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Statistical Image Reconstruction for Polyenergetic
X-Ray Computed Tomography

Idris A. Elbakri* and Jeffrey A. Fessler, Senior Member, IEEE

Abstract—This paper describes a statistical image reconstruc-
tion method for X-ray computed tomography (CT) that is based on
a physical model that accounts for the polyenergetic X-ray source
spectrum and the measurement nonlinearities caused by energy-
dependent attenuation. We assume that the object consists of a
given number of nonoverlapping materials, such as soft tissue and
bone. The attenuation coefficient of each voxel is the product of
its unknown density and a known energy-dependent mass attenu-
ation coefficient. We formulate a penalized-likelihood function for
this polyenergetic model and develop an ordered-subsets iterative
algorithm for estimating the unknown densities in each voxel. The
algorithm monotonically decreases the cost function at each iter-
ation when one subset is used. Applying this method to simulated
X-ray CT measurements of objects containing both bone and soft
tissue yields images with significantly reduced beam hardening ar-
tifacts.

Index Terms—Beam hardening, penalized likelihood, statistical
reconstruction, X-ray CT.

I. INTRODUCTION

X -RAY computed tomography (CT) provides images of ob-
ject attenuation characteristics. CT scanners record “pro-

jection” measurements of the transmission of X-ray photons
through an object at different angles.

The linear attenuation coefficient characterizes
the overall attenuation property of an object. It depends on the
spatial coordinates and the beam energy, and has
units of inverse distance. For a rayof infinitesimal width, the
projection measurement recorded by theth detector would
ideally be

(1)

The integral in the exponent is taken over the lineand
incorporates the energy dependence of both the incident ray
source spectrum and the detector sensitivity. The goal of any CT
algorithm is to reconstruct the attenuation mapfrom the set
of measured projection data , where is the number
of rays. In reality, the measurements suffer from background
events such as scatter and from noise. Most reconstruction
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methods ignore the polyenergetic nature of (1). This paper
develops a statistical reconstruction method based on (1) [1].

The conventional method for reconstruction from projections
is filtered back projection (FBP), which is used widely in both
X-ray CT and in emission tomography modalities (PET and
SPECT). FBP is based on the Fourier Slice Theorem and can
be implemented with fast Fourier transform. FBP is, therefore,
fast and reliable. However, the technology progress toward non-
radon scanning geometries, such as cone-beam and multislice
helical CT, is increasingly challenging the capabilities of FBP.
Statistical methods naturally address the shortcomings of FBP,
and may become viable alternatives.

Statistical techniques have several attractive features [2]–[4].
They statistically model the data noise, offering the potential
for better bias-variance performance. They can also model such
phenomena as scatter and energy dependence leading to more
accurate and artifact-free reconstruction. Statistical methods
also easily incorporate the system geometry, detector response,
object constraints and any prior knowledge. They are well
suited for arbitrary geometries and situations with truncated
data. Their main drawback (when compared to FBP) is longer
computation times. For clinical CT images with typical sizes
of 512 512 pixels or larger, conventional statistical methods
require prohibitively long computation times which hinder
their use. In this paper, we apply ordered subsets to accelerate
the algorithms [3], [5], [6].

Statistical techniques are more widely used for PET and
SPECT imaging than X-ray CT. Contributing to this success
is the fact that the ML expectation-maximization (ML-EM)
algorithm has a closed-form expression for the emission case
[7]. Also, PET and SPECT typically have low counts. The
emission modalities have image sizes and resolution require-
ments such that the relatively longer computational time of
statistical methods is fairly easily surmounted.

Statistical methods have also found their way into transmis-
sion tomography applications. One example is attenuation map
reconstruction from monoenergetic, radioisotope-based trans-
mission scans for attenuation correction of emission images [5],
[8]. Statistical reconstruction for X-ray CT was shown to outper-
form FBP in metal artifact reduction [9], [10], in limited-angle
tomography and to have lower bias-noise curves [12].

