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The value of seasonal energy storage depends on how the firm best operates the storage to capture the seasonal

price spread. Energy storage operations typically face limited operational flexibility characterized by the speed

of storing and releasing energy. A widely used practice-based heuristic, the rolling intrinsic (RI) policy, generally

performs well, but can significantly underperform in some cases. In this paper, we aim to understand the gap

between the RI policy and the optimal policy, and design improved heuristic policies to close or reduce this gap.

A new heuristic policy, the “price-adjusted rolling intrinsic (PARI) policy,” is developed based on theoretical

analysis of the value of storage options. This heuristic adjusts prices before applying the RI policy, and the

adjusted prices inform the RI policy about the values of various storage options. Our numerical experiments

show that the PARI policy is especially capable of recovering high value losses of the RI policy. For the instances

where the RI policy loses more than 4% of the optimal storage value, the PARI policy on average is able to

recover more than 90% of the value loss.

1. Introduction

Energy storage plays an essential role in managing the mismatch between energy supply and demand.

Because of the seasonality in demand, energy storage operations exhibit seasonal patterns: Natural

gas storage (e.g., depleted reservoir, aquifer) operates in annual cycles; electricity storage (e.g.,

hydroelectric pumped storage, compressed air storage, batteries) typically has daily cycles.

The value of energy storage depends not only on the seasonal price spread, but also on how

the firm best operates the storage. Energy storage operations typically face limited operational

flexibility: Firms can choose periods with the best energy prices to buy and sell energy, but the

quantities are limited by the storing and releasing capacities, which are determined by physical

constraints or contractual terms. Figure 1 shows an example of physical constraints for a typical

natural gas storage facility. Panel (a) shows that the maximum injection rate is initially constant and

then declines in response to the higher reservoir pressure as working inventory builds up; a reverse

trend is observed for the withdrawal rate. (Gas reservoirs hold working gas and base gas. Working



inventory refers to gas that can be withdrawn; base gas is needed as permanent inventory to maintain

adequate reservoir pressure.) Panel (b) is derived from panel (a) and shows the monthly injection

and withdrawal capacities: An empty storage can receive a maximum of 3.1 trillion Btu (British

thermal unit) in the first 30 days and less in the following months. It takes about four months to fill

up or deplete the storage, or about eight months to complete a cycle.

Figure 1: Injection and withdrawal capacities of a typical natural gas storage facility

Source: Financial Engineering Associates (FEA)
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Managing storage with unlimited capacity is known as the warehouse problem, which was first

proposed by Cahn (1948). With limited flexibility, storage valuation is considerably more challenging

because it involves multiple interacting real options, i.e., options to store or withdraw within capacity

limits in every period. Analytical solutions for storage valuation typically do not exist; significant

development in numerical techniques of valuation has been seen in recent years, e.g., Manoliu (2004),

Chen and Forsyth (2007), Thompson et al. (2009), among others.

In general, finding the optimal storage policy is analytically and computationally challenging.

Consequently, heuristic methods have been developed in practice and studied in academia. A widely-

used heuristic method is the rolling intrinsic (RI) policy, detailed in Gray and Khandelwal (2004a,b),

and is also referred to as the reoptimized intrinsic policy by Secomandi (2010) and Lai et al. (2010).

Under the RI heuristic, in each period, the storing or releasing quantity is decided by solving a

static optimization problem that involves only forward prices or price forecasts; prices are updated

every period and the storage is re-evaluated. The RI policy has near-optimal performance in many

circumstances (Secomandi 2010, Lai et al. 2010), but can significantly underperform in some cases.
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This paper aims to understand the gap between the RI policy and the optimal policy and to

design improved heuristic policies to close or reduce the gap. We design a new heuristic policy called

the “price-adjusted rolling intrinsic” (PARI) policy, in which prices are adjusted before applying the

RI policy. This simple idea turns out to be very effective: In a three-period problem, the PARI

policy is proven to be optimal, and in the multiperiod setting, our numerical results show that the

PARI policy is especially capable of recovering high value losses caused by the RI policy.

The price adjustment method is derived based on the understanding of four types of option values

in storage operations, briefly described below.

(a) Value of waiting. Even if the current price is higher than the expected future prices, it may be

beneficial to defer sales when the firm has the flexibility to release energy to capture the expected

maximum selling prices.

(b) Value of avoiding adverse price. Even if the current price is the lowest compared to the expected

future prices, selling some inventory right now may be beneficial because it allows the firm to

avoid the expected minimum selling prices in the future.

(c) Value of counter-seasonal operations. Price fluctuations may create within-season profit oppor-

tunities, which can be captured by counter-seasonal operations, e.g., buying in the selling season.

(d) Value of raising operational capacity. When the storing (releasing) speed depends on the inven-

tory level, storing (releasing) less energy in the current period allows the firm to have a higher

storing (releasing) capacity in the future to profit from better prices.

The value of waiting and the value of raising operational capacity reduce the firm’s incentive to

sell, whereas the value of counter-seasonal operations and the value of avoiding adverse price increase

that incentive. Thus, it is necessary to strike a balance between these values. We formalize these

tradeoffs in this paper.

The rest of this paper is organized as follows. The relevant literature is reviewed in §2. The

seasonal storage operations are modeled in §3. The PARI policy is constructed and analyzed in §4

and §5. Numerical results are presented in §6. We conclude the paper with discussion in §7.

2. Literature Review

Managing a fully flexible storage facility is known as the warehouse problem (Cahn 1948). Many

researchers have addressed the problem under various settings. The deterministic version of the

problem is studied by Charnes and Cooper (1955), Bellman (1956), Prager (1957), and Dreyfus

(1957). The warehouse problem with stochastic price variations is considered by Charnes et al.

(1966), who find that the optimal policy is a bang-bang type (if the firm acts, it would either fill up
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the storage or sell all the inventory). Kjaer and Ronn (2008) analyze a model with both spot and

futures markets. Hodges (2004) solves a continuous-time model of a fully flexible storage facility.

In practice, storages typically have limited flexibility, due to physical constraints or contractual

terms. Secomandi (2010) shows the optimal policy under injection and withdrawal capacities is

characterized by two state-dependent basestock targets: If inventory falls between the two targets,

it is optimal to do nothing, otherwise the firm should inject or withdraw to bring the inventory as

close to the nearer target as possible. In a continuous-time framework, Kaminski, Feng and Pang

(2008) prove the optimal policy has a similar structure.

In essence, energy storage operations are multiple interacting real options, that is, options to

store or withdraw within capacity limits in every period. Dixit and Pindyck (1994) and Schwartz

and Trigeorgis (2001) provide the theoretical background of real options. Analytical valuation of

storage options typically do not exist due to the injection and withdrawal constraints. Three compu-

tational methods have been developed for storage valuation: numerical partial differential equation

techniques (Chen and Forsyth 2007, Thompson, Davison and Rasmussen 2009), binomial/trinormial

trees (Manoliu 2004, Parsons 2007), and the Monte Carlo simulation (Boogert and De Jong 2008,

Carmona and Ludkovski 2010, Li 2009). Chen and Forsyth (2007) provide a good survey of these

computational methods. Our work complements the above works by identifying various types of

storage options and revealing useful insights to improve heuristic policies.

Practitioners typically employ two heuristic policies to value seasonal energy storage, the rolling

intrinsic (RI) approach and the rolling basket of spread options approach (Gray and Khandelwal

2004a,b, Eydeland and Wolyniec 2003). Lai et al. (2010) refer to them as reoptimized intrinsic value

policy and reoptimized linear program policy, respectively. Gray and Khandelwal (2004b, p. 4) state,

“Additionally, we have found empirically that, in general, the rolling intrinsic value is equal to the

rolling basket value.” Lai et al. (2010) employ an approximate dynamic programming approach to

value storage with constant capacities and study the effectiveness of the heuristics. They find both

heuristics have near-optimal performance. Lai et al. (2011) value the real option to store liquefied

natural gas at a regasification terminal. Our work complements the above research by identifying the

conditions under which the RI heuristic deviates from the optimal policy and by developing methods

to bring the RI heuristic closer to optimality.

3. The Model

Consider an energy storage facility with maximum working inventory level denoted as K. The

planning horizon lasts N periods, indexed by t = 1, 2, . . . , N . At the beginning of period t, let xt be
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the inventory level in the storage. In this paper, we interchangeably use ‘energy level’ and ‘inventory

level,’ which are measured in units of energy. The price-taking firm aims to maximize the profit from

storage operations.

3.1 Operational Constraints and Costs

Let λ(x) ≥ 0 and λ(x) ≤ 0 be the capacity functions. Their absolute values, λ(x) and −λ(x), express

the maximum amount of energy that can be stored and released, respectively, in one period when

the period-starting energy level is x. These capacity functions satisfy the following assumption:

Assumption 1 There exists H ∈ (0,K) such that λ(x) = −x when x ≤ H, and λ′(x) ∈ (−1, 0]

when x > H. There exists G ∈ (0,K) such that λ(x) = K−x when x ≥ G, and λ
′
(x) ∈ (−1, 0] when

x < G.

Assumption 1 implies that the storage can be emptied (filled up) within one period if and only

if the period-starting inventory level x ≤ H (x ≥ G). The slopes of the capacity functions imply

that the period-ending inventory limits, defined as y(x)
def
= x + λ(x) and y(x)

def
= x + λ(x), are

nondecreasing in x.

When the injection and withdrawal speeds are constant for all inventory levels, we have λ(x) =

max{C,−x} and λ(x) = min{C,K − x} for some C < 0 and C > 0. We refer to this case as the

constant capacities case, which is examined by Secomandi (2010) and Lai et al. (2010).

Storing and releasing energy typically involves operational frictions. For example, in natural gas

storage operations, the pumps of the storage facility use some of the gas as fuel (Maragos 2002).

If q units are to be added to the storage, the firm needs to purchase (1 + α)q units; if q units are

withdrawn from the storage, a fraction βq will be lost and (1− β)q can be sold, where α and β are

positive constants. In addition to the volume losses, the firm also incurs a variable cost of cαq when q

units are stored, and a variable cost of cβq when q units are withdrawn, where cα and cβ are positive

constants. These costs cover the use of pumps and other equipment (Maragos 2002).

Many firms contract gas storage for one year and must remove the gas before the end of the term

(usually March 31, the end of the peak season) or pay a penalty (Buurma 2010). The penalty is

typically proportional to the leftover inventory (Carmona and Ludkovski 2010, Chen and Forsyth

2007) or in general form (Boogert and De Jong 2008). We let p ≥ 0 denote the penalty per unit of

inventory at the end of period N ; p is realized in period N and may depend on the market prices

modeled below.
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3.2 Price Model and Problem Formulation

At the beginning of period t, the futures price for delivery in period t is maturing, denoted as f̃tt.

The firm sees this maturing price and other futures prices f̃tτ that mature in period τ = t+1, . . . , N ,

and decides the quantity to purchase or sell at price f̃tt. The settled amount is then stored in or

released from the storage over the entire period t.

We make the standard no-arbitrage assumption under which the futures prices are martingales

under an equivalent martingale measure Q (see, e.g., Duffie 2001):

f̃tτ = E
Q
t

[
f̃sτ

]
, t < s ≤ τ, (1)

where EQ
t denotes the expectation under Q-measure with information available up to the beginning of

period t. If the futures market is absent, all results in this paper continue to hold with f̃tt interpreted

as the spot price in period t and f̃tτ interpreted as the forecast in period t for the price in period τ .

We choose to model the futures market because it provides the firm with instruments to hedge the

storage value (perfect hedging is achievable in a complete market).

We refer to (1 + α)f̃tτ + cα as the buying price of inventory, the price the firm must pay for

having one unit of inventory available in the storage in period τ . This price includes procurement

cost, volume losses, and operating costs. Similarly, we refer to (1− β)f̃tτ − cβ as the selling price of

inventory, which is the net profit the firm obtains from releasing one unit of inventory in period τ .

