term, Pr
(
n̄t+1
j |~mt

j

)
, is the

only one that depends upon peers’ policies. Thus, Pr
(
n̄t+1
j |~mt

j

)
, serves as a sufficient

summary of i’s policy for computing j’s best response.

Corollary 4.19. The influence DBN grows with the number of mutually-modeled

state features irrespective of the number of local state features and irrespective of the

number of agents.

By Theorem 4.18, agents’ influences need encode only the histories of state features

that are shared among agents. Moreover, the complexity with which an agent models

its peers is controlled by the tightness of coupling with respect to state factor scope

(Def. 3.39), and not by the complexity of the peer behavior, nor by the number of

peer agents.

Despite this result, the influence DBN could still become too complex for TD-

POMDP agents to use effectively. Example 4.20 describes an extreme case, wherein the

conditional probability table grows unwieldy. The size of the conditional probability

tables associated with the influences from Examples 4.15 and 4.17 are characterized

in Figure 4.6.

Example 4.20. Consider and example problem for which 10 out of 11 state

features in agent i’s local state are nonlocal features in agent j’s state, and hence

mutually-modeled by agent j. In this case, in order to capture the possible effects

of the 11th unobservable feature, agent j’s sufficient encoding of i’s influence would

include the histories of all 10 mutually-modeled features. Given a time horizon of

length T , and under the assumption that all features are boolean, there are 2(10T )

possible combinations of mutually-modeled histories and 210 combinations of joint

mutually-modeled feature values. In this case, the specification of the influence

DBN would require on the order of 2(10T+10) parameters.

Aside from the space complexity of storing the CPT, the ramifications of a large

influence encoding is as follows. First, as per Observation 4.8, in the worst case,

the computation required to compute a best response grows with the amount of
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information on which the influence is conditioned. Second, as I describe later in

Chapter 5, using my mixed-integer linear programming (MILP) methodology, the

number of MILPs that must be solved in order enumerate feasible influence settings

grows linearly with the number of parameters that encode the influence. Lastly, as

my empirical results presented later in this chapter suggest, the number of feasible

influence settings tends to grow with the size of the influence encoding (regardless

how each influence setting is found).

Given the various forms of growth in computational complexity associated with

large influence encodings, it is important to identify conditions under which influence

encodings remain compact. Along these lines, I describe one set of conditions under

which we can avoid history dependence in the next section.

4.4 A Special Case: Influences on Event-Driven Features

The characterization of TD-POMDP transition influences that I developed in

Section 4.3 was extremely general, encompassing all interactions that one TD-POMDP

agent might have with another. I now focus on one particular class of interactions–

those that can be represented with event-driven4 features. After defining this class

of interactions, I derive conditions under which agents can encode their influences

on event-driven features compactly. In particular, I prove that when the interaction

digraphs contain no cycles (undirected or directed), influences on event driven feature

are state-dependent and not history-dependent.

Definition 4.21. An event-driven feature f is a Boolean state feature that encodes

the occurrence of an event, such that Pr(f t+1 = false|f t = true) = 0.

The condition in Definition 4.21 means that the transition of an event-driven

feature f is restricted such that the f can change from false to true (from one state

to the next) but never from true to false. Intuitively, if the corresponding event

has not occurred, f = false. Once the event occurs, f changes to true and can

never thereafter return to false. Features of this type have appeared in several of the

example problems that I have presented thus far (e.g., Examples 3.1, 3.31, and 4.1).

Definition 4.22. An event-driven interaction in a TD-POMDP refers to one or

more event-driven nonlocal features through which one agent affects another.

4 I adopt the term event-driven from the work of Becker et al. (2004a), who defined a Dec-POMDP
subclass called the Dec-MDP with event-driven interactions (or the EDI-Dec-MDP). In my definitions,
I present a slight generalization of Becker et al.’s semantics so as to accurately define event-driven
interactions in my more general TD-POMDP problem class.
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Example 4.23. In the problem from Example 4.1 and Figure 4.1, rover 5 interacts

with rover 6 by completing a task “Prepare Site C” and thereby altering future

outcomes of rover 6’s own tasks. This interaction is event-driven because it can be

represented with a nonlocal feature site-C-prepared∈ {true, false} that encodes

the rover 5’s completion of site C preparations. Inherently, once task “Prepare

Site C” is completed, the task (and underlying feature value change) cannot be

undone.

Theorem 4.24. For a TD-POMDP problem whose nonlocal features are all event-

driven and whose interaction digraph (Def. 3.27) contains no directed or undirected

cycles, each influence Γ(njx) on a nonlocal features njx has the following properties:

1. For any nonlocal feature ny 6≡ njx, Γ(njx) need not be conditioned on ny.

2. Γ(njx) is state-dependent (but not history-dependent) with respect to njx.

Proof. I address properties (1) and (2) separately.

1. To prove that property 1 holds, let us consider three disjunctive cases:

case a: ny 6∈ m̄j . By Theorem 4.18, Γ(njx) need only be conditioned on features

in agent j’s mutually modeled feature set m̄j (Def. 3.13). Thus, Γ(njx) need

not be conditioned on ny.

case b: ny ∈ m̄j ∧ ny ∈ n̄j. By Definition 3.12, ny ∈ n̄j refers to the fact that

ny is controlled by another agent, which we will call agent i, and affects agent j.

Feature njx is also controlled by another agent, which we will call agent k, and

affects agent j. We can deduce that i 6= k from the acyclicity of the interaction

digraph. If i and k were the same agent, this would mean two edges leading

from node i to node j, constituting an undirected cycle. Further, we can deduce

that i 6∈ Λk (agent i is not a digraph ancestor of agent k, using Definition 3.28),

because this would indicate an undirected cycle containing nodes i, j, and k

(i.e. i ∈ Λk, i ∈ Λj, and k ∈ Λj). Hence, by Theorem 3.32, agent i cannot

affect the value of njx, through its control of ny or otherwise. Thus, nt+1
jx is

independent of ~nty, and Pr(nt+1
jx |~nty, ...) = Pr(nt+1

jx |...). Therefore, Γ(njx) need

not be conditioned on ny.

case c: ny ∈ m̄j ∧ ny 6∈ n̄j. By Definition 3.12, ny 6∈ n̄j refers to the fact

that nonlocal feature ny is controlled agent j. From the interaction digraph
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acyclicity, we can deduce that agent j is not an ancestor of agent k (who controls

njx). Hence, using the same line of reasoning as in case b, by Theorem 3.32,

Pr(nt+1
jx |~nty, ...) = Pr(nt+1

jx |...), and therefore, Γ(njx) need not be conditioned on

ny.

2. To prove that property 2 holds, let us consider two cases:

case a: ntjx = true. By Definition 4.21, Pr(nt+1
jx = true|ntjx = true) = 1,

yielding a deterministic transition that is independent of previous values ~nt−1
jx .

Thus, Pr(nt+1
jx |ntjx = true, ~nt−1

jx ) = Pr(nt+1
jx |ntjx = true).

case b: ntjx = false. By Definition 4.21, ~nt−1
jx = 〈false, false, false, ..., false〉,

indicating that when ntjx takes on value false, its history ~nt−1
jx is fully determined.

Thus, Pr(nt+1
jx |ntjx = false, ~nt−1

jx ) = Pr(nt+1
jx |ntjx = false).

Combining case a and case b, Pr(nt+1
jx |ntjx, ~nt−1

jx ) = Pr(nt+1
jx |ntjx), and hence

Γ(njx) need not be conditioned on ~nt−1
jx . Therefore, by Definition 4.14, Γ(njx) is

state-dependent but not history-dependent with respect to njx.

The significance of Theorem 4.24 is that, for a commonly-studied class of problems

with event-driven interactions (Becker et al., 2004a; Marecki & Tambe, 2009; Mostafa

& Lesser, 2009), when the interaction digraph topology contains no cycles, agents

influence encodings need not be conditioned on event histories. Avoiding history

means that the size of agents’ influence encodings will, at worst, grow linearly with

the time horizon. Furthermore, by property 1 in Theorem 4.24, for problems with

event-driven interactions and acyclic interaction digraphs, influences need not encode

joint distributions over nonlocal feature transitions. In this case, the size of the

influence DBN grows linearly with the number of event-based interactions (as long

as no cycles are created). Later on in my empirical results, I show these traits to

yield significant reduction (over problems with cyclic digraphs and history-dependent

event-driven interactions) in the overall computation required by influence-based policy

abstraction.

Example 4.23 (continued). Returning to the problem shown in Figure 4.1, since

there is only a single interaction, the interaction digraph is degenerately acyclic.

By Theorem 4.24, rover 5’s influence on nonlocal feature site-C-prepared (modeled

by rover 6), which we will abbreviate Γ(c), may be encoded with probability

distribution Γ(c) = Pr(ct+1|ct, t), making Γ(c) state dependent with respect to

nonlocal feature c ≡site-C-prepared and unaffectable feature t ≡time.
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However, the presence of just one undirected cycle violates the conditions of

Theorem 4.24, and necessitates dependence on history.

Example 4.25. Consider a slight variation of Example 4.23 in which there is

additional interaction involving rover 5 preparing site D for rover 6. In this case,

there are two event-based nonlocal features (site-C-prepared and site-D-prepared),

and two corresponding edges in the interaction digraph both of which lead out

of vertex 5 and into vertex 6. Consequently, the digraph contains an undirected

cycle, thereby violating the conditions of Theorem 4.24. With this variation, the

influence Γ(c) becomes history-dependent and influence-dependent. The influence

DBN must model the joint distribution Pr(ct+1, dt+1|~ct, ~dt). Intuitively, since

they are controlled by the same agent, the transitions of site-C-prepared and

site-D-prepared are no longer independent. For instance, rover 5 cannot finish

preparing both sites at the same time. Similarly, the probability with which rover

5 finishes preparing site D depends upon how long ago rover 5 finished preparing

site C.

Fortunately, for cyclic cases, agents can encode the histories of event-driven

features compactly. By Definition 4.21, the transitions of an event-driven feature f

are structured such that f can only change from false to true but never from true to

false. Thus, the complete history ~f t may be captured by a single variable f thist with

domain {0, 1, ..., t, false} whose value is set to the time index that f changed from

false to true, or set to false if f has not changed from false to true.

4.5 Influence Space

Theorems 4.18 and 4.24 describe the size of the influence encoding, but they say

nothing about the number of possible influence assignments. Each combination of local

policies corresponds to a summarizing influence DBN whose probability values have

been assigned accordingly. The influence space is the domain of feasible assignments

to the probability values encoded by the influence DBN, where each feasible assignment

is the result of at least one combination of local policies. I refer to a feasible assignment

to the influence DBN as an influence point in the influence space.

An important hypothesis of this dissertation is that, in formulating optimal joint

policies, agents can gain potentially significant computational advantages by searching
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through the influence space instead of searching through the joint policy space directly.

The intuition is that, although every influence point maps to at least one joint policy,

there may be many joint policies that all map to the same influence point.

Example 4.26. Returning to the example problem shown in Figure 4.1, rover 5

has several sites it can visit, each with uncertain durations. In general, different

policies that it adopts may achieve different interaction probabilities. However,

due to the constraints in Figure 4.1, many of rover 5’s policies will map to the same

influence point. For instance, any two policies that differ only in the decisions

made after time 3 will yield the same assignment to Γ6
π5

(site-C-prepared) =

Pr(site-C-prepared = true|time = 4). For this example, the influence space is

strictly smaller than the policy space.

By considering only the feasible influence values, agents avoid redundant joint reasoning

about the local policies with identical influences. Figure 4.7 illustrates the potential

reduction from influence space to policy space.

R5’s local policy space 𝝅𝒊𝒂 

𝝅𝒊𝒃 

Site C will 
be 

prepared 
by time 4 

with 
probability 

0.7  influence 
point 1 

influence  
point 2 

influence  
point 3 

influence policies 

R5’s outgoing 
Influence space 

Figure 4.7: An agent’s local policy space and resultant influence space.

In relation to the weak coupling theory developed in Section 3.5.2, influence-based

abstraction can be viewed as framework for partitioning a TD-POMDP agent’s policy

space into impact-equivalence classes (Def. 3.45). For any two policies {πxi , π
y
i } whose

influences are identical (Γjπxi = Γj
πyi

), they necessarily provoke the same best-response

from agent j. By Definition 3.44, πxi and πyi are impact equivalent and thus may be

grouped into the same impact equivalence class.5

5 The converse is not true, however. Two local policies of agent i that result in the same best
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With Definition 3.49 in Section 3.5.2, I related an agent’s local policy space size

to the number of partitions achieved by an impact-equivalent partitioning scheme,

calling the maximal ratio of these two quantities the degree of influence. For

influence-based policy abstraction, the number of partitions is equal to the size of

the influence space. Hence, the degree of influence afforded by influence-based policy

abstraction is the influence space size divided by the policy space size.

4.6 Empirical Analysis of Influence Space Size

In the preceding section, I have provided intuition and anecdotal evidence to

support my claim that influence-based policy abstraction framework can be employed

to reduce the size of the search space wherein TD-POMDP agents seek to optimize

their joint behavior. I have also contended that, beyond toy examples, there is a large

space of TD-POMDP problems for which agents have far fewer unique influences than

they do policies. I now defend this claim with a rigorous empirical analysis.

Further, I investigate the circumstances under which influence-based abstraction

yields the greatest reduction. The theoretical treatment of weak coupling presented in

Section 3.5.2 has proven that the worst-case complexity of computing optimal TD-

POMDP policies is dependent upon the degree of influence. However, the theoretical

results do not say anything about what problems might have a low degree of influence,

nor do they provide a method for determining a problem’s degree of influence before

solving it. By itself, the theory cannot be applied practically. The empirical results

that I present here pick up where the theory has left off, striving to expose identifiable

attributes that determine a problem’s degree of influence (in the context of influence-

based policy abstraction), and thereby illuminating a part of the TD-POMDP space

that is truly weakly coupled (along the degree of influence dimension).

My high-level strategy for performing this empirical analysis is as follows. Using

the testbed detailed below, I generate a large sampling of random problems. The

space of random problems is parameterized by a variety of attributes (detailed in

Section 4.6.1), each of which I connect to identifiable aspects of the TD-POMDP

problem description. According to this parameterization, I sample the problem space

evenly across all parameter settings. For a given problem, I focus on an individual

agent’s influences in isolation from the rest of the team, directly measuring the size of

the agent’s influence space and the size of its local policy space.

response from agent j may not map to the same influence point. As such, influence abstraction will
not necessarily yield the most coarse-grained partitioning of the policy space.
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By varying each parameter and observing its effect on the influence space size and

the policy space size, I am able to characterize the relationships between a problem’s

identifiable attributes and its (less discernible) degree of influence. The results in

Section 4.6.2, which are the culmination of an iterative process of parameter definition

and parameter testing, highlight those attributes that appear to be the strongest

empirical predictors of a problem’s influence-space size and its degree of influence.

Later on in Chapter 6, I empirically evaluate the overall computation performed by a

an optimal TD-POMDP algorithm that employs influence-based abstraction.

4.6.1 Experimental Setup

I perform my analysis on a testbed of task-based problems specified using a

simplified version of the TÆMS modeling language (Decker, 1996). Problems of this

flavor frequently arise in the Dec-POMDP literature (Becker et al., 2004a; Marecki &

Tambe, 2009; Mostafa & Lesser, 2009; Musliner et al., 2006). Moreover, the multiagent

planning community in general has demonstrated an interest in problems formulated

using TÆMS, due to its domain-independent, naturally-distributed specification of

interdependent agent activities with uncertain outcomes, its quantitative representation

of team goals, and its emphasis on structured agent interactions (Atlas, 2009; Horling

et al., 2006; Lesser et al., 2004; Smith et al., 2007; Wagner et al., 2003; Wu & Durfee,

2007; Xuan & Lesser, 1999). Though others have performed experiments on various

hand-coded TÆMS problems, no universally-accepted problem suite has emerged. As

such, I have created my own TÆMS-based testbed so as to systematically generate

problems with a desired set of controlled parameters. I describe these parameters along

with the details of my problem generator in Section 4.6.1.3. But before then, I provide

a description of my problem specification in Section 4.6.1.1 and the corresponding

models of influence in Section 4.6.1.2. In Section 4.6.1.4, I describe my method of

evaluating each problem’s degree of influence.

4.6.1.1 Task-based Problem Specification

The problem representation I am about to describe is the same as that introduced

in Example 3.1 and used in several other examples in Chapters 3 and 4. For the sake

of reproducibility of my experiments, I now provide a more detailed description of the

task-based problem specification.

Each problem contains n agents, where each agent i has a set of tasks, Ti =

{taski1, ..., taski||Ti||}, that it may execute with outcomes Di = {di1, ..., di||Ti||} and win-
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dow constraints Wi = {wi1, ..., wi||Ti||}. For taskix, dix = {〈durixk, qualixk, probixk〉}
specifies the probabilities of outcome durations and associated qualities. Each window

constraint is a pair wix = 〈estix, lftix〉 denoting the earliest start time and latest finish

time of the task. An agent can only perform one of its tasks at a time, with idling

allowed between task executions. As such, the TD-POMDP’s local action set Ai

contains an action for each taskix ∈ Ti and a NOOP action that causes the agent to

idle for one time step. Once an agent starts a task, it cannot interrupt the task, so its

only available action is to continue the task until the task ends. All task executions

must occur between time steps 0 and a finite horizon T . However, an agent cannot

start a task before the task’s earliest start time or after its latest finish time. If a

task does not achieve one of its prescribed outcomes by its latest finish time, the task

instead achieves a failure outcome (with quality 0).

There are also task interrelationships called effects, each of the form form eix,jy =〈
taskix, taskjy, d

′
iy

〉
, indicating that the completion of taskix with positive outcome

quality alters the subsequent outcome distribution of taskjy (as long as agent j

performs taskjy after taskix finishes).6 Examples of effects appear in Figure 3.8 as

arrows connecting tasks. Here, Task A effects a change in the outcome of Task D,

enabling a nonzero quality outcome to be attained with positive probability. The

same sort of effect links Task C and Task F, as well as Task B and Task C.

Agent i may have local effects Li = {..., eix,iy, ...} that link its own tasks. Addi-

tionally, agent i may have incoming nonlocal effects Nin
i = {..., ejx,iy, ...} and outgoing

nonlocal effects Nout
i = {..., eix,jy, ...}, indicating interactions with other agents. Collec-

tively, the set of all of the team’s nonlocal effects is denoted N =
⋃
∀i

[
Nin
i ∪ Nout

i

]
. In

the presence of nonlocal effects, each agent’s tasks Ti are categorized into two disjoint

sets Ti = Tlocal
i ∪ Tnle

i : local tasks Tlocal
i and nonlocally-affecting tasks Tnle

i , such that

taskix ∈ Tnle
i if and only if taskix is referenced in Nout

i (which indicates that it affects

another agent’s task).

The TD-POMDP local state Si includes a task status features for each taskix ∈ Ti
with domain {not-started, started-at-time-t, completed-with-positive-quality, failed}.
The mutually-modeled feature set m̄i consists of time (the current time index) as

well as the statuses of agent i’s nonlocal effects Nin
i ∪ Nout

i , each with domain {true,

false} indicating whether or not the respective effecting task has completed.7 As such,

6The definition of effect here deviates slightly from that of the TÆMS language (Decker, 1996),
but suffices to model several common TÆMS effects such as task enablement and disablement and
special cases of facilitation and hindering.

7Additional information about an effect need not be encoded in the TD-POMDP state because
the effect only depends upon whether or not the affecting task has completed with positive quality.

151



each nonlocal feature nix,jy is a boolean variable indicating the status of an incoming

nonlocal effect eix,jy ∈ Nin
i . The TD-POMDP is locally fully observable, such that

agents observe the features in their local states directly (including the statuses of

their incoming nonlocal effects). An agent’s local rewards are zero for all state-action

pairs prior to the end of horizon, and otherwise equal to the sum of its completed

task qualities. The objective is to plan coordinated policies for task execution that

maximize the summation of qualities attained from all agents’ completed tasks. A

detailed example of the transition and reward structure for these problems appears in

Figure 2.3 (in Chapter 2), which shows a single-agent MDP that has been constructed

as described here.

Although my influence-based abstraction methodology (and the solution methods

that I present in subsequent chapters) are fully general to the TD-POMDP problem

class, my task-based problem specification just described has several limitations that

restrict consideration in my empirical work to a subset of TD-POMDP problems. For

instance, each task has just one contiguous window and agents receive full observations

of their individual task statuses. These are both restrictions that are inherent to the

TÆMS modeling language (Decker, 1996). Additionally, agents’ interactions consist

solely of event-driven nonlocal effects relating to task completion events, and the value

of a joint policy is assumed to be the summation of completed task quality values.

All of these restrictions together are common to other empirical studies of related

Dec-POMDP subclasses (Becker et al., 2004a; Beynier & Mouaddib, 2005; Marecki &

Tambe, 2009; Mostafa & Lesser, 2009).

4.6.1.2 Anatomy of an Influencing Agent

In this particular set of experiments, I study individual agents’ outgoing influences,

directly comparing local policy space size with outgoing influence space size. As such,

each problem consists of a single agent i that is not affected by others8, but who

models zero or more locally-controlled nonlocally-affecting features, each of which can

be thought of as affecting some other phantom agent, and hence each of which agent i

considers to be mutually-modeled (Def. 3.13). Figure 4.8 shows a snapshot of agent i

How long ago the task completed or which outcome it attained (as long as the outcome had positive
quality) is of no consequence to the affected task’s dynamics.

8 For simplicity, I limit consideration in this analysis to an agent that may influence its peers but
is not influenced by its peers. Given an acyclic interaction digraph, this limitation does not restrict
the generality of my results: an uninfluenced agents’ local decision model is equivalent to that of
an agent whose incoming influence has been fixed. In the case of a cycle, where agent i’s outgoing
influence settings affect others that in turn influence i, I have not yet determined whether or not the
size of the overall influence space will be affected.
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as the root vertex in an interaction digraph, where each outgoing edge represents a

nonlocally-affecting feature. Each such feature nx is a boolean feature that, when true,

denotes the successful completion of agent i’s nonlocally-affecting task taskix ∈ Tnle
i .

𝒊 

𝒏𝒙 𝒏𝒚 

Figure 4.8: A digraph vertex representing an influencing agent.

Aside from agent i’s nonlocally-affecting task features, the only other feature that

is mutually-modeled is time ∈ {0, 1, ..., T}. Agent i models the corresponding influence

on each nonlocal feature as state-dependent with respect to feature time.9 In this set

of experiments, we consider two different variations: (a) one modeling each influence

Γπi(nx) as state-dependent with respect to nx, and (b) another modeling all of the

influences with a single joint distribution Γπi(nx, ny, ...) that is history-dependent with

respect to all nonlocal features {nx, ny, ...}. Figure 4.9 illustrates each variation.
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(B) history- and influence-dependent influences 

Figure 4.9: Two variations of the agent i’s influences.

The analysis of these two variations was motivated by my theoretical treatment

of event-driven interactions in Section 4.4. Case (a), in which the influences are

represented as separate state-dependent distributions, corresponds to a problem whose

interaction digraph contains no cycles. Here, the phantom agents that i is assumed to

be influencing are necessarily unique, meaning each nonlocal feature {nx} affects a

different agent. Case (b) corresponds to problems wherein all of the nonlocal features

{nx, ny, ...} correspond to edges situated in an undirected cycle in the interaction

9The influence Γπi
(nx) is state-dependent (and not history-dependent) with respect time because

the feature time changes deterministically and predictably.
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digraph. For instance, all of the nonlocal features might affect the same phantom

agent.

4.6.1.3 Problem Attributes and Testbed Parameters

I have implemented a random problem generator to systematically create random

problems of the form described in Section 4.6.1.1. For each problem, I generate a local

TD-POMDP model Mi (Def. 3.16) for an influencing agent i, who is described in

Section 4.6.1.2. My testbed is comprised of sets of random problems, wherein each

set is seeded with a particular setting of parameters. The parameters, detailed below,

serve as control knobs to adjust various high-level attributes of the TD-POMDP

problems that I generate. I now describe each high-level attribute and the associated

testbed parameter(s).

Number of Decision Steps. A parameter T controls the global time horizon. All

task executions must occur in the interval [0, T ]. As such, the TD-POMDP is unrolled

(referring to the process of creating states, actions, and transitions indexed with

time ∈ {0, . . . , T}) such that there are T decision steps {0, 1, . . . , T − 1}. Likewise,

observation histories are of maximal length T .

Branching Due to Decisions. From each state st (with time = t), there is at

least one branch10 for each available action by which the agent i transitions into a

state st+1 (with time = t+ 1). For task-based TD-POMDP problems, the branching

due to agents’ decisions is controlled by a parameter tasks per agent = ‖Ti‖,∀i.
Because there are only branches for available actions, the branching factor is also

controlled by a parameter local window size∈ (0, 1), by which the each task’s earliest

start time and latest finish time are set. The length of every task’s window is

blocal windows size · (T − 1)c+ 1. Using this quantity, each task’s earliest start time is

selected such that the task’s window is placed uniformly randomly within the interval

[0, T ].

Branching Due to Uncertainty. The branching factor is also dependent on the

uncertainty inherent in the tasks that agents perform. A parameter uncertainty ∈ [0, 1]

controls the number of outcomes of each task. All outcomes of a given task have equal

10Note that for task-based problems, the TD-POMDP state space is a directed acyclic graph and
not a tree.
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quality11 (selected uniformly randomly ∈ {1, ..., 10}) but different durations. Each

task’s duration distribution is set to a randomly-assigned probability mass function,

wherein buncertainty · (local windows size− 1)c+ 1 different durations are selected at

random in the interval (1, local windows size), each of which are assigned a random

probability such that their probabilities together sum to 1.

I have generated 50 random problems12 for each setting of the above parameters,

whose domains are given in Table 4.1. As specified thus far, these problems contain

no agent interaction, and will be henceforth referred to as baseline problems, and the

above parameters as baseline parameters.

Next, I consider several additional parameters used to exact control over the agent

i’s interactions. For this second set of parameters, which I refer to as interaction

parameters, rather than generating problems at random for each parameter setting, I

use the 50 problems per baseline parameter setting, each of which contains no agent

interactions, as baseline problems. For each baseline problem, I generated modified

versions by systematically varying each interaction parameter. In the end, I have a

set of 50 test problems per setting of baseline parameters per setting of interaction

parameters. The domains of each parameter are summarized in Table 4.1. I describe

the interaction parameters below, indexed by the high-level TD-POMDP attributes

they are intended to embody.

Number of Nonlocal Features. The number of nonlocal features is controlled by

a parameter NLATs = ‖Nout
i ‖, which is the number of agent i’s nonlocally-affecting

tasks, constrained to be less than or equal to tasks per agent.

11 Since TD-POMDP agents’ transition influences model feature transition probabilities and not
rewards, task outcome qualities will not affect the size of the influence space nor the degree of
influence.

12 I selected the number 50 based on the following observations. The random variations in example
problems generated by my testbed differ most significantly in the earliest start time of each task,
which can take on T −blocalWindowSize(T −1)c different values (each uniformly at random), and in

the positioning of random task durations, which can take on
( b(localwindowSize∗(T−1)c+1
buncertaintyb(localwindowSize∗(T−1)cc+1

)
different values. The number of combinations of these two types of random variations, across all tasks,
is thus tasksPerAgent (T − blocalWindowSize(T − 1)c)

( b(localwindowSize∗(T−1)c+1
buncertaintyb(localwindowSize∗(T−1)cc+1

)
, a

term which is maximized by the baseline parameter setting: 〈T = 5, localwindowSize =
1.0, uncertainty = 0.5, tasksPerAgent = 3〉. For this particular parameter setting I generated
an extra 100 random problems for each setting of the interaction parameters. Using this additional
test set, I performed each comparison presented Section 4.6.2 and compared the results with the
same comparison using a set of 50 problems. In all cases, the trends observed with the 100-problem
test set were qualitatively identical to those observed with the 50-problem test set. From this, I
concluded that, for the other parameters settings whose problem variance was theoretically smaller,
that 50 random problem was adequate to sample the space for all other parameter settings.
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State-dependent Influences vs. History and Influence-dependent Influ-

ences. As described in Section 4.6.1.2, I analyze two different variations of influence

models. In the first variation, i’s influence on each nonlocal feature is modeled using a

separate state-dependent distribution. In the second variation, i models a single joint

distribution that is history-dependent with respect to all nonlocal features. Parameter

influence type∈ {state, history} controls which variation is used.