A number of X-ray CT statistical reconstruction techniques
employ the EM algorithm [13]. The transmission EM algorithm
does not have a closed form, forcing the use of mathematical
approximations [7], [14], [15]. On occasion the emission EM
algorithm has been used to reconstruct log-processed transmis-
sion data [10], [11]. This approach uses a model that mismatches
the data and, therefore, leads to suboptimal results [5]. Other ap-
proaches include using coordinate descent [16] or Gauss–Seidel

0278-0062/02$17.00 © 2002 IEEE



90 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 2, FEBRUARY 2002

[17] algorithms to maximize a likelihood function or an approx-
imation thereof.

Nearly all prior statistical X-ray CT reconstruction algo-
rithms assume (either implicitly or explicitly [15]) mono-
energetic X-ray beams and, thus, ignore the issue of beam
hardening artifacts. That statistical methods can correct for
beam hardening was anticipated early on [14], but little work
appeared in this area.

Using monoenergetic photon sources would eliminate beam
hardening artifacts but is impractical for diagnostic CT because
of signal-to-noise ratio (SNR) considerations. Beam hardening
correction methods are, therefore, necessary for reconstructing
artifact-free attenuation coefficient images from polyenergetic
measurements.

Many beam hardening correction methods are based on
classifying the object materials into two categories: low-density
(soft tissue) and high-density (bone). They also involve some
estimate of the nonlinear effects and are often implemented
with a parallel or fan-beam geometry in mind [18]–[20].
Recently, some of these methods were generalized to three base
materials [21] and cone-beam geometry [22].

There are a variety of schemes for eliminating beam hard-
ening artifacts in FBP images. Existing methods fall into three
categories: 1) dual-energy imaging; 2) preprocessing of projec-
tion data; and 3) postprocessing of the reconstructed image.

Dual-energy imaging has been described as the most theo-
retically elegant approach to eliminate beam hardening artifacts
[23]. The approach is based on writing the attenuation coeffi-
cient as a weighted sum of two spectral basis functions [24],
one modeling the photo-electric effect and the other Compton
scatter. This technique provides complete energy dependent in-
formation for CT imaging. An attenuation coefficient image can
in principle be presented at any energy, free from beam hard-
ening artifacts. The method’s major drawback is the require-
ment for two independent energy measurements. This has in-
hibited its use in clinical applications, despite the potential di-
agnostic benefit of energy information. Recently, multienergy
X-ray CT has been used for imaging small animals [25] with
a CT scanner that was custom built with an energy-selective
detector. Dual-energy imaging is also an area where statistical
iterative reconstruction provides superior results to analytical
methods [26].

Preprocessing approaches are based on the assumption that
the energy dependence of soft tissue is similar to that of water.
Knowledge of the energy dependence of the attenuation coeffi-
cient of water provides a one-to-one mapping between mono-
energetic and polyenergetic measurements. In preprocessing,
one simply maps (or precorrects) the sinogram data to mono-
energetic values and then one reconstructs the image from the
corrected sinogram. Preprocessing works well with soft-tissue
objects, but is poor when high Z materials, such as bone, are
present. Preprocessing is often the first step in bone correction
algorithms [18], [20].

The method described by Joseph and Spital (henceforth, re-
ferred to as JS) [18] is a postprocessing technique that cor-
rects for soft tissue and high Z material (bone) distortions. The
method requires knowledge of the X-ray spectrum and involves
an initial reconstruction, segmentation, linearization and a final

reconstruction. It has been generalized to correct for three-sub-
stance beam hardening, the third substance usually being a con-
trast agent such as Iodine [21]. A variation of that algorithm
[22] corrects for beam-hardening artifacts in cone-beam geom-
etry. It uses a tilted parallel geometry to correct the artifacts. The
tilted parallel geometry reduces the computational complexity
involved in the forward projection and back-projection recon-
struction steps for the cone-beam geometry.

Yan et al. developed an iterative, but nonstatistical, beam
hardening correction method [27]. It assumes the attenuation
coefficient at each pixel is a linear combination of the attenu-
ation coefficients of two base substances. The algorithm itera-
tively computes the fraction of each base substance at each pixel.
The algorithm requiresa priori knowledge of the two base sub-
stances at each pixel, in addition to the X-ray spectrum.

