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Abstract 

The statistics of photon counting by systems affected 
by deadtime are potentially important for statistical image 
reconstruction methods. We present a new way of ana- 
lyzing the moments of the counting process for a counter 
system affected by various models of deadtime related to 
PET and SPECT imaging. We derive simple and exact 
expressions for the first and second moments of the num- 
ber of recorded events under various models. From our 
mean expression for a SPECT deadtime model, we derive 
a simple estimator for the actual intensity of the underly- 
ing Poisson process; simulations show that our estimator 
is unbiased even for extremely high count rates. 

I. INTRODUCTION 
Every photon counting system exhibits a characteristic 

called deadtime. Since the pulses produced by a detector 
have finite time duration, if a second pulse occurs before 
the first has disappeared, the two pulses will overlap to 
form a single distorted pulse [l]. Depending on the sys- 
tem, one or both arrivals will be lost. In PET or SPECT 
scanners, the length of pulse resolving time, often just 
called “deadtime”, denoted r ,  is around 2ps. Counting 
systems are usually classified into two categories: nonpar- 
alyzable (type I) or paralyzable (type 11). In a nonparalyz- 
able system, each recorded photon produces a deadtime of 
length r ;  if an arrival is recorded at t ,  then any arrival from 
t to t + T will not be recorded. In a paralyzable system, 
each photon arrival, whether recorded or not, produces a 
deadtime of length r ;  if there is an arrival at t ,  then any ar- 
rival from t to t + T will not be recorded. In some SPECT 
systems [2], we encounter a third model that is similar 
to the paralyzable model: if two photons arrive within r 
of each other, then neither photon will be recorded (e.g., 
due to pulse pile-up); we call this the type III model. The 
asymptotic moments of the nonparalyzable model are well 
known [3]. For the paralyzable model, the exact expres- 
sion for the mean of the number of recorded events from 
time 0 to t ,  denoted Y ( t ) ,  has been derived previously [4]. 
However, for the type III model, only an approximate ex- 
pression for the mean number of recorded events has been 
derived [2]. In this paper, we derive the exact mean and 

variance expressions of Y ( t )  for both type I1 and type I11 
models. 

11. STATISTICAL ANALYSIS OF DEADTIME 
We define a “photon arrival” to mean a photon interact- 

ing with the scintillator with sufficient deposited energy to 
trigger detection. The photon arrival process N ( t )  counts 
the number of arrivals during the time interval (0, t ] ,  and 
the photon recording process Y ( t )  counts the number of 
recorded events. We assume that N ( t )  is a homogeneous 
Poisson process with rate X (photon arrivals per unit time) 
which stays constant with time. We also assume, for the 
sake of simplicity, that r is known and deterministic. 

A. Asymptotic Analysis via Renewal Theory 
The counting processes in all three types of systems 

discussed above are examples of “renewal processes” [ 3 ] ,  
and renewal theory has been the classical basis for dead- 
time analysis [ 5 ] .  A renewal process involves recurrent 
patterns connected with repeated trials. Roughly speak- 
ing, if after each occurrence of a pattern &, the random 
process starts from scratch in the sense that the trials fol- 
lowing an occurrence of & form a replica of the whole 
process, then the process qualifies as a renewal process. 
If we define & to be the state‘ of “the counter is ready 
to record the next photon arrival”. then after each occur- 
rence of &, the counting process is statistically equivalent. 
A very useful random variable to define is TE, the wait- 
ing time between one renewal and the next (renewal here 
means return to e). Note that in the context of photon 
counting system, with & defined as above, the number 
of renewals from 0 to t is almost exactly the number of 
recorded events from 0 to t .  If T& has ensemble mean /-1& 
and variance o:, then the number of renewals from 0 to I ,  
p ( t ) ,  is asymptotically Gaussian distributed [6] [31 with 
the following moments: 

where N indicates that the ratio of the two sides tends to 
unity as t/pE + 00. Hence asymptotically, the mean and 

’For type 111 deadtime, we define renewal as “return to E 
after recording an event”. 
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variance of the waiting time between renewals forms a sort 
of “duality” relationship with the mean and variance of the 
number of renewals. 

For the other two deadtime models, if we try to derive 
E[Y ( t ) ]  from E[T&], it is much more difficult to obtain a 
simple closed form expression because the E[T&] we get 
is probably an infinite sum and it is often not easy to ob- 
tain every term in this sum; the variance of TE is even 
more complicated. Therefore, in the following section, 
we describe a new approach for deriving the moments of 
counting processes. 

