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Chapter 1 

Introduction 

Social processes often underlie the transmission of infectious diseases, from the 

micro-level structure of direct contacts to the macro, community-level networks that 

impact the maintenance of community water sanitation infrastructure and public health 

services. Despite their importance, these social processes are often excluded from models 

of infectious disease transmission. For example, some models assume completely 

homogeneous contact patterns across individuals and age groups (2) whereas others 

aggregate behavior into a single construct with biological processes, making the distinct 

influence of social structure and behavior on disease dynamics unidentifiable e.g. (3). 

The social epidemiology of infectious diseases 

In a recent paper, Cohen et al. (4) assessed the evolution of social epidemiology’s  

infectious disease subfield through a systematic review of academic articles matching the 

keyword ‘social epidemiology’ published between 1966 to 2005. The authors found that 

the number of studies with an infectious disease outcome in social epidemiology 

published each year increased at a much slower rate than in other fields, such as cancer,  

cardiovascular disease and psychiatry. Furthermore, most of the increase in articles about 

the social epidemiology of infectious diseases focused on sexually transmitted diseases 

(STDs) and HIV and were therefore not necessarily applicable to a broad range of 
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pathogens and modes of transmission. One explanation for this strong focus on STDs and 

HIV is that the social and behavioral risk factors associated with infection fit well with 

definitions of direct contact, e.g., sexual contact and needle sharing. Modes of 

transmission for other types of pathogens (such as influenza, those that cause 

gastrointestinal disease, and vector borne illnesses), may appear less amenable to 

analyses that incorporate social factors. Discordant understandings about what 

epidemiologist think constitutes a contact and what sociologists think of as a social 

relationship may have created a longstanding perception that the broader universe of 

communicable diseases is not amenable to analysis that accounts for social factors.  

The sociology of contact, exposure and infection 

The social epidemiological literature on infectious diseases shows that a 

sociological perspective enhances understanding of infectious disease outcomes. 

However, this literature lacks a framework in which social factors are understood as 

integral, rather than incidental, to the transmission of many pathogens. Such a framework 

requires a structured mode for integrating social factors, such as socioeconomic status 

and individual behavior with the population ecology of infectious diseases. Although 

existing studies in social epidemiology provide compelling and instructive explanations 

for some cases of some infectious diseases, studies have not typically shown how social 

factors impact systemic, population-wide risk. Here, I review some of the existing studies 

in the social epidemiological literature on infectious diseases, drawing attention to how 

social factors at the individual, community and macro-level have previously been 

discussed.  
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Authors such as Dubos (5) recognized the importance of social stratification and 

inequality in conditioning individual susceptibility to pathogens, such as tuberculosis 

(TB). As one example of social inequality’s impact on individual susceptibility to 

pathogens, Dubos cited the case of a lacquer sprayer whose job obligated him to work 

with harsh chemicals and inhale abrasive particles in damp, poorly ventilated spaces. 

Dubos argued that social factors, as such socioeconomic status, race, and education 

mediated exposure to these environmental conditions, and therefore increased the lacquer 

sprayer’s susceptibility to infection upon exposure to the TB bacillus.  

Additional work on TB by Klovdahl et al (6) demonstrated the role that social 

networks and geographic place play in explaining patterns of exposure to TB that 

eventually lead to infection. The authors showed that several TB case clusters that 

initially appeared to be separate events were actually part of a single larger outbreak in 

which TB was transmitted via the environment in a number of locations in the 

community, including a number of gay bars.  Public health practice regarding TB contact 

tracing had previously focused on direct transmission and close contact, particularly in 

homes and schools. By following the social linkages between cases, Klovdahl et al. were 

able to illuminate the previously underappreciated route of passive, environmental 

exposure to TB in public places. 

Finnaly, Wallace & Wallace’s work on HIV and TB in New York City 

demonstrates the impact of social relationships and social inequality on risk for these 

illnesses (7). The authors conducted a series of studies that comprise an extensive 

investigation of linked HIV and TB epidemics in New York City, e.g (8, 9). In their 

book, A Plague on Your Houses (7), Wallace & Wallace explained the rise of HIV and 
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TB infection in New York City in the 1980s and 1990s as a partial consequence of the 

city’s approach to housing policy and budget management. During this time, the city 

followed a policy termed ‘benign neglect,’ in which the city, citing severe budget 

constraints, re-deployed fire units from poorer neighborhoods to wealthier ones. The 

authors argued that this effectively consigned a large number of affordable housing units, 

particularly in the borough of the Bronx, to destruction by fire. Wallace & Wallace 

contend that the subsequent loss of affordable housing caused significant within-city 

migration and doubling-up with friends and relatives, resulting in overcrowded housing 

conditions and a rise in TB incidence. They also claimed that this migration resulted in 

the destruction of social and financial support networks, leaving already at-risk 

individuals even more likely to engage in practices, such as unsafe sex and injection drug 

use, that increased their risk for HIV, hepatitis, and other infections. The authors also 

contended that this social instability decreased compliance with TB therapy, which is 

known to accelerate the emergence of multi-drug resistant strains, worsening the TB 

epidemic and making future cases harder to control.  

Wallace & Wallace’s study contributes to understanding of the role of social 

networks in the spread of infectious diseases through its attention to the idea of socio-

biological syndemics, or interacting, related epidemics. In the case of housing destruction 

in the Bronx, the authors demonstrated that the destruction of housing constituted a social 

epidemic in which apartment buildings adjacent to burned-out housing became more 

susceptible to fire. This accelerating housing destruction and the disruption of social 

networks interacted with the biological processes of TB and HIV transmission to amplify 

the severity of existing epidemics.  
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Wallace & Wallace also showed that social processes impact the meaning and 

function of social network linkages on two levels: First, transmission probabilities upon 

exposure are mediated by social conditions, such as living in adequate versus 

overcrowded housing. Second, community-level social networks may reflect organization 

and cohesion in ways that can buffer their impact on person-to-person transmission, by 

fostering or distrupting, e.g. safe sex practices and harm-reduction practices among 

injection drug users (10, 11). Finally, Wallace and Wallace brought these processes 

together in a unified conceptual model that both explains variation in HIV risk across 

social groups while also showing how these processes impact city-wide and regional risk. 

It is this conceptual integration that makes their work compelling. 

Modeling contact processes 

The aforementioned literature demonstrates that social conditions and social 

factors at the levels of individual, community, and society impact exposure to pathogens 

and transmission of infectious diseases.  Although this body of research makes clear that 

social factors and conditions can impact understanding of infectious disease patterns and 

outbreaks, theoretical and empirical models of infectious disease risk including these 

factors remain underdeveloped. In this section, I highlight the ability of current modeling 

techniques and approaches to incorporate social factors and conditions and point to 

methodological gaps in network modeling approaches.  

At present, most models of disease transmission attend to the impact of social 

relationships that correspond to contacts that allow for disease transmission, e.g., in 

workplaces, schools etc. This approach, where types of social relationships are mapped to 
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a specific intensity of contact, has spawned a network-oriented subfield of infectious 

disease epidemiology.  The strength of the network-oriented approach to understanding 

disease transmission is its ability to represent the concrete contacts, and fine-grained 

individual-level variability in contact, rather than relying on assumptions of 

homogeneous mixing when such assumptions are untenable. The network-oriented 

approach is also able to incorporate heterogeneities, in host biology as well as behavior, 

across individuals that impact transmission dynamics. Network epidemiology has been 

particularly effective for understanding the social epidemiology of sexually transmitted 

diseases, where the correspondence between sexual behavior, relationships, and contact 

may be more intuitive than for, e.g. diarrheal disease. Using this approach, the population 

can also be partitioned into risk groups on the basis of rates of engaging in different risk 

and protective practices, which allows for more nuanced understanding of infectious 

disease outbreak dynamics.  

HIV research exemplifies the positive impact of a socially and behaviorally 

minded approach to modeling approach in capturing the nuanced the relationship 

between behavioral and biological mechanisms can be for understanding transmission 

dynamics and risk. Koopman et al. (12) argued that being in a high-risk group for HIV 

infection is often an episodic condition that individuals cycle in and out of, rather than a 

chronic state in which individuals permanently reside. This is a subtle but important 

contrast to the core-periphery notion implied by many studies of sexual contact networks 

(13) that imply fixed contacts over the duration of an outbreak. Koopman et al. show that 

the period immediately after infection with HIV and before seroconversion, when routine 

testing does not detect antibodies, is likely to co-occur with these periods of intense high-
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risk activity. This temporal correlation between individual immune response and social 

behavior implies that testing-based interventions alone are unlikely to be effective in 

reducing the number of new HIV infections. 

At first, other types of pathogens appear to be less amenable to an analysis in 

which contacts correspond to concrete relationships or practices. Take, for instance, the 

gastrointestinal pathogen norovirus (NoV), which is the focus of the first and second 

papers in this dissertation. Transmission of gastrointestinal pathogens, which typically 

occurs via the fecal-oral route, occurs in a variety of contexts – homes, schools, 

restaurants – in which the likelihood of transmission from an infected individual to a 

susceptible one is partially dependent on the nature of the social relationship between the 

individuals. Unlike individuals within sexual networks, individuals involved in NoV 

transmission are more likely to be exposed via passive modes of contact (14), such as 

transmission via a shared environment rather than direct contact. Nonetheless, as 

Klovdahl et al. (6) showed, social factors shape even these passive contacts and cannot 

help but have important ramifications for the dynamics of infectious disease outbreaks. 

Consequently, the models we use to understand risk from pathogens, such as NoV need 

to incorporate social relational dynamics in order to develop a meaningful understanding 

of risk.   

This is the overarching goal of the three papers in this dissertation. In the first 

paper, we address some of the methodological challenges involved in estimating 

household transmission rates for NoV using partially observed outbreak data. In the 

second paper, we integrate these findings about household transmission dynamics into a 

broader, community-level model of transmission that accounts for the roles of both social 
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and biological heterogeneity in transmission. We operationalize heterogeneity in behavior 

using data on variation in time-use by age (15) and individual-level variation in the 

propensity of individuals to have relationships (16). In the third paper, we integrate ideas 

about transmission via direct contacts and the social mediation of transmission via the 

environment to understand gastrointestinal illness risk in 19 villages in rural, northern 

coastal Ecuador. 

Modeling population-level susceptibility 

Although the network-based approach to infectious disease outbreaks has 

primarily focused on individuals, the study of point-source outbreaks involving the 

exposure of many individuals to a pathogen at one time is also particularly amenable to a 

structural, sociological perspective. For example, work by Moehle-Boetani et al. (17) 

illustrated a context in which socioeconomic status may mediate the risk of point-source 

outbreaks. The authors found that the best predictor of Shigella Sonnei transmission, a 

gastrointestinal pathogen, within day care centers is the presence of food-handlers who 

also change diapers. This dual role more likely to occur in smaller daycare centers, often 

within homes and outside of the view of public health authorities. To the extent that such 

conditions are the result of policies that make regulated day care unaffordable, this 

transmission may find its ultimate cause in the networks of social and political 

relationships governing such policy, rather than exposure to infectious individuals and 

food-handling practices.  

From this perspective, the role of social relationships relates to the effect they 

have on factors that impact the susceptibility of entire populations, such as exposure via 
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shared environments and infrastructural sources, such as water supply. In the third paper, 

we show how social factors relating to social cohesion, e.g. attachment to local social 

networks and participation in community organizations, are upstream risk factors for 

diarrheal illness in a group of villages in rural Ecuador. Because the social organization 

of communities is critical to their ability to build and maintain water sanitation 

infrastructure and promote effective hygiene practices, the presence of pathogens is by no 

means a sufficient condition for observing outbreaks. This is analogous to Dubos’ 

example of the lacquer sprayer who contracts TB. While exposure to the TB bacillus is a 

necessary condition for infection, it is not sufficient, because not all exposures result in 

disease. In both examples, social structure mediates susceptibility in a broad sense. In the 

case of the lacquer sprayer, this susceptibility is at the individual level of likelihood of 

infection upon exposure. At the community level, susceptibility can be conceptualized in 

terms of the likelihood of population-level exposure.   

*** 

Taken together, the papers in this dissertation represent an attempt to integrate 

social factors that operate at the individual, community, and regional levels with models 

of infectious disease risk. It is important to attend to the space between sociology to 

infectious disease epidemiology because the respective areas have much to contribute to 

each other, but have historically had minimal interaction. It is my sincere hope that this 

thesis represents a meaningful step in this direction. 
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Chapter 2 

How infections propagate after point-source outbreaks: An analysis of secondary 
Norovirus transmission 

 

Abstract 

 

Background: Secondary transmission after point-source outbreaks is an integral 

feature of the epidemiology of gastrointestinal pathogens such as norovirus. The 

household is an important site of these secondary cases.  It can become the source of 

further community transmission as well as new point-source outbreaks. Consequently, 

time-series data from exposed households provide information for risk assessment and 

intervention.  

Methods: Analysis of these data requires models that can address: 1) 

dependencies in infection transmission, 2) random variability resulting from households 

with few members, and 3) unobserved state variables important to transmission. We use 

Monte Carlo maximum likelihood via data augmentation for obtaining estimates of the 

transmission rate and infectious period from household outbreaks with the three above 

features.  

Results: We apply this parameter estimation technique to 153 infection sequences 

within households from a norovirus outbreak in Sweden and obtain maximum likelihood 

estimates of the daily rate of transmission (

€ 

ˆ β  = 0.14, 95% confidence interval [CI] = 



	
  13	
  

0.08–0.24) and average infectious period (

€ 

1/ ˆ γ  = 1.17 days, 95% CI =1.00–1.88).  We 

also demonstrate the robustness of the estimates to missing household sizes and 

asymptomatic infections. 

Conclusions: Maximum likelihood techniques such as these can be used to 

estimate transmission parameters under conditions of unobserved states and missing 

household size data, and to aid in the understanding of secondary risks associated with 

point-source outbreaks. 

 

Introduction 

Norovirus is a highly-infectious gastrointestinal pathogen that affects all age 

groups (1). Investigations of primary point-source outbreaks, therefore, often focus on 

secondary cases (2,3). Households constitute a particularly important site of these 

secondary cases, as living in close proximity facilitates a higher effective rate of contact, 

particularly for diseases where the fecal-oral route is important to transmission. This 

household transmission contributes to overall disease burden, and individuals infected at 

the household level may generate infections in the community that result in new point-

source outbreaks that infect many people at one time.   

From 1997 through 2002, norovirus was responsible for 93% of non-bacterial 

gastroenteritis outbreaks in the United States (4). The high incidence of norovirus is 

attributable both to its low infectious dose (1) and its ability to survive in the environment 

(5). As a leading cause of gastroenteritis worldwide (6), norovirus is an important 

concern for local public health departments as well the U.S Environmental Protection 
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Agency (EPA). It is important, therefore, to develop effective intervention and control 

strategies for norovirus and similar pathogens. These require both reliable estimates of 

household transmission parameters and effective analytic tools for obtaining these 

estimates. 

Although there have been studies of community norovirus outbreaks (7), there are 

no studies that quantify transmission dynamics in the community using a dynamic model. 

One of the difficulties of these studies is that we often observe only the time of symptom 

onset for infectious cases. Unobserved events typically include infection and recovery 

and the times at which these occur. Properly describing the transmission dynamics in 

household systems necessitates the use of mechanistic models that account for 

unobserved state variables (eg,the number of infectious and susceptible individuals at any 

given time), and the more pronounced random variability in outbreaks in small 

populations.  

In this paper, we develop tools to address these challenges and analyze household 

data collected subsequent to a norovirus outbreak. Götz et al. (8) followed a series of 153 

households exposed to norovirus after a 1999 point-source, food-borne outbreak within a 

network of daycare centers in Stockholm, Sweden. For each of these households, one 

person (the household index case) was infectious and symptomatic due to the point-

source outbreak, and the time of symptom onset for all subsequent cases was recorded. 

We denote each of these case sequences as a time series. 

We analyze these outbreak data using a dynamic model, and obtain maximum 

likelihood estimates of the household transmission parameter, β, and the average duration 
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of infectiousness, 

€ 

1/γ , where 

€ 

γ  is the mean daily rate of recovery from infectiousness. 

We find that the observation of multiple household time-series may provide enough 

information to mitigate the absence of observed infection times, infectious periods and 

household sizes. 

Methods 

Data 

Illness data were obtained from a published study of a food-borne norovirus 

outbreak in 30 daycare centers in Stockholm, Sweden in 1999 (8). The origin of this 

outbreak was a single food-service worker who shedded norovirus while preparing 

lunches that were distributed from a central location to 30 daycare centers throughout 

Stockholm.  At the time of the outbreak this worker was infectious but had no overt 

symptoms.  

Among 775 subjects surveyed after the outbreak, 195 cases of gastroenteritis were 

identified, 176 as norovirus. Among those subjects with norovirus infections, 23 lived 

alone, 49 lived in households where transmission occurred, and 104 lived with one or 

more persons but with no observed transmission. Nineteen subjects were excluded 

because they lived in households with pre-existing cases of gastroenteritis at the time of 

the outbreak. The primary dataset used in this analysis consists of time series from the 

153 exposed households with two or more members. 

Data were collected retrospectively for the nine days following the onset of 

symptoms in index cases. The data consist of the times that cases became symptomatic, 

reported to the nearest twelve hours and normalized (with the onset of symptoms in the 
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index case set to time zero). Stool samples were collected from five symptomatic 

individuals, and the presence of norovirus was confirmed via electron microscopy. 

Remaining cases were diagnosed based on a norovirus screening interview and a 

confirmed exposure to a household member infected at the point-source event. Figure 1 

provides a visual depiction of the household time-series data for exposed households with 

secondary cases (modified from the paper by Götz and colleagues (8), Figure 5). When 

describing household transmission dynamics, we assume that the onset of symptoms 

corresponds to the beginning of the infectious period. This is supported by a controlled 

norovirus dosing trial in which early shedding in the absence of symptoms occurred 

primarily in persons who never became symptomatic (9).  Our model also allows the 

infectious period to be longer than the symptomatic period, which is typical of norovirus 

infections (9, 10).  

In addition, we estimate the distribution of the incubation period, using data 

reported for the Stockholm outbreak (8) on the time lag between the point-source event 

and the onset of symptoms in the 153 household index cases. A gamma distribution with 

mean 

€ 

1/ε , and shape parameter 

€ 

εs  was fit to these incubation time data by maximum 

likelihood (

€ 

1/ ˆ ε  = 1.7 days; 

€ 

ˆ ε s  = 3.73 [SE = 0.048]) (Figure 2).  In order to fit the 

assumptions of the compartmental transmission model described in the following section, 

we round the estimated shape parameter to the nearest integer.  However, our estimation 

approach is robust to models with arbitrarily-distributed infectious periods. 

When estimating parameters of the infection-process model, we characterize the 

infectious period as gamma distributed with an unknown mean and shape parameter. 

Household sizes were not reported in the original outbreak dataset. To address this 
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missing data issue, census data on the distribution of Swedish household sizes during the 

study period were incorporated into our analysis.  

