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Abstract. Non-equilibrium Green’s function formalism (NEGF) by employing time-
dependent (TD) perturbation theory is used to solve the electronic equations of motion of
model systems under potential biasing conditions. The time propagation is performed in the full
frequency domain of the two time variables representation. We analyze transient aspects of the
resulting conductance under effects of applied direct-current and alternating current potentials.
The coherence induced response dependence on different aspects of the applied perturbation is
resolved in time and analyzed using calculated TD distributions of the current operator.

1. Introduction
The study of electron and energy transport through molecular and nanoscale systems is drawing
a large volume of research attention.[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]
The appeal stems mainly from prospects with which nanotechnology is associated and requires
understanding of the complex physics of electron transport (ET) processes at the atomic and
electronic structure levels.[46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 19, 20, 56] Computational
modeling of the transport plays a crucial role in this research, where insight at the most

fundamental level is achieved. While the main focus of ET studies has been the steady state,
recent technological advances are promising to shift this.[57, 58] Due to these advances, the
modeling of the temporal resolution of electron transport becomes essential.[59, 60, 61, 62, 63,
64, 65, 66]

In general, the study of systems, where quantum interferences affect the ET, requires resolving
the time-dependent (TD) conductance. This includes the study of transient conductance,
where the system still evolves to a steady state. TD studies revealed interesting quantum
effects associated with photo-assisted conductances in mesoscopic systems, such as absolute
negative conductance, Coulomb blockade, and Kondo effects driven by alternating-current (AC)
fields.[67, 48, 49, 50, 55, 56] Other studies highlight the importance of transient effects, where
the non-equilibrium nature of ET determines the switching rate and efficiency of the transport.
Time-resolved THz spectroscopy was used to study carrier dynamics within nano-crystal arrays,
where the inter-dots coupling has been varied by modifying the length of the surface bound
ligand.[57] The importance of considering the dynamics of ET for analysis of experimental data
is also demonstrated by Raman spectra of molecular-scale junctions that relate the conductance
to spectroscopic changes. [68, 69, 70, 71, 72]
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The dynamics of electron transport is greatly complicated by inherent dissipative aspects.
The complexity of the ET due to quantum dephasing is reflected even for model systems of non-
interacting electrons in bulk-coupled systems driven by TD potentials.[73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 66] Recent computational studies that analyze currents under TD applied potentials
include approaches based on TD-DFT,[83, 84, 85, 59, 61, 86, 60, 87, 88, 89] density matrix
equations with Floquet representation or quantum master equations,[90, 91, 92, 93, 94, 66]
Floquet scattering matrix approach,[95, 96] and Keldysh non-equilibrium formalism.[97, 98,
99, 62, 100, 101, 66] Keldysh Green’s function (GF)-based expansions[102, 103, 104, 105, 106]
provide for a rigorous route to treat electron dynamics in biased systems[97] and are used below
to analyze quantum interferences affecting the transient transport.

We are implementing a dynamical approach based on Keldysh formalism to study ET. The
effect of the bulk is to broaden and shift the electronic DOS resulting with an energy distribution
of the electronic density matrix (ρ(E)). This may involve broadened states that couple the two
leads providing an efficient transport channel. The Keldysh NEGF formalism relates a coupled
electronic system experiencing a TD perturbation to its thermally equilibrated initial state. In
this approach, thermal coupling to the bulk is represented by the imaginary part of the time
ordered contour that is used to define the electronic equations of motion (e.o.m.). Broadening
effects due to the electrodes’ coupling are treated consistently, where the bulk-induced manifolds
of junction’s states are directly propagated. The electronic density of the coupled system can
be extracted from these equations.

Most descriptions of dynamic transport that are GFs-based formalisms follow the seminal
work of Jauho et al.,[97] where system partitioning for the unperturbed state is employed. In
this picture the system’s components are each kept in thermal isolation up to switching on the
perturbation. Initial state designation, as reflected from model-partitioning, however, may affect
the evolution of the system to steady state. Transient effects, therefore, can reliably be treated
only by a non-partitioning scheme, which is fully and consistently equilibrated. Below we employ
the more consistent approach within the Keldysh formalism, where the full equilibration of the
unperturbed device with the electron baths is included.[107] The importance of the partition-free
approach was highlighted in several recent real time-based propagations.[59, 60, 66]

2. Approach
2.1. The Kadanoff-Baym electronic equations of motion

The central quantities of Keldysh and NEGF formalisms are the one-body Green Functions
(GF)[104, 106, 108], which are functions of two space-spin and time coordinates (x = ~x, t), with
time variables expressed on the Keldysh contour (KC). The GFs are defined by pair of field

operators (Ψ̂(~x) and Ψ̂†(~x′)) at times t and t′ respectively:

G(x, x′) ≡ −i
T r[Û(t0 − iβ, t0)T̂C [Ψ̂H(x)Ψ̂†

H(x′)]]

Tr[Û(t0 − iβ, t0)]
. (1)

