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ABSTRACT 

This paper examines the spatial resolution properties of 
penalized maximum-likelihood image reconstruction meth- 
ods by analyzing the local impulse response. We show that 
for emission image reconstruction using the ordinary uni- 
form quadratic regularization penalty, the local impulse 
response is spatially variant.  Paradoxically, the local reso- 
lution is poorest in high activity regions. The analysis leads 
naturally to a modified quadratic regularization penalty 
that achieves nearly uniform resolution. The modified 
penalty also provides a very practical method for choosing 
the smoothing parameter t o  obtain a specified resolution. 

I. INTRODUCTION 

Penalized maximum-likelihood methods for image recon- 
struction have two important advantages over alternative 
methods for reducing noise (such as stopping rules and 
sieves). First, the penalty function improves the con- 
ditioning of the problem, so certain iterative algorithms 
converge very quickly. Second, one has wide flexibility 
in choosing penalty functions, so one can control proper- 
ties of the reconstructed images, such as preserving edges 
or incorporating anatomical information. In contrast, the 
smoothness that one obtains through stopping rules is lim- 
ited by the characteristics of the iterative algorithm. A 
possible disadvantage of penalized-likelihood methods has 
been the lack of an easy method for choosing the value 
of the regularization parameter, even for simple quadratic 
penalties. One contribution of this paper is a new object- 
independent method for specifying the regularization pa- 
rameter in terms of the desired resolution of the recon- 
structed image. 

This paper describes another undesirable property of 
penalized-likelihood image reconstruction methods, and 
then proposes a solution to the problem. In brief, we 
demonstrate that even when one uses the ordinary shift- 
invariant roughness penalty, the reconstructed images have 
object-dependent nonuniform spatial resolution, even if the 
tomographic system is  spatially invariant.  For emission 
imaging the resolution is poorest in high-count regions, 
which is directly opposite what one might expect or pre- 
fer. We then propose a modified roughness penalty that 
yields nearly uniform spatial resolution. 

This work was supported in part by DOE grant DEFGOZ- 
87ER60561 and NIH griint CA-60711-01. 

This paper is somewhat in the spirit of the early studies 
by Stamos et al. [l] and the recent analysis of Barrett, Wil- 
son, and Tsui [2,3], which used the local impulse response 
to quantify spatial resolution properties of the unregular- 
ized maximum-likelihood expectation-maximization (ML- 
EM) algorithm. Liow and Strother also studied ML-EM 
using an effective local Gaussian resolution [4]. Since 
the ML-EM algorithm is rarely iterated until convergence, 
most authors study its spatial resolution properties as a 
function of i teration. In contrast, since there are now fast 
and globally convergent algorithms for maximizing both pe- 
nalized maximum-likelihood [5-71 and penalized weighted 
least squares [8,9] objective functions, rather than studying 
the properties of the algorithms as a function of iteration, 
we study directly the properties of the est imator as spec- 
ified by the objective function (Section 11). This simplifies 
the practical use and interpretation of our results since the 
specifics of the maximization algorithm are unimportant 
(provided one uses a globally convergent method). 

In conventional FBP image reconstruction, one controls 
the tradeoff between resolution and noise by adjusting the 
cutoff frequency f c  of a filter. In practice, one determines 
the (monotonic) relationship between f c  and full-width 
half maximum (FWHM) through the following empirical 
approach. First, acquire a sinogram using a point or line 
source, possibly at several locations within the scanner. 
Then pick a filter type (e.g. Hanning) and reconstruct im- 
ages for several different values of fe. Finally, compute the 
FHWM of the point spread function (PSF) for each case, 
and record a table of (Ic, FWHM) value pairs. In subse- 
quent studies, one typically chooses the desired resolution 
(FWHM) through experience and by visually observing the 
resolution-noise tradeoff, and then obtains the appropriate 
fc from the table. This tabulation process needs only to 
be done once for a given scanner and window function, 
since FBP is linear (and hence its resolution properties are 
object-independent). 