 

Because the Stockholm outbreak data include only the time of symptom onset, we 

are unable to directly estimate the rate at which asymptomatic infections were created. 

Accounting for asymptomatic infections is important, as they have been estimated to 

comprise from 12% to 50% of norovirus cases (11,12,13,14). Additional analysis was 

conducted to assess the impact of increasing levels of asymptomatic infection on our 

results. 

Model 

We treat the household infection process as a continuous-time Markov chain, 

where persons can be in one of four states: susceptible (S), exposed/incubating (E), 

symptomatic/infectious (I) and recovered (R) (see Figure 3). The daily transmission rate, 

β, is defined as rate of contact at time t multiplied by the probability that contact between 

a susceptible and an infected person results in transmission. We account for the baseline 

risk of community and environmental infection through the parameter α, which is 

measured in terms of the daily risk of infection per susceptible.  The incubation and 

infectious periods are assumed to follow gamma distributions, where each is defined by a 

mean duration (

€ 

1/ε , 

€ 

1/γ ) and shape parameter (εs, γs). The shape parameters for the 

distributions of the incubation and infectious periods can be thought of as the number of 

stages that persons pass through before they are either infectious or recovered, 

respectively. These stages are represented by the first-order compartments in Figure 3. 
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At any given time, t, the hazard, 

€ 

ω t , to each susceptible in a household is defined 

by the force of infection, 

€ 

ω t = βIt +α  

Equation 2.1 

where It denotes the total number of infectious persons in a household at time t. 

Consistent with a Poisson process, we assume that these waiting times are exponentially 

distributed with mean 

€ 

1/ω t . Under these assumptions, the probability of observing one or 

more infections over this interval

€ 

Δt  is the exponential cumulative distribution function.  

€ 

pInfection (t,t + Δt) =1− exp −ω tStΔt( ) 

Equation 2.2 

The classic model for infectious disease dynamics is the flow of hosts among 

various compartments defined on susceptible, exposed but not infectious, infectious, and 

recovered [SEIR].  To generate sample data for evaluating the statistical method 

described in the next section, we use the force of infection (Eq. 1), gamma-distributed 

incubation and infectious periods, and household sizes drawn from the census distribution 

in a stochastic SEIR simulation model. Implementation details are available in the 

supplementary materials. 

Data Model 

 First, we define a likelihood function for an infection time series when all 4 

individual states (susceptible, exposed/incubating, infectious, and recovered) are 
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observable, and only the transmission parameters β and α are unknown. We then outline 

a data augmentation method (10) that allows us to extend this likelihood function to the 

case in which some states are unobserved (Figure 2.4). 

Likelihood 

The household time series is described as a series of system states, 

€ 

qij = Sij ,Eij ,Iij ,Rij{ }, for each household, i, and state, j, where NQ is the number of distinct 

system states in a household time series and 
  

€ 

Qi = qi,0…qi,NQ{ } is the entire set of states in 

a household in chronological order (see Figure 4). Beginning times for each system state 

are denoted tij. Three state transitions are possible: infection, onset of symptoms (and 

infectiousness), and recovery. The states of the system immediately before the occurrence 

of infection events, where infection is defined as a transition into E, are indexed by k and 

denoted as 

€ 

vik ∈ Vi  , where 

€ 

Vi ⊂ Qi. The number of infections in a household observation 

is NK. 

With this notation, 

€ 

qi,0  corresponds to the state of household i immediately after 

the onset of symptoms in the index case, and 

€ 

vi,0  corresponds to the state of the household 

immediately before the first household infection.  

Assuming that the times of infection, symptom onset, and recovery are known, we 

can formulate the household likelihood function as the product of two terms: 1) the 

likelihood of observing no new cases during the 

€ 

Δt  between all state transitions (  

€ 

 a) and 

2) the likelihood of infection at the time when new infection events are observed (  

€ 

 b).   
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The expected number of new infections for a given household, i, at state j, is 

given by:  

€ 

λ(Sij ,Iij ,β,α) = Sij βIij +α( ) 

Equation 2.3 

The first term,   

€ 

 a , is the probability of observing no infections over all of the time 

intervals between states: 

  

€ 

 i,a = exp −λ(Sij ,Iij ,β,α)(t j+1 − t j )( )
j= 0

NQ −1

∏
 

Equation 2.4 

The second,   

€ 

 b , describes the joint likelihood of all observed infection events, i.e., the 

product of all instantaneous infection probabilities at times when infection events are 

observed:  

  

€ 

 i,b = λ(Sik,Iik,β,α)
k=1

NK

∏
 

Equation 2.5 

Based on these definitions, the likelihood of the data for household i, given β and α, is:  
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€ 

 i =  i,a ×  i,b  

Equation 2.6 

The product of the likelihoods for all observed households is taken to be the likelihood of 

the entire observed outbreak, O: 

  

€ 

O =  i
i∈H
∏

 

Equation 2.7 

 

Data Augmentation 

The observed data consist of the times of symptom onset in new cases, 

represented by increments to the household infectious-state variable Ii, and, by 

consequence, decrements to the state variable Ei. We do not observe infection events for 

household cases; this is represented by an increment to the household incubating state Ei 

and a decrement in the number of susceptibles Si.   We also do not observe recovery from 

infectiousness, represented by an increment to the household immune state Ri (and 

decrement in Ii). Because all states are necessary to characterize the transmission 

dynamics of the system, but only transitions into state I are observed, a method is needed 

to evaluate the likelihood. To address this missing-data problem, we generate an 

augmented household time series by sampling from our incubation and infectious period 

distributions (mean, shape = 

€ 

1/ε,εs and 

€ 

1/γ,γ s, respectively) for each case, as described by 

Cooper et al.15 We account for right-censoring by following the convention that all 

recovery times greater than the observation period, 

€ 

t f , are truncated to be equal to

€ 

t f . 

This returns the correct likelihood of the data when sampled recovery times are outside 
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the observation window. In this way, we create an outbreak realization with all states 

accounted for. Using this augmented dataset, we can calculate the likelihood. We repeat 

this process many times, re-sampling new times from the distributions and calculating a 

new likelihood each time. The mean of this set of sampled likelihoods approximates the 

true likelihood of the household time series. This procedure is equivalent to Monte Carlo 

numerical integration with importance sampling (16) and is depicted visually in Figure 4.  
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(See papers by Rampey et al (17) and Rhodes (18) for alternative approaches to  

estimating transmission parameters with this type of data.) 

We obtain a likelihood estimate for an entire outbreak by augmenting all 

households 104 times and estimating their joint likelihood (Eq. 7). Because we are 

sampling incubation and infectious periods proportionally from their joint distribution, 

the expectation of this set of likelihoods approximates the likelihood of the data, given 

the parameters vector 

€ 

θ = {α,β,1/ε,εs,1/γ,γ s} . 

In the Stockholm outbreak dataset, the number of people in each household is 

unobserved. We account for these missing data with household size data obtained from a 

national census (19) and combine this with information from the household observations; 

the number of household members must be equal to or greater than the number of 

observed cases. We combine the census distribution with this lower bound on size for 

each household to construct a conditional distribution of sizes for each household.  When 

an augmented household time series is generated, a size is sampled from this distribution, 

allowing us to incorporate and bound our uncertainty regarding household sizes when 

estimating the likelihood. In the following section we will demonstrate that this does not 

have a significant negative impact on our results. For details on the implementation of the 

data augmentation procedure, see the supplementary materials. 

The Table lists the two parameterizations used in the analysis.  Parameter set 1 

uses case and incubation-period data from the Stockholm outbreak. We estimate the 

transmission parameter, β, as well as the mean, 

€ 

1/γ , and shape parameter 

€ 

γ s of the 

distribution of the infectious period. We constrain our parameter search to values of 

€ 

1/γ  
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> 1 day, as durations of symptomatic shedding less than 1 day are biologically 

implausible (10,11). Parameter set 2 consists of the population parameter values of a 

single 153-household outbreak realization from the stochastic model, with household 

sizes drawn from the census distribution. With these simulated data, we estimate β and 

€ 

1/γ  under two conditions:  known household sizes and unknown household sizes. 

Results 

Figure 5 contains the maximum likelihood estimates and confidence intervals of 

both the main transmission parameter (

€ 

ˆ β  = 0.14 [95% confidence interval (CI) = 0.08–

0.24]; Fig. 5A) and average duration of infectiousness (

€ 

1/ ˆ γ =1.17 days [1.00–1.88]; Fig. 

5B) for the Stockholm outbreak. We also estimated the shape parameter for the duration 

of infectiousness (γs  = 1.0 [1.0–2.0]; not pictured). Figure 6 is a contour plot showing a 

two-dimensional likelihood profile with respect to β and 1/γ. Each cell contains the 

likelihood corresponding to the optimized value of 

€ 

γ S  for each 

€ 

(β,1/γ)pair. We also 

estimate the parameters when α = 0.01 and obtain similar results (

€ 

ˆ β  = 0.13 [0.07–0.22]; 

€ 

1/ ˆ γ  = 1.0 days [1.0–1.33]; γs  = 1.0 [1.0–2.0]; not pictured). Thus there is likely some 

bias in our estimated beta due to environmental infection, but this bias is small. 

To examine the impact of unknown household sizes, we created a simulated dataset with 

parameters β = 0.14 (transmission rate), α = 0.001 (background transmission rate), 

€ 

1/ε  = 

1.5 days, 

€ 

εS = 4.0, (incubation period), 

€ 

1/γ  = 1.17 days, 

€ 

γ S= 1.0 (duration of 

infectiousness) (See Table, Parameter Set 2).  We then estimated two of these parameters, 

the transmission rate and average duration of infectiousness, under two conditions:  1) 

where actual household sizes are explicitly included in the estimation (dashed line: 
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€ 

ˆ β knownHH = 0.139 [95% CI = 0.087–0.273], 

€ 

1/ ˆ γ knownHH= 1.21 days [0.625–1.88], Fig. 7A); 

and (2) where household sizes are drawn from the census distribution (solid line: 

€ 

ˆ β unknownHH  = 0.133 [0.079–0.259] 

€ 

1/ ˆ γ unknownHH   =  1.21 days [0.63–1.88], Fig. 7B).  

Asymptomatic Infection 

To understand the impact of unobserved asymptomatic infections, we performed a 

simulation-based sensitivity analysis that allows us to predict the value of the 

transmission parameter, 

€ 

β , for varying proportions of asymptomatic infections, 

€ 

τ .   

We find that, starting from our maximum likelihood estimate of

€ 

β  = 0.14 when 

€ 

τ  

= 0, the predicted value   of 

€ 

β  increases linearly by approximately 0.035 units for each 

10% increase in 

€ 

τ   (Figure 2.8). For further details on the design and implementation of 

this analysis, see the supplementary materials. 

Discussion 

Using a collection of household-exposure and illness-onset time series, we have 

obtained estimates (and their confidence intervals) for the household person-to-person 

infection rate and average infectious period for norovirus. We also predict the value of 

the transmission parameter 

€ 

β  as a function of the proportion of asymptomatic infections. 

We obtained these estimates despite the absence of potentially important data, including 

infection times, recovery times, and household sizes. The inclusion of census data with 

household-specific lower bounds (due to the number of observed cases) allowed us to 

obtain an accurate estimate of household force of infection in the absence of directly 

observed household sizes.
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Although the pattern of contact in households tends to fit the standard mass-action 

assumption in susceptible-infected-removed models (20), their typically small sizes 

require careful consideration of the influence of random variability on results, obviating 

the use of deterministic models (21,22). This is a topic that has received considerable 

attention, and there is an extensive literature on techniques for fitting stochastic models to 

outbreak data (18,23,24) in a variety of settings (e.g., communities (25),  schools (26), 

and households (27) ).  Using household-level infection data at the end of an outbreak, 

Longini and Koopman (24) generated estimates of household and community parameters 

for the distribution of final household outbreak sizes.  However, because their method 

was developed to explain final-size data from public health reports and does not use 

temporal information, on the method provides only limited insights regarding the 

interaction between infectivity and the durations of the incubation and recovery periods 

in outbreak time-series.   

Hohle, Jorgenson and O’Neill (28)  present a technique that could be useful with 

household time-series data.  They use Bayesian inference to estimate transmission 

parameters in spatially heterogeneous SEIR models, and innovate on previous Markov-

chain-Monte-Carlo-based techniques by allowing variability in the incubation period. 

Two significant drawbacks of Bayesian approaches are that:  1) even when care is taken 

to use non-informative prior distributions, these priors can condition estimates (29)  and 

2) the results can be difficult to interpret, particularly with respect to reproducibility (30). 

We have presented an alternative, frequentist approach that produces maximum 

likelihood parameter estimates and allows a straightforward exploration of the likelihood 

surface.  
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Community transmission is undoubtedly more complicated than our 

representation.  Fixing the community transmission parameter, α, to a value two orders of 

magnitude smaller than the household transmission parameter, 

€ 

β , makes the strong 

assumption that the within-household transmission process is dominant. We show that 

our results are not very sensitive to this assumption, and we argue that the assumption is 

reasonable with respect to our data because all households in the Stockholm dataset had a 

known source of exposure - an index case infected by the point-source outbreak - and all 

secondary cases identified in households occurred in a plausible temporal sequence.  A 

better estimate of the rate of community transmission requires focused attention on the 

mechanisms behind this process, which is outside of the scope of both our dataset and 

this paper.  This is an important focus for future research. In addition, the data used in 

this analysis come from only 9 days of observation, resulting in right-censoring. While 

our inferences for the transmission rate and effective duration of infectiousness in the 

course of a household outbreak are valid, they are not generalizable to community or 

regional scales.   

Reliable transmission parameter estimates are critical to risk assessments and 

exploratory modeling for public health policy.  The impact of interventions on norovirus 

prevalence and persistence can be better assessed in a model such as ours that includes 

realistic feedback in the transmission process and empirically-derived transmission 

parameters. 

Although the analysis presented here focuses on the transmission of an infectious 

pathogen in a specific epidemiologic and social context, the methods employed are 

relevant to other problems in epidemiology and medicine, in which unobserved variables 
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strongly affect outcomes.  We have focused on unobserved within-host disease states and 

household sizes, but other important variables, including contact structures and 

environmental reservoirs, are often difficult to observe or missing from otherwise-useful 

public-health surveillance data.  

For example, social and economic factors are likely to increase within-household 

transmission of pathogens such as tuberculosis and shigellosis (31), by increasing host 

susceptibility to physical and social stress via mechanisms such as allostatic load and 

household overcrowding (32). Administrative records often include important 

information on the timing, geographic distribution, and infectious contacts of cases (33), 

but because of their focus on immediate control, often lack direct observations of contacts 

that do not result in infections.  Consequently, we lack information on how those who 

become ill and those who escape infection differ in contact patterns and other factors 

important in transmission.  Our work suggests that case-data missing such information 

can be combined with reasonable, empirically grounded models of contact structures to 

yield important and useful insights even in the absence of a full dataset. The next step is 

to apply this approach to different pathogens in more complicated social settings.  
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Figure 2.1. Time series for 49 households with secondary 
infections from Gotz et al data. Time of symptom onset, to 
nearest 12 hours, is denoted by a filled circle.
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Figure 2.2. Histogram and ML gamma distribution of incubation times from 
Gotz et al data.

Figure 2.3. Flow diagram showing first and second order compartments in 
SEIR transmission model. The density-dependent infection rate is β and α is the 
rate of community transmission. The rate of transition from incubation to symptoms 
(and infectiousness) and from infectiousness to recovery are ε and Υ, respectively.
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Figure 2.4 Three hypothetical infection histories. The only observed state transition is the onset of symptoms 
(denoted by a filled circle). Each of the 3 example histories illustrate different possibilities for the 2 unobserved state 
transitions, infection (denoted by x) and recovery (denoted by an open circle). Values, qij, under the bottom series 
are the complete state of the system in household h at state i, where S, E, I, R, are the number of individuals in the 
susceptible, incubation, infectious and recovered states, respectively; hj is the number of individuals in household j.

Figure 2.5. Profile likelihood plot of Stockholm outbreak data. Transmission rate (β) and mean infectious 
period (1/Υ) are on the x-axis in panels A and B, respectively. On the y-axis is negative log-likelihood values for a 
given β or 1/Υ when it is held fixed and the other parameters of interest are optimized. “x” denotes the location of 
the maximum likelihood estimates and the horizontal bar shows the width of the 95% CI.
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Figure 2.6. Two-dimensional likelihood profile for Stockholm outbreak data. A filled triangle denotes the 
location of the maximum likelihood estimates. Solid contours bound regions of lesser or equal negative-log-
likelihood (NLL) than the contour label. The dash-dotted ellipsoid bounds the 95% confidence region. The dashed 
line represents the relationship between each value of the transmission rate (β) and the corresponding maximum 
likelihood estimate of the value of infectiousness period (1/Υ) when β is held fixed. The dotted line represents this 
relationship in reverse, with points along the x-axis corresponding to maximum likelihood values of β for each ϒ.

Figure 2.7. Likelihood profiles for simulated data, with respect to transmission rate, β (A) and mean 
infectious period (1/Υ) (B). The dashed line is a profile where household sizes are known (location of the maximum 
likelihood estimates is denoted by F) and the dash-dotted line estimates the parameters in the case where 
household sizes are uncertain (MLE: “x”), and the horizontal bars span the 95% CI for both cases.
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Figure 2.8. Expected household transmission rate, β, by increasing 
proportion of asymptomatic infections, τ. Note that the expected value of β 
when τ = 0 is 0.14.
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Ta b l e 2 . 1 . H o u s e h o l d , P a t h o g e n , a n d 
Transmission Parameter Sets. EST indicated 
parameters to be estimated.
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APPENDIX A 

Chapter 2 Supplementary Materials 

1. Stochastic SEIR Transmission Model Implementation 

 A sample outbreak is initialized by creating 153 households, with sizes hi, drawn 

from the census distribution of household sizes. The initial household state is set to 

€ 

qi,0 = (hi −1),0,1,0{ }, indicating that only the index case is symptomatic, all other 

household members being susceptible. The transmission model is summarized in the 

algorithm below (Figure 2.9), where S, E, I and R are the number of individuals in each 

state and the model is initialized at t=0: 

 

 

The model is stepped forward in hourly increments (

€ 

dt =1/24), which gives a reasonable 

approximation of a continuous time infection process.  Rates are expressed in terms of 

days but scaled to the appropriate time step.  