In the Heisenberg picture, these operators take the form:

Ψ̂H(x) = Û(t◦, t)Ψ̂(~x)Û(t, t◦) (2)

where U(t, t′) propagates the fully time dependent hamiltonian from t′ to t on the KC. For

the special case of a time independent Hamiltonian, U(t, t′) = e−iĤ(t−t′) and G(x, x′) reduces

to a GF of the time difference G0(~x, ~x′; t − t′). The superscript, zero, is used to denote a GF
corresponding to the Hamiltonian without a time dependent contribution. The contour ordering
operator, T̂C , can be expanded, allowing the GF to be expressed as a sum over two types of GFs
related to the relative positions of the two time variables on the contour:

G(x, x′) = θ(t, t′)G>(x, x′) + θ(t′, t)G<(x, x′), (3)
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where the step function, θ(t, t′), is as usual zero for t appearing before t′ on the Keldysh contour
and one otherwise. The contour, therefore, defines 7 types of GFs that each solve a different
electronic equation of motion (e.o.m.) (Kadanoff-Baym (K-B) equations). The K-B equations
are related to each other through analytic continuation as set forth by the KC.[105]

We start with the K-B equation for the case of non-interacting electrons expressed by the
lesser GF (G<):

[

iS
∂

∂t
− h(t)

]

G<(t, t′) = 0 (4)

−i
∂

∂t′
G<(t, t′)S− G<(t, t′)h(t′) = 0, (5)

where h(t) is the TD electronic Hamiltonian and S is the overlap of the orbitals used in the
expansion. Note that for this equation, we assume that t and t′ are both on the real branch
of the KC. We are neglecting electron-electron SE interaction terms. The complete one-body
Hamiltonian takes the following form:

h(x) = h0(~x) + v(x), (6)

where v(x) is a time dependent external potential acting on the electrons and h0(~x) represents
the electron kinetic energy and electron nuclear attractions. We combine equations 4-5 by
rewriting in terms of the time average and correlation variables: t̄ ≡ t1+t2

2 and the ∆t ≡ t1 − t2:

∂

∂t̄
G<(t̄,∆t) = i

[

G<(t̄,∆t)h(t̄ −
∆t

2
) − h(t̄ +

∆t

2
)G<(t̄,∆t)

]

. (7)

2.2. Mixed time-frequency space representation

Pure time-domain representations require using sufficiently large clusters to reliably treat
conductance through a device region. In the frequency domain on the other hand, self-energy
expressions can use a cluster model to effectively represent an open system. Frequency domain
bulk-self energy (SE) models are used below to represent the dissipative effect of coupling to the
electrodes. Earlier, we analyzed the convergence of transport calculations using bulk-coupling
DFT-based SEs with their model size.[109] We introduce the frequency variable by Fourier
transforming over ∆t using a generalized transform operator (F):

F [f(∆t)] ≡

∫ ∞

−∞

d(∆t)
[

ei(ω̄+iη)∆tΘ(∆t) + ei(ω̄−iη)∆tΘ(−∆t)
]

f(∆t)

≡ f1(ω̄) + f2(ω̄) ≡ f(ω̄)

(8)

where η → 0+, leads, when applied on G<(t̄,∆t), to

G<(t̄, ω̄) = G<
1 (t̄, ω̄) + G<

2 (t̄, ω̄), (9)

with

G<
1 (t̄, ω̄) =

∫ ∞

−∞

d(∆t)ei(ω̄+iη)∆tΘ(∆t)G<(t̄,∆t) and (10)

G<
2 (t̄, ω̄) = − G

†<
1 (t̄, ω̄).

The use of the two branches, where Θ is the step function, ensures that the transformed function
approaches zero as ∆t approaches ±∞. The resulting transformed e.o.m takes the form:

∂

∂t̄
G<(t̄, ω̄) = i

[

G<(t̄, ω̄),h0

]

+ i

∫

dω′[G<(t̄, ω̄ + ω′)v(t̄, ω′) − v(t̄, ω′)G<(t̄, ω̄ − ω′)], (11)
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where v(t̄, ω̄) is the mixed representation of the time dependent contribution to the Hamiltonian,
v(t̄), and can be expressed in terms of the Fourier transformed form (ṽ(ω) = F [v(t)]):

v(t̄, ω̄) =
1

π
e−i2ω̄t̄

∫ ∞

−∞

dtei(2ω̄)tv(t) =
1

π
e−i2ω̄t̄ṽ(2ω̄). (12)

This mixed time-frequency representation of the responding electronic system, as used below,
provides substantial physical insight into the electronic response aspects of the propagated model
system.[65]

2.3. Propagating the electrode-coupled system

The infinite nature of the coupled system is represented by adding bulk self-energies as shown
next. Here h̄0, v̄(t̄, ω′) and Ḡ<(t̄, ω̄) are in the AO representation and S is the AO overlap
matrix. We parse the system’s model space into a device region and two bulk regions.

