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Abstract
The on-shell gravitational action and the boundary stress tensor are essential
ingredients in the study of black hole thermodynamics. We employ the
Hamilton–Jacobi method to calculate the boundary counterterms necessary
to remove the divergences and allow the study of the thermodynamics of
Einstein–Gauss–Bonnet black holes.

PACS numbers: 04.20.Fy, 04.50.Gh, 04.70.Dy, 11.10.Kk

1. Introduction

The AdS/CFT conjecture has led to a renewed interest in the study of black hole
thermodynamics. In this new framework, the thermal properties of an AdS black hole
configuration are dual to that of the finite temperature CFT. An important example is
the Hawking–Page phase transition [1] for black holes in AdS which corresponds to
a deconfinement transition in the dual field theory [2]. In order to study black hole
thermodynamics, it is standard to evaluate the on-shell gravitational action and the boundary
stress tensor. The on-shell value of the action (which we denote as �) is identified with the
thermodynamic potential � according to � = β�. Moreover, for static backgrounds with the
time-like Killing vector ∂/∂t , the energy E is given by the ADM mass, extracted from the t t

component of the boundary stress tensor. Though one expects that the thermodynamical laws
are satisfied in general, an important complication is that both � and E are divergent quantities
and require regularization.

An approach to regularization suggested in [3] is to subtract the action of a reference
spacetime from the action for the spacetime of interest. Under appropriate matching conditions,
the divergences in both actions will cancel, thus leading to finite quantities of interest. Although
this approach is useful in many cases, it becomes problematic when the appropriate reference
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background cannot be found, or when there is a potential ambiguity in the matching conditions.
In the framework of AdS/CFT, an alternative method for removing infinities was developed
in [4–6]. Inspired by renormalization in the dual CFT, this method involves the addition of a
set of covariant boundary counterterms that remove all power-law divergences from the on-
shell action. While the values of the counterterms were originally chosen simply to remove
divergences, a subsequent refinement of holographic renormalization came about when it
was realized that the Hamilton–Jacobi formalism may be used to determine the structure and
normalization of these counterterms [7].

Black hole thermodynamics in pure Einstein gravity with a cosmological constant has been
extensively studied, especially in light of the AdS/CFT correspondence. In its simplest form,
this correspondence relates the N = 4 SU(N) super-Yang–Mills theory in four dimensions to
the IIB string theory on AdS5 × S5. In the limit of large N and infinite ’t Hooft coupling, the
gravitational dual simply reduces toN = 8 gauged supergravity in five dimensions. Motivated
by this AdS/CFT picture, the Hamilton–Jacobi formalism [7–9] was employed in [10] to study
the thermodynamics of asymptotically AdS black holes in various dimensions, d = 4, 5, 6, 7.

From an AdS/CFT perspective, it is of natural interest to examine the finite ’t Hooft
coupling corrections to the familiar infinite coupling results. These corrections originate from
higher derivative terms in the α′ expansion of the string effective action; in the gravitational
sector, they take the form α′nRn+1 where R corresponds to the Riemann tensor and its
contractions. While the first corrections in the maximally supersymmetric (i.e. type II)
theories do not enter until the α′3R4 order, generically the first non-trivial terms show up at
the curvature-squared level

e−1δL = α1R
2 + α2R

2
μν + α3R

2
μνρσ . (1.1)

By making an appropriate field redefinition of the form gμν → gμν + aRμν + bgμνR, we
may shift the coefficients α1 and α2 to arbitrary values. Thus only α3 may affect physical
observables. This allows us to take the Gauss–Bonnet combination

e−1δL = α
(
R2 − 4R2

μν + R2
μνρσ

)
, (1.2)

which is the unique combination of curvature-squared terms which does not propagate ghosts
[11, 12]. Of course, the presence of ghosts (whose effects do not show up until the string scale)
is not a major concern at the effective supergravity level, where the complete string theory
serves as an appropriate UV completion. Nevertheless, the Gauss–Bonnet combination is
particularly amenable to holographic renormalization and the study of boundary field theories
as it admits a well-defined Cauchy problem for radial evolution.

It is the purpose of our present work to apply holographic renormalization to the Einstein–
Gauss–Bonnet action, and in particular to apply the Hamilton–Jacobi method to derive a set of
universal counterterms renormalizing this action. Local counterterms for higher derivative
gravities, including the Gauss–Bonnet combination, have previously been considered in
[13–18], and more recently in [19–21]. In addition, a complementary ‘Kounterterm’
regularization scheme was developed in [22–27], which involves the introduction of boundary
counterterms built out of the extrinsic curvature tensor. (This approach is more naturally
associated with a variational principle where the extrinsic curvature is kept fixed on the
boundary.)