If	
  E	
  +	
  I	
  >	
  0:	
  

	
   For	
  s	
  in	
  S:	
  

	
   	
   Draw	
  x	
  from	
  Uniform(0,1]	
  

	
   	
   If	
  x	
  <=	
  

€ 

1− exp(−(βI +α)dt) :	
  

	
   	
   	
   S	
  =	
  S	
  –	
  1	
  

	
   	
   	
   E	
  =	
  E	
  +	
  1	
  

	
   	
   	
   Draw	
  symptom	
  onset	
  time	
  from	
  

€ 

Gamma(1/ε,εS ) 	
  

	
   	
   	
   Draw	
  recovery	
  time	
  from	
  

€ 

Gamma(1/γ,γ S ) 	
  

	
   t	
  =	
  t	
  +	
  dt	
  

	
  

At	
  end	
  of	
  step,	
  transition	
  from	
  

€ 

E → I 	
  and	
  

€ 

I→ R 	
  those	
  who	
  have	
  
symptom	
  onset	
  or	
  recovery	
  time	
  <=	
  t	
  

Figure 2.9 
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The incubation and infectious periods are conceptualized as a sequence of 

€ 

es  and 

€ 

is second-order compartments, with the probability of transition between these 

compartments for each individual equal to 

€ 

(ε ⋅ εs )dt  and 

€ 

(γ ⋅ γ s )dt  . This process yields 

€ 

E → I  and 

€ 

I→ R  transition rates that are gamma distributed with means 

€ 

e,g and shape 

parameters 

€ 

es, gs , respectively. Transmission rates are also scaled in terms of 

€ 

dt  (see 

Equation 1). 

 

2. Asymptomatic Infections 

To assess the effect of unobserved asymptomatic infections, we implemented the 

stochastic SEIR model outlined above, with an additional parameter, 

€ 

τ , that controls the 

proportion of new infections that are asymptomatic: 

 

If	
  E	
  +	
  I	
  >	
  0:	
  

	
   For	
  s	
  in	
  S:	
  

	
   	
   Draw	
  x	
  from	
  Uniform(0,1]	
  

	
   	
   If	
  x	
  <=	
  

€ 

1− exp(−(βI +α)dt) :	
  

	
   	
   	
   Draw	
  y	
  from	
  Uniform(0,1]	
  

	
   	
   	
   If	
  y	
  <=	
  

€ 

τ :	
  

	
   	
   	
   	
  	
  	
   S	
  =	
  S	
  –	
  1	
  

	
   	
   	
   	
   R	
  =	
  R	
  +	
  1	
  

	
   	
   	
   Else:	
  

	
   	
   	
   	
   S	
  =	
  S	
  –	
  1	
  

	
   	
   	
   	
   E	
  =	
  E	
  +	
  1	
  

	
   	
   	
   	
   Draw	
  symptom	
  onset	
  time	
  from	
  

€ 

Gamma(1/ε,εS ) 	
  

	
   	
   	
   	
   Draw	
  recovery	
  time	
  from	
  

€ 

Gamma(1/γ,γ S ) 	
  

	
  

t	
  =	
  t	
  +	
  dt	
  

	
   	
  

Figure 2.10 
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Asymptomatic infections are, in this simplified model, immediately moved to the 

immune class. This is because they are significantly less infectious than symptomatic 

infections, e.g., (10), and can be expected to generate cases on a longer timescale than our 

window of observation (9 days). Although they are unlikely to contribute significantly to 

observed within-household transmission dynamics, we expect that they are important to 

the community-level persistence of norovirus and, as such, need to be accounted for in 

the estimate of rate of transmission. In this context, then, asymptomatic cases can be 

thought of as censored data that bias our estimate of the force of infection. 

When simulating outbreaks, we fix the background infection rate and the 

distribution of the incubation and infectious periods,( a = 0.001, 

€ 

1/e= 1.7 days, 

€ 

eS  = 4.0, 

€ 

1/g= 1.14 days, 

€ 

gS = 1.0) and allow the transmission parameter, 

€ 

β , and proportion of 

asymptomatic infections, 

€ 

τ , to vary. We then sample all 126 parameter combinations 

from

€ 

β  = {.10, .11, … ,0.30} and

€ 

τ  = {0, 0.1, 0.2, 0.3, 0.4, 0.5}.  We draw 20 stochastic 

realizations of each parameter set and estimate the mean ML value of 

€ 

β  (i.e., average 

over the 20 runs) for each (

€ 

τ ,

€ 

β ) combination, as though

€ 

τ  = 0. This gives a predicted 

value of 

€ 

β  for each level of 

€ 

τ . Starting from our ML estimate of 0.14 for 

€ 

β  when 

€ 

τ  = 0, 

the predicted value of 

€ 

β  increases linearly by 0.035 units for each 10% for increase in 

€ 

τ  

(Figure 8).  

We test the sensitivity of these results to the assumption that asymptomatic 

individuals do not contribute to household transmission by allowing asymptomatic 

infections to be 10% as infectious as symptomatic ones. We find broadly similar results, 
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with the predicted value of 

€ 

β  increasing linearly by 0.028 units for each 10% increase in 

€ 

τ  (Figure 2.11). 

 

Figure 2.11. Relationship of proportion asymptomatic to expected value of 

€ 

β  when 
asymptomatic infections are 10% as infectious as symptomatic infections. 
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3. Missing Household Sizes 

 Since all households in our dataset consist of two or more people, the minimum 

household size, h, is 2. We start with the empirical distribution of household sizes from a 

1990 census of household sizes in Sweden (see Table 2.2), denoted as C, where C(h) is 

the probability of observing a household of size h in the total population . 

If the minimum possible number of individuals, i.e., the number of infections 

observed in a household, 

€ 

hmin ,  is less than or equal to 2, the entire empirical distribution 

is used to sample a household size.  If 

€ 

hmin = ���3, the number of cases observed is set as the 

minimum household size, with values smaller than 

€ 

hmin  assigned a density of zero. We 

assume that the case data provide no additional information on the distribution of the 

remaining household sizes, so the remaining sizes on the interval 

€ 

hmin ≤ h ≤10  are 

assigned a uniform density.   

This information is combined with the census data in the top row of Table 2.2 for 

each size to generate a distribution from which we can sample household sizes for h ³ 

€ 

hmin : 

€ 

P(h | C,hmin ) =
C(h)

C(h)
h≥hmin

10

∑
 

Equation 8 
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In order to sample random variates from this distribution, we compute the conditional 

CDF of the household size distribution and draw a random number on the interval (0,1], 

and select the smallest value of h where the CDF is less than equal to the random number. 

The second row of Table 2.2 shows the probability distribution resulting from this 

sampling procedure. We find that the expected household size increases slightly from 

3.73 to 3.87 individuals, with most of this change accounted for by a decrease in the 

density of households of size 2 to slightly larger ones.  

 

# Household Members  
2 3 4 5 6 7 8 9 10 

Census Density 0.325 0.193 0.248 0.108 0.027 0.041 0.024 0.017 0.017 

Sampled Density 0.283 0.192 0.265 0.115 0.031 0.047 0.027 0.018 0.019 
 Table 2.2 Empirical Probability Distribution of Household Sizes 

 

4. Model Validation 

 In order to validate the SEIR model used for simulation and parameter estimation, 

we performed additional simulation analysis using a Gillespie1 algorithm-based 

implementation of the model described in Figure 2.9, which is an exact, continuous-time 

simulation of the transmission model.  

In each simulation, there are 153 households, the sizes of which are drawn from 

C, the empirical distribution of household sizes. At t=0, each household has a single 

index case. Model parameters are the same as those obtained from our statistical analysis 



	
  45	
  

(

€ 

β  = 0.14, 

€ 

1/γ =1.17 days, γs  = 1.0). For each of 1000 simulations, we record the number 

of households with no secondary cases, i.e., where there is stochastic die-out, and the 

average number of cases in households with secondary cases. 

We find that our simulation results are in good agreement with the Stockholm 

data for both outbreak size (Simulated mean = 1.9 cases, SD = .2, vs. 1.6 for Stockholm 

data; Figure 2.12) and the number of simulated households in which there are no 

secondary cases (Simulated mean = 110.5 households, SD = 5.5 vs. 104 households for 

Stockholm data; Figure 2.13). 

 

Figure 2.12. Histogram of average number of secondary cases in simulated 
household outbreaks. 
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Figure  2.13. Histogram of number of households with no secondary cases. 
 

5. Computational Details  

Data augmentation software was implemented in C++ and Python 2.6 using 

Boost.Python and the Numpy and Scipy numerical and scientific computing libraries. 

Plots were generated with Matplotlib 0.98 graphing and plotting tools for Python. All 

diagrams were created in Inkscape 0.47. 

All results presented here come from 104 independent samples for each parameter 

combination.  
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Chapter 3 

Modeling the effects of social behavior on community-level Norovirus outbreaks 

 

Abstract  

Norovirus (NoV) is a highly infectious gastrointestinal pathogen affecting all age groups. 

NoV epidemiology is characterized by small, explosive events that are often linked by 

common individuals and shared environments. This explosive, variable outbreak 

behavior is the product of variation in the number and type of contacts individuals have, 

denoted as social variability, and heterogeneity in individual infection histories, which 

we term biological variability. In this paper, we use a dynamic, network-based model to 

simulate community-level norovirus outbreaks. We examine the effects of social 

behaviors and attributes that lead to greater heterogeneity in contact patterns, such as age-

structured mixing patterns and exponentially distributed variation in the propensity of 

individuals to initiate relationships.  In addition, we examine the role of asymptomatically 

infectious food servers, who have the ability to infect many people at one time, in 

community norovirus outbreaks. We also examine the effect of behaviors that dampen 

heterogeneity in contact, such as the clustering of relationships within neighborhoods and 

amongst smaller groups of individuals. We find that adding age-structured contacts to our 

community outbreak model increases the average size of simulated outbreaks by 65%, 
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and that including variation in individual sociability amplifies outbreak size by 56%. We 

also find that strong neighborhood-based assortativity decreases outbreak size by an 

average of 17%. We use mediation analysis to understand how these social behaviors 

operate on outbreak risk through structural features of the social networks used in 

simulations. Finally, we shed light on the explosive character of norovirus outbreaks 

through an examination of drivers of heterogeneity in the distribution of NoV outbreak 

sizes. 

Introduction 

Norovirus (NoV) epidemiology is characterized by sporadic outbreaks that are 

epidemiologically linked (1). This pattern of explosive but locally limited transmission is 

driven by variability in the ability infectious individuals have to generate new infections. 

The mechanisms driving this variability can be categorized as social, i.e., variability in 

the number on contacts, or biological, i.e., variability in the duration of individual-level 

shedding.  Most models of infectious disease transmission either ignore heterogeneity in 

overall transmission, e.g.(2, 3) or address heterogeneity by collapsing multiple types of 

variability into a single construct, e.g., the distribution of the individual reproductive 

number (4, 5, 6, 7).  This latter set of models, which aggregate multiple types of 

variability in host behavior and infectivity into heterogeneous transmission, have been 

effective at illustrating how heterogeneity impacts transmission dynamics and risk. But 

this approach conceals specific mechanisms that can be points of high leverage for 

controlling norovirus outbreaks. In this paper, we address this gap by modeling specific 

social processes using simulated social networks whose structure is a function of 1) age, 

2) variability in individual sociability, 3) neighborhood of residence and 4) clustering of 



	
  50	
  

network relationships. To do this, we take advantage of data on: 1) contact networks, 

with particular attention to age structured mixing (8, 9); 2) heterogeneous durations of 

pathogen shedding resulting from variable host immunity(10); and 3) general patterns of 

norovirus (NoV) outbreaks, to examine how social and biological processes impact 

incidence patterns of NoV, with specific focus on the explosive nature of NoV outbreaks, 

and their duration. 

Norovirus epidemiology  

Norovirus outbreaks are characterized by small, explosive events that affect 

households (11, 12), workplaces (13, 14), schools (15) and healthcare facilities (16). 

While NoV outbreaks in communities are typically explosive and relatively short in 

duration, at the regional and national level, NoV infection is persistent and stable. In fact, 

norovirus is the most common cause of nonbacterial gastroenteritis in the U.S. and 

worldwide (17). One possible explanation for this pattern of local instability and global 

persistence may be found in wide variability individuals have in their ability to create 

infections. Such variability has been shown to make outbreaks sporadic, but more 

explosive when they occur (4). This variability may be a consequence of biological 

processes that make shedding duration variable across individuals (10), social processes 

that cause variability in the number and transmissibility of contacts, or both.  For 

example, biological variation in individual infectiousness is a key feature of norovirus 

epidemiology (10): immunocompetent individuals exhibit variability in norovirus 

shedding lengths, and immune compromised individuals and very young children (aged < 

1 years) have been observed to have very long asymptomatic shedding periods, with a 

mean of 87 days and maximum durations in excess of a year (10). Likewise, social 
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variability can be observed at the individual level. For example, a single food handler 

may expose from one to several thousand people at once. At the group level, individuals 

may have more ties within their neighborhoods than outside of them, resulting in isolated 

local transmission networks with relatively few links to and from adjacent 

neighborhoods. 

NoV outbreaks are often started by a common-source event, such as the exposure 

of many people at one time to an asymptomatic but infectious food handler or health care 

worker (13, 18). Although much is known about the molecular links between norovirus 

outbreaks (e.g.,(19)),  less is known about the way these types of outbreak events are 

linked to each other via chains of person-to-person and person-to-environment-to-person 

(20) transmission. For example, an originating point-source event may begin a series of 

undetected infections that are transmitted by contact in households and the community 

and terminate in another large, common-source outbreak that comes to the attention of 

public health officials (e.g., (11)).   In this manuscript we focus on social processes but 

include biological heterogeneity in shedding duration. The outcomes of these social 

processes are modeled as community transmission networks. We conceptualize the 

transmission modes of norovirus in the community using a model that includes point-

source events, such as contamination by food handlers, household transmission, and 

asymptomatic transmission via contacts in the community.  

 

Community transmission networks 
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Much published work on norovirus epidemiology describes moderate to large-

sized outbreaks in a variety of contexts including the home (11, 12), workplaces (21), and 

other venues, such as sporting events (22) and cruises (23). But there has been little 

emphasis on the way transmission events in these contexts are linked via casual contacts.  

Here, we outline a model of community contact networks that will be used to generate 

contact networks for our outbreak simulations. This model is based on two broad classes 

of behavior, which may  a) increase, and b) decrease, heterogeneity in contact at the 

individual or group level. Factors in our model that amplify variability in contact include 

the following two items: 

1) Age-structured contacts. People tend to have relationships that cluster, i.e. 

match, within age groups or to span, i.e. mix across, age groups in a systematic fashion 

(e.g., students and teachers. This makes contacts more homogeneous at the level of age 

groups but increases variability across age groups in the population. Previous research (8, 

9) has shown that age-dependent variability in contact patterns can be useful for 

explaining outbreak dynamics. These data typically reflect the expected number of hours 

individuals spend together on an average day as a function of their ages. When 

individuals are of the same or similar age, this is referred to as assortativity by age, or a 

tendency to have connections to similar individuals. By contrast, when individuals of 

differing ages have contact, this is referred to as dissassortativity by age. Here, we 

employ survey data from Zagheni et al. (8) on the amount of time individuals spend 

together, outside of the home, to construct realistic community networks. 

2) Individual sociability. Variability in the propensity of individuals to have 

relationships, i.e. their sociability, drives variability in the number and patterning of 
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contacts at the individual level.  This can result in long-tailed distributions of contacts, 

which have been shown to impact the probability, size and timing of outbreaks (5). 

The behavioral mechanisms in our model that decrease heterogeneity in contact 

patterns operate in a more uniform way across individuals or groups than the mechanisms 

above: 

3) Neighborhood clustering. Individuals are more likely to have contact with 

network alters who belong to the same social groups as they do (24, 25). Such group level 

assortativity in contact, evidenced by patterns such as residential segregation, has been 

shown to be important to outbreak dynamics (26). Here, we divide the set of households 

into neighborhoods where members make contact preferentially with other individuals 

who live in that neighborhood. When the average number of contacts in the community is 

held constant, this group-level assortativity makes individuals more likely to make 

contact with infectious individuals in their neighborhood, while making them less 

accessible to those outside of it. Variability in the structure of networks as a function of 

group-level variability (age-based mixing) and homogenizing factors (neighborhood 

clustering) is illustrated in Figure 3.2. 

4) Relationship clustering. Relationships are clustered when individuals share 

network partnerships, resulting in a closed triad. A closed triad is a group of nodes, a, b, 

c, each of which is connected to the others and are a common feature of socially cohesive 

networks (27). An increase in this kind of clustering has been shown to decrease the 

likelihood of outbreaks in networks with equivalent average degree (28). At the same 

time, a tightly clustered group of nodes is more likely to transmit infection internally than 
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is a loosely connected group, but this infection is less likely to spread into nodes outside 

of the clustered group. 
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Analysis of the role of social networks in the epidemiology of infectious diseases 

has typically focused on isolated aspects of contact networks, e.g. the clustering 

coefficient and parameters of the contact network degree distribution. Relying solely on 

such top-down measurements of network structure makes it difficult to understand 

whether it is these average, macro-level properties of the network or specific micro-level 

processes, such as relationship clustering and variation in sociability, and group-level 

processes such as age-group and neighborhood-based clustering, that drive transmission.  

Integrating these specific sources of variability in social behavior and pathogen shedding 

in a single model is an important step towards understanding the extent to which micro 

and group-level behavioral features drive the heterogeneity and unpredictability in 

outbreaks of NoV and other pathogens. 

Methods 

Our norovirus outbreak simulation model utilizes transmission and community 

contact mechanisms based on results from empirical studies. We use this model to 

examine the effect of social variability on outbreak size as it interacts with the biological 

heterogeneity outlined above.  We are interested, specifically, in the impact that these 

processes play in the size of average size of community outbreaks aver point-source 

events and heterogeneity in the distribution of these outbreak sizes. 

Community Transmission Model  

The community transmission model links the social and biological mechanisms 

underlying norovirus  (NoV) transmission in a single framework. Model runs occur in a 

simulated community of 10,000 people and begin immediately after a point-source 
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outbreak of norovirus. The community is partitioned into 4 equally sized neighborhoods 

with identical age distributions. When the model is initialized, households are sampled 

and populated with individuals using the procedure described in Algorithm S1 in the 

supplementary materials. Individuals have fixed contacts in the community network, i.e. 

contacts do not change over the course of an outbreak. Individuals who are food servers, 

i.e. those who can cause point-source outbreaks when asymptomatic, are identified at 

initialization but can only create point-source events when asymptomatically infectious. 

Infection Process  

We model the progression of norovirus infection using a stochastic SEIR model 

(3). We characterize heterogeneity in the duration of asymptomatic NoV infectiousness 

using a mixture distribution that describes the general population as well as sensitive 

population groups (see (10).  In addition to the standard infectious state, we include an 

additional asymptomatic phase of infection to account for individuals with very long 

asymptomatic infectious periods. Individuals may be in any of the following states: 

susceptible (S), exposed/latency (E) symptomatic infectious (IS), regular asymptomatic 

shedding (IR), extended asymptomatic shedding (IL), or recovered (R).  

Below, we present a deterministic, differential equation based transmission model 

that illustrates how infected individuals progress through the disease states associated 

with norovirus infection. This basic model assumes homogeneous mixing, i.e., no 

community structure. We include this model as a compact illustration of the way 

individuals progress through infection states. After this, we will outline our community 
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model, which integrates this infection process with contact networks that reflect 

household structure and contact variability. 

      (a) 

     (b) 

       (c) 

      (d) 

       (e) 

      (f) 

 

Equation 3.1 

 

For an analysis of this model, see Milbrath et al. (10). For a visual depiction of 

this infection process, see Figure 3.1.  