Window of Nonlocal Feature Manipulation. For problems with a single non-

local feature, I introduce two parameters that constrain when the nonlocal feature is

allowed to be manipulated. The size of the window of agent i’s nonlocally-affecting

task is set to NLATWindow, and the beginning of the window is set to NLAT est. In

essence, NLATWindow and NLAT est control the timing of agent i’s interactions.

Empirical results that I present in the next section demonstrate that both of these

features have a significant impact on the size of the influence space.

Problem Attributes Testbed Parameter Domain

— Baseline Parameters —

Number of Decision Step T {1, 2, 3, 4, 5}

Branching Due To Decisions
tasks per agent {1, 2, 3}
local window size {0.0, 0.5, 1.0}

Branching Due To Uncertainty uncertainty {0.0, 0.5, 1.0}
— Interaction Parameters —

Number of Nonlocal Features NLATs {1, . . . , tpa}
State-Dependent Influences vs. History-
Dependent Influence-Dependent Influences

influence type {state, history}

Window of Nonlocal Feature Manipulation13 NLATWindow {0, 1, . . . , T}
NLAT est {0, . . . , T − 1}

Table 4.1: Testbed parameterization.

The parameters and their respective domain values shown in Table 4.1 have been

chosen so as to generate spaces of problems that are sufficiently rich to include a

variety of different scenarios, and to demonstrate general trends and relationships

between a problem’s high-level characteristics and its degree of influence, yet define

a space that is small enough to be explored systematically and thoroughly. Strictly

speaking, my results are only directly applicable to problems in my testbed. The

degree to which other TD-POMDP problems exhibit the same quantitative values of

influence space sizes and degree of influence will depend upon their similarity to those

13The domains of NLATWindow and NLAT est are systematically explored only in the case of a
single nonlocally-affecting task (NLAT =1).
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from my testbed. However, I have no reason to believe that the qualitative trends

observed here will not generalize beyond the space considered here.

4.6.1.4 Evaluation Scheme

To evaluate influence space size, I employ an algorithm presented in the next

chapter (Section 5.6) that explores the influence space exhaustively, counting each

unique setting of probabilities in the influence DBN that is achieved by a deterministic

policy of agent i. For each problem, in addition to recording the number of influences

in agent i’s influence space, I also record the number of deterministic policies in agent

i’s policy space, computed as the product of the number of available actions in every

state of the agent i’s best response model (detailed in Section 4.2). For any given

problem, I calculate the degree of influence by dividing the influence space size by the

policy space size.

4.6.2 Results

Using the testbed described in Section 4.6.1, I have performed a series of ex-

periments that illuminate the relationships between the degree of influence and the

problem attributes described in Section 4.6.1.3. I now present the results, organized

by problem attribute (each of which was introduced in Section 4.6.1.3). I provide a

summary of all findings at the end of this section.

Note that each of the comparisons described below has been performed across

all combinations of parameter settings. For each result that I present, instead of

overwhelming the reader with page after page of plots for each and every setting, I

select just a few cases (which I label {A, B, C, ... } followed by the corresponding

parameter setting) whose qualitative trends are representative of the entire space of

parameter settings tested.14

4.6.2.1 Number of Decision Steps

The number of agent i’s decision steps, specified by the time horizon T , has a

significant effect on the size of the problem in general. Since time is necessarily a

feature of the TD-POMDP state, the state space grows (in general exponentially)

with each additional decision step. In turn, each additional state with more than

14Rest assured that the plots for all other settings have been examined, and are omitted here
simply because they do not provide any additional information about the high-level, qualitative
trends that I describe.
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one available action constitutes an additional decision for agent i to make, causing

an increase in the policy space (which is in general doubly exponential in the time

horizon).

I posit that the influence space size should also increase with the time horizon. In

general, a longer horizon entails more times during which agent i’s interactions can

take place. In particular, in the problems that I generate, the windows of agents tasks

are specified relative to the time horizon T , such that the number of different times

that agent i is allowed to start a nonlocally affecting task increases proportionally

with T . The greater the number of possible start times, the greater the number of

possible finish times, and hence the more unique influences.

Figure 4.10 supports my hypothesis. Here, local state space size, local policy space

size, and influence space size are plotted as a function of T , each for three different

settings of the baseline parameters15 (from Table 4.1). Out of all possible combinations

of parameters, the three settings, labeled A, B, and C, were chosen as representative

snapshots of three different gradations of problem difficulty (as measured by state

space size and policy space size). Moreover, the trends portrayed by these plots are

representative of the trends observed across all of the other possible settings.

In each plot, T is varied from 1 to 5 along the x-axis, and the y axes are given

a logarithmic scale. As expected, a near-exponential increase in state space size is

observed along with an exponential (or asymptotically greater) increase in policy

space size for all parameter settings. Similarly, the influence space size increases

exponentially with T . Although the steepness of the exponential increase depends

upon the particular parameter setting, the steepness of increase of policy space size

generally16 exceeds that of the influence space size. The result of this difference in

growth is that the degree of influence decreases as the number of decision steps grows.

The degree of influence for settings A, B, and C, is plotted, again on a logarithmic

scale, in Figure 4.11.

4.6.2.2 Branching Due To Decisions

Next, I examine the impact of branching in the local state space caused by decisions

(i.e. action choices) that agent i faces . For the task-based problem in my testbed,

15 For each problem, one or two (prescribed by “NLATs=1” or “NLATs=2”) of agent i’s tasks have
been selected at random and turned into nonlocally-affecting tasks, and modeled as state-dependent or
history-dependent (as prescribed by “influenceType=state” or “influenceType=history”) influences.

16This trend was observed across all parameter settings with the exception of one degenerate case,
involving a single task per agent with window size of 1, in which both the influence space size and
policy space size remained constant. In this case, regardless of the time horizon or the placement of
the task’s window, agent i only ever has 2 possible policies and 2 possible influences.
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branching from decisions is controlled by two parameters: the number of tasks per

agent and the local window size. Each of these two parameter, when increased, yields

a consequent increase in the number of available actions (averaged across the entire

state space). In any given state, an agent has at most tasks per agent+1 available

actions (where the additional action causes the agent to idle). However, not all of

these actions will be available in every state. The local window size controls the

proportion of decision steps during which each action can be taken.

For this experiment, I systematically vary each of these two parameters and

examine the effect on policy space size and influence space size as before. I also

measure the average branching factor (across all nonterminal states) of the agents’

local decision model that results from each setting of the two parameters, so as

to solidify the connection between testbed parameters and branching factor (which

is a more general attribute that is easily computed for any TD-POMDP problem,
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task-based or otherwise).

The results are shown in Figure 4.12, where local window size is varied along the

x-axis and the three values of tasks per agent appear as lines superimposed on each

plot. Again, out of all the combinations of parameter settings, I present three settings

(A, B, and C) whose qualitative trends are representative of those observed in all of

the remaining settings.

Figure 4.12 generally confirms that more tasks and wider task windows yield a

larger branching factor. However, the increase in branching factor due to local window

size is extremely small for setting A. This is because the uncertainty parameter is

set such that each task has a single duration that is uniformly randomly selected

from interval (0, blocal windows size · (T − 1)c+ 1). Effectively, as the local window

size increases, tasks tend to take deterministically longer to complete, causing a

larger portion of states to have just a single available continue action, and thereby

counteracting the rise in branching factor from increased local window size.

For all settings, we observe that the policy space size increases both with local

window size and with tasks per agent, and that the influence space size increases with

the local window size. In the majority of parameter settings, we observe the same

qualitative relationship between influence space size and tasks per agent, though this

trend is faint for setting B and indiscernible for setting A. The reason for this is that,

due to the combination of small values of uncertainty and small values of local window

size, the number of outcomes of each task is limited to just 1, for setting A and all

of the points in setting B except for local window size=1.0 (wherein the number of

task outcomes is 2). With just a single duration per task, problems become entirely

deterministic, as do agent i’s influences. That is, each influence either conveys (1)

that the nonlocally-affecting task will complete with certainty at a particular time

or (2) that the nonlocally-affecting task will never complete. As such, the number of

influences simply relates to the number of different times agent i is allowed to start the
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nonlocally affecting task regardless of the other tasks that the agent might execute.

In all three cases, we observe a decrease in the degree of influence as the branching

factor increases (shown in Figure 4.13). The decrease in degree of influence is minimal

when there is only a single task per agent because, in this case, all of the agents

decisions involve deciding whether not to start the single nonlocally-affecting task.

For this scenario, one might expect the influence space size to be equal to the policy

space size. This expectation is valid when the local window size is 0 (meaning that the

length of the window is 1 time unit) because there are just 2 influences and 2 policies.

However, as the nonlocally-affecting task window grows, a growing number of policies

dictate that agent i start executing the task too late for it to succeed before its latest

end time, and each of these policies all map to the same influence, thereby effecting a

decrease in the degree of influence.
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4.6.2.3 Branching Due To Uncertainty

Another component that affects the branching factor of agent i’s state space is the

uncertainty in the outcomes of its actions. Given more uncertainty, there is a wider

array of future states reachable from each action, and hence a larger branching factor.

Again, I hypothesize that the increase in branching factor will yield a general increase

in the size of the policy space. Although there are no more actions available in each

state, I expect that there will be a greater number of states, thereby yielding a greater

number of policy decisions. Uncertainty should also have a significant effect on the

size of the influence space. Since influences encode probabilities of nonlocal feature

transition outcomes, and more uncertainty yields a greater number of probabilistic

outcomes, increasing the uncertainty can only increase the number of feasible influence

points.

I test these hypotheses by varying a testbed parameter, uncertainty, which controls

the number of outcomes of each of agent i’s tasks, such that the number of outcomes

per task is set to uncertainty · blocal windows size − 1c + 1 (as detailed in Section

4.6.1.3). The results are shown in Figures 4.14 and 4.15, which plot the branching

factor, policy space size, influence space size, and degree of influence as a function

of uncertainty for three different parameter settings. As before, the trends shown

for parameters settings A, B, and C are qualitatively characteristic of all remaining

combinations of parameter settings (from Table 4.1) not shown.

As predicted, all cases exhibit an increase in both branching factor (plotted on a

linear scale) and influence space size (plotted on a logarithmic scale) as uncertainty is

varied from 0.0 to 1.0. In almost all cases (including those not shown), we also observe

an increase in the policy space size. Moreover, the increase in the policy space size

usually overwhelms that of the influence space size. This trend is clearly illustrated by

case A, where both the policy space and influence space appear to grow exponentially
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but the policy space grows more steeply, yielding an overall decrease in the degree

of influence (Figure 4.15A). In case B, we again observe an exponential increase in

the influence space, but a less pronounced increase in policy space, and consequently

only a very slight decrease in the degree of influence. This suggests that for smaller

problems with fewer tasks (such as in case B), influence-based abstraction may have

less computational benefit (yielding a smaller reduction in the search space even when

there is a large amount of uncertainty).

Case C illustrates an extreme wherein there is just a single task. Here, since the

only actions agent i has are to begin the task or to idle, the only choice the agent

faces is whether or not to begin its task. Varying the outcomes of the lone task have

no effect on the policy space whatsoever, and hence we observe a flat policy space size

curve (in Figure 4.14C). In contrast, the influence space grows as the uncertainty is

varied from its minimum to maximum value, yielding a slight increase in the degree of

163



0 0.5 1

10
−4

10
−2

10
0

degree of influence
m

ea
n 

de
gr

ee
 o

f i
nf

lu
en

ce

uncertainty
(A)

0 0.5 1

10
−4

10
−2

10
0

degree of influence

m
ea

n 
de

gr
ee

 o
f i

nf
lu

en
ce

uncertainty
(B)

0 0.5 1

10
−4

10
−2

10
0

degree of influence

m
ea

n 
de

gr
ee

 o
f i

nf
lu

en
ce

uncertainty
(C)

Student Version of MATLABFigure 4.15: Degree of influence as a function of uncertainty.

influence (Figure 4.15C). Note that, out of all parameter settings including those not

shown, case C exhibited the largest growth in the degree of influence.

The results in the past three sections are promising. In general, Figures 4.10-4.15

show an increase in influence space size but a decrease in the degree of influence. This

suggests that, by and large, as agents’ local problems become more complex, the

benefits of abstracting influences will be magnified. However, this empirical trend is

conditioned on the agents’ nonlocal effects remaining constant as the local problem

size grows. In the next set of experiments, I explore what happens when the nonlocal

effects are varied.

4.6.2.4 Number of Nonlocal Features and Influence Type

The number of nonlocal features (controlled by agent i and affecting other agents)

has a direct effect on the size of agent i’s influence encoding, whose parameters are the

probabilistic transitions of agent i’s nonlocal features. As described in Section 4.6.1.2,

if each nonlocal feature is encoded with a separate state-dependent influence (which is

denoted by parameter setting influenceType=state), the size of the influence encoding

grows linearly with the number of nonlocal features. If, on the other hand, agent i

models its influences as history-dependent and influence-dependent with respect to each

other (influenceType=history), the size of i’s influence encoding grows exponentially

with the number of nonlocal features.

As the size of the encoding increases, the influence is capable of representing more

details of i’s policy. Further, by describing agent i’s behavior with greater specificity,

thereby allowing each influence point a refined scope of possible policies, one would

expect that this richer encoding would also engender a larger number of influence
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points. In other words, a larger encoding should result in a larger influence space.17

As such, I offer the general hypotheses that (1) as the number of nonlocal features

increases, the size of the influence space increases; and (2) when influences are history-

and influence-dependent, the size of the influence space will be, on average, larger

than when influences are state-dependent. I test these hypotheses by systematically

generating variations of the baseline problems used in the previous sections (and

described in Table 4.1), where in each variation, some number (specified by the value

of parameter NLATs) of agent i’s tasks are turned into nonlocally-affecting tasks.

Further, for each problem, I explore the feasible space of influences for both the

state-dependent encoding (denoted influenceType=state) and the history-dependent

influence-dependent encoding (denoted influenceType=history), both of which are

described in Section 4.6.1.2.

Figure 4.16 shows the results of varying the number of nonlocally-affecting tasks

for three different settings of baseline parameters (A, B, and C). Across all settings

(including those not shown), we observe an increase in the average influence space size

as the number of nonlocally-affecting tasks increases. We also observe an increase in

the average degree of influence for all settings due to the fact that agent i’s policy

space remains constant as NLATs is varied (given that tasksPerAgent is fixed).

For state-dependent influence encodings (which are indicated by the black line with

circular markers in Figure 4.16), the average increase in influence space size was near

linear in all cases. The history-dependent influence encodings exhibited similar average

influence space growth in some cases, and super-linear growth in other cases.

The three cases A, B, and C that I present here illustrate a dominant trend that I

noticed across the space of baseline parameters settings. For cases with low uncertainty

(e.g., case A), the influence space size for state-dependent influence encodings was

always equal to that of the history-dependent influence encoding. Intuitively, the two

influence space sizes must be the same for this case because uncertainty = 0.0 classifies

problems as entirely deterministic.18 When uncertainty > 0, and as the number of

nonlocal features increases, the growth of the influence space size for history-dependent

17Although this assertion is intuitive, there do exist counterexamples for which the influence space
size is the same for a larger, more informative encoding than it is for a smaller, less informative
encoding.

18When all effects are deterministic, any given policy will result in nonlocal features changing
values at predictable times, and there is only one possible history. In this case, any influence point
encoded with a history-dependent influence can be reduced to one encoded with a state-dependent
influence, and thus cannot differentiate between any two policies that the state-dependent influence
could not have differentiated between, and therefore cannot accommodate a larger space of feasible
influences.
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encodings overtakes that of state-dependent encodings on average. Moreover, as illus-

trated by cases B and C, as the uncertainty becomes larger, the gap between average in-

fluence space sizes widens. The last point in Figure 4.16C is missing because, for some of

the problems with setting 〈uncertainy = 1.0, NLATs = 3, influenceType = history〉,
the influence spaces were not able to be explored exhaustively within the 3 hours of

computation time allotted to each problem. Based on those runs that did complete,

the average influence space size for this missing data point is greater than 600.
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For all cases, notice that the variance in both the influence space size and the

degree of influence is extremely large. Figure 4.17 presents a more detailed view

of influence space sizes for case B above. Here, a histogram shows the distribution

of influence space sizes for 100 randomly-generated problems per value of NLATs,

and for both the state-dependent influence encoding (top) and the history-dependent

encoding (bottom). With histograms for the three values of NLATs superimposed
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(in black, grey, and white), we observe that distributions take on a similar shape. For

all values of NLATs and influenceType, there is a large mass within the range of

1-50 influences and a tail leading outward. As NLATs increases, the mass tends to

become more spread out, and the tail of the distribution heavier. For this particular

case, there is not a large difference between the state-dependent influence encoding

and the history-dependent encoding except for NLATs = 3, where we observe that

the distribution is spread well beyond 200 for the latter encoding.
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Figure 4.17: Distribution of influence space sizes for 100 problems (per setting).

One cause of the variance in influence space size is due to the variance in the

complexities of the local models created by the random problem generator (caused by

random window placement and random duration selection). This is evident from the

large range of policy space sizes, which ranged from 5, 184 all the way to 382, 205, 952
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for the problems plotted in Figure 4.17. With this wide range of policy space sizes,

it is not surprising that the influence space sizes varied from 2 to 613. Figure 4.18

shows a scatter plot of policy space sizes and corresponding influence space sizes for

the same sets of problems, again classified by the number of nonlocally affecting tasks.
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Figure 4.18: Scatter plot of policy space sizes respective influence space sizes.

Here, we observe a slight correlation between policy space size and influence

space size. The correlation appears to be strongest when the number of nonlocally

affecting tasks is greatest. This is somewhat intuitive since a greater value of NLATs

corresponds to a larger percentage of agent i’s tasks that are nonlocally affecting,

and thus a larger portion of policy decisions that impact the transitions of nonlocal

features. The correlation is weakest for NLATs = 1 (plotted with black diamonds).

Clearly, there are other factors at play that are causing the large variance in the

influence space size. In the next subsection, I explore some of these other factors.

4.6.2.5 Window of Nonlocal Feature Manipulation

Earlier (in Section 4.6.2.2), I analyzed the effects of manipulating tasks’ execution

windows via a parameter localWindowSize, which set the size of all of agent i’s

task windows. I now exert finer control, targeting only those nonlocally-affecting

tasks’ windows, using an analogous19 parameter NLATWindow. By manipulating

the windows of the nonlocally-affecting tasks, I am able to control the proportion

19Whereas localWindowSize specifies the size relative to the time horizon T, NLATWindow
specifies the size of the nonlocally-affecting tasks window in absolute terms.
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of decision steps during which each nonlocal feature may be affected. I now test

the initial hypothesis that, all else being equal, a larger window of nonlocal feature

manipulation will cause an increase in the degree of influence.
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Contrary to my hypothesis, empirical results showed an inverse relationship between

the degree of influence and the size of the nonlocally-affecting task’s window across

all baseline parameter settings, 3 of which are shown in Figure 4.19. Due to the

sensitivity of the policy space size, we observe an (often super-) exponential increase

when even just a single task’s window is expanded. In case A, the policy space growth

overwhelms the growth of the influence space, resulting in a significant decrease in

the degree of influence as the nonlocally-affecting tasks window was increased from 1

time unit to the length of the problem horizon T (a trend which was most common

across all parameter settings). For small problems, such as that shown in case B, the

growth of influence space nearly matches that of the policy space, yielding a degree of

influence that is relatively flat. For case C, uncertainty = 0 indicates that all tasks

169



have deterministic durations. In this case, determinism forces a linear increase in the

number of influences (as was previously described in Section 4.6.2.2). The policy space

growth is similarly stunted, which results in a degree of influences which is relatively

unaffected by the size of the nonlocally-affecting task’s window.

Although my initial hypothesis regarding the increasing degree of influence turned

out to be false, we can distill from these results a strong trend in the increase of

the influence space. For all nondeterministic cases (including those not shown), the

influence space size grew exponentially with the increasing nonlocally affecting task

window. Just as we observed in Section 4.6.2.4, however, the increase in the number of

influences is accompanied by an exponential increase in the variance. Next, I examine

one other factor contributing to this variance.

I hypothesize that it is not only the size of the window of nonlocal feature

manipulation that affects the influence space size, but also the window’s temporal

placement. Intuitively, the later the window of nonlocal feature manipulation, the more

decisions that agent i has made before interacting with others, and hence the more

that could have transpired locally before an interaction takes place, corresponding to

an increasing number of possible trajectories of agent i before setting the nonlocal

feature. I hypothesize that, as a consequence, the later the window of nonlocal feature

manipulation, the more feasible influence points there will be in general. I test this

hypothesis by simultaneously varying the size of the nonlocally-affecting task’s window

and location of its window (as controlled by the earliest start time NLAT est).

The results, plotted in Figure 4.20, confirm that this hypothesis holds true for the

problems in my testbed. The only exceptions are settings for which there are no other

tasks besides the single nonlocally-affecting task or for which the other tasks are all

deterministic20, as in case A. For these exceptions, the influence space size remains

constant because for each time t that agent i can start its nonlocally affecting task,

regardless of the value of t, there is necessarily a single influence point due to the

certainty that agent i will indeed start the task at time t.21

In both cases B and C, the influence space size increases exponentially as the

nonlocally-affecting task window is shifted forwarded in time, as predicted. However,

the degree of influence exhibits more complicated behavior. At a high level, as the

local window size is increased, progressing from 0.0 in case A to 1.0 in case C, the

degree goes from strictly decreasing (in case A) to wavering (in case B), to strictly

20 Determinism in case A is due to the setting localWindowSize = 0.0, dictating that each local
task has just a single outcome with duration 1 and probability 1.

21Although there is uncertainty as to when the nonlocally-affecting task will finish, this uncertainty
is encoded in a single influence.
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increasing in case C. Given the inverse relationship between policy space size and

degree of influence, the trend that we observe in the degree of influence is a result of

the opposite trend in the size of the policy space.

The explanation behind this trend is as follows. As the nonlocally-affecting task

window is shifted forward in time, there are two opposing forces being exerted on the

policy space. First, there is policy space growth due to the fact that there are more

states at later times than at earlier times, and hence more opportunities for increasing

the number of policy decisions when the nonlocally affecting task is allowed to be

started later on. In essence, the longer agent i delays a decision about its interaction,

the more that could have transpired, and the more circumstances that it will need

to consider. This force is dominant in case A as well as in cases B and C given that

NLATWindow is large.

Second, the later agent i may begin its nonlocally-affecting task, the later the
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branching due to the uncertain task outcomes occurs, and the smaller the subsequent

increase in states at later times and the smaller the corresponding rise in the number

of decisions due to these additional states. In essence, the longer that agent i delays

its interactions, the shorter-lasting the consequences of its interactions will be, and

the less it will need to reason about thereafter. This second force is dominant when

local tasks’ windows are large and also when the nonlocally affecting task window is

small. This makes sense because this second force is magnified when the branching

factor (due to additional actions) is increased, which occurs when local task windows

are enlarged (as we observed in Section 4.6.2.2).

4.6.3 Summary of Findings

The empirical results that I have presented in Sections 4.6.2.1-4.6.2.5 provide the

following insights:

� In general, as an agent’s local decision problem becomes more complex (involving

more states and actions, and more uncertainty), there is an increasing number

of influences that the agent can exert on its peers. However, in almost all

cases, the rate of policy space growth exceeds that of influence space growth.

Consequently, agents with more complex local behavior tend to have a smaller

degree of influence. To validate that this result was not restricted to the space of

relatively small problems considered above, I ran two additional tests on a set of

larger problems. The results, shown in Figure 4.21, anecdotally corroborate that

the trends observed in my earlier experiments can be extrapolated to problems

with time horizons of 10 or greater.22 These trends suggests that the potential

advantages of coordinating abstract influence (over coordinating full policies)

are magnified as agents’ local behavior becomes more complex.

� As the size of an agent’s influence encoding increases, the number of points in its

feasible influence space tends to increase. Specifically, we observed an increase

in the average influence space size when the encoded distribution included more

nonlocal features and also when its probabilities were conditioned on history

instead of on state. We also observed that the growth in the influence space due

to the more verbose history-dependent encoding was greater when the problem

22Figure 4.21A extends my analysis of growing number of decision steps (from Section 4.6.2.1) and
Figure 4.21B performs the same comparison of varying numbers of tasks and task window sizes from
Section 4.6.2.2, but for larger problems with a time horizon of 10.
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uncertainty increased. With respect to the degree of influence, agents whose

interactions can be encoded more compactly tend to be more weakly-coupled.

As a consequence, influence-based abstraction is (on average) more effective at

reducing the size of the search space when the influence encoding is small.

� In general, along with increasing influence space size, we also observed a signifi-

cant increase in the variance of the influence space size. This indicates that the

computation required to search the influence space (exhaustively) is increasingly

unpredictable for problems with more complex influence encodings. To combat

this unpredictability, I have identified several characteristics that can be used to

gauge a problem’s influence space size and its degree of influence:

1. The size of the policy space appears to be weakly correlated with the size

of the influence space.

2. Not surprisingly, increasing the size of the window during which agents

are allowed to interact tends to increase the number of feasible influence

points. However, the additional number of policies that results from the

agents’ greater interaction flexibility tends to overwhelm the growth of the

influence space. This suggests that giving agents a broader array of choices

about when to interact actually makes them more weakly coupled.23

23This result indicates that there is some discrepancy between the intuitive definition of weak
coupling and the semantics that I have presented in Section 3.5.
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3. For nondeterministic problems, moving the window of interaction forward

in time tends to increase the number of feasible influence points. Intuitively,

the later an agent’s interaction may occur, the more that can transpire

before the interaction, and so the greater the uncertainty in if and when

the interaction will take place. This also tends to increase the degree of

influence. However, for cases in which the interaction window is small,

or in which there is little uncertainty, moving the window of interaction

forward in time can cause a decrease in the degree of influence (and thus

an increase in the effectiveness of influence-based abstraction at reducing

the size of the policy space).

4.7 Summary

This chapter makes several key contributions. First, I developed a novel best-

response model whose computational complexity is dependent on the number of shared

state features and otherwise independent of the number of peer agents. As such, agents’

usage of this best response model constitutes inherent exploitation of reduced state

factor scope (as formalized in Section 3.5.1.3). Although restricted in its application to

TD-POMDP problems, this best response model is the first to exploit such structure

transition-dependent agents.

Within the larger scope of this work, in this chapter I have developed a gen-

eral framework for abstracting agents’ transition influences. More significantly, I

have proven that the influence abstractions suffice for optimal local reasoning about

peers’ behavior. To begin to evaluate the efficacy of my influence-based abstraction

methodology, I have performed an empirical analysis, and presented evidence that

influence-based abstraction enables a significant reduction the overall search space.

Further, by identifying problem characteristics that impact the size of the influence

space and the size of the policy space, my analysis takes steps towards characterizing

the circumstances under which influence-based policy abstraction is most advanta-

geous. Although the results presented in this chapter capture only the number of

influences and not the computation required to find each point in the feasible influence

space, my rigorous analysis of influence-space size and degree of influence lead me, in

Chapter 6, to characterize the overall computational advantages and disadvantages

of influence-based abstraction (after developing the remaining components of my

influence-based solution methodology).
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CHAPTER 5

Constrained Local Policy Formulation

In the last chapter, I identified an alternative search space, the influence space,

proposing that agents coordinate influences instead of policies. However, they cannot

do away with policies altogether. Whereas influences convey expectations about select

portions of joint behavior, agents’ policies provide complete specifications of local

behavior, without which a solution to the planning problem would be incomplete. As

such, there is an inherent duality of agent reasoning associated with influence-based

policy abstraction: individually, agents reason about policies, and jointly, agents reason

about influences. The constrained local policy formulation methodology that I present

in this chapter provides agents with a mapping between the two representations.

