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Abstrad 
The diagnostic utility of whole-body PET is often limited 

by the high level of statistical noise in the images. An 
improvement in image quality can be obtained by 
incorporating correlated anatomical information during the 
reconstruction of the PET data. The combined PET/CT 
(SMART) scanner allows the acquisition of accurately aligned 
PET and CT whole-body data. We present results of 
incorporating aligned anatomical information from the CT 
during the reconstruction of 3D whole-body PET data. We use 
the FORE+PWLS method for the reconstruction and a label 
model to incorporate anatomical information via penalty 
weights. Since in practice mismatches between anatomical 
and functional data are unavoidable, the labels are “blurred” to 
reflect the uncertainty associated with the anatomical 
information. Results show the potential advantage of 
incorporating anatomical information by using a blurred labels 
with the penalty weights. 

I. INTRODUCTION 
The role of whole-body PET imaging in oncology research 

and patient care is clearly growing. The diagnostic utility of 
whole-body oncology, however, is often limited by the high 
level of statistical noise in the images. Several studies have 
shown advantages for using anatomical information to guide 
reconstruction of PET data [l]. For thorax or abdomen 
imaging, however, it is difficult to accurately align anatomical 
information with PET data. The SMART scanner [2], a 
combined 3D PETKT tomograph, avoids the alignment 
problem by acquiring both functional (PET) and anatomical 
(CT) data. This allows the use of accurately aligned 
anatomical information in the reconstruction of whole-body 
PET data to potentially reduce statistical noise and improve 
lesion detectability. 

The goal of this work was to investigate the potential gain 
in diagnostic utility by incorporating anatomical information 
derived from the CT images in the reconstruction of 3D whole- 
body PET data. The method we currently use to reduce 
statistical noise in the PET images is our proposed 
FORE+OSEM combination [3] where 3D PET data are 
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accurately rebinned to a set of stacked 2D sinograms by 
applying the Fourier rebinning technique (FORE) [4], 
followed by reconstruction with the accelerated 2D &- 
subsets EM reconstruction algorithm (OSEM) [5] .  To extend 
this FORE-rebinning methodology to include anatomical 
information, the approach we adopt here is to minimize a 
penalized weighted least-squares (PWLS) cost function given 
by [61, 

@(x) = C Ajixi - y j  07’ + ~ U ( X )  (1) 
( i  J 

where U(x) is a quadratic image roughness penalty function 
that is modified to incorporate the anatomical information. 
Here, x = {xi I i = 1,. . . , n} is a vector of the n voxel values of 
the image, y = { y j  I j = 1 ,..., m} are the m projection values, 
a= {Oj l j  = 1, ..., m} are the standard deviations for the 
projection data, A = (Aji} is the mxn system matrix such that 
the expected value for y j  is given by ZiAjxi and the parameter 
p controls the influence of the image roughness penalty term 
U(x).  As @(x) is a quadratic function it can be readily 
minimized by the SOR algorithm [6]. In our implementation 
the 3D PET data are first rebinned with FORE to a set of 
transaxial 2D sinograms to accelerate image reconstruction [7]. 

11. INCLUSION OF ANATOMICAL INFORMATION 
To include anatomical information we use a quadratic 

roughness penalty based on a 3D voxel neighborhood (N3,,) 
consisting of the 26 closest neighbors defined by, 

where dik is the Euclidean distance between pixels i and k, and 
the penalty weights CO, are derived from the anatomical data by 
using voxel labels [8]. This method associates two quantities 
with an image voxel: the estimated emission density and the 
class of material to which it belongs (e.g. lung, bone, or soft 
tissue). A straightforward use of the labels is to use binary 
penalty weights where O i k  is set to one if both pixels i and k 
belong to the same class and to zero otherwise. 