We organize our work as follows. In the following section, we review the Hamiltonian
formulation (for radial evolution) and we evaluate the Hamiltonian of the Einstein–Gauss–
Bonnet theory to first order in α, the coefficient of the Gauss–Bonnet term in the bulk action.
In section 3, we derive the Hamilton–Jacobi counterterms, and in section 4 we compare our
results to previous investigations of Gauss–Bonnet black hole thermodynamics. Finally, we
conclude with a discussion in section 5.
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2. Einstein–Gauss–Bonnet gravity

It is well known that, in general, higher curvature gravitational actions lead to potentially
undesirable features such as ghosts as well as difficulties in formulating the Cauchy problem
because of the appearance of higher order derivatives of the metric. However, as shown by
Lovelock, these difficulties may be avoided by taking particular combinations of the higher
curvature terms corresponding to d-dimensional continuations of the lower dimensional Euler
densities [11]. The family of Lovelock actions then take the form

Sbulk =
d/2∑
k=0

αkS
(k)
bulk, (2.1)

where [11, 28]

S
(k)
bulk = − 1

2k!

∫
M

ddx
√−gδ[μ1···μ2k]

[ν1···ν2k]R
ν1ν2

μ1μ2 · · ·Rν2k−1ν2k
μ2k−1μ2k

. (2.2)

Note that we have included k = 0, corresponding to a possible cosmological constant. In
particular, the first few terms in the expansion of the Lovelock action give

Sbulk = −
∫
M

ddx
√−g

[
α0 + α1R + α2

(
R2 − 4R2

μν + R2
μνρσ

)
+ · · · ]. (2.3)

Truncating the Lovelock theory at this level gives what may be referred to as Einstein–Gauss–
Bonnet gravity.

Since the Lovelock theory gives rise to equations of motion involving no higher than
second derivatives of the metric, it is possible to formulate a well-defined variational principle
by adding to (2.1) a set of generalized Gibbons–Hawking surface terms

SGH =
d/2∑
k=1

αkS
(k)
GH. (2.4)

In particular

S
(1)
GH = −2

∫
∂M

dd−1x
√−hK (2.5)

is the usual Gibbons–Hawking term and

S
(2)
GH = 4

∫
∂M

dd−1x
√−h

[
2GabK

ab +
1

3

(
K3 − 3KK2

ab + 2Kb
a Kc

bK
a
c

)]
(2.6)

is a generalized Gibbons–Hawking term [28, 29]. (Of course no boundary term is needed for
the k = 0 cosmological constant term.) Since we are focused on holographic renormalization,
we single out a ‘radial’ coordinate r so that the boundary is reached as r → ∞, in which the
case 1/r will ultimately be usable as an asymptotic expansion parameter. In particular, we
choose a foliation of spacetime by constant r hypersurfaces, orthogonal to a spacelike unit
normal nμ. The boundary metric is then given by hμν = gμν − nμnν , and Kμν is the extrinsic
curvature tensor defined by Kμν = ∇(μnν). In addition, Gab is the Einstein tensor constructed
from the boundary metric, Gab = Rab − 1

2habR.

2.1. Hamiltonian formulation

Consistent with the foliation of spacetime with constant r hypersurfaces, we may take the
above Lovelock action and derive the corresponding Hamiltonian for radial evolution. This
was in fact done in [28] for the case of time evolution (which is easily related to radial evolution
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by an appropriate analytic continuation). Although the following results are contained in [28],
we nevertheless provide some details for clarity of exposition.

To derive the Hamiltonian, we first use the Gauss–Codacci equations for the r-foliation to
rewrite the action (2.1) in terms of invariants built from the intrinsic and extrinsic curvatures
Ra

bcd and Kab. For hypersurfaces specified by a spacelike normal, the relevant Gauss–Codacci
equation is

Rμνρσ ≡ hμ′
μ hν ′

ν hρ ′
ρ hσ ′

σ Rμ′ν ′ρ ′σ ′ = Rμνρσ − KμρKνσ + KμσKνρ. (2.7)

In this case, we find

S
(1)
bulk + S

(1)
GH =

∫
M

ddx
√−g

[
R + K2 − K2

ab

]
,

S
(2)
bulk + S

(2)
GH =

∫
M

ddx
√−g

[(
R + K2 − K2

ab

)2 − 4
(
Rab + KKab − KacK

c
b

)2

+ (Rabcd + KacKbd − KadKbc)
2 − 4

3
K4 + 8K2K2

ab

− 32

3
KKb

a Kc
bK

a
c − 4

(
K2

ab

)2
+ 8Kb

a Kc
bK

d
c Ka

d

]
, (2.8)

where we have introduced a shorthand notation that when tensor quantities are squared, they
are to be contracted with themselves without any rearrangement of indices. Note, in particular,
that the original surface terms (2.4) are absorbed after the Gauss–Codacci rewriting of the
action.

