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Abstract—No convergent ordered subsets (OS) type image re-
construction algorithms for transmission tomography have been
proposed to date. In contrast, in emission tomography, there are
two known families of convergent OS algorithms: methods that use
relaxation parameters [1], and methods based on the incremental
expectation-maximization (EM) approach [2]. This paper gener-
alizes the incremental EM approach [3] by introducing a general
framework, “incremental optimization transfer.” The proposed
algorithms accelerate convergence speeds and ensure global con-
vergence without requiring relaxation parameters. The general
optimization transfer framework allows the use of a very broad
family of surrogate functions, enabling the development of new
algorithms [4]. This paper provides the first convergent OS-type
algorithm for (nonconcave) penalized-likelihood (PL) trans-
mission image reconstruction by using separable paraboloidal
surrogates (SPS) [5] which yield closed-form maximization steps.
We found it is very effective to achieve fast convergence rates by
starting with an OS algorithm with a large number of subsets
and switching to the new “transmission incremental optimization
transfer (TRIOT)” algorithm. Results show that TRIOT is faster
in increasing the PL objective than nonincremental ordinary SPS
and even OS-SPS yet is convergent.

Index Terms—Incremental optimization transfer, max-
imum-likelihood estimation, penalized-likelihood estimation,
statistical image reconstruction, transmission tomography.

I. INTRODUCTION

ORDERED SUBSETS (OS) algorithms, also known as
block iterative or incremental gradient methods, have

been very popular in the medical imaging community for
tomographic image reconstruction due to their remarkably fast
“convergence” rates [1], [5]–[16]. For example, ordered subsets
expectation-maximization (OS-EM) provides an order-of-mag-
nitude acceleration over its non-OS counterpart, EM in the
context of emission tomography [6]; and OS convex (OSC)
algorithms achieve extremely high acceleration factors in X-ray
CT imaging where the number of projection views is very
large [13], [16]. The incremental gradient type algorithms are
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also found in convex programming [17]–[20]. The ordered
subsets (or incremental) idea is to perform the update iteration
incrementally by sequentially (or sometimes randomly [18],
[19]) using a subset of the data. Row-action methods [21]
including algebraic reconstruction techniques (ART) [22], [23]
can also be viewed as OS type algorithms in which each subset
corresponds to a single measurement.

The OS algorithms apply successfully to problems where
an objective function of interest is a sum of a large number
of component functions. Because of the assumed statistical
independence of tomographic data, such sums arise in statistical
tomographic reconstruction problems including penalized-like-
lihood (PL) [equivalently, maximum a posteriori (MAP)] or
maximum-likelihood (ML) reconstruction. Typically, the OS
methods partition the component functions into several subsets,
each corresponding to a subset of the projection views, and
each subset defines a subobjective function.

Roughly speaking, if the subset gradients are suitably bal-
anced, then the gradient approximation can be quite reasonable
when the iterates are far from a maximizer. Thus, OS methods
initially accelerate convergence in the sense that less compu-
tation is required to achieve nearly the same level of objective
increase. However, ordinary (unrelaxed) OS algorithms such as
OS-EM [6], RBI-EM [8], and OS-SPS (or OSTR in a context of
transmission tomography) [5] generally do not converge to an
optimal solution but rather approach a suboptimal limit cycle
that consists of as many points as there are subsets. (An “op-
timal” solution means a maximizer of the ML or PL objective
function throughout this paper.) In fact, due to their subset-de-
pendent scaling (or preconditioning) matrices [1], OS-EM and
RBI-EM in their original forms [6], [8] usually do not converge
to the optimal point even if relaxed.

Convergence to an optimal solution is important for any
algorithm for optimization problems, particularly in medical
applications where reliability and stability are essential. It is
more critical for PL (or MAP) reconstruction than for ML
because one usually does not run ML reconstruction algorithms
until convergence; therefore, for popular OS-EM in emission
imaging, convergence may not be a practical issue. However,
for PL reconstruction, the image shown in Fig. 4(e), which
corresponds to one point of a limit cycle generated by an OS
algorithm, looks different from the PL solution image shown
in Fig. 4(a) (see Section IV-A for details). Nonconvergent OS
algorithms can lead to higher variance as the number of subsets
increases as shown in Section IV-B (see also [13], [16]). It is
desirable to achieve both fast initial convergence rates (typical
of OS algorithms) and global convergence. There have been
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three known families of convergent incremental (or OS type)
algorithms: methods that use relaxation parameters, methods
based on the incremental EM approach, and incremental aggre-
gated gradient (IAG) methods.

Relaxation parameters are used widely to render OS algo-
rithms convergent [1], [7], [10]–[12], [14], [17]–[19], [24]–[26].
Suitably relaxed algorithms can be shown to converge to an op-
timal solution under certain regularity conditions1 [1]. However,
since relaxation parameters should be scheduled to converge
to zero to ensure global convergence, relaxed OS algorithms
have slow asymptotic convergence rates. Finding good relax-
ation parameters (in terms of convergence rates) may require
some experimentation and trial-and-error; as a rule of thumb,
for properly scaled OS algorithms such as modified block se-
quential regularized expectation maximization (BSREM) and
relaxed OS-SPS, one should initialize the relaxation parameter
close to unity and decrease it gradually as convergence to a limit
cycle nears [1]. One may optimize a few initial relaxation pa-
rameters by training when a training set is available for a partic-
ular task [7], [23]. Or one could use the dynamic stepsize rule
in [18], [19], but the method needs to compute the objective
value at every update, which is computationally expensive in
tomographic reconstruction problems. Alternatively, to achieve
convergence, one could decrease the number of subsets as itera-
tions proceed or could use hybrid methods that combine OS and
non-OS algorithms [28]. However, the schedules for decreasing
the number of subsets and the parameters for the hybrid algo-
rithms are as inconvenient to determine as relaxation parameters
for relaxed OS algorithms.

