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A b s t r a c t .  PET measurements are usually precorrected for acciden- 
tal coincidence events by real-time subtraction of the delayed window 
coincidences. Randoms subtraction compensates in mean for accidental 
coincidences but destroys the Poisson statistics. We propose and analyze 
two new approximations to the exact log-likelihood of the precorrected 
measurements, one based on a "shifted Poisson" model, the other based 
on saddle-point approximations to the measurement probability mass 
function (pmf). The methods apply to both emission and transmission 
tomography; however in this paper we focus on transmission tomogra- 
phy. We compare the new models to conventional data-weighted least 
squares (WLS) and conventional maximum likelihood (based on the or-  

d i n a r y  Poisson (OP) model) using simulations and analytic approxima- 
tions. The results demonstrate that  the proposed methods avoid the sys- 
tematic bias of the WLS method, and lead to significantly lower variance 
than the conventional OP method. The saddle-point method provides a 
more accurate approximation to the exact log-likelihood than the WLS, 
OP and shifted Poisson alternatives. However, the simpler shifted Pois- 
son method yielded comparable bias-variance performance in the simu- 
lations. The new methods offer improved image reconstruction in PET 
through more realistic statistical modeling, yet with negligible increase 
in computation over the conventional OP method. 

1 I n t r o d u c t i o n  

In P E T  measuremen t s ,  acc identa l  coincidence (AC) events are a p r i m a r y  source 
of  backg round  noise. AC events occur when pho tons  t ha t  arise f rom sepa ra t e  
ann ih i l a t ions  are mis t aken ly  regis tered as having  ar isen f rom the same  annih i la -  
t ion.  In  t r ansmiss ion  scans the  pho tons  t h a t  o r ig ina te  f rom different t r ansmis s ion  
sources ( rod  or sector  sources ro t a t i ng  a round  the  pa t i en t )  cause AC events.  The  
ra t io  of  t o t a l  AC events  to "true" events is usual ly  smal l  in t r ansmiss ion  scans 
c o m p a r e d  to  emiss ion scans. Nevertheless,  the  effect of  AC events  becomes  se- 
vere for regions of high a t t e n u a t i o n  coefficients, because  p ro jec t ions  t h rough  
such regions resul t  in low t rue  coincidence rates .  These  low count  ra tes  can be- 
come c o m p a r a b l e  to  AC rates .  Thus  es t ima tes  of  the  AC events  are needed.  One 
c a n  use the  "singles" m e t h o d  [1] for this  purpose ,  however th is  app roach  is not  
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widely used because of the necessity for additional hardware and moreover usu- 
ally singles rate vary during data acquisition [9]. Therefore, in most PET scans, 
the AC rates are estimated using delayed-window coincidences and the data are 
precorrected for AC events by real-time subtraction. Real-time subtraction of 
delayed window coincidences compensates in mean for AC events but destroys 
the Poisson statistics [7]. To avoid this problem, one needs to maintain the trans- 
mission and randoms measurements as two separate sinograms [8, 10]. However 
even if a PET system allows one to collect randoms (delayed coincidences) sino- 
gram separately, this process would double the storage space for the acquired 
data. So in practice most PET centers collect and archive only the randoms 
precorrected data. We recommend separate acquisition and storage of delayed 
coincidences wherever feasible. The purpose of this paper is to provide accurate 
statistical methods for PET measurements with pre-subtracted delayed coinci- 
dences. Although our analysis and proposed models apply to both emission and 
transmission tomography, in this paper we focus on transmission tomography. 

The exact log-likelihood for randoms precorrected data is intractable, so we 
describe and compare several approximations. For completeness, we first review 
the data-weighted least squares (WLS) method and the log-likelihood for the 
ordinary Poisson (OP) model for PET measurements. Then, we introduce a new 
"shifted" Poisson (SP) model [14] which matches both the first and second-order 
moments of the model to the underlying statistics of the precorrected data. 
We derive approximate analytic expressions for the variance of the different 
estimators and use the Cauchy-Schwarz inequality to show analytically that the 
proposed SP method yields lower variance than the OP method. 

Secondly, we introduce a new saddle-point (SD) approximation for the pmf of 
precorrected measurements. The corresponding log-likelihood function is shown 
to have better agreement with the exact log-likelihood than the previous approx- 
imations. We apply the fast grouped-coordinate ascent algorithm [3] (with a few 
simple modifications) to maximize the proposed saddle-point objective function. 