Each simulation run begins with N-q individuals in the susceptible state (S), and q 

individuals in the incubating state (E), which represents the state of the system 

immediately after a point-source event in which q individuals were infected.  Susceptible 

individuals are infected and enter the incubating/exposed state (E) at an average rate of

, where  and are the transmission rates for symptomatic and  
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asymptomatic individuals, respectively. Infected individuals leave the incubating stage at 

an average daily rate of  (Equation 1b).   

A fixed fraction of the infected population, , is never symptomatic, and 

transitions directly from the incubating state to the regular asymptomatic shedding state 

(IR). The remaining 1-τ individuals in E transition to the symptomatic infectious state (IS) 

(Eq. 1c, 1d).  In our stochastic implementation of this model, the duration of the latency 

period is assumed to follow a gamma rather than an exponential distribution, and, 

following Zelner et al. (12), has shape parameter, = 4. 

Symptomatic infectious individuals transition from IS into the regular-duration 

asymptomatic state, IR, with average rate γS.  Individuals in IR leave with rate  (Eq. 

1d).   A fraction of these individuals, ρ, progress to the extended asymptomatic infectious 

phase, IL (Eq. 1e) which they remain in for an average duration of , while the 

remaining 1-ρ immediately enter the recovered phase, R (Eq. 1f).  The total number of 

asymptomatic infectious cases is denoted by . Parameter definitions and 

estimated values used in simulations are listed in Table 3.1.   

Household transmission 

We model the transmission of norovirus within households using mechanistic 

parameters derived by Zelner et al. (12) from a series of household NoV outbreaks in 

Stockholm, Sweden (11). We assume that households are fully connected networks, i.e. 

all individuals in a household are connected to all other individuals in that household. We 

also assume that household transmission is density dependent, so that the per-contact rate 

of infection remains constant as the number of household members grows. To model 
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variability in household size and the distribution of ages within these households, we 

sample the age of adult householders from the U.S. Census distribution of ages (29) then 

sample the number of resident children and their ages using age-specific parity tables 

(30).  Transmission parameter values used in simulations are presented in Table 1. For 

further details on household size and composition, see the supplementary materials. 

Point source outbreaks 

An important aspect of the heterogeneity in transmission in our model is the role 

played by asymptomatically infectious food servers who can infect many individuals at 

one time. At the beginning of each simulation run, a sample of individuals is selected 

from the population of adults in the simulated community, each with probability 

€ 

ζ  , to be 

food servers. We represent food service by an asymptomatically infectious individual as a 

Bernoulli trial (i.e., flipping a biased coin) in which a success is defined as a time step in 

which no infections are generated, and a failure results in a point-source exposure. For 

example, a point-source exposure might occur when an asymptomatic individual who had 

previously prepared food while infectious but caused no infections, i.e. a series of 

successful trials, washes her hands in the same sink used for cleaning vegetables, 

resulting in a PSE, e.g. (31). Since asymptomatically infectious food handlers individuals 

are likely to be detected in the course of public health investigations, we assume that the 

individual is detected and removed from the workplace after the first exposure event. 

Such a process results in waiting times, represented by the random variable , from the 

onset of asymptomatic infection to a point source event that are distributed according to 

an exponential distribution, i.e.: 
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€ 

TPS ~ Exponential(1/λ)  

Where  is the daily attack rate for point-source events generated by hub individuals and

€ 

1/λ  is the expected waiting time from onset of asymptomatic infectiousness to a point-

source event. If the waiting time for a PSE exceeds the food-server’s asymptomatic 

infectious period, no PSE occurs. When a point-source exposure does occur, a group of 

individuals is sampled uniformly at random from the population and infected. The 

magnitude of the event is assumed to follow a geometric distribution with mean 

€ 

Q .  

For ease of reference throughout the next sections, we define the set of parameters 

governing household, community and point-source transmission to be a vector 

€ 

Φ = [βIS ,βIA ,Q,τ,ρ,λε,ε s,γ S ,γ R ,γ L ] . 

Community transmission networks 

We use exponential random graph (ERG) models (32, 33) to embed different 

types of social behavior in the contact networks used in outbreak simulations. ERG 

models specify a probability distribution from which one can generate networks where 

the probability of links forming between pairs of individuals in the network is a function 

of attributes of those individuals. Such models are ideal for understanding how multiple 

types of variability in social behavior impact epidemic outcomes. For instance, ERG 

models can account for age-specific behavior as well as assortativity by the 

neighborhoods that individuals live in. They may also include other determinants of 

network structure, such as a tendency for groups of individuals to have many shared 

relationships, and long-tail variation in individual-level propensities to have relationships.  
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When specifying an ERG model representing these behaviors, we define 

€ 

M(x) = MA (x),MS (x),MN (x),MR (x)[ ] to be a vector of statistics measuring properties of 

an observed network, denoted x. 

€ 

θ = θA ,θS ,θN ,θR[ ]  is a vector of parameters controlling 

the relative strength of contributions of these network statistics to the resultant network. X 

is a random variable with a distribution from which the observed network, x, is drawn 

and 

€ 

k  is the average degree of networks drawn from this distribution (34): 

€ 

P(X = x M(x),θ,k) = (1/κ)exp θ iMi(x)
i∈{A ,S,N ,R}
∑

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
 

Equation 3.2 

We represent the network as a set, so 

€ 

X = {V ,E} where the set of nodes, or 

vertices in X, is a vector ordered by node ID and denoted V, and the number of elements 

in V is denoted as N. A is the adjacency matrix of x, so that 

€ 

Aij =1 if nodes i and j are 

connected in the community network and zero otherwise. Realized edges in A comprise a 

set, E, consisting of unordered pairs of nodes:  

€ 

E = (i, j) s.t. Aij =1{ } 

Because the normalizing constant  in Equation 3.2 is difficult to compute, we 

use the Metropolis Hastings (MH) algorithm to generate random graphs from the 

distribution specified by Equation 3.2. Our MH algorithm is stepped forward by moving 

edges from uniformly selected pairs of connected nodes to uniformly selected pairs of 

nodes that are not connected. For a detailed explanation of the procedure used to sample 

graphs from this distribution, see (25, 32, 35, 36) and the supplementary materials.  
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Below, we provide detailed definitions of the network statistics in M(x) that are 

used to represent social behavior in the community contact model: 

Age-structured contacts. The term representing age-dependent mixing, 

€ 

MA , 

reflects the amount of time spent together by individuals in the network as a function of 

their ages, as measured in the time use data of Zagheni et al. (8).  

The average number of hours that individuals of some pairing of age groups (or 

the same age group) spend together on any given day is presumed to be proportional to 

the odds of an edge forming between them. In our model, the time-use data are 

represented as a vector of parameters, 

€ 

Ω, where each entry corresponds to the expected 

number of hours per day spent together by individuals for each pair of ages in x, divided 

by the maximum number of hours in the time-use data. This makes the quantities in 

€ 

Ω 

analogous to odds ratios. The distribution of age-pairings is represented by a vector, AP. 

Entries in AP are counts of the number of elements in the set of edges, E, that connect 

individuals of the ages corresponding to each pair in 

€ 

Ω. We assume that edges that form 

as a function of age are independent of other realized edges, so we compute 

€ 

MA (x)  as the 

sum of the natural logs of the parameters in 

€ 

Ω, which is equivalent to the natural log of 

the product of these values: 

€ 

MA (x) = ln(Ωi)AP(x)i
i=1

Ω

∑  

Equation 3.3 

The formulation in Equation 3.3 implies the simplifying assumption that all 

community contacts are of uniform duration, so that increasing the amount of time spent 
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together by individuals in a pair of age groups is equivalent to increasing the number of 

network connections between individuals of these ages. Because the parameters in 

€ 

Ω 

control changes in the log-probability of the model, the model parameter 

€ 

θA  is used only 

to include or exclude age-structured contacts and is therefore constrained to take the 

values 1 and 0.  

Individual sociability. The term representing the sociability of individuals in the 

community, 

€ 

MS , reflects the strength of individual-level tendency to create relationships 

with other individuals the community. Following results from existing social network 

studies, e.g. (5, 37), we conceptualize this propensity as an exponentially distributed 

quantity, the values of which are assigned uniformly at random to individuals in the 

community. We define a vector of length N, denoted K, where each entry is the 

sociability parameter of the corresponding node in x. As with age-structured mixing, the 

sociability of a node is analogous to the odds ratio, relative to an average individual, that 

the individual represented by the node will form a tie with any other individual. When the 

model is initialized, each node’s absolute sociability is drawn from an exponential 

distribution with mean 

€ 

S . This quantity is divided by 

€ 

S and entered in K. 

€ 

S  is fixed at 10 

to simplify analysis. As with age-structured contacts, the parameter for sociability, 

€ 

θS , is 

constrained to take only 1 and 0 as values. Again, as with age-structured mixing, we use 

the natural log of this value when computing 

€ 

MS : 

€ 

MS (x) = ln(Ki)Di
i=1

N

∑  

Equation 3.4 
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Neighborhood clustering. We define another network statistic, 

€ 

MN , to be the 

number of edges in the network linking individuals who live in the same neighborhood. 

We define the vector Z to be the IDs of the neighborhoods to which individuals are 

assigned, where the elements of Z are indexed by node ID: 

€ 

MN (x) = I(i, j)
( i, j )∈E
∑

I(i, j) =1, if Z i = Z j

I(i, j) = 0, otherwise
 

Equation 3.5 

The parameter 

€ 

θN  expresses the change in the log-probability of x corresponding 

to the addition of a single edge that connects two individuals who live in the same 

neighborhood. Values of 

€ 

θN  are constrained to be greater than zero. This indicates 

increasing assortativity by neighborhood. 

Relationship clustering. Sharing of network partners, or local clustering, is 

accounted for by the globally weighted edgewise shared partner (GWESP) statistic of 

Hunter et al. (38), which we denote as 

€ 

MR (x) . This is computed as: 

€ 

MR (x) = exp(η) 1− (1− e−η )i{ }
i=1

N −2

∑ EPi(x) 

Equation 3.6 

This statistic represents the extent to which nodes in the graph that are connected 

to each other will also share additional network partners. The distribution of edgewise 
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shared partners is denoted EP and indexed by i, so that 

€ 

EPi(x)  is the number of edges in 

x that share exactly i partners. The parameter 

€ 

η controls the rate of geometric decay in 

the weight assigned to increasing values of this distribution, so that an edge with many 

shared partners is given only slightly more weight than an edge with a few shared 

partners. In all analyses, the value of 

€ 

η is fixed at 0.5. It has been shown that the output 

of the sampling algorithm is not very sensitive to the choice of a value for 

€ 

η (24). The 

parameter 

€ 

θR  represents the change in log-probability of x associated with a 1-unit 

increase in this weighted measure of transitivity.  

Finally, when sampling contact networks, we fix the number of edges so that the 

average degree of nodes in the network remains constant. This allows us to compare 

outbreak dynamics on community networks of differing average degree but with similar 

structure-generating mechanisms.  

When transmitting over these networks, the parameter for infectivity in the 

community is scaled by the average degree, 

€ 

k , so that the per-contact transmission rate is 

equal to 

€ 

βIA /k . This means that 

€ 

βIA  expresses the average number of infections the 

average asymptomatically infectious individual in the community will create on a given 

day. 

Measurements of community networks 

The individual and group-level behavior implied by the exponential random graph 

(ERG) model of community contact results in a variety of network structures. Given a set 

of transmission parameters, it is this structure of contacts that will determine the 

likelihood that outbreaks occur on the community network. To understand the impact that 
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the network parameters, 

€ 

θ = θA ,θS ,θN ,θR[ ] , have on variability in the resultant networks, 

we use three measures of network structure: 

Coefficient of variation (CV) of degree distribution This is a measure of 

variability in the degree distribution of the community network, x. Previous network 

studies have shown that increasing variability in the degree distribution is associated with 

a greater likelihood of observing outbreaks (5). The CV of the degree distribution of x, 

which is denoted 

€ 

D(x) is calculated as follows: 

€ 

CV (D(x)) = SD(D(x)) /E(D(x)) 

where SD(D(x)) and E(D(x)) are the standard deviation and expected value of D(x) , 

respectively. Increasing values of the CV indicate greater variability. A distribution with 

a CV of 1 is exponentially distributed, whereas if a network’s degree distribution had a 

CV = 0, all nodes would have the same degree. This measure has the advantage of being 

dimensionless, so it can be used to directly compare networks of differing average 

degree. 

Average shortest path length. This measures average number of network hops 

needed to connect any two nodes via the shortest path between them. It measures the 

overall accessibility of nodes to one another in the network. As this value becomes 

smaller, it is easier for infection to pass between two arbitrarily selected nodes. Longer 

path lengths between nodes make the slow propagation of infections across individuals 

more likely, while also increasing the likelihood of stochastic extinction and smaller 

outbreaks. We denote this statistic as P(x). 



	
  67	
  

 Clustering coefficient. The clustering coefficient of X, denoted C(x), measures the 

likelihood that open triangles of vertices, denoted open triples, in the community network 

will close and form a closed triplet. C(x) is measured as: 

 C(x) = # of closed triplets / (# of closed triplets + # of open triples)  

The clustering coefficient is best known for its role in measuring the small-world effect in 

social networks (39). Heuristically, it measures the redundancy of contacts amongst 

individuals. In social networks, greater clustering is often thought to imply greater social 

cohesion (27), whereas in epidemiological applications, clustering is thought of mainly 

for its role in inhibiting outbreaks (28, 40). 

 

Simulating outbreaks 

 We simulate outbreaks from the community model using the epidemic percolation 

graph (EPG) framework of Miller (41). Using this approach, one can rapidly simulate the 

final size of outbreaks on networks with heterogeneous infectivities, which allows 

exploration of a large number of outbreak scenarios. All simulated outbreaks begin with a 

point source event, the size of which is drawn from a geometric distribution with mean 

€ 

Q

, in which a group of individuals is selected uniformly at random from the population and 

infected. The geometric distribution is chosen because it is a discrete probability 

distribution which a moderate amount of right-tail variability, analogous to an 

exponential distribution. This is in keeping with our heuristic understanding of point-

source events as typically small-to-moderate sized with occassional large events. For 

each combination of model parameters listed in Table 3.1 (i.e., disease and social 
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network parameters) , we perform 

€ 

5⋅ 104  EPG simulations. A detailed description of the 

implementation of this simulation framework is outlined in the supplementary materials. 

 

Measures of simulated outbreaks 

Average outbreak size. We measure the risk to the community from an initial 

point-source event by the number of cases caused in the course of the outbreak. In the 

outbreak simulations presented here, we present this in terms of the average number of 

secondary cases corresponding to a set of network and disease parameters. We measure 

the number of secondary cases as the number of  symptomatic cases, as asymptomatic 

cases are unlikely to be observed in the course of an outbreak. This also facilitates 

comparison between simulations with varying levels of the proportion of fully 

asymptomatic infections, 

€ 

τ .  We denote the average symptomatic outbreak size for a 

given set of network parameters, 

€ 

θ , and disease parameters, 

€ 

Φ, as 

€ 

µS (Φ,θ ) . 

Coefficient of variation (CV) of outbreak size distribution. The CV of the 

distribution of outbreak sizes corresponding to a set of network and disease parameters 

reflects the degree of heterogeneity in outbreak sizes corresponding to that set of 

parameters. Because the CV is dimensionless, using it allows us to address the question 

of how model parameters impact heterogeneity in outbreak size across a wide range of 

average outbreak sizes. Similar to average size, above, we denote the CV of outbreak 

sizes as 

€ 

CVS (Φ,θ ). 
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Parameterizing outbreak simulations 

  

 Wherever possible, disease parameter values used in simulation runs are obtained 

from published estimates of norovirus natural history and infectivity. For the progression 

of disease states after infection, we follow the parameterization of norovirus infection 

history used by Milbrath et al. (10), which is reproduced in Table 3.1 and represented 

graphically in Figure 3.1. We parameterized household transmission using the parameters 

obtained by Zelner et al. (12) in their analysis of household outbreaks of norovirus. Since 

no published estimates exist for the rate of transmission in the community, we perform 

simulations over a range of plausible values. Similarly, social network parameters for 

age-based mixing are derived from empirical time-use data. Other network parameters 

are picked to reflect realistic social behavior and to highlight the impact this behavior has 

on network structure and risk. Where reliable estimates of social network parameters are 

not available, we perform sensitivity anlysis to ensure the robustness of our results to 

variability in these parameters. 

 

 Household Transmission 

Previous work has shown that estimates of the household transmission rate of 

norovirus are sensitive to the proportion of the population that is never symptomatic,  

(12). This value has been estimated to range from 15 to 50% (42). Zelner et al. (12) 

estimated that when  = 0, the daily, density-dependent household rate of transmission, 

€ 

βIS  = 0.14. For every 10% increase in , the value of the density-dependent transmission 

parameter is estimated to increase by an additional 25%, so that when  =  0.5,  

€ 

βIS  = 
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0.29. This increase in the proportion of individuals who are never symptomatic and the 

related increase in 

€ 

βIS  should not strongly impact within-household transmission 

dynamics at the beginning of an outbreak (12), but may decrease the visibility of 

connections between norovirus outbreak events. When simulating outbreaks, we use this 

relationship between 

€ 

βIS  and  to vary the transmission rate and proportion of the 

population that is never symptomatic in an empirically-grounded fashion. 

Point Source Events 

There are few published reports that quantify the size and distribution of these 

kinds of point-source events in the context of food-borne and nosocomial outbreaks. 

Lynch et al. (13) provide some basic information on the number of norovirus outbreaks 

that were observed under the Foodnet program from 1998-2002 (657) and the total 

number of cases reported from these outbreaks (27,171), which yields an average of 

about 41 cases per reported event. Because there are likely many smaller events that are 

not recognized as originating from a common source, and up to 50% of individuals 

infected with norovirus, at a point-source or otherwise, are likely fully asymptomatic 

(43), there is reason to believe that this figure both overestimates the average size of the 

typical point-source event, and underestimates the risk stemming from them. 

The exact number of individuals in the United States who work as food servers is 

unclear. However, the U.S. Bureau of Labor Statistics (BLS) does collect figures on the 

number of individuals working in food service and preparation management, and 

estimates that about 981,000 individuals were employed in this manner in 2008. We base 

our rough estimate on the assumption that each of these individuals supervises on average 
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2 people, resulting in a total of about 3 million individuals working directly with prepared 

food, or about 1 percent of the total U.S. population of 300 million. We use this as our 

estimate of , the proportion of individuals in the population who are potential point-

source hubs. The actual number is likely higher, but use of this figure ensures a 

conservative representation of the role of food-handlers in seeding point-source events. 