To derive the expected discounted value of the storage, we note that the expected marked-to-

market profit/loss from the futures positions held by the firm is zero under Q-measure, since futures

prices are martingales. Hence, if the firm does not have capital constraints, the no-arbitrage value of

the storage is the sum of cash flows at maturity dates evaluated under Q-measure and discounted at

the risk-free rate (see, e.g., Duffie 2001). Operations of large energy storage facilities often require

large sums of capital, thereby increasing the possibility of financial distress during the storing season.

Froot and Stein (1998) show that firms require investments to yield a higher return when all risks

cannot be frictionlessly hedged. For the purpose of this paper, we assume that the firm discounts

the cash flows at a constant rate R. The insights of the paper are intact under any choice of R,

including the risk-free rate.

Define ftτ and f
b
tτ respectively as the selling price and buying price of inventory discounted to

the first period:

ftτ
def
= e−R(τ−1)

[
(1− β)f̃tτ − cβ

]
, f

b

tτ
def
= e−R(τ−1)

[
(1 + α)f̃tτ + cα

]
. (2)
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Discounting the prices back to the first period allows not to include the discount factor in the problem

formulation in (3) below, which simplifies the analytical expressions throughout the paper. Note that

for any fixed maturity τ , the discounted selling and buying prices in (2) are still martingales.

Let ft = (ftτ : τ = t, t + 1, . . . , N) be the discounted forward selling price curve (or simply

forward curve when no confusion arises) observed at the beginning of period t. Let Vt(xt, ft) be the

discounted expected profit-to-go from period t onward. Let yt be the ending inventory in period t,

which is decided by the firm at the beginning of period t.

The storage valuation problem can be written as:

Vt(xt, ft) = max
yt∈[y(xt), y(xt)]

r(yt − xt, ftt) + E
Q
t

[
Vt+1(yt, ft+1)

]
, (3)

where the one-period reward function r(q, ftt)
def
= −f

b
tt q, if q ≥ 0 (purchase), and r(q, ftt)

def
= −ftt q,

if q < 0 (sell); the period-ending inventory is bounded between y(xt) = xt + λ(xt) and y(xt) =

xt + λ(xt). In the last period, the firm sells as much as possible to maximize the profit, and thus,

VN (xN , fNN ) = −fNN λ(xN )− y(xN )p. (4)

In general, solving the problem in (3)-(4) is complicated. A widely-used heuristic policy is detailed

below.

3.3 Rolling Intrinsic Policy

To define the rolling intrinsic (RI) policy, we first define the intrinsic policy, a policy that decides in

the first period the actions to be performed in each of the remaining periods. The intrinsic policy

is found by solving an optimization problem using only the forward prices seen in the first period.

The corresponding value is called the intrinsic value. The RI policy re-optimizes the action in each

period by solving the intrinsic valuation problem using the updated forward prices. We refer to the

corresponding value as the rolling intrinsic value. The RI policy is commonly used in practice (Gray

and Khandelwal 2004a,b) and is also referred to as the reoptimized intrinsic policy by Secomandi

(2010) and Lai et al. (2010). Because futures prices are martingales, the RI heuristic essentially

replaces uncertain prices by their expected values, which is a type of certainty equivalent control

studied by Bertsekas (2005). The policy is formally defined below.

Let V I
t (xt, ft) and V RI

t (xt, ft) denote the intrinsic value and the rolling intrinsic value of the storage

in period t, respectively.

In period t, given the discounted forward selling prices ft = (ftτ : τ ≥ t), the intrinsic value of
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the storage V I
t (xt, ft) is determined by:

V I
N (xN , ft) = −ftN λ(xN )− y(xN )EQ

t [p], (5)

V I
s (xs, ft) = max

ys∈[y(xs), y(xs)]
r(ys − xs, fts) + V I

s+1(ys, ft), t ≤ s < N. (6)

When t = 1, the recursion in (5)-(6) yields the intrinsic policy in period 1. If the firm implements

the intrinsic policy via futures contracts in period 1 and holds all contracts until maturity, then the

policy yields the intrinsic value V I
1 (x1, f1).

In the RI policy, the firm solves (5)-(6) in every period with updated forward curve ft, and adjusts

the futures positions accordingly. Let y†t be the futures position on the maturing contract in period t,

solved from (5)-(6). Then, the rolling intrinsic value of the storage is defined as:

V RI
N (xN , fN ) = V I

N (xN , fN ), (7)

V RI
t (xt, ft) = r(y†t − xt, ftt) + E

Q
t

[
V RI
t+1(y

†
t , ft+1)

]
, 1 ≤ t < N. (8)

4. Improving the RI Policy: The Three-Period Case

This section introduces the main ideas of improving the RI policy. In §4.1, we consider several simple

examples that lead to the construction of a new heuristic policy − the price-adjusted rolling intrinsic

(PARI) policy. In §4.2, we prove the optimality of the PARI policy for the three-period setting.

4.1 From RI Policy to PARI Policy

The RI policy solves a deterministic optimization problem every period and may miss potential option

values rising from the stochastic evolution of the forward curve. The idea of the PARI policy is to

adjust the forward curve to inform the RI policy about the value of various options. The following

three examples each illustrate a different option value and introduce a price adjustment scheme to

capture the option value.

The common settings of all the examples are as follows. The storage size is K = 4 units.

The storage can release (store) three units per period as long as inventory (space) is available, i.e.,

λ(x) = max{−x,−3} and λ(x) = min{4 − x, 3}. The operating cost parameters are: α = 2%,

β = 1%, cα = cβ = $0.02. Assume the discount rate R = 0. Then, the definitions in (2) imply that

f
b
tτ = 1+α

1−β
(ftτ + cβ) + cα = 1.03ftτ + 0.04. We assume the storage is initially full and consider a

three-period (N = 3) selling season problem.

Example 1: Value of waiting. Suppose in period 1 the forward selling price curve is (f11, f12, f13) =

($5.00, $4.97, $4.95). The intrinsic policy can be found by a greedy method: sell three units at the
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highest price $5.00 and sell one unit at the second highest price $4.97. Thus, the intrinsic value of

the storage is $19.97. (Operating costs are accounted for in the selling prices.)

Under the RI policy, the firm first sells three units at $5.00, as prescribed in the intrinsic policy. In

the second period, assume the selling prices (martingales) evolve as follows: (f22, f23) = ($5.30, $5.10)

with probability 0.5, and (f22, f23) = ($4.64, $4.80) with probability 0.5. Upon price increase, the RI

policy is to sell the remaining unit at $5.30. Upon price decrease, the RI policy is to do nothing in

the second period (no incentive to buy because f
b
22 = 1.03× 4.64 + 0.04 = $4.82 > f23) and sell the

remaining unit at $4.80 in the third period. Thus, the remaining unit is sold at an expected price of

($5.30 + $4.80)/2 = $5.05. The expected rolling intrinsic value of the storage is $20.05.

In the above RI policy, the firm effectively sells energy at EQ
1

[
max{f22, f23}

]
= $5.05 by exploiting

the flexibility of when to sell, but this flexibility is limited: The storage can release at most three

units per period. Hence, the optimal policy is to sell one unit at $5.00 in the first period and sell the

remaining three units at $5.05 in expectation, yielding the optimal expected profit of $20.15. Thus,

although the maturing price f11 is the highest on the forward curve, there is a value of delaying sales.

Let us preview one of the key ideas behind the price-adjusted rolling intrinsic (PARI) policy. The

original forward curve does not reveal the value of waiting, because max{f12, f13} < f11. Suppose we

adjust either f12 or f13 up to $5.05, and use the adjusted forward curve as the input to the RI policy.

Then, because f11 = $5.00 is the second highest among the adjusted prices, the RI policy is to sell

only one unit at $5.00. Hence, for this example, adjusting either f12 or f13 up to E
Q
1

[
max{f22, f23}

]

informs the RI policy about the value of waiting and brings the RI decision to the optimal.

Example 2: Value of potential purchase. Suppose in period 1 the forward curve is (f11, f12, f13)

= ($5.00, $4.85, $5.05). The intrinsic policy is to sell one unit at $5.00 and sell the remaining three

units at $5.05, yielding an intrinsic value of $20.15. Selling more in the first period and buying in the

second period cannot improve the intrinsic value, because the buying price f
b
12 = 1.03f12 + 0.04 =

$5.04 > f11.

Under the RI policy, the firm sells one unit in the first period. In the second period, assume

the martingale selling prices (f22, f23) is ($5.20, $5.20) or ($4.50, $4.90) with equal probabilities.

If (f22, f23) = ($5.20, $5.20), the firm sells the remaining three units at $5.20. If (f22, f23) =

($4.50, $4.90), the firm faces a low buying price f
b
22 = 1.03f22 + 0.04 = $4.68 and can make a

profit of f23 − f
b
22 = $0.22 per unit by buying at f

b
22 and selling at f23. However, it can capture this

opportunity only if the storage has less than three units at the start of the second period, which is

not the case under the RI policy. Hence, the storage value under the RI policy remains $20.15.
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Let us now consider the strategy of selling 1 + ε units in the first period, where ε ∈ [0, 2]. Based

on Example 1, this strategy gives up some value of waiting: (EQ
1

[
max{f22, f23}

]
− f11)ε = $0.05ε,

but it brings an extra profit of EQ
1

[
max{f23 − f

b
22, 0}

]
ε = $0.11ε from the potential purchase in the

second period. The net expected gain is 0.06ε. The optimal policy is to sell three units in the first

period, i.e., ε = 2, yielding an extra profit of $0.12 and raising the storage value to $20.27.

This leads to the second key idea of the PARI policy. The forward buying price f
b
12 = $5.04 is

too high to reveal the option value of buying inventory in the second period. Let us adjust f
b
12 down

to f̂
b
12 = ($4.68 + $5.20)/2 = $4.94, implying that f12 is lowered to f̂12 = $4.76. Under the adjusted

prices (f11, f̂12, f13) = ($5.00, $4.76, $5.05), the RI policy is to sell three units at the maturing price

$5.00, which coincides with the optimal policy. Note that f13 − f̂
b
12 = $5.05 − $4.94 = $0.11 equals

E
Q
1

[
max{f23 − f

b
22, 0}

]
, representing the value of potential purchase.

Example 3: Value of avoiding adverse price. Suppose (f11, f12, f13) = ($5.00, $5.05, $5.02).

Note the maturing price f11 is the lowest. The intrinsic value is $20.17, which is the profit of selling

three units at $5.05 and one unit at $5.02.

The RI policy is to do nothing in the first period. In the second period, assume (f22, f23) is

($5.40, $5.10) or ($4.70, $4.94) with equal probabilities. Upon price increase (or decrease), the RI

policy sells three units at $5.40 (or $4.94) and one unit at $5.10 (or $4.70). The expected value of

the storage under the RI policy is $20.41.

However, if in the first period the firm sells ε ∈ (0, 1] units at the lowest price f11 = $5.00, then

upon price increase (or decrease) it sells 1− ε units at $5.10 (or $4.70). Thus, by selling ε units at

$5.00 now, the firm sells ε units less at an expected price ($5.10 + $4.70)/2 = $4.90, which equals to

the expected minimum price E
Q
1

[
min{f22, f23}

]
. The optimal policy is to set ε = 1, and the storage

value is improved to $20.51.

We introduce another idea of the PARI policy that helps the firm avoid selling at the adverse

price. The original forward curve does not reveal the adverse price, because min{f12, f13} > f11.

Suppose we adjust either f12 or f13 down to E
Q
1

[
min{f22, f23}

]
= $4.90, and use the adjusted forward

curve as the input to the RI policy. Then, because f11 = $5.00 is no longer the lowest price among

the adjusted prices, the RI policy is to sell one unit at $5.00, which coincides with the optimal policy.

Note that f11−E
Q
1

[
min{f22, f23}

]
= $0.10 is exactly the value difference between the optimal policy

and the RI policy.

The previous examples show three different option values under constant storing and releasing

capacities. In Example 3, if the maximum releasing speed increases in the inventory level, there is an
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incentive not to sell in the first period, because keeping a higher inventory level raises the releasing

capacity in the second period, allowing the firm to sell more at f22 and less at f23 when f22 > f23.

This is the fourth option value − value of raising operational capacity.