The approach we propose for beam hardening correction is
a statistical iterative reconstruction algorithm [1]. It requires
knowledge of the X-ray spectrum and requires a presegmented
initial image (usually obtainable from a good FBP image) like
JS. The algorithm iteratively minimizes surrogate functions to
the Poisson likelihood and can use ordered subsets to accelerate
convergence. Depending on the approximations used, one ver-
sion of the algorithm is monotonic. The algorithm can also take
scatter estimates into account.

Recently, De Manet al. suggested an alternative statistical
iterative approach [28]. This technique models the object as a
linear combination of the spectral properties of two base sub-
stances, usually water and bone. Knowledge of the X-ray spec-
trum is necessary, but a presegmented image is not required.
There are differences in the object models used in De Man’s
approach and ours that would be interesting to compare in the
future. Our derivation uses paraboloidal surrogates in a way that
can guarantee algorithm monotonicity even with nonzero scatter
background [ in (39) below]. The algorithm in [28] does not
use surrogate functions. It minimizes the Poisson likelihood di-
rectly but is derived without taking scatter into account. The or-
dered-subset versions of both approaches are not monotonic and
probably roughly equivalent other than the differences in the ob-
ject model.

This paper is organized as follows. Section II discusses a
physical model and summarizes a “conventional” statistical
algorithm based on a monoenergetic X-ray beam assumption.
Section III generalizes the model and derives algorithms based
on the more realistic polyenergetic case. In Section IV, we
present simulation results that compare uncorrected FBP,
JS-corrected FBP, statistical monoenergetic reconstruction, and
statistical polyenergetic reconstruction. Section V discusses the
results and outlines potential future work.

II. M ONOENERGETICTRANSMISSIONRECONSTRUCTION

In this section, we describe the physical and statistical models
for the problem of transmission image reconstruction with
monoenergetic beams. The statistical reconstruction method
involves maximizing a penalized-likelihood (PL) objective
function. Presenting the monoenergetic case illustrates our no-
tation and some key ideas of statistical iterative reconstruction
before having to deal with the complexities of polyenergetic
physics.
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A. Monoenergetic Model

Under the assumption of a monoenergetic beam, i.e.,
, the measurement (under ideal conditions) sim-

plifies to Beer’s law

(2)

We parameterize the image in object space (attenuation coef-
ficient) using square pixels. The goal of the algorithm becomes
to estimate the value of the (discretized) attenuation coefficient
at those pixels. Let be the vector of un-
known attenuation coefficients having units of inverse length,
where denotes transpose. We model the measurements as in-
dependently distributed Poisson random variables [4] that are
contaminated by extra background counts, caused primarily by
scatter. Additive detector read-out noise can be accounted for in
a several ways [29]. We assume the following statistical model
for the measurements:

Poisson (3)

where is the blank scan factor and is the number
of measured rays. The notation repre-
sents the th line integral. The matrix is
the system matrix which accounts for the system geometry as
well as any other significant physical effects such as detector
response. For ray and pixel , is the area of overlap be-
tween the ray beam and the pixel, normalized by the detector
width, and has units of length. The termaccounts for the mean
number of background events and read-out noise variance [29].
We assume that , , and are known nonnegative
constants [4].

To estimate the attenuation coefficient vector, we use a like-
lihood-based estimation approach. The Poisson log-likelihood
for independent measurements is given by

(4)

ignoring constant terms. When has full column rank and the
data is noise-free, maximizing the likelihood would give a per-
fect result. In reality, the data is noisy and maximum likelihood
(ML) will give a very noisy reconstruction due to the ill-posed-
ness of the problem, hence, the need for regularization.

We regularize by adding to the likelihood a penalty term that
penalizes difference in the values of neighboring pixels. The
regularizing penalty term is given by the following:

(5)

where is a potential functions and is some neighborhood
of pixel . We use the convex edge-preserving Huber penalty

.

(6)

Combining the likelihood with a penalty gives a PL objective
function

(7)

where is a scalar that controls the tradeoff between the data-fit
and the penalty terms. The goal of the reconstruction technique
becomes to maximize (7) subject to certain object constraints
such as nonnegativity

(8)

Section II-B will discuss an iterative technique for approxi-
mately solving (8).