 

Analysis of outbreak simulation data 

Regression tree analysis. We analyze outbreak simulation results using several 

statistical tools. We perform non-parametric analysis of simulated networks and 

outbreaks using regression trees (RT), see e.g., (44). The RT methodology has the 

advantage of being non-parametric, particularly in that it does not make strong 

assumptions about the linearity of predictors and the distribution of errors. A regression 

tree is constructed by recursively partitioning the dataset, via binary splits, into 

progressively more homogeneous groups of cases. Each split in the tree corresponds to a 

logical condition. The set of simulated outbreaks that satisfy the logical condition are 

grouped under the left-hand side of the split, while the right-hand side of the split 

contains those cases for which the condition is false. The number of splits in the full 

regression tree is constrained by a parameter that imposes an increasing cost to the 

goodness-of-fit for a greater number of splits in the tree. In practice, this parameter 

controls the tradeoff between the granularity and parsimony in the resulting tree. In our 

analyses, we fix this parameter at 0.005. The RT approach also has the considerable 

advantage of implicitly including interactions between variables, which are represented 
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by the combination of logical conditions. Terminal nodes of the regression tree, i.e. cases 

grouped underneath the final split on a subtree, are labeled with the average value of the 

cases in this set.  

Log-linear regression. We also use log-linear regression models to estimate the 

association between model parameters and the average size of outbreaks simulated from 

the epidemic percolation graph (EPG) community outbreak model (40). We interpret the 

exponentiated values of the coefficients from these log-linear models as the factor by 

which a one-unit increase in the model parameter increases or suppresses expected 

outbreak size, so that the exponentiated model intercept is multiplied by the 

exponentiated model coefficient to obtain the expected outbreak size.  

Mediation Analysis. Because the behavioral parameters of the ERG model impact 

outbreak risk through their effect on structural features of the network, we also use log-

linear models to perform mediation analysis. In these models, we assess the indirect 

effects of the behavioral parameters operating through structural characteristics of the 

community network. For example, we are interested in how age-structured mixing 

impacts outbreak risk via its effect on heterogeneity in the degree distribution, as 

measured coefficient of variation (CV) of the community network degree distribution. 

Following the logic of Baron and Kenny (45), we fit two log-linear regression models, 

one predicting the natural log of the expected outbreak size with the model parameter for, 

e.g. age structured mixing 

€ 

θA , as the independent variable: 

€ 

log(Y ) = α + βAθA +ε  
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Where 

€ 

log(Y ) is the natural log of the average outbreak size. The second model predicts 

outbreak size as a function of both 

€ 

θA  and 

€ 

CVD (X) , so: 

€ 

log(Y ) = α + βA
' θA + βVCVD (X) +ε  

We quantify the mediation effect, M, as the exponentiated difference in the values 

of 

€ 

βAand 

€ 

βA
' , so that: 

€ 

M = exp(βA − βA
' )  

This value can be interpreted as the ratio between the coefficients for the network model 

parameter when the structural mediator is and is not included in the model. We obtain 

95% confidence intervals and p-values by bootstrapping the sampling distribution of M. 

 When assessing mediation by a variable, such as the average path length, which 

may be affected by multiple network model parameters, we adjust for this additional 

relationship in both models. For instance, the average length of the path separating any 

two arbitrarily selected nodes typically shortens with increasing average degree. So, 

when assessing how a model parameter, such as the one governing age-structured mixing 

(

€ 

θA ), impacts outbreak size through its effect on average path length, we include average 

degree of the community network as a covariate in both models, and then calculate M in 

the manner described above. 

Results 

Figure 3.3 shows the results of a regression tree analysis where average outbreak 

size is the dependent variable and the disease (in 

€ 

Φ) and social parameters (in 

€ 

θ ) used in 

simulations, are predictors. The figure shows that for values of 

€ 

βIA < 0.07 , average 
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outbreak size is small, at 23.4 symptomatic cases. At a slightly higher level, 

€ 

βIA = 0.08 , 

average outbreak size grows to 137.3 cases, and is not strongly impacted by other social 

network or disease parameters. When 

€ 

0.09 ≤ βIA ≤ 0.1, i.e., 

€ 

βIA  is large and asymptomatic 

cases are fairly infectious, outbreak size is also modulated by age-structured mixing and 

sociability. When 

€ 

θS =1 and 

€ 

θA = 0, i.e. there is variation in individual sociability but no 

age-structured contacts, average outbreak size increases to 594.3 cases. When 

€ 

θS = 0 and 

€ 

θA =1, average outbreak size grows again to 662.6.  Finally, with both of these factors, 

the average number of symptomatic infections grows to 987 out of 10,000 susceptible 

individuals. 

Table 3.2 shows results from several log-linear regression models where average 

outbreak size is the dependent variable and ERG model and disease parameters are 

predictors. The first column of the table shows a model that includes all values of the 

asymptomatic transmission parameter, 

€ 

βIA . Outbreak size is strongly dependent on this 

parameter, and a 0.01 increase results in a 50% increase in outbreak size. Although the 

effect of a 0.01 increase in the daily rate of point source events (PSE), 

€ 

λ , is small (1.02), 

when this value increases over the full simulated range, from 0.01 to 0.1 events / day, the 

amplifying effect of point source events on outbreak size is considerable (1.21). Including 

either age-structured mixing or variation in individual sociability also results in larger 

outbreaks (

€ 

θA : 1.65, 

€ 

θS :1.56). When both are included, the combined effect on outbreak 

size is somewhat smaller than that of the product of their coefficients (

€ 

θA *θS : 0.83). 

Strong within-neighborhood clustering also suppresses outbreak sizes (

€ 

θN : 0.93). This 

effect becomes stronger when the community network is impacted by age-structured 

mixing and/or variation in individual sociability (

€ 

θA *θN : 0.92; 

€ 

θS *θN :0.91).  
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The remaining columns of Table 3.2 show results from log-linear models 

predicting average outbreak size, stratified by levels of 

€ 

βIA . The intercept for these 

models is the expected outbreak size in a fully random network for the selected value of 

€ 

βIA , when all infections are symptomatic (i.e., 

€ 

τ  = 0) and there are no point-source events 

(i.e., 

€ 

λ= 0). When 

€ 

βIA  = 0.01 (Column 2), so that the average asymptomatic individual 

has a 1% chance of making a new case in the community on every day she is 

asymptomatically infectious, a 10% increase in the proportion of infections that are fully 

asymptomatic dampens outbreak size (

€ 

τ : 0.92). Otherwise, when 

€ 

βIA  = 0.01, the 

remaining coefficients are near 1, indicating no effect of the parameter on outbreak size. 

This is to be expected because outbreaks of considerable size are uncommon at this low 

value of 

€ 

βIA . Column 3 of table 3.2 shows average outbreak size when 

€ 

βIA  = 0.05, with 

results quantitatively similar to those in Column 1 for all values of 

€ 

βIA  (Column 1). 

Column 4 shows outbreak size for the largest simulated value of 

€ 

βIA =0.1. Here, the 

baseline expected outbreak size is larger (170.64 cases) than in the previous two 

conditions and increasing the proportion of fully asymptomatic infections amplifies rather 

than suppresses outbreak size (

€ 

τ : 1.05). As before, the independent amplifying effects of 

age-structured mixing and variability in individual infectiousness are large (

€ 

θA :3.45, 

€ 

θS

:3.45), but their joint effect is smaller than the product of their individual effects, so that 

when 

€ 

θA  = 1 and 

€ 

θS= 1, the expected outbreak size is 960.7, or 5.6 times larger than the 

baseline outbreak size. When 

€ 

βIA  = 0.1, a one-unit increase in average degree above 10 is 

associated with a statistically significant increase in overall risk (

€ 

k : 1.05). The relative 

strength of the outbreak-size reducing effect of neighborhood clustering is also greater 

than in the first three models (

€ 

θN : 0.83). Figure 3.4 illustrates the joint effects of the 
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asymptomatic transmission parameter, 

€ 

βIA , on variation in individual sociability (

€ 

θS ) and 

age-structured mixing (

€ 

θA ) on average outbreak size. 

Table 3.3 presents results from a mediation analysis assessing the indirect effects 

on average outbreak size of the behavioral parameters of the exponential random graph 

(ERG) model as they operate through structural characteristics of the community 

network. The first column shows the effect of the ERG parameters operating through the 

coefficient of variation of the community network degree distribution. For all simulated 

values of 

€ 

βIA , the effect of age-structured mixing on outbreak size operates in part 

through its effect on the CV of the degree distribution (M = 1.14, 95% CI = [1.12, 1.15]). 

When 

€ 

βIA = 0.05, this effect is slightly weaker (M = 1.07, 95% CI = [1.068, 1.079]). It 

becomes stronger when 

€ 

βIA  = 0.1 (M = 1.35, 95% CI = [1.33, 1.38]). Variation in 

sociability also operates on risk for all values of 

€ 

βIA  by inducing variability in the degree 

distribution (M = 1.35, 95% CI = [1.33, 1.38]). This effect is particularly pronounced 

when 

€ 

βIA  = 0.1 (M = 4.44, 95% CI = [4.40, 4.73]). By contrast, the outbreak-dampening 

effect of increasing neighborhood clustering, 

€ 

θN , is suppressed by increasing variability 

in the degree distribution (M = 0.92, 95% CI = [0.91, 0.93]) and decreasing average path 

length (M = 0.88, 95% CI = [0.87, 0.89]). The effect of relationship clustering, 

€ 

θR , on 

outbreak size is weakly mediated by the CV of the degree distribution (M = 1.01, 95% CI 

= [1.005, 1.017]), instead operating through the clustering coefficient of the graph (M = 

2.19, 95% CI = [2.01, 2.39]). 

Figure 3.5 illustrates the relationship between disease and social parameters and 

variability in outbreak size. The figure shows a regression tree where the dependent 
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variable is the coefficient of variation (CV) of the distribution of outbreak sizes 

corresponding to a set of model parameters, and the model parameters are predictors. The 

figure shows that when the asymptomatic transmission parameter, 

€ 

βIA , is small, from 

0.01 to 0.03 cases/infected per day, the distribution of outbreak sizes is approximately 

exponential, indicating a moderate amount of variability. When 

€ 

0.04 ≤ βIA ≤ 0.06, 

variability in outbreak sizes increases and is grows further with age-structured mixing 

and variation in individual sociability, so that when 

€ 

θS =1 and 

€ 

θA =1, CV = 1.5. By 

contrast, when 

€ 

0.06 < βIA < 0.09 , increasing the proportion of asymptomatic cases (

€ 

τ ≥ 0.2), and with this the rate of household transmission, decreases variability in 

outbreak sizes. At the top end of the range of the asymptomatic transmission parameter 

values used in simulations, 

€ 

0.09 ≤ βIA ≤ 0.10 , outbreak size variability is lowest when 

proportion of asymptomatic infections is large (

€ 

τ ≥ 0.2) and age-structured mixing and 

variation in individual sociability are present (e.g.,

€ 

θS =1,θA =1; CV = 0.96).  

Discussion 

Our results show that community networks with age-structured contact patterns 

are more likely to have large outbreaks than random networks. The strength of this effect 

grows with increasing asymptomatic infectivity (

€ 

βIA ). Our results also demonstrate that 

exponentially distributed variation in individual sociability has an effect on outbreak size 

that is similar in magnitude to that of age-structured mixing.  This effect also grows with 

an increasing strength of asymptomatic transmission.  As 

€ 

βIA  increases, the joint effect of 

age-structured mixing and variation in sociability on outbreak size becomes progressively 

smaller than the product of their individual effects. Since average outbreak sizes, even for 
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the largest simulated level of asymptomatic infectivity, 

€ 

βIA  = 0.1, do not exhaust the 

susceptible population (~1000 cases), this indicates that the mechanisms by which age-

structured mixing and sociability impact epidemic outcomes are overlapping. 

Our results also show the extent to which point-source events (PSE) drive 

outbreak size in our community outbreak model. We find that increasing the rate of 

point-source events consistently amplifies outbreak size, although not as dramatically as 

age-structured mixing or exponential variation in sociability. The most notable effect of 

point-source spreading is at the low end of the range of simulated asymptomatic 

infectivity (

€ 

βIA = 0.01), where a high point-source event rate, 

€ 

λ  = 0.1, increases average 

outbreak size by 10%, whereas other factors have either very small or non-significant 

effects on outbreak size. 

Our mediation analysis exposes how the behavioral mechanisms in the 

community model impact outbreak size through their effects on elements of network 

structure. We find that some of the outbreak amplifying effect of age-structured mixing 

and much of the effect of individual sociability can be explained by their effects on 

increasing variability in the degree distribution of the community network. Age-

structured mixing and sociability also amplify outbreak size by shortening the average 

path length between arbitrarily selected nodes in the community network, which makes 

outbreaks more likely. Neither of these factors is strongly mediated by the clustering 

coefficient of the community network.  

In contrast to the behavioral features that increase variability in contact and 

average outbreak size, we find that increasing neighborhood clustering results in smaller 
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average outbreak size. Our mediation analysis shows that this effect is attenuated in 

situations in which other factors increase variation in degree, indicating that this factor 

suppresses outbreaks partially by homogenizing the distribution of degree and 

lengthening the paths connecting arbitrarily selected pairs of nodes. The fact that the 

strength of this suppressive effect grows with the inclusion of age-structured mixing and 

variation in individual sociability exemplifies why it is important to account for the effect 

of potentially countervailing social behaviors. 

Our model is also able to address the impact of social and disease parameters on 

heterogeneity in outbreak sizes. Our regression tree analysis of the drivers of outbreak 

size variability shows a non-linear relationship between the rate of asymptomatic 

transmission and the coefficient of variation (CV) of the distribution of outbreak sizes. 

We see that the CV of the distribution of outbreak sizes is smallest when asymptomatic 

infectiousness is low. This is because, when 

€ 

βIA  is small, most of the originating point-

source outbreaks result in few or no community cases and most secondary cases come 

from household contacts and point-source events. When asymptomatic infectivity is 

increased into a more moderate range, 

€ 

0.06 ≤ βIA ≤ 0.08  cases/infected per day, is when 

outbreak size variation is greatest. Age-structured mixing and exponentially distributed 

variation in sociability modulate this heterogeneity in outbreak size. When both of these 

factors are present and the proportion of fully asymptomatic infections is low (

€ 

τ ≤ 0.2), 

we see the greatest overall variability in outbreak sizes (CV = 1.7). At the highest levels 

of simulated asymptomatic infectivity, 

€ 

βIA ≥ 0.09 , this effect is reversed, so that outbreak 

simulations including age-structured mixing, variation in sociability and low levels of 

fully asymptomatic infection have less variability in final size (CV = 1.2), although the 



	
  80	
  

expected magnitude of these outbreaks is larger. Results for both average outbreak size 

and variability in size indicate that the most realistic parameter ranges for norovirus 

asymptomatic infectivity may be in the moderate range from 0.06 to 0.08, where outbreak 

events are moderately sized (~137 cases on average). However, there is wide variability 

in the distribution of these events, resulting in a many small outbreaks and a few large 

ones. 

One limitation of our results regards the relationship clustering mechanism in the 

community network model. From the results presented here, the effect of relationship 

clustering mechanism in the community contact network model on outbreak size appears 

to be minimal, which runs counter to existing findings showing that such clustering tends 

to suppress outbreaks (46). Analysis of the structure of sampled networks indicates that 

the clustering coefficient of sampled networks, C(x), even for the largest sampled level of 

the relationship clustering parameter, 

€ 

θR= 10.0, has a minimal impact on the overall 

clustering coefficient of the graph, as the greatest sampled value of C(x) = 0.04. Test runs 

using networks with fewer (1000) nodes yielded significantly larger values of the 

clustering coefficient (~0.3) when 

€ 

θR= 10.0.  For networks with more nodes, such as the 

ones used here, greater values of 

€ 

θR  may be necessary to obtain significant clustering. 

The lack of clustering in our simulated networks may also be the result of the choice of 

the value for the rate of decay in the shared partner weighting, 

€ 

η. As network size grows, 

the raw number of shared partnerships grows as well, and the choice of 

€ 

η = 0.5 may 

impose too steep of a penalty on the weight an increasing number of shared relationships 

contributes to the calculation of the network statistic 

€ 

MR (x) . Consequently, additional 
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simulation and sensitivity analysis are necessary to understand the true role that 

relationship clustering can play in the outbreak dynamics observed in this model. 

Our results on the heterogeneity of outbreak sizes indicates that age-structured 

mixing and exponential variation in individual sociability make outbreak size less 

predictable for moderate levels of 

€ 

βIA . This suggests that outbreaks with these parameters 

are also more likely to have the explosive and unpredictable characteristics associated 

with norovirus epidemiology. Additional discrete-time simulations that assess the 

evolution of outbreaks over time are needed to fully understand the extent to which the 

mechanisms discussed here impact explosiveness as well as heterogeneity in norovirus 

outbreaks. 

Conclusions 

By including variation in social behavior and heterogeneity in duration of 

infection in a single, parametric framework, we are able to shed light on the specific ways 

social behavior and disease processes independently, and interactively, influence 

epidemic outcomes. Our results show how the exponential random graph (ERG) 

framework can incorporate multiple types of social behavior into outbreak simulation 

models in a reasonably transparent way. In the simulations presented here, we selected 

model parameters to represent largely non-overlapping types of social behavior. The task 

of specifying an ERG model to be fit to observed social networks is more difficult than 

using one in simulation (33), but there are large potential benefits from the integration of 

empirical data sources on social behavior and disease processes that this framework 

allows. 
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An alternative approach to inference with this type of model is to utilize the plug-

and-play approach, e.g., (47, 48, 49). In this approach, it is only required that it is 

possible to simulate sample paths, in this case time series of symptomatic cases, from the 

theoretical model. Using these techniques, it is possible to estimate social parameters, 

such as the strength of within-neighborhood clustering, from observed outbreak time 

series, which is an important new direction for both social scientists and epidemiologists. 
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Figure 3.1. Stages of N
orovirus (N

oV) infection. States of infection are indicated by boxes. Arrow
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eters for average rates of state transition. Individuals are infected at a rate 
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unity netw
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atic individuals infect susceptible 

ones, respectively. βIA
<< βIS  . Im
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ediately after infection, susceptible (S) individuals enter the exposed/latent state (E). 