We summarize the four option values in Table 1. For the value of potential purchase, we use a

more general term “value of counter-seasonal operations.” The third column shows the impact of the

option values on the first-period decision. The fourth and fifth columns show the option values and

the related spreads seen on the forward curve in the first period.

Table 1: Summary of option values in the selling season

Impact
on y∗

1

Option value
Related spread on
forward curve

Price adjustment

f11 > f12

Value of waiting ↑ E
Q
1

[
max{f22, f23}

]
− f11 max{f12, f13}−f11

f13 ↑, f12 ↓
Value of counter-
seasonal operations

↓ E
Q
1

[
max{f23 − f

b
22
, 0}

]
f13 − f

b
12

f11 < f12

Value of avoiding
adverse price

↓ f11 − E
Q
1

[
min{f22, f23}

]
f11 −min{f12, f13}

f13 ↓, f12 stays
Value of raising
operational capacity

↑ E
Q
1

[
max{f22 − f23, 0}

]
f12 − f13

In Table 1, the option values (column 4) typically exceed the corresponding spreads on the

forward curve (column 5). The idea of the PARI policy is to adjust the forward curve to bring the

deterministic spreads closer to the option values. Interestingly, there exists a set of price adjustments

under which the deterministic spreads equal the option values. This set of price adjustments is stated

in Definition 1 below; the last column of Table 1 shows the direction of the price adjustments.

Definition 1 Price-adjusted rolling intrinsic (PARI) policy for N=3

Step 1. Price adjustment. Based on the forward curve f1, define a new forward curve f̂1 as follows.

(i) When f11 > f12, define f̂1 = (f11, f̂12, f̂13) such that

f̂
b

12 = E
Q
1

[
median{f22, f

b

22, f23}
]

and f̂13 = E
Q
1

[
max{f22, f23}

]
.

(ii) When f11 ≤ f12, define f̂1 = (f11, f12, f̂13) where

f̂13 = E
Q
1

[
min{f22, f23}

]
.

Step 2. In the first period, we solve the intrinsic valuation problem (5)-(6) with f1 replaced by f̂1,

and implement the corresponding first-period decision.

Step 3. Apply the regular RI policy for the remaining two periods.
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The three previous examples assume binomial price processes and constant injection and with-

drawal speeds. One surprising result is that the above PARI policy is optimal for the three-period

model under general price distributions and capacity functions. We now turn to prove this optimality.

4.2 Optimality of the PARI Policy

We assume the storage can be emptied in two out of three periods, capturing the limited flexibility

of typical seasonal storages. Formally, this assumption is stated as follows:

Assumption 2 (i) x1 > H. (ii) |λ(K)| > K −H.

Part (i) suggests that the initial inventory cannot be sold in a single period. Part (ii) implies that

a full storage can release more than K −H in one period. Thus, a full storage can be emptied in

two out of three periods. Typical capacity functions satisfying Assumptions 1 and 2 are illustrated

in Figure 2. In the figure, H ′ will be defined in Lemma 1.

Figure 2: Storing and releasing capacity functions for the three-period model

We first show that Step 3 of the PARI policy is optimal for the last two periods.

Proposition 1 (i) The RI policy is optimal for the last two periods.

(ii) If the penalty satisfies P

{
p ≥

sf33 − f22
1− s

}
= 1, where s

def
= sup{−λ′(x) : x ∈ (H,K]}, then for

any given first-period decision y1, the second-period RI (optimal) decision is:

y∗2(y1, f2)− y1 =





λ(y1), if f22 ≥ f23,

min{H − y1, 0}, if f22 < f23 ≤ f
b
22,

min{H − y1, λ(y1)}, if f
b
22 < f23.

(9)

Furthermore, y∗2(y1, f2) ≤ H, and the storage is emptied in the third period.

12



The penalty condition in the above proposition is typically satisfied in practice. Under the

constant capacities, we have s = 0 and the penalty condition clearly holds. When the injection and

withdrawal speeds vary with inventory, s is typically no more than 0.5 (see Figure 1). Thus, the

term sf33−f22 is typically negative, given the fact that the end-of-season selling price f33 is typically

lower than the mid-season selling price f22 (see an example in §6.1).

The RI policy in (9) reacts to the forward curve as follows: If the forward curve is downward

sloping f22 ≥ f23, the firm sells as much as possible at price f22. If f22 < f23, the firm has an

incentive to delay sales but needs to sell inventory down to H so that all inventory can be sold in

the last period. If the period-starting inventory x2 is already below H and if the forward curve is

steeply upward-sloping f
b
22 < f23, then the firm buys inventory up to or as close as possible to H.

Using the second-period optimal action in (9), we can write the first-period problem as:

V1(x1, f1) = max
y1∈[y(x1), y(x1)]

U1(x1, y1, f1), (10)

U1(x1, y1, f1) = r(y1 − x1, f11) + E
Q
1

[
r
(
y∗2(y1, f2)− y1, f22

)
+ f23 y

∗
2(y1, f2)

]

= r(y1 − x1, f11) + f13y1 + E
Q
1

[
r
(
y∗2(y1, f2)− y1, f22

)
+ f23(y

∗
2(y1, f2)− y1)

]

= r(y1 − x1, f11) + f13y1 + P{A1}E
Q
1

[
(−f22 + f23)λ(y1) | A1

]

+ P{A2}E
Q
1

[
(−f22 + f23)min{H − y1, 0} | A2

]

+ P{A3}E
Q
1

[
r
(
min{H − y1, λ(y1)}, f22

)
+ f23(min{H − y1, λ(y1)}) | A3

]
,

where A1 = {f22 ≥ f23} is the downward-sloping forward curve event, A2 = {f22 < f23 ≤ f
b
22} is

referred to as the slightly upward-sloping forward curve event, and A3 = {f
b
22 < f23} is the steeply

upward-sloping forward curve event.

Next, we prove the optimality of the PARI policy by analyzing the optimal policy and comparing

it with the RI policy. We study two cases: f11 > f12 and f11 < f12.

4.2.1 Case of f11 > f12

For this case, we show in the appendix that the problem (10) can be rewritten as:

max
y1∈[y(x1),H]

V wy1 + V cmin{H − y1, λ(y1)}, (11)

where,

V w def
= E

Q
1

[
max{f22, f23}

]
− f11 = value of waiting, (12)

V c def
= E

Q
1

[
max{f23 − f

b

22, 0}
]

= value of potential purchase (counter-season operations). (13)

13



By definition, V c ≥ 0, and the sign of V w is unrestricted. The optimal policy for the first period is

summarized in the lemma below. All proofs are included in the online supplement part C.

Lemma 1 In the first period, if f11 > f12, then the optimal decision y∗1 is determined as follows:

(a) If V w ≤ 0, then y∗1 = y(x1);

(b) If V w > V c, then y∗1 = H;

(c) If 0 < V w ≤ V c, then y∗1 = y(x1) when y(x1) ≥ H ′; when y(x1) < H ′, y∗1 is determined by

max
y1∈[y(x1), H′]

V wy1 + V cλ(y1), where H ′ is defined by

H ′ def
= inf{y ∈ [0,K] : y + λ(y) ≥ H}. (14)

The value of waiting V w and the value of potential purchase V c drive the decision y∗1 in opposite

directions, as shown in Table 1. Lemma 1(b) and (c) reveal the tradeoff between the two values:

• When V w > V c, the firm should exercise all options of waiting by keeping H units unsold at the

end of the first period, leaving no option of purchase in the second period.

• When 0 < V w < V c, the firm should sell as much energy as possible in the first period, as

long as it can buy inventory up to H in the second period (this condition is formally stated as

y(x1) ≥ H ′, where H ′ is the level above which the inventory can be raised to H in one period),

thereby giving up the options of waiting while maximizing the opportunity of purchase.

Next, we describe the first-period RI policy in the following lemma.

Lemma 2 In the first period, if f11 > f12, then under the RI policy, y†1 is determined as follows:

(a) If f11 ≥ max{f12, f13}, then y†1 = y(x1);

(b) If f11 < min{f
b
12, f13}, then y†1 = H;

(c) If f13 > f11 ≥ f
b
12, then y†1 = y(x1) when y(x1) ≥ H ′; when y(x1) < H ′, y†1 is determined by

max
y1∈[y(x1), H′]

(f13 − f11)y1 + (f13 − f
b

12)λ(y1).

Comparing the optimal policy and the RI policy, we can prove that if the forward curve in

Lemma 2 is adjusted according to Definition 1, the resulting PARI policy is the optimal policy in

Lemma 1, as stated in the following proposition.

Proposition 2 When N = 3 and f11 > f12, the price-adjusted rolling intrinsic (PARI) policy in

Definition 1 is optimal. In particular, solving the intrinsic valuation problem (5)-(6) with f̂
b
12 =

E
Q
1

[
median{f22, f

b
22, f23}

]
and f̂13 = E

Q
1

[
max{f22, f23}

]
yields the optimal policy for the first period.
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Raising f13 allows the RI policy to see the best selling opportunity in the future, thus capturing

the value of waiting. Note that f12 is adjusted down because f̂
b
12 = E

Q
1

[
median{f22, f

b
22, f23}

]
≤

E
Q
1

[
max{f22, f

b
22}

]
= E

Q
1

[
f
b
22

]
= f

b
12. Lowering f12 enlarges the gap between f12 and f13, which

reflects the value of counter-seasonal operations.

4.2.2 Case of f11 < f12

The appendix shows that in this case the problem in (10) simplifies to:

max
y1∈[H, y(x1)]

U1(y1) =





f11x1 − V ay1 − V lλ(y1), if y1 ∈ [H,x1],

f
b
11x1 − V aby1 − V lλ(y1), if y1 ∈ (x1, y(x1)],

(15)

where

V a def
= f11 − E

Q
1

[
min{f22, f23}

]
= value of avoiding adverse price by selling one more unit, (16)

V ab def
= f

b

11 − E
Q
1

[
min{f22, f23}

]
= value of avoiding adverse price by buying one less unit, (17)

V l def
= E

Q
1

[
max{f22 − f23, 0}

]
= value of raising operational capacity. (18)

By definition, V l ≥ 0, V a < V ab, and the signs of V a and V ab are unrestricted. Furthermore,

V a < V l because V a − V l = f11 − E
Q
1

[
min{f22, f23}+max{f22, f23} − f23

]
= f11 − f12 < 0.

The following lemma summarizes the optimal policy in this case.

Lemma 3 In the first period, if f11 < f12, then the optimal decision y∗1 is determined as follows:

(a) If V ab ≤ 0, then y∗1 = y(x1);

(b) If V a ≤ 0 < V ab ≤ V l, then y∗1 ∈ argmax
y1∈[x1, y(x1)]

−V aby1 − V lλ(y1);

(c) If V a ≤ 0 ≤ V l < V ab, then y∗1 = x1;

(d) If V a > 0, then y∗1 ∈ argmax
y1∈[H, y(x1)]

U1(y1), where U1(y1) is defined in (15).

Example 3 in §4.1 shows that even if f11 < min{f12, f13} and all the inventory can be sold in

the later periods, selling some inventory in the first period may still be beneficial as it avoids the

expected minimum selling price. Similarly, even if f
b
11 < min{f12, f13}, the firm needs to be cautious

about buying because the expected minimum price may be below the buying price. We thus refer

to V ab in (17) as the value of avoiding adverse price by buying one less unit. Only when V ab ≤ 0,

should the firm purchase as much as possible, as confirmed in Lemma 3(a).

The value of avoiding adverse price (V a or V ab) and the value of raising operational capacity (V l)

drive the decision y∗1 in opposite directions. When V a ≤ 0 (implying that selling inventory brings

no benefit), the firm trades off between V l and V ab to decide the purchase quantity, as prescribed
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in Lemma 3(b) and (c). When V a > 0, the optimal action may be purchase or sell, determined in

part (d).

Next, we summarize the first-period RI policy in the following lemma.