Constrained Local Policy Formulation 

best-response 
model 

local policy 

𝝅𝒊 

influence  
(on peers) 𝚪𝑖 

𝝅𝒊 𝚪𝑖 

Figure 5.1: Functional diagram of constrained local policy formulation.

As indicated by Figure 5.1, which isolates the “constrained local policy formulation”

component from the other contents of my approach shown in Figure 1.2, I address

both directions of translation. Translating from policy to influence, my methodology

allows each agent to extract from any one of its policies the implied influence (on the
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agent’s peers). Further, given a proposed influence, it allows agents to compute a

policy that adheres to the influence, thereby translating from influence to policy.

At the heart of my approach lies a conceptual connection between the occupation

measures of the MDP dual linear program (LP) formulation (D’Epenoux, 1963;

Kallenberg, 1983) and the probabilistic effects that influences encode. In formalizing

this relationship, I derive the probability value of each influence component as a

function of the occupation measures returned by the MDP LP solution. Further, I

develop a novel extension to the MDP LP formulation that incorporates additional

constraints so as to guarantee that the solution policy adheres to an agent’s proposed

influences (if such a policy exists). In contrast to existing alternative approaches, which

encourage the enforcement of various forms of influence by biasing the MDP model,

my approach strictly enforces agents’ influences without the need for parameter tuning

or model manipulation, by constraining the policy directly. Further, my approach is

guaranteed to produce individual agent policies that are optimal with respect to the

influence constraints.

5.1 Overview

The contents of this chapter are organized as follows. I begin, in Section 5.2,

by formalizing the application of the dual LP to an agent’s best response model

and incorporating additional mixed-integer constraints for computing and evaluating

deterministic policies and for handling partial observations. In Section 5.3, I introduce

the relationship between occupation measures and policy effects within the simple,

yet restrictive, context of probabilistic goal achievement. I relax this restriction in

Section 5.4, extending to state-dependent and history-dependent influences. Next, in

Section 5.5, I contrast my constrained policy formulation methodology with alternative

approaches. In Section 5.6, I develop an algorithm that iteratively enumerates all of

an agent’s outgoing influences and analyze its complexity. I conclude the chapter with

a summary of its contributions in Section 5.7.

5.2 Applying the Dual LP Formulation

Among the various single-agent (PO)MDP solution methods reviewed in Section

2.2.1.2, an agent may employ the LP formulation from Equation 5.1 to solve its

best-response model (developed in Section 4.2). In review, the best-response model

incorporates all peers’ influences into its transition function. During the planning
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process, agents’ peers propose influences, at which point the agent can use its best-

response model to reason about its local behavior as if it was alone in the world

(since the influences of its peers have been fixed). Throughout this section, I will

treat the agent, reasoning with its best-response model, in isolation. In general, the

TD-POMDP best-response model is partially observable, however, for the moment, let

us assume that is a completely-observable single-agent MDP. In Section 5.2.3, I will

describe an extension for applying LP techniques to partially-observable models. In

Sections 5.2.1–5.2.2, I describing extensions for computing and evaluating deterministic

policies. But before then, let me formally re-introduce the basic form of MDP dual

linear program (D’Epenoux, 1963; Kallenberg, 1983).

The variables xxx = 〈x(s, a),∀s ∈ S,∀a ∈ A〉 of the LP, called occupation measures,

model the expected (discounted) number of times that action a is taken in state s.

For Dec-POMDPs, and consequently for agents’ local best response models, the time

horizon is finite and the discount factor γ = 1.1 Thus, for our purposes, the occupation

measures specify the expected non-discounted number of times action a is taken in

state s from time steps 0 to T (the finite horizon).

max
xxx

∑
s∈S

∑
a∈A

x(s, a)R(s, a)∣∣∣∣∣∣
∀st+1 ∈ S,

∑
at+1∈A

x(st+1, at+1)−
∑
st∈S

∑
at∈A

x(st, at)P
(
st+1|st, at

)
= α(st+1)

∀s ∈ S,∀a ∈ A, x(s, a) ≥ 0

(5.1)

The first constraint of the LP in Equation 5.1 can be thought of as conserving the

flow of probability through each state st+1, requiring that the expected number of

times st+1 is exited (the flow out) subtracted from the expected number of times

st+1 is entered (the flow in) be equal the probability of starting in st+1. The second

constraint forces each occupation measure to be no less than zero.

When a LP is solved, the LP solver returns a solution, which is a setting of variables

(in this case xxx) that maximizes the objective function, in addition to the resulting max-

imal objective value. In Equation 5.1, the objective function max
xxx

∑
s∈S

∑
a∈A

x(s, a)R(s, a)

ensures that the solution to the LP, which I will refer to as the optimal occupation

vector xxx∗, maximizes the expected accumulation of rewards.

Upon computing the optimal occupation vector xxx∗, the agent can recover its

1Throughout this chapter, I assume that γ = 1. The extent to which my formalism can be
extended to cases where γ < 1 is the subject of future work.
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corresponding best-response policy as follows:

π∗(s, a) =
x∗(s, a)∑
a′∈A x(s, a′)

(5.2)

Similarly, the agent’s (local) value V (π∗) of the policy π∗ that was computed using

Equation 5.2 is simply the value of the objective function:

V (π∗) =
∑
s∈S

∑
a∈A

x∗(s, a)R(s, a) (5.3)

5.2.1 Constraining the LP to Return a Deterministic Policy

In general, the policy π∗ returned (in Equation 5.2) by the MDP LP is stochastic,

prescribing a probability with which the agent shall take each action in each state

(π : S × A 7→ (0, 1)). There are an infinite number of such policies. In the interest of

maintaining a finite search space, my overarching solution methodology for planning

coordinated behavior (developed in Section 5.6 and in Chapter 6) restricts itself to

deterministic policies of the form π : S 7→ A. Fortunately, it is straightforward

to constrain the LP from Equation 5.1 to return the optimal deterministic policy.

However, it entails transforming the LP into a mixed-integer LP (MILP), making

policy computation more costly in general. As such, in adopting this extension, the

solution methodology that I adopt in this dissertation inherently trades potential

reductions in computational complexity of local policy computation for finiteness of

joint policy space and ease of searching the space (as I describe in Section 5.6).

Equation 5.4 computes deterministic policies by extending the standard MDP dual

LP (Equation 5.1) with additional variables and constraints. Here , I introduce a vector

of Boolean variables zzz = 〈z(s, a) ∈ {0, 1},∀s ∈ S,∀a ∈ A〉, whose values indicate

whether or not the corresponding occupation measures are greater than zero. Each pair

{z(s, a), x(s, a)} is thereby connected by a constraint −1 ≤ (x(s, a)− z(s, a)) ≤ 0,

requiring that z(s, a) = 1 whenever x(s, a) > 0 (but not the converse). Subse-

quently, an additional constraint for each state s of the form
(∑

a∈A z(s, a)
)

= 1,

restricts that at most one of {z(s, a), z(s, a′), z(s, a′′), ...}, and thus at most one of

{x(s, a), x(s, a′), x(s, a′′), ...}, be nonzero. The solution to our new LP takes the form

of an optimal 〈xxx∗, zzz∗〉 pair.
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max
xxx

∑
s∈S

∑
a∈A

x(s, a)R(s, a)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀st+1 ∈ S,
∑

at+1∈A

x(st+1, at+1)−
∑
st∈S

∑
at∈A

x(st, at)P
(
st+1|st, at

)
= α(st+1)

∀s ∈ S,∀a ∈ A, −1 ≤ (x(s, a)− z(s, a)) ≤ 0

∀s ∈ S,

(∑
a∈A

z(s, a)

)
= 1

∀s ∈ S,∀a ∈ A, x(s, a) ≥ 0

∀s ∈ S,∀a ∈ A, z(s, a) ∈ {0, 1}

(5.4)

Upon computing 〈xxx∗, zzz∗〉 subject to the above constraints, the agent recovers its

deterministic policy as:

π∗(s) = arg max
a

z∗(s, a), (5.5)

wherein a single action a is assigned to each state s. Note that z(s, a) ∈ {0, 1}, and

z∗(s, a) = 1 indicates that a is the only action (if any) with a positive occupation

measure in state s. If state s is unreachable via π∗, the deterministic action may be

selected arbitrarily by the LP solver.

In general, enforcing deterministic policies in this manner results in a harder

optimization problem. With the addition of integer variables zzz, Equation 5.4 defines

a mixed-integer linear program (MILP), whose worst-case complexity is no longer

polynomial ; instead, the best known algorithms take exponential time (in the number

of variables) in the worst case.

5.2.2 Evaluating Deterministic Policies

In addition to computing optimal (best-response) policies, an agent may use

another variation of the basic MDP dual LP to evaluate any candidate deterministic

policy π (computed by a linear program or otherwise). To do so, it is simply a matter

of disallowing all actions other than those specified by the policy π:

∀s ∈ S,∀a ∈ A s.t. a 6= π(s), x(s, a) = 0 (5.6)

The constraints given in Equation 5.6, when added to the original LP from Equation

5.1, derives from policy π its implied occupation measures xxx (consistent with the

transition dynamics of the MDP). During the process of solving this LP, its objective
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function is evaluated, and π’s corresponding value computed.

5.2.3 Handling Partial Observability

Next, I describe an extension for computing optimal POMDP policies. The idea is

to model the observation history together with state in an MILP, such that occupation

measures xxx are defined over both state and observation history: x(st, ~o t, a) refers to

the probability that the agent observes ~o t from times (1, . . . , t), is in state s at time

t, and takes action a. Inevitably, the size of the occupation measure vector will be

larger that required for fully-observable problems (growing at worst exponentially in

the time horizon). However, the ensuing computational overhead is not unreasonable

for problems wherein the observation history can be encoded compactly.

Note that the original semantics of occupation x(st, a) can easily be recovered from

the POMDP occupation measures x(st, ~o t, a):

x(st, a) =
∑
~o t

x(st, ~o t, a), (5.7)

which follows from the fact that two different observation histories cannot both occur

in a single execution trajectory. Analogously, the POMDP LP objective function is

simply max
xxx

∑
s

∑
~o

∑
a

x(s, ~o, a)R(s, a).

The flow constraint in the POMDP LP (which is an extension of the first constraint

in Equation 5.1) must account for the probability of encountering state-observation

pair (st+1, ot+1) given that action at was taken in state st upon observing history ~o t:

∀st+1,∀~o t+1 =
〈
~o t, ot+1

〉
,∑

at+1

x(st+1, ~o t+1, at+1)−
∑
st

∑
at

x(st, ~o t, at)P
(
st+1|st, at

)
O(ot+1|at, st + 1) = 0,

(5.8)

which includes both the POMDP state transition probability and the probability

of the new observation (as prescribed by the observation function O introduced in

Section 2.2.2). Equation 5.8 constrains the flow from one observation to the next. An

additional constraint is required to account for the start state distribution ααα:

∀s0 ∈ S,∀~o,
∑
a0

x(s0, ~o, a0) =

{
α(s0), if ~o = ∅
0, otherwise

(5.9)
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Just as in Section 5.2.1, we will use the integer variables zzz to constrain the policy

to be deterministic. For the POMDP LP, we need a z(s, ~o, a) value for every element

of xxx. The deterministic policies constraints (not shown here) are otherwise identical

to those given in Section 5.2.1.

Given that our occupation measures store both state and observation history

information, one additional set of constraints is needed. For the POMDP, policies map

observations histories (but not states) to actions. Thus, a valid policy must assign the

same action to all state-observation-history pairs with identical observation history:

∀~o, ∀a,
∑
s∈S

z(s, ~o, a) = ‖S‖ · z(s0, a) (5.10)

In combination with the deterministic policy constraints and involving the variables

z developed in Section 5.2.1, Equation 5.10 requires that, for every unique observation

history and for every action, the summation of z values must be equal to the number of

states multiplied by the z value of one (arbitrarily chosen) state s0. The consequence

is that all observation-history-action pairs must have the same z value. By the

semantics of zzz, the same deterministic action must be chosen for every observation

history regardless of action. Just as in Section 5.2.1, the deterministic action is easily

recovered by selecting the single action with a nonnegative value z(s, a) for each state.

The policy π : Fobs 7→ A, in this case mapping observable feature values to actions, is

therefore:

π∗(~o ) = arg max
a

z∗(s0, ~o, a), (5.11)

where state s0 is arbitrarily chosen. Note that the POMDP extension described above

may be used in combination with any of the other extensions developed in remained

of this chapter.

5.3 Probabilistic Goal Achievement

As I have described in the last Section, the dual LP expresses occupation measures

that suffice as an alternate representation of an agent’s policy. Whereas the con-

ventional representation of a deterministic policy maps states to actions, occupation

measures instead articulate expected state-action statistics, thereby providing a richer

encoding. Subject to the assumption that the state space is acyclic, occupation mea-

sures encode an agent’s probabilistic action effects in addition to its action choices. The

fact that this probabilistic information is intrinsic to the MDP linear program means

that we can manipulate the policy formulation process at its core, explicitly specifying
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constraints and objectives on desired probabilistic effects. In this section, I describe a

simple application of this concept before explicitly connecting it to influence-based

abstraction in the next section.

Consider that, in addition to maximizing utility, an agent has other aspirations

that cannot easily be accounted for in the utility function. In particular, the agent

would like to reach a set of goal states Sg ⊂ S such that, in any given trajectory, at

most one state sg ∈ Sg may be encountered. By adapting the basic MDP dual LP

from Equation 5.1, the agent can compute a policy guaranteed to reach exactly one of

its goal states with the addition of a single constraint: ∑
{s∈Sg}

∑
a∈A

x(s, a)

 = 1

In essence, the agent is directly constraining its policy to achieve its goals. Although

the objective function remains the same—to maximize the expected summation of

rewards—the agent will now compute the highest-valued policy that reaches a goal

state (if such a policy exists). More generally, the agent can constrain its policy to

achieve its goals with probability ≥ ρ by constraining the occupation measures as: ∑
{s∈Sg}

∑
a∈A

x(s, a)

 ≥ ρ

Yet another alternative is to alter the objective function such that the agent achieves

its goals with maximal probability:

max
xxx

 ∑
{s∈Sg}

∑
a∈A

x(s, a)


Note that the LP formulations suggested above exploit the fact that an occupation

measure must equal the probability of ever visiting the state and taking the action.

The equivalence between occupation measure x(s, a) and probability ρ is contingent

upon the assumption that states are time indexed and so cannot be visited more

than once in any execution trajectory. Moreover, I assume that the goal states are

mutually exclusive, such that not more than one can be visited in a single trajectory,

and thus the probability of reaching any goal state is equal to the summation of the

probabilities of reaching each goal state.

The strength of this approach, in contrast to other policy formulation techniques
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(e.g. policy iteration, value iteration, dynamic programming), is its ability to constrain

policies precisely while still maintaining optimality (with respect to the constraints). If

there does not exist a policy that will satisfy the agent’s probabilistic goal constraints,

the LP solver will return “no solution” and the agent will know that its goals are

over-constraining.

5.4 State-Dependent Influence Achievement

Just like probabilities of fulfilling goals, agents’ influences (as formalized in Section

4.3) are also directly related to the MDP LP’s occupation measures. Let us begin by

considering a state-dependent influence Γπi(n̄), which consists of a set of parameters,

each taking the form γ = Pr
(
n̄t+1 = n̂|f̄ t = f̂

)
, whose semantics are as follows: given

that agents are in a state st ∈ Dt
γ ≡

{
st ∈ S|f̄(st) = f̂

}
at time t, then the influencing

agent’s policy will cause the transition into a state st+1 ∈ Et+1
γ ≡ {st+1 ∈ S|n̄(st) = n̂}

at time t + 1 in which the prescribed effect has been achieved with probability γ.

Starting from this definition, we can rewrite the equation for γ as follows:

γ = Pr
(
n̄t+1 = n̂|f̄ t = f̂

)
= Pr

(
Et+1
γ |Dt

γ

)
given the semantics of influence

=
Pr
(
Et+1
γ , Dt

γ

)
Pr
(
Dt
γ

)
by definition of conditional probability

=

∑
st∈Dtγ

∑
st+1∈Et+1

γ

Pr
(
st, st+1

)
∑
st∈Dtγ

Pr
(
st
)

because agents cannot occupy multiple states simultaneously

=

∑
st∈Dtγ

∑
at∈A

∑
st+1∈Et+1

γ

Pr
(
st, at, st+1

)
∑
st∈Dtγ

∑
at∈A

Pr
(
st, at

)
by the law of total probability
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=

∑
st∈Dtγ

∑
at∈A

∑
st+1∈Et+1

γ

Pr
(
st+1|st, at

)
Pr
(
st, at

)
∑
st∈Dtγ

∑
at∈A

Pr
(
st, at

)
by definition of conditional probability

=

∑
st∈Dtγ

∑
at∈A

∑
st+1∈Et+1

γ

P
(
st+1|st, at

)
x
(
st, at

)
∑
st∈Dtγ

∑
at∈A

x
(
st, at

) (5.12)

subsituting agent i’s transition function P() and occupation measures xxx

Alternatively, a state-dependent influence may have no conditioned evidence,

thereby expressing a prior probability Pr (n̄0 = n̂|∅). In this case, γ depends only on

the start state distribution α:

γ = Pr
(
n̄0 = n̂

)
= Pr

(
E0
γ

)
given the semantics of influence

=
∑
s0∈E0

γ

Pr
(
s0
)

=
∑
s0∈E0

γ

α
(
s0
)

(5.13)

substituting agent i’s start state probabilities ααα

By the above derivations, given any candidate policy πi, agent i can compute its

outgoing influence Γπi by (1) evaluating policy πi using the LP described in Section

5.2.2, thereby returning a vector of occupation measures xxx, and (2) evaluating the

derived expressions in Equation 5.12 (or Eq. 5.13) for each γ ∈ Γπi . The MDP LP

thereby suffices as a method of state-dependent influence abstraction, translating from

policies to influences.

The other direction of translation—from influence to policy—may be achieved by

incorporating influence constraints, which I derive as follows, by turning equation 5.12

on its head using algebraic manipulation.
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∑
st∈Dtγ

∑
at∈A

∑
st+1∈Et+1

γ

P
(
st+1|st, at

)
x
(
st, at

)
∑
st∈Dtγ

∑
at∈A

x
(
st, at

) = γ

⇔∑
st∈Dtγ

∑
at∈A

∑
st+1∈Et+1

γ

P
(
st+1|st, at

)
x
(
st, at

)−
∑
st∈Dtγ

∑
at∈A

γx
(
st, at

) = 0

⇔∑
st∈Dtγ

∑
at∈A

x
(
st, at

) ∑
st+1∈Et+1

γ

P
(
st+1|st, at

)− γ
 = 0

(5.14)

Computing a policy that constrains agent i to fulfill an influence Γπi is thereby

achieved with the addition of constraints of the form derived in Equation 5.14, one for

each γ ∈ Γπi , to the standard MDP LP from Equation 5.1. Putting it all together:

max
xxx

∑
s∈S

∑
a∈A

x(s, a)R(s, a)∣∣∣∣∣∣∣∣∣∣∣∣

∀st+1 ∈ S,
∑

at+1∈A

x(st+1, at+1)−
∑
st∈S

∑
at∈A

x(st, at)P
(
st+1|st, at

)
= α(st+1)

∀γ ∈ Γi,
∑
st∈Dtγ

∑
at∈A

x
(
st, at

) ∑
st+1∈Et+1

γ

P
(
st+1|st, at

)− γ
 = 0

∀s ∈ S,∀a ∈ A, x(s, a) ≥ 0

(5.15)

The solution to the LP in Equation 5.15 corresponds to a policy π∗i (Γi) that maximizes

agent i’s local utility with respect to the candidate influence setting Γi. If the LP

returns no solution, this means that there is no local policy that achieves influence

setting Γi, in which case we say that Γi is infeasible.

5.4.1 History-Dependent Influence Achievement

Extending the state-dependent influence calculations and constraints from Equa-

tions 5.12-5.15 to the case of history-dependent influences is straightforward. The key

is to incorporate the necessary history into the state of the best-response model. That

is, for a history-dependent influence of the form γ = Pr
(
n̄t+1 = n̂|~f t = f̂

)
, simply
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model ~f t as a feature of the state at time t. From the influencing agent’s standpoint, a

history-dependent influence is effectively no different from a state-dependent influence.

5.5 Alternative Approaches to Constraining Influence

In the preceding sections, I have used linear programming to address the problem

of computing an agent’s policy that fulfills a desired influence (on its peers). In

essence, my LP constraints enforce that the influencing agent achieve a requisite

behavior. I now turn to an alternative approach sometimes referred to as reward

shaping that others have used to enforce desired agent behaviors (e.g., Musliner et al.,

2006; Varakantham et al., 2009; Williamson et al., 2009). Here, the (PO)MDP reward

function is tweaked by adding rewards or penalties (i.e., negative rewards) to bias the

agent towards desirable behavior or away from undesirable behavior. Upon setting

these additional rewards, any standard (PO)MDP solver may be used compute an

optimal local policy, which in this case is optimal with respect to the manipulated

reward function. Along these lines, reward shaping could be used to bias an agent to

achieve a particular influence.

Figure 5.2: A simple, concrete example of influences modeled by 2 agents.
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Example 5.1. The problem shown in Figure 5.2 depicts two agents with simplistic

influences, each encoded as a single probability value (ρ). Assume that the objective

is to compute a policy that enforces that agent 1 influence agent 2 by setting bit

x with probability ρ1 = 0.4. In this case, the reward shaping approach will then

add extra reward value r1 to states 0010 and 1010 (since these are the states that

agent 1 enters upon setting bit x to 1). Analogously, a penalty p1 ≤ 0 is added to

the reward values of states 1100 and 1001, since these are the states at agent 1’s

time horizon for which arrival means that bit x has never been and will never be

set. Notice that if r1 > 10 or if p1 < −10, action a1 will be strictly preferred by

agent 1. Running an MDP solver on this augmented MDP will invariably yield a1

as the optimal action choice for agent 1 in state 0000. And so agent 1 will be able

to satisfy its influence whilst maximizing its local utility.

The reward shaping methodology may be effective in some situations, but it is

often difficult to set the reward and penalty values appropriately. Moreover, there

may not be any values that correctly enforce the commitment.

Example 5.2. Returning to the same two-agent problem shown in Figure 5.2,

consider the joint influence Γ = {ρ1 = 0.4, ρ2 = 0.4}, indicating that agent 1 will

set x with probability 0.4 and y with probability 0.4. In this case, we will use

a reward-penalty pair 〈r1, p1〉 to encourage the setting of bit x (and discourage

transitions in which x is not set), and another reward-penalty pair 〈r2, p2〉 to

encourage the setting of bit y. Towards selecting appropriate values for our rewards

and penalties, let us express agent 1’s local value of each of its three policies

(which, in this case, correspond to actions a1, a2, and a3), which is the expected

sum of rewards received over the course of executing the policy, adding in the r’s

and p’s where appropriate:

V1(a1) = r1 + p2 + 10

V2(a2) = 0.6(p1 + p2 + 5) + 0.4(r1 + r2 + 5) = 0.4r1 + 0.4r2 + 0.6p1 + 0.6p2 + 5

V3(a3) = r2 + p1 + 10

(5.16)
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First, notice that a policy does exist which will satisfy the influence {ρ1 = 0.4, ρ2 =

0.4}. The deterministic local policy which does this is the one that prescribes

action a2 in state 0000. With probability 0.4, the agent will transition into 0010,

satisfying ρ1 = 0.4 and from there with certainty into 0011, satisfying ρ2 = 0.4.

Furthermore, it turns out that the optimal joint policy dictates that agent 1 should

select action a2. However, as I prove below, we cannot compute this policy by

adding extra rewards and penalties.

Theorem 5.3. There exists an MDP and a set of influences for which:

1. there exists a deterministic local policy achieving an influence Γ, and

2. using reward shaping along with standard deterministic MDP solution techniques,

no tuple of the form 〈r1 ≥ 0, p1 ≤ 0, r2 ≥ 0, p2 ≤ 0〉 will yield a policy that adheres

to Γ.

Proof. Consider the MDP in Figure 5.2 and the influence Γ = {ρ1 = 0.4, ρ2 = 0.4}.
The only deterministic policy that satisfies this influence, and indeed the only one

by which x is set with positive probability and y is set with positive probability,

is the policy that selects action a2. Thus, it suffices to prove that for no values of

〈r1 ≥ 0, p1 ≤ 0, r2 ≥ 0, p2 ≤ 0〉 is action a2 preferred over action a1 or action a3.

To begin with, let us derive preference relations by manipulating the value functions

in Equation 5.16 (presented in Example 5.2):

a1 � a2 ⇐⇒ r1 + p2 + 10 > 0.4r1 + 0.4r2 + 0.6p1 + 0.6p2 + 5

by Equation 5.16

⇐⇒ 5r1 + 5p2 + 50 > 2r1 + 2r2 + 3p1 + 3p2 + 25

by multiplying both sides by 5

⇐⇒ 3r1 − 3p1 + 25 > 2r2 − 2p2 (5.17)

by subtracting (2r1 + 3p1 + 5p2 + 25) from both sides
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a3 � a2 ⇐⇒ r2 + p1 + 10 > 0.4r1 + 0.4r2 + 0.6p1 + 0.6p2 + 5

by Equation 5.16

⇐⇒ 5r2 + 5p1 + 50 > 2r1 + 2r2 + 3p1 + 3p2 + 25

by multiplying both sides by 5

⇐⇒ −2r1 + 2p1 + 25 > −3r2 + 3p2 (5.18)

by subtracting (2r1 + 3p1 + 5r2 + 25) from both sides

Now, consider the following cases, which cover all possible combinations of values of

〈r1 ≥ 0, p1 ≤ 0, r2 ≥ 0, p2 ≤ 0〉:

case 1 : [−2r1 + 2p1 + 25 > −3r2 + 3p2].

⇒ a3 � a2 by Equation 5.18

case 2 : [−2r1 + 2p1 + 25 ≤ −3r2 + 3p2].

⇒ 3r1 − 3p1 − 37.5 ≥ 4.5r2 − 4.5p2 by multiplying both sides by -1.5

⇒ 3r1 − 3p1 + 25 > 4.5r2 − 4.5p2 because 25 > −37.5

⇒ 3r1 − 3p1 + 25 >
4

9
(4.5r2 − 4.5p2) by {r2 ≥ 0, p2 ≤ 0} ⇒ (4.5r2 − 4.5p2) ≥ 0

⇒ 3r1 − 3p1 + 25 > 2r2 − 2p2

⇒ a1 � a2 by Equation 5.17

Thus, for no combinations of values of 〈r1 ≥ 0, p1 ≤ 0, r2 ≥ 0, p2 ≤ 0〉 is it the case

that a2 is preferred. Therefore, reward shaping cannot be used, in combination with

deterministic policy formulation techniques, to enforce Γ.

In Example 5.2, there are no perfect rewards and penalties that enable the com-

putation of a policy for agent 1 that adheres to the optimal influence setting. For

other problems, even if perfect values of r and p exist, it may be difficult to identify

what they are. Semantically, the agent is forced to assign value to satisfying the

probabilistic effect of the influence versus failing to satisfy it. This value is inherently

tied to local policy values dictated by the MDP reward model. If r and p are too close

to zero, a policy may be formulated that fails to achieve the desired nonlocal effect

(or else achieves it with too small of a probability). But if r and p are too far from

zero, then the agent may sacrifice some of its local quality so as to build a policy that



achieves the nonlocal affect with a higher probability than desired.

The primary advantage of the LP approach presented in Section 5.4 is its ability to

construct policies that capture influence probabilities perfectly while still maintaining

optimality. It is possible that a desired influence settings is infeasible for the influencing

agent, meaning that no deterministic policy achieves the influence. In this case the

LP solver will return “no solution” and the agent will know immediately that this

influence point should not be considered. Otherwise, the returned policy is guaranteed

to satisfy the influence. Reward shaping, on the other hand, will return a policy

regardless of whether or not a desired influence setting is feasible. Post-processing of

the policy (e.g., using Equation 5.12) is then needed to determine whether or not the

achieved influence setting matches the desired influence setting.