Individuals spend, on average, 1/ε days in the latent state before progressing to either the sym
ptom
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regular-duration asym

ptom
atic (IR ) states w

ith probabilities (1-τ) and τ, respectively. Individuals rem
ain in IS  for an average 
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Figure 3.2. Network structures resulting from different types of social mixing.  The figure 
illustrates a community consisting of 100 individuals with average degree of 12. The 
community is partitioned into two equally sized neighborhoods, represented by triangular and 
circular nodes. Larger node size indicates increasing age. The network in the bottom-left 
quadrant (-,-) is and Erdos-Reny random graph, in which connections in the community are 
distributed without respect to node attributes. In the bottom right quadrant (+,-) individuals 
preferentially form network connections with individuals from the same neighborhood. In the 
network in the top-left quadrant, (-,+) individuals make relationships preferentially based on 
age, according to the age-dependent time-use data of Zagheni et al (2006). In the top-right 
quadrant, network connections form as a function of both age and neighborhood (+,+). 
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βIA < 0.09

βIA < 0.06 θA = 0

θS = 0 θS = 0
23 137

202 594 662 987

Figure 3.3. Regression tree showing average outbreak size as a 
function of model parameters. Splits in the tree are labeled by a 
logical condition. Simulation runs satisfying this condition are contained 
in the subtree or node underneath the left-hand side of the split. Runs 
that do not satisfy the logical condition are underneath the right-hand 
side of the split. Subtree arm lengths represent the amount of variance 
explained by the split. Terminal nodes are labeled by the average 
outbreak size of simulation runs satisfying all of the conditions leading to 
that node. Parameter values and definitions are in Table 3.1. 
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Figure 3.4.  Relationship between transmission and social network 
parameters and average outbreak size.  The asymptomatic transmission 
parameter, βIA , is on the x-axis of the inner panels and the y-axis is the average 
number of symptomatic secondary cases resulting from an outbreak after a point-
source spreading event. Increasing dot size  in the plot indicates greater values 
of the point-source spreader attack rate, λ. The bottom-left panel (-,-) represents 
outbreaks in a random network. The top-left panel (-,+) shows outbreaks in a 
network with strong age-structured mixing (θA = 20.0), and the bottom-right panel 
(+,-) shows outbreaks in networks with heterogeneous individual sociability. In the 
top-right panel (+,+) outbreaks occur on a network conditioned by both factors. In 
all plots, the value of τ, the proportion of individuals who are never symptomatic 
is fixed at 10%, and the value of the relationship and neighborhood clustering 
coefficients,θR and θN, respectively, are fixed at 1 to have no effect on network 
structure.    
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|

βIA = 0.01

βIA < 0.04

βIA ! 0.09

βIA" 0.06

1.1 1.2
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1.5
1.3 1.4 1.5 1.5 1.6 1.6 1.7

θA = 1

θS = 1τ ≥ 0.2

τ ≥ 0.2

θA = 0

θS = 0

θA = 0 τ ≥ 0.2

θS = 0

Figure 3.5. Regression tree of  coefficient of variation (CV) of outbreak sizes as 
a function of community model parameters. The figure shows a regression tree 
where the terminal nodes are labeled with the average coefficient of variation for 
outbreak simulations corresponding to the logical conditions above the node. 
Definitions and notation for parameter values are in Table 3.1.



	
  88	
  

Table 3.1. Param
eter values for outbreak sim

ulations. The table presents and defines param
eters for the disease process 

and social netw
orks used in outbreak sim

ulations. Param
eter values presented in brackets are used in sensitivity analysis. 
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eter values are obtained from

 published sources unless otherw
ise noted. 
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Table 3.2. Amplification of average outbreak size. The table shows results 
from a log-linear regression model where the natural logarithm of average 
outbreak size is the dependent variable and community model parameters 
corresponding to these outcomes are predictors. The table presents 
exponentiated values of the regression coefficients, which are interpreted as 
the factor by which the expected outbreak size grows with a 1-unit increase in 
the predictor. Model parameters have been re-scaled to facilitate interpretation: 
a 1-unit change in regression parameters for βIA and λ represent a .01 change 
in the corresponding simulation model parameters. A 1-unit change in the 
regression coefficient for τ represents a 10% increase in the proportion of 
individuals who are never symptomatic. The coefficient for average degree 
reflects deviations from an average degree of 10. Coefficients for θN and θR 
reflect the difference between maximum and minimum values of the parameter 
used in simulations. Column 1 shows results for all values of βIA. The 
remaining columns show results when the value of βIA is fixed at 0.01, 
0.05,and 0.1, respectively.

All βIA βIA = 0.01 βIA = 0.05 βIA = 0.1
Intercept 4.69 14.70 32.16 170.64

Disease Parameters

Asymptomatic infectivity, βIA 1.50 - - -

Proportion fully asymptomatic, τ 0.97 0.92 0.95 1.05

Point-source event rate, λ 1.02 1.01 1.01 1.02

Network Parameters

Age, θA 1.65 1.02 1.35 3.45

Sociability, θS 1.56 1.01 1.27 3.20

Neighborhood clustering, θN 0.93 0.99 0.97 0.83

Relationship clustering, θR 1.00 0.99 1.00 1.02
Average degree 1.01 0.99 1.00 1.05

Network Parameter Interactions

θA * θS 0.83 0.99 0.95 0.51

θA * θR 0.98 1.00 0.98 0.97

θA * θN 0.92 0.99 0.92 0.91

θS * θR 0.98 1.00 0.98 0.96

θS * θN 0.91 1.00 0.98 0.85

θR * θN 1.02 1.01 1.02 1.03

Goodness of fit (R2) 0.93 0.92 0.82 0.92
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Table 3.3. M
ediation of exponential random

 graph (ER
G

) netw
ork m

odel param
eters by structural 

features of the com
m

unity netw
ork. Param

eters of the ER
G

 m
odel, w

hich represent social behavior, im
pact 

outbreak size through their effect on structural characteristics of the com
m

unity netw
ork. The table show

s 
results of a m

ediation analysis, w
here these behavioral param

eters are conceptualized as distal factors w
hich 

im
pact outbreak size through their effect on three characteristics of the com

m
unity contact netw

ork: 1) the 
coefficient of variation (C

V) of its degree distribution, 2) the average length of the path connecting arbitrarily 
selected nodes, and 3) the global clustering coefficient. The disease outcom

e is the natural log of the expected 
outbreak size. W

e present results for all levels of the asym
ptom

atic transm
ission param

eter, β
IA  as w

ell as 
results stratified by β

IA  = 0.05 & 0.1. M
ediation effects, M

, are calculated as the ratio of the log-linear regression 
coefficients associated w

ith the ER
G

 param
eter in tw

o log-linear m
odels: 1) w

ith only the distal variable as a 
predictor, w

here the coefficient for the  distal variable is denoted b; and 2) one adjusted for the distal variable 
and the m

ediator, w
here the coefficient of the distal variable is denoted b'. So, M

 = exp(b - b'). 95%
 confidence 

intervals are obtained by inspecting the quantiles of the bootstrapped sam
pling distribution of M

.  Bolded item
s 

are statistically significant at the p < 0.05 level.
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APPENDIX B 

Chapter 3 Supplementary Materials 

S1. Simulating household sizes and age distribution. We make some simplifying 

assumptions to generate households in a transparent way. For instance, we assume that 

individuals younger than 20 years are not parents and that households with householders 

older than 50 years do not have children. We also assume that each household has a 

maximum of two adults, i.e. individuals aged over 18 years, and that these adults are of 

the same age. Although these simplifications guarantee deviations from the exact 

distribution of household sizes, our procedure covers the great majority of households, 

and therefore serves the heuristic purpose for which it is intended. When generating a 

collection of households, we follow the following procedure: 
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Algorithm 3.1 

 

The distribution of householder ages is obtained from the U.S. Current Population 

Survey. The distribution of number of children by mother’s age is obtained using age-

specific parity tables from Swanson and Siegel (1). 
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S2. Sampling from an exponential random graph (ERG) model using the Metropolis-

Hastings algorithm 

When sampling community contact networks for outbreak simulations, we begin 

with an Erdos-Renyi random graph, x. This network has N nodes representing the 

individuals in the community. The average degree of nodes in the network is 

€ 

k . In order 

to maintain a constant value of 

€ 

k , we utilize a sampling algorithm that, on each step, 

moves an edge from a connected pair of nodes to a randomly selected pair.  

We define the adjacency matrix of x to be A, so that the entry corresponding to an 

edge between nodes i and j, 

€ 

Aij , equals 1. On each step of the algorithm, a random edge, 

€ 

Aij , is selected from the set of existing edges in the set of edges in x, denoted E. A 

candidate edge 

€ 

Akl  is selected from the set of all possible combinations of unconnected 

vertices not in E. We then evaluate the probability of a new graph, , in which 

€ 

Aij = 0  

and 

€ 

Akl =1.  The probability of accepting , a, is a function of the ratio of the 

likelihoods of  and x, given the network statistics in 

€ 

θ  and the average degree, 

€ 

k . This 

ratio, denoted as r, is computed as follows: 

 

€ 

r =
P( ʹ′ x θ,k )
P(xθ,k )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = exp θ i Si( ʹ′ x ) − Si(x)( )

i∈{1...n}
∑

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪  

Equation 3.7 

! 

" x 

! 

" x 

! 

" x 
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In the equation above, 

€ 

θ  and S are vectors of network parameters corresponding 

network statistics, respectively, both of length n. Using the value of r obtained from 

Equation 3.7, we can calculate the probability of accepting , denoted  

€ 

paccept , and move the chain to  with probability proportional to 

€ 

paccept : 

 

€ 

x t+1 =
x'  with probability paccept

x with probability (1− paccept )
⎧ 
⎨ 
⎩ 

 

Equation 3.8 

 

When sampling networks, we sample a set of ages form the household model and 

then run the algorithm above for a burn-in period of 500,000 steps, which ensures that 

sampled graphs will not contain traces of the initial state of the graph. Thereafter, we 

sample random contact networks at intervals of 

€ 

103 steps and use these to evaluate the 

contact heterogeneity and outbreak dynamics associated with the social processes 

described in the text.  

! 

" x 

! 

" x 
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 S4. Epidemic Percolation Graph Model of Community Transmission 

We utilize the epidemic percolation graph (EPG) method of Miller (3) to simulate 

the final size of NoV outbreaks. In this model, a weighted network  is 

constructed, where the vertices, V, consist of the individuals in the community and the 

edges in E are directed links weighted by the probability that node i will infect node j, 

given that i is infectious and j is susceptible. Outbreak realizations are generated by 

randomly selected edges to remain in the graph with probability proportional to their 

transmissibility. The size of outbreak associated with infection of a single index node is 

equivalent to the size of the out-component of the node in the resultant graph. For a 

point-source outbreak involving multiple index nodes, the size of an outbreak is 

equivalent to the set of nodes included in all out-components of the index nodes. 

In our EPG model, household and community contacts are condensed into a 

single network where nodes are connected by weighted edges, and the weights 

correspond to transmissibility. Transmissibility is a function of phase of infection, i.e. 

symptomatic vs. asymptomatic, and context, i.e. household vs. community. 

When the model is initialized, all individuals are assigned the duration of 

symptomatic,  , regular asymptomatic infection,   and long asymptomatic infection, 

€ 

dL ,i , they would have if infected. The average duration of symptomatic infectiousness is 

denoted 

€ 

1/γ S . The average duration of regular and long asymptomatic shedding are 

denoted, 

€ 

1/γ R  and 

€ 

1/γ L , respectively. The durations of these infectious phases that are 

used in simulations are realizations of the random variables 

€ 

DS , 

€ 

DR , 

€ 

DL , respectively, 

with the distributions defined below: 

! 

G = V ,E{ }

! 

dS,i

! 

dA ,i
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€ 

Ds ~ Exponential(1/γS) 

€ 

DR ~ Exponential(1/γ R ) 

€ 

DL ~ Exponential(1/γ L) 

 

 

We also define X to be a random variable with a uniform distribution, where x is a 

random realization of X: 

€ 

X ~ Uniform(0,1]  

 

 Using all of these values, we can assign durations of symptomatic and asymptomatic 

infectiousness to all nodes in the community: 

 

€ 

for all nodes v∈V :

    dS,v =
0 if x < τ

ds otherwise
⎧ 
⎨ 
⎩ 

   dA ,v =
dR + dL  if x < ρ

dr otherwise
⎧ 
⎨ 
⎩ 

 

Algorithm 3.1 

 

Using these duration values, we can weight the directed edges connecting nodes in the 

community and household networks. 

€ 

QH ,i is the transmissibility of a household network 

edge emanating from node i, while  

€ 

QC ,i  is the transmissibility of an edge in the 

community emanating from i: 
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€ 

QH ,i =1− exp(−βISdS,i + βIAdA ,i)
QC ,i =1− exp(−βIAdA ,i)

 

Equation 3.9 

 

Because individuals do not transmit in the community during the symptomatic phase of 

infection, we omit the strength and duration of symptomatic infectiousness from the 

calculation of the transmissibility of community links, 

€ 

QC ,i . 

Finally, we outline the mechanism by which point-source spreaders transmit in 

the EPG model. At initialization, a set of nodes is chosen, each with probability 

€ 

ζ , to be 

food servers. In order to preserve the burst-like quality of point-source events (PSE), 

when a PSE occurs, the food handler infects all of their uniformly selected point-source 

contacts at one time. The size of these point-source exposures are drawn at initialization 

and directed edges are placed between the food-server and exposed individuals. We 

denote 

€ 

TPSE  to be a random variable representing the waiting time until a PSE event 

occurs. 

€ 

tPSE ,i  is a realization of 

€ 

TPSE  associated with individual i. Z is the set of 

individuals exposed to individual i.  

€ 

TPSE,i ~ Exponential(λ)
for all nodes v ∈  Z :
    QPSE,v =1, if tPSE,i < dA ,i

    QPSE,v = 0, otherwise

 

Algorithm 3.2 
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Chapter 4 

Social connectedness can inhibit disease transmission: Social organization, cohesion, 

village context and infection risk in rural Ecuador 

 

Abstract 

Epidemiologists typically approach social networks as conduits that transmit 

infectious disease.  But dense networks of relationships may also manifest social 

organization that suppresses exposure to pathogens. We analyze the influence of social 

connectedness and organization on infectious disease transmission in 19 villages in rural 

coastal Ecuador that varied by their remoteness (measured by the difficulty and cost of 

travel to the nearest major town).  Social connectedness is assessed using data from 

community-wide surveys of social networks, sanitation, and illness outcomes. We 

estimate risk and protective factors associated with two village social networks that 

represent relationships characterized by 1) discussing important matters (IM) or 2) 

passing time together (PT).  The most remote village in our sample has a 50% lower risk 

of disease (OR = 0.49, 95%CI = [0.29,0.84]) than the least remote one, and this can be 

explained by increased social connectedness as well as improved water treatment, 

sanitation and hygiene.  Controlling for exposure to illness in ego’s community and 

household, for average households, a 1-unit increase in a village’s average network 
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degree is associated with a reduction in risk of illness (IM: OR = 0.83, 95%CI=[0.72-

0.95]; PT: OR = 0.89, 95%CI=[0.81-0.98]).  Other network exposure factors within 

households and contacts outside villages were shown to be risk factors.  Social networks 

are not only conduits for the transmission of infectious disease but also adaptive 

resources that facilitate the development of social mechanisms for preventing the spread 

of disease. 

 

Introduction 

Studies of the transmission of infectious diseases (1, 2) often use social networks 

as maps of direct contacts that facilitate person-to-person transmission of  pathogens. But 

dense social networks may represent social cohesion that can foster education and social 

organization. These, in turn, may lead to better water sanitation and hygiene practices, 

which can prevent population-level exposure. For pathogens whose community-level 

transmission is strongly impacted by the efficacy of water sanitation infrastructure and 

household-level hygiene practices. In some instances, the preventive effects of networks 

might even outweigh their transmission potential so that individuals experience lower 

risk of infection in communities with denser and more cohesive social networks, as 

illustrated by Figure 4.1. This contrasts with the prevailing view of networks as 

transmission systems in which an increasing number of contacts is associated with greater 

individual-level risk (3). We test the idea that increased social network connectedness 

predicts diminished risk of infection using a sample of 19 villages in rural, northern 

coastal Ecuador.  A road was recently built that connects these villages to the nearest 

large town in the area, which itself has about 5000 inhabitants, was recently built. 
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Consequently, these villages now vary in their remoteness, measured by their distance 

and difficulty of travel to this trading center.  Our previous analysis suggests a causal 

relationship between remoteness and the more proximal social network variables (4) as 

well as connectivity within and outside of the study region (5)   Less remote villages have 

more transient inhabitants and are more socially fragmented and less able to build and 

maintain water sanitation infrastructure and promote hygiene practices than more remote 

ones. To understand these effects, we analyze infection risk in these villages in terms of 

three specific mechanism that are downstream from remoteness and may affect diarrheal 

disease risk:  1) the rate of introduction of pathogens into villages as measured by contact 

with individuals from outside; 2) social cohesion that may provide protection through 

improved infrastructure; and 3) contact patterns that may spread disease from either 

person-to-person or person-to-environment-to-person (4, 5).  

We define a network comprised of relationships that are likely to facilitate 

transmission of pathogens as a contact network; i.e., a structure of connections through 

which an individual, denoted as ego, may be infected by his or her network neighbors, 

denoted as alters.  This network contains all of the pathways an infection may follow 

through the community via direct human contact.  In contrast to these contact networks, 

we define links in sociality networks as connections between people that represent 

specific types of social engagement.  Connections in sociality networks can correspond to 

casual acquaintance, close friendship and trust, or economic exchange. These 

relationships have a meaningful impact on infection risk because they often determine 

whether communities have effective sanitary infrastructure and health services (6). In this 
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way, more network connections (e.g., friends), may be protective and indicative of social 

support, instead of transmission-enhancing, as in a contact-only network (7).   

Although the social cohesion and organization represented by these sociality 

networks is critical to the functioning of communities (8, 9, 10), the influence of these 

factors on infectious disease risk at the community level is typically neglected. Social 

relationships have long been employed as contact networks in transmission models, e.g., 

(1, 11, 12, 13), and as factors that are protective against chronic disease (14, 15). But 

outside of the literature on sexually transmitted diseases, e.g., (16, 17), there are 

comparatively few examples of the protective and organizing role these social 

relationships may play in the epidemiology of infectious diseases. Cohesive communities 

are more likely to perceive their economic and social interests as common to the group 

and may be more motivated and better able to pursue collective goals such as building 

and maintaining effective water and sanitary infrastructure. This means that 

understanding the drivers of infectious disease risk at the community level requires 

understanding the elements of social structure which condition the infrastructure and 

behavior that can prevent population-level exposure. In this paper, we operationalize 

specific risk and protective effects of social relationships via survey and social network 

analysis methods and show that social networks can reduce as well as enhance risk in the 

epidemiology of infectious diseases.  

Community social structure and risk 

Understanding how sociality networks influence infection risk in these villages 

requires consideration of how social organization and action can inhibit or enhance 
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pathogen transmission via the environment. Figure 4.1 illustrates our posited mechanism 

of the effect of social cohesion on illness risk. Poor quality sanitary infrastructure is a 

leading population-level risk factor for infection by enteric pathogens such as cholera 

(18, 19, 20), and such infrastructure is usually a public good that requires ongoing 

funding and management by the community. Transmission of many such pathogens is 

often conceptualized as person-to-environment-to-person, with water acting as the 

environmental reservoir (21). Greater community cohesion may predict better overall 

water quality through education in sanitary practices and social organization that 

produces infrastructural improvements, such as water filtration and sewage treatment. If 

this is true, we would expect to find an that the average number of social network 

connections in a village and risk of infection by enteric pathogens are inversely related. 

