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ABSTRACT 

To improve SPECT reconstruction using spatially- 
correlated magnetic resonance(MR) images as a source of 
side information, one must account for mismatch between 
MRI anatomical information and SPECT functional infor- 
mation. We investigate an approach which incorporates 
the anatomical information into SPECT reconstruction by 
using region labels representing the anatomical regions ex- 
tracted from MRI. Each SPECT pixel corresponds to one 
region label. Both SPECT pixel mean intensities and re- 
gion labels are jointly estimated by a penalized Maximum- 
Likelihood criterion using an iterative Space-Alternating 
Generalized EM algorithm. The likelihood function in- 
corporates both the SPECT noise distribution and the 
MRI side information measurement statistics. Since the 
region labels are estimated jointly from both segmented 
MRI and SPECT projection data, only those anatomical 
regions that match SPECT functional regions are repre- 
sented by the estimated labels, and are used to constrain 
the SPECT reconstruction. The artifacts due to the mis- 
matched MR anatomical region information are reduced 
using joint estimation. By comparing image quality and 
the Bias us. Variance tradeoffs, we see that the joint esti- 
mation has the potential to improve the SPECT estimation 
result. 

I. INTRODUCTION 

The fluctuation of photon statistics, trade-offs between de- 
tection sensitivity and collimator resolution, and limited 
photon rates cause the inherently modest resolution in 
SPECT imaging. Since SPECT has the capability of dis- 
closing the functional information in living organs, while 
other imaging modalities such as MRI give relatively higher 
resolution images, many efforts have been made to apply 
side-information, extracted from higher-resolution, struc- 
turally correlated MR images, to constrain the SPECT im- 
age prior in a Maximum a posteriori (MAP) objective to 
improve the image quality and quantitative accuracy. Two 
major approaches exist for incorporating MR anatomic 
information: line site models, which represent anatomic 
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boundaries [l, 21; and labelling methods, which identify 
anatomic regions [4]. Both methods provide improved 
SPECT reconstruction if the anatomical structure is per- 
fectly correlated with SPECT functional information. A 
direct method would use region labels to define the weights 
in a weighted Gibb’s function as a penalty function in a 
penalized Maximum-likelihood objective [3], so intensity 
discrepancies are only penalized within the same region 
and not across region boundaries, as in case of spatially- 
invariant regularization. Such labels are treated like a 
prior, they influence the SPECT reconstruction. How- 
ever, there may exist mismatches between MRI anatomical 
structure and SPECT functional structure since the spin 
density and T I ,  T2 distribution are not necessarily the same 
as SPECT tracer distribution. The “blind’’ use of MRI 
side information causes artifacts [3,5]. For example, if the 
segmented MRI is missing a corresponding functional re- 
gion in SPECT, then the “blind” use of this anatomical 
information might suppress the reconstruction of the func- 
tional region. Some investigations have been done to ac- 
commodate this fact, such as Leahy’s “functional line sites 
method” [l], Ouyang’s “weighted lines sites” method [5], 
and Fessler’s “blurred weights” method [3]. 

We investigate a joint estimation approach, that incor- 
porates the anatomic side information and its measure- 
ment statistics into SPECT image reconstruction to re- 
duce the effect of imperfect side information. We choose 
region labels to represent the anatomical regions extracted 
from MRI because the region labels more easily favor re- 
gion contiguity and need half less the parameters than line 
sites representations. In this approach] each SPECT pixel 
X k  , k = 1, ..., p ( p :  number of pixels) corresponds to one re- 
gion label lk, k = 1, . . . , p .  If two pixels have the same type 
of region labels, they tend to have the similar intensities] 
vice versa. However the region labels 1 are not simply a di- 
rect “copy’’ from the segmented MRI. Instead, after being 
initialized with the segmented MRI, they are jointly esti- 
mated with SPECT pixel mean intensity parameters A, us- 
ing a penalized Maximum-Likelihood(PML) objective. We 
update a SPECT mean intensity pixel and its correspond- 
ing region label simultaneously, such that label and pixel 
pair updating are mutually constrained. The ,joint objec- 
tive function incorporates both the SPECT noise distribu- 
tion and the MRI side information measurement statistics, 
plus a joint penalty function, as: 

* j o i ? a t ( A J )  = L ( U Y , I )  - Q(X, l )  (1) 
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where y is the SPECT projection data, is the MR 
anatomic region measurement, X and 1 are SPECT inten- 
sity and label parameters to be estimated, L ( )  and R() 
are joint likelihood and joint penalty terms. Since region 
labels are estimated jointly from both MRI and SPECT, 
only those parts of the MR anatomical regions that match 
the SPECT functional regions are represented by the es- 
timated labels, and constrain the SPECT intensity recon- 
struction, while the mismatched region labels will be up- 
dated during the joint estimation process, to approach the 
SPECT functional region. Thus the artifacts due to mis- 
match are reduced. 