Due to the difficulties of setting r and p and the lack of optimality guarantees,

I do not consider reward shaping further in this dissertation. Instead, my solution

approach utilizes constrained linear programming to enumerate influences and to

compute optimal local policies around those influences. However, reward shaping

has several distinct advantages in other algorithmic contexts. For instance, reward

shaping inherently strives for a balance in the costs of nonlocal effects and their

anticipated advantages to other agents, making it useful for rapidly converging on

approximate joint policies (Musliner et al., 2006; Varakantham et al., 2009). Moreover,

unlike constrained linear programming, reward shaping has the added flexibility of

accommodating any (PO)MDP solver.

5.6 Exploring the Space of Feasible Influences

In addition to constraining policies to achieve desired influence settings, agents

can employ the same methodology to generate the set of all feasible influence settings.

That is, for a given influence parameter γ, the influencing agent can enumerate all

feasible values {γ̂} of the parameter achievable by any deterministic policy. It can do

so by solving a series of MILPs, each of which looks for a deterministic policy that

constrains γ to take on a value that has not previously been considered.

Let the influencing agent iteratively check for the existence of a feasible probability

value within an input interval γ̂min < γ̂ < γ̂max by running an MILP solver on the

following program, adapted from Equation 5.15.
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max
xxx

(xxx · 0)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

...usual constraints for computing deterministic policies (Sec 5.4)...

∀st+1 ∈ S,
∑

at+1∈A

x(st+1, at+1)−
∑
st∈S

∑
at∈A

x(st, at)P
(
st+1|st, at

)
= α(st+1)

∀s ∈ S,∀a ∈ A, −1 ≤ (x(s, a)− z(s, a)) ≤ 0

∀s ∈ S,

(∑
a∈A

z(s, a)

)
= 1

∀s ∈ S,∀a ∈ A, x(s, a) ≥ 0

∀s ∈ S,∀a ∈ A, z(s, a) ∈ {0, 1}
...influence parameter setting γ must be greater than γ̂min...∑
st∈Dtγ

∑
at∈A

x
(
st, at

) ∑
st+1∈Et+1

γ

P
(
st+1|st, at

)− γ̂min

 > 0

...influence parameter setting γ must be less than γ̂max...∑
st∈Dtγ

∑
at∈A

x
(
st, at

) ∑
st+1∈Et+1

γ

P
(
st+1|st, at

)− γ̂max

 < 0

...all other influence parameters γ′ must be as prescribed

∀γ′ ∈ Γi|prescribed(γ′),∑
st∈Dt

γ′

∑
at∈A

x
(
st, at

)
 ∑
st+1∈Et+1

γ′

P
(
st+1|st, at

)− γ̂′
 = 0

(5.19)

Equation 5.19 includes two constraints that enforce an upper and lower bound on the

setting of parameter γ (in addition to the constraints from Eq. 5.15 that constrain

any other prescribed influence γ′ = γ̂′, as well as the deterministic policy constraints

from Equation 5.4). Deterministic policy constraints are required so that the agent

does not cycle through an infinite set of nondeterministic policies, the elements of

which may exert influences whose settings are arbitrarily close to one another.

The agent begins by checking interval (γ̂min = −∞, γ̂max = ∞). If the LP from

Equation 5.19 returns a solution, the agent has simultaneously found a new influence

γ = γ̂0 (which may be computed using Equation 5.12) and computed a policy that

exerts that influence, subsequently uncovering two new intervals {(γ̂min, γ̂0), (γ̂0, γ̂max)}
to explore. Alternatively, if the LP returns “no solution” for a particular interval,

there is no feasible influence within that range. By divide and conquer, the agent

can uncover each feasible setting of γ, stopping only after all subintervals have been
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Algorithm 5.1 Feasible Influence Enumeration : Single Parameter

EnumerateFeasibleSettingsForParam(γ, POMDPi,Γ
prescribed
i )

...Initialize Interval Queue and settings list...
1: intervalQ = ∅
2: Push(intervalQ, (−0.1, 1.1))
3: feasibleSettingList = ∅

...Explore Sub-intervals...
4: while not IsEmpty(intervalQ) do
5: (γ̂min, γ̂max)← Pop(intervalQ)
6: {xxx, feasible} ← SolveIntervalLP(POMDPi,Γ

prescribed
i , (γ̂min, γ̂max))

. [Eq. 5.19]
7: if feasible then
8: γ̂new ← computeInfluenceSetting(xxx, γ) . [Eq. 5.12]
9: Add(feasibleSettingsList, γ̂new)

10: Push(intervalQ, (γ̂min, γ̂new))
11: Push(intervalQ, (γ̂new, γ̂max))
12: end if
13: end while
14: return feasibleSettingsList

explored. Operating as such, Algorithm 5.1 performs enumeration of all feasible

settings of an individual influence parameter γ influenced by agent i (whose local

model is denoted POMDPi, and whose already-prescribed influences are denoted

Γprescribed
i ).

Moreover, an agent i can enumerate all the feasible combinations of its outgoing

influence parameter settings. The agent does so by constructing a tree, wherein at each

level of the tree, it enumerates the feasible settings of a different parameter γ. As long

as the agent orders the parameters consistently with the partial order of the influence

DBN, it can reason about one parameter after another, at each node branching for all

of the feasible settings of a parameter given the constraint that it achieves the settings

of the parameters of its tree ancestors. The leaves of the tree thereby correspond to

all feasible combinations of agent i’s outgoing influences. Algorithm 5.2 shows the

pseudo-code for i’s feasible influence generation, which invokes Algorithm 5.1 at each

level of the tree (line 9).
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Algorithm 5.2 Feasible Influence Enumeration : All Outgoing Influence Parameters

GenerateFeasibleInfluences(POMDPi)

...Start With Unprescribed Influence Parameters...
1: Γi ← InitializeOutgoingInfluenceParameters(i)
2: return EnumerateSettingsOfRemainingParams(POMDPi,Γi)

EnumerateSettingsOfRemainingParams(POMDPi,Γi)

...Initialize...
1: settings← ∅
2: Γprescribed

i ← GetPrescribedSettings(Γi)
3: γ ← FirstRemainingParameter(Γi)

...If all outgoing influence parameters set, evaluate and return...
4: if γ = NIL then
5: 〈localV al, πi〉 ←Evaluate(POMDPi,Γi)
6: Add(settings, 〈localV al,Γi〉)
7: return settings
8: end if

...Enumerate settings of first unprescribed parameter...
9: {γ̂} ← EnumerateFeasibleSettingsForParam(γ, POMDPi,Γ

prescribed
i )

...IncorporateSettingsOfRemainingParameters...
10: for each γ̂ ∈ {γ̂} do
11: Γcopy

i ← CopyAndPrescribe(Γi, γ, γ̂)
12: settingsγ̂ ← EnumerateSettingsOfRemainingParams(POMDPi,Γ

copy
i )

13: AddAll(settings, settingsγ̂)
14: end for
15: return settings

Example 5.2 (continued). In the example from Figure 5.2, agent 1 models its

influences on agent 2 with two parameters {ρ1, ρ2}. Thus, agent 1 can enumerate

all of its feasible outgoing influence settings as follows. First, agent 1 finds each

feasible value of ρ1 using Algorithm 5.1, and for each setting ρ1 = ρ̂1 that it finds,

agent 1 enumerates the settings of ρ2 that are feasible in combination with ρ̂1.

Consider that, as an alternative to my LP-guided exploration of the space of an

agent’s feasible influence points, the agent could instead iterate through all of its

possible local policies and manually partition its local policy space into classes with

equivalent influence. In this case, the greater the number of policies, the greater the

computation required to enumerate the feasible influences (regardless of the number of

influences). The advantage of the LP-guided enumeration is that it does not directly

depend on the number of local policies. Given the structure and character of the feasible
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influence tree, the number of nodes can be no greater than the product of the number of

feasible influence points (i.e., the number of leaves) and the number of parameters (i.e.,

the depth). Hence, the number of LPs required to compute the feasible influence tree

for influence Γ is O (numberOfParameters(Γ) · numberOfFeasibleSettingsOf(Γ))

irrespective of the size of the policy space.

5.7 Summary

The primary contribution of this chapter is a principled approach for constraining

agents’ policies to adhere to proposed influences. This approach is made possible

by drawing a conceptual connection between agents’ influence parameters and the

transition probabilities implied by occupation measures in the MDP LP. Through

the formalization of this connection, I have derived (1) a mapping from the agent’s

policy to its implied influences on peers and (2) an extension of the MDP LP for

computing an influence-constrained policy. In contrast to alternative approaches that

use reward shaping, which encourage the enforcement of various forms of influence

by biasing the MDP model, my approach strictly enforces agents’ influences without

the need for parameter tuning or model manipulation. Moreover, by constraining the

policy directly, my approach is guaranteed to compute a local policy that is optimal

with respect to the prescribed influences if such a policy exists; if not, the LP will

determine that the influence is infeasible and return “no solution”. The same cannot

be said for reward shaping. While I am not the first to constrain agents’ policies

with additional MDP LP constraints (Dolgov & Durfee, 2006; Wu & Durfee, 2010),

my approach is the first to formulate constraints pertaining to transition-dependent

agents’ interactions.

Practically, and in the broader scheme of my optimal solution methodology, I have

also developed a novel extension to the influence-constrained linear programming

methodology for generating feasible influences. By solving a series of such MILPs,

an agent can enumerate its entire set of feasible influences. The significance of this

algorithm is that it avoids explicit enumeration of all of the agent’s local policies.

Instead, its computational complexity is dictated by the size of the influence encoding

and the size of the feasible influence space.
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CHAPTER 6

Optimal Influence-space Search

In relation to the preceding chapters, which provided techniques for modeling

individual and joint behavior (Ch. 3), abstracting influences (Ch. 4), and computing

influence-constrained local policies (Ch. 5), I now integrate these components into

a partially-decentralized algorithm for computing optimal solutions to TD-POMDP

problems. My algorithm, Optimal Influence-space Search (OIS), is motivated by

the intuition (Sec. 4.5) and empirical evidence (Sec. 4.6) that the space of feasible

influence points is potentially significantly smaller than the space of joint policies.

Using OIS, agents reason jointly about abstract influences and individually about

their detailed local policies. OIS ultimately returns the optimal influence, which is

the influence point corresponding to the optimal joint policy.

OIS gains traction and scalability over existing algorithms by leveraging weakly-

coupled problem structure. Inherently, OIS takes advantage of agents’ low degree

of influence by searching over the space of influence points (a concept which was

introduced in Section 4.5). By decoupling the optimal joint policy formulation into a

well-ordered series of influence generations and evaluations, OIS is also able to exploit

agents’ locality of interaction. In particular, for weakly-coupled problems with a small

fixed agent scope (Def. 3.30), OIS scales well beyond the state of the art1, a claim I

defend with empirical results in Section 6.6.5.

6.1 Overview

Before developing the mechanics of influence-space search, I first prove that it

yields optimal solutions in Section 6.2. Over the course of the remainder of the chapter,

I gradually unveil my algorithm, OIS, for searching through the influence space. I

1I refer to the state of the art as algorithms (whose results are published) for computing optimal
solutions to commonly-studied flavors of transition-dependent Dec-POMDP problems.
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begin, in Section 6.3, by presenting OIS in its simplest form—a depth-first search that

follows the natural ordering of an acyclic interaction digraph. Next, in Section 6.4, I

describe how to adapt the search process to accommodate graphs with directed cycles.

Next I present an empirical comparison with four other optimal solution algorithms in

Section 6.5, focusing on 2-agent problems for which all algorithms are tractable. My

analysis serves to assess the degree to which OIS gains a computational advantage

through its exploitation of weakly-coupled structure, and also, continuing where my

earlier experiments left off, to characterize the problems for which OIS is advantageous

as well as those for which it is disadvantageous. I conclude this empirical analysis

with a discussion in Section 6.5.7, where I relate my results back to my original claims

regarding the efficacy of influence-based abstraction in computing optimal solutions

efficiently by exploiting weakly-coupled problem structure. Next, in Section 6.6.3, I

develop a substantial enhancement to optimal influence space search for exploiting

reduced agent scope, and provide empirical results illustrative of revolutionary advances

in agent scalability that are made possible by the complementary exploitation of degree

of influence along with agent scope size.

6.2 Correctness of Optimal Influence-space Search

Let us address the claim that agents can compute the optimal joint policy by

exhaustively enumerating and evaluating the space of feasible influence points. Here, I

denote an influence point as Γ, referring to agents’ collective influences (manifested in

the form of the influence DBN described in Section 4.3.5 whose conditional probabilities

are fully specified). Although discussions in previous chapters treated each agent as

either influencing or influenced, this dichotomy does not generalize to problems with

more than two agents. Consider an who agent is influenced by its peers but also

influences its peers. Such an agent needs to reason about incoming influences exerted

by its peers in addition to outgoing influences that it exerts. Consequently, both of

these influence types are contained in the influence DBN.

The following axioms follow directly from the treatment of influence presented in

Section 4.3:

(A1) Every joint policy π maps to some influence point Γ whose conditional prob-

abilities reflect all of the agents’ nonlocal features’ transition probabilities resulting

from the agents adopting π. I will denote this mapping as π 7→ Γ, and denote the set

of feasible influence points as {Γ|∃π, π 7→ Γ}.
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(A2) Given an influence point Γ and agent i’s local policy πi, agent i can compute

its local value with respect to Γ, which I will denote Vi(πi,Γ), by evaluating πi in the

context of a best-response model injected with Γ’s encoded transition probabilities for

i’s nonlocal features, as long as πi is consistent with Γ’s encoded transition probabilities

of i’s locally-controlled features.2

(A3) Given an influence point Γ, each agent i can compute a best response to

Γ, which I will denote π∗i (Γ), by taking the policy whose local value is greatest

(arg maxπi Vi(πi,Γ)) subject to the constraint that π∗i (Γ) is consistent with Γ’s en-

coded transition probabilities of i’s locally-controlled features.

Note that, in contrast to the conventional notion of a best response, here a best

response must account for the agent’s outgoing influences (corresponding to transitions

of its locally-controlled features) as well as its incoming influences (corresponding to

the transitions of its nonlocal features). In the context of influence-space search, the

agent’s best response maximizes its utility conditioned on the influences exerted by its

peers subject to its promised influences on its peers. In this sense, the agent considers

the downstream effects of its behavior on others in addition to its own local value. As

I prove below, by iterating through these more sophisticated best responses, the team

of agents can maximize their joint value.

Definition 6.1. The optimal joint policy with respect to influence point Γ,

denoted3 π∗|Γ =
〈
π
∗|Γ
1 , ..., π

∗|Γ
n

〉
, is the highest-valued joint policy that maps to Γ:

π∗|Γ = arg max
π∈Π|π 7→Γ

V (π)

Definition 6.2. The value of an influence point Γ, denoted V (Γ), is the value of

the optimal joint policy with respect to Γ:

V (Γ) = V
(
π∗|Γ

)
= max

π|π 7→Γ
V (π)

2The consistency of πi with respect to Γ may be checked using, for instance, the MILP methodology
that I have presented in Chapter 5. Specifically, πi is consistent if the MILP from Equation 5.1, with
additional constraints specified by Equations 5.6 and 5.12, returns a solution.

3 Note the purposeful difference in notation between agent i’s best response π∗i (Γ) and the ith

component π
∗|Γ
1 of the optimal joint policy with respect to Γ, which are, in principle, two different

policies. Later, in Theorem 6.4, I prove that the two must be equally valued.
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Theorem 6.3. An optimal joint policy π∗ maps to an influence point Γ∗ whose value

is the greatest of any feasible influences: π∗ 7→
[
Γ∗ = arg maxΓ|∃π,π 7→Γ V (Γ)

]
.

Proof. By Axiom A1 above, π∗ maps to some influence point Γ∗. There can be no

other feasible influence Γ′ 6= Γ∗ such that V (Γ′) > V (Γ∗). If there were, this would

imply the existence of another joint policy π′ such that π′ 7→ Γ′ and V (π′) > V (π∗),

contradicting the premise that π∗ is the optimal joint policy.

Theorem 6.4. The value of any influence point Γ is equal to the summation of local

values of all agents’ best responses: V (Γ) =
∑

i∈N Vi (π
∗
i (Γ),Γ), where π∗i (Γ) is agent

i’s best response to Γ (using the notation of the above axioms).

Proof. Let us assume that this theorem is false: that is, V (Γ) 6=
∑

i∈N Vi (π
∗
i (Γ),Γ).

case 1 : V (Γ) <
∑

i∈N Vi (π
∗
i (Γ),Γ)

⇒ V
(
π∗|Γ

)
<
∑

i∈N Vi (π
∗
i (Γ),Γ) by definition of influence value (Def. 6.2)

⇒ V
(
π∗|Γ

)
< V (〈π∗1(Γ), ..., π∗n(Γ)〉) by Theorem 3.8.

π∗|Γ = arg maxπ∈Π|π 7→Γ V (π) by Definition 6.1

⇒ Contradiction.

case 2 : V (Γ) >
∑

i∈N Vi (π
∗
i (Γ),Γ)

⇒ V
(
π∗|Γ

)
>
∑

i∈N Vi (π
∗
i (Γ),Γ) by Definition 6.2

⇒
∑

i∈N Vi
(
π∗|Γ

)
>
∑

i∈N Vi (π
∗
i (Γ),Γ) by Theorem 3.8

⇒
∑

i∈N Vi

(
π
∗|Γ
i ,Γ

)
>
∑

i∈N Vi (π
∗
i (Γ),Γ) by Axiom A2 above

⇒ ∃i s.t. Vi

(
π
∗|Γ
i ,Γ

)
> Vi (π

∗
i (Γ),Γ) by arithmetic

∀i, π∗i (Γ) = arg maxπi Vi(πi,Γ) by Axiom A3 above

⇒ Contradiction.

Therefore, V (Γ) = V
(
π∗|Γ

)
.

Corollary 6.5. Agents can compute an optimal joint policy π∗ by:

1. exhaustively enumerating all feasible influence points {Γ|∃π ∈ Π, π 7→ Γ},

2. evaluating each influence point by individually maximizing the agents’ local utili-

ties with respect to the influence point and summing V (Γ) =
∑

i∈N Vi (π
∗
i (Γ),Γ),

3. selecting the highest-valued influence point Γ∗ = arg maxΓ V (Γ), and

4. individually computing best responses π∗i (Γ
∗) = arg maxπi Vi(πi,Γ

∗) to Γ∗.

Proof. By Axiom A1, the agents will generate a set of influences in step 1 that

includes the optimal influence point Γ∗ mapped from the optimal joint policy π∗.
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By Theorem 6.4, in step 2, the agents will correctly evaluate each feasible influence,

including Γ∗. By Theorem 6.3, the agents will correctly determine that Γ∗ is the

optimal influence in step 3. Lastly, in step 4, the agents will recover the optimal joint

policy by computing best responses to Γ∗ (by Axiom A3, and Definition 6.1).

At a high level, Corollary 6.5 precisely describes the structure of optimal influence-

space search. It also proves that this exhaustive search methodology does indeed

return optimal solutions, and validates the intuitions that agents can still behave

optimally if they jointly reason at the abstract influence level. The search process

involves largely-decentralized computation. Each agent individually computes its

own local value of each influence point, and each agent individually computes its

local policy with respect to the optimal influence point. In the next section, we will

see that the generation of influences is similarly decomposable into individual agent

computation.

6.3 Depth-First Search

Influence-space search boils down to generating the feasible space of (combined)

influence points, where each is a setting of all agents’ influences and fully-specifies the

influence DBN, and selecting the one that maximizes the sum of agents’ best-response

utilities. From Section 5.6, we already have a methodology for generating a single

agent’s outgoing influence settings. The challenge is composing agents’ individual

generations and evaluations in such a way as to efficiently search the space of combined

influence settings. In this section, I develop one relatively simple composition that

forms the basis for the more advanced search methods presented in Sections 6.4 and

6.6 (as well as the approximate search methods presented in Chapter 7).

The simplest way to compose agents’ individual feasible influence generations is

to construct a search tree wherein each node represents a partially-specified setting

of agents’ influences. The root node of the tree represents a completely unspecified

influence DBN. At the next level down, each node is assigned a particular setting

for just one agent’s outgoing influences. At the next level, each node is assigned a

particular setting for each of two agents’ outgoing influences, and so on all the way

down to the leaf level, where leaf nodes are assigned a complete setting of all agents’

influences. In essence, we have divided the parameters of the influence DBN according

to which agent controls each, placing one agent’s influence generation at each level of

the tree.
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Figure 6.1: One path through the influence search tree.

Depth-first OIS searches the space of feasible influence settings one by one, for

each traversing a path from root to leaf. As shown in Figure 6.1, a path consists of a

combination of agents’ outgoing influence settings, each of which I will refer to as an

outgoing influence point. The optimal (combined) influence point corresponds to the

path leading through the optimal combination of agents’ outgoing influence points.

6.3.1 Structure of Search Tree

In the event that the interaction digraph contains no directed cycles4, we can define

a natural ordering over the agents’ generation problems, thereby placing one agent at

each level of the search tree. Figure 6.1 shows a simple 3-agent example problem with

an acyclic interaction digraph, the corresponding encoding of the influence DBN, and

the resulting structure of the search tree.

At the root of the search tree, influences are considered that are independent of

all other influences. And at lower depths, feasible influence settings are generated by

incorporating any higher-up influence settings on which they depend. This property

is guaranteed for any total ordering of agents that maintains the partial order of

the acyclic interaction digraph. Given one such ordering, the agents can use the

pseudo-code presented in Algorithm 6.1 to perform a depth-first search of the influence

space.

The search begins with the call DF-OIS(root, ordering, nil), prompting the root

4 I relax this restriction later in Section 6.4.
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Algorithm 6.1 Depth-First Optimal Influence-Space Search

DF-OIS(i, ordering,DBN)

...At Leaves, simply compute best response...
1: if i = LastAgent(ordering) then
2: POMDPi ← BuildBestResponseModel(DBN)
3: 〈localV al, πi〉 ←Evaluate(POMDPi)
4: return 〈localV al,DBN〉
5: end if
6: nextAgent← NextAgent(i, ordering)

...Enumerate feasible outgoing influence points...
7: POMDPi ← BuildBestResponseModel(DBN)
8: I ← GenerateFeasibleInfluences(POMDPi)

...Branch for each outgoing influence point...
9: bestJointV al← −∞

10: bestDBN ← nil
11: for each 〈influencei, localV al〉 ∈ I do
12: DBNi ← CopyAndAssign(DBN, influencei)

...Pass Influence Settings Down...
13: 〈descendantsV als,DBNchild〉 ← DF-OIS(j, ordering,DBNi)
14: jointV al← localV al + descendantsV als
15: if jointV al > bestJointV al then
16: bestJointV al← jointV al
17: bestDBN ← DBNchild

18: end if
19: end for

...Pass Highest-Valued Influence Up...
20: return 〈bestJointV al, bestDBN〉

agent to build its (independent) local POMDP (line 1) and to generate all of the

feasible settings of its outgoing influence parameters (line 8), each in the form of a

partially-specified DBN. The root agent creates a branch for each feasible outgoing

influence setting, as computed using Algorithm 5.2 from Section 5.6, passing down

the setting (in line 13). Each branching operation is a recursive call to DF-OIS that

prompts the next agent to construct a local POMDP in response to its ancestors’

influence settings (using the best response model I presented in Chapter 4), compute

its feasible influences, and pass those on to the next agent.

At the root of the tree, the influence DBN starts out as completely unspecified and

is gradually filled in as it travels down the tree, at each subsequent level accumulating

another agent’s influence settings. The agent at the leaf level of the tree does not

influence others, so simply computes a best response to all of the influence settings

of its ancestors, for each passing up its best-response utility value (lines 2-4). At
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each intermediate node, the respective agent evaluates each of its outgoing influence

settings that it passed down by taking the sum5 of the combined utility value passed

up from its descendants (denoted descendantsV als) and its local utility value (line

14). In this manner, from the leaves to the root, the best outgoing influence setting

is selected (lines 15–18) at each level of the tree, accounting for both local cost (or

reward) as well as descendant reward (or cost). When the search completes, the

result is an optimal influence-space point: a DBN that encodes the feasible influence

settings that achieve the optimal team value. As a post-processing step (not shown in

Algorithm 6.1), the agents compute their optimal joint policy by each computing a

best response to the optimal influence DBN returned by the search.

6.3.2 Enumerating Feasible Influences

At each non-leaf node of the tree, the respective agent calls GenerateFeasible-

Influences() to generate its feasible outgoing influence points. One such influence

generation scheme is presented in Section 5.6 comprising a series of mixed-integer

linear programs that the agent uses to find each feasible combination of settings of its

outgoing influence parameters. Recall that the agent’s outgoing influence parameters

specify the probabilistic transitions of the agent’s locally-controlled features that

affect other agents. Interestingly, the MILP-driven generation of an individual agent’s

influence settings takes the same form as OIS’s generation of combinations of agents’

feasible influences. Just like OIS’s generation, the MILP-driven generation of outgoing

influences (Algorithm 5.2) constructs a tree, in this case placing an individual influence

parameter at each level of the tree. As such, the branches in OIS’s DFS tree comprise

the leaves of each agent’s MILP-driven search tree.

The operation of OIS does not depend upon my constrained linear programming

methodology, however. Any alternative generation scheme would suffice. For instance,

the agent could simply enumerate all of its local policies, for each computing the

implied settings of conditional probabilities that the influence DBN requires, and then

manually partition the agent’s local policy space into impact-equivalence classes (Def.

3.45) whose influence parameter settings are equivalent.

5Algorithm 6.1, as presented, relies on the property that the joint utility is a summation of local
utilities (Thm. 3.8). In recent work (Witwicki & Durfee, 2010), I have published a slightly more
general version of DF-OIS that accommodates arbitrary monotonic value compositions functions. It
does so by passing values down the tree as well as up the tree, so that at every intermediate node,
the full joint value is straightforwardly evaluable through invocation of the composition function.
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6.3.3 Incorporating Ancestors’ Influences

At each node below the root, with a call to BuildBestResponseModel(), agent

i incorporates the outgoing influences of its ancestors that have been communicated

with the DBN object passed into DF-OIS(). However, just as an ancestor agent’s

outgoing influences make up a subset (and not necessarily the whole) of the DBN

parameters, agent i’s incoming influence parameters sufficient for its best response

reasoning also make up a subset (and not necessarily the whole) of the DBN parameters.

In other words, some of the information contained within the communicated DBN is

inessential (and unusable) to agent i. In this case, agent i may use marginalization to

remove any unneeded variables (specifically, those that it cannot observe) from the

conditional probabilities represented by the DBN parameters.

Example 6.6. For instance, consider the interaction digraph, and corresponding

influence DBN shown in Figure 6.2. Here, agent 7 models two nonlocal features, one

(n7a) influenced by agent 1 and the other (n7b) influenced by agent 6. Additionally,

agent 6 models a nonlocal feature n6 influenced by agent 1. The undirected digraph

cycle between agents 1, 6, and 7 implies a conditional dependence relationship

between n7a and n7b by way of n6. Consequently, agent 1 encodes the influence-

dependent distribution Γπi(n7a, n6) = Pr
(
nt+1

7a , n
t+1
6 |~n t7a, ~n t6

)
, generating settings

to all of the respective DBN parameters as it enumerates its feasible influence points.

Agent 6 encodes a history-dependent distribution Γπi(n7b) = Pr
(
nt+1

7b |~n t6, ~n t7b
)

that

is conditioned on the history of feature n6. Altogether, the two agents’ influences

make up an influence DBN that connects the variables associated with all three

nonlocal features (as illustrated in Figure 6.2).

The influence DBN that agent 1 passes down the tree to agent 6 contains

parameters of the form Pr
(
nt+1

7a , n
t+1
6 |~n t7a, ~n t6

)
. However, note that according

to the TD-POMDP local state for this problem, agent 6 does not model nor

does it observe feature n7a. The only information that agent 6 needs (to reason

optimally about its own behavior and its own outgoing influence) is Pr
(
nt+1

6 |~n t6
)
.

