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ABSTRACT

As radiotherapy has become increasingly conformal, ge-
ometric uncertainties caused by breathing and organ motion
have become an important issue. Accurate motion estimates
may lead to improved treatment planning and dose calcula-
tion in radiation therapy. However, respiratory motion is
difficult to study by conventional X-ray CT imaging since
object motion causes inconsistent projection views leading
to artifacts in reconstructed images.

We propose to estimate the parameters of a nonrigid mo-
tion model from a set of projection views of the thorax that
are acquired using a slowly rotating cone-beam CT scanner,
such as a radiotherapy simulator. We use a conventionally
reconstructed 3D thorax image, acquired by breath-hold CT,
as a reference volume. We represent respiratory motion us-
ing a flexible parametric nonrigid motion model based on
B-splines. The motion parameters are estimated by opti-
mizing a regularized cost function that includes the squared
error between the measured projection views and the re-
projections of the deformed reference image. Preliminary
2D simulation results show that there is good agreement be-
tween the estimated motion and the true motion.

1. INTRODUCTION

Extensive research has been performed on estimating car-
diac motion [1], aiding the diagnosis of cardiac function.
However, there has been less work on building patient spe-
cific 4D respiratory motion models. Understanding thorax
motion, especially the motion of tumors inside lungs, is
important for radiation treatment planning. For example,
knowledge of the space that tumors reach during a respi-
ration cycle may guide delivery of the X-ray dose to focus
more on tumors while sparing the normal adjacent tissue.

We propose a method to estimate respiratory motion
from two sets of measurements. One set is a sequence of
projection views acquired from a slowly rotating cone-beam
CT scanner, such as the type of imager that could be in-
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corporated into a radiotherapy system. Usually such sys-
tems take about one minute per rotation. During such a
long acquisition period, patients would breathe freely, so
the measured projection views capture information about
respiratory motion. We also assume that we have available
a motion-free reference volume, such as the reconstructed
thorax images acquired by conventional breath-hold X-ray
CT on a modern fast scanner. Our approach involves de-
forming this reference image according to the estimated mo-
tion parameters and comparing its projections to the corre-
sponding measured projection views.

As is well known, estimation is an inverse procedure
aimed at recovering unknown parameters from available mea-
surements. Generally, for a nonlinear estimation problem,
there are three main tasks: define a suitable system model,
choose a good cost function and select appropriate opti-
mization algorithms. In our estimation problem, motion
is defined by a parametric model based on B-splines. The
cost function is the penalized least square error. The opti-
mization algorithm we use currently is the gradient descent
method.

Instead of using projections, one may think that a fea-
sible alternative would be to estimate respiratory motion by
registering a set of thorax CTs taken under different breath-
hold conditions. There are at least two shortcomings to this
idea. First, unnaturally controlled breathhold states tend to
be discontinuous, and some people (like lung cancer pa-
tients) cannot control their respiration well. Second, pa-
tients might be required to be scanned dozens of times all at
once to generate enough views for each phase in the respira-
tion cycle, and this long-time exposure to X-ray is undesir-
able. In contrast, in our method, patients breathe naturally
and are only scanned for a few rotations, which overcomes
those disadvantages.

The paper is organized as follows. First the theory is
described, including the temporal motion model, similarity
measure and optimization method. Then the preliminary
simulation results are presented, followed by our conclusion
and proposals for future work.
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2. THEORY

2.1. Temporal Motion Model

Let {ft1 , · · · , ftm
, · · · , ftM

} denote the M -frame moving
image sequence, where ftm

is the image at time tm. As-
suming these images are all a deformation of the reference
image fr, then there exists a correspondence between ftm

and fr:

ftm
(x, y) = (Wθm

fr)(x, y)

= fr(Tx(x, y, θ(x)
m ), Ty(x, y, θ(y)

m )), (1)

where Wθm
is the warping operator controlled by parameter

θm, Tx(x, y, θ
(x)
m ) and Ty(x, y, θ

(y)
m ) describe the deforma-

tion functions along x direction and y direction respectively,
and vector θm is the parameter of the deformation functions.
As described in [2], a smooth nonrigid spatial deformation
can be modeled using spline functions as follows:
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where β(·) is the spline function of degree n, θ(x) and θ(y)

are spline coefficients, and ∆x and ∆y are constant scalars
that control the width of the basis functions. We chose B-
spline functions because of its advantages of good accuracy
and analytical derivatives [3], but the theory generalizes.

Since the deformation of tissue over time should also
be continuous, we adopt the following parametric temporal
motion model:
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where the temporal basis function b(t) can take many forms,
such as splines. We use the rectangular function currently
for simplicity.

2.2. Measurement

As described before, the motion estimates are based on two
set of measurements. One set is a motionless thorax image
fr, reconstructed from a conventional breath-hold CT scan.
This image serves as a reference image and all the deforma-
tions are applied to this image. The other set is a sequence
of projection views from a slowly rotating scanner:

{pφ1
, · · · , pφm

, · · · , pφM
},

where φi is the projection angle, and M is the total number
of projections.