We also show results of 2D simulations showing that the WLS method 
leads to systematic bias and the OP method leads to higher variance than SP 
and SD methods. We also observe that SP and SD methods yield equivalent 
bias/variance performance whereas SP requires less computation. The contri- 
bution of this work lies in the fact that the proposed methods offer significant 
improvements in accuracy with minor computation increase. 

2 M e a s u r e m e n t  M o d e l  

In conventional PET scans, the data are precorrected for AC events by real- 
t ime subtraction of the delayed-window coincidences [7]. The system detects 
coincidence events during two time windows: "prompt" window and "delayed" 
window. For each coincidence event in the prompt window, the corresponding 
sinogram bin is incremented. The statistics of these increments should be well 
approximated by a Poisson process. However, for coincidence events within the 
second delayed window, the corresponding sinogram bin is decremented, so the 
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resultant "precorrected" measurements are noi Poisson. Since p rompt  events 
and delayed events are independent Poisson processes, the precorrected measure- 
ments correspond to the difference of two independent Poisson random variables 
with variance equal to the sum of the means of the two random variables. In 
other words, randoms subtraction compensates in mean for AC events, but it 
also increases the variance of the measurement by an amount  equal to the mean 
of AC events. 

Let Y y_ = []I1, . . . ,  YN] ~ denote the vector of precorrected measurements.  The 
precorrected measurement  for the nth coincidence detector pair is: 

]in • y f r o m p t  __ yndelay, (1) 

where yf~ompt and yfday  are the number of coincidences within the p rompt  
and delayed windows, respectively. Let # = [ # I , . . . , # M ]  I denote the vector of 
unknown linear at tenuation coefficients. For transmission scans, we assume that  
yprompt and yf~l~y are statistically independent Poisson random variables with 
means ~P and -d y,~ respectively as: 

E { Y  pr~ } = ynP(/.t) ----- bn e - l " ( " )  + r n (2) 

E{vndelay} -m- -d 

where l~(#) = ~__~ a,j#y is the total at tenuation between nth detector pair. 
The anj ~_ 0 factors have units of length and describe the tomographic system 
geometry. The b~ > 0 factors denote the blank scan counts and the r~ > 0 
factors denote the mean of AC events. 

Since yprompt and ydel~y are statistically independent and Poisson: 

E{Y.} 9.~(,) -d = - Yn = b- e-z"(~), 

Var{Yn} = 9P(#) + 9 d = b,~e -t"(") + 2r. .  

3 E x a c t  L o g - L i k e l i h o o d  

Let y - -  [Yl , . . . ,  YN] I be a realization of statistically independent random vari- 
ables Y_ given in (1). Under the usual assumption of independence between dif- 
ferent rays, one can express the exact distribution of Y_ using total  probability: 

N ov 
P (Y-  = Y; #)  ---- 1-~ E p ( y p r o m p t  __ Yn -t- m;  #)  p ( y d e l a y  = m )  

n----i m=O 

= I I  (yo + m)! m! ' (4) 
n----1 rn=l-y,~l + 

where LxJ+ -- x if x > 0 and is 0 otherwise. The exact log-likelihood for # 
becomes 

L(#) - -  log P(Y__ = y; #) 

,~=1 ra=L_y~j + (Yn -'Fm)! m! ] 
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Since image reconstruction is ill conditioned, usually one includes a roughness 
penalty R(#) in the objective function. From the Bayesian point of view, this 
roughness penalty can be thought as a log-prior for #. Combining this penalty 
with the log-likelihood yields a penalized-likelihood objective function: 

+(,)  = L(,) - R ( , )  

The goal is to estimate p by maximizing qS(#) over the nonnegative cone: 

(6) 

fi -- arg max O(/t). (7) 
#>_o 

Since the exact log-likelihood function (5) contains infinite summations, the 
above maximization is intractable. The following two sections develop tractable 
yet accurate approximations to L(#). 

4 S i m p l e  A p p r o x i m a t i o n s  t o  t h e  E x a c t  L o g - L i k e l i h o o d  

In this section, we first review the conventional approximations to L(#): the WLS 
model and the conventional OP model. Then we introduce the SP model [14]. 