B. Penalized Weighted Least Squares With Ordered Subsets

The algorithm is formulated using a quadratic approximation
to the Poisson likelihood, which leads to a simpler objective
function [17]. The quadratic approximation leads to a penalized
weighted-least-squares (PWLS) estimate. For high data SNR,
PWLS leads to negligible bias [30] and the simpler objective
function can reduce computation time.

For convenience, we write the negative log-likelihood corre-
sponding to (4) as follows:

(9)

where

(10)

Applying a second-order Taylor’s expansion to around an
estimate of the line integral yields [17]

(11)

where and are the first and second derivatives of. As-
suming , we can estimate the line integral with

(12)

Substituting this estimate into (11) gives the following approx-
imation for :

(13)

The first term in (13) is independent ofand can be dropped. The
weight is or zero for any where .
The resulting PWLS cost function is

(14)

The penalty term may be nonquadratic.
According to the optimization transfer principle [4], [31],

[32], rather than minimizing the cost function (14), one can re-
place with a surrogate function that is easier to
minimize. For monotonicity, the surrogate must be chosen such
that and [4]. A new sur-
rogate function is used at each iteration.
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The surrogate we seek is one that will make the cost function
separable, so that all pixels can be updated simultaneously. To-
ward that end, we exploit the convexity of the data-fit term in
(14). Rewrite the line integral as follows [31], [32]:

(15)

where

(16)

By convexity

Applying this to (14) yields the following separable surrogate:

(17)

A similar development can be pursued for the convex penalty
term yielding a separable penalty surrogate [32], denoted

. We now seek to minimize the new separable global
surrogate

(18)

Since the surrogate is a separable paraboloid, it can be easily
minimized by zeroing the first derivative. This leads to the fol-
lowing simultaneous update algorithm:

(19)
where enforces nonnegativity. The first and second deriva-
tives of the surrogate are easily shown to be

(20)

(21)

To make the denominator in (19) small (and, hence, the step size
large), we want to be large, subject to (16). We also want

to be independent of the current iterate (so that it can be
precomputed) [2]. One convenient choice is

(22)

Fig. 1. Linear attenuation coefficient energy dependence of water and bone.

Both the numerator and denominator in (19) involve back-
projecting over sinogram bins. In the spirit of similar work [3],
[5], [6], we use ordered subsets to accelerate algorithm “con-
vergence” by a factor proportional to the number of subsets [6].
We call this method the penalized weighted least squares or-
dered subsets (PWLS-OS) algorithm for transmission tomog-
raphy. With subsets, the PWLS-OS update equation is

We have found that this algorithm works quite well for moderate
to high SNR monoenergetic measurements. However, as shown
in Figs. 3 and 6 below, when applied to polyenergetic data, it
yields artifacts similar to those of FBP, which is also based on a
monoenergetic model.

The next section presents a polyenergetic model and substan-
tially generalizes the iterative algorithm accordingly. The useful
concepts of optimization transfer, separability etc. also readily
apply to the polyenergetic case.

III. POLYENERGETICX-RAY CT

Algorithms such as the one derived in the previous section
ignore the polyenergetic nature of the X-ray beam and the en-
ergy dependence of the attenuation coefficient. With a polyen-
ergetic source, the measurementalong path is given by
(1). Nonlinear beam hardening artifacts result if one ignores the
energy dependence of the measurements [18], [23], [33]. Fig. 1
shows the energy dependence of the attenuation coefficients of
water (density 1.0 gm/cm) and bone (density 1.92 gm/cm).
A hard X-ray beam is one with higher average energy [35].
Beam hardening is a process whereby the average energy of the
X-ray beam increases as the beam propagates through a material
since lower energy X-rays are preferentially attenuated. X-rays
traversing different paths through an object will emerge with
different spectra, leading to inconsistencies in the data (in the
Radon sense), hence, the artifacts shown in Fig. 3.
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Beam hardening generally leads to a reduction in the recon-
structed attenuation coefficient [33]. Thick bones also generate
dark streaks [24]. In soft tissue, the values are depressed nonuni-
formly, leading to what has been termed “cupping.” In addition,
bone areas can “spill over” into soft tissue, leading to a perceived
increase in the attenuation coefficient [18].

In this section, we summarize a model for polyenergetic
X-ray CT and then develop an iterative reconstruction algo-
rithm based on it that overcomes the artifacts produced by
conventional methods.