In contrast, in penalized maximum-likelihood image re- 
construction, the smoothing parameter p controls the 
tradeoff between resolution and noise, but P is essentially 
unitless. Therefore it is not obvious how to specify the 
smoothing parameter, and one finds that for a fixed P, 
the reconstructed spatial resolution varies between sub- 
jects, and even within the same subject (Section 111). This 
paper contributes a practical method for normalizing the 
weights in the penalty function that nearly eliminates the 
object-dependent component. This allows one to build an 
object-independent table relating /3 to resolution (FWHM) 
for a given PET system, so that one can select P to achieve 
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a consistent specified resolution within planes, between 
planes, and even between subjects. The task of choosing 
the “optimal” resolution is left to the user. 

Nonuniform resolution properties are not unique to 
penalized-likelihood methods. Wilson and Tsui [2] re- 
ported resolution variation and asymmetry for the ML- 
EM algorithm as well. An advantage of the penalized- 
likelihood approach is that one can modify the penalty to 
overcome the resolution nonuniformity. 

PET and SPECT systems have intrinsically nonuniform 
resolution [lo] (although PET systems are fairly spatially- 
invariant near the center of the scanner). The simulations 
we report are for an idealized spatially invariant PET sys- 
tem. Thus the resolution nonuniformity is due solely to 
the interaction between the log-likelihood and the penalty 
terms of the objective function, and not due to the system 
response. Further work is needed to study the effects of 
penalty functions in spatially-variant systems. 

11. THEORY 

A .  Local Impulse Response 
Let Y = [ y ~ ,  . . . , y ~ ] ’  denote a random measurement vec- 
tor with density function f(y; e),  where 0 = [e,, . . . ,e,]’ 
is an unknown parameter in a pdimensional parame- 
ter space 0, and ‘ denotes vector transpose. Typically 
0 = { e  : O j  2 0, j = 1 , .  . . , p } .  Given a particular realiza- 
tion Y = y, an estimator 8 = O(y) has mean: 

A , .  

For nonlinear, spatially-variant estimators, one can char- 
acterize the spatial resolution properties of ,U by analyzing 
the local impulse response (cf [1,2]). We define the local 
impulse response at the j t h  pixel to be: 
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for j = 1,. . . , p ,  where ej is the j t h  unit vector of length 
p .  This impulse response is local in two different senses. 
First, it is a function of the index j, reflecting the spatially- 
variant nature of nonlinear estimation. Second, it depends 
on the location in the parameter space 0 through the ar- 
gument 8, reflecting the nonlinear object dependence. The 
local impulse response also depends on the measurement 
distribution through (1). Thus, the local impulse response 
characterizes the object, system, and estimator dependent 
properties. In words, the local impulse response measures 
the change in the mean reconstructed image due to the 
perturbation of a particular pixel in the noiseless object. 

As a specific example, consider the estimator: 

where W and R are nonnegative definite matrices and 
the null space of R is orthogonal to that of WA. This 
penalized weighted least-squares estimator is linear: 

e(y) = (A’WA + PR)-~A’WY. 

Since Ee{Y} = AB, one can evaluate (2) to show that 

lj = (A’WA + PR)-’A‘WAej. (3) 

For such linear estimators, the local impulse response is 
independent of B. As we show below, the local impulse re- 
sponse of the nonlinear estimators for image reconstruction 
have approximately the same form as (3). 

B. Brute Force Evaluation 
Unlike in the simple penalized weighted least squares esti- 
mator described above, there is usually no explicit analyt- 
ical form for estimators e(y) that are defined implicitly as 
the maximum of some objective function: 

. . , .  
0 = O(y) = argmaxQ(0, y). 

eeo (4) 

When there is no explicit form for e(y), there is usually no 
explicit form for its mean p(0) either. Thus it would at 
first appear that to investigate the local impulse response 
of a nonlinear estimator of interest, one must resort to a 
“brute force” numerical approach based on (1) and (a), 
with the expectation in (2) replaced by the sample mean 
in a computer simulation. However, often we would accept 
an approximation to the local impulse response if we could 
avoid performing extensive simulations. The remainder 
is devoted to approximations suitable for likelihood-based 
estimators in emission tomography. 