The use of binary penalty weights, however, may introduce 
unacceptable artifacts if there are mismatches between the 
anatomical and functional images. Fessler et al. [9] proposed a 
“blurred weight” method where the binary penalty weights im 
blurred with a kernel whose width is related to the uncertainty 
associated with the anatomical information. The advantage of 
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such a method is that it does not require a joint estimation of 
both the anatomical and functional information during the 
reconstruction to account for anatomical and functional 
mismatch. 

We have developed and implemented a 3D ‘blurred label’ 
method where 3D label maps l j  = {Zij I i = 1, ..., n;O 5 Zij 51) a ~ e  
defined for each class (or label) j of the rn classes of material. 
The maps are initialized with mutually exclusive binary values 
(only one label is associated to each voxel) according to the 
segmented CT image Each label map is then blurred with a 
3D Gaussian kernel. The penalty weights are then given by 
wik = XjlijZb, with the requirements that 0 I con I 1  and 
XjZij = 1, that is, Zij reflects the probability of voxel i 
belonging to tissue class (or label) j .  

Initial anatomical classification of the voxels can be 
obtained by segmenting the CT image using either 
thresholding or statistical methods. For the studies reported 
here, the voxel labeling was either predetermined or 
accomplished with simple thresholding. 

In this paper we use simulations to investigate the utility 
of including the CT anatomical information in equation 2 by 
using the three types of penalty weights: (1) no labels 
(Wik = l),  (2) binary labels ( O i k  = 0 or l), and (3) blurred 
labels ( 0 I Wik S 1). 

We expect some level of mismatch between the PET and 
CT images due to, for example, respiration or patient 
movement during the scan. We therefore examine the 
performance of the different penalty weights for three 
conditions: (1) perfect positional and functional alignment, (2) 
positional mismatch, and (3) functional mismatch. By 
functional alignment we mean that changes in the PET 
emission distribution are matched with corresponding changes 
in the anatomical image. The use of simulation studies is 
important, as it allows us to estimate the mean and variance 
images from multiple independent realizations. 

Functional mismatch has two variations. The first is 
where a change in the PET emission distribution is not 
matched with a corresponding change in the anatomical image. 
The second type of functional mismatch is the opposite 
situation where a uniform emission region has two or more 
different labeled sub-regions. In the limit of an isolated voxel 
having such a ‘false’ label, it is not regularized during the 
reconstruction process. For larger groups of voxels with a 
false label, the presence of statistical noise can lead to dramatic 
changes in the noise covariance structure, as we show below. 
Finally, in addition to the simulation studies, we also 
demonstrate the efficacy of the blurred labels method with 
experimental phantom data obtained from the SMART 
scanner. 

III. METHODS 

A. Simulation Studies 
The simulation studies use a non Monte Carlo technique 

that allows us to genemte multiple realizations of 3D 
sinogram data sets in a feasible computing time [7]. 

We first investigated the effect of accurate and mismatched 
labels in a noiseless simulation. The simulation was of a 

large uniform disk (30 pixel diam) with a smaller disk (2 pixel 
diam) in the center. The smaller disk had both functional and 
structural contrast. The 2D image was reconstructed with the 
following variations of the labels and penalty weights: (i) no 
labels, (ii) correct binary labels, (iii) correct blurred labels, (iv) 
shifted binary labels, and (v) shifted blurred labels. The use of 
false labels was reserved for the simulations that included 
statistical noise. 

A large uniform disk (30 cm diam) with six mtedded 
smaller disks of different sizes and contrast levels was the basis 
for 100 realizations with added statistical noise. Figure 1 
shows the original object and the corresponding labels. 

Figure 1. Emission distribution and label maps used for 
simulation studies. From left to right: emission distribution 
(showing contrast varies with diameter), original label map, 
shifted label map, and subtraction of original and shifted labels. 

The size of the contrast disks ranged from 1 to 6 cm in 
diameter and the contrast levels of the disks varied inversely 
with area, with the smallest disk having the maximum 
contrast level of 2.25 relative to the uniform disk. The 
statistical noise level was set to match that of the phantom 
experiment described below. The effects of randoms, scatter, 
and attenuation correction were included, with the attenuation 
coefficient of all objects set to that of water. 