A. Polyenergetic Statistical Model for X-Ray CT

We assume that the object is comprised ofknown nonover-
lapping material types. We also assume that the material class
of each voxel is known. These classes can be determined by
segmenting a FBP reconstruction that has been “corrected” for
beam hardening effects [18]. The method of Joseph and Spital
requires a similar kind of segmentation, usually obtained from
a soft-tissue-corrected image [18]. For theth material type, we
model the attenuation coefficient of theth voxel as the product
of the (known) energy-dependentmassattenuation coefficient

(cm /g) and the (unknown) energy-independent density
(g/cm ) [18], [24], [26]. Expressed mathematically in the dis-

crete domain

(23)

where if the th voxel belongs to theth material type
and otherwise.

We again denote the system matrix by and make
the following definitions:

(24)

(25)

(26)

(27)

We assume that the mass attenuation coefficients
of the materials are known. From (1), (23), and the definitions
above, the mean of the measured data along pathis

(28)

where

and . We have expressed the
measurements in terms of the vector functionwhich has as
its elements the line integrals of thedifferent material densi-
ties. Given the X-ray spectrum, we tabulate the values of
and its gradient over
the range of arguments that correspond to repre-
sentative objects.

The goal of the algorithm is to estimate the density coeffi-
cient vector . Rather than estimating vector
quantities of length , each representing the density of one ma-
terial, the assumption of nonoverlapping materials enables us to
keep the number of unknowns equal to, as is the case in the
monoenergetic model. This is possible only if prior segmenta-
tion of the object is available. This segmentation is also neces-
sary for the JS technique [18].

B. Polyenergetic Model Cost Function

We now express the Poisson negative log-likelihood in terms
of the vector density and the vector function . To derive
the algorithm, we use the optimization transfer principle three
times: first using the multiplicative convexity property [31];
second using parabola surrogates [4] and lastly De Pierro’s
additive convexity trick [32]. The successive applications of
the optimization transfer principle yield a separable and simple
surrogate function that is easier to minimize than the negative
log-likelihood.

Recall that the function in (28) represents the
ideal expected value of the measurementat the th detector.
Using in (4) gives the following negative log-likelihood in
the polyenergetic case:

(29)

(30)

The reconstruction problem now is to find an estimatesuch
that

(31)

where

(32)

The regularization term can be treated exactly as in Section II-B
or it can be modified to avoid smoothing between different tissue
types. For simplicity in this presentation, we focus on the likeli-
hood term. An iterative algorithm is needed to perform the min-
imization (31).

The difficulty arises with the argument of , which is non-
linear in (29). Our first goal is to move the integral in (28) out-
side the (convex) function . Toward that end, define

(33)

(34)

(35)

where . With the above definitions and (28)

(36)
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Since

(37)

(38)

we can use the convexity of the function in (30) as follows
[31], [36]:

Combining with (29) gives the following surrogate for the
negative of the polyenergetic log-likelihood

(39)

(40)

It is straightforward to verify that satisfies the conditions
of the optimization transfer principle [37]. The surrogate is
simpler than the actual likelihood because the energy integral is
outside of the log operation. It is not, however, quadratic. We
next apply optimization transfer to to derive a paraboloidal
surrogate. Such a surrogate is desirable because it is easily mini-
mized. The first step is to expressusing a quadratic surrogate

(41)

where

(42)

We must choose the curvature to ensure that
satisfies the conditions for a surrogate (if we seek a monotone
algorithm). Combining (41) and (40), the overall paraboloidal
surrogate is

(43)

Next, we derive a separable surrogate which, similar to the
monoenergetic case, lends itself easily to parallelization. We
apply De Pierro’s additive convexity trick that we used in (15)
with the monoenergetic case [31], [32]. First, define

We rewrite the density line integrals as follows:

where the s satisfy (16). Using the convexity of (in its first
argument) yields

(44)

The final separable paraboloidal surrogate to minimize is

(45)

C. Iterative Algorithm for Polyenergetic CT

To derive the actual algorithm, take the first derivative of the
surrogate and set it equal to zero. This gives an update expres-
sion similar to that in (19) (ignoring regularization)

