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Abstract— Many conventional PET emission scans are cor-
rected for accidental coincidence (AC) events, or randoms, by
real-time subtraction of delayed-window coincidences, leaving
only the randoms-precorrected data available for image re-
construction. The real-time precorrection compensates in mean
for AC events but destroys Poisson statistics. Since the exact
log-likelihood for randoms-precorrected data is inconvenient to
maximize, practical approximations are desirable for statistical
image reconstruction. Conventional approximations involve set-
ting negative sinogram values to zero, which can induce positive
systematic biases, particularly for scans with low counts per ray.
We propose new likelihood approximations that allow negative
sinogram values without requiring zero-thresholding. We also
develop monotonic algorithms for the new models by using
“optimization transfer” principles. Simulation results show that
our new model, SP−, is free of systematic bias yet keeps low
variance. Despite its simpler implementation, the new model
performs comparably to the saddle-point (SD) model which has
previously shown the best performance (as to systematic bias and
variance) in randoms-precorrected PET emission reconstruction.

I. INTRODUCTION

Accidental coincidence (AC) events, also known as ran-
doms, are a primary source of background noise in positron
emission tomography (PET) [1]. PET systems usually detect
coincidence events during “prompt” windows and “delayed”
windows [2], and in many conventional PET scans, the prompt
data are precorrected for the effects of AC events by real-time
subtraction of delayed coincidences [1]. The subtraction com-
pensates for the AC events in terms of the mean, but increases
the variance of the data and destroys Poisson statistics [3], [4].

It would be preferable to record both prompt and randoms
sinograms so that one could estimate the mean of AC events
from the randoms sinogram [4]–[7] and incorporate the es-
timates into an appropriate model for the prompt measure-
ment [4], [6], [8]. However, because of data storage limitations
and historical momentum, many conventional PET centers
store the randoms-precorrected data only [2]. We focus on the
problem of reconstructing statistically emission images based
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on only randoms-precorrected data without access to separate
prompt and randoms sinograms.

We have previously developed shifted Poisson (SP) and
saddle-point (SD) models to approximate the log-likelihood of
randoms-precorrected data [2], [3], [9]. We have also applied
those models to emission image reconstruction [10]; the SD
and SP models led to lower variance than the conventional
ordinary Poisson (OP) model and the nonstatistical filtered
backprojection (FBP) for high photon counts per ray whereas
all the methods other than SD were of positive systematic bias
for low counts per ray.

The fact that the positive systematic bias is caused by zero-
ing negative sinogram values [10] motivates us to propose new
models, SP− and OP−, by allowing negative values. Although
allowing negative values can lead to nonconcave optimization,
using optimization transfer principles, we develop for the
new models monotonic reconstruction algorithms ascending to
local maximizers of the objective function. Simulation results
show that the new SP− model is comparable, in spite of its
simpler implementation, to SD which has previously shown
the best performance as to systematic bias and variance.

II. PROBLEM

Let Y = [Y1 . . . YN ]′ denote the precorrected measurements
for PET emission scans, where ′ denotes vector transpose. The
precorrected measurement for the ith bin is

Yi = Y prompt
i − Y delay

i (1)

where Y prompt
i and Y delay

i are the number of coincidences
detected within the prompt and delayed windows, respectively.
The prompts and delays can be modeled reasonably as inde-
pendent Poisson random variables as follows:

Y prompt
i ∼ Poisson




p∑
j=1

aijλ
true
j + ri + si


 (2)

Y delay
i ∼ Poisson{ri} (3)

where aij ≥ 0 is the entry in the system matrix A; λtrue
j ≥ 0

is the activity at the jth voxel; and ri > 0 and si ≥ 0 are
the means of AC events and scatters, respectively. We assume
that r = [r1 . . . rN ]′ and s = [s1 . . . sN ]′ are known.

Let y = [y1 . . . yN ]′ be an observed realization of Y . Since
the measurements are independent, one can obtain the exact
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log-likelihood, ignoring constants independent of λ, as in [3]:

L(λ;Y ) =
N∑

i=1

hEX
i (li(λ)) (4)

with

li(λ) =
p∑

j=1

aijλj (5)

and

hEX
i (l) = log


 ∞∑

m=[−yi]+

(l + ri + si)yi+m

(yi + m)!
rm
i

m!