The simulations studies were performed for three 
variations: (1) accurate alignment, (2) labels of the six contrast 
disks shifted by 5 mrn relative to the true source distribution 
(displacement shown in figure l), and (3) the emission source 
distribution set to a uniform background, but with the 
(unshifted) labels still included as ‘false’ labels. For each of 
the three label variations (accurate, shifted, and false), the 100 
realizations were reconstructed with five different types of 
penalty weights: (1) no labels, (2) binary labels, and (3-5) 
labels blurred with a Gaussian kernel of FWHM 0.8, 1.0, and 
1.5 pixels. Finally, the images were also reconstructed with a 
set of image smoothness parameters (p in equation 2) that, 
when used with PWLS, roughly matched the range of cutoff 
frequencies used with FBP in clinical imaging [7]. 

For each of the combinations of reconstruction parameters, 
pixel-wise mean and standad deviation images were calculated 
from the 100 realizations. Additionally, the mean bias and 
standard deviation of the region of interest (ROIs) was 
calculated for each of the 6 objects The location of the ROIs 
was the same for all three cases of accurate labels, shifted 
labels, and false labels. The mean bias and standard deviation 
were plotted for each object as a function of the smoothness 
parameter, p, and for each of the five types of penalty weights 
listed above. 

B. Experimental Studies 
To evaluate the efficacy of the blurred label method in 

practice, we acquired CT and [18F]-water PET scans of an 
elliptical torso phantom in the SMART scanner. The 
phantom had a series of hot and cold contrast spheres, each of 
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which also contained dilute iodine-based CT contrast agent to 
allow for easy anatomical classification. The volume of the 
spheres ranged from 1 to 15 ml. The CT scan was acquired in 
spiral mode, with an axial motion of 3 mm per scanner 
rotation, and the images were reconstructed with a 3.4 mm 
spacing. The PET scan collected 2x10' coincidences with a 
deadtime of 5% and random coincidence fraction of 20%. 

20 40 
(i) No labels 

20 40 20 40. 
(ii) Binary labels (iii) Blurred labels 

20 40 20 40 
(iv) Shifted binaly labels (v) Shifted blurred labels 

Figure 2. The noiseless test object and horizontal profiles 
through the reconstructed images using PWLS with five different 
combinations of labels and penalty terms: (i) no labels, (ii) 
correct labels with binary weights, (iii) correct labels with blurred 
weights, (iv) shifted labels with binary weights, and (v) shifted 
labels with blurred weights. The profile through the original 
object is given by the dashed line. 

Iv. RESULTS 

A. Simulation Studies 
Figure 2 shows the noiseless 2D test object and the 

horizontal profiles through the reconstructed images for the 
five different combinations of labels and reconstruction 
methods described above in section III.A.l. Two of the 
realizations reconstructed with the same smoothness 
papmeter' p are shown in figure 3 for the cases of: no labels, 
binary labels, and blurred labels (FWHh4 of 1.0 pixels). The 
corresponding mean and standard deviation images are shown 
in figure 4 for each of the three label combinations. The 
individual realizations and the mean images shown below ate 
scaled to the same display range as the original object shown 
in figure 1. 

Figure 3. Two realizations from simulations with accurate 
labels. The top and bottom rows are independent realizations, 
while the columns are, from left to right: no labels, binary labels, 
and blurred labels. 

The bias vs. standard deviation curves for all objects varied 
gradually according to size, and representative results ate 
shown in figure 5 for the second to smallest and second to 
largest contrast objects (top two objects in figure 1 (left)). The 
effect of false labels is demonstrated in the two realizations 
shown in figure 6 and the mean and standard deviation images 
shown in figure 7. 