(46)
The derivatives of the surrogate, evaluated at the current iterate

are

(47)

The second derivative in (47) has two terms that are iteration
dependent, and the curvature . The curvature, in
particular, influences the rate of convergence of the algorithm
[4]. We next explore some possibilities for it.
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D. Curvature

If one desires a monotonic algorithm, then it is necessary to
choose curvatures such that (42) satisfies the condition of the
optimization transfer principle. A simple choice for the curva-
ture is the maximum second derivative in the feasible region for
the projections. The closed form expression for the maximum
curvature is [4]

(48)

This inequality always holds since and . We can
use the simpler right hand side of (48) and still have a monotonic
algorithm. This is equivalent to using the maximum curvature
when the background term is small.

The curvature affects the step size that the algorithm takes
toward the minimizer. The maximum curvature results in small
steps and, hence, a slowly converging algorithm. Plugging the
right hand side of (48) in (47) gives the following:

(49)

The above equation has no iteration-dependent terms and can
be easily precomputed.

Another possible curvature, given in [4], is optimal in the
sense that it satisfies the conditions of optimization transfer
while keeping the step size as large as possible. The optimal
curvature must be computed at every iteration. It, therefore,
accelerates convergence, but requires more computation per
iteration.

E. Precomputed Curvature

By relaxing the monotonicity requirement, we can develop
faster algorithms. Since we use ordered subsets to implement
the algorithms, monotonicity is compromised anyway.

We can choose a curvature in (42) such that
, rather than requiring inequality. In this case, the pa-

raboloids are quadratic approximations to the likelihood that are
updated at every iteration [unlike (11)]. A reasonable curvature
to use is the second derivative of evaluated at the point that
minimizes the function, .
The curvature becomes

(50)

To simplify matters further, define

(51)

as the effective energy of the X-ray beam. We now make the
approximation of evaluating in (47) at and pull it out
of the integral. The remaining energy terms integrate to unity.
With the assumption of nonoverlapping materials and

the second derivative reduces to

(52)

This expression is completely independent of iteration. It can be
precomputed and stored, further accelerating the algorithm. The
following is the overall ordered subsets version of the algorithm.

• Precompute using (52).
• Tabulate and over an appropriate range of

break points.
• initialize with .
• for each iteration , niter

— for each subset
compute for .

Set .
compute and by interpolation

from the precomputed tables.
evaluate

compute for

(53)

— end
• end

Recall that in (53) is the surrogate for the regularization
penalty, first introduced in (18). If the optimal curvature [4] or
maximum curvature (48) are used, this algorithm will monoton-
ically decrease the cost function each iteration when one subset
is used. Using ordered subsets and the precomputed curvature
destroys monotonicity, but significantly accelerates progress in
the early iterations.

IV. SIMULATION RESULTS

We assess the effectiveness of our algorithm with simulated
polyenergetic Poisson X-ray projections. We assume a parallel
beam geometry, but the algorithm applies equally well to other
geometries. The image field of view is 40 cm and the rotation
range is 180. The simulated measurements are free of scatter
and detector readout noise.

We simulate polyenergetic transmission data with the polyen-
ergetic spectrum (mean: 67.12 keV; standard deviation: 17.76
keV) shown in Fig. 2 and a blank scan of 4.8710 counts/de-
tector. The blank scan value is realistic and mimics a 120-kVp,
170-mAs scan protocol [38]. The spectrum was obtained from
Monte Carlo simulations of the setup in [39].

We reconstruct the simulated data with FBP, monoenergetic
statistical algorithm (PWLS-OS) and polyenergetic statistical
algorithm. We use the soft-tissue and JS methods to remove
beam hardening artifacts in the FBP image. We also pick the
FBP reconstruction parameters to give comparable resolution
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Fig. 2. Energy spectrum.

and noise properties to the statistical algorithms (the statistical
algorithms can perform better in this regard, but our purpose is
to illustrate beam hardening correction). All runs of the statis-
tical algorithms use a Huber penalty with 1000, 0.01
cm for monoenergetic reconstruction, and 0.1 gm/cm
for polyenergetic reconstruction. The parameteris determined
by trial and error and the parameteris chosen to preserve the
contrast between soft tissue and bone.