Section 2 describes the method in detail. Section 3 gives 
simulation results comparing visual qualities of the recon- 
structed images and their bias vs. variance trade-offs. 
Some problems we encountered in applying the method 
and possible future study are described in Section 4. 

11. METHODS 

A .  Objective Function 
We choose penalized Maximum-Likelihood as our objec- 
tive, which can also be viewed as a Maximum a posteriori 
if regarding the penalty terms as an a priori pdf of possible 
image and label states from a Bayesian perspective. So the 
estimation of both SPECT intensity X and region labels 1 
will be 

A 1  

The objective function is shown as (1). Since SPECT and 
MRI are independent imaging processes, their joint log- 
likelihood functions are independent and can be separated, 
and we adopt a hierarchical penalty function. Thus the 
resulting penalized objective function is 

(A, i) = arg max i P j . i n t ( X ,  1 ) .  (2) 

a j o i n t ( X , l )  = L ( X ; Y ) + L ( ~ ; ~ ) - P ~ R ~ ( X ; ~ ) - P ~ R ~ ( ~ )  (3) 

where y, i, 1 ,  X are the same as before. L(X; y) is the log- 
likelihood of SPECT, L(1;i) is the log-likelihood of MR 
side information measurement statistics. R I  is the penalty 
term which relates the estimation of the labels 1 to the 
estimation of the intensity A, and Rz is a penalty term 
which encourages contiguous regions. Applying the statis- 
tics of the side information measurement allows us to avoid 
“blind” use of MR side information. The SPECT measure- 
ment is well known to be Poisson process; the log-likelihood 
is given by [7]: 

L(X, Y) = log f(y; A). x ( - i j n ( X )  + Yn log i j n ( ~ ) )  
n 

where 
%(A) = a n k X k  + Tn (4) 

k 

where “&’ represents the equivalence, r, is the assumed 
known scatter. The log-likelihood of the side information 

L(1;i)  depends on how the anatomical information is ex- 
tracted from the MR images. For the reason of simplicity, 
we assume that the MRI has Gaussian noise and different 
regions have different intensities. If MRI is segmented us- 
ing simple pixel-by-pixel thresholds, then the log-likelihood 
for P ( f k l l k )  for l k  given lk  is: 

P 

(5) 
k = l  

where p ( i k l 1 k )  is the probability of assigning the label 
Each of 

these P ( T k l l k )  can be empirically estimated from MRI noise 
statistics and structural information from both filtered- 
backprojection image of SPECT and segmented MRI. We 
think that certain amount of human interaction is neces- 
sary for determining whether there might be a mismatch 
between segmented MRI and SPECT tracer distribution. 
For example, in Fig.1, P ( f k  = A l l k  = B) can be deter- 
mined by MRI noise statistics, however, whether there is 
a possible region D in SPECT has to be checked using a 
FBP, and assign certain probability level. This term de- 
termines the extent to which we trust each region in the 
MRI side information. 

The penalty terms restrict the possible states of SPECT 
image and region labels. To encourage smoothness within 
the same region but allow discontinuities between regions 
in the SPECT image, we choose s 1 1  as: 

to the kth pixel when lk  is the true label. 

k = l  j € N , ,  

1 (direct neighbor) if l k  = lj 
with W k j ( 1 )  = 4 / 2  (diagonal neighbor) if lk = 1, 

( 0  if lk  # 1, 

n / k  is the neighborhood of pixel k, usually a 2nd-order 
eight-pixel neighborhood is used. The weights W k j  link the 
pixel k with its neighbors j ,  and $(Xk - X j )  is usually a 
quadratic term. Here W k j  is not fixed, it is a function of la- 
bels. When $ ( X k  - X j )  is too big, the maximization pushes 
the current label lk  to be different from its neighbors. This 
penalty term associates the SPECT intensity vector with 
the label vector, so their estimations are affected by each 
other, instead of letting the labels extracted from MR dom- 
inate the SPECT reconstruction. A possible form for 022 
will be 

P 

(7) 
k = l  j € A f k  

where W k j  is the same as above. This term encourages the 
neighboring pixels to have the same labels. 