B. Exact Mean and Variance of Counting Processes 
We first consider a general counting process Y where 

Y ( t l ,  t 2 )  denotes the number of recorded events during 
the time interval ( t l ,  t2 ]  and Y ( t )  is a shorthand for 
Y (0, t ) .  We define the instantaneous rate y : R -+ [0, ca) 
of the process Y ( t )  as: 

y(s)  lim E [ Y ( s  + 6 )  - Y (s)]/6, (2) 
6-bO 

and the instantaneous second moment (Y : R + [O, 00) as: 

( ~ ( s )  k lim E [ ( Y ( S  + 6 )  - Y ( s ) ) ~ ] / ~ .  (3) 
,540 

We also define the correlation function ,O : R2 + [0, m) 
as : 

We assume2 

(i) y and a are well-defined p-almost every- 
where, and j3 is well defined p2-almost 
everywhere, and y and ,8 are integrable with 
respect to p and p2 over any finite interval 
and rectangle, respectively; 

(ii) E[Y(s ,  s + 6 ) ] / 6  and E[Y2(s ,  s + 6 ) ] / 6  are 
uniformly bounded for all s and 6 E (0 , l ) ;  

(iii) E [ Y ( s l ,  s1+61)Y(s2, s2+62)]/(6162) isuni- 
formly bounded for all sl, s2, and 61 6 2  E 
(0 , l )  suchthat ( ~ ~ , ~ ~ + 6 ~ ) n ( s 2 , ~ 2 + 6 ~ )  = 
0. 

These Assumptions hold for a wide variety of counting 
processes, including any homogeneous Poisson process 
with finite intensity. 

zp and pug denote Lebesgue measures on R and Rug, respec- 
tively. 

For analysis purposes, we artificially divide the time 
interval [0, t ]  into n segments of length 6 each, i.e., 1 = n6.  
We have 

n-1 

Y ( t )  = CY(Z6,  ( Z +  1)6), 
i=O 
n-1 

E[Y( t ) ]  = E[Y(iG, (i + l)S)], (6) 
i=O 

(7) 

where we define the following piecewise constant func- 
tion: 

E[Y(j6,  ( j  + 1)6)]/6, i f s  E ( j 6 ,  (3 + 1)6], 
0 5 j 5 T l -  1 
otherwise. 

(8) 
Since y ( t )  is well-defined almost everywhere in the inter- 
val [0, t ]  and E[Y (s ,  s + 6 ) ] / 6  is uniformly bounded, by 
the Lebesgue Dominated Convergence theorem (LDCT) 

{ 0, 
f S ( 4  

~ 

~71, 

= i t y ( s ) d s .  (9) 

Hence, we have the following simple general expression 
for the mean of the counting process in terms of its instan- 
taneous rate: 

t 
E [ Y ( t ) ]  = / y(s )ds .  (10) 

0 

We consider the second moment by a similar argument: 
n- 1 

E[Y2( t ) ]  = E [ ( Z Y ( i 6 ,  ( i  + 1 ) 6 ) ) 7  
i=O 

n-1 n-2 n- l  

= E[Y2(iS, ( i  + 1)6))]+ 2 
~ 

i=O i=o j=i+l 

r 

where we define the following piecewise constant func- 
tions: 
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and 111. SINGLE PHOTON COUNTING 
E[Y(iG, (i + 1)6). if s1 E (2'6, (i + 1)6], A. Mean and Variance of Recorded Singles Coimts, 
Y ( j 4  ~2 E ( j h ,  ( j  + 1)61, Model Type 11 

First we consider the paralyzable model in which if the 0 5 i 5 n - 2, 

- 'waiting time for a photon arrival is less than T ,  then this 
photon is not recorded. We derive the mean and variance 

( j  + 1)6)]/S2, 
and j 

,. ., 0, otherwise. 
'I4' 

Since ,i3 is well-defined almost everywhere in [0, t] x [0, t ]  
and E[Y(s l , s l  + 6)Y(sz , sz  + S)]/Sz is uniformly 
bounded, by LDCT and Fubini's Theorem [7], 

bf Y ( t ) ,  the number of recorded events from time 0 to 
time t. We observe that Y ( t )  inherits the stationary incre- 
ment property of the arrival process ,V( t ) .  We first derive 
E[Y(O, S)], where we pick 6 < T such that the number of 