The first phantom, shown in Fig. 3 is a 256256 density
phantom consisting of four high-density “bone” disks (
gm/cm ) immersed in a water disk ( 1 gm/cm ), which is
surrounded by air ( 0 gm/cm ). The pixel size is 1.6 mm.
The data were simulated over 500 angular steps and 600 radial
bins, 1.3 mm each. The colorbar adjacent to Fig. 3 illustrates the
gray scale window used to view all the images in the figure. The
iterative algorithms ran for 20 iterations and 20 subsets.

Fig. 3(b) and (c) shows the reconstructed images (scaled to
display density values) when algorithms that do not correct for
beam hardening are used. Both FBP and PWLS-OS exhibit
typical beam hardening artifacts: reduction in overall pixel
values and dark streaks between high-density regions. Fig. 3(c)
shows the importance of developing iterative algorithms based
on polyenergetic physics.

Fig. 4(a) and (b) illustrates the image corrected by soft-tissue
preprocessing and by the JS technique. The soft-tissue method,
available on commercial scanners, leaves substantial artifacts.
The JS technique postcorrects for most of the artifacts, but some
persist. Simple thresholding (with threshold 1.5 gm/cm) of the
soft-tissue-corrected FBP image provides the segmentation re-
quired by the JS technique.

The iterative reconstruction based on the polyenergetic model
is shown in Fig. 4(c). The algorithm, was initialized with the
JS-corrected image. The object was classified into bone or soft
tissue by segmenting the JS-corrected FBP reconstruction using
a density threshold of 1.5 gm/cm. We choose the segmentation
threshold such that the number of mismatched pixels with the
true object classification is minimum. In a more realistic set-
ting, the true object is not available, and we hope to address
the segmentation issue in future work. The iterative algorithm

Fig. 3. Bone/water density phantom results.

Fig. 4. Bone/water density phantom results.

Fig. 5. Profile plots of reconstructed images.

TABLE I

significantly reduces artifacts, relative to JS, since it inherently
accounts for the effects of broad energy spectrum. The profile
plots in of the JS and the polyenergetic statistical algorithm im-
ages in Fig. 5 further delineate the difference in performance
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Fig. 6. True object and uncorrected FBP and statistical reconstruction.

between the two methods. Table I lists the root mean squared
(RMS) error of all the methods, relative to the true object, and
shows that the polyenergetic statistical reconstruction has the
lowest error among all methods used. To compute the RMS error
(and to display the images) for FBP and monoenergetic statis-
tical reconstruction, their images were scaled by the appropriate
mass attenuation coefficients to give density values.

To gain more confidence in our approach, we performed an
additional experiment with this phantom where we simulated
and reconstructed noise-free data (not shown). The results
showed that polyenergetic iterative reconstruction was signifi-
cantly more effective in reducing artifacts than JS, even when
there was no noise. This is due to the fact that the iterative
algorithm models the beam spectrum completely, whereas the
JS method is approximate, even for noise-free data.

Fig. 7. Soft-tissue and JS-corrected FBP and polyenergetic statistical
reconstruction.

We also applied the different algorithms to the 512250
object shown in Fig. 6(a). We created this “true” object by man-
ually segmenting a previously acquired real CT image, then as-
signing density to each anatomical structure. The density of the
bones is in the range 1.6–2 gm/cmand the soft tissue densi-
ties vary from 0.9 to 1.1 gm/cm. The pixel size is 0.8 mm and
the sinogram has 700 angular bins and 500 radial bins, 1.0 mm
each. The statistical algorithms ran for 10 iterations and 50 sub-
sets. We use the JS image to initialize the polyenergetic iterative
technique and the soft-tissue-corrected image to determine the
distribution of bone and soft-tissue regions with a threshold of
1.6 cm/gm. This threshold was chosen to minimize pixel mis-
match with the true object.
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The results are shown in Figs. 6 and 7. Uncorrected FBP and
monoenergetic iterative algorithm images (scaled to display
density values) suffer from beam-hardening artifacts, with
streaks visible in the vicinity of bones. The soft-tissue, JS, and
polyenergetic iterative results are also shown, with the latter
clearly yielding less artifacts. Table II also lists the RMS error
for all methods, with polyenergetic statistical reconstruction
having smallest error.