Figure 4. Mean and standard deviation images of the 100 
realizations of simulations with accurate labels. Top row: mean 
images. Bottom row: standard deviation images. The columns 
correspond to figure 3 and are, from left to right: no labels, binary 
labels, and blurred labels. 

' The same smoothness parameter p is used for all images 
displayed in this section. 
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Figure 5. Bias (bi) vs. standard deviation (s i )  graphs for both 
accurate and shifted labels for the 2nd smallest (i=2) and 2nd 
largest (i=5) contrast objects as a function of regularization 
parameter and type of penalty weight. 

-- a- -- 

Figure 6. Effect of false labels. Two realizations from 
simulations with false labels and a uniform emission distribution. 
The top and bottom rows are independent realizations, while the 
columns are, from left to right: no labels, binary labels, and 
blurred labels. 

Figure 7. Mean and standard deviation images of the 100 
realizations of simulations with false labels. Top row: mean 
images. Bottom row: standard deviation images. The columns 
correspond to figure 9 and are, from left to right: no labels, binary 
labels, and blurred labels. 

(JT Fused PEZKT 
Figure 8. Transverse and frontal sections through the (3 and 

fused P I T / a  volume images of the torso phantom, showing the 
location of the seven contrast spheres (one is in the right lung 
region). The object at the top of the ff transverse 'section is a 
small post taped to the inside of the phantom. 

B. EXPERIMENTAL STUDIES 
The alignment accuracy is illustrated by figure 8, which 

shows transverse and frontal sections through the reconstructed 
CT volume image and the fused PETKT volume image. 
Transverse sections through the reconstructed volume PET 
images are shown in figure 9. Representative images are 
shown for penalty weights based on the three cases of no 
labels, binary labels, and blurred labels. 

V. DISCUSSION AND CONCLUSIONS 
The potential advantages and problems of including 

anatomical information are apparent in figure 2. These results 
are only meant to be illustrative, since the reduction of 
statistical noise is of equal importance. The use of binary 
labels is problematic in the case of a functional mismatch. 
The use of blurred labels greatly reduced, but did not eliminate, 
the variance in the regions of the false labels. Not 
surprisingly, the variance images in the cases of accurate and 
false labels were very similar. 
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No labels 

Binary labels Blurred labels 
Figure 9. Transverse sections through reconstructed volume 

images of the measured 3D phantom showing four hot contrast 
objects and three cold contrast objects. 

In the case where the labels were shifted by 5 mm (one 
pixel) from the true emission contrast regions, there was a 
reduction in image contrast, as shown by comparing the mean 
images in figures 4 and 6. In addition there was a shift in the 
apparent centroid of the objects that corresponded to the shift 
in the label locations, as shown in figure 7. There was also a 
significant reduction in the ROI variance. The net effect is 
shown in figure 8 for two of the objects, which indicates that a 
5 mm shift is sufficient to remove any advantage of using 
anatomical information. This amount of label misalignment, 
however, does not necessarily degrade the noise-bias 
performance relative to PWLS without anatomical 
information. 

For the experimental studies the use of both binary and 
blurred labels leads to improved contrast for the hot and cold 
contrast objects of all sizes. It should be noted, however, that 
both the experimental and simulated phantoms are piecewise 
continuous objects, and are ideally suited for this type of 
reconstruction method. One drawback of this method is the 
possibility of over-smoothing images, which may lead to 
increased false positive and/or false negative detection rates. 

In summary, the SMART tomograph, by acquiring aligned 
PET and CT data, allows the inclusion of anatomical 
information to guide the reconstruction of whole-body PET 
data. In the case of accurate PET-CT alignment, the use of 
blurred anatomical labels improves the bias-variance tradeoff 
relative to not using labels. In the case of a PET-CT 
functional mismatch, blurred labels can reduce the substantial 
variance introduced by binary penalty weights. Further work 
is needed, however, to determine the net impact of this 
approach on diagnostic utility. 
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