h̄0 =





h̄0LL h̄0LC 0
h̄0CL h̄0CC h̄0CR

0 h̄0RC h̄0RR



 (13)

S̄ =





S̄LL 0 0
0 S̄CC 0
0 0 S̄RR



 (14)

v̄(t, ω) =





0 0 0
0 v̄CC(t, ω) 0
0 0 0



 (15)

Ḡ<(t̄, ω̄) =





Ḡ<
LL(t̄, ω̄) Ḡ<

LC(t̄, ω̄) 0
Ḡ<

CL(t̄, ω̄) Ḡ<
CC(t̄, ω̄) Ḡ<

CR(t̄, ω̄)
0 Ḡ<

RC(t̄, ω̄) Ḡ<
RR(t̄, ω̄)



 (16)

We next solve for the bulk-coupled lesser GF in the mixed representation (Ḡ<
CC(t̄, ω̄)):

i
∂

∂t̄
G<

CC(t̄, ω̄) =
[

h0CC ,G<
CC(t̄, ω̄)

]

(17)

+
∑

I∈L,R

[

hCIG
<
IC(t̄, ω̄) − G<

CI(t̄, ω̄)hIC

]

+

∫

dω′[vCC(t̄, ω′)G<
CC(t̄, ω̄ − ω′) − G<

CC(t̄, ω̄ + ω′)vCC(t̄, ω′)].

i
∂

∂t̄
G<

IC(t̄, ω̄) = h0IIG
<
IC(t̄, ω̄) + h0ICG<

CC(t̄, ω̄) (18)

− G<
II(t̄, ω̄)h0IC − G<

IC(t̄, ω̄)h0CC

−

∫

dω′[G<
IC(t̄, ω̄ + ω′)vCC(t̄, ω′)].

where I ∈ L,R. Furthermore, given the assumptions made on the overlap matrix, we have

vCC(t̄, ω′) = S
−1/2
CC v̄CC(t̄, ω′)S

−1/2
CC , h0IJ = S

−1/2
II h̄0IJS

−1/2
JJ and G<

IJ(t̄, ω̄) = S
1/2
II Ḡ<

IJ(t̄, ω̄)S
1/2
JJ

for I, J ∈ L,C,R.
We now divide the lesser GF into a sum of two parts:

G<(t̄, ω̄) ≡ G0,<(ω̄) + ∆G<(t̄, ω̄) (19)
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where G0,<(ω̄) is the lesser GF in the absence of a TD perturbation (i.e. Hamiltonian is constant
in time, see discussion proceeding equation (2)) and ∆G<(t̄, ω̄) is the remainder (i.e. the part
that carries all perturbation effects). This implies that

∂

∂t̄
G0,<(ω̄) = 0 (20)

and therefore,
∂

∂t̄
G<(t̄, ω̄) =

∂

∂t̄
∆G<(t̄, ω̄) (21)

Using these properties and the approximations above, we can rewrite eqns. (17) and (18) in
terms of ∆G<(t̄, ω̄):

i
∂

∂t̄
∆G<

CC(t̄, ω̄) =
[

h0CC ,∆G<
CC(t̄, ω̄)

]

(22)

+
∑

I∈L,R

[

hCI∆G<
IC(t̄, ω̄) − ∆G<

CI(t̄, ω̄)hIC

]

+

∫

dω′[vCC(t̄, ω′)G0,<
CC(ω̄ − ω′) − G

0,<
CC(ω̄ + ω′)vCC(t̄, ω′)]

+

∫

dω′[vCC(t̄, ω′)∆G<
CC(t̄, ω̄ − ω′) − ∆G<

CC(t̄, ω̄ + ω′)vCC(t̄, ω′)] ,

i
∂

∂t̄
∆G<

IC(t̄, ω̄) = h0II∆G<
IC(t̄, ω̄) −∆G<

IC(t̄, ω̄)h0CC + h0IC∆G<
CC(t̄, ω̄) . (23)

We integrate these equations after redefining ∆G<
IC(t̄, ω̄) as follows:

∆G<
IC(t̄, ω̄) ≡ e−ih0II (t̄−t0)∆G<

IC(t̄, ω̄)eih0CC (t̄−t0). (24)

Upon substitution of definition eqn. 24 into eqn. 23 we get,

∆G<
IC(t̄, ω̄) =

∫ t̄

−∞

dt̄′eih0II (t̄′−t̄)h0IC∆G<
CC(t̄, ω̄)e−ih0CC (t̄′−t̄) (25)

Note that the integration lower bound is set at −∞ because unlike v(t) which starts at
some finite t0, v(t̄, ω̄) is potentially infinite in extent. Equation 25 together with the property

∆G
<†
IC(t̄, ω̄) = −∆G<

CI(t̄, ω̄) can be substituted into equation 22 to give

i
∂

∂t̄
∆G<

cc(t̄, ω̄) =
[

hcc,∆G<
cc(t̄, ω̄)

]