B. Reconstruction Algorithm 
We apply an iterative Space- Alternating ‘Generalized 
EM(SAGE) [6] algorithm for the penalized Maximum- 
Likelihood objective because of its faster convergence and 



FBP Segmented MRI 

Figure 1: Compare FBP and MRI for P ( f k 1 l k ) .  

its monotonicity. In SAGE, the penalized likelihood 
@joint(X, 1)is maximized by maximizing b k ( X k ,  l k ;  Xi, l'), 
the sum of the conditional expectation Qk(Xk,X*)  of the 
log-likelihood and the penalty terms of the hidden-data 
space [6]. Each pixel-label pair is jointly updated by hold- 
ing the remaining pixel-label pairs fixed: 

bk(Xk, Ik;Xi , l i )  = Qk(Xk,Ai) + L ( l k ; f k )  

-P1 a1 ( X k  , A!, ; lk , lLk) - P2Q2 ( l k  , lLk) 

where Af, and ltk are the vectors of length ( p  - 1) ob- 
tained by removing the Ath element from X and 1. SAGE 
algorithms monotonically increase of both @(Xk, l k ;  X i ,  1') 
and @joint(A,l) .  However the SAGE here does not guar- 
antee global convergence since the penalty terms are non- 
convex due to the discrete label parameters. To avoid get- 
ting stuck in local maxima, we use a deterministic anneal- 
ing procedure for P 2 ,  i.e. Pz is increased exponentially as 
a function of iteration number until a specified value is 
reached. 

111. SIMULATIONS 

We have performed some preliminary simulations to com- 
pare the results from the joint estimation method and 
other image reconstruction methods in terms of both im- 
age visual quality and bias vs. variance relationship. A 
simple parallel collimated SPECT imaging system is sim- 
ulated, with a 72-bin detector and 90 sampling angles over 
the 180-degree range. The image field is discretized into 
128 x 64 pixels. The detector response is triangular with 
4 pixel FWHM. We ignore the attenuation. All of each 
SPECT projection sets have about 1 million counts with 
5% assumed known scatter; Poisson noise is simulated. We 
assume the MRI has been correctly segmented and regis- 
tered. Fig.2(a) is the phantom for SPECT tracer distribu- 
tion, Fig.P(b) is a segmented MRI with anatomical infor- 
mation perfectly matching the SPECT tracer distribution. 
Fig.P(c) is a segmented MRI with mismatched anatomical 
information, the hot elliptical region is missing. 

Figure 2: Top:(a) The phantom of SPECT tracer distri- 
bution. Middle:(b) Simulated segmented MRI region map 
with perfect side information. Bottom:(c) Simulated seg- 
mented MRI region map with missing side information. 

Figure 3 shows images reconstructed from methods other 
than joint estimation. (a) is a filtered-backprojection 
with Generalized Hamming window, at fc = .80 and 
a = .65. Fig.S(b) through Fig.S(d) are from penalized 
SAGE with quadratic weighted Gibbs penalty. (b) is with- 
out any anatomical information, using uniformly weighted 
quadratic Gibbs penalty. In order to reduce noise, the im- 
age has to be globally regularized, so it looks blurry across 
all the region boundaries. In (c) the Gibbs weights were 
defined by the perfect MRI anatomical regions, (Fig.2(b)). 
Thus the regions are smooth, and boundaries are sharp. 
This shows the ultimate (also unrealistic) performance 
of applying MRI side information. In Fig.S(d), Fig.2(c) 
was used as side information to define the weights in the 
penalty term. Where the anatomical regions match the 
SPECT functional region, the reconstruction is as good 
as Fig.3(c), where mismatch exists, then the hot region in 
SPECT is blurred about the same amount as in Fig.S(b) 
where the penalty is uniformly weighted. 