Incremental EM algorithms do not require user-specified re-
laxation parameters [3]. They are convergent yet faster than or-
dinary EM algorithms although slower initially than nonconver-
gent OS-EM type algorithms [2], [29], [30]. Such incremental
EM algorithms have been applied to emission tomography [2],
[15], [30], [31].

Recently, Blatt et al. proposed a convergent incremental
gradient method, called incremental aggregated gradient (IAG),
that does not require relaxation parameters [32]. The IAG
method computes a single subset gradient for each update but
aggregates it with the stored subset gradients that were com-
puted in previous iterations. The use of the aggregated gradient
to approximate the full gradient of the objective function leads
to convergence.

In this paper, we generalize the incremental EM algorithms
by introducing an approach called “incremental optimization
transfer”; this is akin to the generalization of the EM algorithms
[33] by the optimization transfer principles [4]. In fact, the
broad family of “incremental optimization transfer algorithms”
includes the ordinary optimization transfer algorithms (e.g.,
EM), also referred to as MM (minorize-maximize or ma-
jorize-minimize) algorithms in [34], as a special case where the
objective function consists of only one subobjective function.
Incremental optimization transfer algorithms show faster con-
vergence rates than their nonincremental counterparts like EM
[2], [3], [30].

1One of these conditions is the (strict) concavity of the objective function,
which excludes the nonconcave transmission tomography problem [27].

Incremental optimization transfer is a general framework
in which one can develop many different algorithms by using
a very broad family of application-dependent surrogate func-
tions. These methods are particularly useful for large-scale
problems where the objective function is expressed as a sum of
several subobjective functions. In this paper, we focus on PL
image reconstruction for transmission tomography, which is a
challenging nonconcave maximization problem. We propose a
particular incremental optimization transfer algorithm that uses
separable paraboloidal surrogates (SPS) [5]. Such quadratic
surrogates simplify the maximization. In contrast, the standard
EM surrogates for transmission tomography do not have a
closed-form maximizer in the “M-step” [35].

The proposed “transmission incremental optimization
transfer (TRIOT)” algorithm is convergent yet converges faster
than ordinary SPS [5]; it can be further accelerated by the
enhancement method in [36] or by initializing through a few
iterations of OS-SPS (see Section III for details). It is paral-
lelizable, and the nonnegativity constraint is naturally enforced.
In addition, it is easily implemented for system models that
use factored system matrices [37], [38] whereas pixel-grouped
coordinate ascent based methods require column access of the
system matrix [39]–[42].

Section II describes the incremental optimization transfer al-
gorithms in a general framework and discusses their conver-
gence properties. Section III develops incremental optimization
transfer algorithms for transmission tomography, and addresses
acceleration methods. Section IV provides simulation and real
PET data results, and Section V gives conclusions.

II. INCREMENTAL OPTIMIZATION TRANSFER

A. Incremental Optimization Transfer Algorithms

Most objective functions of interest in image reconstruction
can be expressed as a sum of subobjective functions2:

(1)

where is a continuously differentiable
function whose domain is a nonempty, convex and closed
set. The vector represents an image, e.g., attenuation co-
efficients or radioactivity, depending on applications. Consider
the following optimization problem:

(2)

Usually, there exists no closed-form solution to the above
problem, so one must apply iterative algorithms. Assume that
for each subobjective function , we find a surrogate function

, where denotes the -ary
Cartesian product over the set , such that 1) is easier to
maximize with respect to the first argument than and 2)
satisfies the following “minorization” conditions [27], [44]:

(3)

2Such functions are said to be additive-separable in [17]; and to be partially
separable [43] when each � (xxx) is a function of fewer components of xxx 2
than p
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TABLE I
OUTLINE FOR INCREMENTAL OPTIMIZATION TRANSFER ALGORITHMS

where is an augmented variable that is called an expansion
point in [42]. It follows from the above conditions that

(4)

In other words, choosing such that
ensures that , which is called a “monotonicity”
property. When there is only one subobjective function (

, , and ), one can construct the following
“optimization transfer” algorithm:

Then, we have due to the monotonicity prop-
erty. The reader who would like more details on optimization
transfer principles is referred to [4].

Now we construct an incremental version of the optimization
transfer algorithm. First, define the following “augmented” ob-
jective function:

(5)

Noting that due to (3), one
can rewrite the optimization problem in (2) as follows:

(6)

By construction, is an optimal solution of (2) if and only
if is an optimal solution of (6) for
some . Therefore, we can find a solution to
problem (2) by maximizing with respect to .
By alternating between updating and one of the ’s, we ob-
tain an “incremental optimization transfer algorithm” outlined
in Table I.

In many applications where (T-1) has a closed-form solution,
the computational cost for computing is smaller, usually
by a factor of , when only one of ’s has been incremen-
tally updated than when all ’s have been simultaneously up-
dated. For example, in tomographic reconstruction problems we
focus on, computing usually involves forward projections

of ’s, and we have only to project one of ’s and use pre-
viously computed projections for other ’s.