It is now straightforward, at least in principle, to derive the conjugate momenta πab for
radial evolution. Noting that Kab = 1

2Lnhab (where Ln is the Lie derivative along the spacelike
normal nμ), we may use

πab = 1

2
√−g

δS

δKab

, (2.9)

to obtain the expansion

πab =
d/2∑
k=1

αkπ
(k)
ab , (2.10)

where [28]

π
(1)
ab = Kab − habK,

π
(2)
ab = −2

[
hab(RK − 2RcdK

cd)

−RKab − 2RabK + 4Rc
(aKb)c + 2RacbdK

cd

+ 1
3hab

(−K3 + 3KK2
cd − 2Kd

c Ke
dK

c
e

)
+ K2Kab − 2KKc

aKbc − KabK
2
cd + 2Kc

aK
d
c Kbd

]
. (2.11)

The above expressions for the conjugate momenta allow us to derive the Hamiltonian
density for radial evolution

H = 2
√−g πabKab − L. (2.12)

The result is especially simple when written in terms of the projected bulk curvature Rμνρσ .
Following [28], we find

H =
d/2∑
k=0

αkH(k), (2.13)
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where

H(0) = √−g,

H(1) = √−g R, (2.14)

H(2) = √−g
(
R

2 − 4R
2
μν + R

2
μνρσ

)
.

Using the Gauss–Codacci equation (2.7), this is equivalent to

H(0) = √−g,

H(1) = √−g
(
R − K2 + K2

ab

)
,

H(2) = √−g
[(
R − K2 + K2

ab

)2 − 4
(
Rab − KKab + Kc

aKbc

)2

+ (Rabcd − KacKbd + KadKbc)
2
]
. (2.15)

Ultimately, the Hamiltonian ought to be written in terms of the canonical variables hab

and πab. To accomplish this, we must invert the relation between πab and Kab given by (2.10)
and (2.11). It is at this stage that the individual Lovelock terms, parameterized by αi , end up
mixing with each other, as the inversion is in general a nonlinear problem involving all the
various π

(k)
ab simultaneously.

In order to proceed, we restrict our attention to the Einstein–Gauss–Bonnet theory given
by the first three terms of (2.3), which we rewrite as

Sbulk = −
∫
M

ddx
√−g

[
R + (d − 1)(d − 2)g2 + α

(
R2 − 4R2

μν + R2
μνρσ

)]
, (2.16)

where we have set 16πGd = 1, and where we have parameterized the cosmological constant
α0 in (2.3) by an inverse length scale g. In this case, the conjugate momentum of (2.10) may
be written as

πab = Kab − habK + απ
(2)
ab . (2.17)

A simple rearrangement gives the useful expression

Kab = πab − 1

(d − 2)
habπ − α

(
π

(2)
ab − 1

d − 2
habπ

(2)

)
, (2.18)

which allows us to obtain a perturbative solution for Kab in terms of πab. In particular, inserting
the zeroth-order expression Kab = πab − habπ/(d − 2) + O(α) into (2.11) gives

π
(2)
ab = 2

[
2hab

(
Rcdπ

cd − 1

(d − 2)
Rπ

)
+ Rπab +

4

d − 2
Rabπ − 4Rc

(aπb)c

− 2Racbdπ
cd +

2

3
hab

(
πd

c πe
dπc

e − 3

d − 2
ππ2

cd +
2

(d − 2)2
π3

)

− 2πacπ
cdπdb +

4

d − 2
πc

aπbcπ + πabπ
2
cd − d

(d − 2)2
πabπ

2

]
+ O(α). (2.19)

We now work out the Hamiltonian to first order in α. Using (2.15) and (2.18), we write

H = √−g
[
R + (d − 1)(d − 2)g2 − K2 + K2

ij

]
+ αH(2)

= √−g

[
R + (d − 1)(d − 2)g2 + π2

ab − 1

d − 2
π2

+ α

(
−2πabπ

(2)
ab +

2

d − 2
ππ(2) +

H(2)

√−g

)
+ O(α2)

]
. (2.20)
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The lowest order expression for π
(2)
ab is given in (2.19), while H(2) may be obtained from

(2.15):

H(2) = √−g

[(
R + π2

ab − 1

d − 2
π2

)2

− 4

(
Rab + πc

aπbc − 1

d − 2
ππab

)2

+

(
Rabcd − (πacπbd − πadπbc) +

1

d − 2
(hacπbd + hbdπac − hadπbc

−hbcπad) − 1

(d − 2)2
π2(hachbd − hadhbc)

)2

+ O(α)

]
. (2.21)

The resulting Hamiltonian, valid to linear order in α, then takes the form

H = √−g

[
R + (d − 1)(d − 2)g2 + π2

ab − 1

d − 2
π2 + α

(
R2 − 4R2

ij + R2
ijkl

− 16

d − 2
Rabππab +

2d

(d − 2)2
Rπ2 − 2Rπ2

ab + 8Rabπ
bcπa

c + 4Rabcdπ
acπbd

+ 2πb
a πc

bπ
d
c πa

d − (
π2

ab

)2 − 16

3(d − 2)
ππb

a πc
bπ

a
c +

2d

(d − 2)2
π2π2

ab

− 3d − 4

3(d − 2)3
π4

)
+ O(α2)

]
. (2.22)

We will use this result in the next section when deriving the Hamilton–Jacobi counterterms
which renormalize the original action (2.16).