C. Implicitly Defined Estimators 
The mean of a likelihood-based estimator often approxi- 
mately equals the estimate obtained from noiseless data: 

where 
Y ( 0 )  = Ee{Y} = yf(y;e) dy J 

denotes the measurement mean and e denotes the value of 
the estimator when applied to noiseless data ?(e). This 
approximation is equivalent to assuming that the estimator 
is locally linear [2], and is the basis for the remainder of 
this paper. Substituting (5) into (2) yields the following 
approximation to the local impulse response: 

a - -  $(e) M -e(y(e)). aej 
This expression depends on the partial derivatives of the 
implicitly defined estimator e(y), which one can determine 
using the implicit function theorem and the chain rule [ 113. 



Disregarding the nonnegativity constraint the maximizer 
of @ satisfies: 

where {a i , }  are nonnegative constants that characterize 
the system, and { r ; }  are nonnegative constants that rep- 
resent the contribution of background events (random CCF 

Vlo@(e(Y), Y) = 0, VY, (7) incidences, scatter, etc.). The Poisson log-likelihood is: 
L(0, y) = xi y, logz(0) - %(e), and one can show [12]: 

where V'O = [& . . . &] is the row gradient operator 
(with respect to the first argument of @). Now differentiate 
again with respect to y using the chain rule: 

-V20L(0, y) = A'D { yi/E2((e)} A 

V"L(0, y) = A'D { l / g ( 0 ) }  , 

where D {ui} denotes a N x N diagonal matrix with ele- 
ments u1,. . . , UN along the diagonal. Note that "%(e) = 

the local impulse response: 

V2O@(e(Y), y)vyb(Y) + V"@(~(Y), Y) = 0. (8) 
80, For we the Of y On e a i j ,  so substituting into (11) yields an approximation for 

where explicitly needed. Under the mild assumption that 
-V2'@(e,Y) is positive definite, we substitute y = Y 
into (8) and solve: $(e) x [A'D { -} z (0) A + PR(#)]-lA'D { L} A$. 

yi2 (0) X(0) 
vye(Y(e)) = [-v2O~(e, Y ) ~ - ~ v ~ ~ o ( e ,  Y ) .  

For moderate or small values of P, e is a slightly blurred 
version of 0 (see ( 5 ) ) .  Since a projection induces smooth- 
ing, Y ( 0 )  M Y(e ) ,  and if the model mismatch is small, then 
Y(0) M Y(0). Therefore, we simplify the above expression 

Combining with the chain rule applied to (6 ) :  

a -  a P ( e )  M - -e (y(e) )  = v,e(Y(e))-Y(o) 
ae, 80, .. to the approximation 

This approximation specifies the local impulse response 

and the measurement mean, i.e., we have eliminated the 
dependence on the implicitly defined estimator e ( ~ ) .  

D. Penalized Likelihood Estimators 
In the remainder, we focus on objective functions @ that 
are of the penalized likelihood form. If we define L(0,  y) = 
log f(0; y) to be the log-likelihood under the assumed dis- 
tribution, the penalized likelihood objective function is 

where (cf (3)) 

is the inverse of the variance of Y, under the assumed Pois- 
son model. This is our final approximation to the local im- 
pulse response for penalized likelihood estimators in emis- 
sion tomography2. 

solely in terms of the derivatives of the objective function = i/Y,(e) (14) 

