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Abstract
Numerical simulations are performed of a test scalar field in a spacetime
undergoing gravitational collapse. The behavior of the scalar field near the
singularity is examined and implications for generic singularities are discussed.
In particular, our example is the first confirmation of the Belinskii, Khalatnikov
and Lifschitz (BKL) conjecture for an asymptotically flat spacetime.

PACS numbers: 04.20.Dw, 04.25.D−, 04.25.dc, 04.40.Nr

1. Introduction

Gravitational collapse results in black holes which contain singularities. The collapse process
is not described by an analytical solution of the field equations, and the gravitational field is so
strong that perturbation theory is not helpful either. So numerical simulation is needed. But
even here, the full process of gravitational collapse is not usually examined: some simulations
examine the formation of black holes but not singularities [1] while others examine singularities
but not black holes [2, 3]. Note, however, that there has been some recent progress in numerical
simulations capable of examining the formation of both black holes and singularities [5]. In
the case where black holes are examined, the simulation sometimes ends when the black hole
forms [1] or the simulation goes on, but the interior of the black hole is excised [4]. In the case
where the singularity is examined, one usually imposes periodic boundary conditions, which
means that what is studied is singularity formation in a closed cosmology.

There is a longstanding conjecture due to Belinskii, Khalatnikov and Lifschitz (BKL) as
to the general behavior of spacetime singularities [6]. Essentially the BKL conjecture is that
as a generic singularity is approached in a comoving coordinate system, the field equations
will be dominated by terms containing derivatives with respect to time, and all other terms
can be neglected. The BKL conjecture has been verified by numerical simulations [2, 3] for
the case of singularity formation in a closed cosmology. Since BKL dynamics are local, it
seems likely that the BKL conjecture is also true in the case of singularity formation inside
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a black hole (at least for part of the singularity, see [7] for a conjecture about another part of
the singularity). However, one would like to verify the BKL conjecture by a treatment of the
singularities inside black holes.

One of the earliest studies of gravitational collapse, that of Oppenheimer and Snyder
[8], was capable of also examining the singularity. In [8] gravitational collapse is modeled
as a spherically symmetric spacetime containing two parts: the Schwarzschild metric on the
outside and a Friedmann–Robertson–Walker (FRW) spacetime with non-relativistic matter
(dust) on the inside. The Schwarzschild and FRW spacetimes have two different coordinate
systems which must be matched along the boundary. This difficulty can be overcome [9]
through a coordinate transformation which allows the full spacetime to be covered by a single
coordinate system. However, a more serious difficulty is that pressureless dust is not a good
model of how matter behaves in the extreme conditions of singularity formation. So the
properties of dust singularities tell us very little about the properties of generic singularities.

Ideally, one would like to check the BKL conjecture by treating the gravitational collapse
of a more realistic matter model, like a scalar field, using a single coordinate system that
follows the formation of the black hole and the singularity. As a preliminary step in that
direction, we perform numerical simulations of the behavior of a test massive scalar field
on the spacetime of [8] using the coordinates of [9]. The relevant equations and numerical
methods are described in section 2, while results are presented and discussed in section 3.

2. Methods

A spherically symmetric spacetime can be put in the form [10, 11]

ds2 = −(1 − ψ2) dt2 + 2ψ dt dr + dr2 + r2(dθ2 + sin2θ dϕ2). (1)

Here, r is the usual area coordinate, while t is a time coordinate chosen so that ∇at∇at = −1.
We now show how to put the Schwarzschild and FRW metrics in this form. The Schwarzschild
metric in the usual coordinates is

ds2 = −
(

1 − 2M

r

)
dt̃2 +

(
1 − 2M

r

)−1

dr2 + r2(dθ2 + sin2θ dϕ2). (2)

We wish to express t̃ as a function of t and r so that the metric takes the form of equation (1).
Some straightforward but tedious algebra shows that the expression

t̃ = t − 2

[√
2Mr + M ln

(√
r − √

2M√
r +

√
2M

)]
(3)

yields a metric of the form of equation (1) with

ψ =
√

2M

r
. (4)

The spatially flat dust FRW spacetime has the metric

ds2 = −dt̃2 + a2(t̃)(dr̃2 + r̃2[dθ2 + sin2θ dϕ2]) (5)

with the scale factor a given by

a = Kt̃2/3 (6)

where K is a constant. We wish to perform a coordinate transformation that gives this metric
the form of equation (1). Comparing the angular parts of the metric, it is clear that we must
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have r = ar̃ . It is then straightforward to show that with t̃ = t the metric of equation (5) takes
the form of equation (1) with