The incremental optimization transfer algorithm shown in
Table I can be viewed as a block coordinate ascent algorithm
for maximizing with respect to [45, p. 270].
It monotonically increases the augmented objective function ,
but not necessarily the original objective function [46]. The
incremental approach usually leads to faster conver-
gence rates than nonincremental methods [3]. The in-
cremental EM algorithms [3], [31] including COSEM [2], [30]
are a special case where the surrogates are constructed by
EM principles as described in Appendix A.

If one were to maximize only one of the ’s instead of the
sum shown in (5), then one would have ordinary OS type algo-
rithms. Although this greedy approach usually yields fast ini-
tial convergence rates, the OS type algorithms are not mono-
tonic in nor in . Since OS algorithms consider only a part
of the objective function for each update and an optimal point
is characterized by the whole objective function, OS algorithms
usually cannot converge to the optimal point. In contrast, the in-
cremental optimization transfer methods involve the augmented
objective function that reflects the whole objective function yet
is updated incrementally.

Although we focus on monoenergetic transmission tomog-
raphy in Section III, the incremental optimization transfer is a
general method which can be applied to a variety of problems
where an objective function is a sum of functions as in (1) and
the OS approach applies: for example, polyenergetic transmis-
sion tomography [47], confocal microscopy [48], and emission
tomography [49].

For incremental optimization transfer algorithms one must
store vectors , so one needs more memory com-
pared to ordinary OS algorithms. This can be a practical limita-
tion when is very large for large-sized problems.

B. Convergence Properties

Since incremental optimization transfer algorithms monoton-
ically increase the augmented objective , the sequence of aug-
mented objective values converges to some value in the usual
case where has an upper bound. The question of whether the
algorithms really converge to a maximizer of (2) is addressed
next.
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Define a solution set as the collection of stationary points of
(2)

(7)

where denotes matrix or vector transpose, and we assume
. Each element of the solution set satisfies the first-order nec-

essary condition for a local maximizer of over [45, p. 194].
We want algorithms to converge to some point in . If the ob-
jective function is concave, then the condition defining is
sufficient for optimality, and is the set of (possibly multiple)
global maximizers of over [45, p. 194]. If is strictly con-
cave, then is the singleton set whose element is a unique global
maximizer [45, p. 685]. On the other hand, for a nonconcave
objective function (as in Section III), the solution set could
contain local maximizers and even local minimizers. It is dif-
ficult to guarantee finding a global maximizer of a nonconcave
objective function that may have multiple local maxima. How-
ever, the hope is that, with an initial point reasonably close to a
global maximizer, the iterates generated by a monotonic algo-
rithm will approach the global maximizer (see [42] for discus-
sion about convergence to a globally optimal point).

In Appendix B, we show that every limit point3 of the se-
quence generated by an incremental optimization transfer algo-
rithm is an element of the solution set of stationary points re-
gardless of initial points4 when the following general sufficient
conditions hold: 1) each is differentiable, and each
is differentiable with respect to the first argument and is con-
tinuous with respect to the second argument; 2) the iterates are
bounded, e.g., is a bounded set: 3) the surrogates satisfy
the minorization conditions in (3); 4) the gradients of and

with respect to the first argument match; 5) the maxi-
mizer in (T-1) is unique, e.g., is strictly concave for
any ; 6) there exists a unique maximizer in (T-2); 7) the max-
imizer of the augmented objective function is bounded. Conse-
quently, if the objective function is strictly concave, then the
algorithm converges to the global maximizer. For a nonconcave
objective function , if the points in are isolated, the algo-
rithm will still converge to some stationary point in that we
hope is a global maximizer or at least a local maximizer (see Ap-
pendix B). It is an open question whether optimization transfer
algorithms converge to nonisolated stationary points (see [42]
for a discussion of this issue).

Although we focus on transmission tomography in the next
section, we briefly discuss the applicability of our convergence
proofs to the emission case. The convergence proofs in Ap-
pendix B do not apply to classical ML-EM and COSEM for the
emission case in their original forms in [35], [52] and [2], [30]
respectively since the EM surrogates used in those algorithms
blow up to (negative) infinity on the boundary of the nonneg-

3Recall the distinction between a limit and a limit point. A point �xxx is called
a limit of a sequence fxxx g if 8� > 0, 9N such that 8n > N , k�xxx� xxx k < �.
On the other hand, a point �xxx is called a limit point of a sequence fxxx g if 8� >
0, 8N , 9n > N such that k�xxx � xxx k < �, in other words, if there exists a
subsequence fxxx g whose limit is �xxx.

4Some authors define global convergence as the property that limit points of
the sequence generated by an algorithm are stationary points of the problem [50,
p. 228] or that limits are stationary points [51, p. 312], irrespective of starting
points. We adopt the former convention here.

ativity constraint set and, therefore, they violate the aforemen-
tioned sufficient conditions. The readers are referred to [53] and
[54] for convergence proofs for ML-EM and COSEM respec-
tively for the emission case. However, to avoid the boundary
problem one can use a slightly modified EM surrogate in [41,
Eq. (20)] for the usual case where there are nonzero contribu-
tions from background events such as scatter and randoms. Our
convergence proofs apply to those modified ML-EM (called
“ML-EM-3” in [41]) and COSEM algorithms. Moreover, the
modified EM surrogate is known to accelerate convergence rates
[41].