+

∫

dω′[vcc(t̄, ω
′)G<

cc(t̄, ω̄ − ω′) − G<
cc(t̄, ω̄ + ω′)vcc(t̄, ω

′)]

+

∫ t̄

−∞

dt′[ΣR(t̄ − t′)∆Gcc
<(t′, ω̄)e−ihcc(t̄−t′) − eihcc(t̄−t′)∆Gcc(t

′, ω̄)ΣA(t′ − t̄)],

(26)

where the self energies ΣR(t) and ΣA(t) are defined as follows:

ΣR(t) ≡
∑

I∈L,R

h0CIg
R
II(t)h0IC (27)

ΣA(t) ≡
∑

I∈L,R

h0CIg
A
II(t)h0IC (28)
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gR
II(t) ≡ −iΘ(t)e−ihIIt (29)

gA
II(t) ≡ iΘ(−t)e−ihIIt (30)

with Θ(−t) the Heaviside step function.
For description of TD conductance the electronic density at the unperturbed state has

to be properly evaluated as the initial conditions of the propagation. The initial G0,< (i.e.
the unperturbed equilibrated system) must describe well the steady state, which is thermally
equilibrated with the electron baths. We remind that in the physically proper non-partitioned
view[107] the different subsystems are allowed to reach thermal equilibration as one system.
Namely, their coupling is not part of the turned on perturbation.[59, 60, 66]

2.4. Equilibrated Initial Conditions

The Keldysh formalism is used next to properly account for the thermal equilibration of the
device with the electrodes and its affect on G<. A Matsubara GF (GM ) corresponds entirely
to the imaginary part of the KC and is used to describe the system at thermal equilibrium.
Through KC continuation

GM → G<(t0, t0) ≡ G<
0 . (31)

In the absence of a perturbation, G<(t̄, ω̄) = G0,<(ω̄) = G
0,<
1 (ω̄) − G

0,<†
1 (ω̄), where

G
0,<
1 (ω̄) = iGR(ω̄)G<

0 = −GR(ω̄)f(h0 − µI). (32)

The Fermi-matrix f(A) is a function of a matrix and in the limit of non-interacting electrons is

given by f(A) = e−βA
[

I + e−βA
]−1

, assuming A is Hermitian. This condition is satisfied for

the orthogonalized basis set, where h0 = S−1/2h̄S−1/2. The Fermi-matrix above provides an
analytical solution for the Matsubara GF (GM) in the case of non-interacting electrons.

More specifically, we evaluate the unperturbed system in the localized basis, whereas
the propagation relations are all implemented in the orthogonalized representation. For a
Hamiltonian of a closed system represented in a finite basis, G0,<(ω̄) is diagonal in the basis
that diagonalizes h̄. This implies that G0,<(ω̄) does not introduce any off-diagonal coherences.
On the other hand, an open system introduces a non-trivial ω̄ dependence to the Hamiltonian
(through the bulk SEs). In this case, the initial guess is still guaranteed not to correspond to
arbitrarily turning on the electron density of the leads at t̄ = t0, since ω̄ depends on all ∆t.

2.5. Propagating using frequency domain bulk self-energy

Next, the projected equation (eq. 26) is written in the integrated form, where hcc is diagonalized
becomes

i∆G<
cc,ij(t̄, ω̄) =

∫ ∞

−∞

Θ(t̄ − t′)e−i∆ǫij(t̄−t′)

{
∫

dω′[vcc(t
′, ω′)G<

cc(t
′, ω̄ − ω′) − G<

cc(t
′, ω̄ + ω′)vcc(t

′, ω′)]ij

}

+

∫ ∞

−∞

Θ(t̄ − t′)e−i∆ǫij(t̄−t′)

∫ ∞

−∞

dt′′
∑

k,l

[Γijkl(t
′ − t′′)∆G<

cc,kl(t
′′, ω̄)].

(33)

In equation (33),
∫ t̄
−∞

dt′ →
∫ ∞

−∞
dt′Θ(t̄ − t′) and the electrodes are described by a memory

kernel of the form
Γijkl(t) ≡ ΣR

ik(t)e
iǫjtδlj − ΣA

lj(−t)e−iǫitδik. (34)
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We then proceed to express the e.o.m.s in the two-frequency representation by an additional
Fourier transform (FT):

G
<(∆ω, ω̄) ≡

∫ ∞

−∞

dt̄ei∆ωt̄
G

<(t̄, ω̄). (35)

Applying the Fourier transform to eqn. 33 gives

∆G<
CC,ij(∆ω, ω̄) = Gij(∆ω)

[

ṽCC(∆ω)G0,<
CC(ω̄ − ∆ω/2) − G

0,<
CC(ω̄ + ∆ω/2)ṽCC(∆ω)

]

ij

+
1

π
Gij(∆ω)

∫

dω′
[

ṽCC(2ω′)∆G
<
CC(ω̄ − ω′,∆ω − 2ω′) − ∆G

<
CC(ω̄ + ω′,∆ω − 2ω′)ṽCC(2ω′)