By Theorem 4.18, in constructing its best response model, agent 6 can safely

marginalize out ~nt+1
7a from the joint distribution. Similarly, agent 7 can marginalize

out {n0
6, ..., n

T
6 } from the complete DBN, leaving only parameters of the form

Pr
(
nt+1

7a , n
t+1
7b |~nt7a, ~nt7b

)
.
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Figure 6.2: Example of marginalization of unneeded DBN parameters by Agent 7.

Upon extracting the necessary conditional probabilities from the influence DBN,

agent i injects these into the transition model of its best-response POMDP (developed

in Section 4.2). Agent i uses this model, denoted POMDPi, to generate its feasible

outgoing influence settings, thereby accounting for its ancestors’ specified influence

settings.

6.4 Interaction Digraph Cycles

As I have presented it thus far, Algorithm 6.1 requires an acyclic agent interaction

digraph. The difficulty with cyclic graphs lies in the fact that there no longer exists a

total ordering over the agents with the property that each agent can compute its best

response and reason about its outgoing influence settings independently of agents that

appear later on in the ordering.

In this section, I describe one high-level strategy for searching the influence space

when there are cycles. The basic idea is that, by examining the lower-level structure

of agents’ influence parameters, we can transform the cyclic interaction digraph into

an equivalent form that does not contain cycles, so as to apply (essentially) the same

depth-first search techniques without loss of generality. This strategy obviates having

to face the added complexity of other common approaches to coping with graphical

model cycles, such as cycle cutset (Dechter, 2003).

Example 6.7. Consider the interaction digraph and corresponding influence DBN

shown in Figure 6.3. In this problem, agent 1 influences agent 2 through nonlocal

feature n2 and agent 2 influences agent 1 through nonlocal feature n1. This means

that agent 1 cannot reason about its feasible outgoing influence settings without

204



accounting for 2’s influence, which 2 cannot reason without accounting for 1’s

outgoing influence settings. Clearly, neither agent is able to generate its feasible

influences independently of the other. The decomposition of influence generation

by agent (developed in Section 6.3) will not work for this problem.

Fortunately, by digging deeper into the structure of the TD-POMDP model, we find

that there is an inherent acyclicity at the nonlocal feature value level. Regardless of

whether of not a problem’s interaction digraph contain cycles, the influence DBN cannot

contain cycles. No DBN can. In the case of the TD-POMDP, the impossibility of cyclic

dependence among individual influence variables stems from the non-concurrency of

agents’ interaction effects (described in Section 3.4.3.1). Intuitively, agent 1’s actions

can affect agent 2’s at time step t, but agent 2’s concurrent actions cannot interfere.

Agent 2 cannot use the consequences of agent 1’s influence to influence agent 1 back

until time step t+ 1. In other words, agent 2’s outgoing influence may be dependent

on past outgoing influences of agent 1, but is conditionally independent of concurrent

outgoing influences of agent 1.

This insight leads us to a reformulation of the search process, wherein at each level

of the tree, an agent reasons about a subset of its influence parameters. In essence,

we can define an ordering over individual influence parameters with the necessary

property that a parameter’s values are conditionally independent of the values of

parameters that appear later in the ordering conditioned on the values of parameters

appearing earlier in the ordering. Any ordering consistent with the ordering of the

variables in the influence DBN suffices.

Example 6.7 (continued). As illustrated by the search tree in Figure 6.3,

instead of ordering the influence parameters by agent, we can order the influence

parameters by the time indices of their nonlocal feature variables, such that agents

1 and 2 consider influence probabilities pertaining to earlier times before those

pertaining to later times. The result is a depth-first search that iterates back and

fourth between agent 1’s generation of feasible parameter values and agent 2’s

generation of feasible influence values.

Just as before, feasible influence parameter settings are passed down the tree and

values are passed up the tree, so as to select the optimal parameter settings at each
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Figure 6.3: Example of Influence-Space Search on a cyclic interaction Digraph.

level. However, in the cyclic case, agents do not evaluate their influences at every level

of the tree. Instead each agent computes an exact best-response value after all of its

outgoing influence parameters have been assigned. In Example 6.7, evaluation occurs

at the lowest two levels of the tree.

Another difference is that agents build best response models given only partially-

specified incoming influences. For instance, at the 3rd level, agent 1 formulates a best

response to partial influence Pr(n0
1). This computation is sound because, in order to

generate a feasible setting of its current outgoing influence parameter, Pr(n1
2), agent 1

requires only a partially-specified best response model and it only needs to consider

the possible policy decisions at time 0. Pr(n1
2) is independent of all of the unspecified

influences and future actions.
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6.5 Empirical Results

Recall that the empirical results presented in Chapter 4 uncovered trends in

the size of the influence space and the degree of influence as they relate to various

problem characteristics. I now evaluate the extent to which these trends translate to

computational advantages (and disadvantages) for OIS over other optimal solution

algorithms that do not employ influence-based abstraction. In particular, I test the

general hypothesis that OIS outperforms its competitors on problems that are weakly-

coupled. After describing each of four other optimal algorithms and my experimental

setup in Section 6.5.1, the subsections that follow (6.5.2-6.5.5) are each devoted to

comparing OIS against one of the four other algorithms. In each instance, I compare

runtime systematically across a space of random problems so as to expose the strengths

and weakness of OIS in relation to my characterization of influence-space size and

degree of influence from Section 4.6. I conclude my analysis with a summary and

discussion of the results in Section 6.5.7.

6.5.1 Experimental Setup

Here, I describe the other optimal algorithms and the space of problems considered

in this analysis.

6.5.1.1 Other Algorithms

I compare the runtime performance of OIS with four other algorithms designed to

compute optimal solutions to restricted flavors of transition-dependent Dec-POMDPs.

The first two are straw men of my own design: decoupled joint policy search (without

influence abstraction) and centralized joint policy formulation (using a mixed-integer

linear program adapted using the single-agent MILP methodology that I presented in

Chapter 5). The third and fourth are state-of-the-art algorithms whose development

has been published by others within the last 3 years.

Note that both of the state-of-the-art algorithms are designed for solving specialized

flavors of transition-dependent Dec-POMDP problems (both of which are less general

than the TD-POMDP). Moreover, the implementation of OIS has not been given

any advantages for exploiting specialized structure beyond that which the other

implementations exploit.

Policy-Space Search. The first algorithm is an implementation of OIS (described

in Section 6.3) that has been stripped of its policy abstraction. Instead of searching
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for the optimal influence, agents search directly in the policy space. At each step,

they exchange local policies instead of influence settings, but are able to exploit

the interaction digraph structure in the same way that OIS does, and use the same

best-response models used by OIS. In essence, comparing OIS against this method

illustrates the advantages of policy abstraction.

Centralized MILP approach. I have also implemented a method that applies my

MILP methodology (developed in Chapter 5) to a centralized decision model with

a joint transition matrix, joint state space, and joint action space. The objective of

the MILP is to maximize the joint utility subject to the constraints that each agent

must base its decisions solely on its own observations (using a variation of the same

technique I developed in Section 5.2.3). As such, comparing OIS against this method

illustrates the advantages of decoupling the joint policy formulation (on TD-POMDP

problems, for which such a decomposition is efficient).

SPIDER. SPIDER (Varakantham et al., 2007) is a decoupled best-response search

method that performs a policy-space search but employs its own pruning to reduce

the search space. It was originally developed for solving transition and observation

independent problems, and was recently extended for application to a specialized class

of two-agent transition-dependent problems involving interdependent tasks (Marecki

& Tambe, 2009). As of yet, it has not been extended to solve any flavors of transition-

dependent problems containing more than two agents. In the experiments that follow,

I use the implementation of SPIDER graciously provided by its authors.

Separable Bilinear Programming. The last algorithm, which I will denote SBP

(Mostafa & Lesser, 2009), was designed for solving EDI-CR problems (as contrasted

with TD-POMDPs in Section 3.4.1.5). SBP frames the joint policy formulation problem

as a separable bilinear program (Petrik & Zilberstein, 2009). In the experiments that

follow, I use the implementation of SBP graciously provided by its authors. Like

the centralized MILP approach (described above), SBP is a centralized algorithm.

However, unlike the centralized MILP, SBP exploits the factored structure of agents’

subproblems.

6.5.1.2 Random Problem Generation

For the moment (and up until Section 6.5.6), I restrict the focus of my analysis

to two-agent problems that are generated according to the same parameterization

208



described in Section 4.6. For each of the problems from my original testbed, I add a

second agent, agent 2, and for each of agent 1’s nonlocally affecting tasks (task1x),

one of agent 2’s tasks (task2y) is randomly selected (without replacement) as being

nonlocally-affected. I restrict that every nonlocal effect e1x,2y takes the form of an

enablement, such that agent 1’s completion of task1x allows agent 2 to execute task2y

without achieving an automatic failure outcome. Agent 2’s tasks (including its positive-

quality outcomes) are instantiated using the same parameters as agent 1’s. In this

analysis, I restrict consideration to problems with a single influencing agent and a

single influenced agent. I impose both of these restrictions (enablement effects and

acyclic interaction digraphs) for compatibility with the two state-of-the-art algorithms

(“SPIDER” and “SBP”) against which I am comparing OIS.

Due to the fact that the implementations of “SPIDER” and “SBP” were tailored

to problem domains with differing assumptions, I could not run them on exactly

the same set of problems.6 Instead, the results presented in Sections 6.5.4 and 6.5.5

respectively compare OIS to SPIDER and OIS to SBP on separate sets of problems,

each generated via slight alteration of my original problem generation scheme.7

6.5.2 Comparison with Policy-Space Search

I begin by comparing OIS with policy-space search. In a sense, this comparison is

the purest evaluation of influence-based abstraction because both algorithms behave

identically except that OIS abstracts each agent’s local policy space and policy-space

search does not. Based on my empirical findings regarding influence space sizes and

policy space sizes (presented in Section 4.6), I offer the following hypotheses. First, I

posit that policy space search will be limited in its tractability to problems wherein

each agent’s local decision model is small. Second, I hypothesize that out of the

problems where policy-space search is tractable, it will outperform OIS only when the

degree of influence is high (indicating that there are almost as many feasible influence

6My implementation of OIS, however, is compatible with either set of assumptions.
7SPIDER required that agents not observe their nonlocal features and that tasks were constrained

via a latest start time instead of a latest finish time. In my generation of problems for Section 6.5.4,
I redefined a task’s window size parameterization accordingly and treated each enablement feature
as a latent variable in the state of the affected agent. In addition to the same partial observability
assumption as SPIDER, SBP required that each task have only two durations, that task windows be
specified with an earliest start time but not a latest finish time, and that agents are not allowed to
“wait” between their executions of tasks. As such, for the set of problems used in Section 6.5.5, I
generated tasks whose latest finish times were constrained to be time T but whose earliest start time
was selected according to parameters localWindowSize and NLATWindow (whose semantics were
introduced in Section 4.6.1.3 and summarized in Table 4.1) and I removed the “wait” action from
agents’ decision models.
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points as there are policies). In this case, the overhead of finding each unique influence

point, by abstracting it from a policy, should outweigh the benefits of the reduced

search space size.

As in the empirical analysis from Chapter 4, I systematically generated problems

over the entire space of parameter settings. Again, in the interest of space, here I

present select results that illustrate the trade-offs that I observed across the entire

space of parameter settings. As a metric for tractability, I allocated each method

at most 10 minutes of computation time per problem. For any given setting of

parameters, if any problem from that setting was not solved within 10 minutes, the

point corresponding to that average runtime measurement is omitted from the plotted

results.

For this experiment, the empirical evidence corroborates both of my hypotheses.

In general, policy-space search was able to solve problems wherein the local policy

space size of the influencing agent contained no more than 10,000 policies. Although

this may sound impressive, note that the policy space grows exponentially with the

state and action spaces and the time horizon, and recall from my earlier analysis (Sec.

4.6) that problems with local policy space sizes in excess of 108 were not uncommon.

Figure 6.4 plots the policy space size, degree of influence, and runtime of both OIS

and policy-space search as a function of increasing problem time horizon for three

different settings of the remaining problem parameters.

For each individual plot, from left to right, the increase in time horizon results

in an increase in average policy space size and a decrease in the degree of influence.

Further, from top to bottom in Figure 6.4, the three cases (A, B, and C) represent

three gradations of increasingly-large local problem size. As illustrated, for very

small problems, policy-space search is faster than influence-space search due to the

overhead of OIS’s feasible influence generation. However, except in very small problems

such as in case A, as time horizons grow longer, the decreasing degree of influence

is accompanied by an increase in the runtime of policy-space search such that it

surpasses that of OIS. As problems become larger, the additional overhead of OIS

is far outweighed by the growing policy space size. As the degree of influence falls

lower and lower, the gap widens. For instance, in case C, when T=4, policy-space

search takes two orders of magnitude longer than OIS, and for T=5, cannot compute

solutions to each problem in 10 minutes whereas the average computation time taken

by OIS just one second.

As a testament to my weak coupling theory from Section 3.5.2, the trends observed

in the computational advantages of OIS (over policy space search) are a direct
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translation of the trends observed in the degree of influence. The same translation of

trends can also be seen when the size of the agent’s nonlocally-affecting task window

(Figure 6.5E) and the earliest start time of the nonlocally-affecting task window

(Figures 6.5F and 6.5G) are varied. These last three plots, though seemingly complex,

are model instances of the empirical trends evidenced and discussed in Section 4.6.2.5.8

8 Figure 6.5E confirms that, as the nonlocally-affecting task’s window increases, although the
policy space increases, the degree of influence decreases; as a result, we observe that the computation
time of näıve policy-space search grows more steeply than that of influence-space search. Figure 6.5F
and 6.5G confirm that the relationship of policy space size to the earliest start time (NLAT est) of
the nonlocally-affecting task depends heavily on the sizes of local task windows. When local task
windows are small (Fig. 6.5F), the policy space size grows very slightly with the nonlocally-affecting
task window, causing an increase in the computation time of policy-space search when compared
with influence-space search. When local task windows are large (Fig. 6.5G), we see the opposite
trend: the policy space size decreases significantly, causing a decrease in the computation time of
policy-space search while the computation of influence-space search remains relatively flat.
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6.5.3 Comparison with the Centralized MILP Approach

Although the degree of influence appears to be strongly correlated with the com-

putational requirements of OIS relative to policy-space search, it does not necessarily

characterize OIS’s computation relative to other solution algorithms. Intuitively,

the centralized MILP approach does not search the policy space directly; instead, it

searches through agents’ joint occupation measures. Moreover, it is apparent from

my empirical observations (not shown) that the size of the influencing agent’s policy

space is not a strong predictor of the computation time of the MILP approach.

Instead, the computation of the MILP approach is dependent on the size of the

program (i.e. the number of variables and constraints), which is the product of the

number of world states and the number of joint actions. This alternative dependence

is advantageous for problems with few agents, few tasks, and small state spaces. As

my empirical results confirm, the centralized approach computes optimal solutions

faster than does OIS for a large portion of the problems in my testbed. Figure 6.6
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plots MILP variables, influence-space size, and computation time of both methods for

three gradations of increasingly-large problem size (labeled as A, B, and C).
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Moving from top-to-bottom in Figure 6.6, case A has localWindowsize = 0.0, case

B has localWindowsize = 0.5, and case C has localWindowsize = 1.0. As shown,

increasing the time horizon in each of these cases increases the size of the centralized

MILP, but the rate of increase is heavily dependent on the local window size; as a

consequence, so is the rate of increase of the centralized MILP’s computation time.

This brings us to the disadvantage of the centralized MILP’s dependence on the joint

state and joint actions. As weakly-coupled agents’ local problem sizes increase, the

joint state space increases significantly, ultimately yielding poor scalability of the

MILP (as well as any other approach that works directly with the flat joint state and

action representation). Notice that in all three cases, the centralized method’s runtime

grows more steeply than did that of OIS. This same trend was observed across the
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board and when varying other attributes relating to local problem size such as number

of tasks and uncertainty.

OIS’s superior scalability is not due exclusively to the fact that it works in the policy

space, or even that it decomposes the joint policy formulation. Both of these traits

are present in the policy-space search algorithm (Sec. 6.5.2), whose scalability was

inferior to that of the centralized MILP. OIS’s scalability comes from its abstraction.

For problems with large local model sizes but highly-constrained influences, OIS gains

significant advantage over centralized methods such as the centralized MILP. This

advantage is evident in Figure 6.7, which shows the effect of varying the windows size

of an influencing agent’s nonlocally-affecting task.

1 2 3 4 5
10

0

10
1

10
2

10
3

10
4

10
5

 MILP variables

m
ea

n 
# 

of
 v

ar
ia

bl
es

NLATWindow
1 2 3 4 5

10
0

10
1

10
2

10
3

NLATWindow
(D)  T=5, tasksPerAgent=3, localWindowSize=1.0, uncertainty=1.0, NLAT_est=0, influenceType=state

m
ea

n 
in

flu
en

ce
 p

oi
nt

s
OIS influence space size

 

 

1 2 3 4 5
10

−1

10
0

10
1

10
2

10
3

Runtime

m
ea

n 
se

co
nd

s

NLATWindow

OIS
centralized MILP

Student Version of MATLABFigure 6.7: OIS vs. Centralized MILP : NLAT Window Size

As shown, when the influence is highly-constrained such that the interaction

can only occur during a restricted interval, OIS gains significant advantage over the

centralized MILP by searching through a greatly-reduced search space. As the size

of the nonlocally-affecting task window increases, so does the computation of OIS.

Moreover, I observed that, for all settings involving problems hard enough such that

either approach took longer than a second on average, the same qualitative trend shown

in Figure 6.7 occurred, and in none of these instances did the average computation

time of OIS surpass that of the centralized MILP at the window’s maximum value.

Notice that, in contrast to the comparison of OIS and policy-space search in

Section 6.5.2, degree of influence does not correlate with the difference in computation

times among OIS and the centralized MILP. My empirical results from Section

4.6.2.5 suggest that as the nonlocally affecting task window increases, the degree

of influence decreases, and that influence-based policy abstraction should be more

effective. Although OIS may be increasingly-effective compared to policy-space search,

here we see that the gap in computation time between OIS and the centralized MILP

narrows as the nonlocally-affecting task window is increased, suggesting that OIS is

losing its advantage even though the degree of influence is decreasing. Intuitively,
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while degree of influence is computed from the policy space size, the centralized MILP

does not search the policy space exhaustively, making this method insensitive to the

degree of influence.

6.5.4 Comparison with SPIDER

Next, let us turn to an algorithm that searches through the policy space, though

not as näıvely as the policy-space search method from Section 6.5.2. SPIDER does

not exhaustively evaluate each agent’s policies but instead performs pruning using

heuristic evaluations of partially-specified policies (Varakantham et al., 2007). Its

pruning makes it a much stronger competitor, scaling well beyond the reach of the

näıve policy-space search method in Section 6.5.2. In certain instances in my testbed,

its average computation time scaled more gracefully than that of OIS (e.g., Figure

6.8A), and in other cases (e.g., Figure 6.8B) not as well.

Figure 6.8, which plots only computation times, scales the problem time horizon

along the x-axis, varying uncertainty from left to right, and varying localWindowSize

from top to bottom. Notice that although SPIDER outperforms OIS in some cases,

it starts out with a higher computation time, presumably due to the computational

overhead of SPIDER’s pruning. As expected, both methods are affected by uncertainty

as well as by local window size.9 However, the average runtime of OIS grows more

steeply (on an exponential scale) than does SPIDER’s when localWindowSize = 0.5

(case A) and less steeply than SPIDER’s when localWindowSize = 1.0, affirming the

hypothesis that influence-based abstraction is most effective in comparison with other

approaches when agents’ local decision models are more complex.

Evidently, SPIDER is able to significantly reduce the size of its search space under

some circumstances. However, the pruning that SPIDER employs does not seem to

exploit the same structure as influence-based abstraction. Figure 6.9 shows the effects

of holding local problem size still and increasing the size of the influencing agent’s

nonlocally-affecting task window. Here, regardless of the local tasks’ window sizes,

SPIDER exhibits relatively little improvement for smaller nonlocally-affecting task

window sizes. OIS, on the other hand, is exponentially faster for smaller nonlocally-

affecting task window sizes (just as we observed in Figure 6.7). When nonlocally-

affecting task windows are larger, and influences are less constrained, OIS may be at a

disadvantage to algorithms such as SPIDER. The good news is that this disadvantage

9Although I did not run näıve policy-space search on this set of problems, the trends in runtime
growth of SPIDER due to uncertainty and local window size are consistent with those that I observed
in the running times of the näıve policy-space search on the problem set from Section 6.5.2
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appears to dwindle as agents’ local problem sizes become larger.
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6.5.5 Comparison with SBP

The last algorithm that I consider in this analysis is separable bilinear programming

(SBP), which computes the agents’ joint policy using a centralized representation

that models the agents’ joint behavior in such a way that it can exploit their largely-

independent factored transition structure (Mostafa & Lesser, 2009). The question then

becomes whether or not the computational advantages of SBP’s structural exploitation

outweigh those of OIS’s influence-based abstraction. For weakly-coupled problems

wherein agents influences are constrained, my empirical results suggest the opposite.

Across all parameter settings, I observed a qualitatively-identical trend: OIS was
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orders of magnitude faster than SBP when the nonlocally-affecting task’s window was

highly-constrained, but approached SBP’s runtime as the nonlocally-affecting task

window was expanded to its maximum value. Figure 6.10 illustrates the trend for

one particular setting of parameters.10 I could not find a single parameter setting for

which OIS’s computation time (statistically) significantly exceeded that of SBP when

NLATs reached its maximum value.

2 4 6 8 10
10

0

10
1

10
2

10
3

Runtime

m
ea

n 
se

co
nd

s

NLATWindow
T=10,tasksPerAgent=5,localWindowSize=1.0,NLATs=1,influenceType=state

 

 

 

ois
sbp

Student Version of MATLAB
Figure 6.10: OIS vs. SBP : NLAT Window Size

6.5.6 Scaling Beyond Two Agents

The positive results in the preceding subsections indicate the potential of OIS

to compute optimal solutions for problems with more weakly-coupled transition-

dependent agents than is currently possible with any other solution algorithm. I now

provide an initial demonstration of OIS’s scalability. Using the same parameterization

of agents’ local decision problems as in earlier experiments (Table 4.1), I create random

problems wherein n agents are connected in a chain of the same form depicted on the

left-hand side of Figure 6.1. Here, agent 1 influences agent 2, who influences agent 3,

who influences agent 4, and so on. Solving this problem using OIS entails constructing

a search tree as developed in Section 6.3 that generates and evaluates each agent’s

feasible influences in a depth-first manner.

10Note that, given the constraints of the developers’ implementation of SBP (described in Section
6.5.1.2), my comparison of OIS and SBP required a variation of the test sets used in past experiments
that turned out to be significantly different. In particular, for the problems in the experiment, agents
could not perform a wait action in between task executions, which resulted in variations in the length
of the time horizon having little effect on the size of the policy space or on the computation required
by OIS. Further, the number of outcomes per task was necessarily 2. As such, in order to make
problems challenging for OIS, I needed to instead increase the number of tasks per agent.
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Figure 6.11 shows the runtime of OIS on a set of 25 random problems per point,

wherein the number of agents (n) was varied, and the problem generator parameter

settings were fixed such that agents have moderately-sized local decision models that

remain weakly-coupled (tied together with a single nonlocally-affecting task per agent,

with the exception of the agent at the end of the chain). As shown, OIS is able to

compute optimal solutions to 5-agent problems in a reasonable about of time (10

minutes on average). Although the computation time taken by OIS is exponential in

the number of agents, its exponential curve is far less steep than that of the centralized

MILP approach, which is able to solve 3-agent chains in 10 minutes on average, and

uses up all of its allotted 2GB of memory in the process of solving any of the 4-agent

problems.
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Figure 6.11: Scalability of OIS and Centralized MILP to more than two agents.

This scalability result is significant in that it is the first demonstration of opti-

mal solution computation to (relatively-unrestricted) transition-dependent problems

containing more than 3 agents. Not only does it demonstrate the tractability of TD-

POMDP problems with 5 weakly-coupled agents, but it also affirms that influence-based

policy abstraction indeed enables scalability beyond the state-or-the-art, surpassing

that of any other algorithms’ available implementations.

The reader may be left wondering why such a result has not been possible with

prior approaches. Towards answering this question, I offer the following intuitions.

The four algorithms that I included in my empirical comparison, each of which could

be considered contenders for scaling transition-dependent problems, face inherent

218



obstacles that (as-of-yet) prevent their scalability to teams of > 3 agents:

1. Policy-space search is obligated to perform a number of policy evaluations on

the order of ‖Πi‖n−1, a term which, when n > 3, is completely intractable for

any sizable value of ‖Πi‖. Although depth-first OIS also performs a number of

best-response calculations that is exponential in the number of agents, it exploits

a significant reduction in the base of the exponent by abstracting agents’ local

policies.

2. The centralized MILP approach is weighed down by the exponentially-increasing

size of the joint decision model. The addition of each agent corresponds to an

exponential increase in the number of joint actions that the MILP considers,

not to mention the exponential increase in the state space (resulting from the

cross product of weakly-coupled agents’ local state spaces). Without significant

exploitation of factored structure to keep the joint model compact, any centralized

solution method will be inherently limited in its scalability.

3. It is unclear how one would implement SBP on a problem with more than two

agents, given that it formulates the problem as a bilinear program.

4. In principle, SPIDER could be scaled to solve problems with more than 2

agents. In fact, it has already been scaled to problems with more than 2

transition-independent agents Varakantham et al. (2007). However, to handle

transition-dependent agent problems, SPIDER needs to address additional issues

that do not arise in the transition-independent case. For instance, its generation

and pruning of candidate policies must be pursued in a manner that is consistent

with the directional topology of agents’ influences. I faced these same issues in

my design of OIS. Implementation issues aside, although initial results suggest

OIS’s abstraction engenders a smaller search space than does SPIDER’s pruning,

it remains an open question whether or not future implementations of SPIDER

could accomplish the scalability results achieved by OIS in Figure 6.11.

6.5.7 Summary and Discussion

The results of my empirical comparison may be summarized as follows:

� The tractability of näıve policy-space search is restricted to relatively small

2-agent problems.
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� The centralized MILP outperforms OIS on 2-agent problems whose local decision

models are relatively small. However, it scales much more poorly than does

OIS as agents’ local decision models become more complex, or as the number of

agents is increased.

� When applied to my space of test problems, the computational advantages of

OIS over näıve policy-space search are well-characterized by my earlier empirical

evaluation of influence space size. The same sets of problems that have a low

degree of influence also tend to result in a lower computation time of OIS relative

to that of policy-space search.

� For algorithms that prune the policy space in their own way (e.g. SPIDER) or

instead search the space in a fundamentally different manner (e.g. the centralized

MILP), their computation time is less sensitive to the degree of influence. It is

thus not surprising that degree of influence has less effect on their computation

time than it does on OIS. As a consequence, OIS’s relative computational

advantage is less predictable with respect to these algorithms than with respect

to näıve policy space search. In comparison with algorithms other than näıve

policy-space search, the constrainedness of agents’ influences (as captured by

the size of the window of interaction) appears to be a stronger predictor of OIS’s

computational advantage.

� For weakly-coupled problems wherein agents’ influence constrainedness is rel-

atively low, OIS computes optimal solutions orders of magnitude faster than

either of the state-of-the-art algorithms (SPIDER and SBP) across the entire

space of test problems. Moreover, the advantage of OIS in these circumstances

tends to increase as agents’ local decision models become more complex.

� I have demonstrated that OIS can compute optimal solutions for transition-

dependent problems with more agents than has been achieved by any other

algorithms (that are not substantially restricted in their applicability). The

computation of optimal solutions for problems with five agents, where the

previous state-of-the-art was three, is a significant advance considering that, for

all known algorithms, computational complexity is doubly-exponential in the

number of agents (by Observation 3.20).

Despite its advantages over existing algorithms, OIS has several key shortcomings.

For small problems, in particular those involving tightly-coupled agents, the overhead of
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OIS’s influence-based abstraction makes it slower than other algorithms. Furthermore,

for problems that are not weakly-coupled, OIS loses its ability to reduce the size of the

search space, inevitably relinquishing its advantage over alternative solution methods.