Lemma 4 In the first period, if f11 < f12, then under the RI policy, y†1 is determined as follows:

(a) If f
b
11 ≤ min{f12, f13}, then y†1 = y(x1);

(b) If f11 ≤ min{f12, f13} < f
b
11 ≤ f12, then

y†1 ∈ argmax
y1∈[x1, y(x1)]

−
(
f
b

11 −min{f12, f13}
)
y1 −max{f12 − f13, 0}λ(y1);

(c) If f11 ≤ min{f12, f13} and f12 < f
b
11, then y†1 = x1;

(d) If f11 > f13, then y†1 ∈ argmax
y1∈[H, y(x1)]

URI
1 (y1), where

URI
1 (y1) =





f11x1 − (f11 − f13)y1 − (f12 − f13)λ(y1), if y1 ∈ [H,x1],

f
b
11x1 − (f

b
11 − f13)y1 − (f12 − f13)λ(y1), if y1 ∈ (x1, y(x1)].

(19)

We can prove that if the forward curve in Lemma 4 is adjusted according to Definition 1, the

resulting PARI policy is the optimal policy in Lemma 3, as stated below.

Proposition 3 When N = 3 and f11 < f12, the price-adjusted rolling intrinsic (PARI) policy in

Definition 1 is optimal. In particular, solving the intrinsic valuation problem (5)-(6) with f̂13 =

E
Q
1

[
min{f22, f23}

]
yields the optimal policy for the first period.

Adjusting f13 alone captures two values. The adjusted price f̂13 informs the firm about the

adverse price in the future. Meanwhile, the difference between f12 and f̂13 reflects the value of

raising operational capacity.

5. Improving the RI Policy: The N-Period Case

In §5.1 and §5.2, we consider a multiperiod model (N ≥ 3) with constant capacities, and show that

the value of waiting, counter-seasonal operations, and avoiding adverse price characterize the optimal

policy. Because of the constant capacities, the value of raising operational capacity does not appear

in the tradeoffs. In §5.3, we extend the PARI policy to the N -period problem. In §5.4, we further

extend the PARI policy to multiple seasons, with each season containing multiple periods.

5.1 Value of Waiting and Value of Avoiding Adverse Price

To focus on the value of waiting and value of avoiding adverse price, we first consider a problem

of selling inventory over N periods and delay considering injection (counter-seasonal) operations in

§5.2. The capacity functions satisfy the following assumption:
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Assumption 3 (i) λ(x) = max{C,−x}, where C < 0; (ii) K = T |C | for some T ∈ {2, 3, . . . , N};

(iii) λ(x) = 0.

Part (i) suggests that the storage can release |C | per period until it is empty, following Secomandi

(2010) and Lai et al. (2010). Part (ii) assumes that a full storage can be emptied in exactly T

periods when releasing energy at the maximum rate. Although part (ii) is not crucial, it simplifies

the exposition of our analysis. Part (iii) implies injection operations are not considered.

We let ft ≡ ftt for notational convenience. For period t, we introduce a T -dimensional vector

ut = [u
(1)
t , u

(2)
t , . . . , u

(T )
t ], whose k-th element u

(k)
t represents the expected k-th largest price at which

inventory may be sold from period t onward. Formally,

uN
def
= [ fN , 0, . . . , 0 ],

u
(k)
t

def
= k-th largest element of

{
ft, E

Q
t ut+1

}
, k = 1, . . . , T, t = 1, . . . , N−1. (20)

Let Hk
def
= k|C|, for k = 0, 1, . . . , T . In period t < N , when the inventory level is xt ∈ (Hk−1,Hk],

we extend the definitions for the value of waiting and value of avoiding adverse price:

V w
tk

def
= E

Q
t u

(k−1)
t+1 − ft, k = 2, . . . , T, (21)

V a
tk

def
= ft − E

Q
t u

(k)
t+1, k = 1, . . . , T. (22)

The optimal policy can be characterized using the values in (21) and (22).

Proposition 4 Under Assumptions 1 and 3, when xt ∈ (Hk−1,Hk], k = 2, . . . , T , the optimal

decision in period t is as follows:

y∗t =





y(xt), if V w
tk ≤ 0,

Hk−1, if V w
tk > 0 and V a

tk ≥ 0,

xt, if V a
tk < 0.

(23)

When xt ∈ (0,H1], y
∗
t = 0 if V a

t1 ≥ 0, and y∗t = xt if V
a
t1 < 0.

Intuitively, when xt ∈ (Hk−1,Hk], the storage can be emptied in k periods, and the firm aims

to sell inventory at the k largest expected prices. When the maturing price ft is among the k − 1

highest expected selling prices (ft > E
Q
t u

(k−1)
t+1 ), there is no value of delaying sales (V w

tk < 0) and the

firm should sell as much as possible, as in the first case of (23).

If the maturing price ft is lower than the k-th largest expected selling price (ft < E
Q
t u

(k)
t+1), then ft

itself is an adverse selling price. Thus, there is no value of avoiding adverse price by selling inventory

right now (V a
tk < 0), and the firm should do nothing, as in the last case of (23).
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When the maturing price ft is the k-th largest, we have the second case in (23). If the firm sells

nothing at ft, then to sell all inventory it cannot avoid selling some inventory later at a price lower

than ft in expectation. On the other hand, if the firm sells as much as possible right now, then

it does not take full advantage of the larger expected selling prices; waiting has a value. The best

strategy is to sell down to Hk−1, and the remaining Hk−1 units are expected to be sold at the k − 1

largest expected selling prices.

The definitions in (21) and (22) are extensions of the definitions of V w and V a in (12) and (16),

respectively. Note when the storage can be emptied in two out of three remaining periods, i.e., when

N = 3, t = 1, and k = 2, (21) and (22) reduce to (12) and (16), respectively.

5.2 Value of Counter-Seasonal Operations

We now allow counter-seasonal operations during the selling season. For ease of illustration, we

assume the maximum storing and releasing speeds are the same.

Assumption 4 (i) λ(x) = min{C,K − x} and λ(x) = max{C,−x}; (ii) K = TC = T |C | for

some T ∈ {2, 3, . . . , N}.

For period t, we introduce a vector vt = [v
(1)
t , v

(2)
t , . . . , v

(T )
t ], whose k-th element v

(k)
t represents

the expected marginal value of inventory in period t when xt ∈ (Hk−1,Hk]. Formally

vN
def
= [ fN , 0, . . . , 0 ],

v
(k)
t

def
= (k + 1)-th largest element of

{
ft, f

b

t , E
Q
t vt+1

}
, k = 1, . . . , T, t = 1, . . . , N−1. (24)

We inductively prove ut ≥ vt. This clearly holds for t = N . Suppose ut+1 ≥ vt+1. Then,

u
(k)
t = k-th largest element of

{
ft, E

Q
t ut+1

}
≥ (k+1)-th largest element of

{
ft, f

b
t , E

Q
t ut+1

}
≥ v

(k)
t .

We intuitively explain ut ≥ vt: Without injection operations, the value of a marginal unit of inventory

is the expected price at which this unit can be sold, captured by ut. When injection is allowed,

the marginal unit of inventory brings extra sales revenue but reduces the value of counter-seasonal

operations. Hence, ut − vt indicates the value of counter-seasonal operations.

In period t ≤ N−2, for k = 1, . . . , T , we define the value of counter-seasonal operations and the

value of avoiding adverse price by buying one less unit:

V c
tk

def
= E

Q
t

[
u
(k)
t+1 − v

(k)
t+1

]
, (25)

V ab
tk

def
= f

b

t − E
Q
t u

(k)
t+1. (26)

The optimal policy can be characterized by the values defined in (21), (22), (25), and (26).
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Proposition 5 Under Assumptions 1 and 4, when xt ∈ (Hk−1,Hk], k = 2, . . . , T −1, the optimal

decision in period t is as follows:

y∗t =





y(xt), if V w
tk ≤ V c

t,k−1,

Hk−1, if V w
tk > V c

t,k−1 and V a
tk + V c

tk ≥ 0,

xt, if V a
tk + V c

tk < 0 ≤ V ab
tk + V c

tk,

Hk, if V ab
tk + V c

tk < 0 ≤ V ab
t,k+1 + V c

t,k+1,

y(xt), if V ab
t,k+1 + V c

t,k+1 < 0.

(27)

When xt ∈ (0,H1], the optimal decision is (27) with the first two cases combined into: y∗t = 0 if

V a
t1 + V c

t1 ≥ 0. When xt ∈ (HT−1,K], the optimal decision is (27) with the last two cases combined

into: y∗t = K if V ab
tT + V c

tT < 0.

The first three cases in (27) parallel (23). When counter-seasonal operations are not allowed, the

optimal policy in (23) considers only the signs of V w
tk and V a

tk. Here in (27), V w
tk and V a

tk are traded

off with the value of counter-seasonal operations.

The last two cases in (27) exercise the option of counter-seasonal operations (purchase). The firm

should buy as much as possible when buying less provides no combined value of avoiding adverse

price and counter-seasonal operations (V ab
t,k+1 + V c

t,k+1). If buying less brings some combined value

until inventory hits Hk, then the firm should buy only up to Hk.

The definition of V c
tk in (25) extends that in (13). For the three-period model (N = 3), we have:

u
(1)
2 − v

(1)
2 = max{f22, f23} −median{f22, f

b

22, f23}

=





f23 − f
b
22, if f

b
22 < f23

0, if f
b
22 > f23

= max{f23 − f
b

22, 0}.

Thus, V c
11 = E

Q
1

[
max{f23 − f

b
22, 0}

]
, which is exactly V c defined in (13).

5.3 N -Period PARI Policy

Computing the optimal policy for the multiperiod problem faces the curse of dimensionality, mani-

fested in the recursive definition in (24). In this section, we design a PARI policy for the N -period

problem without dramatically increasing the computational burden.

Definition 2 N -period price-adjusted rolling intrinsic (PARI) policy

Step 1. Set t = 1.

Step 2. “Min-Max” price adjustment. Let ftτ1 , ftτ2 , ftτ3 , and ftτ4 be the maximum, the second
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maximum, the second minimum, and the minimum of the futures prices {ftτ : τ = t+1, . . . , N},

respectively. Let t′ = τ1 ∧ τ4, and t′′ = τ1 ∨ τ4, where ∧ (∨) refers to the min (max) operator.

(i) When ftt > ftt′ , we define f̂tt′ and f̂tt′′ such that

f̂
b

tt′ = E
Q
t

[
median{ft′t′ , f

b

t′t′ , ft′t′′}
]
, f̂tt′′ = E

Q
t

[
max{fτ1∧τ2,τ1 , fτ1∧τ2,τ2}

]
.

(ii) When ftt ≤ ftt′ , we define f̂tt′ and f̂tt′′ such that

f̂tt′ = ftt′ , f̂tt′′ = E
Q
t

[
min{fτ3∧τ4,τ3 , fτ3∧τ4,τ4}

]
.

Step 3. Adjust other prices based on f̂tt′ and f̂tt′′ . We adjust ftτ by multiplying a scalar that is

piecewise linear in τ :

(i) For t < τ < t′, define f̂tτ = ftτ (1− δ + δf̂tt′/ftt′), where δ = τ−t
t′−t

;

(ii) For t′ < τ < t′′, define f̂tτ = ftτ
(
(1− δ′)f̂tt′/ftt′ + δ′f̂tt′′/ftt′′

)
, where δ′ = τ−t′

t′′−t′
;

(iii) For t′′ < τ ≤ N , define f̂tτ = ftτ
(
(1− δ′′)f̂tt′′/ftt′′ + δ′′

)
, where δ′′ = τ−t′′

N−t′′
.

Step 4. We solve the intrinsic valuation problem (5)-(6) with ft replaced by f̂t = (ftt, f̂t,t+1, . . . , f̂tN ),

and implement the decision at the maturing price ftt.

Step 5. If t < N − 2, increase t by 1 and go back to Step 2. Otherwise, apply the regular RI policy

for the remaining two periods.

Figure 3: Price adjustment (steps 2 and 3) in the PARI policy

Original prices

Adjusted prices Original prices

Adjusted prices

(a) (b)

Figure 3 illustrates two typical instances of price adjustment. Step 2 of the above PARI policy

resembles the three-period PARI policy. The three focal prices are ftt, ftt′ , and ftt′′ . The median

price formula parallels that in Definition 1, whereas the maximum (minimum) expected selling price

is estimated based on the two highest (lowest) futures prices. Note that when N = 3, the second

maximum price ftτ2 is the minimum price ftτ4 , and the second minimum price ftτ3 is the maximum

price ftτ1 . Then, the price adjustment formulae in Step 2 are the same as in Definition 1. Indeed,
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when N = 3, the entire policy is identical to that in Definition 1.