3. Hamilton–Jacobi counterterms

The Einstein–Gauss–Bonnet action (2.16) admits solutions which are asymptotically anti-de
Sitter, with an effective ‘inverse AdS radius’ geff given by

g2 = g2
eff

[
1 − α(d − 3)(d − 4)g2

eff

]
. (3.1)

It is well known that the on-shell action evaluated on such a background is divergent. In
particular, assuming that the metric is asymptotically given by

ds2 ∼ −(
1 + g2

effr
2
)

dt2 +
dr2

1 + g2
effr

2
+ r2 d�2

d−2, (3.2)

the leading divergence is of a power-law form, S ∼ rd−1, with subleading divergences falling
by a factor of 1/r2 at each order.

The divergences of the on-shell action may be removed by holographic renormalization
[4–6]. This involves the introduction of a counterterm action of the form

Sct =
∫

∂M
dd−1x

√−h
(
W + CR + DR2 + ER2

ab + FR2
abcd + · · · ), (3.3)

so the renormalized action

� = S − Sct (3.4)

remains finite on-shell. The terms in (3.3) are organized as an expansion in powers of the
inverse metric. Since examination of (3.2) indicates that hab ∼ r2, we see that W may be
chosen to cancel the leading rd−1 divergence, C to cancel the rd−3 divergence, and so on.

A particularly elegant method of obtaining the coefficients in the counterterm action is to
apply the Hamilton–Jacobi equation along with diffeomorphism invariance of the theory [7]. In

6
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the last section, we have derived the Hamiltonian H for radial evolution in the Einstein–Gauss–
Bonnet theory. As this corresponds to reparameterizations of r, diffeomorphism invariance
constrains the Hamiltonian to vanish:

H[πab, hab] = 0. (3.5)

To obtain the Hamilton–Jacobi equation one rewrites this Hamiltonian constraint in terms of
the functional derivatives of the on-shell action. In particular, since the on-shell action is a
functional of the bulk fields evaluated at the boundary ∂M, the momenta can be written as

πab = 1√−h

δS

δhab

. (3.6)

By replacing the momenta appearing in the Hamiltonian with this functional derivative, we
obtain the Hamilton–Jacobi equation

H
[

1√−h

δS

δhab

, hab

]
= 0. (3.7)

Using the Hamilton–Jacobi equation, we can obtain a set of counterterms that will remove
power-law divergences from the on-shell action. In particular, given the renormalized action
(3.4), the Hamilton–Jacobi equation takes the form [7, 8, 30]

H[Zab + P ab, hab] = 0, (3.8)

where

Zab = 1√−h

δ�

δhab

, P ab = 1√−h

δSct

δhab

. (3.9)

The reason this is useful is that since Zab is derived from the renormalized action, any terms
in (3.8) involving Zab are finite, or at most logarithmically divergence. Thus all power-law
divergences are fully captured by the modified Hamilton–Jacobi equation

H[P ab, hab] = 0. (3.10)

The momentum Pab associated with the counterterm action (3.3) may be organized in an
inverse metric expansion

P ab = P ab
(0) + P ab

(1) + P ab
(2) + · · · , (3.11)

where

P ab
(0) = 1

2habW,

P ab
(1) = −CGab,

P ab
(2) = 1

2hab
(
DR2 + ER2

cd + FR2
cdef

) − 2DRRab + (2D + E + 2F)DaDbR
− (

2D + 1
2E

)
habD2R − (E + 4F)D2Rab − 2(E + 2F)RacbdRcd

+ 4FRa
cRbc − 2FRacdeRb

cde. (3.12)

The resulting Hamiltonian H[P ab, hab] may likewise be expanded in powers of the inverse
metric

H = H(0) + H(1) + H(2) + · · · . (3.13)

We then demand that each term H(i) vanishes individually. In this fashion, we end up with
a set of ‘descent equations’ [8] for the coefficients of the divergent terms in the counterterm
action (3.3).