Although I have shown OIS to scale beyond 2 agents, it cannot escape the exponential

increase in runtime with each new agent, and hence is limited in scalability to just a

handful of weakly-coupled agents (using the implementation I have presented).

These empirical results fulfill an important purpose in the overall scheme of this

dissertation. Ever since Chapter 1, I have claimed that the focus of this work is

the study of transition-dependent problems that, in the presence of weakly-coupled

interaction structure, admit efficient and scalable solution algorithms. I began by for-

malizing the TD-POMDP in Chapter 3, claiming that, although generally intractable,

the class of TD-POMDPs contains sets of weakly-coupled problems that can be solved

efficiently. My weak coupling theory, developed in Section 3.5, allowed me to be more

concrete in this claim: all else being equal, problems that accommodate a lower degree

of influence should be easier to solve.

In Chapter 4, I introduced influence-based abstraction as a methodology by

which to exploit weakly-coupled structure, and, in defense of this claim, empirically

characterized those problems for which influence-based abstraction achieves a low

degree of influence. However, my claim that weakly-coupled problems enable more

efficiently-computed solutions remained unaddressed. It was not until developing a

complete solution algorithm, in this chapter, that I was able to analyze the extent

to which influence-based abstraction could be used to compute solutions efficiently.

The empirical results that I have presented in the preceding subsections do just

this. My comparison of the computational cost of OIS with that of other solution

algorithms affirms that influence-based abstraction provides a significant advantage

over existing methods in the computation of optimal solutions to weakly-coupled

transition-dependent problems, in that OIS solves such problems in orders of magnitude

less time.

These results do not just affirm the efficacy of influence-based abstraction. Boot-

strapping off of my earlier analysis in Chapter 4, they also evaluate the circumstances

under which influence-based abstraction gains the most traction in practice. Analo-

gously, they have exposed circumstances under which influence-based abstraction is

disadvantageous. By examining the benefits and limitations of OIS, these results may

serve as a guide for researchers and developers with which to make informed decisions

about the suitability of influence-based abstraction and of optimal influence-space

search to the problems that they address.
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Having come full circle, I have now fulfilled the primary contributions set fourth

in Section 1.4. In the remainder of this chapter, I develop an extension of OIS for

exploiting additional structure to yield more efficient solutions on problems with

more than 2 agents. Then, in the next chapter, I develop extensions for computing

approximate solutions. The development and evaluations of these last pieces is more

preliminary, and the evaluation less systematic.

6.6 Scaling Beyond a Handful of Agents

The scaling of OIS to 5 agents in Section 6.5.6 is a significant achievement, but

for larger agent teams, DF-OIS hits a wall just as other methods hit a wall at 2 or

3 agents. This is to be expected, since the DF-OIS search tree is exponential in the

number of agents. However, I claim that in the presence of additional structure, we

can overcome this barrier and scale optimal influence space search to indefinitely many

agents. The way forward is to exploit structure in the interaction digraph.

The depth-first optimal influence-space search only utilizes the interaction digraph

to order agents’ influence generations within the search tree. I now develop an

extension that exploits structure in the connectivity of the interaction digraph to

reduce computation. I begin by describing two situations (in Sections 6.6.1 and 6.6.2)

wherein depth-first search performs redundant computation, providing suggestions

of how such redundancy might be avoided. Afterwards, in Section 6.6.3, I present a

more sophisticated algorithm that applies the bucket elimination paradigm (Dechter,

1999) to the problem of optimal influence-space search and demonstrate its scalability.

6.6.1 Independent Ancestors

Consider the interaction digraph shown in Figure 6.12, containing one agent that

is influenced by all of its peers. This structure induces a depth-first ordering of the

agents according to their interaction digraph indices, such that agents {1, ..., n− 1}
occupy the upper levels of the search tree and agent n occupies the lowest level. To

search the space, agent 1 would generate its feasible outgoing influence settings and

pass those down to agent 2. For each of agent 1’s settings, agent 2 would generate its

feasible outgoing influence settings and pass those down to agent 3.

As we proceed down the search tree, the nodes at each level grows exponentially.

Agent 3 will receive on the order of ‖Γi‖2 combinations of influences from agents 1 and

2. In turn, agent 3 will call GenerateFeasibleInfluences ‖Γi‖2 times. However,

according to the interaction digraph, agent 3 is uninfluenced by agents 1 and 2. Agent
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Figure 6.12: An interaction digraph wherein parents are independent.

3’s local quality and outgoing influence settings are completely independent of agent

1’s and agent 2’s influences. Thus, agent 3 is performing an identical computation of

feasible influences every time that it considers a different combination of influences

from agents 1 and 2. The same is true for all of agents {2, ..., n− 1}. For this problem,

the only branching that is required is at the bottom of the tree, wherein agent n

considers all feasible combinations of all influence settings of its ancestors.

As a high-level strategy for avoiding this redundancy, consider a refactoring of

the search process such that an agent i’s influence generation problem is explicitly

separated from its influence evaluation problem. Regardless of the multitude of

messages passed down by agent i’s peers earlier in the ordering, each of which agent i

will later respond to with unique value messages passed up the tree, i does not need

to generate outgoing influences for each. Instead, i only needs to generate outgoing

influences for each of the unique combinations of incoming influences on which its own

decision model depends.

6.6.2 Conditionally Independent Descendants

In Figure 6.13, the digraph topology is such that there is only a single influencing

agent (agent 1) who influences all of the remaining agents. Agents {2, ..., n} do not

share any nonlocal features and so do not influence each others’ local transitions or

local qualities. Using Definition 3.34, agents {2, ..., n} are decision-independent of

each other conditioned on the decisions of agent 1.

For this problem, the depth-first search tree would accurately reflect that agent 1 is

the only influencing agent, such that the only branching that occurs is from the root of

the search tree. Below the root, agents {2, ..., n} generate a single branch per influence

setting from agent 1. In this case, the redundancy occurs as values are passed up the
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Figure 6.13: An interaction digraph wherein children are conditionally independent

tree. Each agent calculates a separate best response for each combination of influence

settings involving all n− 1 of agent 1’s nonlocal features {n2, n3, n4, ...}. If there are

on the order of ‖Γ1(ni)‖ feasible settings that uniquely specify the transitions of each

nonlocal feature, agents {n2, n3, n4, ...} will each have to perform ‖Γ1(ni)‖n−1 best

response calculations.

To avoid this redundancy, consider a restructuring of the search tree into 2 levels.

As before, agent 1 sits at the root node. However, each branch corresponds to a

feasible setting corresponding to only one of agent 1’s influences Γ1(ni) (instead of all

of its influences {Γ1(n1),Γ1(n2), ...}). Each such branch leads to a leaf node controlled

by agent i, such that agent i only needs to respond to ‖Γ1(ni)‖n−1 settings. In

addition to the savings from computing fewer best responses, agents {2, ..., n} will

avoid unnecessary exchange of messages over the course of the search. More generally,

for any two nodes i and j that are decision-independent conditioned on common

ancestors’ decisions, agents i and j need not exchange messages over the course of

influence space search.

6.6.3 Bucket Elimination for Optimal Influence Search

To take advantage of conditional independence relations among descendants as

well as those among ancestors, I now present a more sophisticated reformulation of

optimal influence-space search called Bucket Elimination OIS (BE-OIS). It follows the

general scheme of Dechter’s bucket elimination algorithm for constraint optimization

(Dechter, 1999). Bucket elimination performs dynamic programming using a well-

ordered elimination of variables, associating a bucket data structure with each variable

to be eliminated. Given a collection of cost functions defined over subsets of variables,

and a total order over variables, bucket elimination distributes the cost functions
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into buckets (each associated with a single variable), according to the latest-ordered

variable referenced by the cost function. One by one, the algorithm processes each

bucket by combining its cost functions by summation, eliminating its variable by

maximization, and passing the reduced cost function down to the next bucket that

references any of the remaining variables. Top-down bucket processing is then followed

by bottom-up propagation of optimal variable assignments.

Analogous to the elimination of COP variables, here we would like to eliminate

influence variables. As such, we will create a bucket that corresponds to each agents’

outgoing influences. For simplicity of exposition, let us assume that the agent in-

teraction digraph contains no cycles.11 We can do so by combining agents’ value

functions with respect to subsets of influence parameters. As such, the collections of

messages passed from one bucket to the next are of the same flavor as the influence

evaluation messages passed up the DF-OIS search tree, containing an influence setting

and a value. More precisely, in BE-OIS, each message consists of a setting for a

subset of influence parameters and the summation of all agents’ local values that are

influenced by those parameters. However, BE-OIS has the potential to significantly

reduce the number of such messages from that of DF-OIS. It does so by employing

more sophisticated decomposition of the agents’ influence generation and evaluation.

Figure 4 illustrates how BE-OIS searches the space. On the left is an agent

interaction digraph, and on the right are the buckets, indexed by the agent whose

outgoing influences are to be eliminated. The buckets are processed from the top-most

bucket down, and the topology of message exchange during the course of bucket

processing is depicted by the arrows connecting buckets. Appearing within each

bucket are the single-agent value functions prior to processing and the multiple-agent

value functions that have been processed by earlier buckets.

The operation of BE-OIS proceeds in three phases: initialization, elimination, and

assignment, each of which I describe as follows.

Initialization. As with DF-OIS, I assume that BE-OIS will be initialized and

invoked by a central entity, but note that, thereafter, its operation is fully decentralized.

To start, an order is selected over influencing agents that is the reverse of some ordering

consistent with the partial order of the interaction digraph.12 In contrast to DF-OIS,

11I make this assumption without loss of generality. The BE-OIS algorithm that I describe here
can be extended to accommodate interaction digraph cycles using the same technique developed in
Section 6.4 that enabled DF-OIS to accommodate cycles.

12One ordering may yield less computation than another. Dechter (1999) describes algorithms for
determining the best ordering.
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Bucket Processing 

Figure 6.14: Interaction digraph (left) and processing of buckets by BE-OIS (right)

which starts with agents that influence the most peers, BE-OIS begins by reasoning

about those influences of the agents that influence fewer peers. In Figure 6.14, the

influencing agents {4, 3, 2, 1} are considered in that order. For each agent in the

ordering, a bucket is created for reasoning about the joint value of (and ultimately

eliminating) the corresponding agents’ outgoing influences.

Next, each agent i’s local value function is placed into exactly one bucket. If i

influences other agents, i’s value function is placed into bucket i. Otherwise, i’s value

function is placed into the bucket indexed by i’ earliest-ordered agent digraph ancestor.

This is consistent with Dechter’s bucket elimination algorithm for the following reason.

By Theorem 3.33, the local value function of agent i is independent of the decisions of

agents other than i and i’s ancestors Λ(i). Consequently, agent i’s optimal local value

with respect to peers’ influences is independent of the portions of influence settings

that do not pertain to the influences of i’ ancestors ΓΛ(i):

V ∗i (Γ) = V ∗i (Γi,ΓΛ(i)) (6.1)

V ∗i (), exactly of the form given in Equation 6.1, belongs in the earliest-ordered bucket

whose influence it references. At the end of initialization, each bucket i should include

i’s local value function and the local value functions of any non-influencing children.13

Henceforth, I will denote bucket(i) as the set of indices of the component value

13In Figure 6.14, notice that buckets 1, 2 and 3 contain additional components. These are
components that are added from other buckets during the elimination phase.
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functions in bucket i. I will denote scope(i) as the set of indices, except for i, of all

influence components referenced by any agent in bucket(i). Further, I will denote

Γscope(i) as the set of all influence parameters, except for Γi, referenced by any agent in

bucket(i). Analogous to Dechter’s Bucket Elimination, Γscope(i) serves as the variables

on which eliminated variables depend.

Elimination. Elimination involves the processing of each bucket by the indexed

agent. For each bucket i, agent i may begin processing its bucket i immediately, and

in parallel with other agents’ eliminations. However, agent i can only finish processing

its bucket once all of the buckets earlier in the ordering have finished.

For agent i, the objective in processing its bucket is to compute the optimal setting

of its outgoing influences Γ
∗|Γscope(i)
i = arg maxΓi

V
(
Γi,Γscope(i)

)
for each feasible setting

of peers’ influences on which it depends {Γscope(i)}. In order to compute each Γ
∗|Γscope(i)
i ,

agent i decomposes this computation into the summation of local value functions in

bucket i:

Γ
∗|Γscope(i)
i = arg max

Γi

 ∑
j∈bucket(i)

V ∗j
(
Γi,Γscope(i)

) (6.2)

Before agent i can evaluate Equation 6.2, it must recursively call upon all the agents in

scope(i) to generate their feasible influence settings. In essence, agent i invokes a depth-

first influence-space generation for the subset of agents whose influence parameters are

referenced within i’s bucket. However, unlike in DF-OIS, the generated influences are

stored for later use by all ancestors. For the example problem in Figure 6.14, agent 4

is the first to process its bucket, and hence calls upon agent 2 to generate all of the

feasible settings of Γ2. Upon receiving all feasible combinations of ancestors’ influence

settings {Γscope(i)}, agent i decomposes these into the sets of feasible influence settings

required to compute each local value function in Equation 6.2. For instance, agent 4 in

Figure 6.14 decomposes the set of feasible influences {Γ2} into {Γ2(n4)} × {Γ2(n5b)}.
Additionally, agent i generates its own feasible influences (if it has not already done

so) for each combination of dependent ancestors’ influence settings. All that remains

is for agent i to pass the requisite combinations of settings of {Γi} × {Γscope(i)} to any

descendant j that does not own a bucket, and to wait for evaluation messages back

from j, each of the form
〈
〈Γi,Γscope(i)〉, V ∗j (Γi,Γscope(i))

〉
. Additionally, agent i must

wait for bucket-processing-completion messages from all buckets earlier in the ordering

(before which additional evaluation messages may come).

Agent i concludes its processing of bucket i by performing the maximization in

Equation 6.2 for every setting of dependent ancestor influence settings, storing each
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optimal Γ
∗|Γscope(i)
i , for each creating an evaluation message

〈
Γscope(i), Vi,Ψ(i)(scope(i))

〉
,

and sending all of these evaluation messages to the earliest-ordered agent referenced

by the influences in the evaluation messages. In the example in Figure 6.14, agent 4

sends an evaluation message to agent 2, thereby inserting an additional component

into agent 2’s bucket. Once all evaluation messages are sent, agent i broadcasts a

bucket-processing-completion message to all agents later in the ordering, notifying

them that bucket i has been processed and they can go ahead and finish processing

their own buckets.

If agent i is the last agent in the ordering, and hence the last agent to complete its

bucket processing, it enters into the assignment phase. Note that, in this case, agent i

will have eliminated the last influence component, computing a single value Γ∗i that is

the unconditionally optimal setting of agent i’s outgoing influence.

Assignment. Whereas in the elimination phase, evaluation messages are passed

down from bucket to bucket, in the assignment phase, optimal influence settings

are passed up. The last agent in the ordering has computed its optimal influence

assignment Γ∗last, broadcasting this influence setting to previously-ordered agents in

an assignment message. Recall that each such agent i has stored its optimal influence

settings Γ
∗|Γscope(i)
i . As soon as i receives all of the optimal settings of Γscope(i), i can

assign its optimal influence Γ∗i = Γ
∗|Γ∗

scope(i)

i , and broadcast an assignment message.

This process continues until all agents will have assigned their optimal outgoing

influence settings. As in DF-OIS, once all influences have been assigned, each agent

can compute its local component of the optimal joint policy by computing a best

response to the optimal influence point.

6.6.4 Complexity of Bucket Elimination OIS

Intuitively, for problems like the one shown in Figure 6.14, BE-OIS has a lower

asymptotic complexity than does DF-OIS because BE-OIS does not build a search tree

whose depth is the number of agents. Instead, BE-OIS builds a set of smaller search

trees, one for each bucket i whose maximum depth is equal to ‖scope(i)‖. Recall

that ‖scope(i)‖ is the number of other agents whose influences are referenced by the

value functions in bucket i. In Dechter’s bucket elimination terminology (Dechter,

2003), ‖scope(i)‖ is the number of variables in bucket i minus 1. Dechter’s complexity

theory (Dechter, 1999) tells us that, given that bucket elimination uses the optimal

ordering over agents, the maximum number of variables in any bucket is equal to the

induced width ω∗ of the constraint graph. Therefore, given that the induced width
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of the interaction digraph is ω (Def. 3.36), the number of feasible settings of Γscope(i)

that are received by agent i is at most O(‖Γmaxi ‖ω−1), where ‖Γmaxi ‖ is the largest

number of feasible settings generated by any agent. In the worst case, for each of these

settings, agent i must generate its feasible outgoing influence settings. Since there

are at most n buckets, there will be at most O(n · ‖Γmaxi ‖ω−1) generations. Agent i’s

generation of feasible influence adds another layer to the tree of generated influence

settings for bucket i, raising the worst-case total of generated settings to O(‖Γmaxi ‖ω).

This means that the number of influence settings evaluated by any agent in any bucket

is at most O(‖Γmaxi ‖ω). Since there are n agents, there will be at most O(n · ‖Γmaxi ‖ω)

evaluations. Since generation and elimination of influence settings dominate all other

operations of BE-OIS, the complexity is bounded by:

O
(
n · CE · ‖Γmaxi ‖ω + n · CG · ‖Γmaxi ‖ω−1

)
(6.3)

where CE is the worst-case complexity of the evaluation of any influence setting by any

agent, and CG is the worst-case complexity of the generation of one agent’s feasible

outgoing influence settings.

6.6.5 Empirical Results

Notice from Equation 6.3 that the complexity of bucket elimination is linear and

not exponential in the number of agents. Depth-first search, on the other hand, is

necessarily exponential in the number of agents. Bucket elimination does not avoid an

exponential term altogether. However, its exponent is bounded by the induced width

of the influence digraph. In theory, for problems whose interaction digraphs have a

fixed induced width, BE-OIS should scale linearly in the number of agents. To put

this hypothesis to the test, I ran both BE-OIS and DF-OIS on a set of 25 random

problems (per plotted point) whose interaction digraph is shown in Figure 6.15 (with

a topology that I denote zigzag). As shown in Figure 6.16, BE-OIS is able to compute

optimal solutions for 50 agents, and in orders of magnitude less time that it takes

DF-OIS to compute optimal solutions for 6 agents.

Given the ability of bucket elimination to exploit digraph structure (specifically,

reduced agent scope), BE-OIS is able to scale well beyond DF-OIS. Moreover, it

advances the art of transition-dependent agent planning into a whole new sphere of

problems. I have provided compelling evidence that the techniques I have developed

are applicable to very-large teams of weakly-coupled agents with structured graph

topologies, which is a far cry away from the two-agent and three-agent limitations
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Figure 6.15: “chain” and “zigzag” interaction digraph topologies.

of past work. This degree of scalability could not have been accomplished without

the exploitation of two complementary aspects of weakly-coupled problem structure

(degree of influence and agent scope).

The topology of the agents’ interaction digraph also plays an important role in

this result. In both the zigzag topology and the chain topology (empirically tested

in Section 6.5.6), each agent interacts with at most two other agents. However, due

to the directionality of the influence arrows, one problem is significantly harder to

solve than the other. In the chain topology, the maximum agent scope size (Def. 3.30)

is the number of agents. Intuitively, since the last agent in the chain is influenced

by all other agents, it must reason about all combinations of other agents’ feasible

influences. In the zigzag topology, agent scope size is at most three, enabling an

efficient decomposition of the search through the space of all combinations of agents’

influence settings, into sub-searches each through the space of just a couple of influence

settings.
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CHAPTER 7

Flexible Approximation Techniques

Although OIS is competitive with other optimal algorithms on weakly-coupled

problems and scales to problems with more agents than was previously possible, there

are certainly problems for which computing the optimal solution (using OIS or any

other algorithm) is intractable. In this chapter, I demonstrate that my influence-based

framework is also suited to computing approximate solutions. Each of the three

techniques that I present has the flavor of flexibly trading optimal solution quality for

computational efficiency. In contrast to the previous chapters, this chapter presents a

less systematic and more preliminary investigation.

7.1 Approximation of Influence Probabilities

Recall that the influence space searched by OIS consists of vectors of probability

values corresponding to the conditional probabilities implied by feasible influences. As

I have developed in Section 5.6, generating new points in the influence space involves

finding new probability values, component by component. OIS finds all probability

combinations. Assuming a fixed influence encoding size, the more tightly-coupled a

problem is, the denser the space of probabilities.

The idea behind probability approximation is to avoid the generation of a new

influence whose pairwise probabilities are all within ε of an influence found previously.

This can be done using a very simple modification to OIS’s generation algorithm

(Sec. 5.6). Each time a new influence γfound is found, the two new intervals added

to the explore queue are reduced to {(γmin, γfound − ε), (γfound + ε, γmax)} such that no

parameter values within ε of γfound are considered by future MILPs.

Figure 7.1 presents initial empirical results, comparing different values of ε on a

set of 25 random 4-agent (chain) problems (whose interaction digraphs take the form

shown at the top of Figure 6.15). In each problem, each agent was given 3 tasks, each
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with 3 randomly-selected durations (whose probabilities were generated uniformly

at random and normalized) and randomly-selected outcome qualities (whose values

were drawn randomly from the set {1.0, 2.0, 3.0}). One of agent 1’s tasks (chosen at

random) was set to enable one of agent 2’s tasks (chosen at random), one of agent 2’s

tasks (chosen at random) was set to enable one of agent 3’s tasks (chosen at random),

and one of agent 3’s tasks (chosen at random) was set to enable one of agent 4’s tasks

(chosen at random). The time horizon was set to 6 and every task’s window was set

to the full duration of execution, making it a strongly-coupled problems (relative to

those for which the reduction in NLATWindow I showed in Section 4.6.2.5 to yield

exponentially-fewer influences).

Figure 7.1: Empirical evaluation of ε-approximate OIS.

As shown in Figure 7.1, the bar plot indicates a substantial decrease in the runtime

(plotted on a log scale) as the value of ε is increased. In contrast, the solution quality

table1 shows that the normalized joint utility of the highest-valued influence found

decreases very slightly until ε becomes larger than 0.1. For this particular set of

problems, approximating the influence probability space achieves large computational

savings at the expense of very little solution quality.

The performance of ε-approximate OIS affirms the intuition that, although agents

may forgo finding the optimal influence point by approximating the probability space,

they are still guaranteed to search the space relatively evenly (to the extent that it is

populated evenly with probabilities). Parameter ε specifies the resolution to which

they search.

1 The third row of the table, labeled “improvement over uncoordinated local policies” measures
the average percentage improvement over the policy computed by each agent maximizing its local
utility without regard to the other agents in the system (assuming pessimistically that its peers will
not enable it).
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7.2 Time Commitment Abstraction

In the last section, we approximated the space of probabilities associated with each

parameter. Alternatively, consider approximating the parameters themselves. That is,

approximate the structure of the influence DBN. For example, there may be several

features (e.g. cloud cover, time of day, and temperature) that are mutually-modeled

by a team of rovers, but that are not all equally informative in predicting the rovers’

influences on each other. Feature selection methods could be used to remove all but the

most useful influence dependencies, thereby reducing the space of possible influences

significantly. Alternatively, we could remove DBN connections, thereby imposing faux

conditional independence relationships. Ultimately, the goal is to reduce the number

of parameters that encode the influence, as well as the size of the influence space.

Here, I develop one particular approximation wherein the influence encoding Γ(nix)

has been reduced to just two parameters (t and ρ) of the form: Γ(nix) = Pr(ntix =

true) ≥ ρ, where t is a time value and ρ is a probability value. In contrast to the

usual influence information, Pr(ntix = true) ≥ ρ doe not express a single probability

of interaction, but instead a range of probability values. The agent proposes to adopt

a policy that sets bit nix to true by time t with probability at least ρ. I call this

a time commitment. In contrast to the more general notion of an influence, a time

commitment has the implicit semantics that the nonlocal feature is event-driven (Def.

4.21): once the influencing agent sets it to true, it can never be set to false thereafter.

Event-driven features are well-suited for modeling interactions among service-oriented

agents. After describing the service-oriented context in Section 7.2.1, I present the

formal details of time commitments (Section 7.2.2), discuss issues that arise when

modeling time commitments (Section 7.2.3), and characterize the search space of time

commitments (Section 7.2.4).

7.2.1 Service Coordination

As a context for time commitments, consider a group of agents (such as is shown in

Figure 7.2.1) who interact by performing services for one another. I refer to Agent 1 as

a service-providing agent because it has various tasks that it can perform to fulfill the

service requests of other agents. I refer to Agent 2 and Agent 3 as service-requesting

agents because they can make use of the services provided by Agent 1. In particular,

Agent 1 has three services {A, B, and C}, where providing Service A entails the

completion of Task A, providing Service B entails the completion of Task B, and

providing Service C entails the completion of Task C (which must be preceded by the
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completion of Task B). These services in turn allow Agents 2 and 3 to complete their

own tasks.

Task A 

duration probability 

1 
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1/3 

1/3 

1/3 
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Request:  
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Request:  

Service C time 4, probability 1 

Service Service Service 

Figure 7.2: Service Coordination example

7.2.2 Time Commitment Formalism

Within the context of service provision, time commitments are defined as follows:

Definition 7.1. A probabilistic time commitment Cij(s) = 〈t, ρ〉 is a guarantee

that agent i will perform (for agent j) the actions necessary to deliver service s by

time t with probability no less than ρ.

Probabilistic time commitments allow agents to make promises to each other in

the event that they cannot fully guarantee service provision. It can be extremely

beneficial to model the inherent service uncertainty in this way. In our example, Agent

1 cannot guarantee provision of Service C until time 6. If Agent 3 waits until time

6, it will only be able to complete Task E (in the case that Task E’s duration is 2)

with a probability of 1
4
. However, agent 1 can promise provision by time 5 with a

probability of 2
3
, giving Agent 3 a 3

4
× 2

3
= 1

2
chance of completing Task E. Thus, by
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Agent 1 committing to probabilistically providing Service C at time 5, Agent 3 can

take advantage of the temporal uncertainty and effectively double its expected utility.

While this example illustrates that the semantics of the commitment’s probability

can capture uncertainty about whether a task will be completed in time to meet

the time commitment, the probability can also summarize the likelihood that a task

will even be attempted. That is, in some execution trajectories, a service provider

might reach a state where it would be counterproductive to even begin one of the

tasks about which it has made a commitment. This kind of behavior is captured in

the commitment semantics: so long as the probability of encountering a trajectory

that involves never starting a task, or not finishing it by time t, is no greater than

1− ρ, then the provider can make the commitment to complete the task by t with

probability at least ρ.

7.2.3 Modeling, Incompleteness, and Inconsistency

Modeling time commitments is a little more tricky than modeling influences because

a time commitments does not sufficiently encode the influencing agent’s policy. As I

describe below, the time commitment model is incomplete because it only specifies (a

bound on) the probability at time t, leaving the remain transition probabilities’ values

unknown. Further, because of the ≥ inequality, the transition probability with which

the nonlocal feature changes from false to true at the given time may not be exactly

equal to ρ. It may be greater than ρ. Whatever the value with which it is modeled,

that value may be inconsistent with the true value implied by the service provider’s

policy. I describe one strategy for coping with this inconsistency below.

A service-requesting agent cannot itself control the provision of Service C, but is

concerned with whether or not C will be or has been provided. Hence it should model

a nonlocal feature Service-C-completed. A commitment can be thought of as a promise

from a service-providing agent to be, with probability at least ρ, in a state at time t

in which the corresponding nonlocal feature is set. To a service-requesting agent, the

commitment is a promise that a nonlocal feature will be set at time t with probability

no less than ρ. Thus, from a practical standpoint, the commitment probability ρ

corresponds to a portion of the transition probabilities of the nonlocal features in the

service-requesting agent’s MDP.
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Example 7.2. Consider a commitment C13 (C) = 〈5, 2
3
〉 by which Agent 1

promises to Agent 3 to complete Task C by time 5 with probability ≥ 2
3
. We can

augment the transition model in Agent 3’s local MDP to represent this committed

behavior of Agent 1. As shown in Figure 7.2.3, the transition caused by taking

action “N” in state “NN4” is expanded into two possible transitions. This is

because Agent 1 has committed to setting the Service-C-completed feature by time

5 with probability 2
3
. In this simple problem, there is only one transition at time

4 that is augmented by the modeled commitment, but in general, all transitions

leading from time 4 to time 5 would be expanded in this manner.