The focal prices ftt, ftt′ , and ftt′′ divide the forward curve into three segments. Step 3 specifies

how each segment should be adjusted if the segment contains prices other than the three focal prices.

In essence, the other prices are “attracted” toward f̂tt′ and f̂tt′′ . This adjustment is important for

informing the RI policy about the option values. For example, suppose f11 is the highest on the

forward curve, the inventory can be sold in two periods, but the optimal policy is not to sell right

now. Adjusting f1t′′ upward in Step 2(i) puts f11 in the second highest, which does not stop the RI

policy from selling at f11. Step 3 raises other prices, which may signal enough value of waiting such

that the RI policy coincides with the optimal policy. Such a heuristic can significantly close the gap

between the RI policy and the optimal policy, as will be examined in §6.

Finally, we discuss the computation of the adjusted prices in Step 2. For ease of exposition, assume

τ1 < τ2 so that in Step 2(i) we have f̂tt′′ = E
Q
t

[
max{fτ1τ1 , fτ1τ2}

]
. To compute this expectation, we

assume (log fτ1τ1 , log fτ1τ2) is normally distributed with parameters (µ1, µ2, σ1, σ2, ρ), where µi and

σi are mean and standard deviation of log fτ1τi , i = 1, 2, and ρ is the correlation coefficient; these pa-

rameters are derived from the forward curve dynamics (see §6.1). Let fM = max{log fτ1τ1 , log fτ1τ2}.

Clark (1961) provides the formulae for the moments of the maximum of two normal random variables:

E
Q
t fM = µ1Φ(b) + µ2Φ(−b) + aφ(b),

E
Q
t f

2
M = (µ2

1 + σ2
1)Φ(b) + (µ2

2 + σ2
2)µ2Φ(−b) + (µ1 + µ2)aφ(b),

where a2 = σ2
1 +σ2

2 − 2σ1σ2ρ, b = (µ1−µ2)/a, and φ(·) and Φ(·) are the probability density function

and cumulative distribution function of standard normal random variable, respectively. Clark (1961)

also shows that the maximum of two normal random variables is approximately normally distributed.

Thus, the adjusted price f̂tt′′ can be calculated as

f̂tt′′ = E
Q
t exp(fM ) ≈ exp

(
E
Q
t fM + 1

2Var
Q
t fM

)
.

The expected minimum of two futures prices in Step 2(ii) can be calculated similarly. To estimate f̂
b

tt′

in Step 2(i), note that median{ft′t′ , f
b

t′t′ , ft′t′′} = min
{
f
b

t′t′ , max{ft′t′ , ft′t′′}
}
, which can be calculated

by repeated use of Clark (1961)’s formulae.

5.4 Multi-Season PARI Policy

Seasonal energy storage operates across seasons. For example, the natural gas industry considers two

seasons in storage operation – the withdrawal (peak) season, from November 1 through March 31, and

the injection (off-peak) season, from April 1 through October 31 (Energy Information Administration
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2011). For storage valuation, we divide the valuation horizon into multiple seasons and apply the

PARI policy to each season. Thus, the performance of the PARI policy does not deteriorate when the

valuation horizon increases. With distinct price seasonality (e.g., Figure 4 in §6), storage is typically

filled during the off-peak season and emptied during the peak season. The off-peak season problem

is mathematically equivalent to the peak season problem analyzed in the previous sections, because

reducing the inventory level to zero in the peak season is analogous to reducing the space level to

zero in the off-peak season. Formally, we define the multi-season PARI policy as follows:

Definition 3 Multi-season PARI policy

Step 1. Divide the planning horizon into a sequence of alternating peak and off-peak seasons. Let N1

and N2 be the number of periods in the peak and off-peak seasons, respectively.

Step 2. Solve peak season problems and off-peak season problems alternately. For each peak season,

apply the PARI policy in Definition 2 with N = N1. For each off-peak season, apply the PARI policy

in Definition 2 with N = N2 and the following modifications of Step 2:

(i) When f
b
tt < f

b

tt′ , we define f̂tt′ and f̂tt′′ such that

f̂tt′ = E
Q
t

[
median{f

b

t′t′ , ft′t′ , f
b

t′t′′}
]
, f̂

b

tt′′ = E
Q
t

[
min{f

b

τ3∧τ4,τ3
, f

b

τ3∧τ4,τ4
}
]
.

(ii) When f
b
tt ≥ f

b

tt′ , we define f̂tt′ and f̂tt′′ such that

f̂tt′ = ftt′ , f̂
b

tt′′ = E
Q
t

[
max{f

b

τ1∧τ2,τ1
, f

b

τ1∧τ2,τ2
}
]
.

In addition, the terminal condition in (5) is replaced by V I
N (xN , ft) = −f

b

tN λ(xN ) + y(xN )pb, where

pb is a large constant, which provides incentive to fill up the storage in period N2.

In the modified (i) above, the buying price f
b

tt′′ is adjusted down to f̂
b

tt′′ to reflect the value of

waiting for a lower buying price, and ftt′ is adjusted up to reflect the value of potential sales during

the buying season. The price adjustment in (ii) captures the value of avoiding adverse buying price.

6. Application to Natural Gas Storage

6.1 Data and Setup

The average size (for working gas) of a depleted oil/gas reservoir is about 10 trillion Btu (TBtu).

We consider a firm leasing a 10 TBtu storage facility for 12 months.

Injection and withdrawal capacities. We consider the case of constant capacities. The capac-

ity pair (injection capacity, withdrawal capacity) takes three values: (2 TBtu/month, 3 TBtu/month),

(3 TBtu/month, 4 TBtu/month), and (4 TBtu/month, 5 TBtu/month). Under constant capacities,
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it is optimal to empty the storage at the end of the horizon regardless of the penalty level (see the

proof of Proposition 4). Thus, we set p = 0.

Operating cost parameters. For depleted reservoirs, the injection loss rate α is typically

between 0% and 3%, the withdrawal loss rate β is between 0% and 2%. Throughout our analysis,

we set α = 1.5%, β = 0.5%, and the variable operating costs cα = cβ = $0.02 per million Btu. These

parameters are consistent with other studies, e.g., Maragos (2002) and Lai et al. (2010).

Discount rate. The discount rate reflects the firm’s cost of capital and is typically benchmarked

using the London Interbank Offered Rate (LIBOR, available from http://www.liborated.com). We

consider three discount rates: 0%, 1%, and 2% above the six-month LIBOR.

Storage contract terms. We consider two different contract terms: (a) the lessee receives an

empty storage and returns it empty (such a contract typically starts in April and ends in March);

(b) the lessee receives a full storage and returns it full (such a contract typically starts in November

and ends in October). These two types of terms are referred to as “seasonal cycling” and “storage

carry,” respectively, by Eydeland and Wolyniec (2003, p. 354).

Storage valuation under various policies. For the seasonal cycling contracts, the storage

value is calculated at the end of March every year for operations from April 1 to March 31. For

the storage carry contracts, the value is calculated at the end of October every year. When solving

for the optimal policy and the RI policy, we solve the optimization problem without dividing the

valuation horizon into peak and off-peak seasons. When implementing the PARI policy, we divide the

year into a 7-month off-peak season (April through October) and a 5-month peak season (November

through March), and apply the PARI policy in Definition 3.

We value the seasonal cycling contracts in each of the 9 years from 2001-2009, and value the

storage carry contracts in each of the 8 years from 2002-2009. At each valuation time, we consider

3 capacity pairs and 3 discount rates. This gives us a total of 153 instances.

Forward curve dynamics. Figure 4 shows the New York Mercantile Exchange (NYMEX)

natural gas futures prices observed on the first trading day of March 2005-2009.

We use the NYMEX natural gas futures price data to estimate the following multi-factor mar-

tingale model for futures prices (see also Manoliu and Tompaidis (2002) and the references therein):

df̃tτ

f̃tτ
=

n∑

j=1

σj(t, τ)dWj(t), (28)

where Wj(t), j = 1, . . . , n, are independent Brownian motions, and σj(t, τ) is the volatility of the

futures price f̃tτ contributed by the factor j at time t. We employ the principal component analysis
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Figure 4: Natural gas forward curve on the first trading day of each March (2005-2009)

Data source: Bloomberg
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(Basilevsky 1994) to estimate these volatility functions. See Clewlow and Strickland (2000) for

examples of principal component analysis for energy prices.

The first two principal components (factors) capture majority of the futures price variations. We

build a multi-layer two-factor tree model for the forward curve. Each layer corresponds to a discrete

inventory level. This feature is similar to the multi-layer one-factor tree constructed by Jaillet, Ronn

and Tompaidis (2004), whereas in our tree each node represents a forward curve. In addition, our tree

captures the time-varying volatility feature of the futures prices. The tree construction is described

in the online supplement part A.

6.2 Performance of the PARI Policy

We measure the performance of a heuristic policy (RI or PARI policy) by the gap between the storage

value under the heuristic policy and optimal storage value, expressed as a percentage of the optimal

storage value. Figure 5 compares the percentage storage value losses under the RI policy and PARI

policy when valuation is conducted at the end of March (i.e., seasonal cycling contracts). To save

space, the results for storage carry contracts are included in the online supplement part B.

The value loss of the PARI policy is remarkably lower than the RI policy. For the 153 instances,

the PARI policy achieves an average of 99.8% of the optimal value (minimum 99.13% and maximum

99.99%). That is, the value loss under the PARI is no more than 1% of the optimal value, and 0.2%

of the optimal value on average.
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Among the 153 cases, there are 5 cases where the RI policy leads to more than 4% value loss in a

year, and the PARI policy recovers 92% of that value loss on average. In 13 cases, RI policy results

in more than 2% value loss, and the PARI policy recovers 85% of the loss on average. In 26 cases,

RI policy loses more than 1% of the value, and the PARI policy recovers 75% of the value loss. For

all 153 cases, the PARI policy recovers 64% of the value loss.

Figure 6 depicts this trend over a wider range of percentage value losses. It also shows the

Figure 5: Value loss under RI and PARI policies: Valuation at the end of March
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Figure 6: Value loss of the RI policy recovered by the PARI policy
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quartiles of the distribution of the loss recovered by the PARI policy (when the RI policy loses more

than 5%, there are not enough data points to show the quartiles). Figure 6 suggests the higher the

value loss under the RI policy, the more capable the PARI policy in recovering the loss.

We remark on the continuity of the storage value in the discount rate. The discount rate bends

the forward curve and affects the option values. The optimal policy takes the option values into

Figure 7: Effect of discount rate on storage value
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account (e.g., in (11)) and, therefore, the optimal storage value is continuous in the discount rate.

However, under the RI policy, a small change in the forward curve can cause the RI policy to miss

a lump sum of option values. Thus, the rolling intrinsic value of the storage is, in general, not

continuous in the discount rate.

For instance, in Figure 5, for year 2001, the value loss of the RI policy under LIBOR+2% is

significantly higher than that under LIBOR. Figure 7 shows how the storage value in 2001 varies with

the discount rate. The value loss of the RI policy clearly does not vary smoothly with the discount

rate. Remarkably, the PARI policy consistently performs close to the optimal policy. Figure 7 also

reinforces the finding in Figure 6 that the PARI policy is especially capable of recovering high value

losses of the RI policy.

6.3 Impact of Flexibility

In this section, we study how the operational flexibility of the storage affects the storage value. We

vary the flexibility by increasing the injection and withdrawal capacities in tandem, as illustrated in

Figure 8(a), which shows capacity functions of the form λ(x) = C ∧ (10 − x) and λ(x) = C ∨ (−x),

where |C| = C + 1. The storage values are calculated for each capacity function pair indexed by C.

Figure 8(b) shows when the flexibility increases, the gap between the rolling intrinsic value and

Figure 8: Effect of operational flexibility on storage value

The storage values are calculated in March 2007. Discount rate: LIBOR + 1%
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the optimal value widens, and the PARI policy performs significantly better than the RI policy.