−(l+2ri+si)

(6)
where [x]+ = max{x, 0}.

For penalized-likelihood (PL) reconstruction, one must find
a maximizer of the objective function

Φ(λ;Y ) = L(λ;Y ) − R(λ) (7)

over a nonnegativity constraint on the image λ, where R is
a regularization term. The exact log-likelihood function (4)
is inconvenient to maximize, and the next section describes
practical approximations to the exact log-likelihood.

III. APPROXIMATIONS TO EXACT LOG-LIKELIHOOD

A. Ordinary Poisson (OP) Approximation

A simple approach that does not need an estimate of AC
events r is to approximate the measurements as Poisson
random variables as follows:

Yi

OP
approx.∼ Poisson




p∑
j=1

aijλ
true
j + si


 . (8)

This model matches the first moment of Yi only. The log-
likelihood LOP−

corresponding to this “OP−” approximation
is of the form (4) with

hOP−
i (l) = yi log(l + si) − (l + si). (9)

We assume si > 0 in (9); otherwise, negative values yi would
cause reconstruction algorithms to diverge since hOP−

i (0) =
+∞ for yi < 0 and si = 0. To avoid such divergence, past
studies of the OP approach [10] for emission scans have used
zero-thresholded values as follows:

hOP+

i (l) = [yi]+ log(l + si) − (l + si), (10)

called the “OP+” approximation in this paper. (Note the
slightly different use of terms from [10].) The zero-
thresholding is natural in view of the nonnegative nature of
Poisson random variables in (8). However, zero-thresholding
destroys the first moment matching in (8), and the increase in
the mean value of the precorrected data causes the estimators
to have a positive systematic bias.

B. Shifted Poisson (SP) Approximation

An improved approximation is to match both the first and
second moments as follows:

Yi + 2ri

SP
approx.∼ Poisson




p∑
j=1

aijλ
true
j + si + 2ri


 ,

where in practice one must use an estimate r̂i. This “SP−”
approximation leads to a log-likelihood function LSP−

of the
form (4) with

hSP−
i (l) = (yi + 2ri) log(l + si + 2ri)− (l + si + 2ri). (11)

Similarly, its conventional zero-thresholded version LSP+

uses [10]

hSP+

i (l) = [yi +2ri]+ log(l + si +2ri)− (l + si +2ri). (12)

The zero-thresholding again causes positive systematic bias,
albeit generally less than that of OP+.

C. Saddle-Point (SD) Approximation

Another approach is to make a second order Taylor series
approximation in the z-transform domain to the probability
generating function and then carry out the inverse trans-
form [11], [12]. The log-likelihood LSD corresponding to this
SD approximation [10] is of the form (4) with

hSD
i (l) = yi log

(
l + si + ri

zi + ui(l)

)
− l +ui(l)− 1

2
log ui(l) (13)

where

zi =
{

yi + 1, for yi ≥ 0
yi − 1, for yi < 0

and

ui(l) =
√

z2
i + 4(l + ri + si)ri.

The SD model for emission image reconstruction is free of
systematic bias and leads to lower variance than OP+ [10].

D. Log-likelihood for Prompt Data

If one has access to the prompt data Y prompt, then one can
use the log-likelihood for the prompt data in the form (4) with

hPR
i (l) = yprompt

i log(l + si + ri) − (l + si + ri).

We include this PR model for comparing the bias and variance
of the methods for randoms-precorrected data in Section V.
The PR model serves as a baseline for comparing algorithms.
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IV. RECONSTRUCTION ALGORITHMS

One needs an algorithm to maximize the corresponding
objective function for maximum likelihood or penalized-
likelihood estimation. It is straightforward to use globally
convergent (and monotonic) algorithms such as separable
paraboloidal surrogates (SPS) [13] and ML-EM [14] for PR,
OP+, SP+ and SD, all of which have concave log-likelihoods
(See [15, Ch. 5] for algorithms for SD). However, the new
OP− and SP− models can have nonconcave log-likelihood
functions when negative sinogram values are present. The
algorithms need some modifications to ensure monotonicity
for the nonconcave case as well.