]

ij

+Gij(∆ω)
∑

k,l

Γijkl(∆ω)∆G<
cc,kl(∆ω, ω̄),

(36)

where

Γijkl(∆ω) ≡

∫

dtei∆ωtΓijkl(t) = ΣR
ik(ǫj + ∆ω)δlj − ΣA

lj(ǫi − ∆ω)δik. (37)

In addition, we use, as routinely employed, a small broadening factor η in defining the propagator
to enhance the stability of the solution:

Gij(∆ω) =
1

∆ω + iη − ∆ǫij
. (38)

This broadening ensures that eventually (at t → ∞) the system will return to its initial
equilibrium configuration. In practice, any finite grid method in the frequency domain requires
an artificial broadening to resolve infinitesimally narrow peaks. The final result is

∑

k,l

Hijkl(∆ω)∆G
<
CC,kl(∆ω, ω̄) =

[

ṽCC(∆ω)G0,<
CC(ω̄ − ∆ω/2) − G

0,<
CC(ω̄ + ∆ω/2)ṽCC(∆ω)

]

ij

+
1

π

∫

dω′
[

ṽCC(2ω′)∆G
<
CC(ω̄ − ω′,∆ω − 2ω′) − ∆G

<
CC(ω̄ + ω′,∆ω − 2ω′)ṽCC(2ω′)

]

ij
,

(39)

where
Hijkl(∆ω) ≡ (∆ω + iη − ∆ǫij)δikδjl − Γijkl(∆ω). (40)

The final result can be Fourier transformed back to the mixed representation to generate
Wigner type information that provides important insight on the quantum mechanical effects
that determine the time-dependence of the observable (i.e. the current operator).

We note that eqn. 39 involves a tensor of rank four that operates on a matrix (tensor of rank
2). Consequently, we employ tetradic notation to re-expresses matrices as vectors and rank four
tensors as matrices. Using this notation an n × n matrix A with elements Aij is rewritten as
a vector |A〉〉 with elements |A〉〉ni+j . Likewise, a tensor H with element Hijkl (where i, j, k, l
each spans over n elements) is rewritten as an n2×n2 matrix H, with elements Hni+j,nk+l. The
tetradic notation for eqn. 39 takes the form:

H(∆ω)|∆G
<
CC(∆ω, ω̄)〉〉 = |B

(1)
CC(∆ω, ω̄)〉〉 +

1

π

∫

dω′|BCC(ω′,∆ω, ω̄)〉〉, (41)

where
Hni+j,nk+l(∆ω) ≡ Hijkl(∆ω), (42)
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|∆G
<
CC(∆ω, ω̄)〉〉ni+j ≡ ∆G

<
CC,ij(∆ω, ω̄), (43)

|B
(1)
CC(∆ω, ω̄)〉〉ni+j ≡

[

ṽCC(∆ω)G0,<
CC(ω̄ − ∆ω/2) − G

0,<
CC(ω̄ + ∆ω/2)ṽCC(∆ω)

]

ij
(44)

and

|BCC(ω′,∆ω, ω̄)〉〉ni+j ≡
[

ṽCC(2ω′)∆G
<
CC(ω̄ − ω′,∆ω − 2ω′) − ∆G

<
CC(ω̄ + ω′,∆ω − 2ω′)ṽCC(2ω′)

]

ij
.

(45)

Finally inverting H(∆ω) gives

|∆G
<
CC(∆ω, ω̄)〉〉 = G(∆ω)|B

(1)
CC(∆ω, ω̄)〉〉 +

1

π
G(∆ω)

∫

dω′|BCC(ω′,∆ω, ω̄)〉〉, (46)

where
G(∆ω) ≡ H−1(∆ω). (47)

In this notation, a tensor equation appears as a matrix equation and all matrix operations
(multiplication, inversion, diagonalization, etc.) can be applied to the rexpressed equation of
motion.

The final expression can be formally expanded to n-th order in the perturbation ṽ(∆ω).
In this expansion, we express the TD electronic density in terms of the evolving occupations
of the projected device states. The band structure due to the coupling to the electrodes is
included directly in the expansion through the energy distribution variable (ω̄) that is also
used to calculate the SEs. In the results reported below we study transient current that is
appropriately treated at the first order. We also study the effect of initial conditions that
include an established non-equilibrium steady state in response to an applied constant bias. We
describe next the form of the solution for the steady state case.

2.6. Steady state limit of the perturbative expansion

We now discuss the solution for the steady state, where a constant bias has been turned on for
a long time. The Fourier transform of a time independent perturbation v(t) = v◦ (as in eqn.
35) takes the following form in the frequency domain

ṽ(∆ω) = 2πδ(∆ω)v◦. (48)

The resulting two-frequency representation of the time-dependent equations of motion is used to
derive the time-independent correction to G0,<. In this scheme, time independent fields (such as
a source-drain bias that has been turned on for a long time) are treated exactly by specializing
eqn. 41.