7
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Substituting the momenta Pab of (3.12) into the Einstein–Gauss–Bonnet Hamiltonian
(2.22) gives

H(0) = (d − 1)(d − 2)g2 − d − 1

4(d − 2)
W 2 − α

(d − 1)(d − 3)(d − 4)

48(d − 2)3
W 4,

H(1) = R
[

1 − d − 3

2(d − 2)
WC + α

(d − 3)(d − 4)

2(d − 2)2
W 2

(
1 − d − 3

6(d − 2)
WC

)]
,

H(2) = R2

[
− d − 5

2(d − 2)
WD − d − 1

4(d − 2)
C2 + α

(
1 +

(d − 1)(d − 4)

(d − 2)2
WC

− (d − 3)(d − 4)(d − 5)

12(d − 2)3
W 3D − (d − 1)(d − 3)(d − 4)

8(d − 2)3
W 2C2

)]

+ R2
ab

[
− d − 5

2(d − 2)
WE + C2 + α

(
−4 − 4(d − 4)

d − 2
WC

− (d − 3)(d − 4)(d − 5)

12(d − 2)3
W 3E +

(d − 3)(d − 4)

2(d − 2)2
W 2C2

)]

+ R2
abcd

[
− d − 5

2(d − 2)
WF + α

(
1 − (d − 3)(d − 4)(d − 5)

12(d − 2)3
W 3F

)]

+ D2R
(

2(d − 2)WD +
d − 1

2
WE + 2WF

) [
1

d − 2
+ α

(d − 3)(d − 4)

6(d − 2)3
W 2

]
.

(3.14)

Starting with H(0) = 0, we find

W = −2(d − 2)g
[
1 − 1

6α(d − 3)(d − 4)g2
]
, (3.15)

which is valid to linear order in α. This solution for W may then be inserted into the expression
for H(1). In this way, we may solve H(1) = 0 to obtain

C = − 1

(d − 3)g

[
1 +

3

2
α(d − 3)(d − 4)g2

]
. (3.16)

Working out the next-order terms is somewhat more involved. After solving H(2) = 0, we find

D = d − 1

4(d − 2)(d − 3)2(d − 5)g3

[
1 − αg2

(
4(d − 2)(d − 3)2

d − 1
+

7(d − 3)(d − 4)

2

)]
,

E = − 1

(d − 3)2(d − 5)g3

[
1 − αg2

(
4(d − 3)2 +

7(d − 3)(d − 4)

2

)]
, (3.17)

F = − 1

(d − 5)g3
(αg2).

Inserting these coefficients into the counterterm action (3.3) gives

Sct = −
∫

∂M
dd−1x

√−h

[
2(d − 2)g

(
1 − 1

6
α(d − 3)(d − 4)g2

)

+
1

(d − 3)g

(
1 +

3

2
α(d − 3)(d − 4)g2

)
R

+
1

(d − 3)2(d − 5)g3

(
1 − 7

2
α(d − 3)(d − 4)g2

)(
R2

ab − d − 1

4(d − 2)
R2

)

+
α

(d − 5)g

(
R2 − 4R2

ab + R2
abcd

)
+ · · ·

]
. (3.18)

8
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Note that this is an expansion both in α (of which we have kept only up to the linear term) and
powers of the inverse metric hab. The explicit counterterms given above are sufficient to cancel
all power-law divergences in the Einstein–Gauss–Bonnet theory up to d = 7. However, the
O(R3) terms, which we have not computed, will yield a finite contribution in d = 7 which
is necessary for maintaining diffeomorphism invariance in the renormalized theory [30]. At
linear order, these counterterms agree with the full nonlinear expressions obtained in [19–21]
by imposing divergence cancellation of the gravitational action.

4. Gauss–Bonnet black holes

In the previous section, we have derived the counterterm action (3.18) which may be combined
with the bulk action (2.16) and the generalized Gibbons–Hawking term

SGH = −2
∫

∂M
dd−1x

√−h

[
K − 2α

(
2GabK

ab +
1

3

(
K3 − 3KK2

ab + 2Kb
a Kc

bK
a
c

))]
, (4.1)

to obtain the total renormalized action (3.4)

� = Sbulk + SGH − Sct. (4.2)

This action may be identified with the thermodynamic potential of the system through
� = �/β where β = 1/T is the inverse temperature. Furthermore, we may define the
boundary stress tensor

T ab = 2√−h

δ�

δhab

. (4.3)

Comparing this with (3.6), we see that

T ab = 2πab − 2P ab, (4.4)

where πab are given by (2.10) and (2.11) and Pab are given by (3.12). The boundary stress
tensor allows us to define the conserved momentum (and in particular the energy) of the
spacetime.