ψ = −2r

3t
. (7)

The collapse takes place at negative times and is complete at t = 0. The boundary
between the interior FRW part of the spacetime and the exterior Schwarzschild part is given
by r = rb(t), for some function rb(t). Since the metric, and therefore ψ must be continuous
across the boundary, we have

rb = (
9
2Mt2

)1/3
. (8)

Thus the spacetime metric is given by equation (1) with ψ given by equation (4) for r � rb

and ψ given by equation (7) for r � rb.
We wish to simulate the Klein–Gordon equation on this spacetime assuming spherical

symmetry for the scalar field. That is, we want a scalar field φ(r, t) that satisfies

∇a∇aφ − m2φ = 0. (9)

For a metric of the form of equation (1) the Klein–Gordon equation for a spherically symmetric
scalar field becomes

∂t∂tφ = 2ψ∂r∂tφ + (∂tψ)(∂rφ) + (∂rψ)(∂tφ) +
2ψ

r
∂tφ

+ (1 − ψ2)
1

r2
∂r(r

2∂rφ) − 2ψ(∂rψ)∂rφ − m2φ. (10)

For the numerical method used, we put this equation in first-order form: we introduce the
quantities P and S given by

P ≡ ∂tφ (11)

S ≡ ∂rφ. (12)

From the definitions of P and S it immediately follows that

∂tφ = P (13)

∂tS = ∂rP (14)

while equation (10) becomes

∂tP = 2ψ∂rP + (∂tψ)S + (∂rψ)P +
2ψ

r
P + (1 − ψ2)

1

r2
∂r(r

2S) − 2ψ(∂rψ)S − m2φ. (15)

The equations to be evolved are equations (13)–(15). We evolve using finite differences,
where each scalar f (r) is represented by the quantities fi = f ((i −1)�r). Spatial derivatives
are evaluated using standard centered differences, that is

∂rf → fi+1 − fi−1

2�r
. (16)

However, to maintain accuracy near the origin, the quantity r−2∂r(r
2S) requires special

treatment. We define S+ and S− by S+ = (Si+1+Si)/2 and S− = (Si +Si−1)/2. Correspondingly
we define r+ = ri + (�r/2) and r− = ri − (�r/2). Then we use the finite difference

1

r2
∂r(r

2S) → 3

r3
+ − r3−

(
r2

+S+ − r2
−S−

)
. (17)
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Figure 1. φ versus r at the initial time t0 = −20.

The quantity ψ and its derivatives are evaluated analytically using the formulas in
equations (4) and (7). Equations (13)–(15) are evolved using a three step iterated Crank–
Nicholson method [12] with Kreiss–Oliger dissipation [13].

At the origin, (gridpoint i = 1) smoothness requires that S vanish and that φ and P have
vanishing derivative with respect to r. We implement this condition as

φ1 = (4φ2 − φ3)/3 (18)

S1 = 0 (19)

P1 = (4P2 − P3)/3. (20)

At the outer boundary, we impose the condition that φ, S and P all vanish.

3. Results

In the simulations, let N be the number of gridpoints and rmax be the maximum value of r.
Then we have �r = rmax/(N − 1). N = 800 was used for the runs resulting in figures 1–3.
N = 16 000 was used for the runs resulting in figures 4–11. We choose initial data for the
scalar field at a time t0 to take the form P = 0 and

φ = −2
r − r0

σ 2
exp

(
−(r − r0)

2

σ 2

)
(21)

with S given by the derivative of this expression. Here, r0 and σ are constants. For all the
results displayed, the parameters are t0 = −20, rmax = 80, r0 = 35, σ = 1.5 and M = 5
where M is the mass of the Schwarzschild black hole. This initial configuration of the scalar
field is shown in figure 1. We run the simulations to a time near the singularity. Figures 2 and
3 show the configuration of the scalar field near this final time. Both figures are for t = −0.23
with m = 0 for figure 2 and m = 1 for figure 3. The initial scalar field can be thought of as a
linear combination of a left mover and a right mover. The right mover escapes from the black
hole, while the left mover plunges toward it. Some part of the left mover scatters off of the
black hole, while another part is captured and approaches the singularity.