Implementing this scheme for the steady state and without loss of generality, the perturbing
potential v(t) is rewritten as the sum of a time-independent field (of arbitrary strength) v◦ and
a time dependent perturbing field vTD(t). Fourier transforming to the frequency domain gives

ṽ(∆ω) = 2πδ(∆ω)v◦ + ṽTD(∆ω). (49)

The resulting two-frequency equation of motion becomes

Hv◦(∆ω)|∆G
<
TD,CC(∆ω, ω̄)〉〉 = |B

(1)
TD,CC(∆ω, ω̄)〉〉 +

1

π

∫

dω′|BTD,CC(ω′,∆ω, ω̄)〉〉, (50)
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Figure 1. Schematic diagram of the model system. (a) localized/atomic orbital representation,
where the strong coupling of the device state to the wires are indicated (b) Diagonalized
molecular orbital representation. (c) Broadened electronic density of states.

where the propagating super operator

Hv◦,ni+j,nk+l(∆ω) ≡ Hijkl(∆ω) − (v◦,ikδlj − v◦,ljδik) (51)

includes the steady perturbation. The total lesser Green function is now defined in terms of a
new time independent initial guess G0,<

v◦ that includes the effects of the time-independent field
exactly. In the absence of additional time-dependent perturbations, G0,<

v◦ is the total lesser Green
function for the system. The remainder, ∆G<

TD, is related to the time dependent perturbations

|∆G
<
TD,CC(∆ω, ω̄)〉〉 ≡ |G<

CC(∆ω, ω̄)〉〉 − 2πδ(∆ω)|G0,<
v◦ ,CC(ω̄)〉〉, (52)

where
|G0,<

v◦,CC(ω̄)〉〉 = |G0,<
CC(ω̄)〉〉 + Gv◦(0)|B

(1)
v◦ ,CC(ω̄)〉〉. (53)

Here, Gv◦(∆ω) = H−1
v◦ (∆ω) and

|B
(1)
v◦,CC(ω̄)〉〉ni+j ≡

[

v◦,CCG
0,<
CC(ω̄) − G

0,<
CC(ω̄)v◦,CC

]

ij
. (54)

Now, the time dependent ”B”-terms are rewritten in terms of the modified initial guess G0,<
v◦

and the time-dependent components of the perturbation (vTD(∆ω)):

|B
(1)
TD,CC(∆ω, ω̄)〉〉ni+j ≡

[

ṽTD,CC(∆ω)G0,<
v◦,CC(ω̄ − ∆ω/2) − G

0,<
v◦,CC(ω̄ + ∆ω/2)ṽTD,CC(∆ω)

]

ij

(55)
and

|BTD,CC(ω′,∆ω, ω̄)〉〉ni+j ≡
[

ṽTD,CC(2ω′)∆G
<
TD,CC(∆ω − 2ω′, ω̄ − ω′) − ∆G

<
TD,CC(ω̄ + ω′,∆ω − 2ω′)ṽTD,CC(2ω′)

]

ij
.

(56)

The last two equations are identical in form to the general equations (44) and (45). In these
equations the effect of v◦ enters explicitly only into the Hamiltonian super operator, where we
replace H(∆ω) with Hv◦(∆ω) and the initial lesser GF (G0,<) with G0,<

v◦ . We emphasize that
the constant perturbation cannot be simply added to the Hamiltonian for calculating the initial
lesser Green function G0,<(ω̄) for proper description of existing non-equilibrium conditions.
The effect of a source-drain bias on an initially decoherent electronic charge density cannot be
modeled by a simple field asymmetry embedded within the Hamiltonian.
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Figure 2. The transient current under the effect of a slowly varying potential. Both the
corresponding current density is provided (band structure at the ground state). Note that
the right axis corresponds to the current curve while the left axis corresponds to the energy
distribution variable

2.6.1. Current evaluation We now describe the evaluation of the current from the time
propagated G< function. The grand canonical expectation value of any dynamical variable
(following the KC formalism[104, 106, 108]) is given by

〈Ĵ(t1)〉 = −i

∫ ∞

−∞

d~x1 lim
x2→x1

[

J (~x1)G
<(x1, x2)

]

. (57)

The expectation value can be expressed as a product of two matrices

〈J(t1)〉 = −iT r

[

lim
t2→t1

[

OG<(t1, t2)
]

]

= −iT r

[

lim
∆t→0,t̄→t1

[

JG<(t̄,∆t)
]

]

=

Tr

[

lim
t̄→t1

[

−i

2π

∫ ∞

−∞

dω̄JG<(t̄, ω̄)

]]

,

(58)

where Jij =
∫ ∞

−∞
dx̃φi(x̃)J (x̃)φj(x̃). Let us now consider the specific case of the current density

operator:

J (~x) = −i
[

~∇xδ(~x − ~r) + δ(~x − ~r)~∇x

]

(59)

or in an AO basis representation

Jji(~r) = i
[

φi(~r)~∇φj(~r) − φj(~r)~∇φi(~r)
]

. (60)

The electron current through a given plane is calculated by tracing [−iJG<].