For example, if ego has many relationships in her village sociality network and 

belongs to a community organization focused on improving local water quality, she may 

help reduce the entire village’s exposure to pathogens. Although her social relationships 

can also function as transmission connections, it is possible that the salutary effects of her 

social engagement will render transmission via those connections less relevant by 

reducing village-wide exposure to enteric pathogens in the first instance. This idea is 

supported by the work of Chang et al. (22), who found that higher levels of poverty and 

violent crime, which indicate diminished social control and organization, predict 

increased shigellosis incidence at the level of U.S. counties. On a similar note, Troesken 

(23), shows that a switch from private to public provision of water services, and a 

corresponding shift in incentives, in early 20th century New Orleans predicted a sharp 

decline in Typhoid incidence among that city’s black residents.  
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Measuring effects of sociality and contact networks on risk 

When assessing the role of social networks in infection risk, the distinction 

between the sociality and contact aspects of relationships is not always clear. We address 

this by analyzing our illness data with respect to two different sociality networks and 

comparing the results of each analysis. We define the person-to-person contact network 

in all analyses as the network comprised of individuals, excluding ego’s household 

members, with whom ego reports having spent time with in the previous week. This is 

called the passing time or PT network.  We use this inclusive definition of contact 

because a wide range of casual and close contacts can transmit gastrointestinal pathogens 

(24).  

In our first analysis, the PT network represents both village sociality and contact 

networks. This definition of a sociality relationship is inclusive and likely to highlight 

many connections between people in the community but is a general network that may 

only weakly reveal underlying social structure.   Therefore, if a minimal level of 

attachment by individuals to the community is necessary to impact infection risk, we 

should expect that relationships in the PT network will predict diminished risk. In the 

second analysis, membership in the sociality network is constrained to relationships 

corresponding to the question: “Outside of members of your household, with whom do 

you talk about important matters?” We define this network as the important matters, or 

IM network. This network typically contains fewer individuals than the PT network, but 

may reveal more about the underlying structure of the community. If a level of 

attachment to the community stronger than that implied by the PT network is important 

for reducing illness risk, relationships in the IM network should be better predictors of 
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risk than those in the PT network.  By comparing results obtained using each of these 

sociality networks, we can better understand how the definition of relationships in the 

sociality network impacts our ability to assess sources of risk and understand the effects 

social relationships have on risk.  

Our analysis of contact networks focuses on ego’s risk of infection from contact 

with ill individuals in her contact network.  By contrast, the analysis of sociality networks 

focuses on risk associated with the sociality network’s aggregate, village-level features 

and ego’s position in this village-wide network. This allows us to examine separate 

effects of these different aspects of each type of network on disease outcomes.  

Methods 

Setting 

 Our data consist of 2938 observations among individuals aged 13 and older, from 

a 2007 survey of sociality networks, contact networks, household wealth, village 

remoteness, and disease outcomes (diarrhea and fever) in 19 villages in the northern 

coastal Ecuadorian province of Esmeraldas. These villages are situated along 3 rivers, the 

Cayapas, Santiago, and Ónzole, all of which drain towards Borbón, which is the major 

population center of the region.  In 1996, a new paved road was built westward from 

Borbón to the coast, and in 2001 a road connecting Borbón to the Andes was completed.  

A network of smaller roads linking villages to the main road is under continual 

construction.  These villages vary by remoteness, a function of their time and cost of 

travel to Borbón (see (5)).  Remoteness influences social relationships and network 
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structure, migration in and out of the region, and other factors that impact both social 

network characteristics and exposure to infectious diseases. 

Previous work with this collection of villages has shown that a village’s 

remoteness is inversely associated with the level of lab-confirmed enteric disease in that 

community (5).  This finding was observed in parallel with the fact that the network of 

social contacts was significantly denser in the villages far from roads (4).  Existing theory 

would predict that dense villages would be more susceptible to outbreaks of enteric 

pathogens, because the average infected individual would have more available 

susceptible contacts in the denser network than in the more diffuse one.  

Additional Network Data 

In addition to the important matters (IM) and passing time (PT) networks 

described above, we represent contacts between households by links in a food-sharing 

network.   Relationships in this network were obtained using the survey question:  

“Outside of your household, with whom did you share food with in the past week.”   In 

this network, two households are connected if food was shared between them during the 

week prior to the survey. To gauge the effect of these relationships at the individual level, 

the household network is represented as a bipartite network, where the two sets of nodes 

correspond to individuals and to households, and an individual is connected to all of the 

other households in his or her household’s food-sharing network.   

Outcome Measure 

 Recent infectious illness. Our outcome measure is ego’s self-reported diarrheal 

disease or fever in the week prior to the survey. Diarrheal illness is defined as ego having 



	
  113	
  

3 or more liquid stools in one day (25). We combine these two categories of illness into a 

single binary response variable that indicates whether the individual has recently 

experienced illness likely of infectious origin.   

Measuring community cohesion and household attachment 

We take several approaches to measuring social cohesion and organization, 

utilizing data on the structure of community social networks, participation in community 

organizations, and perceptions of trust within the community. 

Average degree of individuals in sociality network. This measures the average 

number of relationships in the sociality network for individuals aged 13 and above. As 

the number of connections per person grows, the cohesion of the community is expected 

to grow as well, e.g., (4, 26).   Unless otherwise noted, this quantity is measured in 1-unit 

increments. 

Household sociality degree. We expect the salutary effects of social 

connectedness to operate at the household level. Because of this, we measure the effect of 

sociality network degree on risk using the sociality degree of the most connected 

individual in ego’s household, which we define as household degree. In order to measure 

the effect of a relative increase in degree at the village level, we standardize each 

village’s distribution of household degree, D, to have mean zero and unit variance. In all 

analyses, we present household degree in standard deviation (SD) units from village 

mean household degree.  
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Clustering coefficient of sociality network. Multivariate models with network 

covariates are adjusted for the global clustering coefficient of the village sociality 

network. For a detailed description of clustering, see the supplementary materials.  

 Participation in community organizations.  We also collected data in the survey 

on participation in community organizations, which reflects the engagement of 

individuals in the civic life of their community. We measure this using the mean number 

of organizations that individuals aged 13 and above in the village belong to. We measure 

the participation of households as the maximum number of memberships by anyone 

living in ego’s household, which we define as household membership. As with household 

degree, this value is standardized to have unit variance and equal zero at its village mean. 

 Other Covariates 

 Village remoteness: Remoteness is measured using a scale that is a composite of 

distance and cost of travel to Borbón, the commercial center in the region.  We normalize 

the value of remoteness so that the closest village has a remoteness value of zero and the 

most remote village has remoteness equal to 1. 

  Individual and village demographics: All analyses are adjusted for ego’s age. We 

also adjust the number of inhabitants of ego’s village included in the survey, and ego’s 

household size. 

 Contact with individuals outside the village: We estimate risk of illness associated 

with two variables indicating a) the proportion of households in which at least one person 

has left the village or b) received visitors from outside the village, both in the previous 

week. 
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Contact network exposure: We estimate the change in ego’s illness risk associated 

with each additional alter in her contact (PT) network who reported symptoms in the 

previous week. 

Household exposure: We estimate the change in ego’s risk of disease associated 

with each additional infected household member. We subtract the sample mean 

household size from each household so that our risk estimates reflect the effect of 

deviation from the average household.  

Food-sharing exposure: We include the count of the number of individuals in 

ego’s food-sharing network who reported illness in the previous week. 

Wealth: We estimate the impact of household-level wealth, measured by the 

ownership of material goods, on risk. We assess wealth with a scale from 0 to 10, that is a 

weighted sum of the number of items belonging to a household. These include 

televisions, motorcycles, refrigerators, chainsaws, etc.  For details on the measurement of 

household wealth, see the supporting materials. 

Education: More years of formal education may lead to greater awareness of 

methods for preventing infection by diarrheal pathogens through, for example, sanitation 

and water treatment. We estimate the change in risk of infection associated with a 1-year 

increase in the average number of years of education for all individuals aged 13 and older 

in each village.  

Water sanitation and hygiene: We measure sanitation and water quality using 

several community-level indices: Observed hygiene is the average of 23 indicators of 

household cleanliness across all households in the village. Improved sanitation is the 
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proportion of households in the village with improved sanitation, defined as a septic tank 

or a latrine.  Improved water source measures the proportion of households using a water 

source such as piped water or rainwater collection. Water treatment measures the 

proportion of households in the community reporting that they used some kind of water 

treatment.  For values of these measures by village, see Table 4.6 in the supplementary 

materials.  

Modeling risk for individuals nested in communities 

Since we are conceptualizing individual-level outcomes as the consequence of 

village-level factors, we are making multiple observations of the same village and expect 

that responses will be correlated. We deal with this correlation in all regression models 

by using mixed-effects logistic regression models with village-level random intercepts 

and estimates of individual-level fixed effects for all covariates over all villages (27, 28).  

Because such models are fit via maximum-likelihood, likelihood-based goodness-of-fit 

measures such as the Akaike information criterion (AIC) (29) may be used for model 

comparison and selection, assuming correct model specification. The AIC balances 

parsimony and goodness-of-fit by imposing a penalty on the likelihood of the model for 

each additional parameter. 

Indirect effects of village-level characteristics on individual risk 

We assume that remoteness does not directly impact disease, but acts through (or 

is mediated by) more immediate factors (e.g. sanitation) as illustrated by Figure 4.1. 

Since quantifying the mediation effect through the difference of regression coefficients, 

e.g. (30), is not readily extended to binary response variables, we use an alternate 
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approach. We estimate the mediation effect as the difference between a) the crude 

association of remoteness with illness and b) the association of remoteness and illness, 

adjusted for the mediator variable. These are quantified by the ratios of the expected 

probability of illness for individuals in Far versus Near villages, with and without the 

mediator in the model. Statistical significance of this effect is assessed using a non-

parametric bootstrap. This analysis is repeated to estimate the mediation effect of average 

village level degree.  For a detailed discussion of this mediation analysis, see the 

supplementary materials.  

Results 

 Descriptive Results 

 Village-level descriptive statistics of remoteness, illness, water sanitation, water 

quality and household hygiene are listed in Table 4.1. Villages are listed in order of 

increasing remoteness.   Descriptive characteristics of interest for the important matters 

(IM) and passing time (PT) networks for each village include average degree and the 

global clustering coefficient (Table 4.2). Additional village-level descriptive statistics, on 

organization membership, education and wealth, are available in Table 4.5 in the 

supplementary materials. 

 Individual and village-level predictors of infectious illness risk 

 Logistic regression models were analyzed for the effects of household and 

village-level social network characteristics, village-wide socioeconomic status (wealth, 

education), social capital (membership in community organizations), and contact with 

individuals outside of ego’s village on risk of illness. Model 1 (AIC = 2110) shows 
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sources of exposure risk, adjusted for age and village size. This model shows that: 1) a 

10% increase in the proportion of households with visitors from outside the community 

in the week prior to the survey predicts an increased risk of illness (OR = 1.12, 95%CI = 

[1.00-1.25]); 2) a 1-person increase in the number of ill individuals in ego’s household 

predicts increased risk of illness (OR = 1.59, 95%CI = [1.41-1.79]);  and 3) a 1-person 

increase in the size of ego’s household is associated with diminished risk (OR = 0.86, 

95%CI=[0.82,0.91]).  

Living in the villages with the largest values of average IM and PT degree 

compared to the lowest is associated with a significant unadjusted reduction in risk (IM: 

OR = 0.38, 95%CI = [0.22-0.68]; PT: 0.41, 95%CI = [0.20-0.84]).  Models 2 and 3 are 

adjusted for household and village-level network characteristics.  Both networks show 

that a 1 unit increase in average village-level degree is associated with diminished risk 

when household degree is fixed at its village mean (IM: OR = 0.83, 95%CI = [0.72-0.95]; 

PT: OR = 0.89, 95%CI = [0.81-0.98]).  The statistically significant interaction between 

village average and household IM degree (OR = 1.17, 95%CI = [1.04-1.32]) suggests that 

the protective effect of village level average degree applies to households with degree 

less than 0.6 standard deviations above the village mean. Above this level the 

associations become non-significant and therefore our data cannot resolve the 

association. For further discussion of this relationship, see the supplementary materials. 

Indirect effects of distal (remoteness) and intermediate (social network) factors on 

risk 
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Residence in the most remote versus the least remote village in our sample is 

associated with a large decrease in ego’s unadjusted risk of infectious illness (OR = 0.49, 

95%CI = [0.29-0.84]). This effect operates through five statistically significant village-

level mediators (

€ 

p ≤ .10):  the percentage of households in the village with an outside 

visitor in the previous week  (

€ 

ˆ m = 0.061, p = 0.012), village-wide average degree in the 

PT network (m = 0.047 p = 0.054), improved sanitation (

€ 

ˆ m = 0.042, p = 0.012), improved 

water treatment (

€ 

ˆ m = 0.072, p = 0.04) and ego’s household size (

€ 

ˆ m = 0.016, p = 0.004). 

We also find that the mean number of organization memberships by adults in ego’s 

community (

€ 

ˆ m = -0.046 p = 0.081) suppresses the effect of remoteness.  In order to assess 

whether the four mediators can fully explain the association between remoteness and 

illness, we fit a logistic regression model predicting ego’s illness with remoteness, 

household size, village average PT degree and improved sanitation and water treatment 

as covariates.  In this model, the relationship between remoteness and illness is no longer 

significant and the point estimate is closer to the null (OR: 0.71, 95%CI: 0.46, 1.10), 

suggesting that these five variables are important mediators linking remoteness to illness. 

The mediation analysis thus far suggests that a distal factor such as remoteness is 

mediated through social network factors as well as more proximal water and sanitation 

factors.  Village-level social network factors are also mediated by some of the more 

proximal factors.  For example, observed hygiene is a statistically significant mediator of 

the effect of village-wide average important matters (IM) and passing time (PT) degree 

(IM: 

€ 

ˆ m  = 0.093, p = 0.010; PT: m = 0.134, p = 0.001). Improved sanitation mediates IM 

degree (

€ 

ˆ m = 0.039, p = 0.001) while suppressing PT degree (

€ 

ˆ m = -0.042, p = 0.004).  This 

finding, that improved sanitation suppresses the village level protective effect of the PT 
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network, can be explained by a single village with high-quality water sanitation but low 

average degree. Dropping this village from the analysis eliminates the suppressive effect 

of improved sanitation for PT (

€ 

ˆ m = 0.006, p = 0.455).  

 

Discussion 

Contrary to the standard representation of highly connected social networks as 

efficient transmission systems (e.g., (3)), we show that greater connectivity at the village 

level can inhibit the  prevalence of self-reported diarrheal disease and fever. While 

controlling for sources of exposure to illness, our analysis shows that increasing village-

wide average degree is associated with decreasing risk for households of average degree 

in the important matters (IM) network and all households in the passing time (PT) 

network.  

Because our multivariate models assess risk factors for the same group of 

individuals and villages arranged into different village-wide networks, we can compare 

the relative ability of these networks to explain risk using the AIC.  We find that model 3 

in table 4.3, which includes both individual and village-level features of the IM network, 

provides the best overall fit to the data. This suggests that relationships in the IM network 

are more useful for revealing the social backbone of the community than those in the PT 

network. This may be because IM network relationships imply greater intensity and trust 

than those in the PT network. Their more stringent definition may also result in less 

variability in the meaning and intensity of relationships in the network across individuals 

and communities that makes these networks more useful for understanding how social 
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support in a sample of communities affects risk.  In addition to the measures of social 

connectedness and support presented here we also explored the effect of other factors 

related to social cohesion, such as levels of mutual trust in the village on risk, but found 

these associations to be non-significant. 

Our analysis also connects these more proximal social network, water sanitation, 

and hygiene factors to the more distal social and environmental context in which the 

village is situated, i.e. its remoteness. Specifically, we employ a mediation analysis to 

examine how remoteness affects social networks, which in turn affect the quality of water 

and sanitation infrastructure.  Previous studies postulate that remoteness impacts risk via 

its effects on contact networks and village cohesion (5). Results from our mediation 

analysis agree with this theory, showing that more remote villages experience decreased 

risk because the average individual in them has more relationships in the village passing 

time (PT) network, and lives in a larger household than a comparable person in a less 

remote village.  Further mediation analysis suggests that villages with high average 

degree experience a decreased risk of illness through improved water quality and 

sanitation. In such villages, these protective effects render the increased risk associated 

with living in a low-degree household non-significant.   

Our finding that household size predicts decreased risk is explained by the finding 

that increasing household size mediates of the protective effect of remoteness. Although 

living in a larger household means that ego has more contacts, larger households may 

also indicate tighter integration of individuals into their communities. This would be 

consistent with the overarching finding that the protective effect of remoteness operates 

through its effects on increased social cohesion.  
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Our causal model (Figure 4.1), hypothesizes a relationship between village 

remoteness and risk that operates through village social organization and cohesion. This 

social organization is postulated to lead to activities, such as building water sanitation 

infrastructure, hygiene practices, etc., that decrease disease prevalence in the village. 

Because we conceptualize sanitation and hygiene as village-level constructs, the 

relatively small number of villages in our sample makes it difficult to directly test the 

hypothesis that water sanitation and hygiene are outcomes of village-level social 

cohesion. Nonetheless, results illustrating the mediation of village remoteness and 

average degree by these factors strongly suggest that this is the case. 

In addition to the protective effects of social behavior outlined here, we also find 

that migration between villages, measured by whether ego had contact with a visitor from 

outside the village in the previous week, predicts increased risk of infection. This 

confirms previous findings from these villages (5). The result that this exposure 

suppresses the protective effects of village-level average IM and PT degree underscores 

the effectiveness of between-village migration as a means of disseminating pathogens. 

Networks of social relationships can reduce the risk of illness from infectious 

diseases by mitigating population-level sources of risk in ways that preempt the role of 

social networks in person-to-person transmission.  These results expand on theory that 

social connectedness and support are important predictors of chronic illness (31, 32) as 

well as the theory that social connectedness can mitigate the spread of pathogens such as 

tuberculosis and HIV (e.g., (33)).  Infectious disease epidemiologists and social scientists 

should incorporate insights presented here into mechanistic models that can explain 

outbreak and epidemic time series in terms of both the contact and sociality functions that 



	
  123	
  

networks have. Such models can provide a more nuanced analysis of the relative 

contributions of social organization and contact to the risk of infectious diseases.  
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escriptive characteristics of villages. Village characteristics include rem

oteness, the num
ber of 

individuals surveyed (sam
ple size), prevalence of having either non specific fever or diarrheal disease, the 

percentage of households in the village using som
e form

 of w
ater treatm

ent, im
proved sanitation (i.e., septic tank or 

latrine), or an im
proved w

ater source (i.e., piped w
ater or rainw

ater collection), and an index, from
 0 to 1, of observed 

hygiene practices. R
em

o
teness

R
em

o
teness

S
am

p
le S

ize
Fever o

r 
d

iarrheal 
d

isease

H
o

useho
ld

s 
w

/ w
ater 

treatm
ent

H
o

useho
ld

s 
w

/ im
p

ro
ved

 
sanitatio

n

H
o

useho
ld

s 
w

/im
p

ro
ved

 
w

ater so
urce

O
b

served
 

ho
useho

ld
 

hyg
iene ind

ex

V
illag

e
C

o
n

tin
u

o
u

s
C

a
te

g
o

ry
N

C
a
se

s /1
0

0
%

%
%

M
e
a
n

1
0

.0
6

C
lo

se
2

3
4

15
2

5
4

3
4

3
0

.6
4

2
0

.0
7

C
lo

se
7

8
5

15
7

4
3

3
4

9
0

.7
0

3
0

.1
1

C
lo

se
3

5
11

3
3

5
0

0
0

.6
2

4
0

.1
3

C
lo

se
4

6
5

13
1

8
5

5
5

9
0

.6
9

5
0

.2
0

M
e
d

iu
m

1
1

4
12

1
4

6
1

7
0

.6
9

6
0

.2
0

M
e
d

iu
m

5
2

16
0

6
4

1
5

0
.6

3

7
0

.2
0

M
e
d

iu
m

4
7

19
9

3
1

1
2

0
.5

3

8
0

.2
5

M
e
d

iu
m

5
6

7
3

3
1

0
0

0
0

.7
9

9
0

.2
5

M
e
d

iu
m

4
7

28
7

2
5

5
1

0
0

0
.5

1

10
0

.3
1

M
e
d

iu
m

1
0

6
12

0
1

5
0

0
.4

5

11
0

.4
0

M
e
d

iu
m

6
9

14
0

2
6

1
0

0
0

.6
8

12
0

.5
7

M
e
d

iu
m

9
1

18
2

3
5

0
7

7
0

.7
1

13
0

.6
2

M
e
d

iu
m

1
2

1
20

1
9

7
1

9
0

.3
1

14
0

.7
1

F
a
r

8
9

7
1

3
5

2
4

8
0

.3
8

15
0

.7
8

F
a
r

2
2

4
10

3
3

5
5

5
5

0
.7

1

16
0

.8
0

F
a
r

8
1

0
1

5
8

6
9

9
0

.7
4

17
0

.8
3

F
a
r

3
1

1
8

0
4

1
8

2
0

.7
3

18
0

.9
6

F
a
r

3
4

6
7

1
3

5
6

6
4

0
.7

3

19
1

.0
0

F
a
r

1
4

0
14

5
5

0
2

8
0

.6
8



	
  126	
  

Table 
4.2. 