4.1 Quad ra t i c  Approx ima t ions  

The quadratic approximation to the exact log-likelihood function results in the 
data-weighted least squares objective function LWLS(#) [12]: 

N 
i _i 

^2' LWLS(#) = ---~ ,=l, y.>o c~. (8) 

(b_~_) is the method-of-moments estimate of the line the where [~ = log y~ integral of 
^ 2 is an estimate of attenuation l~ (#) and r 2 = y~+2r~y~ . The nth weighting factor (r~ 

the variance of l~(y~) based on a second-order Taylor expansion around In(Yn). 
This weighting is critical for the WLS method. The errors corresponding to 
projections with large values of y~ are weighted more heavily. These projections 
pass through less dense objects and consequently have higher SNR values. 

Alternatively, the choice of en ~2 = 1 results in the unweighted least-squares 
(ULS) approach, which leads to much higher variance. 

4.2 Ord ina ry  Poisson  (OP)  Approx ima t ion  

The conventional approach is to assume (approximate) that N {Y~},~=I are dis- 
tributed as independent Poisson random variables with mean ~ = b,~e -z"(u), 
i . e . :  

N _ y~ 

P(Y---= Y;#) ~ H [Y'(#)] e-Y~(") 
.=1 (9) 
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The log-likelihood corresponding to this OP approximation is: 

N 

L o p  (#) = v,, log 9 .  - 9 .  

N 

= E y~ l~ - b~e-l"(")' 
n = l  

disregarding the constants independent of #. 

(10) 

4.3 Shi f ted  Poisson  (SP)  Approx ima t ion  

A better approach is to match both the first and second order moments by 
approximating the quantities {Y~ + 2r~}~=1 as having Poisson distributions with 
means {~)~(#) + 2r~}. This model leads to our proposed SP objective function: 

N 

Lsp(t*) = E ( Y ~  + 2r.) log(p,(#) + 2rn) - (9.(#) + 2r~), 
n----1 

N 

= ~ ( y ~  § 2r~)log(b=e-"(") + 2r~) - (b,~e -z~(#) 4- 2r,O. 
n - : l  

Note that although both LWLS and Lsp match two moments, in WLS the second 
moment of l~(Yn) is "fixed" independently of #, whereas in the SP model the 
moments vary with ~ ( # )  appropriately. 

We have previously shown empirically that this model better agrees with the 
exact log-likelihood than either the WLS or 0 P  model [14]. Next we provide an 
analytical result that corroborates those results. 

4.4 Variance Analysis  

To analyze the variance of each estimator, we applly the analytic approximations 
suggested in [2]. If ? = E{Z}, then using a first order Taylor expansion of p(Y) 
results in the following approximation to the covariance of/~ [2] : 

Cov{/~} ~ P Cov{Y} pT (11) 

where P = [-V2~ Vine(p, 1~) and/~ = argmax~(#, l?). 
# 

We apply (11) to find approximate expressions for the variance of the maxi- 
mum likelihood estimators:/~op = arg maxLop(/t)  and f~sP = arg maxLsp(p) .  

# # 

For this purpose we considered a highly simplified version of transmission to- 
mography where the unknown is a scalar parameter, i.e. p = 1. This simplified 
problem provides insight into the estimator bias and variance without the undue 
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notation of the multi-parameter case. The objective functions used here can be 
expressed in the form: 

N 

r = E h.(#,Y).  
n = l  

Since the measurements are statistically independent, for the scalar problem the 
above approximation (11) reduces to: 

n=l ~ ] .=1 [ E - ~ :  j Vat{in}.  (12) 

With some tedious algebra, one can derive the following approximate expressions 
for variance of flop and f~sp: 

Var{/)op} ~ EnN=I a2n(fln(#t) + 2rn) 

[ ~  a~fln(~__t)2_~ ] - 1  (14) 
Var{ps~}  ~ . = 1 9 n ( U ' ) + 2 r n J  ' 

where #t denotes the true attenuation coefficient value and 9n(#) = b.e -a"" .  
2 - 2 (Yn(#t) + 2rn), one can rewrite (13) and Letting s .  = anyn(#t ) and tn = an 

(14) as: 

2 1 ( E n  sn) ~ 1 v "  sn 
Var{pop} ~ ~ n  tn ' Var{psp} ~ ~ ~-n 

- -  8 n  
Let a_, _b E ~n  such that an - v~--~, b. = x /~ .  Using Cauchy-Schwarz inequality: 

laT-bl < 1I~-1[2 IIb_ll2, 

- ( E ~  ~n) 2 , 

so that  within the accuracy of (11): 