See [55, Appendix F] for an asymptotic local convergence
rate analysis and an illustrative one-parameter example for a
comparison of the convergence rates of incremental and non-
incremental algorithms.

III. APPLICATION TO TRANSMISSION TOMOGRAPHY

In this section we develop a particular incremental op-
timization transfer algorithm for transmission tomographic
reconstruction. We use quadratic surrogates [5], [27] rather
than EM surrogates in (26) in Appendix A because the standard
complete-data proposed in [35] for transmission tomography
does not yield a closed-form solution for M-step [56]. Using
quadratic surrogates is not limited to the transmission case
[57]–[59].

A. Problem

We assume the following Poisson statistical model for (mono-
energetic) transmission measurements

(8)

where denotes the transmission measurement of the th de-
tector, denotes the blank scan counts of the th detector,
denotes the mean number of background counts, and

represents the th line integral of the attenuation
map in which is the unknown attenuation coefficient in the
th pixel, is the system matrix, and and are

the number of detectors and pixels, respectively. We assume
that , , and are known nonnegative constants. We
focus on PL, also known as MAP, estimation for the attenuation
map reconstruction. Our goal is to compute a PL estimate
which is defined by

(9)

where the objective function , which can be nonconcave when
[27], includes the log-likelihood

and a roughness penalty

(10)
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The box constraint set is defined by

The nonnegativity restriction is imposed on physical grounds,
and the upper bound is set by the user to be a value that is
larger than the maximum attenuation coefficient conceivable for
the object being scanned. The reason for using the box constraint
rather than the usual nonnegativity constraint is that the conver-
gence proofs in Appendix B need the iterates to be bounded.
However, imposing upper bounds is not overly restrictive in a
sense that one can choose a physically meaningful upper bound
for attenuation coefficients, and the image estimate is unlikely
to be affected by if one chooses an arbitrarily large . In prac-
tice, if the upper bound happens to be active by some iterate,
then the user could re-run the algorithm with a larger bound.

In the penalty function (10), the function is a symmetric
and convex potential function, represents a neighborhood
of the th pixel, is a regularization parameter that controls
the smoothness in reconstructed images, and are weights
(ordinarily, for horizontal and vertical neighboring
pixels, and for diagonal neighboring pixels). We
assume the potential function satisfies some conditions given
in [27], [60, p. 184]. We used the following edge-preserving
nonquadratic potential function5 in our PL reconstruction results
[61]

(12)

for some . We assume that appropriate and are pre-
specified. To design an optimal regularization function is ap-
plication-dependent and is beyond the scope of this paper. See
[62]–[67] for quadratic penalty design.

B. Transmission Incremental Optimization Transfer (TRIOT)

We decompose the objective function into the following
subobjective functions:

where is a partition of . We use the usual
subsets corresponding to downsampled projection angles [6].
Consider the following separable quadratic surrogate for
the subobjective function :

(13)

with

(14)

where and denotes a diagonal matrix appro-
priately formed. The surrogates in (13) satisfy Conditions 2
and 3 in Appendix B.

To make additionally satisfy the minorization conditions
in (3), one has at least two choices for : “optimum curvature”

5Note that  is twice differentiable: _ (t) = � � t=(� + jtj) and � (t) =
� =(� + jtj) .

(OC) and “maximum curvature” (MC). Those curvatures
have the following form:

(15)

(16)

for some small value where and
. The use of keeps the curvatures positive and so the

augmented objective function defined in (5) has a unique max-
imizer with respect to the first argument due to strict concavity.
The functions are defined as follows. For OC, we define6

(17)

and for MC

(18)

where . On the right side in (15), the first
term corresponds to the curvature of a quadratic surrogate for the
log-likelihood part, and the second term for the penalty part. The
optimum curvature in (17) is computed as the lowest cur-
vature of 1D quadratic surrogates, satisfying the minorization
conditions, for the marginal log-likelihood . A low curva-
ture of a surrogate implies a wide paraboloid which in turn im-
plies a large stepsize, that is, fast convergence rate [27]. There-
fore, the optimal curvature is “optimal” in a sense that it leads to
the fastest convergence rate (per iteration). However, one needs
an “extra” backprojection7 for computing the first summation
in (16). On the other hand, the is the MC of the marginal
log-likelihood over . Therefore, is a constant
and the first summation in (16) can be precomputed and stored.
Detailed derivations of (15)–(18) can be found in [27]. We leave
the second summation in (16) as a function of even for MC
since its computation is usually cheap compared to projection
and backprojection operations unless is too large.

The augmented objective function defined in (5) with (13)
is readily maximized with respect to over the box constraint

as follows:

(19)

(20)

where is the orthogonal projection of onto
and is easily computed componentwise as follows:

6Using L’Hôpital’s rule [68, p. 234], it can be shown that c (l) is continuous
for l � 0.

7For some “on-the-fly” projector/backprojector pairs, most of the overhead is
computing the a values for each i, so it may be possible to evaluate the “extra”
backprojection with modest additional computation.
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TABLE II
OUTLINE FOR TRIOT ALGORITHM USING MC

for all . Using (19) in the
step (T-1) in Table I leads to a new TRIOT algorithm, which is
outlined in Table II. When , TRIOT reduces to ordinary
SPS [5]. The TRIOT update begins after ) iteration(s)
of OS-SPS [5] (see the next subsection for OS-SPS in detail).
The strategy to switch from OS-SPS to TRIOT is discussed
in Section III-D. Running initially (at least) one iteration of
OS-SPS is more effective than initializing all ’s to be the
same image (e.g., a FBP or uniform image) because both cases
require nearly the same computation yet one can take advantage
of fast initial convergence rates of OS-SPS.

