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ABSTRACT

This paper describes two statistical iterative reconstruction methods for X-ray CT. The �rst method assumes a
mono-energetic model for X-ray attenuation. We approximate the transmission Poisson likelihood by a quadratic
cost function and exploit its convexity to derive a separable quadratic surrogate function that is easily minimized
using parallelizable algorithms. Ordered subsets are used to accelerate convergence. We apply this mono-energetic
algorithm (with edge-preserving regularization) to simulated thorax X-ray CT scans. A few iterations produce
reconstructed images with lower noise than conventional FBP images at equivalent resolutions. The second method
generalizes the physical model and accounts for the poly-energetic X-ray source spectrum and the measurement
nonlinearities caused by energy-dependent attenuation. We assume the object consists of a given number of non-
overlapping tissue types. The attenuation coeÆcient of each tissue is the product of its unknown density and a
known energy-dependent mass attenuation coeÆcient. We formulate a penalized-likelihood function for this poly-
energetic model and develop an iterative algorithm for estimating the unknown densities in each voxel. Applying
this method to simulated X-ray CT measurements of a phantom containing both bone and soft tissue yields images
with signi�cantly reduced beam hardening artifacts.
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1. INTRODUCTION

X-ray computed tomography (CT) provides structural information about tissue anatomy by imaging the tissue
attenuation characteristics. CT scanners record `projection' data that measure the amount of X-ray attenuation
through tissue at di�erent angles.

The linear attenuation coeÆcient �(x; y; z; E) characterizes the overall attenuation property of tissue. It depends
on the spatial coordinates and the beam energy, and has units of inverse distance. For a ray of in�nitesimal width,
the expected photon ux detected along a particular projection line Li is given by:

E[Yi] =

Z
Ii(E)e

�

R
Li

�(x;y;z;E)dl
dE ; i = 1; :::; N; (1)

where Yi represents the photon ux measured at the ith detector, and there are N detectors. The integral in the
exponent is taken over the line Li and Ii(E) incorporates the energy dependence of the incident ray and detector
sensitivity. The goal of any CT algorithm is to reconstruct the attenuation map � from the measured data [Y1; :::; YN ].

Filtered back projection (FBP) is the standard reconstruction technique for CT. Under situations with truncated
or missing data, such as when metallic implants are present or when nonstandard scanning geometries (cone-beam,
multi-slice or helical) are used, FBP-type algorithms require innovative rebinning and interpolation, and lead to
biased estimators since they do not take the statistics of the data into account.1

Statistical techniques have several attractive features.2{5 They can be well suited for arbitrary geometries and
situations with truncated data. They can also model such phenomena as scatter and energy dependence leading
to more accurate and artifact-free reconstruction. Statistical methods also easily incorporate the system geometry,
detector response, object constraints and any prior knowledge. Their main drawback (when compared to FBP) is
longer computation times. A lot of research e�ort is being invested in developing accelerated versions of statistical
algorithms.6,7,5

The next section discusses the mono-energetic model and algorithm. Section 3 generalizes the model and the
resulting algorithm to the more realistic poly-energetic case. In Section 4 we present preliminary results. Section 5
summarizes the results and outlines potential future work.
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2. MONO-ENERGETIC X-RAY CT

In this section we describe the physical and statistical models for the problem of X-ray CT reconstruction. For
simplicity, we assume a mono-energetic X-ray beam. The statistical reconstruction method involves maximizing a
penalized-likelihood objective function. Maximizing the objective function by some appropriate iterative algorithm
yields the reconstructed image.

2.1. Mono-energetic Model and Assumptions

Under the assumption of a mono-energetic beam, i.e. Ii(E) = Ii(Eo)Æ(E � Eo), the expected photon ux simpli�es as
follows:

E[Yi] = Ii(Eo)e
�

R
Li

�(x;y;z;Eo)dl
: (2)

We parameterize the image in object space (attenuation coeÆcient) using square pixels. The goal of the algorithm
becomes to estimate the value of the (discretized) attenuation coeÆcient at those pixels. Let � = [�1; :::; �p]

0

be the
vector of unknown attenuation coeÆcients having units of inverse length, where 0 stands for transpose.