Var{l~sp} ___ V a r { / ) o p }  , (15) 

with equality if and only if rr~/fln ratios are equal. For PET systems, these ratio 
terms are never constant, and in fact can be quite disparate. Thus we have shown 
the following result: the variance of the SP estimator will always be lower than 
the variance of the OP estimator. 
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5 S a d d l e - p o i n t  ( S D )  A p p r o x i m a t i o n  

An alternative to the previous approximations for the exact pmf (4) of precor- 
reeted measurements is to make second order Taylor series approximations in 
the z-transform domain (i.e. on the probability generating function) and then to 
carry out the inverse transform. For this purpose, we have adopted the saddle- 
point method [5, 13]. 

Let U ,-~ Poisson(~), V ,-~ Poisson(fl) and Y = U - V  with pmf's  Pu(k ) ,  P y ( k )  
and Py (k) respectively. The generating function of Y is: 

k 

where G u ( z )  = exp(a(z  - 1)) and G v ( z )  = exp(fl(z - 1)). In terms of the gen- 
erating function, P y ( k )  is given by the contour integral 

= e e~(z) dz, (16) P y ( k )  = ~ + ~ j  + 

where j = ,/-L--f and the contour C + must lie in the region of convergence of 
G y ( z )  and enclose the origin, and 

~k(z) = - ( k  + 1)log(z) + a ( z -  1) + f l ( z  -1 - 1) 

d e ~ ( z )  _ e ~ ) ( z )  - ( k  + 1 _ _ _ _  !) + ~ _ 
dz z z 2 

d2r 2 _ ~)~2)(z) _ (k z 2+ 1) + z-3"2fl 

We observe that ~k(z) (and hence the integrand e ~k(z)) is convex for z E N, 
z > 0 and k > O. The integrand has a minimum at xo E IR, xo > 0 which is called 
the saddle point, i.e.: 

~ l ) ( X o  ) = .  (k + 1) 
Xo 

which yields 

fl 
- - + a  x2 ~ 0 a n d x o > O  

( k + l ) + v k  2fl 
~ o -  - ( 1 7 )  

2a - @ + l ) + v ~ '  

2 (2) where vk -- XoG (xo) -- V(Ikl + 1)2 + 4~d.  
Following [5], we deform the contour C + in (16) into a vertical line through 

saddle point Xo, as z = Xo + jy,  - c o  < y < co and a semicircle around the 
left half plane at infinity. This contour is permissible for k _> 0, since the only 
singularities of the integrand are at z = 0 and z = ec + j 0 .  If Iz] --~ co for N[z] < 
Xo then e e~(*) ~ 0. Hence the contribution of the semicircle around the left half 
plane at infinity vanishes and (16) reduces to 

/? 1 e 't~(~~ dy. (18) 
P y ( k )  = G .o 
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Expanding  r  in Taylor's series around z = Xo, one obtains: 

:exp[q)~(Xo)+lg)(2)(Xo)(Z-Xo)2][l+'I~a)-(6x~ 

since #~l)(To) -~. 0. The  integral (18) becomes  

-- e2 k . . . .  1 + - - ( j y ) a  + , . .  dy 
2~r ~ 6 

e~(~o) x o~ e~-,~-~ 
- 12rr(p(2)(a;o)[1 + R] - ~ [1 + _R] (19) 

where 

R - -  

Using the algorithm by Rice [11], the residuum R can be written as: 

1 -5  + 1 2 ~ -  9(1+ r]) + O  
R - 24(k + 1) (1 + 

where • = ~ .  The residuum asymptotically goes to zero as k --+ oo and 

more impor tant ly  we have observed empirically that  the approximation error is 
negligibly small even for very small values of k. Neglecting R in (19) results in 
our saddle-point approximation for the pmf  Py(k) as: 

xo~e,k-~-P Py(k) "~ P~(k) - ~ , k > O. (20) 

For k < 0 the integrand in (16) is not guaranteed to be convex for z > 0. 
Moreover, the integrand does not v~nish along the semicircle around the left half  
plane at infinity. Thus we use the change of variables w = 1/z in (16), so that:  

/ c  1 Jc e~k(~~ (21) 1 wk_lGy(w_l)dw = ~ J  + = FhT j + 

where 

43~(w) = (k - 1) log(w) + ~(w -1 - 1) +/3(w - 1). 