Similarly, one can show that 

Thus using (12), (15), and (16), we have the following 
general expression for the second moment of Y ( t ) :  

E[Y'( t )]  = / a(s)ds  + 2 l  LlP(s1, s2)dszdsl. (17) 

In the context of counting processes with deadtime, which 
includes all random processes considered in this paper, the 

1 

0 

recorded events during ( 0 , 6 ]  is either 0 or 1. Let TI de- 
note the time of the first photon arrival after time 0;  it is 
exponentially distributed. If there is an arrival at Tl = s, 
0 < s < 6, and there is no arrival between s - T and 
s (in fact, we only need to make sure there is no arrival 
between s - T and 0, i.e., N ( 0 )  - N ( s  - T )  = 0, since 
the first arrival after 0 occurs at s), then there will be a 
recorded event during the interval (0, SI. Thus 

03 

E[Y(O,S)] = 1 P[Y(O,S) = 1IT1 = S]f&+i" 
0 

P[N(s - 7,O)  = OIT1 = S J ~ T ~  ( s ) ~ s  

J o  
= 

Hence by the definition given in (2) ,  the instantaneous rate process satisfies this additional assumption: 

(iv) there exists a positive 60 such that of Y ( t )  is 
V6 E (0, So), Y ( s ,  s+  6) 5 1. 

y = xe--xr, (24) This assumption greatly simplifies the derivations for the 
moments Of counting processes affected by deadtime, 
since for6 < So < T ,  

and by (21), we easily obtain the following result (e.g., 
[11), 

E[Y2(s ,  s + 41 = E[Y(s ,  s + S)J (18) 

using O2 = 0 and l2 = 1, so 
E[Y( t )J  = 

The variance of Y ( t )  for the type I1 model is (see Ap- 
Dendix A): 

Thus we obtain the following corollary of (17) for random 
processes satisfying assumptions (i) to (iv): Var[Y(t)] = Xte-"( l  - ( 2 X r  - X ~ ~ / / t ) e - ~ ~ ) .  (26) 

Figure 1 shows the mean and variance of the singles count 
for a detector affected by deadtime of type 11. Since the 
mean and variance can differ greatly, Y ( 2 )  is not Poisson. 

p(s,,  s2)ds2dsl. (20) l s: 
Furthermore, if Y ( t )  has stationary increments, then 

E [ Y Z ( t ) ]  = E [ Y ( t ) ]  + 2 

y(s) isconstantandP(s1,sz) = ,B(O,sz-sl) andwecan 
further simplify the results (10) and (20) to the following: B. Mean and Variance of Recorded Singles Counts, 

Model Tvue 111 
< I  mwl = yt (21) Now we turn to the type of system described in [2], 

E [ Y z ( ~ ) ]  = yt  + 2 (t - s)ds. (22) in which if the waiting time for a photon arrival is less 
than 7, then neither this photon nor the previous photon l 
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Fig. 1 Mean and variance for paralyzable (type 11) systems, 
with t = Is, r = 2ps. 

will be recorded. We again observe that Y ( t )  inherits the 
stationary increment property of the arrival process N ( t ) .  
We first derive E[Y (0, S ) ] ,  where we pick 6 < T such that 
the number of recorded events during (0 ,6]  is still either 0 
or 1. Hence, 

Hence for this system, the instantaneous rate as defined 
in (2) is 

and by (21), the expected number of recorded events for a 
type 111 system is exactly: 

The variance of Y ( t )  for the type I11 model is (we omit the 
derivation due to space constraints): 

~ a r [ ~ ( t ) ]  = + 2 e - 3 x T ( ~ t  - AT - 1) 
fe-4XT ( ~ X ' T '  - 4X2tr + 2 - 2Xt + 4Xr). (30) 

Figure 2 shows the (exact) mean and variance of the sin- 
gles count Y ( t )  for type I11 systems. Again Y ( t )  is not 
Poisson. 

0 2 t /  
o v  ' ' ' ' ' , ' ' ' I 

Fig. 2 Mean and variance for type I11 systems, with 

0 0 5  1 I 5  I I 5  3 3 5  1 4 5  I * < I O '  

t = Is, 7- = 2ps. 