The above results allow us to investigate the thermodynamics of Gauss–Bonnet black
holes [17, 31–39]. Before proceeding, however, we note that it is straightforward to include a
canonically normalized Maxwell field, so that the bulk action (2.16) becomes

Sbulk = −
∫
M

ddx
√−g

[
R + (d − 1)(d − 2)g2 − 1

4
F 2

μν + α
(
R2 − 4R2

μν + R2
μνρσ

)]
. (4.5)

To obtain an electrically charged black hole, we take

A = Q

(d − 3)rd−3
dt ⇒ F = Q

rd−2
dt ∧ dr, (4.6)

as well as the metric ansatz

ds2 = −f dt2 +
dr2

f
+ r2 d�2

d−2,k, (4.7)

where k denotes the curvature of the manifold �d−2,k (k = 1, 0, −1). Working out the
‘angular’ components of the Einstein equation, we find the first-order equation

0 = rf ′ + (d − 3)(f − k) − (d − 1)g2r2 +
Q2

2(d − 2)r2(d−3)

− α

r2
(d − 3)(d − 4)(f − k)[(d − 5)(f − k) + 2rf ′], (4.8)

9
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which may be solved to yield [17, 31–33, 35]

f = k +
r2

2α̃

[
1 ∓

√
1 + 4α̃

(
μ

rd−1
− g2 − Q2

2(d − 2)(d − 3)r2(d−2)

)]
, (4.9)

where α̃ = α(d − 3)(d − 4). Here μ is a non-extremality parameter related to the black hole
mass. Note that relative simplicity of the equation of motion (4.8) and its black hole solution
is a general feature of the Lovelock actions.

While the above black hole solution is exact in the Gauss–Bonnet parameter α, our
derivation of the Hamilton–Jacobi counterterms was restricted to linear order in α. We
therefore expand f to first order in α

f = k + g2r2 − μ

rd−3
+

Q2

2(d − 2)(d − 3)r2(d−3)

+
α̃

r2

(
g2r2 − μ

rd−3
+

Q2

2(d − 2)(d − 3)r2(d−3)

)2

+ · · · . (4.10)

Note that we have taken the ‘negative’ branch of (4.9), as it is the one which has a well-behaved
α → 0 limit. In what follows all expressions should be understood to be taken only to linear
order in α.

In order to parameterize the Gauss–Bonnet black hole thermodynamics, we introduce the
horizon location r+, defined by f (r+) = 0. A simple rearrangement of (4.10) then allows us
to write μ in terms of r+ as

μ = g2rd−1
+ + krd−3

+ +
Q2

2(d − 2)(d − 3)rd−3
+

+ αk2(d − 3)(d − 4)rd−5
+ . (4.11)

This will be useful in what follows. For example, the temperature may be obtained from
T = f ′(r+)/4π , which comes from the requirement of avoiding a conical singularity at the
horizon. Taking a derivative of (4.10) and using (4.11) to eliminate μ gives

T = 1

4πr+

[
(d − 1)g2r2

+ + (d − 3)k − Q2

2(d − 2)r
2(d−3)
+

+ αk(d − 3)(d − 4)

(
−2(d − 1)g2 − (d − 1)

k

r2
+

+
Q2

(d − 2)r
2(d−2)
+

)]
. (4.12)

This matches the exact expression for the Hawking temperature [17, 34–36] when expanded
to linear order in α (as it must, since the calculation is identical).

Turning next to the entropy, it is well known that the area expression S = Ah/4Gd gets
modified in higher derivative gravity. In this case, we may instead use the Wald entropy
formula [40–42]

S = −2π

∫
h

Eμνρσ εμνερσ dd−2x, (4.13)

where

Eμνρσ = δSbulk

δRμνρσ

∣∣∣∣
gμνfixed

, (4.14)

and where εμν is the binormal to the horizon h. Taking the action (4.5), we find

Eμνρσ = −√−g
[

1
2 (gμρgνσ − gμσgνρ) + α

(
(gμρgνσ − gμσgνρ)R

− 2(gμρRνσ + gνσRμρ − gμσRνρ − gνρRμσ ) + 2Rμνρσ
)]

. (4.15)

10
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Working out the curvature components and integrating Et̄r̄ t̄ r̄ (where the overlines indicate
tangent space components) over the horizon gives the simple entropy expression

S = 4πωd−2,kr
d−2
+

[
1 + 2

α

r2
+

k(d − 2)(d − 3)

]
, (4.16)

where ωd−2,k is the volume of �d−2,k (so that ωd−2,kr
d−2
+ is simply the ‘horizon area’). Since

we are working in units of 16πGd = 1, the leading term in S indeed reproduces the standard
area expression. Note that this entropy expression is universal for spherically symmetric
Gauss–Bonnet black holes in that the equations of motion were not needed for its derivation.

The Gauss–Bonnet black hole entropy was previously computed in [34] by solving the free
energy expression F = E − T S for the entropy (where F was computed from the Euclidean
action) and in [35] by integrating the first law dE = T dS. Both of these computations are
in agreement with the Wald entropy formula result (4.16). Furthermore, we may see that the
linearized expression (4.16) is in fact exact in α.