One phenomenon is thought-provoking: More flexibility brings more benefits under the optimal

policy, but more flexibility may reduce the storage value under the RI policy. In Figure 8(b),

the rolling intrinsic value increases and then decreases in flexibility. Intuitively, higher flexibility

causes larger deviations of the RI decisions from the optimal decisions, resulting in deteriorating

performance. In the online supplement part D, we provide some theoretical support for this finding.

We show that if f11 ≥ max{f12, f13} and V w > V c, then the expected loss of the RI policy is at least

(V w − V c)(H − y(x1)). If f12 < f11 < min{f
b
12, f13} and V w < V c, then the expected loss of the RI

policy is at least (V c−V w)(H −max{y(x1),H
′}). Note that these lower bounds on the performance

gap increase when y(x1) = x1 + λ(x1) decreases or when the releasing capacity |λ(x1)| increases.

This suggests that more flexibility may cause larger deviation from the optimal policy and lead to

higher value loss. Therefore, operational flexibility, if not used with prudence, can be detrimental to

the firm. This finding calls for meticulous action to manage relatively flexible storage facilities. The

PARI policy does not have the shortcoming of the RI policy: In all of the instances we tested, the

storage value under the PARI policy always increases in flexibility.

7. Conclusion and Extensions

Injection and withdrawal capacities are common operational constraints for energy storage facilities.

The presence of these constraints renders the optimization of energy storage operations very difficult.

In practice, firms use heuristic policies to capture the seasonal price spread under limited flexibility.

This paper identifies when and why the rolling intrinsic (RI) policy leads to significant losses and

develops an improved heuristic policy called the price-adjusted rolling intrinsic (PARI) policy. The

PARI policy is designed based on the analysis of the option values embedded in the optimal policy.

Our numerical analysis shows that the gap between the PARI policy and the optimal policy is

consistently small, even when the RI policy leads to significant value losses.

Besides natural gas storage, the ideas in this paper and the resulting heuristic policy can be

applied to other types of energy storage, such as hydroelectric pumped storage and compressed air

energy storage. An interesting future application is the optimization of the battery recharge process

for electrical vehicles. Customers may set a time when the battery needs to be fully charged. The

electricity distributor aims to meet customers’ needs at the minimum procurement cost for energy.

This is essentially the problem of filling up the storage with limited flexibility, i.e., the off-peak season

problem, with ftτ interpreted as the price forecast in period t for the price in period τ . We believe

the heuristic policies, such as the PARI policy designed in this paper, have great potential to be used
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in this application.

There are several limitations of this research. First, we do not analyze the combined spot and

futures storing and selling strategy. We refer the reader to Goel and Gutierrez (2006), Kjaer and

Ronn (2008), and Li (2009) for analysis of models that involve both spot and futures markets.

It would be interesting to study how the insights in this paper extend to the setting where both

markets are present, and how one can capture the value of spot trading opportunities. Second, we

value storage under the forward curve modeled by a two-factor tree. In recent years, the natural

gas futures market has seen more variations that cannot be explained by merely two factors. With

higher variations, storage options are expected to be more valuable and, therefore, the PARI policy

may be more effective in recovering the value loss of the RI policy. Simulation methods can be used

in practice to accommodate more factors in the forward curve model. Finally, the firm considered

in this paper is a price-taker. The price is determined by the demand and collective behavior of

the production and storage firms (see, e.g., Wu and Chen 2010). To consider market equilibrium of

storage operations and analyze how energy storage affects energy prices would be another important

future direction.

Appendix: Derivation of (11) and (15)

When f11 > f12, we first show that y∗1 ≤ H. For any policy with y1 > H, we revise that policy by

setting y1 = H, while keeping y2 unchanged (note that y2 ≤ H following Proposition 1). The revised

policy sells more in the first period and less in the second period. Because f11 > f12 = E
Q
1

[
f22

]
, the

expected profit under the revised policy is higher. Hence, any policy with y1 > H is sub-optimal, and

we must have y∗1 ≤ H. Thus, to solve (10) under f11 > f12, we need to consider only y1 ∈ [y(x1), H].

The problem in (10) simplifies to:

max
y1∈[y(x1), H]

−f11(y1 − x1) + f13y1 + P{A1}E
Q
1

[
f22 − f23 | A1

]
y1

− P{A3}E
Q
1

[
f
b

22 − f23 | A3

]
min{H − y1, λ(y1)}.

(29)

Ignoring the constant term f11x1, noting that −P{A3}E
Q
1

[
f
b
22 − f23 | A3

]
≡ E

Q
1

[
max{f23 − f

b
22, 0}

]
,

and employing the following identity:

f13 + P{A1}E
Q
1

[
f22 − f23 | A1

]
= E

Q
1

[
f23

]
+ P{A1}E

Q
1

[
f22 − f23 | A1

]

= E
Q
1

[
f23 +max{f22 − f23, 0}

]
= E

Q
1

[
max{f22, f23}

]
,

(30)
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we can rewrite the problem in (29) as:

max
y1∈[y(x1),H]

(
E
Q
1

[
max{f22, f23}

]
− f11

)
y1 + E

Q
1

[
max{f23 − f

b

22, 0}
]
min{H − y1, λ(y1)}

= V wy1 + V cmin{H − y1, λ(y1)},

which is the problem in (11).

When f11 < f12, we first show y∗1 ≥ H. For any policy with y1 < H, we can improve the expected

profit by raising y1 to H, i.e., selling H−y1 ≡ ∆ less in the first period and selling ∆ more (or buying

∆ less) in the second period. The revised policy is feasible, because Assumptions 1 and 2 imply that,

by raising y1 up to H, the releasing capacity |λ(x)| increases by ∆ and the storing capacity |λ(x)|

decreases by at most ∆. Thus, to solve (10) we need to consider only y1 ≥ H and the problem in

(10) simplifies to:

max
y1∈[H, y(x1)]

r(y1 − x1, f11) + f13y1 − P{A1}E
Q
1

[
f22 − f23 | A1

]
λ(y1)

+ P{A2 ∪A3}E
Q
1

[
f22 − f23 | A2 ∪A3

]
(y1 −H).

(31)

Using P{A1}E
Q
1

[
f22 − f23 | A1

]
≡ E

Q
1

[
max{f22 − f23, 0}

]
and the following identity,

f13 + P{A2 ∪A3}E
Q
1

[
f22 − f23 | A2 ∪A3

]
= E

Q
1

[
f23 +min{f22 − f23, 0}

]
= E

Q
1

[
min{f22, f23}

]
,

and ignoring the constant term related to H, we can rewrite the problem in (31) as in (15).
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Charnes, A., J. Drèze, M. Miller 1966. Decision and horizon rules for stochastic planning problems: A linear

example. Econometrica 34(2) 307–330.

Charnes, A., W. W. Cooper 1955. Generalizations of the warehousing model. Operational Research Quarterly

6(4) 131–172.

Chen, Z., P. A. Forsyth 2007. A semi-lagrangian approach for natural gas storage valuation and optimal

operation. SIAM Journal on Scientific Computing 30(1) 339–368.

Clark, C. E. 1961. The greatest of a finite set of random variables. Operations Research 9(2) 145–162.

Clewlow, L., C. Strickland 2000. Energy Derivatives: Pricing and Risk Management. Lacima Publications.

London.

Dixit, A. K., R. S. Pindyck 1994. Investment under Uncertainty. Princeton University Press. Princeton, New

Jersey.

Dreyfus, S. E. 1957. An analytic solution of the warehouse problem. Management Science 4(1) 99–104.

Duffie, D. 2001. Dynamic Asset Pricing Theory. 3rd edn. Princeton University Press. Princeton, New Jersey.

Energy Information Administration 2011. Natural gas storage withdrawal season review. Available at

http://www.eia.gov/todayinenergy/detail.cfm?id=990.

Eydeland, A., K. Wolyniec 2003. Energy and Power Risk Management. John Wiley & Sons. New Jersey.

Financial Engineering Associates 2007. Software module: @ENERGY/Storage. Software information available

at http://www.fea.com/products/energy/storage.asp.

Froot, K. A., J. C. Stein 1998. Risk management, capital budgeting, and capital structure policy for financial

institutions: An integrated approach. Journal of Financial Economics 47(1) 55–82.

Goel, A., G. J. Gutierrez 2006. Integrating commodity markets in the optimal procurement policies of a

stochastic inventory system. Working paper. University of Texas at Austin.

Gray, J., P. Khandelwal 2004a. Towards a realistic gas storage model. Commodities Now (June 2004) 1–4.

Gray, J., P. Khandelwal 2004b. Realistic natural gas storage model II: Trading strategies. Commodities Now

(September 2004) 1–5.

Hodges, S. D. 2004. The value of a storage facility. Warwick Business School Financial Options Research

Centre, Working paper No. 04-142.

Jaillet, P., E. I. Ronn, S. Tompaidis 2004. Valuation of commodity-based swing options. Management Science

50(7) 909–921.

Kaminski, V., Y. Feng, Z. Pang 2008. Value, trading strategies and financial investment of natural

gas storage assets. Northern Finance Association Conference (Kananaskis, Canada). Available at

www.northernfinance.org/2008/papers/75.pdf.

Kjaer, M., E. I. Ronn 2008. Valuation of natural gas storage facility. Journal of Energy Markets 1(4) 3–22.

Lai, G., F. Margot, N. Secomandi 2010. An approximate dynamic programming approach to benchmark

practice-based heuristics for natural gas storage valuation. Operations Research 58(3) 564–582.

31



Lai, G., M. X. Wang, S. Kekre, A. Scheller-Wolf, N. Secomandi 2011. Valuation of storage at a liquefied

natural gas terminal. Operations Research 59 602–616.

Li, Y. 2009. Natural Gas Storage Valuation. VDM Verlag. Germany.

Manoliu, M. 2004. Storage options valuations using multilevel trees and calendar spreads. International Journal

of Theoretical and Applied Finance 7(4) 425–464.

Manoliu, M., S. Tompaidis 2002. Energy futures prices: Term structure models with Kalman filter estimation.

Applied Mathematical Finance 9(1) 21–43.

Maragos, S. 2002. Valuation of the operational flexibility of natural gas storage reservoirs. In E. I. Ronn ed.

Real Options and Energy Management. Risk Books. Chapter 14. pp. 431–456.

Parsons, C. 2007. Valuing commodity storage contracts: A two-factor tree approach. WTM Energy Software

LLC. Available at http://ngstoragemodel.com/.

Prager, W. 1957. On warehousing problems. Operations Research 5(4) 504–512.

Schwartz, E. S., L. Trigeorgis 2001. Real Options and Investment under Uncertainty. MIT Press. Cambridge,

Massachusetts.

Secomandi, N. 2010. Optimal commodity trading with a capacitated storage asset. Management Science

56(3) 449–467.

Thompson, M., M. Davison, H. Rasmussen 2009. Natural gas storage valuation and optimization: A real

options application. Naval Research Logistics 56(3) 226–238.

Wu, O. Q., H. Chen 2010. Optimal control and equilibrium behavior of production-inventory systems. Man-

agement Science 56(8) 1362–1379.

32



Online Supplement

A. Two-Factor Tree Model for the Forward Curve Dynamics

This section describes the estimation of forward curve volatility functions from historical data and a

two-factor tree model for the price dynamics.

Our historical estimation of forward curve volatility functions follows the principal component

analysis (PCA) described in Clewlow and Strickland (2000, §8.6.1). We estimate the volatility

functions using the daily futures price data within the three years prior to the date of valuation. For

instance, when valuing the storage at the end of March 2005, we use the data from April 2003 to

March 2005. The daily futures price data are from Bloomberg.

We construct a two-factor tree model for the evolution of futures prices based on the volatility

functions of the first two principal components (factors) that drive the futures price dynamics.

The volatility function for the first factor can be approximated by an exponential function (see,

e.g., Clewlow and Strickland 2000): σ1(t, τ) = σ̂e−θ̂(τ−t), where τ − t is the time to maturity, and σ̂

and θ̂ are positive constants estimated using a least squares regression: lnσ1(t, τ) = lnσ+θ(t−τ)+ε.