The measurements in a photon-limited counting process such as X-ray CT are reasonably modeled as indepen-
dently distributed Poisson random variables.4 In transmission tomography, the mean number of detected photons
is related exponentially to the projections (line integrals) of the attenuation map. The measurements are also con-
taminated by extra background counts, caused primarily by scatter. In addition, the detector introduces additive
Gaussian read-out noise that can be accounted for in a several ways.8 We assume the following model for our
measurements:

Yi � Poissonfbie
�[A�]i + rig; i = 1; :::; N (3)

where bi = Ii(Eo) is the blank scan factor and N is the number of measurements (or, equivalently, the number of
detector bins). The notation [A�]i =

Pp

j=1 aij�j represents the ith line integral. The N � p matrix A = faijg is
the system matrix which accounts for the system geometry as well as any other signi�cant physical e�ects such as
detector response. For ray i and pixel j, aij is the (normalized) area of overlap between the ray beam and the pixel.
The term ri accounts for the mean number of background events and can incorporate an estimate for read-out noise
as well. The photon ux measured by the ith detector is represented by Yi. We assume the Yi's are independent and
that bi, ri and faijg are known non-negative constants.4

To �nd a statistical estimate for the attenuation coeÆcient vector � that is anatomically reasonable, we use
a likelihood-based estimation approach. This is a natural choice since the likelihood is based on the statistical
properties of the problem.9,10 The Poisson log likelihood for independent measurements is given by:

L(�) =

NX
i=1

n
Yi log(bie

�[A�]i + ri)� (bie
�[A�]i + ri)

o
(4)

ignoring constant terms. When A has full column rank and the data is noise-free, maximizing the likelihood func-
tion will give a perfect result. In reality, the data is noisy and maximum likelihood (ML) will give a very noisy
reconstruction due to the ill-posedness of the problem, hence the need for regularization.

We regularize by adding a penalty term to the likelihood function. A general form for the regularizing penalty is
the following:

R(�) =

KX
k=1

 ([C�]k) (5)

where the  's are potential functions acting on the soft constraints C� � 0 and K is the number of such constraints.
We use the convex edge-preserving Huber penalty

 (x; Æ) =

(
x2

2 ; x < Æ

Æjxj � Æ2

2 ; x � Æ:
(6)

Combining the likelihood with a penalty gives a penalized-likelihood (PL) objective function:

�(�) = L(�)� �R(�) (7)
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where � is a scalar that controls the tradeo� between the data �t and the penalty terms. The goal of the reconstruction
technique becomes to maximize (7) subject to certain object constraints such as non-negativity:

�̂ =
argmax
� � 0

�(�): (8)

The next section will discuss an approach to �nding a solution for (8) using an iterative technique.

2.2. Penalized Weighted Least Squares with Ordered Subsets

We formulate our algorithm by deriving a quadratic approximation to the Poisson likelihood, which leads to a simpler
objective function. This is equivalent to assuming an additive noise Gaussian model for the data. This model is
reasonable because of the large SNR in clinical X-ray CT.11,12 The quadratic approximation leads to a penalized
weighted-least-squares (PWLS) estimate. With high photon ux, PWLS leads to negligible bias1 and the simpler
objective function reduces computation time.