A large class of monotonic iterative algorithms (including
SPS and ML-EM) are based on “optimization transfer” prin-
ciples: at each iteration we choose a surrogate function that is
easier to maximize than the original objective function, and
then maximize that surrogate. To ensure monotonicity, the
surrogate function is chosen so that increasing the surrogate
guarantees the increase of the original objective function.

The idea for extending the algorithms to allow negative
values is to choose a linear surrogate when a marginal log-
likelihood is convex. That is, for OP−, if yi < 0, a tangent
line to hOP−

i at a current iterate lni in projection domain,

qOP−
i (l; lni ) = ḣOP−

i (lni )(l − lni ) + hOP−
i (lni ), (14)

is a proper surrogate for hOP−
i in light of [16, (7)] since qOP−

i

lies below for all l ≥ 0 due to convexity of hOP−
i . In other

words, if qOP−
i (l; lni ) ≥ qOP−

i (lni ; lni ), then hOP−
i (l; lni ) ≥

hOP−
i (lni ; lni ). The same principle applies to SP− when yi +

2ri < 0.
We derive modified SPS applicable to OP− and SP−, using

a linear surrogate (14) when needed (See [17] for derivation
of modified ML-EM). We consider the PL objective function
Φ in (7) with a quadratic penalty for simplicity:

R(λ) =
β

2

p∑
j=1

∑
k∈Nj

ωjk
(λj − λk)2

2
(15)

where β ≥ 0 is a regularization parameter that controls
the smoothness of the reconstructed image, Nj denotes the
neighborhood of the jth pixel, and ωjk is a weighting fac-
tor. A monotonic SPS for OP− and SP− is readily derived
following [13] with (14). The resulting algorithm differs only
slightly from the ordinary SPS algorithm in [13], and uses the
following iteration:

λn+1
j =

[
λn

j +
1

dSPS
j (λn)

∂Φ(λn)
∂λj

]
+

(16)

with

dSPS
j (λ) =

N∑
i=1

aijaici(li(λ)) + 2β
∑

k∈Nj

ωjk (17)

where ai =
∑p

j=1 aij and

ci(l) =




2[hi(l) − hi(0) − lḣi(l)]/l2, l > 0, xi > 0
−ḧi(0), l = 0, xi > 0
0, xi ≤ 0

(18)
in which hi represents hOP−

i for OP− and hSP−
i for SP−, and

we define

xi
�
=

{
yi, for OP−

yi + 2ri, for SP−.
(19)

The only difference from the ordinary SPS method (using
optimum curvatures) in [13] is to set ci to zero for xi ≤ 0 in
(18). Nonquadratic penalties are included easily [13].

V. SIMULATIONS

A. Methods

To compare the bias and variance properties of the esti-
mators (OP−, OP+, SP−, SP+ and SD), we simulated a 2D
PET emission scans. The PR model was also included for a
comparison purpose since in this simulation we had access to
Y prompt

i and Y delay
i separately.

The synthetic emission phantom shown in Fig. 1 was used;
its warm background, left cold disc, and right hot disc had
relative emission activities of 2, 0.5, and 4, respectively. The
sinograms had 192 radial bins and 120 angles uniformly sam-
pled over 180 degrees. The system matrix was generated using
ASPIRE [18]; the system geometry was approximated with 3
mm wide strip integrals and 3 mm ray spacing. We simulated
nonuniform detector efficiencies using pseudo-random log-
normal variates with standard deviation of 0.3. Attenuation
was not considered in this simulation. The reconstructed
images were 64 by 32 with 9 mm pixels. The known ri and si

factors corresponded to a uniform field of 60% randoms and
10% scatters, respectively.