In Table II, a TRIOT using MC in (18), called TRIOT-MC8,
is outlined; however, the OC case in (17) can be easily in-
cluded. The two steps (T-1) and (T-2) in Table I are combined
in Table II. In (T-5), one can avoid the summation at
every subiteration by maintaining that sum as a state vector that
is updated incrementally as in [2], [30], [36]. One iteration,
indexed by , of TRIOT-MC requires one projection and one
backprojection operation while TRIOT-OC needs an extra
backprojection [see (15)–(17)].

The discussion and proofs for global convergence given in
Section II-B and Appendix B apply to TRIOT. When

8The second part denotes a specific curvature used (e.g., SPS-OC).

for all , the algorithm converges to the optimal solution under
mild conditions9 since the PL objective for transmission tomog-
raphy is strictly concave [69]. In the case where , the
objective function is not necessarily concave [27], and we have
a weaker conclusion that every limit point of a sequence gen-
erated by TRIOT is a stationary point. However, in our prac-
tical experience, we obtained the same limit in all experiments
with different initializations, suggesting that suboptimal local
maxima are rare, or are far from reasonable starting images.

C. OS-SPS

Since we use OS-SPS in initializing and accelerating TRIOT,
we briefly review OS-SPS [5] for completeness. For each
subiteration, indexed by , maximizing the th subobjec-
tive in (13) instead of the augmented objective

in (5) leads to the following OS-SPS update:

(21)
for . This greedy approach does not ensure
monotonicity in the augmented objective nor the PL ob-

9The potential function  is strictly convex, and AAA yyy 6= 0.
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jective , so we need not insist that the curvatures satisfy
the minorization conditions. A natural choice for is the
Newton’s curvature ; this can be approximated as fol-
lows:

otherwise.
(22)

This choice is called “precomputed curvature (PC)” [5], [27].
For OS-SPS, the following subset-independent preconditioning
matrix using PC is usually used in place of in (21):

(23)

where

(24)

The first term on the right side in (24) can be precomputed and
stored. The benefit of using PC is that it leads to faster conver-
gence rates than MC since . The update for OS-SPS
is shown in (T-4) in Table II.

The OS-SPS shows very fast initial convergence rates but
becomes eventually stuck at a limit cycle. Using more subsets
leads to a faster initial convergence rate but causes the points in
the limit cycle to be farther from the optimal solution.

It is worth noting that, for each update, OS-SPS uses the gra-
dient and curvature for only one subobjective function at the pre-
vious subiterate in (21) whereas TRIOT uses the gradients and
curvatures for all subobjective functions at previous subit-
erates in (20). When the number of subobjective functions is

, then both OS-SPS and TRIOT reduce to SPS.

D. Acceleration

Usually, TRIOT-OC/MC is initially slower than the non-
convergent OS-SPS. Here, we discuss methods to accelerate
TRIOT.

1) Switch From OS-SPS to TRIOT: It is a popular idea to
switch from a nonconvergent yet initially fast OS type algorithm
to a convergent non-OS algorithm at some point to take advan-
tage of both fast initial convergence rates of OS methods and
global convergence of non-OS methods.

We observed that it is very effective to switch to TRIOT from
OS-SPS at the point where the OS-SPS algorithm nearly gets
to a limit cycle; even one single subiteration of TRIOT moves
the iterate from the limit cycle to some point very close to the
optimal solution. The reason is as follows: a group of the points
in the limit cycle would be roughly centered around the optimal
point and the update for TRIOT includes a weighted average of
the points [see the first term on the right side in (20) or (T-5)].

To obtain further insight into this property, consider a simple
unconstrained quadratic problem where the objective function
and the subobjective functions are

for where and .
Assume that each surrogate function is equal to its
corresponding subobjective so it has a closed-form max-
imizer where we assume each is invertible.
Then, the OS approach will generate a limit cycle that consists
of those . Now applying just one iteration of the in-
cremental optimization transfer method as in (19) leads to

which is the maximizer of the original objective [the second
term on the right side in (20) equals zero]. This example sug-
gests that the built-in averaging operation in TRIOT helps iter-
ates escape from a limit cycle, generated by nonconvergent OS
algorithms, toward the optimal solution.

However, in the early iterations, when OS-SPS is still far
from the limit cycle and is making progress toward the optimal
point, TRIOT is usually slower than OS-SPS due to the aver-
aging of the past subiterates because the incremental optimiza-
tion transfer approach updates the surrogates incrementally, that
is, conservatively to ensure monotonicity. So it is desirable to
get to a limit cycle quickly using OS-SPS with many subsets
and then switch to TRIOT. In a 2D reconstruction case in Sec-
tion IV, the use of 64 subsets is sufficient to reach a limit cycle
within a couple of iterations.

2) Precomputed Curvatures: Forgoing monotonicity (in
the augmented objective) and accordingly provable conver-
gence, one can use for TRIOT the “precomputed curvatures
(PC)” in (22). TRIOT-PC is faster than provably convergent
TRIOT-OC/MC. It is an open question whether TRIOT-PC
converges to an optimal solution. However, in our experiments,
TRIOT-PC yielded the same limit as convergent algorithms
like SPS-OC within numerical precision!

IV. RESULTS

A. Algorithms Performance Evaluation: Real Data Study

To assess the performance of the proposed algorithms, we
performed 2D attenuation map reconstructions from real PET
data.