C
haracteristics 

of 
passing 

tim
e 

(PT) 
and 

im
portant m

atters (IM
) netw

orks by village.  C
haracteristics 

of village netw
orks include m

ean and m
axim

um
 degree, and the 

global clustering coefficient for both the IM
 & PT netw

orks. For a 
full description of these netw

ork variables, see the text.

Im
p

o
rta

n
t M

a
tte

rs
 

Im
p

o
rta

n
t M

a
tte

rs
 

Im
p

o
rta

n
t M

a
tte

rs
 

P
a

s
s
in

g
 T

im
e

 
P

a
s
s
in

g
 T

im
e

 
P

a
s
s
in

g
 T

im
e

 

V
illa

g
e

R
e

m
o

te
n

e
s
s

D
e

g
re

e
D

e
g

re
e

G
lo

b
a

l 
C

lu
s
te

rin
g

D
e

g
re

e
D

e
g

re
e

G
lo

b
a

l 
C

lu
s
te

rin
g

V
illa

g
e

R
e

m
o

te
n

e
s
s

M
e
a
n

M
a
x

G
lo

b
a

l 
C

lu
s
te

rin
g

M
e
a
n

M
a
x

G
lo

b
a

l 
C

lu
s
te

rin
g

1
0
.0
6

1
.9

8
0
.1
3

5
.1

1
6

0
.1
8

2
0
.0
7

2
.8

1
5

0
.1
7

5
.2

2
7

0
.1
9

3
0
.1
1

1
.2

2
0
.0
0

2
.9

9
0
.1
6

4
0
.1
3

3
.1

1
3

0
.1
5

5
.1

2
1

0
.1
4

5
0
.2
0

3
.6

1
0

0
.1
9

7
.7

2
0

0
.2
7

6
0
.2
0

2
.6

5
0
.3
3

5
.4

1
3

0
.3
9

7
0
.2
0

2
.6

6
0
.3
7

4
.4

9
0
.2
7

8
0
.2
5

3
.8

1
4

0
.2
8

7
.6

1
6

0
.4
6

9
0
.2
5

1
.8

4
0
.2
5

3
.3

7
0
.3
8

1
0

0
.3
1

2
.0

9
0
.1
2

4
.0

1
1

0
.2
5

1
1

0
.4
0

2
.6

7
0
.3
3

3
.3

8
0
.2
6

1
2

0
.5
7

3
.9

1
4

0
.2
5

6
.2

1
5

0
.3
3

1
3

0
.6
2

2
.7

9
0
.1
8

5
.5

1
4

0
.2
9

1
4

0
.7
1

2
.7

1
1

0
.2
6

5
.2

1
5

0
.2
5

1
5

0
.7
8

3
.9

1
5

0
.2
2

4
.5

1
2

0
.2
3

1
6

0
.8
0

4
.3

1
1

0
.3
3

7
.3

2
1

0
.3
9

1
7

0
.8
3

4
.3

1
5

0
.1
9

5
.8

1
7

0
.2
1

1
8

0
.9
6

4
.5

1
8

0
.1
8

6
.5

2
5

0
.1
7

1
9

1
.0
0

4
.6

1
5

0
.3
1

6
.9

2
3

0
.2
8



	
  127	
  

Table 4.3. M
ultivariate m

odels for risk of infection in previous w
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Table 4.4. Indirect effects of rem
oteness and village-level average 

degree on risk of illness. Table entries indicate the indirect effect, w
ith 

bootstrap based p-values in parentheses. Positive values indicate m
ediation, 

w
hile negative values indicate suppression. Statistically significant results (p 

≤ .1) are in bold.
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APPENDIX C 

Chapter 4 Supplementary Materials 

 

S1. Household Ownership Scale.  

Household wealth is assessed using a scale that assesses ownership of material 

goods. Items are weighed according to their relative value, so that, e.g., ownership of the 

family’s home makes a greater contribution to overall wealth than ownership of a 

motorcycle or television. The weights are listed in Table 4.4. 

 

 

Ownership of Weight 

House they live 
in 4 

Farm 3 

Animals (cows) 3 

Motorcycle 3 

Solar 1 

Motorcycle 3 

Canoe 2 

Chainsaw 2 

Bicycle 2 

Cellular 
Telephone 2 

Television 2 

Gas Stove 2 

Refrigerator 2 
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Blender 1 

Stereo 1 

Sewing 
machine 1 

DVD Player 1 

Computer 2 

 

Table 4.5 

 

The scale is computed for each household by summing the weights corresponding to the 

items in table S1 owned by ego’s household. This value is then divided by the sum of all 

the weights to obtain a normalized value, from 0 to 1, for ego’s household. 

 

S2. Clustering coefficient of village sociality network.  

The clustering coefficient of an entire network is the probability that an open 

triple in the graph will be closed. A closed triplet is a group of 3 nodes, a,b,c each of 

which is connected to the other two. An open triple is then defined as 3 nodes, a,b,c 

where a is connected to b and c. The clustering coefficient is the probability that b and c 

are connected, given that they are both connected to a, and is computed as:  

 C = # of closed triplets / (# of closed triplets + # of open triples)  

Equation 4.1 

Higher levels of overall clustering in a sociality network may indicate cohesion at the 

village level, indicating an increased propensity for individuals to form relationships with 
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those connected to their other alters (1). In addition, increasing average degree is often 

associated with an increase in the clustering coefficient of the graph. In transmission 

networks, holding average degree constant, increased clustering is generally associated 

with decreased population-level outbreak risk (2). Consequently, it is important to adjust 

for clustering when assessing the effect of average degree. 
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S3. Additional measures of village social cohesion and socioeconomic status. 

 

 

  

 

 

 

 

 

 

 

Table 4.6 

 Table S2 presents village-level measures of social cohesion, and socioeconomic 

status (SES), ordered by village remoteness. The mean number of memberships in 

community organizations by individuals older than 13 years is an additional measure of 

community cohesion. The mean number of years of education by individuals older than 

13 years, and the average score of households in the village on the wealth scale presented 

in Table S1 are measures of SES. 
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S4. Interactive effect of household and village-level average degree on risk.  

In our data, there is a joint effect of village average important matters (IM) degree 

and household IM degree on risk of illness. In villages with high average degree, 

individuals are always protected regardless of the degree of their household.  But in 

villages where average degree is lower, household degree becomes protective. This 

relationship is analogous to herd immunity obtained through high vaccine coverage. It is 

illustrated in Figure 4.2, below: 

 

Figure 4.2 

 

In each panel of the figure above, values of household degree, on the x-axis, are 

normalized so that 0 represents the mean household degree in ego's village and the units 

are standard deviations from the mean. The 75th and 25th percentile of average IM 

degree (3.8, 1.7, respectively) are used as the thresholds for 'high' and 'low' in each plot. 

Panel A shows relative risk of illness, comparing individuals in high vs. low average 
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degree villages. The solid line is the relative risk and the dashed lines are pointwise 95% 

confidence intervals. Panel B shows the odds of infectious illness stratified by 'high' and 

'low' average degree. The shaded region of the plot displays the difference of odds where 

this difference is statistically significant.  

 This relationship highlights the fact that connectedness at the household level can 

also be protective against risk. Because households are embedded in a hierarchical 

system in which household-level risk is strongly impacted by the quality of village-level 

infrastructure, this relationship is only operative in those villages in which levels of social 

cohesion do not foster consistent, high-quality water sanitation and hygiene practices. 
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S4. Calculation of Mediation Effects. The adjusted effect of remoteness is quantified 

by:  

, 

Equation 4.2 

Where D denotes the mediator. The corresponding ‘unadjusted’ effect of remoteness  

is defined analogously as:  

€ 

ʹ′ R = E(Y |Far) /E(Y |Near). 

Equation 4.3 

Each of these quantities is estimated by the average of the sample predictions of 

probability of disease produced by non-linear mixed effects (NLME) models that have 

been fit to our illness data using the lme4 package in R 2.10. The indirect effect of 

remoteness acting through a mediator, D, is then quantified by 

€ 

ˆ m = R-R’. Negative values 

suggest that the factor is a suppressor, i.e., something that buffers or inhibits the effect of 

remoteness. This analysis was conducted separately for each potential mediator so that 

the pathways through which remoteness is operating can be assessed.  Although a joint 

mediation analysis would be equally simple to perform, it would be more difficult to 

discern the pathways by which remoteness operates on risk.   

 In this analysis, positive values of m indicate mediation, and negative values 

indicate suppression. This is because the effect of living in a far village is protective 
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against illness, so the ratio of the average probability of infection for individuals living in 

far villages vs. those in near villages, R', is less than 1. If adjusting for the mediator 

eliminates the ability of residence in a in a far vs. near village to discriminate between 

illness outcomes, i.e. full mediation, the adjusted effect of remoteness, R, would then 

equal 1 and R - R' > 0. So, where m > 0, we are seeing mediation. The choice of the ratio 

in equations 4.2 & 4.3 is arbitrary and should not impact the qualitative results of the 

mediation analysis. If we were to assess mediation in terms of the ratio of near vs. far, 

however, positive values of m would then indicate suppression while negative values 

would indicate mediation. 

 The sampling distribution of our estimator of m is not analytically tractable, so we 

obtain standard errors using a bootstrap resampling procedure (e.g. (3)). Estimates are 

obtained via bootstrap resampling and refitting of the NLME models to these sampled 

datasets, which approximates the sampling distribution of m. For each covariate listed in 

Table 4, the full dataset was resampled with replacement 103 times, and the value of 

€ 

ˆ m  

for each sampled dataset was assessed using a random-intercept mixed effects model 

grouped by village, as described above. Positive values of 

€ 

ˆ m indicate mediation of 

remoteness by the selected factor, whereas negative values indicate suppression or 

buffering. P-values for significance testing are produced by inspecting the quantiles of 

the bootstrap estimates. 
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Chapter 5 

Conclusion 

This dissertation addresses a number of challenges involved in fostering and 

sustaining an integrated sociological and social epidemiological approach to infectious 

diseases. In the introduction, we focused on the theoretical issues that have prevented 

growth in this area of inquiry. Here, I will discuss some equally important 

methodological challenges and future directions through the lens of the three projects that 

comprise this thesis. 

Interfacing dynamic models and data 

In the first paper, we obtained transmission parameter estimates for household 

transmission of norovirus following a point-source outbreak event in which a food 

handler infected many people at once. This project underscores the challenges of 

interfacing dynamic models with data in a meaningful way. Its success is owed as much 

to the relative cleanliness of the data, and the point-source event that brought them about, 

as it does to the modeling choices made when analyzing the data. Explaining 

transmission systems that involve more moving parts, particularly the types of social 

behavior presented in our model of community-level norovirus outbreaks, or in other 

relevant social models, such as those of residential segregation, e.g. (1), involves an 

escalation of this technical challenge. The increased dimensionality of dynamic models 
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that involve both social behavior and disease natural history makes defining a likelihood 

function measuring the correspondence between model and data difficult.  

In general, there are two alternative approaches to inference in models that have 

many moving parts, both of which are simulation based. These alternative approaches 

have been described variously as ‘equation-free’ and ‘plug-and-play’ techniques, e.g., 

(2). The equation-free approach is still within the frame of likelihood-based inference and 

is based on the work of Ionides, Breto & King (3). Their approach involves simulating 

from the theoretical model one wishes to use to explain the data. Model parameters are 

estimated using the likelihood of the observed data in these simulated observations. 

Ionides et al. developed a novel filtering technique that allows one to find the maximum 

likelihood (ML) model parameters without resorting to brute-force simulation of the 

universe of parameter combinations.  But generating enough simulations to obtain a 

stable likelihood is nonetheless a computationally intensive affair that only becomes 

more difficult with models of increasing scale and scope, in terms of population size and 

the range of behaviors they can address. 

The second set of simulation-based approaches dispenses with ML estimation and 

focuses on optimizing the match between simulated values from the model and measures 

of the target dataset, e.g. (4) using some measure of the distance between the model and 

the data. This approach is somewhat analogous to the method of moments technique in 

which the fit of a statistical distribution to a dataset is assessed by the correspondence 

between the moments – mean, standard deviation, etc – of each, rather than the likelihood 

of the observed data, given the parameters of the distribution. These likelihood-free 

approaches to fitting dynamic models to data can be informative and often necessitate 
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fewer stochastic samples than likelihood-based methods like that of Ionides et al. 

However, like the method of moments, likelihood-free approaches lack the efficiency of 

maximum-likelihood estimation and are susceptible to bias.  

These simulation-based, equation-free approaches to inference are compelling 

because they blur the line between the approach presented in paper one, which is focused 

on fitting a theoretical model to data, and the approach taken in paper two, where we 

analyze data generated by a more involved community outbreak model.  

From the plug-and-play perspective on inference, there is no theoretical reason 

preventing us from using the simulation model in paper two for both exploratory analysis 

and maximum-likelihood estimation of parameters for an observed outbreak. However, 

this does not mean that we can dispense with care in the process of model building and 

continually throw ideas against the wall until one sticks. Dynamic models are as 

susceptible to overfitting and multiple testing bias as any other statistical model and 

should be approached with the care and forethought that this implies. Instead, by 

loosening some of the constraints on fitting the model to data, we put the burden 

precisely on the process of design and theoretical development as opposed to working 

around inferential constraints. For example, such approaches open up the possibility of 

developing dynamic models of infectious disease transmission that include the kinds of 

layered social behavior implied by the results of the third paper. The greater flexibility of 

this computational approach does of course come at a price, because it involves much 

greater demand on computational resources than more analytical approaches.  

Massively parallel epidemiology 
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One of the more exciting computing advances of recent years is the increasing 

accessibility and affordability of massively parallel computing. These tools allow us to 

take many samples at the same time, sometimes numbering in the hundreds or thousands, 

from computationally intensive stochastic models, rather than drawing these samples in 

series and waiting a long time for the result. Accessible parallel computing has the 

potential to improve the modeling enterprise at two both the theoretical and public health 

policy levels. At the level of theoretical development, models that run faster can speed 

development and testing; at the level of public health policy and practice, faster runtimes 

mean that these models can be used to understand the progression of evolving outbreaks 

and devise and test potential interventions in real time, e.g. (5). 

Model development 

In keeping with their computational underpinnings, the process of developing the 

kinds of mechanistic models discussed here is typically more of a loop than a linear 

process. Model building is usually iterative: models are tested, refined, re-built and re-

tested. The program implementing the model should facilitate rather than hinder this 

process of creative destruction. Consequently, implementing the ideas expressed by the 

theoretical model in as transparent and flexible way as possible is challenging, as is 

measuring and optimizing the correspondence between model and data. Despite this, the 

process of implementing the model is often regarded as secondary to addressing the 

theoretical issues the model is aimed at. This often results in poorly written code that 

allows the program to be mistaken for the model. Thoughtful, modular code allows 

theoretical and empirical considerations determine modeling decisions. 
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For builders of dynamic models, this process of theoretical refinement is typically 

enmeshed with, and limited by, the process of writing, maintaining and re-writing 

computer code. For example, it is not unusual for models to be coded in a procedural way 

in which the events that occur in the model happen one after another, rather than putting 

model elements into modular components that can be modified independently without 

breaking the entire program. This procedural approach makes it more likely that 

theoretical assumptions will become baked into the model code and become 

progressively less likely to be subject to further refinement or revision over time.  

This kind of procedural programming often comes out of a single-minded focus 

on the optimization of model code for speed. When code is inefficient and simulations 

take a very long time to run, modelers may be tempted to cut their losses by looking at 

only a narrow band of the model’s behavior, or take too few samples at each point in the 

model’s parameter space to draw meaningful conclusions. This undermines the 

exploratory and empirical potential of the model, because the implications of the ideas 

encoded by the model cannot thoroughly explored. Consequently, we end up taking too 

few trips through the theory-simulation-refinement loop and end up with final products 

that are not as strong as they otherwise might be. Completing this loop and developing 

effective and meaningful models that integrate social and biological dynamics requires a 

willingness to embrace an approach to computation that is as sophisticated as our 

theoretical ideas and statistical techniques.  

 Future directions 
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The third paper of this dissertation poses but does not directly address the issue of 

integrating the effects that networks of social relationships have on exposure of entire 

populations to pathogens, inside of a unified model. Approaching this challenge involves 

drawing together the lessons of each of the projects that comprise this dissertation. These 

projects build up to progressively greater levels of scale and aggregation, from 

households to the regional level.  

The next step involves working backwards through the concepts motivating each 

of these projects and augmenting and refining them to address these ambitious goals. In 

the third paper, we highlight the nuance involved in understanding the role of different 

types of social relationships in transmission risk. Understanding these issues is important 

for designing useful dynamics models including the role of social action in community 

and region-level infectious disease transmission. In the second paper, we developed and 

implemented a framework that allows for multiple types of social behavior in the context 

of an outbreak simulation model and that should be expanded to deal with the kind of 

social behavior that conditions population-level susceptibility.  

Finally, in the first paper, we explained household transmission subsequent to a 

point-source outbreak using a likelihood function derived from a dynamic outbreak 

model. In order to apply the insights of the second and third chapters to real-world data, 

we will need to go beyond this approach and use techniques, such as the plug-and-play 

methods discussed above, to develop our understanding about the correspondence 

between behavior, biology and infectious disease outcomes. 
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