Iv. COUNT RATE CORRECTION FOR SYSTEM 
TYPE I11 

For a quantitatively accurate reconstruction, we must 
correct for the effect of deadtime to avoid underestimation 
of source activity. For type I11 systems, Engeland et a1 [2] 
proposed the following correction formula, 

1 Y 2Y 6Y x = -(1+ -5- + +), t t 

which they obtained by solving an approximate mean 
waiting time expression up to second order in T by means 
of the expansion X = a + b~ + cr2 .  We propose to 
estimate the true count rate by solving numerically our 
exact expression (29), i.e., solve 

(32) - - - Ae-2XT 

t 

for given Y and t .  One could solve analytically the ex- 
act mean waiting time expression up to second order in T ,  

which yields exactly the same estimator as (31), but this 
estimator does not the mean waiting time expression ex- 
actly. Figure 3 compares our new estimator (32) and the 
estimator proposed in [2]. It shows that our new estimator 
is unbiased even at very high count rates. The error bars 
are not shown in the figure as they are smaller than the 
plotting symbols. When t is large, the standard deviation 
is very small when compared to the mean of Y ( t ) ,  thus 
these estimates have extremely small standard deviations. 
By solving (32) numerically, we obtain essentially perfect 
deadtime correction for a type III system. 

V. DISCUSSION 
We have analyzed the mean and variance of the 

recorded singles counts for two distinct models of 
deadtime. In both cases, the variance can be significantly 
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VI. APPENDIX A 
We derive the variance of Y ( t )  for deadtime model 11, 

the paralyzable model. We first derive p(0, s ) .  We con- 
sider two cases. 
CASE 1: 0 < s < r 

We pick 6 such that 0 < 6 < s < s + 6 < r. 
Two recorded events cannot correspond to photons that 
arrived within r of each other. Hence for 0 < s < T ,  

E[Y(O, S)Y(s ,  s + 6)] = 0, and by the definition given 
in (2): p(0, s) = 0. 
CASE 2: T < s < t 

Wepick6suchthat6< r a n d s + 6 <  L a n d 6 < s - r .  
For s > T ,  Y (0,6) and Y (s, s + 6) are statistically inde- 
pendent, since the event “there is an amval during (0, 61” 
is statistically independent from the event “there is an ar- 
rival during (s, s + SI”, because they are at least T apart in 
time. Hence by (23), 

E[Y(O,  ~ ) Y ( s ,  s + S)] = E ~ [ Y ( o ,  s) ]  = (33) 

A 

Fig. 3 20 realizations, with t = lOs, T = 2ps. 

less than the mean, indicating that the counting statistics 
are not Poisson in the presence of deadtime. Deadtime 
losses can be significant in practical SPECT and PET 
systems, particularly in fully 3D PET imaging and in 
SPECT transmission measurements with a scanning line 
source. The count rates for a detector block (PET) or 
detector zone (SPECT) can be significant enough to yield 
non-Poisson statistics for the total counts recorded by 
the block or zone. HoweveP, in the practical situations 
that we are aware of, the count rates for individual 
detector elements within the block or zone are usually 
not high enough to correspond to significant deadtime 
losses. Even though the variance of the counts recorded 
by a block can be significantly lower than the mean, the 
variance of the counts recorded by an individual detector 
element is nevertheless quite close to the mean and 
likely to be well approximated by a Poisson distribution. 
Furthermore, the correlation between individual detectors 
will be fairly small. Thus it appears that statistical image 
reconstruction based on Poisson models, while certainly 
not optimal, should be adequate in practice even under 
fairly large deadtime losses, provided the deadtime 
loss factor is included in the system matrix. We must 
add one caveat to this conclusion however. Although 
pairs of individual detectors have small correlation, the 
correlation coefficient between the sum of one group of 
detectors and the sum of all other detectors in a block may 
not be small in the presence of deadtime. The effect of 
such correlations on image reconstruction algorithms is 
unknown and may deserve further investigation. Another 
natural extension of this work would be to consider 
systems with random resolving times r. As long as the 
minimum resolving time is greater than zero, assumption 
(iv) would still hold and the derivations would be similar. 

3Due to space constraints, we omit detailed analysis and 
only present our conclusions. 

and 

Combining the above two cases and using (22) yields 

rt 

E[Y2(t)] = y t  + 2 ( t  - s) (Xe-xT)2ds  IT 
= + [ ( L  - r ) ( X e - q ] ’ .  ( 3 5 )  

Using Var[Y(t)] = E[Y2( t ) ]  - E2[Y(L)], with (25) 
and (35), and simplifying yields (26) .  
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