The exponential volatility function suggests that the volatility increases as a futures contract

approaches its maturity. This property of increasing volatility over time can be captured by a tree

model with decreasing size of time steps, as shown in Figure A.1. The tree bifurcates at times

t0(= 0), t1, t2, . . . , tM . The time step ∆tm ≡ tm+1 − tm decreases in m in a certain way described

shortly. In each time step prior to the maturity date τi of the i-th futures, the price ftτi evolves to

either uiftτi or diftτi . For ease of illustration, Figure A.1 uses only three steps in April. In our actual

evaluation, we use many more steps discussed below.

We use the same time steps for all futures contracts, while each futures contract has its own

ui and di. Because the first factor drives all futures prices toward the same direction (by different

Figure A.1: Tree model for the first factor
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amounts), we must ensure that futures prices move up or down with the same probability. Let the

probability of moving up at time tm be pm for all futures prices. Matching the first and second

moments implied by the binomial tree with those implied by the continuous-time price model, we

have:

pmui + (1− pm)di = 1 (A.1)

pmu2i + (1− pm)d2i = exp(σ1(tm, τi)
2∆tm) = exp(σ̂2e2θ̂(tm−τi)∆tm) (A.2)

Note that (A.1) suggests that pm must be time-invariant because ui and di are constants for each

futures contract. This, in turn, suggests that the left side of (A.2) is time-invariant, implying that

σ̂2e2θ̂(tm−τi)∆tm on the right side must be invariant with respect to m. This specifies how the size

of the time steps should shrink over time:

∆tm+1 = e−2θ̂∆tm∆tm. (A.3)

In our implementation, we set ∆t0 to be 0.4% of a year. Because θ̂ is estimated at each valuation

time, the total number of steps over the 11 months (the last future matures at the beginning of the

12th month) depends on the valuation time. The least number of time steps is 495 (when valuing in

March 2004); the maximum number of time steps is 760 (when valuing in March 2002).

We set pm = 1/2 for all m. Then, we can solve for ui and di from (A.2) as follows:

ui = 1 +

√
exp(σ̂2e−2θ̂τi∆t0)− 1, di = 2− ui.

The volatility function for the second factor σ2(t, T ) estimated using PCA generally cannot be

approximated by an exponential function, because this factor typically drives the near-term futures

and the long-term futures in opposite directions. Consequently, the tree is no longer recombining.

To reduce the burden of computing hundreds of instances studied in the paper, we let the tree take

one step per month, which leads to 211 = 2048 nodes at the beginning of the 12th month.

Storage valuation using the above two-factor tree model can be typically solved within 10 minutes

with a 2.4GHz Core 2 processor.

B. Storage Carry Contracts

In storage carry contracts, the lessee receives a full storage and returns it full (Eydeland and Wolyniec

2003). Storage carry contracts typically start in November and end in October. We conduct storage

valuation at the end of each October for storage operations over the 12 months, starting with a

5-month withdrawal season, followed by a 7-month injection season.

Figure A.2 reports the results, with value in year 2002 referring to the value from November 2001

to October 2002. On average the PARI policy recovers 63% of the value loss. Note that the value

2



loss of the RI policy for the storage carry contracts is lower (less than 2%) compared to the value

loss for the seasonal cycling contracts reported in Figure 5. This difference is probably because the

peak season forward curve observed at the end of October is typically more curved than the off-peak

season forward curve observed at the end of March; the RI policy tends to make suboptimal decisions

when the forward curve is flatter.

Figure A.2: Value loss under RI and PARI policies: Valuation at the end of October
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C. Proofs

Proof of Proposition 1. The RI policy is optimal in the last period, because under both policies

the firm sells as much as possible to maximize the last-period profit. Next we show that the RI policy

is optimal in the second period. Based on (3) and (4), the second-period problem can be written as:

V2(x2, f2) = max
y2∈[y(x2), y(x2)]

U2(y2)
def
= r(y2 − x2, f22) + E

Q
2

[
− f33λ(y2)− (y2 + λ(y2))p

]
, (A.4)

where, for ease of exposition, we suppress the dependence of U2(y2) on x2 and f2.

Based on (5) and (6), the second-period RI policy is determined by:

max
y2∈[y(x2), y(x2)]

r(y2 − x2, f22)− f23λ(y2)− (y2 + λ(y2))E
Q
2 [p],

which is identical to (A.4), noting the martingale property of ft3. Thus, the RI policy is optimal in

the second period. Next, we prove that the optimal policy has the form in (9).

For y2 ∈ (H,K] and y2 6= x2, the first-order derivative of the objective in (A.4) is

U ′
2(y2) = ∂r(y2 − x2, f22)/∂y2 − λ′(y2)f23 − (1 + λ′(y2))E

Q
2 [p]

≤ −f22 + sf23 − (1− s)EQ
2 [p] ≤ 0.

The first inequality follows from two facts: The definition of r(q, f22) implies ∂r(q, f22)/∂q ≤ −f22,

and the definition of s leads to −λ′(y2) ≤ s, for y2 ∈ (H,K]. The last inequality is because the

condition P
{
p ≥

sf33 − f22

1− s

}
= 1 implies EQ

2 [p] ≥
sf23 − f22

1− s
.

Because U ′
2(y2) ≤ 0 for y2 ∈ (H,K], we need to consider only y2 ≤ H in solving (A.4). Assump-

tion 1 implies λ(y2) = −y2 when y2 ≤ H. Thus, the problem in (A.4) becomes

V2(x2, f2) = max
y2

{
r(y2 − x2, f22) + f23y2 : y(x2) ≤ y2 ≤ min{H, y(x2)}

}
.

The solution to the above problem is:

y∗2(x2, f2) =





y(x2), if f22 ≥ f23,

min{H, x2}, if f22 < f23 ≤ f
b
22,

min{H, y(x2)}, if f
b
22 < f23,

which leads to the optimal decision expressed in (9) in the paper.

Proof of Lemma 1. Consider the objective (11) in the paper:

max
y1∈[y(x1),H]

V wy1 + V cmin{H − y1, λ(y1)}.

Under Assumption 1, min{H − y1, λ(y1)} is decreasing in y1 at a rate no faster than the unit rate.

(a) Since V c ≥ 0 by definition, the second term in the objective (11) is decreasing in y1. When
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V w ≤ 0, the first term is also decreasing in y1 and, therefore, the optimal solution is y∗1 = y(x1).

(b) When V w > V c, the objective can be written as:

(V w − V c)y1 + V c
(
y1 +min{H − y1, λ(y1)}

)
= (V w − V c)y1 + V cmin{H, y(y1)},

which is increasing in y1, because y(y1) is nondecreasing in y1. Hence, y
∗
1 = H.

(c) When 0 < V w ≤ V c, the objective can be written as:

(V w − V c)y1 + V cmin{H, y(y1)} =





(V w − V c)y1 + V cH, if y1 ≥ H ′,

V wy1 + V cλ(y1), if y1 < H ′.

Thus, the objective is decreasing in y1 for y1 ≥ H ′. If y(x1) ≥ H ′, then y∗1 = y(x1). If y(x1) < H ′,

then y∗1 ∈ [y(x1), H
′] and is determined by maximizing V wy1 + V cλ(y1).

Proof of Lemma 2. Had we not known the optimal policy, we would prove Lemma 2 from scratch.

With the optimal policy derived in Lemma 1, a short-cut is available. If we set the volatilities of

futures prices to be zero, then the optimal policy in Lemma 1 becomes the RI policy. Specifically,

under the zero price volatilities assumption, (12)-(13) in the paper become

V w = max{f12, f13} − f11 and V c = max{f13 − f
b

12, 0}.

We now show that each part of Lemma 1 becomes the corresponding part of Lemma 2:

(a) V w ≤ 0 is equivalent to f11 ≥ max{f12, f13}.

(b) Because f11 > f12, V
w > V c is equivalent to f13−f11 > max{f13−f

b
12, 0} or f11 < min{f

b
12, f13}.

(c) Based on the equivalence in (a) and (b) above, we can see that 0 < V w ≤ V c is equivalent

to f13 > f11 ≥ f
b
12. The maximization problem in Lemma 1(c) is also equivalent to that in

Lemma 2(c) because V w = f13 − f11 and V c = f13 − f
b
12.

Proof of Proposition 2. The price is adjusted such that f̂
b
12 = E

Q
1

[
median{f22, f

b
22, f23}

]
and

f̂13 = E
Q
1

[
max{f22, f23}

]
. Using f̂1 = (f11, f̂12, f̂13) as the input prices of the RI policy, we show that

each part of Lemma 2 is equivalent to the corresponding part in Lemma 1:

(a) f11 ≥ max{f̂12, f̂13} = f̂13 = E
Q
1

[
max{f22, f23}

]
is equivalent to V w ≤ 0.

(b) f11 < min{f̂
b
12, f̂13} = f̂

b
12 = E

Q
1

[
median{f22, f

b
22, f23}

]
is equivalent to V w > V c, because

median{f22, f
b

22, f23} = max{f22, f23} −max{f23 − f
b

22, 0}. (A.5)

One can verify (A.5) by considering three cases: f22 < f
b
22 < f23, f22 < f23 < f

b
22, and f23 <

f22 < f
b
22.

(c) Based on the equivalent relations in (a) and (b), f̂13 > f11 ≥ f̂
b
12 is equivalent to 0 < V w ≤ V c.

Furthermore, the maximization problem in Lemma 2(c) is identical to that in Lemma 1(c)

because V w = f̂13 − f11 and V c = f̂13 − f̂
b
12, where the latter is due to (A.5).
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Proof of Lemma 3. Consider the objective (15) in the paper:

max
y1∈[H, y(x1)]

U1(y1) =





f11x1 − V ay1 − V lλ(y1), if y1 ∈ [H,x1],

f
b
11x1 − V aby1 − V lλ(y1), if y1 ∈ (x1, y(x1)].

(a) Because V l ≥ 0 by definition and λ(y1) is decreasing in y1 under Assumption 1, the term −V lλ(y1)

in the objective is increasing in y1. When V ab ≤ 0, the terms −V ay1 and −V aby1 are also

increasing in y1 and, therefore, the optimal solution is y∗1 = y(x1).

(b) When V a ≤ 0 < V ab, U1(y1) is increasing for y1 ∈ [H,x1], and the optimal decision is determined

by maximizing −V aby1 − V lλ(y1) for y1 ∈ [x1, y(x1)].

(c) Continue from part (b). If V l < V ab, then the maximizer of −V aby1 − V lλ(y1) is y
∗
1 = x1.

(d) When V a > 0, the objective is not monotone in general and the optimal solution may lie anywhere

between H and y(x1).

Proof of Lemma 4. Parallel to the proof of Lemma 2, when the price volatilities are assumed to

be zero, the optimal policy in Lemma 3 becomes the RI policy stated in this lemma.

Proof of Proposition 3. The adjusted price is f̂1 = (f11, f12, f̂13), where f̂13 = E
Q
1

[
min{f22, f23}

]
.

Note the following relations:

f11 − f̂13 = f11 − E
Q
1

[
min{f22, f23}

]
= V a, (A.6)

f
b

11 − f̂13 = f
b

11 − E
Q
1

[
min{f22, f23}

]
= V ab, (A.7)

f12 − f̂13 = f12 − E
Q
1

[
min{f22, f23}

]
= E

Q
1

[
max{f22 − f23, 0}

]
= V l, (A.8)

f
b

11 − f12 = (f
b

11 − f̂13)− (f12 − f̂13) = V ab − V l. (A.9)

Using f̂1 = (f11, f12, f̂13) as the input prices of the RI policy, we show that each part of Lemma 4 is

equivalent to the corresponding part in Lemma 3:

(a) f
b
11 ≤ min{f12, f̂13} = f̂13 is equivalent to V ab ≤ 0, due to (A.7).