We are particularly interested in finding the behavior of the scalar field as the singularity
is approached. In our coordinate system, the singularity is approached as t → 0 but only in
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Figure 2. φ versus r for m = 0 at t = −0.23.
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Figure 3. φ versus r for m = 1 at t = −0.23.
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Figure 4. φ versus r for m = 0 at t = −0.02 (solid), −0.01 (dashed) and −0.005 (dotted).

the FRW portion of the spacetime. To examine the scalar field behavior near the singularity,
we plot the scalar field at three different times near t = 0 and deduce a trend from those plots.
The scalar field φ is plotted as a function of r in a small region near r = 0 for the times
−0.02, −0.01 and −0.005 for the m = 0 case in figure 4 and for the m = 1 case in figure 5.
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Figure 5. φ versus r for m = 1 at t = −0.02 (solid), −0.01 (dashed) and −0.005 (dotted).
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Figure 6. tφ versus t−2/3r for m = 0 at t = −0.02 (solid), −0.01 (dashed) and −0.005 (dotted).

It is clear that the trend is that as the singularity is approached, the scalar field gets a larger
amplitude and a steeper profile. To see whether this behavior can be understood quantitatively,
we turn to the BKL conjecture: the claim that as a generic singularity is approached in
a comoving coordinate system, the field equations will be dominated by terms containing
derivatives with respect to time, and all other terms can be neglected. To apply this conjecture,
we consider the Klein–Gordon equation (9) in the untransformed FRW metric and coordinates
given by equations (5) and (6). Keeping only terms containing time derivatives, we find

t̃−2∂t̃ (t̃
2∂t̃φ) = 0. (22)

The general solution of this equation is

φ = t̃−1A(r̃) + B(r̃) (23)

for some functions A(r̃) and B(r̃). In particular, the BKL conjecture leads us to expect that
as the singularity is approached, t̃φ should approach a function of r̃ . Note, that expressed in
terms of the t, r coordinates of our simulation, we have t̃ = t and r̃ = K−1t−2/3r . Thus, we
are led to expect that as the singularity is approached, if we plot tφ versus t−2/3r the plots
should approach some limiting profile as t → 0. To see whether that expectation is realized,
such plots are given in figure 6 for m = 0 and 7 for m = 1. These figures are consistent with
tφ approaching a limit as the singularity is approached. However, in order to be more definite,
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Figure 7. tφ versus t−2/3r for m = 1 at t = −0.02 (solid), −0.01 (dashed) and −0.005 (dotted).
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Figure 8. φ versus r for m = 0 at t = −0.0055 (solid), −0.0030 (dashed) and −0.0017 (dotted).
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Figure 9. φ versus r for m = 1 at t = −0.0055 (solid), −0.0030 (dashed) and −0.0017 (dotted).

we need to approach the singularity more closely. The results of simulations which show the
scalar field at times closer to the singularity are shown in figures 8–11. Here figure 8 shows φ

versus r for m = 0 and the times −0.0055, −0.0030 and −0.0017. Figure 9 shows φ versus r

7



Class. Quantum Grav. 27 (2010) 165019 R Saotome et al

0 1 2 3 4 5 6
3

2

1

0

1

2

3

rt 2 3

t φ

Figure 10. tφ versus t−2/3r for m = 0 at t = −0.0055 (solid), −0.0030 (dashed) and −0.0017
(dotted).
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Figure 11. tφ versus t−2/3r for m = 1 at t = −0.0055 (solid), −0.0030 (dashed) and −0.0017
(dotted).

at the same times for the m = 1 case. The corresponding rescaled quantities, that is tφ versus
t−2/3r are shown in figure 10 for m = 0 and in figure 11 for m = 1.

It is clear from figures 10 and 11 that tφ approaches a limit as the singularity is approached.
Since this is just what one would expect from the BKL conjecture, our simulations lend support
to the notion that the BKL conjecture holds, not only in the extensively studied case of closed
cosmologies, but also in the more physically interesting case of asymptotically flat spacetimes.
To explore this issue further, it would be helpful to go beyond the case of a test scalar field on
a background spacetime. In particular, one could treat the collapse of a self-gravitating scalar
field using the method of [5] and see whether the singularity produced in the collapse satisfies
the BKL conjecture.
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