We now work out the renormalized action for the Gauss–Bonnet black hole. Substituting
in the metric ansatz (4.7) as well as the gauge field (4.6), we find that the bulk action (4.5)
may be expressed as a total r derivative. Integrating this from the horizon to a cutoff r0 gives

Sbulk = βωd−2,k

[
−(d − 2)g2rd−1 + rd−3((d − 2)(f − k) + rf ′) +

Q2

2(d − 3)rd−3

−α(d − 2)(d − 3)rd−5(f − k)((d − 4)(f − k) + 2rf ′)

]r0

r+

, (4.17)

where β = 1/T is the period of the timelike circle. Using the explicit form of f given in
(4.10) as well as relation (4.11), we obtain

Sbulk = βωd−2,k

[
2g2rd−1

0 (1 − d(d − 3)αg2) − 2μ(1 − 2(d − 3)αg2) + 2krd−3
+

+ 2αk(d − 3)

(
−2(d − 1)g2rd−3

+ − 2krd−5
+ +

Q2

(d − 2)rd−1
+

)]
. (4.18)

This clearly exhibits the leading power-law divergence Ibulk ∼ 2g2rd−1
0 . The generalized

Gibbons–Hawking term is evaluated at the cutoff surface r = r0. From (4.1), we find

SGH = βωd−2,k

[−rd−3(2(d − 2)f + rf ′)

+ 2α(d − 2)(d − 3)rd−5
(
(d − 4)f

(
2
3f − 2k

)
+ (f − k)rf ′)]

r=r0

= βωd−2,k

[−2(d − 1)g2rd−1
0

(
1 + 1

3 (d − 3)(d − 8)αg2)
− 2(d − 2)krd−3

0

(
1 + 2

3 (d − 3)(d − 4)αg2
)

− 8
3α(d − 2)(d − 3)(d − 4)k2rd−5

0 + (d − 1)μ
(
1 + 4

3 (d − 3)(d − 5)αg2
)]

. (4.19)

Adding together Sbulk and SGH, we see that the power-law divergences are given by rd−1
0 ,

rd−3
0 and rd−5

0 (assuming d is sufficiently large, of course). These will be canceled by the
counterterm action (3.18).

Recall that the derivation of the counterterm action involved an expansion in powers of
the inverse metric hab

Sct = S(0) + S(1) + S(2) + · · · , (4.20)

11
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where the leading divergence of S(k) is of the form rd−2k
0 . Therefore, for arbitrary dimension

d, we would need at least the first three counterterms to cancel the divergences of Sbulk + SGH.
For the Gauss–Bonnet black hole, we obtain from (3.18)

Sct = −βωd−2,k(d − 2)
[
2g2rd−1

0

(
1 + 1

3 (d − 3)(d − 4)αg2
)

+ 2krd−3
0

(
1 + 2

3 (d − 3)(d − 4)αg2
)

+ 8
3α(d − 3)(d − 4)k2rd−5

0 +

−μ
(
1 + 4

3 (d − 3)(d − 4)αg2) + · · ·]. (4.21)

Note that here we have taken the dimensional continuation approach of [30]. In particular,
the dimension-dependent poles in (3.18) are canceled by zeros in the boundary curvature
expressions. This allows, for example, S(2) to generate a finite counterterm in d = 5
dimensions. In the two-derivative theory, this finite contribution removes the ‘Casimir energy’
of global AdS5 and at the same time restores full diffeomorphism invariance of the renormalized
theory [30].

Adding together (4.18), (4.19) and (4.21) finally yields the renormalized thermodynamic
potential

� = ωd−2,k

[
−μ + 2krd−3

+ + 2αk(d − 3)

(
−2(d − 1)g2rd−3

+ − 2krd−5
+ +

Q2

(d − 2)rd−1
+

)]
,

(4.22)

where � = �/β, and where μ is given in (4.11). This expression for the thermodynamic
potential agrees (at linear order in α) with the free energy calculations using background
subtraction to regulate the Euclidean action [17, 34, 36] and derive through F = E −T S [34].
This provides a welcome check on the counterterm coefficients in (3.18), which involved a
fair bit of manipulation to extract from the Einstein–Gauss–Bonnet action. We wish to stress
that the inclusion of the finite counterterm was necessary in order to obtain agreement with
the previous free energy results.