For joint estimation, penalized SAGE is applied to up- 
date each pixel-label pair (Xk, Ik)-in four alternative raster 
scan orders. An idealized L(1;l)  table is used, see Ta- 
ble I. X is initialized with ramp filtered FBP, and l is 
initialized with Fig.P(b) or Fig.2(c) representing matched 
and mismatched side information. Fig.4(a) and (b) shows 
the SPECT reconstructed image and corresponding la- 
bel estimation when the label is initialized with Fig.2(b). 

estimation process. This shows that when perfect MRI side 
information is available, the joint estimation also performs 
as well as Fig.S(c). For Fig.4(c) and (d), the 1 is initialized 
with Fig.2(c), a fixed p1 = 2-8 and an exponentially in- 

p 1 - - 2 -8 and P 2  = 24.5 and they are fixed during the joint 
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Figure 3: Top to bottom:a,b,c,d. (a):FBP reconstruction. 
(b):SAGE reconstruction with uniform 8 neighbor regu- 
larization. (c):SAGE with perfect MRI anatomical region 
information. (d):SAGE with mismatched MRI anatomical 
information. 

creased p2 = 24.5 x 2min(31iter), where i ter is the iteration 
index, and p 2  stays at the final value. Even though there 
was not any information associated with the hot region, 
the joint estimation recovers the labels for that region and 
helps to prevent the blurring observed in both Fig.J(c) and 
Fig.3(d). The newly estimated region labels are basically 
dependent on SPECT data, so they are not the same as 
the true region labels, due to the noise in SPECT data. 

Bias vs. variance trade-offs are evaluated to avoid anec- 
dotal performance comparison among different reconstruc- 
tion methods. 50 SPECT noisy projection realizations are 
created. We evaluate the bias vs. standard deviation(std) 
for the hot region in terms of the concentration in that 
region. For the cases where the perfect MRI side informa- 
tion is available, we use the ideal ROI label to define the 
region. For joint estimation with mismatched MRI side 
information, we use estimated labels to define that region. 
For uniform regularization and fixed application of MRI 
cases, we use 75% of the peak value in a bigger region 
containing the ROI as a threshold to define the estimated 
ROI. The concentration is then the averaged counts per 
pixel in that defined region. Fig.5 shows the bias vs. STD 
comparison. When the ideal and perfectly matched MR 
anatomical information is used for the penalty, it gives ul- 
timate performance, i.e. for given standard deviation, it 

Figure 4: Top to bottom:a,b,c,d. (a:image,b:label) 
joint estimation initialized with perfect MRI informa- 
tion. (c:image,d:label) joint estimation initialized with 
mismatched MRI. 

has the smallest bias(case 1). On the contrary, when there 
is no MRX side information, we can only apply uniform 
regularization to control the trade-off between image reso- 
lution and noise. For given standard deviation, this gives 
the highest bias(case 2). If MRI information has some 
mismatch, such as the missing ROI in case 3, fixed ap- 
plication of this MRI information will give the artifact - 
blurring in the reconstructed SPECT image, so the per- 
formance is close to case 2. When the joint estimation is 
initialized with perfect MRI anatomical information, the 
performance is very close to the ultimate performance of 
the PML with perfect side information(case 4). This shows 
the potential of the joint estimation approach. Even with 
mismatched side information] joint estimation is able to 
partially recover the region and prevent blurring across 
the region boundaries, so that the estimation performance 
(case 5) of concentration in that region is better than case 
1 and 2. 

However, we have observed that the convergence is sen- 
sitive to the initial X and (Dl ] p2) pair, i.e. for some initial 
A, only a small range of P I ,  p2 will give convergence to a 
local maximum close to the global maximum, otherwise 
the joint estimation of both and 1 will converge to a lo- 
cal maximum far from the global maximum, as shown in 
Fig.6. 
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Figure 5: Bias vs. STD in terms of the concentration the 
given ROI. 

IV. DISCUSSION 

We have shown that the joint estimation approach pre- 
serves the benefit of applying the correlated anatomical 
side information, so the bias and variance are reduced. It 
can also avoid being dominated by the mismatched region 
information. So the joint estimation approach has the po- 
tential of robustly incorporating MRI side information. 

We have also noticed some problems that will be ad- 
dressed in the future study. First, the objective function 
is non-concave, because discrete label parameters are esti- 
mated together with continuous SPECT intensity param- 
eters. This destroys the global convergence property of 
the SAGE algorithm [6]. We have shown that in Fig.6. 
Since the non-concavity is inherent, we have to find a way 
of choosing the initial image and best (P I ,  P 2 )  pair. Fur- 
ther algorithm development is needed. Second, the MRI 
measurement distribution table used in simulation is an 
idealized and simplified one. We assumed a simple pixel- 
by-pixel segmentation scheme, but if the MRI is segmented 
using a more sophisticated approach such as ICM algo- 
rithm [8], then L(l;i)  will be very difficult to determine. 
At present that some human observation of both FBP a.nd 
MRI is needed to determining whether there possibly ex- 
ists a region in SPECT which does not appear in MRI. To 
obtain this information more automatically and robustly 
is also a future study. 
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