2.6.2. Models We concentrate in this study on the transient current through a one dimensional
wire composed of hopping sites, where interactions are included only between neighboring sites.
In the considered model, the confined system includes two states which are coupled strongly by
βd to result with a pair of bonding and anti-bonding states separated by 2βd (H12 = H21 ≡ βd,
where H is the electronic Hamiltonian). This energy level scheme is illustrated in Figure 1,
where the atomic orbital representation is provided in part (a) and the corresponding MO
picture reflecting the coupling is given in part (b). The two strongly inter-coupled orbitals are
interfaced with electrodes to result with a pair of conducting (broadened) bands of states. In
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Figure 3. TD currents which differ in the rate of the potential turn off. The 3 TD bias curves
are provided to the right.

the AO representation this is achieved by coupling each site of the strongly interacting pair

to a different lead. The coupling to the leads is represented by the SEs, Σ = β†
cgsβc. In our

model, the surface GF (gs) is an imaginary constant number that implements a wide band
approximation for the electronic density of the bulk material projected on the surface site. We
use βd = −0.005(eV ), βc = 0.1βd where the resulting density of states (DOS) is plotted in part
(c).

We note that β and s are the electronic and overlap coupling terms. The diagonal terms
of the model Hamiltonian are set to the initial Fermi energy of the system. Accordingly, we
express the current operator with the numerical values assigned to the electronic integrals in the
Hamiltonian

J = i

[

0 βd

−βd 0

]

. (61)

The traced quantity iJG<(̄t, ω̄) provides the TD band structure (energy distibution) of the
current operator. In this case it describes the evolving current through the center of the model
system. In all calculations reported below in the results section we set the FE to zero (µ0 = 0).
This also defines the on site energies as described in the figure.

We use a sufficiently small value (ηd = 0.002eV ) for the broadening factor added to the
imaginary component of the Hamiltonian used to calculate the GR of the equilibrated system
(eq 32). Finally, we note that in all calculations the target bias potential is set to 0.1V unless
otherwise stated.

3. Results
We begin by considering the effect of a direct current (DC) potential bias, where we follow the
switching temporal effect on the transient current. The current following a (relatively) slow rate
for switching off the bias is provided in Figure 2. (Note the current scale is provided to the
right). We note that while the switching off time is long, where an oscillatory transient response
is almost absent, the transient current dips below zero before the full dissipation of the system
to the zero current limit. We then further resolve the time-dependence of the band structure
of the current operator. The figure depicts, by a projected color map, the distribution of the
current operator (J(ω̄, t̄)), where the current at any time can be extracted by integrating over
the energy distribution (

∫

dω̄J(ω̄, t̄)). The current is associated with contributions from the
lower occupied state (ground state), where the upper portion of the band contributes to the
positive current. The band structure of the current operator at the switch off is the reflection
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Figure 4. Time-dependent current distributions projected on a color map (I(t) are provided in
Figure 3). (a) fastest turn off rate, (b) medium turn off rate, (c) slowest turn off rate.

of the band at the turn on event. At turn off, the positive part of the distribution is at the
energetically lower part of the band (further away from the Fermi energy). The band narrows,
as the current continues to dissipate.

The current under increased rates of bias switching is considered next. In Figure 3 we
provide the current upon varying the rate for switching off the bias. The oscillatory response of
the current is shown to increase in amplitude with the rate of switching. It is also evident that
the current will oscillate with a larger number of periods when the rate is increased. This is also
reflected in the band structure as shown in Figure 4. The oscillatory response is shown to be
related to the direct interference of the two states. The quicker rate of the turn off is shown to
result in stronger interference due to the two states. The frequency of the oscillation depends
on the present energy levels, where the amplitude of the oscillation is determined by the rate of
perturbation change.

We now clarify that the temporal features of the current distribution prior to the switching
off as indicated in the figure is not a violation of causality. This is related to the nature of
the t̄ variable, and by taking the full distribution we generate information that is dependent on
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Figure 5. Effect of the coupling strength: (a) The density of states (b) TD current under an
AC tuned to the original coupling strength.

the observational time. Indeed, the current operator, which serves as physical probe, illustrates
that causality is preserved. This can also be understood as a reflection of the uncertainty
principle, where Husimi transformations can be used to reflect the fundamental limitations of
measurements. This highlights the importance in the current distributions expressed in Wigner
form as further demonstrated below. This representation is used to analyze the underlying
quantum effects leading to the oscillatory and directed response of the current.