The final quantity we are interested in is the energy of the system. For the energy, we
focus on the t t component of the boundary stress tensor. Using (4.4) as well as
√−hπt̄t̄ = −(d − 2)rd−3f − 2αrd−5(d − 2)(d − 3)(d − 4)f

(
k − 1

3f
)
,√−hP t̄t̄ = 1

2Lct

(4.23)

(where Lct is the counterterm Lagrangian of (3.18), and where this expression holds for the
constant curvature boundary geometry S1 × �d−2,k), we obtain a simple expression for the
energy

E = ωd−2,k(d − 2)μ. (4.24)

We may now see that the free energy and energy are related by the standard expression

� = E − T S − Q� (4.25)

where Q = ωd−2,kQ is the normalized electric charge, and

� = At(r+) − At(∞) = Q

(d − 3)rd−3
+

(4.26)

is the electric potential at the horizon.

5. Summary

The calculation of the on-shell action and boundary stress tensor is an important aspect of
the study of black hole thermodynamics. Such quantities are generally divergent and require

12
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renormalization. While various approaches, including background subtraction, have been
developed, holographic renormalization using the Hamilton–Jacobi formalism is particularly
elegant and useful in the study of the thermodynamics of black holes in asymptotically AdS
spacetimes. This approach generates the appropriate boundary counterterms needed to remove
all divergences of the on-shell action for R-charged AdS black holes in various dimensions.

In this paper, we have focused on the Einstein–Gauss–Bonnet system with a negative
cosmological constant and used the Hamiltonian–Jacobi approach to evaluate the counterterms
up to linear order in α, the coupling of the Gauss–Bonnet term. In general, this linear order
in α is all that is physically relevant when considering the R2 corrections in the expansion of
the full higher derivative effective action. However, it is noteworthy that the Gauss–Bonnet
form of the R2 action admits exact R-charged black hole solutions. Because of this, exact
expressions may be obtained for the thermodynamic quantities calculated in the previous
section. In particular, the temperature and thermodynamic potential take the form [17, 34–36]

T = 1

4πr+

1

r2
+ + 2α̃k

(
(d − 1)g2r4

+ + (d − 3)kr2
+ + (d − 5)α̃k2 − Q2

2(d − 2)r
2(d−4)
+

)
,

� = −ωd−2,kr
d−5
+

d − 4

(
(d − 2)

(
3g2r4

+ + kr2
+ − α̃k2

) − Q2

2(d − 3)r
2(d−4)
+

− 8πr3
+T

)
.

(5.1)

It would be of interest to see if the Hamilton–Jacobi method can be extended to capture the
nonlinear terms, such as those derived in [19–21], as well. We recall, however, that the
main reason we had linearized in α was so we could invert relations (2.11) for the conjugate
momenta in order to derive the Hamiltonian (2.22). Obtaining the exact Hamiltonian through
a nonlinear inversion of πab ↔ Kab looks to be a challenge.

The main reason exact solutions of the Einstein–Gauss–Bonnet theory are available is that,
while this is a higher derivative gravitational system, the equations of motion arising from
the Gauss–Bonnet combination do not involve higher than two derivative of the metric. For
this reason, the Cauchy problem for radial evolution remains well defined when conventional
Dirichlet conditions are imposed on the boundary. Other curvature combinations such as the
Weyl tensor squared combination, which naturally arises in the higher derivative corrections
to five-dimensional N = 2 supergravity [43], do not admit a well-posed Dirichlet problem nor
an appropriate generalization of the Gibbons–Hawking term [29]. This appears to be a major
obstruction to generalizing the Hamilton–Jacobi approach to holographic renormalization to
other theories with higher curvature terms.

Finally, we note that, while a main objective of holographic renormalization is the
removal of divergences of the on-shell AdS action, the Hamilton–Jacobi method introduces
the additional framework of diffeomorphism invariance to the construction of the counterterm
action Sct. In practice, this provides no additional information for the counterterms that
remove power-law divergences in the action. However, the Hamilton–Jacobi method does
naturally determine the finite counterterms which would otherwise be free (and related to
different renormalization schemes in the dual CFT). For theories involving scalars, the leading
counterterm determined by the Hamilton–Jacobi method looks like an effective superpotential
[7], and in this fashion, the finite part of Sct is necessary to maintain the supersymmetry of the
boundary theory [10, 44]. We have not included any scalars in the present analysis, although
we expect the generalization to be straightforward.

Even in the absence of scalars, we have been careful to take into account the finite
counterterm which arises (in odd dimensions d) through the dimensional continuation of the
R(d−1)/2 terms in Sct [30]. For spherically symmetric configurations of the ordinary two-
derivative Einstein theory, this finite counterterm removes the ‘Casimir energy’ of the AdS
background. Since this is simply a constant, the physical effect of this subtraction is rather
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minimal (at least from the AdS/CFT point of view). However, this subtraction appears to be
more important in higher curvature theories, as the O(α) contribution to the finite counterterm
can no longer be interpreted as a simple shift in the Casimir energy. We thus feel it is most
natural to adhere to a diffeomorphism-invariant renormalization scheme, which is naturally
accomplished through the Hamilton–Jacobi method.
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