We acquired PET data using a Siemens/CTI ECAT EXACT
921 PET scanner with rotating rod transmission sources [70].
We used an anthropomorphic thorax phantom (Data Spectrum,
Chapel Hill, NC). The sinogram had 160 radial bins and 192
angles, and the reconstructed images were 128 128 with
4.2-mm pixels. The system geometry was approximated with
3.375-mm-wide strip integrals and 3.375-mm ray spacing; the
system matrix was generated using ASPIRE [71]. The total
counts amounted to . We used the edge-preserving
nonquadratic penalty (12) with and

, chosen by visual inspection. A uniform image was
used as a starting image. The results obtained by using a FBP
reconstruction as a starting image were similar and are not
shown here. We set in (11) to be 7 , which was much
higher than reconstructed values , and the
upper bound was never active.
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Fig. 1. Comparison of non-OS algorithms (SPS-MC/PC), an OS algorithm
(OS-SPS), and incremental optimization transfer algorithms (TRIOT-MC/PC)
for 2D attenuation map reconstruction using real PET data. This figure shows
(�(x̂xx )� �(x̂xx ))=(�(x̂xx ) � �(x̂xx )) versus iteration number where x̂xx
is the PL optimal image. The OS-SPS and TRIOT algorithms used 16 subsets,
and TRIOT and SPS algorithms included one initial iteration of OS-SPS. The
starting image was a uniform image for all cases.

Images were reconstructed using SPS-MC/PC, OS-SPS, and
TRIOT-MC/PC. For OS-SPS and TRIOT algorithms, we used
16 subsets (a moderate number) and 64 subsets (a little larger
number than usual). For SPS and TRIOT, the performance (ob-
jective value or distance from the optimal image) with the op-
timum curvature (OC) in (17), which requires an extra backpro-
jection per iteration, was between those with MC and PC (see
[55, pp. 85–86] for the results with OC).

Fig. 1 shows normalized difference versus iteration number
for different algorithms using 16 subsets. The normalized dif-
ference is defined as
where is a maximizer of the PL objective and is the
initial uniform image; a small value of the normalized differ-
ence means the image is closer to the optimal image . The
optimal image [shown in Fig. 4(a)] was estimated by 30
iterations of OS-SPS-16 (where “16” means the number of sub-
sets) followed by 800 iterations of the SPS-OC algorithm that is
monotonic and convergent (to a stationary point). For TRIOT,
as described in Section III-B, we ran one iteration of OS-SPS,
and then performed TRIOT iterations. Only for the last iter-
ation of OS-SPS (in this case, iteration 1), we performed an
additional TRIOT update in (T-6) in Table II that takes negli-
gible computation. To see the effects of “this” TRIOT update,
we plotted normalized difference values both before and after
(T-6) at iteration 1, which yields the vertical lines at iteration 1
for TRIOT algorithms in Fig. 1. For TRIOT, the jump in the un-
favorable direction is due to the fact that built-in averaging slows
down the algorithm when a limit cycle has not yet been reached
as discussed in Section III-D. For a fair comparison, the SPS
algorithms were performed after one iteration of OS-SPS was
run. That is, for all methods shown in Fig. 1, denotes the re-
constructed image obtained using one iteration of OS-SPS. Al-
though OS-SPS showed a fast initial convergence rate, it became
stuck at a suboptimal point whereas other methods continued

Fig. 2. Same as Fig. 1, but six initial iterations of OS-SPS were included for
TRIOT and SPS algorithms.

to improve in terms of objective values. The TRIOT algorithms
were outperformed by other algorithms in early iterations. How-
ever, TRIOT-MC and TRIOT-PC eventually outrun SPS-MC
and SPS-PC, respectively. Although global convergence is not
provably ensured for TRIOT-PC, the limit of TRIOT-PC (say,
obtained by 1000 iterations) was the same as that of SPS-OC
(obtained similarly) within numerical precision, which suggests
TRIOT-PC has desirable convergence properties.

To investigate the performance of TRIOT algorithms after
OS-SPS reaches a limit cycle, we performed 6 iterations of
OS-SPS, which is sufficient to get close to a limit cycle, and
then applied TRIOT (and SPS as well). Fig. 2 shows that TRIOT
yielded considerable improvement at iteration 6 where TRIOT
was first applied. TRIOT-MC and TRIOT-PC converge faster
than SPS-MC and SPS-PC, respectively, (SPS-PC outperforms
TRIOT-MC from iteration 16 on.) This shows that it is effective
to switch from OS-SPS to TRIOT, as described in Section III-D,
when OS-SPS almost reaches a limit cycle. However, it is still
inconvenient to predict how many iterations are required for
OS-SPS to arrive at a limit cycle.