Following similar steps as the case for k > 0, the saddle point approximation for 
k < 0 can be shown to be : 
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where 

- ( k  - 1) + vk 2o~ 
W 0 ~ 2fl ( k -  1) + vk" 

Thus, combining (20) and (22) the saddle-point (SD) approximation for the 
log-likelihood (5) is: 

N 

Zs~(p) : ~ log P~(y~; ~(p)) 
n-----1 

N 

: ~ < ( p )  (23) 
n----1 

where 

h~(p) = 
\ y ~  + 1 + ~ ( p )  - 9~(p) + ~ ( p )  - g l o g ~ ( p ) ,  y~ _> 0 

(24) ( 9~(p) + 1 

yo log - + log < 0 
,,,~,~ - 1 + , . , ,~(p)]  ~ 

with u,(ff) = x/(lY,~] + 1) 2 + 4 ( ~ ( p ) +  r,)r~ and disregarding constants inde- 
pendent of p. 

Note that this approximation is considerably simpler than the exact tog- 
likelihood (5), since no infinite sums or factorials are needed. Nevertheless, it 
is remarkably accurate as shown below. Also, one can observe that  as r~ ---, 0, 
h~(#) -+ [y,~ log 9 , , (P ) -  0N (P)] = Lop(p) (to within constants independent of 
p), which is expected because for r~ = 0 the ordinary Poisson model is appro- 
priate. 

Fig. 4 shows a representative comparison of the exact log-likelihood function 
and the approximations for noiseless data as a function of #. Although Lsp(p) 
fits the exact log-likelihood better than LWLS(#) and Lop(p), clearly Lsz)(ff) 
has the best agreement with the exact log-likelihood L(p). In a large number 
of additional comparisons not shown due to space considerations, we have ob- 
served that  LSD (#) agrees remarkably well with the exact log-Iikelihood L(#) 
and clearly better than the other models. 

6 2 D  S i m u l a t i o n s  

To study bias and variance properties of the estimators based on the above 
approximations, we performed 2D simulations. For # we used the synthetic at- 
tenuation map shown in Fig. 1, which represents a human abdomen with linear 
attenuation coefficient 0.0096/mm. The image was a 128 by 64 array of 4.5 
mm pixels. We simulated a PET transmission scan with 192 radial bins and 
256 angles uniformly spaced over 180 degrees. The anj factors correspond to 6 
mm wide strip integrMs on 3 mm center-to-center spacing. The b,~ factors were 
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generated using pseudo-random log-normal variates with standard deviation of 
0.3 to account for detector efficiency variations, and scaled so that  ~ n  9~ was 
one million counts. The rn factors corresponded to a uniform field of 5% ran- 
dom coincidences. Pseudo-random transmission measurements were generated 
according to (2) and (3). For regularization, we used the modified quadratic 
penalty [4], which matches the spatial resolution of different estimators. 

We generated 100 independent realizations of the transmission measure- 
ments. For each measurement realization, an estimate of the attenuation map was 
reconstructed using 20 iterations of the grouped-coordinate ascent algorithms [3] 
applied to the objective functions (8), (10), (11) and (23). We computed both 
the sample mean and sample standard deviation images for all methods. 

Fig. 2 shows horizontal profiles through the sample mean images. These pro- 
files show that WLS is systematically negatively biased, whereas the OP, SP and 
SD models are free of systematic bias. (The overshoot at the edges is due to 
the quadratic penalty used in the reconstruction. Even with noiseless data, this 
blurring effect will still be present.) 

To study the variance, we computed the ratio of sample standard deviation 
images of different estimators, over all interior pixels. Fig. 3 shows the histogram 
of the standard deviation ratios. The OP model yields, on the average, 20% 
higher standard deviation than the both SP and SD models. In other words, to 
achieve the same noise level, the OP method would require about 40% greater 
scan time. 

Although the standard deviation values could be decreased by using higher 
count rates, the ratio of standard deviations of different estimators will remain 
approximately same for higher count rates [2]. 

We performed additionM simulations using the thorax phantom with nonuni- 
form attenuation [14]. The results were comparable. 

7 E s t i m a t e s  o f  t h e  A C  r a t e s  (~,~) 

One needs to know the mean of the AC events (rn) in order to compute Lsp(p) 
and LSD(#). Since the r,~ terms are not readily available from the real (precor- 
rected) data, some estimates of the randoms must be used. 