For convenience, we write the negative log likelihood for transmission data

�L(�) =

NX
i=1

hi([A�]i) (9)

=

NX
i=1

n
�Yi log(bie

�[A�]i + ri) + (bie
�[A�]i + ri)

o
: (10)

Applying a second-order Taylor's expansion to hi(l) around some value l̂i yields
13:

hi(l) � hi(l̂i) + _hi(l̂i)(l � l̂i) +
�hi(l̂i)

2
(l � l̂i)

2 (11)

where _hi and �hi are the �rst and second derivatives of hi. Assuming Yi > ri, we can estimate the line integral with

l̂i = log

�
bi

Yi � ri

�
: (12)

Substituting this estimate into (11) gives the following approximation for hi:

hi(l) � (Yi � Yi logYi) +
wi

2
(l � l̂i)

2: (13)

The �rst term in (13) is independent of l and can be dropped. The weight is wi =
(Yi�ri)

2

Yi
. The resulting cost

function is

�q(�) =

NX
i=1

wi

2
([A�]i � l̂i)

2 + �R(�): (14)

The subscript q indicates that this objective function is based on a quadratic approximation to the log likelihood.
We retain the penalty term, which may be non-quadratic.

According to the optimization transfer principle,14,15 rather than minimizing the cost function in (14), one can
resort to replacing �q with a surrogate function that is easier to minimize at each iteration. The process is repeated
iteratively, using a new surrogate function at each iteration.

The surrogate we seek for �q is one that will make the cost function separable, so that all pixels can be updated
simultaneously. Towards that end, we exploit the convexity of the data-�t term in (14). Rewrite the line integral14,15

[A�]i =

pX
j=1

aij�j =

pX
j=1

�ij

�
aij
�ij

(�j � �nj ) + [A�n]i

�
(15)

where
pX

j=1

�ij = 1; 8i, �ij � 0: (16)
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By convexity,

([A�]i � l̂i)
2 �

pX
j=1

�ij

�
aij
�ij

(�j � �nj ) + [A�n]i � l̂i

�2

: (17)

The left hand side of (17) satis�es the conditions of the optimization transfer principle for a surrogate for the data-�t
term.4 We thus get the following separable surrogate:

Q(�;�n) =

NX
i=1

pX
j=1

�ij
wi

2

�
aij
�ij

(�j � �nj ) + [A�n]i � l̂i

�2

: (18)

A similar development can be pursued for the convex penalty term R(�) yielding a separable penalty surrogate,
denoted S(�;�n). We now seek to minimize the new separable global surrogate:

�(�;�n)
4
= Q(�;�n) + �S(�;�n): (19)

Since the surrogate is a separable paraboloid, it can be easily minimized by zeroing the �rst derivative. This
leads to the following simultaneous update algorithm:

�n+1
j =

2
666664�

n
j �

@�(�;�n)

@�j

����
�=�n

@2�(�;�n)

@�2j

�����
�=�n

3
777775
+

; j = 1; :::; p: (20)

The �rst and second derivatives of the surrogate are easily shown to be:

@�(�;�n)

@�j

����
�=�n

=
NX
i=1

aijwi([A�
n]i � l̂i) + �

@S

@�j

����
�=�n

(21)

@2�(�;�n)

@�2j

�����
�=�n

=

NX
i=1

a2ijwi

�ij
+ �

@2S

@�2j

�����
�=�n

(22)

To make the denominator in (20) small (and hence the step size large), we want f�ijg to be large. We also want
f�ijg to facilitate convergence, and to be independent of the current iterate (so that it can be pre-computed).3 One
convenient choice is

�ij =
aijPp
j=1 aij

: (23)

It is possible that better choices exist.

Note that both the numerator and denominator in (20) involve summations over sinogram indices (i.e. back
projection). In the spirit of similar work7,6 we use ordered subsets to accelerate convergence. Ordered subsets
subsample the sinogram in the angular domain. The back-projection process over the complete sinogram is replaced
with successive back-projections over these subsets. One iteration is complete after going through all of the subsets.
Ordered subsets accelerate algorithm convergence by a factor proportional to the number of subsets.7,2 We call this
method the ordered subsets penalized weighted least squares (OS-PWLS) algorithm for transmission tomography.
To summarize, the OS-PWLS algorithm ows as follows:

� for each iteration n = 1; :::; niter

{ for each subset S = 1; :::;M

� �old = �̂

� �̂j =

2
666664�̂j �

M
X
i2S

aijwi([A�̂]i � l̂i) + �
@S

@�j

����
�=�old

M
X
i2S

a2ijwi

�ij
+ �

@2S

@�2j

�����
�=�old

3
777775
+

j = 1; : : : ; p:
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{ end

� end

The next section presents a poly-energetic model and generalizes OS-PWLS accordingly.