Let Aφm
denote the projection operator at angle φm,

then

pφm
= Aφm

ftm
+ εm

= Aφm
Wθm

fr + εm,

where εm represents additive noise for the mth projection
view. Based on the motion model defined in the previous
section, the task of the motion estimation is to find the de-
formation parameters θ = {θ1, · · · , θm, · · · , θM} using fr

from {pφm
}. This is not a conventional image reconstruc-

tion problem, but is a kind of tomographic image registra-
tion problem.

2.3. Similarity Measure

The goal of our motion estimation is to find the deformation
parameters θ that make the calculated projections based on
the deformed image fr best match the measured projections.
For simplicity, we focus here on the least-squared error met-
ric:

L(θ) =
1

2

M
∑

m=1

‖pφm
−Aφm

Wθm
fr‖

2
,

where Wθm
fr is the warped fr as shown in (1). The princi-

ples generalize to more complicated statistical models.
Depending on how many temporal motion parameters

are used, for stable estimation it may necessary to include
temporal regularization. We compute the estimate θ̂ by min-
imizing the following regularized least squares cost func-
tion:

θ̂ = arg min
θ

ψ(θ)

ψ(θ) = L(θ) + λR(θ) (2)

where R(θ) denotes the regularization function, and the pa-
rameter λ controls the trade-off between the similarity term
and the regularity term.

Assuming that the motion is smooth temporally, we can
regularize by using a temporal roughness penalty of the fol-
lowing form:

R(θ) = ‖Cθ‖
2
,

where C is a differencing matrix.
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2.4. Optimization

For simplicity, we currently use the gradient descent method
to minimize the cost function ψ as follows:

θ
n+1 = θ

n − α∇ψ(θn),

where α is the step size, and ∇ψ(θn) is the gradient of ψ(θ)
evaluated at θ

n. Because of the linearity of the projection
operator and the closed form of the B-spline functions, the
gradients can be calculated analytically using the chain rule.
The expressions are omitted due to space constraints.

A faster convergent algorithm, the preconditioned gra-
dient descent (PGD) method, can also be used as the opti-
mization algorithm, having the following iterative form:

θ
n+1 = θ

n − αP∇ψ(θn),

where P is a preconditioning matrix. The ideal precondi-
tioning matrix P0 would satisfy P0H = I , where H is the
Hessian of ψ(θ), and I is the identity matrix. Since it is dif-
ficult to compute H−1, we used the diagonal preconditioner
P = (diag{H})−1 to approximate H−1.

3. SIMULATION RESULTS

Fig. 1 shows the reference image fr, a 128 × 128 thorax
phantom, used in our simulation [4]. We simulated a parallel-
beam slow scanner to generate the data set {pφm

}m=M
m=1 ,

shown in Fig. 2, consisting of M = 15 projections at an-
gles uniformly spaced over 180◦. Each projection view had
160 radial samples. During the scanning process, the tho-
rax phantom deforms according to a synthetic motion rep-
resented by the temporal motion model described in Section
2.1. Here the deformation of each frame is defined by cu-
bic splines with a control grid of 2× 2 points, meaning that
there are 4 × 2 parameters for each frame. Since there are
15 frames, there are 120 parameters in this motion model.
In this case there is no motion model mismatch, allowing
quantitative comparisons with ground truth. Future studies
will include more realistic motion models including motion
model mismatch.

Fig. 3, Fig. 4, and Fig. 5 display the estimation results.
We initialized θ

0 by random deviations from the true val-
ues. The deviations were randomly distributed between ±8
pixels (1 pixel corresponds to about 3mm). As shown in
Fig. 4, the estimated values of most parameters are fairly
close to their true values. We also examine two points from
the image (marked in Fig. 1) and compared the estimated
displacements with their true vlues. The comparison shown
in Fig. 5 illustrates that there is good agreement between the
true movement and the movement found by the algorithm.
The largest error is around 1 pixel. It is necessary to investi-
gate this issue further to ascertain whether the algorithm can
be improved, and if so, how to achieve the improvement.

4. CONCLUSION

In this paper, we proposed a nonrigid motion estimation
method that uses a reference image and a sequence of pro-
jection views from a slowly rotating scanner. Cubic B-
spline functions were applied as the basis of our paramet-
ric temporal motion model. Preliminary results presented
in Section 3 illustrate the potential of this method. More
simulation work will be undertaken in the near future, in-
cluding, for example, experimenting on different time basis
functions and penalty functions, testing the performance of
the algorithm under noisy situations, and extending the cur-
rent 2D implementation to the 3D case. Finally, the algo-
rithm will be applied to real lung data.
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Fig. 1. Image f , marked points are (100,90) and (32,64)
respectively
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Fig. 3. Cost function
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Fig. 4. Comparison of the the estimated motion parameters
with their true values
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Fig. 5. Comparison of the true movement and the estimated
movement of point(100,90),(32,64) as marked in Fig. 1
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