MDP for Agent 3 

State Space: ServiceC-completed, TaskE, time 

  ServiceC-completed  {N (not completed), F (completed)} 

  TaskE  {N (not started), 0 (started at time 0), 1, 2, 3, ..., F (finished)} 

  time  {0, 1, 2, 3, ..., 8} 

 

Action Space: 

  { E (execute TaskE),   

    N (don’t start executing anything new) } 

NN0 NN1 NN4 ?N5 NN2 FN5 

NN6 

NN3 

NN5 NN7 NN8 

FN6 FN7 FN8 
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Figure 7.3: A conservative model of a time commitment.

Notice that Agent 3 models Service-C-completed as “(N)ot completed” before the

commitment time. There is no information encoded in the commitment about the

value of the feature at times 0 through 4 nor is there information, in the case that the

service is not provided by time 5, about the value of the bit at times 6 through 8.

One method of dealing with the incomplete information of time commitments is

for the requesting agent to construct a conservative model of the providing agent.

That is, the agent assumes the worst: a zero probability that the services will be

provided at all times not referred to by the time commitments. In our example, Agent

3 would assume that Service-C-completed takes on a value of N from times 0− 4, and
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cannot change from N to F after time 5. Modeling the change in feature value of

Service-C-completed only at time 5 leads to a very compact local model. Note however,

that this model is not entirely consistent with the behavior of the service provider.

Agent 1 has committed to setting the value of Service-C-completed to “F(inished)” by

time 5 instead of at time 5. But agent 3 models the feature as having value “N” at all

times before 5. That is, Agent 3 is not modeling the possible completion of Task C

any earlier than the commitment time, even though it is possible that Task C might

finish at time 4. Similarly, given that Agent 1’s policy is really to start task C as soon

as it finishes Tasks A and B, then if Task C does not finish at time 5 it must finish at

time 6. However, the local model does not include that possibility.

This inconsistency in the agent’s local model has the effect that the policy it

constructs cannot react quickly to early service provision and cannot react at all to

late provision. Consequently, the time commitment abstraction provides approximate

solutions. The loss in solution quality due to the approximation will depend on a

variety of problem characteristics. Intuitively, the approximation will work well for

scenarios involving a single critical time. However, for scenarios with more flexibility

in the timing of service provision and utilization, and for highly-uncertain services

with a large number of possible completion times, I expect that a time commitment

search will perform more poorly.

7.2.4 Space of Time Commitments

Despite issues of incompleteness and inconsistency, an elegant aspect of the time

commitment is that its domain is a well structured two-dimensional space of time

and probabilities with some nice properties. Shown in Figure 7.4, a time commitment

could, in principle, take any combination of time and probability values. However, the

feasible space of time-probability pairs is bounded from above and from the left by the

maximum feasible probability boundary. Intuitively, if a particular commitment 〈t, ρ〉
is feasible, a more conservative commitment that assigns the same probability but at

a later time (〈t′ > t, ρ〉) must also be feasible. Similarly, any commitment 〈t, ρ′ < ρ〉
that promises a lower probability at time t must also be feasible. As a consequence,

the feasible boundary is necessarily nondecreasing as a function of the commitment

time.

Definition 7.3. The maximum feasible probability of a commitment Cij made

at time t is the highest commitment probability than can be achieved by time t by

any policy of agent i given its existing commitments (if any).
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Figure 7.4: The space of feasible time commitments

Given the application of time commitments to service problems, I also assume that

the values of commitments for both the provider and the requester are well structured.

For the provider, considering commitments all with probability ρ, a commitment

at a later time is never of lower local value than a commitment at an earlier time.

Similarly, for any two commitments with the same time value, the provider’s value for

a commitment with a lower probability is never worse than the provider’s value for a

commitment with a higher probability. I define the highest probability that achieves

the highest possible provider value as the maximum support-optimal probability :

Definition 7.4. The maximum support-optimal probability of a commitment

Cij made at time t is the highest commitment probability than can be achieved by time

t by any policy of agent i given its existing commitments (if any), without sacrificing

any of i’s local utility.

The opposite relationships hold for the requesting agent. That is, a higher proba-

bility of service provision always results in at least as much requester value as a lower

probability of service provisions; similarly, earlier time commitments for services can

never yield lower requester value than later time commitments. Thus, forming time

commitments entails compromise, with the objective of striking a balance (in both

the time and the probability dimensions) between the requesting agent’s local value

and the providing agent’s local value. Naturally, this balance should occur between

the two boundaries shown in Figure 7.4, where the lower boundary, the maximum

support-optimal probability boundary, denotes for each time t, the highest probability ρ

that does not sacrifice any provider utility. The next section presents one methodology

for negotiating such a balance.
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7.3 Greedy Service Negotiation

I now present an influence-space search algorithm that uses the time commitment

abstraction of influence to greedily, but rapidly, converge on a feasible time commitment

for each interaction. Inspired by service choreography (Papazoglou et al., 2007), the

algorithm takes the form of a pairwise agent negotiation between a service-providing

agent and service-requesting agent. Although not guaranteed to return optimal

time commitments, the negotiation algorithm has several advantageous properties

when compared to my optimal influence-space search algorithms, which I list in the

paragraphs below.

Greedy Search. Instead of exhaustively exploring the feasible space of influences,

the service negotiation algorithm myopically assigns each influence setting one-by-one,

never returning to the previous one. In contrast to OIS, service negotiation performs the

equivalent of one depth-first pass down the search tree, at each level greedily selecting

the time commitment for each service that maximizes the (heuristic) value associated

with that service (without regards to the services negotiated thereafter). Consequently,

greedy negotiation scales linearly in the number of edges in the interaction digraph

regardless of the connectivity, making it robust to strongly-coupled problems where

the agent scope is high.

Value-based Pruning. The service negotiation algorithm takes advantage of the

properties of time commitments described in Section 7.2.4 to prune large portions

of the search space. In particular, it accounts for requester utility to rule out time

commitments that must be of lower value than those already considered. As such, the

service negotiation can be thought of as a branch and bound extension to OIS.

Negotiation, Not Enumeration. In contrast to OIS, which dictates that the influ-

encing agent compute its own feasible outgoing influences, service negotiation involves

the influenced agent requesting incoming influences in addition to the influencing

agents proposing feasible influences. The agents thereby distribute the computational

load of influence generation. Additionally, service negotiation begins, for each service,

with an initial influence that maximizes the requesting agents local utility. Although

this influence may not be feasible, it starts the search in a fruitful location, and enables

swift convergence convergence of the requested and proposed influences.
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In the subsections that follow, I develop and evaluate my greedy service negotiation

algorithm.

7.3.1 Negotiation Protocol

To plan and coordinate the executions of agents’ services, my algorithm utilizes a

service choreography protocol. As shown in Figure 7.5, service-requesting agents submit

requests to service-providing agents. The requests are dealt with through negotiations

between the requester and provider that end in service provision agreements.

Negotiation 

1 Service Request 

Initialization 

2 Feasibility and 

Quality Evaluation 

4 Request Revision 3 Counterproposal 

Formulation 

Composite 

Service Goals 

Service 

Provision 

Agreement 

Service-Requester Service-Provider 

Figure 7.5: Negotiation Protocol

As I describe in the sections that follow, for steps 1 and 4, service-requesting

agents employ temporal and stochastic planning to reason about the timing of when

the services are needed in order for their own temporally constrained goals to be

met. Because of the temporal uncertainty and service dependencies, service-providing

agents also employ temporal and stochastic planning techniques in steps 2 and 3 to

decide what services can be provided at what times and with what likelihoods.

The remainder of this section is structured as follows. In Section 7.3.2, I provide a

methodology for service-provider reasoning: how to constrain its policy-formulation

based on its commitments and in doing so evaluate the feasibility of commitments

(Figure 7.5 step 2), and how to search the space of commitment values when formulating

counterproposals (step 3). In section 7.3.3, I present a corresponding methodology for

service requesters to evaluate counterproposals and formulate new service requests

(steps 1 and 4). Having brought together all of the steps of the negotiation protocol, I

discuss how the overarching problem of coordinating service activities of the system of
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agents may be achieved through commitment convergence in Section 7.3.4. In section

7.3.5, I provide empirical results of the scalability and a discussion of the solution

quality of my approach.

7.3.2 Service Provider Reasoning

Next, I describe the inner workings of the negotiation protocol introduced in Figure

7.5. I begin by showing how service-providing agents can evaluate the feasibility of a

received request (step 2 of the protocol) and propose alternative commitments (step 3).

7.3.2.1 Forming Commitment-Constrained Policies

Service agents can solve the local models described in the previous section using

standard MDP solution methods to compute execution policies. But in order to adhere

to its probabilistic time commitments, a service-provider needs to calculate a policy

that keeps its promises. For enforcing commitments, I extend the techniques from

Chapter 5 to address time commitments.

We can directly modify the standard MDP LP from Equation 5.1 to constrain the

solution policy to adhere to a set of temporal probabilistic commitments:

max
∑
i

∑
a

xiaR (i, a)

∣∣∣∣∣∣∣∣∣∣∣

∀j,
∑
a

xja −
∑
a,i

xiaP (j|i, a) = αj

∀i∀a, xia ≥ 0

∀s
∑

{i|{time(i)=ts∧Statuss(i)=F}}

∑
a

xia ≥ ρs

(7.1)

Equation 7.1 adds a third constraint, requiring that the committing agent’s policy

visit states with time = ts and a Finished status of service s with probability no less

than ρs. This constraint exploits the fact that an occupancy measure must equal the

probability of ever visiting a state at time t and taking the action. Since states are

time indexed, no more than one state at time t can be visited in any one execution

trajectory, nor can the probabilities of visiting any subset of states at time t sum to

more than 1. Solving the new linear program yields a policy that is optimal for the

committing agent with respect to its commitments to other agents if such a policy

exists. If no such policy exists, the agent is overcommitted, and so the Linear Program

is over-constrained and has no solution. In this case, the LP solver outputs “NO

SOLUTION”.
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7.3.2.2 Commitment Feasibility

When a service request cannot be honored as requested, the LP formulation will

find no solution. Rather than replying “no” to the requester, the protocol expects the

provider to supply one or more counterproposals that represent alternative requests

that it could commit to fulfilling (step 3 in Figure 7.5). In considering the space

of possible counterproposals, not all commitment probabilities and times need be

considered. In the following sections, I present some techniques to prune suboptimal

values from the space of potential commitment counterproposals.

7.3.2.3 Pruning Commitment Times

Recall that, for the service-providing agent, commitments pertain to the potential

completion of its tasks. Each task has a certain discrete probability distribution over

durations. So, to pick a time to promise a task completion with any probability greater

than zero, it does not make sense to consider times that are less than the smallest

positive probability duration.

In the example problem, the agent cannot complete Task A before time step 1.

For tasks that depend on other tasks, we can push the earliest commitment time

further forward by adding the minimum durations of all dependent tasks. Task C

depends on the completion of Task B, so the earliest time that should be considered

for completing C is 2 + 1 = 3.

More sophisticated temporal reasoning may be used to push the earliest commit-

ment time forward even further. For example, given an existing commitment by Agent

1 to deliver Service A at time 3, we can deduce that Task A must be started at time

0 and cannot finish any earlier than time step 1. So, given previously established

commitments, Service C should not be committed to any earlier than time 4. Though

I do not incorporate this level reasoning into the implementation I use for my empirical

studies (Section 7.3.5), it could be automated by representing the tasks in a temporal

constraint satisfaction problem (Dechter, 2003) and applying constraint tightening

techniques (e.g., Tsamardinos & Pollack, 2003).

7.3.2.4 Bounding Commitment Probabilities

Having reduced the commitment space with respect to the time dimension, let

us now consider the probability dimension. If the service-providing agent makes a

commitment to completing Task A at time 2, it makes sense to set the commitment

probability equal to the probability with which it can complete A in two time steps
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or less: 2/3. If the agent promises a higher probability, it will not be able to meet its

commitment. Thus, 2/3 is the maximum feasible probability for Agent 1’s commitment

to providing A at time 2.

The maximum feasible probability (Def. 7.3) of commitment to service sk can

be computed using a linear program, slightly modified from Equation 7.1, that

takes as input the service-providing agent’s local MDP with all previously made

commitments set to their promised values (denoted {∀s 6= sk, 〈ρs, ts〉}), and (using

occupancy measures) maximizes the probability of service sk being delivered at the

given time:

max
∑

{i|time(i)=tsk∧Statussk (i)=F}

∑
a

xia

∣∣∣∣∣∣∣∣∣∣∣

∀j,
∑
a

xja −
∑
a,i

xiaP (j|i, a) = αj

∀i∀a, xia ≥ 0

∀s 6= sk
∑

{i|{time(i)=ts∧Statuss(i)=F}}

∑
a

xia ≥ ρs

(7.2)

In this new linear program, ρsk is a probability variable (unlike the rest of the {ρs}
constants) and the solution maximizes that probability instead of maximizing local

utility (as was the case in Equation 7.1).

7.3.2.5 Forming Counterproposals

In OIS, influencing agents’ generate the entire space of their feasible outgoing

influence settings. Here, I suggest a more efficient (though approximate) alternative

for counter-proposing feasible time commitments. Instead of generating all feasible

time commitments, let the service-providing agent instead compute feasible influences

along its maximum feasible probability boundary (described in Section 7.2.4 and

shown in Figure 7.4). When a request is deemed infeasible, the service provider

informs the the requester of its limitations, thereby taking a useful step forward in the

negotiation process. For this purpose, the service provider can use the LP in Equation

7.2 repeatedly to calculate the maximum feasible probability (Def. 7.3) for all relevant

commitment times.

Consider the example from Figure 7.2.1. The first request for A to be completed

by time step 3 can be honored and a commitment (C12(A) = 〈t = 3, ρ = 1.0〉) formed.

But next, the service provider receives a request from Agent 3 to deliver C by time

step 4 (with implicit probability 1). Given the first commitment made to Agent 2, a

commitment C13(C) = 〈t = 4, ρ = 1.0〉 is not feasible. This is shown in Figure 7.6.
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Figure 7.6: An example of counterproposal.

The service provider could, in principle, calculate the entire maximum feasible

probability boundary over the tightened time interval [3, 8] as shown in Figure 7.6

(and Figure 7.4 abstractly). However, in counter-proposing, it is more efficient to use

the time and probability of the request as a basis for providing selective feedback

without the provider computing a lot of unnecessary boundary points. As shown

in Figure 7.6, C can be delivered at the same time as the original request but with

smaller probability, yielding alternative commitment C ′13(C) = 〈t = 4, ρ = 1
3
〉. Or C

can be delivered by a later time, 6, with the same probability as the request, yielding

C ′′13(C) = 〈t = 6, ρ = 1.0〉. These two counterproposals give the requester a reasonable

sense of the boundary capabilities of the provider near the region of the previous

request. Other points along the boundary could be provided, depending on the details

of the negotiation algorithm. However, my current implementation finds only these

two commitment counterproposals.

The first of the two, C ′ = 〈t, ρ2〉, may be calculated using the probability-

maximizing LP from Equation 7.2. The second, C ′′ = 〈t2, ρ〉, requires instead a

minimization of feasible commitment time.2 In Equation 7.3, I define a MILP that

does just this, adding boolean variables ft to account for whether or not a commitment

is feasible by time t.

2If the provider cannot achieve the requested commitment probability ρ at any time, the second
counterproposal is computed to be 〈t3 = the earliest time at which ρ3 can be achieved , ρ3 = the
maximum probability achievable by the time horizon T 〉.
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max
∑
t

ft

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀j,
∑
a

xja −
∑
a,i

xiaP (j|i, a) = αj

∀i∀a, xia ≥ 0

∀s
∑

{i|{time(i)=ts∧Statuss(i)=F}}

∑
a

xia ≥ ρs

∀t < T,−1 ≤

 ∑
{i|{time(i)=t∧Statussk (i)=F}}

∑
a

xia

− ρsk − ft ≤ 0

∀t, ft ∈ {0, 1}
(7.3)

In Equation 7.3, variable ft can be set to 1 only if the commitment can be satisfied

by time t with its original probability ρsk . And so, in maximizing the number of ft

variables that get set to 1, we are effectively minimizing the time that the commitment

may be satisfied. The earliest feasible commitment time is then computed by finding

the first ft variable set to 1 (mint {ft = 1}). As shown in Figure 7.6, this new MILP

allows for exploration of the maximum feasible probability boundary by considering

horizontal slices through the commitment space (probabilities) instead of vertical slices

(times, as with the LP from Equation 7.2).

7.3.2.6 Issues of Service-Provider Utility

The discussion so far has ignored the fact that service providers also have local

utility, separate from the nonlocal utility that they can indirectly increase by fulfilling

servicing requests. With the added consideration of service-provider utility, the

space of commitments to consider grows, because the “best” commitment in terms of

maximizing total utility might not be along the maximal feasible probability boundary.

That is, by reducing the probability with which it will satisfy another agent’s request

to a less-than-maximal value, the service provider might be able to develop a policy

that improves its own local expected utility enough to more than compensate for the

loss in the requesting agent’s expected utility.

Here I summarize an extension that may be used to factor in the service providers’

local utilities. Equation 7.4 introduces a new linear program that allows a service

provider to compute it’s maximum support-optimal probability (Def. 7.4), which is

the maximum probability for the commitment at a given time that still allows the

provider to maximize its own local value.
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max ρsk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀j,
∑
a

xja −
∑
a,i

xiaP (j|i, a) = αj

∀i∀a, xia ≥ 0

∀s
∑

{i|{time(i)=ts∧Statuss(i)=F}}

∑
a

xia ≥ ρs∑
i

∑
a

xiaR (i, a) ≥ V ∗provider

(7.4)

Note that this is only a slight modification of Equation 7.2: a constraint has been

added to ensure that the expected utility of the policy is at least EU∗, the best local

utility achievable by the service provider given its currently-enforced commitments

(as computed by applying Equation 5.1 and evaluating the corresponding objective

function).

7.3.3 Service Requester Reasoning

Next, I develop methods for requesting services.

7.3.3.1 Request Initialization

To begin the negotiation process, a service requester must formulate an initial

request to send to the service provider (step 1 in Figure 7.5). Here I present one

method by which all requests may be initialized. A service requester wants to formulate

its best possible policy, which it can optimistically formulate by assuming that all of its

commitment requests will be satisfied fully as early as it wants. That is, it can imagine

that all providers will agree to commitments at time zero with probability 1, and

formulate its own optimal policy accordingly, yielding is maximal local expected utility

EU∗. Then, given that it knows this maximal local expected utility, the requester can

turn the optimization problem around to find the latest time for the commitments

that can achieve this utility. I have developed a MILP, shown in Equation 7.5, for

computing a policy that performs commitment-enabled actions as late as possible

while maintaining that the local utility is no worse than V ∗requester.

In Equation 7.5, I introduce integer variables yt ∈ {0, 1} that can only take a value

of 1 if a commitment-utilizing action is performed at or before time t with probability

greater than 0 (enforced by using a very small ε variable). Minimizing the sum of the

y values forces commitment-utilizing actions to be performed as late as possible. Upon

solving the MILP, the earliest time of such an action may be calculated by finding the

first y variable that has value 1: mint {yt > 0}. This earliest commitment-utilization
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time returned by the linear program is then used as a relaxation time for the requested

commitment. These relaxed requests may still be overly optimistic (in terms of

the service providers’ capabilities), but at least they do not impose unnecessarily

demanding requirements on the providers.

min
∑
t

yt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀j,
∑
a

xja −
∑
a,i

xiaP (j|i, a) = αj

∀i∀a, xia ≥ 0

∀s
∑

{i|{time(i)=ts∧Statuss(i)=F}}

∑
a

xia ≥ ρs∑
i

∑
a

xiaR (i, a) ≥ V ∗requester

∀t < T,−1 ≤

 ∑
{i,a|{time(i)≤t∧enables(C,a)}}

xia

− yt − ε ≤ 0

∀t, yt ∈ {0, 1}

(7.5)

7.3.3.2 Request Revision

Next I discuss how a service-requesting agent like Agent 3 would process the

commitments counter-proposed by a service provider in its negotiations (step 4 in

Figure 7.5). Just like the service provider, the service requester can evaluate utilities

of various counter-proposed commitments by solving local commitment-augmented

MDPs (using the LP from Equation 7.1 in Section 7.3.2.1) and calculating the expected

utilities of their respective solution policies (using Equation 2.7). The (self-interested)

object of the requester is to find the best possible feasible commitment and thereby

maximize its local utility.

Along these lines, one very simple method of formulating a new request is to

evaluate each counterproposal, identify the best one, and request it. In my running

example, Agent 3 either could choose time 6 with probability 1 (giving it an expected

local utility of 0.75), or time 4 with probability 1
3

(giving it an expected utility of

1.0). Agent 3 would then request the latter. A slightly more advanced variation is

to further consider a commitment time and probability between the bounds of the

counterproposals. The requester can simply interpolate optimistically, computing

and evaluating the potential utility of a request whose time is halfway between the

two counterproposals and whose probability is equal to the maximum probability of

the two counterproposals. In the case of my running example, this optimistically-

interpolated request corresponds to commitment C ′′′13(C) = 〈t = 5, ρ = 1〉. Although
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this interpolated commitment request will not be feasible, in this case the provider will

respond with more counterproposals to better inform the requester of the boundary

capabilities. By iterating back and forth in this way, the potential commitment

time window will narrow monotonically and (since time is discrete) the process must

terminate when the requester is unable to interpolate further. This strategy of re-

requesting is implemented in the commitment convergence algorithm presented in the

next section.

From the perspective of the service requester, another response to counterproposals

from potential service providers might be to consider them collectively, and accept

multiple such proposals. In my running example, had there been a second potential

provider for service C, the service request could have gone to it as well as to Agent 1.

Assume for a moment that having service C at time 4 is important for the requester.

The counterproposal from Agent 1 specifies that, at time 4, there is a probability

of 1
3

that service C will be accomplished. If the other provider responded that, at

time 4, it could provide C with a probability of 1
2
, then the requester has options. It

could certainly choose to enlist the other agent to provide C, because of the higher

probability. But, assuming that the possible providers are otherwise idle, and that

they can pursue C concurrently and independently, the requester could accept both

counterproposals, so as to increase the probability that at least one provision of C

will succeed to 2
3
.

7.3.4 Negotiation-Driven Commitment Convergence

Each request made to a service provider may be handled using the negotiation

protocol introduced in Figure 7.5. As in the running example problem, each service-

providing agent is first given a sequence of these incoming requests. The idea is to

consider each request one at a time, converging on an agreement with the service-

providing agent(s) through negotiation before moving to the next request. Our agents

therefore search the space of commitments of all service requests greedily by setting

the commitments one at a time. This strategy enables much quicker commitment

convergence than would an exhaustive search (but at the potential loss of solution

quality).

Pseudo-code for my commitment convergence algorithm is shown in Algorithm 7.1.

Each step of the algorithm involves agents solving linear programs (as described in

Sections 7.3.2 and 7.3.3) to reason about requests, counterproposals, and optimal local

behavior. One by one, each original request is dealt with in a pairwise negotiation

between provider and requester. The two agents iterate through sets of potential
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commitment values and eventually converge on a single agreed commitment for each

requested service. This convergence of commitment values is guaranteed (in a number

of iterations logarithmic in the problem time horizon) because of the methods agents

use for counter-proposing and re-requesting.

As is typical of greedy algorithms, a drawback of this particular commitment

negotiation algorithm is that, by greedily maximizing the utility associated with the

current commitment to a service provision, it can sacrifice potential solution quality

of later service provisions. In my running example, if the service requests are handled

in the order that they are shown in Figure 7.2.1, negotiation yields commitments

C12(A) = 〈t = 4, p = 1.0〉 and C13(C) = 〈t = 5, p = 2
3
〉. Given that the completion of

Task A by time 3 is worth a local utility gain of u2 to Agent 2 and the completion of

Task C by time 4 is worth a local utility gain of u3 to Agent 3, these two commitments

together provide the requesters a total expected gain of u2 + 1
2
u3. If we were to

reverse the order in which the requests are considered in the example problem, the

negotiation protocol brings us to a different set of commitments. A commitment

C13(C) = 〈t = 4, p = 1.0〉 will be made to Agent 3 promising the completion of Task C

by time step 4. But when the provider next negotiates with Agent 2, it can only make

commitments involving the execution of Task A after Tasks B and C. Otherwise its

first commitment would be violated. In the example, this results in Task A finishing

at time 4 with probability 1
3
. And completion of Task A after time 4 does not benefit

Agent 2 at all. Thus, by using this alternate request order, negotiations converge on a

set of commitments that provide the requesters a total gain of 1
3
u2 + u3.

Which ordering produces the better solution is dependent upon the relative utility

benefit values u2 and u3. Specifically, the first commitments are preferable when u2

is worth at least 1
2

of u3, but otherwise the other commitments would be preferred.

Although additional ordering heuristics could be overlaid on top of the greedy protocol

described here, it is difficult to ensure in general that the right ordering will be

attempted. Furthermore, the optimal set of commitments might not be achievable

by greedy convergence using any ordering. It may be that two requesting agents

will receive the greatest collective utility if they both compromise on the probability

and/or time by which they are providing competing services. Such a compromise can

only be achieved by simultaneously considering both potential commitments (instead

of considering them one-by-one as with the greedy algorithm).
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Algorithm 7.1 Greedy Request-Based Search for Commitments

1: procedure GRBS(p, agents) . Input: problem p, service agents
...Initialization...

2: C ← ∅ . The commitment set (stored by all agents)
3: for each agent ∈ agents do
4: requests← agent.FormInitialRequests(p) . [see Sec. 7.3.3.1]
5: agent.CommunicateRequests(requests, agents)
6: end for

...Greedy Commitment Convergence...
7: for each provider ∈ agents do
8: for each r ∈ provider.ReadIncomingRequests() do
9: requester ← r.sender

10: acceptable← provider.EvaluateFeasibility(r, p, C) . [7.3.2.1]
11: while acceptable = false do
12: cp← provider.GenerateCounterproposals(r, p, C)

. [7.3.2.5]
13: requester.EvaluateAndMemorize(cp, p, C)
14: r ← requester.GenerateNewRequest(cp, p, C)

. [7.3.3.2]
15: acceptable← provider.EvaluateFeasibility(r, p, C)
16: end while
17: r ← requester.RelaxRequest(r, p, C) . [7.3.3.1]
18: c← provider.FormCommitment(r)
19: provider.CommunicateCommitment(c, agents)
20: C ← C ∪ {c} . New commitment added (by all agents)
21: end for
22: end for

...Optimal Local Policy Formulation...
23: for each agenti ∈ agents do
24: π∗i ← agenti.ComputeConstrainedOptimalPolicy(p, C)
25: end for
26: return π ← 〈π∗1, ..., π∗n〉 . Output: joint policy
27: end procedure
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7.3.5 Empirical Results

Two separate empirical studies follow. In the first, I analyze the scalability of

greedy service negotiation and compare its quality with that of a MMDP solver on

several sets of randomly-generated service problems. In the second, I perform a very

preliminary comparison with OIS on the problem sets tested in Chapter 6.