Fig. 3 shows normalized difference versus iteration number
when 64 subsets are used. As the number of subsets increased
to 64, the initial convergence rate of OS-SPS became faster
(even a couple of iterations led to a limit cycle) but OS-SPS
stagnated at a worse image. Meanwhile, for the TRIOT algo-
rithms, a significant improvement was obtained at iteration 2
when OS-SPS was switched to TRIOT, and the TRIOT algo-
rithms outperformed the SPS algorithms. The switching point
(iteration 2) was determined by some experimentation. In light
of the effectiveness of the built-in averaging in TRIOT, to make
SPS a stronger competitor, prior to switching to SPS (at iter-
ation 2), we averaged the 64 previous subiterates that approx-
imately comprise the limit cycle. As shown in Fig. 3, this av-
eraging yielded improvements for SPS algorithms. However,
convergence rates of TRIOT were still faster than those of SPS
with such averaging. A plot of the normalized distance from the
optimal image, , versus iteration number
showed a similar trend (not shown here).
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Fig. 3. Comparison of (�(x̂xx ) � �(x̂xx ))=(�(x̂xx ) � �(x̂xx )) versus
iteration number. For this figure, 64 subsets are used for OS-SPS and TRIOT
algorithms, and two iterations of OS-SPS are included initially for TRIOT and
SPS algorithms. This figure also shows the performance of SPS algorithms that
include averaging 64 subiterates after 2 iterations of OS-SPS.

Fig. 4(c)-(e) shows the images to which OS-SPS with 16, 32,
and 64 subsets converged, respectively. They represent one point
of the limit cycle generated by the OS-SPS. For 64 subsets, the
reconstructed image looks different from the true PL optimal
image in Fig. 4(a), whereas the reconstructed image for
16 subsets looks similar to the PL image. In contrast, 18 itera-
tions of TRIOT-PC initialized by 2 iterations of OS-SPS yielded
the image in Fig. 4(f) which is indistinguishable from the op-
timal image in Fig. 4(a). TRIOT-MC and -OC (18 iterations
with initial 2 iterations of OS-SPS) in Fig. 4(g) and (h) also
yielded images very similar to the optimal image. The normal-
ized distance (ND) from the optimal image
is shown in Fig. 4; TRIOT-PC showed the minimum ND from
the PL image. Fig. 5 shows the horizontal profile through the
reconstructed images in Fig. 4 for TRIOT-PC, OS-SPS-16, and
OS-SPS-64. Again, the TRIOT-PC profile agreed very well with
the PL image profile, and OS-SPS-64 showed a noticeable de-
viation from the PL image.

B. Convergence Really Matters?: Simulation Study

Generally, ordered subsets or incremental algorithms con-
verge to a limit cycle that consists of suboptimal solutions. In
this paper we focus on developing incremental algorithms that
converge to a true optimal solution. To examine how “subop-
timal” the limit cycle solutions are, we compare nonconvergent
OS algorithms (OS-SPS) and convergent TRIOT through a sim-
ulation study for 2D attenuation map reconstruction.

We used the same scanner geometry as in the previous subsec-
tion. The synthetic digital phantom shown in Fig. 6 was used;
the attenuation coefficients of the warm background, left cold
disc, and right hot disc were 0.004 , 0.009 , and
0.001 . The total counts amounted to 1M, and the known
background contribution corresponded to a uniform field of

Fig. 4. Reconstructed attenuation maps. The normalized distance (ND),
kx̂xx � x̂xxk=kx̂xxk, between the PL image and each reconstructed image is
shown. (a) PL estimate image x̂xx obtained using 30 iterations of OS-SPS
with 16 subsets followed by 800 iterations of SPS-OC. (b) FBP reconstruction.
(c) PL reconstruction using 20 iterations of OS-SPS with 16 subsets (an image
that is one point of a limit cycle). (d) PL reconstruction using 20 iterations of
OS-SPS with 32 subsets (an image that is one point of a limit cycle). (e) PL
reconstruction using 20 iterations of OS-SPS with 64 subsets (an image that is
one point of a limit cycle). (f) PL reconstruction using 2 iterations of OS-SPS
and 18 iterations of TRIOT-PC with 64 subsets. (g) PL reconstruction using 2
iterations of OS-SPS and 18 iterations of TRIOT-MC with 64 subsets. (h) PL
reconstruction using 2 iterations of OS-SPS and 18 iterations of TRIOT-OC
with 64 subsets. Fig. 5 shows the horizontal profiles along the dotted lines in
(a), (c), (e), and (f).

10%. We used the penalty in (12) with
and .

The aim of the simulation is to compare the bias and variance
of the suboptimal images obtained by nonconvergent OS-SPS
algorithms and the (nearly) optimal image obtained by TRIOT.
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Fig. 5. Horizontal profiles through the PL image in Fig. 4(a), reconstructed
attenuation maps for OS-SPS-16 in Fig. 4(c), for OS-SPS-64 in Fig. 4(e), and
for TRIOT-PC in Fig. 4(f) along the dotted lines.

Fig. 6. Digital phantom used in simulation. The background, left hot disc, and
right cold disc have attenuation coefficients of 0.004 mm , 0.009 mm ,
and 0.001mm , respectively. Fig. 7 shows the horizontal profiles through the
sample mean of ordered subsets methods along the dotted line.

We generated 400 realizations of pseudorandom transmission
measurements according to (8). For each realization, we ob-
tained a limit cycle image for OS-SPS-8 and OS-SPS-16 by 50
iterations, and for OS-SPS-32 and OS-SPS-64 by 20 iterations
(note that it takes more iterations for OS algorithms with fewer
subsets to reach a limit cycle); we also obtained a (nearly) op-
timal image by 18 iterations of TRIOT-PC with 64 subsets after
2 iterations of OS-SPS-64.