3. POLY-ENERGETIC X-RAY CT

In the previous section, we ignored the poly-energetic nature of the X-ray beam and the energy dependence of
the attenuation coeÆcient. With a poly-energetic source, the detected photon ux along path Li is given by (1).
Nonlinear beam hardening artifacts result if one were to ignore the energy dependence of the measurements.16{18

The nonlinear behavior generally leads to a reduction in the attenuation coeÆcient. Thick bones also generate dark
streaks. In soft tissue, the values are depressed in a non-uniform manner, leading to what has been termed `cupping'.
In addition, bone areas can `spill over' into soft tissue, leading to a perceived increase in the attenuation coeÆcient.
In this section we develop a model for poly-energetic X-ray CT and develop an iterative algorithm that generalizes
OS-PWLS.

3.1. Poly-energetic Statistical Model for X-ray CT

We assume that the object is comprised of K known non-overlapping tissue types. We also assume that the tissue
class of each voxel is known. These classes can be determined by segmenting a FBP reconstruction that has been pre-
processed for soft-tissue beam hardening e�ects.18 For the kth tissue type, the attenuation coeÆcient is modeled
as the product of the energy-dependent mass attenuation coeÆcient mk(E) (cm

2=g) and the energy-independent
density �k(x; y) (g=cm3) of the tissue.19,18,20 Expressed mathematically,

�(x; y; E) =

KX
k=1

mk(E)�
k(x; y)rk(x; y) (24)

where rk(x; y) = 1 if (x; y) 2 tissue k and rk(x; y) = 0 otherwise.

We again denote the system matrix with A = faijg and make the following de�nitions:

Rk
4
= fset of pixels classi�ed as tissue type kg; (25)

rk =
�
rk1 ; : : : ; r

k
p

�
where

8<
:

rkj = 1; j 2 Rk

rkj = 0; otherwise,
(26)

ski (�)
4
=

Z
Li

�k(x; y)rk(x; y) dl; (27)

vi(�) = (s1i ; s
2
i ; :::; s

K
i ): (28)

We also assume that the mass attenuation coeÆcients fmk(E)g
K
k=1 of the K tissue types are known. Discretization

aside, from (1) the mean of the measured data along path Li is

E[Yi] =

Z
Ii(E)e

�

KX
k=1

mk(E)

Z
Li

�k(x; y)rk(x; y) dl

dE

=

Z
Ii(E)e

�

KX
k=1

mk(E)s
k
i (�)

dE

=

Z
Ii(E)e

�m0(E)vi(�)dE

4
= �Yi(vi(�)) (29)
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where m0(E) = [m1(E); :::;mK(E)]. We have expressed the measurements as a function of the vector vi which has as
its elements the line integrals of the K di�erent tissue densities. From knowledge of the X-ray spectrum, we tabulate
the values of �Yi(vi) and its gradient r �Yi(vi). In the discrete domain,

ski (�) =

pX
j=1

aijr
k
j �j : (30)

The goal of the algorithm is to estimate the density coeÆcient vector � = [�1; :::; �p]. Note that rather than estimating
K vector quantities of length p, each representing the density of one kind of tissue, the assumption of non-overlapping
tissue types enables us to keep the number of unknowns equal to p, as is the case in the mono-energetic model. This
is possible only if prior segmentation of the object is available. This can be obtained from a good FBP image, for
example.