Fig. 5 displays the scatter plot of real delayed coincidence sinograms for blank 
scan and transmission scan data. Each point in the plot corresponds to a specific 
detector pair. The similarity of both delayed coincidence measurements suggests 
that one can acquire the delayed coincidence events during the blank scan and 
use them (after properly normalizing for different scan durations) as an estimate 
of the AC rates for transmission scans performed on the same PET system. 
We performed additional simulations (not shown) in which we substituted a 
simple constant for rn rather than the true values into the SP and SD objective 
functions. This approximation resulted in only a slight increase in the standard 
deviation (around 2%) of the SP and SD estimates without any systematic bias. 
These results demonstrate that both the SP and SD approximations are robust 
to errors in the rn estimates. 
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8 D i s c u s s i o n  

AC events are a primary source of background noise in positron emission tomog- 
raphy. After the AC events are precorrected, the measurement statistics are no 
longer Poisson. For transmission scans, WLS method and ML method based on 
ordinary Poisson (OP) model lead to systematic bias and higher variance, respec- 
tively, compared to our proposed shifted Poisson (SP) model for measurement 
statistics which matches both the first and second-order moments. 

We proposed a new approximation for the exact log-likelihood which is de- 
rived using saddle-point approximation to the pmf of precorrected measure- 
ments. Both the analysis of the error term and the log-likelihood ptots and 1D 
simulations (not shown due to space considerations) show that the new approx- 
imation agrees very closely with the exact log-likelihood compared to previous 
approximations. 

2D simulations show that both SP and SD models perform very closely. They 
are both free of systematic bias and yield reduced standard deviation (about 
20%) compared to OP model. As we observed very close agreement between exact 
log-likelihood and SD approximation both from the log-likelihood plots and 1D 
simulations, we were expecting SD method to perform better than SP method. 
However, for the 2D simulations reported here, the SP method performed as well 
as SD method. Thus the SP method is particularly attractive since it requires 
comparable computation to OP method but has reduced variance. We plan to 
compare the SD and SP methods to the uniform Cramer-Rao bounds [6]. 

The high correlation between delayed coincidence events of blank and trans- 
mission scans suggest that one can use AC rates estimated from blank scans. We 
have seen that even using constant AC rates in 2D simulations resulted in only 
a slight increase in the standard deviation without any systematic bias. Thus 
the proposed SP and SD methods are robust enough for practical use. 

We plan to apply the proposed method to emission tomography, where even 
higher AC rates than the transmission tomography are common, particularly 
in 3D PET.  Moreover, in 3D PET,  very large data sets are likely to preclude 
separate acquisition of random coincidences, so the real-time subtraction meth- 
ods are usually used for emission scans. So the potential benefit of the proposed 
models should be even greater. 
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Fig. 2. Horizontal profile through the sample mean images for abdomen phantom. 
The WLS method has a systematic negative bias. The ordinary Poisson (OP), shifted 
Poisson (SP) and saddle-point (SD) methods are free of this systematic negative bias. 
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Fig. 3. Histogram of the ratio of standard deviations in reconstructions of the abdomen 
phantom. The ordinary Poisson (OP) method yields, on the average, 20% higher stan- 
dard deviation than the proposed shifted Poisson (SP) and sa~tdle-point (SD) methods. 



203 

0 

-0.5 

-1 

-1.5 

-2 

3 -2.5 

o ~ I 
"J 3 

-3.5 

-4  

-4.5 

-5  
.0 

x ~ 0  0 . ~  x 
x I 0 "~ x 

x ~ / 0  =~ x 

x J ~ O  ~ x 

x s  ~ x 

x /0 ~ x 

0 ~. x 

0 ~ x x 

. ~ 0  .~ x 

f O .~ x 

/o i x 
I �9 �9 Ord, Poisson 

0 0 Shifted Poisson x 
x x W L S  x 

I + + Saddle-p0int x 
~r [ Exact 

x 

"~ I I i I I x 

0.5 1 1:5 2 2.5 3 3.5 4 
Line Integral /n(p) 

Fig .  4. Representative comparison of exact log-likelihood function with objective func- 
tions of different models as a function of line integral l~(#). Randoms rate is 5%. The 
proposed saddle-point approximation agrees with exact log-likelihood significantly bet- 
ter than the other models. 
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Fig .  5. Scatter plot of delayed coincidence event of blank and transmission scans. 