(b) f11 ≤ min{f12, f̂13} = f̂13 < f
b
11 ≤ f12 is equivalent to V a ≤ 0 < V ab ≤ V l due to (A.6), (A.7),

and (A.9). The maximization problem in Lemma 4(b) is identical to that in Lemma 3(b) because

f
b
11 −min{f12, f̂13} = f

b
11 − f̂13 = V ab and max{f12 − f̂13, 0} = f12 − f̂13 = V l.

(c) f11 ≤ min{f12, f̂13} ≤ f12 < f
b
11 is equivalent to V a ≤ 0 ≤ V l < V ab due to (A.6) and (A.9).

(d) f11 > f̂13 is equivalent to V a > 0 due to (A.6). The maximization problem in Lemma 4(d) is

identical to that in Lemma 3(d), because (A.6)-(A.8) imply that the objective in (19) is identical

to the objective in (15).

Proof of Proposition 4. The multiperiod problem is formulated in (3)-(4), and simplified below

6



under Assumption 3.

Vt(xt, ft) = max
yt∈[y(xt), xt]

(xt − yt)ft + E
Q
t

[
Vt+1(yt, ft+1)

]
, (A.10)

VN (xN , fN ) = −fN λ(xN ). (A.11)

Note that under constant capacities, there is no value of raising withdrawal capacity by withholding

sales. Thus, it is optimal to empty the storage by the end of period N , and the penalty term

is not needed in (A.11). Formally, we show that y∗t ≤ (N− t)|C| and, in particular, y∗N = 0. If

yt > (N−t)|C|, then for the remaining N − t periods, the best policy is to sell |C| every period,

leaving
(
yt−(N−t)|C|

)
units unsold in the last period. Thus, yt > (N−t)|C| is a suboptimal decision.

We now inductively prove that for any ft, Vt(xt, ft) is a concave piece-wise linear function in xt

with slope u
(k)
t defined in (20) for xt ∈ (Hk−1,Hk], k = 1, . . . , T .

First, because λ(x) has slope −1 for x ∈ (0,H1] and zero slope otherwise, VN (xN , fN ) is concave

in xN and has slope u
(k)
N for xt ∈ (Hk−1,Hk]. Suppose Vt+1(yt, ft+1) is concave in yt with slope

u
(k)
t+1 for yt ∈ (Hk−1,Hk]. Then, the objective in (A.10) is concave in yt with slope E

Q
t u

(k)
t+1 − ft for

yt ∈ (Hk−1,Hk].

Let xt ∈ (Hk−1,Hk], for some k ∈ {2, . . . , T}. Consider three cases:

(i) If the slope E
Q
t u

(k−1)
t+1 − ft ≤ 0 (i.e., V w

tk ≤ 0), then the objective in (A.10) is non-increasing for

yt ≥ Hk−2. Thus, it is optimal to sell |C|. We have Vt(xt, ft) = |C|ft + E
Q
t

[
Vt+1(xt − |C|, ft+1)

]
,

which is linear in xt with slope E
Q
t u

(k−1)
t+1 for xt ∈ (Hk−1,Hk].

(ii) If the slopes EQ
t u

(k)
t+1−ft ≤ 0 and E

Q
t u

(k−1)
t+1 −ft > 0 (i.e., V a

tk ≥ 0 and V w
tk > 0), then the objective

in (A.10) is increasing in yt for yt ≤ Hk−1 and non-increasing for yt ≥ Hk−1. The optimal decision

is y∗t = Hk−1; the value function is Vt(xt, ft) = (xt −Hk−1)ft + E
Q
t

[
Vt+1(Hk−1, ft+1)

]
, which is

linear in xt with slope ft for xt ∈ (Hk−1,Hk].

(iii) If the slope E
Q
t u

(k)
t+1 − ft > 0 (i.e., V a

tk < 0), then the objective in (A.10) is increasing in yt

for yt ≤ xt, and the optimal decision is y∗t = xt. Under the optimal decision, Vt(xt, ft) =

E
Q
t

[
Vt+1(xt, ft+1)

]
and has slope E

Q
t u

(k)
t+1 for xt ∈ (Hk−1,Hk].

In sum, for xt ∈ (Hk−1,Hk], k ≥ 2, Vt(xt, ft) is linear in xt with slope:





E
Q
t u

(k−1)
t+1 , if ft ≥ E

Q
t u

(k−1)
t+1 ,

ft, if EQ
t u

(k)
t+1 ≤ ft < E

Q
t u

(k−1)
t+1 ,

E
Q
t u

(k)
t+1, if ft < E

Q
t u

(k)
t+1,

which is essentially u
(k)
t = k-th largest element of

{
ft, E

Q
t ut+1

}
.

Finally, when xt ∈ (0,H1], case (iii) above still applies, whereas cases (i) and (ii) are replaced by

the following: If EQ
t u

(1)
t+1 ≤ ft (i.e., V

a
t1 ≥ 0), then the optimal decision is y∗t = 0; the value function
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is Vt(xt, ft) = xtft + E
Q
t

[
Vt+1(Hk−1, ft+1)

]
, which is linear in xt with slope ft for xt ∈ (0,H1]. This,

together with case (i), implies that u
(1)
t = max

{
ft, E

Q
t ut+1

}
.

Proof of Proposition 5. The N -period problem is as follows:

Vt(xt, ft) = max
yt∈[y(xt), y(xt)]

r(yt − xt, ft) + E
Q
t

[
Vt+1(yt, ft+1)

]
, (A.12)

VN (xN , fN ) = −fN λ(xN ). (A.13)

We inductively prove that for any ft, Vt(xt, ft) is a concave piece-wise linear function in xt with

slope v
(k)
t defined in (24) for xt ∈ (Hk−1,Hk], k = 1, . . . , T . This is true for t = N , as seen in the

proof for Proposition 4. Suppose Vt+1(yt, ft+1) is concave in yt with slope v
(k)
t+1 for yt ∈ (Hk−1,Hk].

Then, the objective in (A.12) is concave in yt with slope E
Q
t v

(k)
t+1 − ft for yt ∈ (Hk−1,Hk].

Let xt ∈ (Hk−1,Hk], for some k ∈ {2, . . . , T − 1}. Consider five cases below. The first two cases

parallel those in the proof of Proposition 4.

(i) If the slope E
Q
t v

(k−1)
t+1 − ft ≤ 0 (i.e., V w

tk ≤ V c
t,k−1), it is optimal to sell |C|. The value function

Vt(xt, ft) has slope E
Q
t v

(k−1)
t+1 for xt ∈ (Hk−1,Hk].

(ii) If the slopes EQ
t v

(k)
t+1 − ft ≤ 0 and E

Q
t v

(k−1)
t+1 − ft > 0 (i.e., V a

tk + V c
tk ≥ 0 and V w

tk > V c
t,k−1), the

optimal decision is y∗t = Hk−1. The value function Vt(xt, ft) has slope ft for xt ∈ (Hk−1,Hk].

(iii) If the slopes E
Q
t v

(k)
t+1 − ft > 0 and E

Q
t v

(k)
t+1 − f

b
t ≤ 0 (i.e., V a

tk + V c
tk < 0 ≤ V ab

tk + V c
tk), then the

objective in (A.12) is increasing in yt for yt ≤ xt, and non-increasing for yt ≥ xt. The optimal

decision is y∗t = xt, and Vt(xt, ft) = E
Q
t

[
Vt+1(xt, ft+1)

]
has slope E

Q
t v

(k)
t+1 for xt ∈ (Hk−1,Hk].

(iv) If the slopes E
Q
t v

(k)
t+1 − f

b
t > 0 and E

Q
t v

(k+1)
t+1 − f

b
t ≤ 0 (i.e., V ab

tk + V c
tk < 0 ≤ V ab

t,k+1 + V c
t,k+1),

then the objective in (A.12) is increasing in yt for yt ≤ Hk, and non-increasing for yt ≥ Hk. The

optimal decision is to buy up to y∗t = Hk, and Vt(xt, ft) = −(Hk − xt)f
b
t + E

Q
t

[
Vt+1(Hk, ft+1)

]

has slope f
b
t for xt ∈ (Hk−1,Hk].

(v) If the slope EQ
t v

(k+1)
t+1 −f

b
t > 0 (i.e., V ab

t,k+1+V c
t,k+1 < 0), then the objective in (A.12) is increasing

for yt ≤ Hk+1. It is optimal to buy C, and the resulting value function Vt(xt, ft) = −Cf
b
t +

E
Q
t

[
Vt+1(xt + C, ft+1)

]
has slope E

Q
t v

(k+1)
t+1 for xt ∈ (Hk−1,Hk].

In sum, for xt ∈ (Hk−1,Hk], k ≥ 2, Vt(xt, ft) is linear in xt with slope:





E
Q
t v

(k−1)
t+1 , if ft ≥ E

Q
t v

(k−1)
t+1 ,

ft, if EQ
t v

(k)
t+1 ≤ ft < E

Q
t v

(k−1)
t+1 ,

E
Q
t v

(k)
t+1, if ft < E

Q
t v

(k)
t+1 ≤ f

b
t ,

f
b
t if EQ

t v
(k+1)
t+1 ≤ f

b
t < E

Q
t v

(k)
t+1,

E
Q
t v

(k+1)
t+1 if f

b
t < E

Q
t v

(k+1)
t+1 ,

which is essentially v
(k)
t = (k + 1)-th largest element of

{
ft, f

b
t , E

Q
t vt+1

}
,
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When xt ∈ (0,H1], cases (i) and (ii) are replaced by the following: If the slope E
Q
t v

(1
t+1 − ft ≤ 0

(i.e., V a
t1 + V c

t1 ≥ 0), we have y∗t = 0, and Vt(xt, ft) has slope ft for xt ∈ (0,H1].

When xt ∈ (HT−1,K], cases (iv) and (v) are replaced by the following: If the slope EQ
t v

(T )
t+1−f

b
t > 0

(i.e., V ab
tT + V c

tT < 0), we have y∗t = K, and Vt(xt, ft) has slope f
b
t for xt ∈ (HT−1,K].

D. Lower Bounds on the Value Loss from RI Policy

In this section, we show that if f11 ≥ max{f12, f13} and V w > V c, then the expected loss of the

RI policy is at least (V w − V c)(H − y(x1)). If f12 < f11 < min{f
b
12, f13} and V w < V c, then the

expected loss of the RI policy is at least (V c − V w)(H −max{y(x1),H
′}).

In the appendix of the paper, the derivation of the objective (11) suggests that:

V (x1, f1) = max
y1∈[y(x1),H]

U1(x1, y1, f1) ≡ V wy1 + V cmin{H − y1, λ(y1)}+ f11x1.

Proposition 1 shows that the RI policy is optimal for the last two periods. Hence,

V1(x1, f1)− V RI
1 (x1, f1) = U1(x1, y

∗
1 , f1)− U1(x1, y

†
1, f1).

We now prove the two statements in sequence.

(i) When f11 ≥ max{f12, f13} and V w > V c, Lemma 1(b) and Lemma 2(a) imply that y†1 = y(x1) <

H = y∗1 . Then,

U1(x1, y
∗
1 , f1)− U1(x1, y

†
1, f1) = V wH − V wy†1 − V cmin{H − y†1, λ(y

†
1)}

≥ V w(H − y†1)− V c(H − y†1)

= (V w − V c)(H − y(x1)).

(ii) When f12 < f11 < min{f
b
12, f13}, Lemma 2(b) implies that y†1 = H. When V w < V c, the optimal

solution is determined by Lemma 1(a) or (c).

If y(x1) ≥ H ′, then y∗1 = y(x1) and

U1(x1, y
∗
1 , f1)− U1(x1, y

†
1, f1) = V wy(x1) + V c(H − y(x1))− V wH = (V c − V w)(H − y(x1)).

If y(x1) < H ′, then y∗ ∈ [y(x1),H
′] and

U1(x1, y
∗
1, f1)− U1(x1, y

†
1, f1) ≥ U1(x1,H

′, f1)− U1(x1,H, f1)

≥ V wH ′ + V c(H −H ′)− V wH = (V c − V w)(H −H ′).

Summarizing the above two cases, we have

U1(x1, y
∗
1 , f1)− U1(x1, y

†
1, f1) ≥ (V c − V w)(H −max{y(x1),H

′}).
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