For comparison, we also performed the polyenergetic recon-
struction (not shown) with bone and water classification ob-
tained from segmenting the true object. This yielded very sim-
ilar results, so using the soft-tissue-corrected image to determine
the s appears to be a practical approach.

Like the JS method, the algorithm we propose requires
knowledge of the spectrum and a presegmented image, but
gives considerably improved density images. With the knowl-
edge of the mass attenuation coefficient, one can scale the
resulting density images to obtain attenuation coefficient
information at any energy using (23).

V. DISCUSSION

We have introduced a statistical iterative reconstruction al-
gorithm for energy dependent X-ray attenuation that produces
images with significantly reduced beam hardening artifacts. The
algorithm is applicable for an arbitrary number of nonoverlap-
ping materials, and we demonstrate its effectiveness for bone
and soft tissue objects. Unlike most other transmission CT iter-
ative algorithms, our algorithm is based on a realistic polyen-
ergetic model. Figs. 3(c) and 6(c) illustrate the severe artifacts
that result when an iterative algorithm based on a monoenergetic
model reconstructs an image from polyenergetic data.

The algorithm we present requires knowledge of the inci-
dent spectrum and knowledge of the distribution of the different
types of materials in the object. The spectrum can be measured
[40] or determined through realistic simulations. Our results
suggest that one can estimate the distribution of materials by
segmenting a good FBP image, corrected with the soft-tissue
technique. One could possibly improve on this approach by re-
generating the segmentation after running one or more iterations
of the proposed algorithm.

By successive applications of the optimization transfer
principle, the statistical algorithm minimizes a separable
paraboloidal surrogate, hence, it is parallelizable and fairly
simple to implement. We also use ordered subsets and pre-
computed surrogate curvatures to accelerate convergence and
reduce computation. When one subset is used with appropriate
curvatures, the algorithm monotonically decreases the cost
function. This is about the most that can be said about conver-
gence since the cost function is inherently not convex.

When compared with the postprocessing technique of [18],
the statistical algorithm yielded fewer artifacts. The JS method
estimates the line-integral dependent nonlinearity for each sino-
gram bin and then recalculates the line integrals. The statis-
tical method needs no such postprocessing since it inherently
accounts for the nonlinearities. This is likely the reason for its
superior performance.

Future work will include applying the polyenergetic approach
to objects with three or more tissue types. The bone/soft-tissue

TABLE II

model is sufficient for most cases, but a three-class model is nec-
essary when contrast agents such as Iodine are introduced [21]
and possibly when metallic implants are present. A further gen-
eralization of the algorithm is to allow for pixels that contain
mixtures of two or more materials. This will enhance the ac-
curacy of the algorithm, especially at material boundaries. This
implies augmenting the set of variables with volume fractions to
be estimated at every pixel. A promising approach for accom-
plishing this is to treat the material classes as random variables
with a Markov random field model and to use joint likelihoods
and penalties to jointly estimate pixel density values and mate-
rial distribution [41], [42].

In reality, the X-ray CT detectors integrate over energy, and
the actual distribution of the measurements is not Poisson. In
order to improve the accuracy of reconstruction, a more realistic
statistical model is necessary. One possibility is a model that
considers the total signal a sum of scaled (by energy) Poisson
processes each with a different scale factor [38]. This model is
potentially more accurate because it accounts for the polyener-
getic nature of the incident beam in thedetectionprocess.

Future work will also address some of the challenges posed
by the PL approach. This approach has two important advan-
tages. It improves the conditioning of the problem and enables
one to choose penalty functions that control desired properties
such as edge preservation. One drawback, however, is the ab-
sence of an intuitive method for choosing the values of the reg-
ularization parameters, which is often done by trial and error.
This is inefficient and time consuming, and there is a need for a
more systematic method for choosing the parameters. Another
undesirable property of PL image reconstruction is its nonuni-
form spatial resolution [43]. A remedy for quadratic penalties
exists [44]. For transmission imaging, we prefer to use the edge-
preserving Huber penalty, for which the nonuniform resolution
problem needs to be addressed.
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