The specific aim of the simulation was to compare bias
for low counts and variance for high counts. We performed
two studies with 2K and 2M total counts. We generated
500 realizations of pseudo-random emission measurements
according to (1) with (2) and (3). For each realization, images
were reconstructed using 100 iterations of the SPS method for
2K counts, and using 40 iterations of the SPS method after
10 iterations of ordered subsets SPS (with 8 subsets) [13]
for 2M counts. The FBP reconstruction for each realization
served as an initial image for the iterations. For initial FBP
reconstructions, a Hanning filter was used with such a cut-off
frequency that their local impulse responses were of 3 pixels
full-width half-maximum (FWHM).

For regularization, we used a second-order quadratic
penalty. It is important to match the spatial resolution in recon-
structed images for a fair comparison of different estimators.
We used a hybrid technique [19] consisting of two steps: 1) for
each method, we adjusted a global regularization parameter β
so that a local impulse response at the center pixel was of
1.5 pixels FWHM, and then performed PL reconstructions;
2) we applied a 2D Gaussian post-smoothing filter to the
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PL reconstructions so that the overall local impulse response
(at the center pixel), which is the convolution of the post-
smoothing filter and the original local impulse response (of
1.5 pixels FWHM), achieved a target resolution of 3 pixels
FWHM.

This technique enables us to obtain reconstructions with var-
ious target resolutions by simply changing the post-smoothing
filter. As the post-smoothing filter becomes wider (higher
FWHM), the overall resolution becomes more uniform spa-
tially since post-smoothing dominates the overall response.
To check the spatial uniformity, the overall resolutions at
pixels undersampled by a factor of 3 were investigated and
it was found that, except the 2 pixel wide strip along the
phantom boundary, each pixel achieved the target resolution
(3 pixels FWHM) within 5% errors for all estimators—
reasonably uniform resolution. The local impulse responses
of each estimator were computed using 2D FFT by assuming
local shift-invariance [20].

B. Results

Fig. 1 shows the profiles through the sample mean images
of different estimators for 2K counts—very low counts. Both
OP+ and SP+ showed positive systematic bias whereas other
methods (OP−, SP−, SD, and PR) seemed reasonably free
of such a bias. However, some positive bias in the cold spot
(pixels 12–25) is noticeable even for OP−, SP−, SD and PR.
This bias is due to the image-domain nonnegativity constraint
rather than to zero-thresholding in sinogram (see the large
variances of the estimators in Fig. 2). For OP+ and SP+, the
positive bias in the cold region can be attributed to both zero-
thresholding and image-domain nonnegativity constraint. Also,
note the distinguishably large positive bias of OP+ and SP+

near the phantom boundary; the reason for this is that the rays
passing the boundary region tend to have lower counts [17].
Overall the systematic bias of OP+ was slightly larger than
that of SP+.

In Fig. 1, it is also noticeable that FBP shows huge positive
bias. This is caused by the large variance of FBP with the
image-domain nonnegativity constraint (see Fig. 2).

Fig. 3 shows the profiles through the sample mean images
of different estimators for 2M counts—high counts. All of
the methods are seen to be free of systematic biases. Fig. 4
shows profiles through the sample standard deviation images.
FBP again showed the highest standard deviation and PR
showed the lowest as expected. SP− and SD showed similar
performance, and OP− led to higher standard deviation than
both of them. To make a further comparison, we plotted
histograms of the ratio of the standard deviation of different
methods to the standard deviation of PR in Fig. 5. It also
supports the claim that both SP− and SD lead to less variance
than OP− (and FBP).

See [17] for analysis, corroborated by these experimental re-
sults, of positive systematic bias (caused by zero-thresholding)
and asymptotic variance.

VI. CONCLUSIONS

We proposed new log-likelihood approximations (SP− and
OP−) for randoms-precorrected PET emission image recon-
struction and also developed algorithms (SPS) for the new
models. The new methods are free of positive systematic biases
that degrades SP+ and OP+ images. Our new models seem
particularly promising for fully 3D PET emission scans where
AC rates are high and photon counts per ray can be low,
essentially for newer scanners with small crystals.

The new SP− model yields less variance (than OP− and
FBP). Its performance is comparable to SD as to systematic
bias and variance; yet its implementation is simpler.

We recommend the PR method if the prompt and the ran-
doms data are accessible separately; however, if only randoms-
precorrected data are available, the new SP− method is our
recommended method.
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