111. RESOLUTION PROPERTIES 

A .  Nonuniform ~ ~ ~ ~ l ~ ~ i ~ ~  
Consider the conventional quadratic roughness penalty: @(e, Y) = L(0, Y) - PV(O), (lo) 

where V is a roughness penalty function. p 1  1 
Define R(0) = V2V(0), and note that V"V = 0. Then 

we have from (9) the following approximation to the local 
impulse response of penalized likelihood estimators: 

v(e) = 5 c w j k s ( 0 j  - 0 k 1 2 ,  
j=1 k 

where typically one chooses W j k  = 1 for horizontal or ver- 
tical neighbors, w,k = 1 / f i  for diagonal neighbors, and 
wjk = 0 otherwise. The elements of the 0-independent 
Hessian R = { r j k }  for this penalty are given by: 

I j (6)  X [-V2OL(e,Y) + PR(e)]- 'V"L(e,Y)aY(e). asj 
(11) 

E. Poisson Statistics 

Here we focus on the emission case, see [12] for the trans- 
mission case. In emission tomography 0, denotes the ra- 
dioisotope concentration in the j t h  voxel, and the measure- 
ments have independent Poisson distributions with means: 

This penalty is shift invariant in the sense that if the entire 
image is shifted, the value of the penalty V(0) would re- 
main unchanged. However, upon evaluating (13) one finds 
that the local impulse response is very nonuniform. To ex- 
plain this nonuniformity, suppose for argument's sake that 

n 

j = 1  
(12) 'Preconditionedconjugate gradient and Gauss-Siedel [SI work well 

for evaluating (13). 
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D{u , }  were simply a scaled identity matrix: D = v - l I .  
Then the local impulse response (13) would be 

lj(t9) M [v-’A’A + @R(8)]-1~-1A’Ag 
= [A’A + ~ / 3 R ( e ) ] - ~ A ’ A e j .  

Thus, changes in the variance v lead to an impulse re- 
sponse with an “effective” smoothing parameter v@. In 
other words, the influence of the penalty is not invariant 
t o  changes in the noise variance, which partly explains 
the difficulty in choosing /3. The situation is further com- 
plicated since the values of D { u i }  in fact vary along the 
diagonal. Since a given pixel is primarily affected by the 
detectors whose rays intersect it, each pixel sees a different 
“effective variance” and hence a different effective smooth- 
ing parameter. 

B. Nonuniformity Correction 
To develop a modified penalty function that yields uniform 
resolution, we study the problem of resolution nonuni- 
formity more closely for quadratic penalties. First, note 
that in PET, the elements ai, can be factored as: aij = 
c f ’ g i j ,  where { g i j }  are fixed geometrical factors describ- 
ing the tomographic system, and {cj} are correction terms 
that change between studies, including attenuation fac- 
tors, dead time, radioisotope decay, and detector normal- 
ization factors. We assume c; > 0. In matrix notation 
A = D {ci}-’ G ,  so substituting into (13): 

P ( B )  x ( G ‘ D { q , ( B ) }  G + @ R ) - ’ G ’ D { q i ( 8 ) )  G e j ,  

where 

Next, we note that the local impulse response 13 depends 
predominantly on those elements i of D{q i }  that corre- 
spond t o  rays that intersect pixel j .  Define 

- 
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then if we content ourselves with the average local resolu- 
tion, i.e., assuming the local impulse response is approxi- 
mately circularly symmetric, then we can replace the diag- 
onal matrix D { q i ( 8 ) }  with an identity matrix multiplied 
by d j (8 ) .  Thus 

l j ( 8 )  x (GIG + ( / 3 / d j ( 8 ) ) R ) - ’ G ‘ G e j .  (17) 

This approximation illuminates the paradoxical over- 
smoothing of high-count regions with the uniform penalty. 
If pixel j is transected by rays with high counts, then 
from (15) we see that q i (8 )  and hence dj (8)  will be small, 
so the effective smoothing parameter /3/d,(8) in (17) will 
be large, causing lower resolution. As 0, increases, the rays 
that intersect it will also increase, so the local resolution 
decreases. This is certainly undesirable, and may explain 
in part why quadratic penalties have had such bad press. 