3.1.1. Poly-Energetic Model Cost Function

We now setup the Poisson log likelihood in terms of the density � and the vector function vi. To get a quadratic
cost function, we again use the second-order Taylor's expansion.

Recall that the function �Yi(vi(�)) represents the expected value of the measurement Yi at the ith detector. Using
�Yi in (4) gives the following negative log likelihood:

�L(�) =

NX
i=1

hi(vi(�)) (31)

hi(vi(�))
4
= �Yi log

�
�Yi(vi(�)) + ri

�
+ (�Yi(vi(�)) + ri) (32)

The problem now is to �nd an estimate �̂ such that:

�̂ =
argmin
� � 0

�(�) (33)

where
�(�) = �L(�) + �R(�): (34)

The regularization term can be treated exactly as before or it can be modi�ed to avoid smoothing between di�erent
tissue types. For simplicity in this presentation we focus on the likelihood term.

Suppose we have an initial estimate of vi(�), denoted v̂i = (ŝ1i ; :::; ŝ
K
i ), obtained from forward projecting an initial

density image �̂. We expand hi(vi(�)) in a second-order Taylor series around v̂i:

hi(v) � hi(v̂i) +rhi(v̂i)(v � v̂i) +
1

2
(v � v̂i)

0r2hi(v̂i)(v � v̂i): (35)

Taking the �rst and second derivatives of hi(v) = �Yi log �Yi(v) + �Yi(v) yields the following:

rhi(v) =

�
1�

Yi
�Yi(v)

�
r �Yi(v) (36)

r2hi(v) =

�
1�

Yi
�Yi(v)

�
r2 �Yi(v) +

Yi
�Y 2
i (v)

r0 �Yi(v)r �Yi(v): (37)

The gradient rhi is a row vector and the Hessian operator r2 gives a K � K matrix of partial derivatives. To
simplify the algorithm and maintain the desirable property of separability, we assume that Yi is close enough to
�Yi(v̂i) for us to drop the �rst term on the right of (37). This also ensures that the resulting Hessian approximation
is nonnegative de�nite.
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In the Taylor expansion (35), the �rst term is constant and does not a�ect minimization, so we drop it. We now
have the following quadratic approximation to the negative log likelihood:

�L(�) � �q(�)
4
=

NX
i=1

rhi(v̂i)(vi(�)� v̂i) +
1

2Yi
(vi(�)� v̂i)

0r0 �Yi(v̂i)r
�Yi(v̂i)(vi(�)� v̂i) (38)

=

NX
i=1

rhi(v̂i)(vi(�)� v̂i) +
1

2Yi

�
r �Yi(v̂i)(vi(�)� v̂i)

�2
: (39)

Substituting (30) into (39) and expanding the vector inner product yields:

�q(�) =
NX
i=1

8<
:

KX
k=1

@hi

@ski
(v̂i)(s

k
i (�)� ŝki ) +

1

2Yi

"
KX
k=1

@ �Yi

@ski
(v̂i)(s

k
i (�)� ŝki )

#29=
; (40)

=
NX
i=1

8<
:

KX
k=1

rkhi(v̂i)
�
ski (�)� ŝki

�
+

1

2Yi

"
KX
k=1

rk
�Yi(v̂i)

�
ski (�)� ŝki

�#29=; ; (41)

where rk denotes the kth element of the gradient vector. To simplify the above equation, we make the following
de�nitions:

Zi
4
=

KX
k=1

rk
�Yi(v̂i)ŝ

k
i = r �Yi(v̂i)v̂i;

bij
4
=

KX
k=1

rk
�Yi(v̂i)aijr

k
j ;

B
4
=

KX
k=1

D
�
rk

�Yi(v̂i)
�
AD

�
rk
�
:

Recall that A = faijg is the geometrical system matrix. The matrix B = fbijg is a weighted system matrix, with
the weights expressed as the non-zero elements of a diagonal matrix D(�), to the left of A. The term Zi combines
constants independent of �. With the above de�nitions, expressing the line integrals explicitly in terms of the image
pixels yields the following form of the cost function:

�q(�) =
NX
i=1

8><
>:

KX
k=1

rkhi(v̂i)

0
@ pX

j=1

aijr
k
j (�j � �̂j)

1
A+

1

2Yi

0
@ pX

j=1

bij�j � Zi

1
A

2
9>=
>;+ �R(�): (42)

This cost function is convex, so we can easily derive a separable surrogate and an iterative update, along the lines of
Section 2. We state the results of the algorithm derivation below.

3.1.2. OS-PWLS Algorithm for Poly-Energetic CT

The separable paraboloidal surrogate for �q(�) is given by:

Q(�; �n) =

pX
j=1

NX
i=1

KX
k=1

rkhi(v̂i)aijr
k
j �j �

NX
i=1

KX
k=1

rkhi(v̂i)aijr
k
j �̂j

+

pX
j=1

NX
i=1

1

2Yi
�ij

�
bij
�ij

(�j � �nj ) + [B�n]i � Zi

�2

+ �S(�; �n) (43)

where we choose

�ij
4
=

bijPp
j=1 bij

:
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Setting the point of linearization of the Taylor series at �n, and evaluating the �rst and second derivative of Q at
the same point gives:

@Q(�; �n)

@�j

����
�=�n

=

NX
i=1

KX
k=1

aijr
k
jrkhi(v̂i) + �

@S

@�j

����
�=�n

(44)

@2Q(�; �n)

@�2j

�����
�=�n

=

NX
i=1

1

Yi

bij
2

�ij
+ �

@2S

@�2j

�����
�=�n

: (45)

Here is the overall algorithm:

� initialize with �̂.

� for each iteration n = 1; :::; niter

{ for each subset S = 1; : : : ;M

� compute ŝki =

pX
j=1

aijr
k
j �̂j for k = 1; : : : ;K, v̂i = [ŝ1i ; :::; ŝ

K
i ]

� compute �Yi(v̂i), its gradient vector r
�Yi(v̂i) and hi(v̂i)

� compute bij =

KX
k=1

rk
�Yi(v̂i)aijr

k
j

� compute dj =
X
i2S

1

Yi

b2ij
�ij

� compute N̂j =
X
i2S

KX
k=1

aijr
k
jrkhi(v̂i)

� compute

�̂j =

2
666664�̂j �

MN̂j + �
@S

@�j

����
�=�̂

Mdj + �
@2S

@�2j

�����
�=�̂

3
777775
+

j = 1; : : : ; p (46)

{ end

� end

We expect this algorithm to globally converge to the minimizer of the cost function �q(�) when one subset is
used, provided the penalty is chosen so that �q is strictly convex. When two or more subsets are used, we expect it
to be monotone in the initial iterations.

4. PRELIMINARY RESULTS

We now present results for the reconstruction algorithms outlined earlier. A preliminary comparison between FBP
and OS-PWLS shows the superiority of the latter in terms of noise reduction for mono-energetic X-ray CT. Poly-
energetic reconstruction results show that our model is e�ective in eliminating most beam hardening e�ects. Some
artifacts persist, perhaps due to de�ciencies in the Taylor approximation (35).

We assume a fan-beam system geometry with a source-to-detector distance of 1000 mm. The source-to-isocenter
distance is 500 mm and the object is centered at isocenter. The �eld of view is 500 mm and the fan angle is 90o. We
assume a at detector with a uniform response for the detector bins. The background ri is set to zero.
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A 

B 

Figure 1. Thorax phantom (left) and bone/water phantom (right)

Figure 2. FBP reconstruction (left) and OS-PWLS reconstruction (right)

4.1. Comparison with FBP

We compare reconstructions from FBP and OS-PWLS (5 iterations, 10 subsets). We use data from the simulated
thorax phantom shown on the left in �gure 1. The regions A (heart) and B (spine) ideally have uniform values and
we compare noise behavior therein.