7.3.5.1 Comparison with MMDP Solver

The motivation for developing a greedy service negotiation approach is to be able

to solve larger, more complex problems well with less computational effort. To this end,

I evaluate how scaling up problem difficulty affects runtime, and how the greedy and

approximate techniques impact solution quality. In this comparison, which summarizes

my published results (Witwicki & Durfee, 2009), I compare greedy service negotiation

against a MMDP (Boutilier, 1996) solver. My solver uses the same machinery as

the “centralized MILP” approach described in Section 6.5.1.1, but does not constrain

agents’ observability. Instead, it computes a joint policy that assumes that each

agent observes the full global state at every time step. In contrast to my service

negotiation algorithm, the MMDP is a centralized planning model that finds optimal

joint policies by simultaneously accounting for all agents’ policy decisions. Greedy

service negotiation exploits the largely decoupled structure in service coordination

problems, but produces only approximately-optimal solutions. Because the MMDP

does not exploit structure or approximation like my approach can, its runtime should

be viewed more as providing a worst-case bound on computational effort. On the other

hand, because the MMDP solver produces optimal joint policies that assume each

agent has full global state awareness at all times, the expected qualities of its joint

policies provide a best-case bound on the agents’ collective performance. In contrast,

greedy service negotiation assumes that agents only know their local state and whether

other agents have succeeded or failed in meeting their time commitments. Thus, while

the bounds are not tight, the MMDP solver provides well-defined performance bounds

against which to compare greedy service negotiation.

I begin by presenting scalability results that demonstrate the scalability of greedy

service negotiation. Figure 7.7 shows the runtime on variations of exactly the example

problem (presented in Figure 7.2.1), where each variation is scaled up by simply

stretching out the timing of all tasks3 and extending the time horizon accordingly

(from T=8 to T=96). This leads to larger MDPs, more LP constraints, and potentially

3Tasks maintain the same number of discrete durations, but each possible duration is scaled.
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more iterations of commitment requesting and counter-proposing. As can be seen in

Figure 7.7, the algorithm remains tractable for time horizons as a large as T=96 (at

which point CPLEX is solving constrained MDPs with over 10,000 states), converging

on commitments in a minute or less. I compare this runtime with solving the Multiagent

MDP, which scales much worse with the problem time horizon, taking hours to return

the optimal solution (utility = 6.0) for time horizons of greater than 40, whereas

the commitment-based algorithm returned a near-optimal solution (utility = 5.5)

in under a minute for problems with horizons as large as 96. This result provides

some evidence that, although approximate, greedy service negotiation can produce

reasonable solutions tractably, scaling gracefully with the problem time horizon.

Figure 7.7: Scalability: problem time horizon.

Next, I scale the local complexity of the example problem by adding random local

tasks , each of which is not enabled by other agents’ services and may not be requested

by other agents. This has the consequence that the agents’ problems are tied to one

another with the same interaction structure as in the running example. But each of

the agents problems becomes more complicated with additional local tasks (that may

accrue utility) and additional local dependencies between internal tasks and services.

Through random task additions, I automatically generate sets of random problems
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(25 for each data point). Details of the problem generation schemes used throughout

this section are provided in Appendix B.

Figure 7.8 shows the results achieved on these augmented problems. Average

running time is plotted on a log scale. This experiment offers strong evidence that

greedy service negotiation scales to problems with increasingly complex local behavior.

For random locally-augmented problems with more than 8 tasks, the MMDP model

(not shown) takes more than an hour to solve on average. Note that as more local

tasks are added, the agents’ individual decision problems are becoming larger, but

also more weakly-coupled from one another. It is this weak coupling (as discussed in

Section 7.2.3) that enables commitment-based negotiation to remain so much more

efficient.

Figure 7.8: Scalability: local complexity.

In one more scalability test, I increase the size of the example problem by adding

additional service-requesting agents. Maintaining the single-service-provider structure,

randomly-generated agents are added, each with a small number of local tasks and a

single service requirement. Further details are included in Appendix B. The average

runtime for 25 random problems per data point is plotted in Figure 7.9. This time,

notice that my commitment negotiation approach scales roughly linearly with the
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number of agents. The MMDP scales exponentially, and therefore quickly becomes

intractable.

Figure 7.9: Scalability: number of agents.

An alternative metric common in multiagent and service-oriented systems is the

number of messages passed between agents. With my negotiation protocol, the number

of messages scales linearly with the number of service provision relationships, regardless

of the number of agents involved. Each relationship requires a minimum of 2 messages

(for request and agreement) and can require a number of messages logarithmic in the

number of time points in the worst case, if the requesting agent continues to request

the optimistic interpolation (as described in Section 7.3.3.2). Of course, the number

of messages can be decreased by creating more informative messages (and incurring

the costs of forming those messages). For example, if the provider replies at the outset

with the entire feasible probability boundary, then no iteration is needed.

The computational benefits of greedy service negotiation over the MMDP come at

a price in terms of the potential quality of the agents’ joint solution. Figure 7.10 shows

the difference in quality by empirical comparison on a set of 25 randomly-generated

service problems. Each problem contains 3 agents and a total of 9 tasks randomly

distributed between the agents. There are 3 random enablement NLEs, but unlike in
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the example problem, the services are not all provided by the same agent. Agents are

not exclusively providers or requesters. The dependencies between each agent’s local

tasks are random as are the task duration distributions. More details are provided in

Appendix B.

Although none of the individual problems are based on actual real-world service

composition scenarios, I sought to generate a set of problems representative of a

wide range of potential 3-agent scenarios, remaining impartial about characteristics

such as service composition hierarchy, tightness of timing, and distribution of local

utility. This evaluation provides preliminary evidence that my algorithms may produce

coordinated, high-quality solutions for a variety of service composition problems.

Figure 7.10: Average solution quality on 25 random problems

The height of the bars represent solution quality, measured as the sum of the

expected local utilities of the 3 agents. The corresponding error bars represent standard

deviation in the solution qualities across the 25 problems. The number under each

bar represents the average time to converge or (in the case of the MMDP) to compute

the optimal solution. The left-most bar in Figure 7.10 indicates the average quality of

a solution approach in which agents plan with completely-independent local models

that do not consider any possibility of service provision from other agents. That

is, agents build optimal local policies around an empty set of commitments. This

approach serves as a lower bound over which coordinated agent behavior should rise.
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And as shown in Figure 7.10, greedy service negotiation performs significantly better.

My approach performs nearly as well as the optimal MMDP solution approach in a

fraction of the computation time.

Greedy service negotiation yields coordinated policies for these random service

problems, achieving higher solution quality than that of uncoordinated policies, but

this solution quality is, on average, lower than that of the optimal MMDP solution.

Reasons for this gap in solution quality include the following. As described in

Section 7.3.4, commitment values are converged upon greedily, one by one, and in a

fixed order. I have included an intermediate data point to account for a portion of

this loss of quality. The bar labeled “Optimally-Ordered Commitment Negotiation”

represents the commitment convergence algorithm performed on all possible orderings

of commitments so that the highest-quality joint policy (corresponding to the optimal

commitment ordering) is selected. However, this approach still makes greedy choices

(given the optimal ordering). The MMDP formulation, on the other hand, always

makes the correct choices and always converges on the globally optimal joint policy

for the agents. It always finds the best balance of service provision to multiple service

requesters, as well as the best balance of provider and requester utility.

Another drawback as compared with the MMDP formulation is that, in order

to achieve compactness and efficiency, agents time-commitment-based models make

some approximations of nonlocal agent behavior. For example, the agents forgo

potential flexibility and sacrifice potential expected utility by representing each service

commitment with just a single time and probability. That is, unlike the MMDP

that assumes agents have global awareness and can react suitably when a service

is provided earlier (or later) than planned, my approach (as described) only allows

agents to model and react at the service’s committed time. However, there is nothing

in the negotiation protocol that precludes making multiple (conditional) commitments

at different times for each request. It is the subject of future work to combine service

negotiation with richer influence representations. However, this would likely enlarge

the influence space space, and so should be done with care.

7.3.5.2 Comparison with OIS

I now present a very preliminary comparison of greedy service coordination and

OIS. First, I demonstrate the superior scalability of greedy service negotiation on a

set of 50 random problems (per number of agents) whose interaction digraphs have

the chain topology (shown in Figure 6.15). Problems are generated using the same

generator as described in Section 6.5.6, with randomly selected nonlocally-enabling
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tasks set as services. Figure 7.11 plots the computation times of OIS and greedy service

negotiation on a logarithmic scale. The plot only extends to 10 agents, but greedy

service negotiation is capable of scaling to hundreds. Regardless of the interaction

digraph topology, greedy service negotiation scales linearly. Moreover, notice that

for 2-agent problems, greedy service negotiation performs more than an order of

magnitude faster than OIS, due to the advantages that I listed in Section 7.3.

Figure 7.11: Scalability: OIS vs. Greedy Service Negotiation on “chain” topology.

However, it is not fair to compare only the runtimes of these two algorithms. In

addition to imposing stricter restrictions on the problems than OIS, greedy service

negotiation returns approximate solutions. Figure 7.12 shows the quality of solutions

returned by greedy service negotiation relative to those returned by OIS. On top, the

average absolute solution quality of both methods is plotted. On the bottom, the

“Percentage Optimal” refers to the average of the ratio of returned solution quality to

optimal solution quality. Clearly, greedy service negotiation trades some quality for its

faster computation. However, further analysis is required to characterize the trade-off.
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Figure 7.12: Solution quality of Greedy Service Negotiation on “chain” topology.
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CHAPTER 8

Conclusions

The focus of this dissertation has been on the development of a general framework

for abstracting agents’ influences and coordinating using those abstractions, with the

ambition of advancing the state of the art in efficiency and scalability of planning for

teams of weakly-coupled agents under uncertainty. Towards this goal, I have made

several contributions to the field, each of which I summarize in Section 8.1. My work

has also raised new research questions, several of which I discuss in Section 8.2. I

conclude in Section 8.3, reflecting upon the accomplishments of this dissertation with

respect to my longer-term aspirations.

8.1 Summary of Contributions

In the subsections that follow, I organize my contributions into four thrusts, each of

which is an integral component of my coordination framework. These thrusts and their

constituent contributions correspond to the work that I have presented in Chapters 3,

4, 5, and 6.

8.1.1 Identifying Structure

Chapter 3 focuses on the identification of weakly-coupled structure in transition-

dependent problems.

� I have defined a model (the TD-POMDP), for teams of transition-dependent

agents, that articulates several elements of exploitable structure that were

previously exploited only in more restricted problem classes. This structure gives

rise to an abstraction of transition probabilities and a subsequent decomposition

of the joint model into efficiently-solvable local models.
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� I have developed a characterization that brings together three complementary

aspects of weakly-coupled problem structure present in the TD-POMDP model.

Along with this characterization, I contribute theory on the complexity of solving

weakly-coupled problems, by exploiting the three aspects in concert, dependent

on the degree to which each aspect of weakly-coupled structure is present. Aside

from promoting a better understanding of the structural exploitations of other

approaches, this theory motivates my investigation of influence-based abstraction

as a method for reducing the size of the search space required for coordinating

optimal behavior. It also guides my empirical analysis of the conditions under

which influence-based abstraction is most effective at reducing the search space

and most efficient in practice.

8.1.2 Abstracting Influences

Chapter 4 focuses on the abstraction of influence information that is sufficient for

optimal local planning and reasoning.

� I have developed a novel best-response model for TD-POMDP agents, the

complexity of which depends on the number of shared state features regardless

of either the number of agents or the complexity of peers’ behavior.

� Out of my best-response model comes a novel representation for policy ab-

straction, influence, that encodes information from peers’ policies sufficient for

optimal local reasoning, and whose encoding size is also a function of the number

of shared state features irrespective of the number of agents. The conceptual

contribution is the (later empirically validated) insight that, by formalizing

agents’ transition influences, an influence space emerges that is potentially more

efficient to search than the policy space, yet is still amenable to optimal solutions.

� In Section 4.6, I have presented an empirical analysis of the size of the feasible

influence space in relation to the size of the policy space. The results contribute

towards characterizing the circumstances under which influence-based policy

abstraction is most advantageous.

8.1.3 Proposing and Evaluating Influences

Chapter 5 presents a principled approach to constraining policies around influences.

� By conceptually linking the probabilistic information encoded in the MDP LP

occupation measures with that encoded in agents’ influences, I have formalized a

261



mapping between influence and policy. In one direction, an agent can evaluate the

influence settings that its policy implies by solving a linear program corresponding

to its best response and evaluating a formula for each influence parameter. In

the other direction, an agent can constrain its policy to directly adhere to a

proposed influence.

� I have proven that an alternative approach, reward shaping, though potentially

more efficient than LP-based constrained policy formulation, is not guaranteed to

enforce a prescribed influence (even if that influence is feasible) regardless of the

amount of parameter tuning. Moreover, while reward shaping may only produce

approximately optimal local policies with respect to an influence, influence-

constrained policy formulation ensures that the local policies will be optimal

among policies that achieve the prescribed influence.

� I have developed a method for enumerating an agent’s space of feasible outgoing

influences efficiently. Instead of having to consider each of its policies explicitly,

my algorithm solves a number of MILPs that is linear in the number of feasible

influence points.

� In employing influence constraints to perform a number of different functions in

Chapters 5 and 7, I have contributed an arsenal of constrained policy formulation

techniques that may be adapted and extended to solve other decision-making

problems involving behavioral constraints.

8.1.4 Coordinating Influences

� My primary contribution in Chapter 6 is the development of my optimal influence-

space search algorithm, which combines components from each of the earlier

chapters so as to decompose the policy formulation problem into a series of well-

ordered influence generation and influence evaluation steps that are guaranteed

to search all feasible combinations of agents’ influences, one of which I have

proven must correspond to the optimal joint policy.

� I have performed an empirical comparison of the computation time of optimal

influence-space search with that of several other optimal algorithms, thereby

identifying the strengths and weaknesses of my methodology. In doing so,

I contribute compelling evidence in support of my hypothesis that optimal

influence-space search provides significant computational advantage over existing
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methods in the computation of optimal solutions for certain classes of weakly-

coupled problems. Moreover my analysis evaluates the circumstances under

which influence-space search gains the most traction in practice, providing data

with which researchers and practitioners can make informed decisions about

the suitability of adapting or applying influence-based abstraction and optimal

influence-space search to their own problems.

� In Section 6.6.3, my initial study of exploiting agent scope in combination with

degree of influence suggests the following: For problems with a low degree of

influence and a fixed agent scope, influence-space search can achieve scalability

in the number of transition-dependent agents well beyond the state of the art in

optimal policy computation. Moreover, this portion of my work contributes a

novel application of Dechter’s Bucket Elimination to influence-space generation

and optimization.

� I present additional evaluations in Chapter 7 that contribute evidence of the

efficacy of approximate influence-space search to reducing computation while

still achieving near-optimal solution quality.

8.2 Open Questions

This work has uncovered a number of interesting questions that were beyond the

scope of this dissertation, but that are candidates for potentially-fruitful investigation

in future work.

8.2.1 Quality-Bounded Influence Space Search

I have devoted this dissertation primarily to the study of optimal influence-based

methods. To date, I remain compelled by the formal guarantees that optimal algorithms

provide. However, I am also interested in developing approximate algorithms with

bounds on quality loss. Intuitively, the approximation of the influence probability

space (Section 7.1) should, under some conditions, provide such guarantees. Inherently,

it already guarantees consideration of an influence whose parameter settings are within

some bound of the settings of the optimal influence point. Further investigation is

needed to determine whether or not we can also bound quality, and whether or not

those bounds would be useful in practice.
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8.2.2 Influence Encoding Compaction

Based on my characterization of influence encodings (e.g. state-dependent, history-

dependent, influence-dependent) in Section 4.3, different problems may call for different

sufficient encodings. In particular, my empirical analysis in Section 4.6 considered

two classes of problems: one in which a history- and influence-dependent encoding

was needed and another in which a state-dependent encoding sufficed. I justified

this latter sufficiency for acyclic cases with the knowledge that the nonlocal features

were all event-driven (Def. 4.21), and with my theoretical result from Section 4.4.

In my experiments, I manually set the state-dependent flag for such cases. What I

did not do is to automate the determination of the appropriate encoding. Clearly, a

smaller encoding is preferred for compactness of best-response models, for efficiency of

influence generation, and for reduced influence space size (as my empirical results in

Section 4.6.2.4 suggest). In the interest of automation, I pose the following questions:

� How can we automatically diagnose inefficiencies in the influence encoding

and reduce the size of the encoding (e.g., by eliminating unnecessary variables,

removing unnecessary connections, or instead revise the semantics of the encoding

to allow a smaller number of parameters)?

� What are the circumstances under which extremely compact encodings (e.g.,

time commitments developed in Section 7.2) yield optimal solutions?

� Is there additional problem structure that could be exploited to reduce the size

of the influence DBN?

8.2.3 Other Applications of Influence Abstraction

In this dissertation, I have demonstrated that, for the problem of planning weakly-

coupled cooperative agents’ decisions, influence-based abstraction is a powerful tool

for decomposing one large joint problem into smaller, more efficiently-solvable local

problems. The decomposition is made possible by the fact that, given few shared

features, the resulting compact model of influence is a sufficient summary of nonlo-

cal information for making local predictions. Note that neither decomposition nor

prediction-making are specific to planning ; nor are they specific to cooperative agents.

I believe that there are other weakly-coupled problems that could similarly benefit

from my influence formalism (as well as the structural aspects of my TD-POMDP

model), such as the following:
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� learning (assuming that the structure of agents’ interactions is known a priori);

� reasoning about influences of adversaries in a competitive domain;

� incentivizing agents’ adoption of socially-beneficial influences (in the context of

mechanism design).

8.3 Closing Remarks

The research that I have presented in this dissertation is largely motivated by

the long-term vision of applying multiagent sequential decision making models and

techniques to solving real-world problems. Realizing this vision requires, among other

things, bridging the gap between the limitations of the current state of Dec-POMDP

research (which as of yet has been restricted to small toy problems involving few agents,

or restrictive forms of interactions, or no bounds on solution quality) and the objectives

of practitioners that might ultimately apply the Dec-POMDP technologies. My work

aspires to narrow the gap by extending the state-of-the-art in efficient computation of

optimal solutions to teams of weakly-coupled transition-dependent agents. Although

small in respect to the size of this gap, my influence-based abstraction approach has

inched out beyond the reach of other methods, computing solutions faster and scaling

to more agents that was previously possible on a small, but well-characterized space

of problems.

I have thus accomplished that which I set out to accomplish in this dissertation.

This achievement is a direct result of exploiting structure in transition-dependent

problems. In fact, the greatest advances in agent scalability were made possible by

simultaneously leveraging two different aspects of structure: locality of interaction

and degree of influence; moreover, exploiting both yielded far greater gains that

exploiting either one individually. This complementarity of structural exploitations,

and of algorithmic frameworks, gives me hope that, by identifying and exploiting

more structure, the field of Dec-POMDP research will one day close the gap, and

successful applications will be realized. All it may take is a few more complementary

advancements.
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APPENDIX A

Comparison of EDI-DEC-MDP and TD-POMDP

The Dec-MDP with Event-Driven Interactions (Becker et al., 2004a), otherwise

known as the Event-Driven Dec-MDP (EDI-Dec-MDP), is the most closely-related

subclass to that of the TD-POMDP. Here, I present the technical details of EDI-Dec-

MDP and prove that it is no more general than the TD-POMDP.

A.1 Event-Driven Dec-MDP Model

The EDI-Dec-MDP is specified by the tuple M = 〈N , S, A, P,R, Ω, O, T, {dkij}〉,
wherein the usual suspects are as follows: N is the set of agents, S is a set of world

states, A = A1 × A2 × ...× An is the joint action space, P : S × A× S → [0, 1] is the

transition function, R : S×A→ Rn is the joint reward function, Ω = Ω1×Ω2× ...×Ωn

is the joint observation space, O : S × A× Ω→ R is the observation function, and T

is the finite horizon. Like the TD-POMDP, the world state S is factored into local

state components Si. However, the EDI-Dec-MDPs factoring assumes no sharing of

state features among local states: S = ×i∈NSi. Additionally, the observation function

is restricted such that the EDI-Dec-MDP is locally fully observable (Definition 2.8):

∀oi, ∃si|Pr(si|oi) = 1. Further, the reward function is restricted such that EDI-Dec-

MDP agents are reward independent (Definition 2.11) such that local rewards combine

by summation to equal the joint reward: R(s, a, s) =
∑

i∈N Ri(si, ai).

Event-Driven DEC-MDPs have structured transition dependencies Becker et al.

(2004a), the set of which is denoted as {dkij}. In particular, one agent may influence

the local state transitions of another through the occurrence of a proper event.

Definition A.1. A primitive event e = (si, ai, s
′
i) is a triplet of state, action, and

outcome state that may occur in agent i’s execution history Φi = [s0
i , a

0
i , s

1
i , a

1
i , ...].
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Definition A.2. An event E = {e1, e2, ..., eh} is a set of primitive events that is said

to occur (Φi |= Ek
i ) in an execution sequence if one of the primitive events occurs in

the execution sequence.

Definition A.3. A primitive event is proper if it can occur at most once in any

possible history. An event E = {e1, e2, ..., eh} is proper if all of its primitive events

are proper and no two primitive events can both occur in any possible history.

Interactions among EDI-Dec-MDP agents thereby occur though event dependencies

of the form dkij =
〈
Ek
i , D

k
j

〉
, whereby an event in Ek

i brings about a change in the

transitions, Dk
j (which is made up of state-action pairs), of agent j. Dependency

satisfaction is captured by Boolean variable bksj ,aj , which is true when an event in Ek
i

has occurred. Subsequently, the transition function P of a EDI-Dec-MDP is structured

such that agent j’s local transition function Pj , in addition to depending on local state

sj, depends on the nonlocally-affected boolean variable bksj ,aj . As such, the agents’

local state transitions are independent of one another with the exception of event

dependencies captured by the bksj ,aj variables.

A.2 Complexity of EDI-Dec-MDP

Allen (2009) has recently proven that the computational complexity of the EDI-

Dec-MDP is NEXP-complete, which is the same complexity class as the Dec-POMDP.

This means that, to solve the EDI-Dec-MDP requires computation time irreducibly

exponential, and space unbounded, in the model size the model size ‖Medi‖).

A.3 Reduction of EDI-Dec-MDP to TD-POMDP

Any EDI-Dec-MDP can be reduced to an equivalent TD-POMDP simply by

treating the event-driven boolean features bksj ,aj as nonlocal features. Theorem A.4

formalizes this sentiment.

Theorem A.4. EDI-Dec-MDP ≤EXP TD-POMDP.

Proof. Let us treat the reduction to the equivalent TD-POMDP

Mtd =
〈
N td, {Std

j }, {Atd
j }, {Ωtd

j }, {Otd
j }, {Rtd

j }, {m̄td
j }, {PU

j }, {PL
j }, T

〉
(as per defini-

tion 3.15) one component at a time:

� N is identical to N edi.
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� Let the TD-POMDP world state include a boolean feature nj = bksj ,aj for every

EDI-Dec-MDP even dependency variable bk. Further let each nj be a nonlocal

feature controlled by agent i (where i is the other agent reference in bk. As such,

each local state space of the TD-POMDP Std
j is the local state space in the

EDI-Dec-MDP augmented with each corresponding nonlocal features nj and

each nonlocal feature of some other agent ni controlled by j. The remaining

features in Std
j are treated as locally-controlled features (Def. 3.12). As of yet,

we have used time O(‖dkij‖) and space O(
∑

j∈N 2‖d
k
ij‖·‖Sj‖).

� Atd
j is identical to Aedi

j .

� Ωtd
j is identical to Ωedi

j .

� Otd
j is equivalent to Oedi

j , such that agent j’s observations depend only on the

local features of std
j (or equivalently, all the features of sedij ). This reduction is

valid since the EDI-Dec-MDPs local full observability makes Oedi
j more restrictive

in its representation.

� Rtd
j is identical to Redi

j (with the same conditional independence of nonlocal

features as is the case in Otd
j ).

� m̄td
j is the union of the set of nonlocal features {nj}, each controlled by another

agent i, that influence agent j, and the set of nonlocal feature {ni}, each

controlled by j. Since there is one nonlocal feature per dependency, each

involving 2 agents, we will have performed a number of steps and used space

proportional to to 2 · ‖{dkij}‖.

� The TD-POMDP’s uncontrollable feature transition function PU
j will be defined

over an empty set since we are treating all features as locally-controlled.

� The only difference between the TD-POMDP’s local transition function PL
j

and P edi
j is that for P edi

j is defined over a smaller set of states, each of which

do not encode the Boolean dependency variables of the form bksi,ai related to

agent j’s events but that influences i. Since PL
j is defined over a state space

that includes these these additional variables, PL
j must expand the necessary

transition information for each combination of value of bksj ,aj for each state s

according to the whether or not the corresponding event Ek
j has occurred. The

total size of the TD-POMDP local transition function PL
j is ‖P edi

j ‖ · 2‖d
k
ij‖ in the

worst case, so this step of the reduction takes time and space proportional to

‖P edi
j ‖ · 2‖d

k
ij‖.
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� T td = T edi.

Upon completing the steps above, the result is a completely-specified TD-POMDP

that captures the same semantics of the EDI-Dec-MDP from which it was reduced.

Since each step in the reduction takes at most O(‖P edi
j ‖ · 2‖d

k
ij‖) time an space, and

each step has been validated (as per the semantics of each model component), the

claim made in Theorem A.4 is proved.

Corollary A.5. The TD-POMDP is NEXP-hard.

Proof. The EDI-Dec-MDP is known to be NEXP-complete (Allen, 2009), which im-

plies that the complexity of solving the EDI-Dec-MDP is irreducibly exponential in

the model size ‖Medi‖. By Theorem A.4, any EDI-Dec-MDP Medi can be solved by

reducing it to an equivalent TD-POMDP Mtd, an operation which takes exponential

time and space in ‖Medi‖ at worst, and solving the TD-POMDP. Since the computa-

tion required to solve the original EDI-Dec-MDP is no easier than exponential, the

exponential computation required to reduce the problem does not affect the asymp-

totic complexity of solving the reduced problem Mtd, which must be at least NEXP.

Therefore, the TD-POMDP is NEXP-hard.
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APPENDIX B

Random Service Problem Generation

Local Complexity Scale-up Experiment. For the evaluation of local complexity,

shown in Figure 7.8, tasks were generated and added one by one to each agent’s local

problem (from the running example). These random local tasks were generated as

follows. Each task duration distribution was computed by selecting an interval [1, k] of

time units, where k was randomly chosen from a normal distribution centered around
T
2
, and then invoking a uniformly random number of possible durations from that

interval, each randomly valued within the interval and randomly assigned a probability

(derived from normalizing a set of random numbers). For each local task added to an

agent’s local problem, that task was probabilistically connected (via dependency) to

an existing task. That is, with a probability of 0.3 the task was made to enable an

existing task chosen at random with equal probability (but with the constraint that

the existing task wasn’t already enabled by another task). Next, with a probability of

0.3 the task was made dependent on an existing local task chosen at random with

equal probability. The utilities of these additional local tasks were selected uniformly

randomly in the interval [0,3].

Agent Scale-up Experiment. For the evaluation of number of agents, shown in

Figure 7.9, additional requesting agents were generated and added one by one to the

example service coordination problem. These agents’ problems were generated as

follows. First, a random number n of tasks was selected in the interval [1, 6] with

equal probability. Next, one by one, each of the n tasks was randomly generated and

added to the new agent’s problem exactly as dictated by the random task generation

scheme in the preceding paragraph. Finally, one of these tasks was chosen at random
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as being dependent on one of the services (selected randomly from those) provided

by the service-provider. Utilities of tasks requiring the service of another agent were

valued uniformly randomly over the interval [2, 5] and utilities of all other tasks were

valued uniformly randomly over the interval [0, 3].

Solution Quality Experiment. For the evaluation of solution quality, shown in

Figure 7.10, problems were generated randomly from scratch. Each of the problems

was initialized with 3 agents, each containing empty local problems. 9 randomly-

generated tasks (as generated using the scheme in the local complexity experiment) were

randomly distributed between the 3 agents. Next random service dependencies were

introduced to connect the agents problems to one another. Three service enablements

were imposed, each connecting two randomly selected tasks (constrained to come

from two different agent’s local problems). The effect was to create random service

compositional hierarchies. For each of these random coordination problems, there was

no longer (necessarily) a single service-provider. Each agent had the potential of both

providing services and requesting services. The utilities of tasks in these problems was

valued as in the preceding paragraph. That is, utilities of tasks requiring the service

of another agent were valued uniformly randomly over the interval [2, 5] and utilities

of all other tasks were valued uniformly randomly over the interval [0, 3].
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