As apparent by the current distribution due to the quick switching event, the two states can
be coupled to interfere and lead to an oscillatory response of the current. Stronger coherence can
clearly be achieved by a monochromatic field that is tuned to oscillate at a frequency associated
to the energy separating the two energy levels. In Figure 5 we follow the effect of a tuned driving
AC bias on the current. The AC amplitude is at 0.01V. We apply an AC pulse tuned exactly
to the weakly coupled states and then apply the same AC bias on the two states where their
coupling is either enhanced or decreased by 30% relative to the orignal value. The change in
the coupling strength, as reflected in Figure 5 (a), either further separates (increased βd) or
diminishes the energy gap between the two states (reduced βd). In either case, as shown in
Figure 5 (b), the responding current oscillations are reduced. The case where the energy levels
are further separated leads to a reduced time period of the response (increase of the frequency).
This is expected from the nature of the coupling-induced detuning effect. We note that upon
the opposite shift in β the period is slightly increasing.

The coherence underlying the response to an AC bias is also reflected in the band structure
of the current operator. In Figure 6 the color maps for the current plots of Figure 5 are
provided. We follow the effect of varying the coupling strength where the AC remains tuned
exactly to the system with the original β coupling parameter. The current band structure of
the perfectly tuned case (unshifted βd) demonstrates the strong amplitude of the AC response
by the straight (vertical) bands. These bands are slanted at the transient conditions as shown
in Figure 6 (a). For the β detuned cases as shown in Figures 6 (b-c) the slanting is increased
and the conductance amplitudes are diminished as expected. The mini-band that appears at a
shift below the populated state due to the interference with the excited state depends on the
tuning. The detuning diminishes its strength and shifts its location. It is shifted below -0.1eV
for the case with the stronger coupling or above that value for the second detuned case. Finally,
we also point at the different features of the detuning due to the change in beta as reflected, for
example, in the decay regime of the main coherence, see Figures 6 (b-c).

We next consider the effect of a DC bias on a coherent driven system, where the frequency of
the applied AC bias is set exactly to the energy difference between the two levels. The effect of
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Figure 6. The current band structure corresponding to the AC tuned to the energy difference
of the two energy levels under the effect of varying the coupling strength (see Figure 5). (a)
initial coupling , (b) stronger coupling, (c) weaker coupling.

the DC bias to detune the response was analyzed before[65]. Here its effect to shift the electronic
spectra is demonstrated in Figure 7 (a). The electronic excitation energy is shown to increase
due to the DC bias as expected. The applied DC bias also further broadens the spectral peak
and diminishes its height. In Figures 7 (b-d) we follow the TD currents with different strengths
of an applied DC under the effect of an AC bias that is retuned to the DC affected energy states.
The three plots focus each on different time ranges, where Figure 7 (b) provides an overall view,
Figure 7 (c) zooms on the initial times where the existing conducting flux is evident. It is also
demonstrated that the flux due to the DC bias reduces the amplitude of the oscillatory response,
an effect that can be studied only by a TD scheme. Finally Figure 7 (d) shows the tail, where
the AC bias is turned off and the system returns to its constant biased state.

The band structure of the corresponding current operator is provided in Figure 8. The effect
of the bias to induce constant flux is reflected in the thin band centered about the ground state
energy that is enhanced by the increase of the DC bias. As expected the main coherence is
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Figure 7. Effects of an existing DC bias on: (a) Electronic spectra of the bias system (b-d)
Coherence driven conductance.

Figure 8. The current distributions of the cases with different applied DC biases. (a) 0 eV, (b)
0.01 eV, (c) 0.05 eV, (d) 0.10 eV.
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obtained at the energy exactly between the two interfering states. This main coherence is shown
to decrease, in spite of the retuning of the AC bias, in the presence of the DC induced flux.
This is a consequence of the DC to reduce the spectral peak that corresponds to the electronic
excitation as revealed above. Interestingly, the mini-band of the current operator corresponding
to the shift below the ground state features an opposite trend. This mini-band is somewhat
enhanced upon the application of the bias. This effect however is still not able to reverse the
overall observation of the DC bias reducing the oscillatory response.

4. Concluding Comments
Electron transport through model electronic channels is studied by solving the electronic
equations of motion of coupled and bias systems. The electronic equations of motion is
represented using Keldysh formalism by Green Functions. Their solution is obtained by
expressing the time dependence in the frequency domain, where in order to achieve full time
resolution the GFs are defined using two independent time variables. We solve the equations
using TD perturbation theory.

The TD approach provides a rigorous treatment of the extended system. The calculations also
provide a plethora of information through the resolved band structure of the evolving electronic
density. Here, the band structure of the current operator in model electronic channels are solved
for. The study considers the transient features of the transport through biased systems. The
evolving current operator is used to generate data that highlights the quantum interferences
that determine the oscillatory current at transient conditions. The oscillatory component of the
current that is noted at transient conditions is associated with interference of the conducting
states, where the constant component under steady state conditions when the transient features
are dissipated is determined by the broadening extent of the conducting states.

The TD approach is also used to study driven transport. In the considered system,
the oscillatory bias perturbation affects the current through the state interferences. The
relationships between DC bias and AC-inducing coherences are studied in detail. The calculated
current operator is used to reflect the quantum interferences affecting the current under the
driving TD perturbations. The ability to analyze in general the possibility for driving the
current by applied TD perturbations becomes of increased importance due to experimental
related advances.
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