The noisy sinogram has size 250 � 250 and the reconstructed image is 128 � 128 pixels at a resolution of 3:91
mm/pixel. The regularization term in OS-PWLS is a Huber penalty, with � = 120 and Æ = 0:0005. We deduced the
values for the parameters � and Æ by trial and error. They give comparable resolution to FBP. Figure 2 shows the
FBP and OS-PWLS images. The FBP image is used to initialize OS-PWLS.

We compute the standard deviation in regions A and B. The number of pixels used to compute the standard
deviation in each region is almost 10 � 10. Since the two reconstructions have comparable resolution, the noise
comparison is justi�ed. Overall, the results show superior noise reduction for the OS-PWLS case. After 2 iterations,
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Figure 3. Quadratic approximation to the Poisson likelihood (left) and e�ect of subsets on convergence (right)

the standard deviation is reduced by 60% in the heart and 49% in the spine. After 5 iterations, the standard deviation
is reduced by 78% and 53% in the heart and spine, respectively.

The plots in �gure 3 illustrate algorithm convergence. The left plot illustrates the fact that the quadratic
approximation to the likelihood is indeed a good one. On the right, we plot the objective function at every iteration
with and without subsets. Subsets clearly o�er signi�cant acceleration.

4.2. Beam Hardening Correction

To test our poly-energetic model algorithm, we use the density phantom shown on the right in �gure 1 and simulate
transmission data with a poly-energetic spectrum with mean of 68 keV and standard deviation of 16 keV. Four
high-density circles (`bone', � = 2 gm/cm3) are immersed in water (� = 1 gm/cm3), which is surrounded by air
(� = 0 gm/cm3). The phantom size is 128� 128 and we use the geometry described earlier. We simulate a noise-
free sinogram of size 150 � 150. The object is classi�ed into bone or soft tissue by segmenting the original image
using a density threshold of 1:2. The left image in �gure 4 is reconstructed with FBP without any beam hardening
correction. The right image in the same �gure illustrates the result of using the mono-energetic OS-PWLS algorithm
with poly-energetic data. Figure 5 shows the image reconstructed with the algoritm derived from the poly-energetic
model. Both OS-PWLS results were reconstructed using 10 iterations and 4 subsets. OS-PWLS.

The (FBP and OS-PWLS) images reconstructed without correction exhibit typical beam hardening artifacts.
There is an overall reduction in the values of the reconstructed density for both high and low-density materials.
Also, dark streaks caused by the high density circles dominate the central region of the image. The poly-energetic
model OS-PWLS adequately addresses the reduction in density values. Some streaks persist, however, and we
conjecture that they maybe due to the Taylor approximation.

With the knowledge of the mass attenuation coeÆcient, one can scale the resulting density images to obtain
attenuation coeÆcient information at any energy using (24).

5. CONCLUSIONS

We described a statistical iterative reconstruction method for X-ray CT and illustrated that it is superior to FBP
in terms of noise reduction. The method is also generalized for energy dependent X-ray attenuation and produces
images with signi�cantly reduced beam hardening artifacts for a bone and soft tissue object.

The beam hardening artifacts were not completely eliminated. This perhaps is due to the limitations of the
Taylor approximation in (35) and is the subject of further investigation.

Future work will include applying the poly-energetic approach to objects with three or more tissue types. Also,
the current approach requires prior knowledge of the spatial distributions of the di�erent tissues. Although this can
be approximated from a good FBP image, it is desirable to jointly estimate the object density and tissue classes.21
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No Beam Hardening Correction

Figure 4. Uncorrected FBP (left) and OS-PWLS (right) images

Figure 5. Corrected OS-PWLS reconstruction

It is also necessary to carry out a comparison between our method and more conventional post-processing beam
hardening correction algorithms.18
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