The form of (17) immediately suggests that a natural 
method for encouraging the local resolution to  be uniform 
is to use modified weights: 

With this modified penalty function, the local impulse re- 
sponse is approximately: 

This expression is independent of the object 8, and of 
all the patient-dependent ci factors. Thus, to with the 
accuracy of our (possibly fairly crude) approximations, 
the modified quadratic penalty function yields an object- 
independent impulse response. If the geometric response G 
of the imaging system is approximately spatially-invariant, 
then (19) implies that the impulse response will also be ap- 
proximately spatially invariant, i.e. the resolution will be 
uniform. In [12] we provide empirical results that confirm 
that, despite the many approximations in our development, 
the modified penalty function greatly improves the reso- 
lution uniformity of penalized maximum likelihood image 
reconstruction. 

C. Projection Dependence 

The definition (15) depends on 8, which is unknown for 
real data. Fortunately, a remarkable property of the local 
impulse response approximation given by (13) ,( 14) is that 
if V(8)  is a quadratic form so that R is independent of 8, 
then l j ( 8 )  depends on the object 8 only through i ts  projec- 
t ions Y ( 8 ) .  Even if the object is unknown, its projections 
are approximately known through the noisy measurements 
y. Thus, even for real noisy measurements, we can predict 
the local impulse response simply by replacing Y ( 8 )  with 
y in (13). This simplistic approach is effective primarily 
because the diagonal term in (13) is sandwiched between 
the backprojection and projection operators A’ and A, so 
the noise in y is significantly smoothed out. Therefore, in 
implementation with measured data, we use the following 
approximation when computing { d j } :  

The “10” factor ensures that the denominator is not too 
close to zero. 

D. Choosing p 
Since the local impulse response (19) for the modified 
quadratic penalty is independent of the object 8, the pro- 
cess of choosing the smoothing parameter p is significantly 
simplified by the following approach. Let j be a pixel in 
the center of the image, for example. For a given system 
geometric response G ,  precompute 

13 M (GIG + @ R ) - ’ G ’ G e j .  



for a range of values of /3. For each ,9, tabulate some mea- 
sure of resolution, such as the full-width half-maximum 
(FWHM) of 11.  Then, when presented with a new data 
set to be reconstructed at a specified resolution, simply 
interpolate the table to determine the appropriate value 
for /3. Finally, reconstruct the object using the modified 
quadratic penalty based on (18). 

IV. DISCUSSION 

By analyzing the local impulse response, we have shown 
that for emission tomographic image reconstruction with 
the ordinary uniform quadratic penalty, the reconstructed 
image resolution is nonuniform. Fig. 1 gives an empirical 
example of the nonuniform resolution, and shows how the 
proposed modified penalty function improves the resolu- 
tion uniformity. We chose the value of /3 for this example 
to match the resolution of the Hanning windowed FBP im- 
age using the proposed method described in Section 1II.D. 

We believe the spatially-variant spatial resolution 
properties are not restricted to the quadratic penalty. 
From (13), one can see that for non-quadratic penalties the 
local resolution will depend both on the “effective smooth- 
ing parameter” P / d j ( O ) ,  as well as on the object-dependent 
curvature of the penalty for mean object, i.e. R(6). The 
latter effect is presumably desired, such in edge-preserving 
methods. The former will manifest itself as a spatial vari- 
ance in “the propensity to preserve edges,” which is proba- 
bly undesirable. Future work will explore whether for non- 
quadratic edge-preserving penalties, a modified penalty 
can achieve a more uniform local step response. 
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pixel point sources (intensity 2). Conventional FBP with 
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lution, as expected. Penalized maximum likelihood recon- 
struction with the ordinary uniform quadratic smoothness 
penalty induces nonuniform resolution (upper right). By 
appropriately modifying the roughness penalty using (IS), 
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know the object to perform this modification; the necessary 
information is contained in the projections. 
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