A limit cycle consists of as many images as the number of
subsets. We took only one image, say the first one, from the
limit cycle for each OS method and computed the sample mean
and variance over 400 realizations. Taking another image (e.g.,
the second one) from the limit cycle led to similar results. Fig. 7
shows the profiles through the sample mean images for different
methods; all images were nearly free of systematic biases. For
each pixel, we computed the ratios of the sample standard devi-
ation of OS methods to the sample standard deviation of TRIOT,
and Fig. 8 shows the histogram of the ratios. Overall, OS-SPS-8
showed almost the same level of standard deviation as TRIOT;

Fig. 7. Horizontal profiles through sample mean of different ordered subsets
methods along the dotted line in Fig. 6.

Fig. 8. Histogram of the ratio of sample standard deviation of different ordered
subsets methods to sample standard deviation of TRIOT.

and OS-SPS-16, -32, and -64 yielded larger standard deviation
than TRIOT by about 5%, 20%, and 58%, respectively. The
noise increase can be attributed to the limit cycle generated by
OS algorithms. As the number of subsets decreases, the variance
decreases, but the (initial) convergence rate also decreases and
it takes longer to converge to a limit cycle. We also tried aver-
aging the limit cycle images; the resulting sample variance de-
creased but they were still larger than or equal to that of TRIOT
depending on the number of subsets.

This example illustrates the importance of convergence for
regularized methods. To summarize, as the number of subsets
increases, a nonconvergent OS algorithm leads to higher vari-
ance although it does not increase bias significantly; therefore, it
gives lower contrast-to-noise ratios. It was also observed in [13],
[16] that the image noise increases as the number of subsets in-
creases. Although using a small number of subsets leads to an
image very similar to the one obtained by a convergent non-OS
algorithm, its convergence acceleration factor is smaller than
that for a large number of subsets. Therefore, there is a trade-off
between speed acceleration and image quality depending on the
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number of subsets. In this paper, we achieve both fast conver-
gence rates and image quality (convergence) by using the in-
cremental optimization transfer. In [13], the image degradation
caused by a large number of subsets was corrected by subse-
quently using a reduced number of subsets. Which method is
preferable is an open question.

V. CONCLUSION

We presented a broad family of incremental optimization
transfer algorithms by generalizing the incremental EM family.
The incremental optimization transfer algorithms usually show
faster convergence rates than ordinary optimization transfer
methods like EM, and they are globally convergent.

We also developed a particular incremental optimization
transfer algorithm for transmission tomography by using sepa-
rable quadratic surrogates: TRIOT algorithms. We found that
it is very effective to switch from OS-SPS to TRIOT when
OS-SPS nearly reaches a limit cycle. The switching idea is also
found in [72]. But we need to determine when to switch from
OS-SPS to TRIOT as we must determine the relaxation param-
eters for relaxed OS algorithms such as RAMLA, BSREM,
and relaxed OS-SPS. However, from our experience, it seems
more convenient to determine when to switch than to choose
relaxation parameters. In fact, when reasonably many subsets
were used, as few as a couple of iterations of OS-SPS were
sufficient to get close to a limit cycle for our 2D reconstruction.
This switching strategy seems robust since we obtained similar
results from a 2D simulation study using a different digital
phantom [55]. Recently, Li et al. have proposed a method to
determine automatically the switching point by fitting an expo-
nential function to (sub)objective function values computed at
previous iterates and by determining how close to a limit cycle
a current iterate is [49].

TRIOT may be preferable to reducing the number of subsets
with iteration when the consistent data flow is beneficial since
the number of subsets remains unchanged over iterations for the
method using OS-SPS initially and TRIOT later. And it might
be easier to determine the point when to switch from OS-SPS to
TRIOT than to determine an optimal schedule for reducing the
number of subsets. However, the question of which method is
better remains open, and further investigation will be needed.

One iteration of TRIOT-MC/PC or OS-SPS requires com-
puting one projection and one backprojection plus the penalty
related gradients and curvatures (the use of OC needs an extra
backprojection); so the computational cost is almost the same
as classic “emission” ML-EM except for the contribution of the
penalty part. As the number of subsets increases, computation
per iteration also increases due to the penalty part being updated
for each subiteration. Although the computational contribution
of the penalty function is usually small compared to projec-
tion/backprojection, further investigation could help reduce this
computation, e.g., by subsetizing the penalty part.

Although the TRIOT-PC was numerically found to be con-
vergent, if one really wants provable convergence, one could

switch to TRIOT-MC or OC at some point. One of the limita-
tions of TRIOT is that for each update it uses previous subit-
erates (where is the number of subsets), so it requires more
memory than ordinary OS algorithms by a factor of . There-
fore, the number of subsets is practically limited by memory
availability particularly for large-sized problems. It will be an
interesting challenging problem to resolve the memory issues
while keeping TRIOT’s global convergence and convergence
rates.

APPENDIX A
DERIVATION OF INCREMENTAL EM ALGORITHMS

In this appendix we show that the incremental EM algorithms
are a special case of the incremental optimization transfer algo-
rithms.

For ML estimation, one must maximize a log-likelihood func-
tion

with respect to parameter over a feasible set
where denotes a realization of an observable random
vector with probability distribution , and

is the true value of the unknown parameter. Assume that
we identify an admissible complete-data10 random vector for

. Then, the following EM surrogate function satisfies the
minorization conditions in (3) [33]:

(25)

for all . But in many applications including imaging prob-
lems, the observed data is independent so the log-likelihood ob-
jective is additive-separable, that is

and the complete data is conditionally independent, so for each
, one can obtain the following EM surrogate:

(26)

which also satisfies the minorization conditions in (3) where
and are some decom-

positions of the incomplete data and the complete data, respec-
tively. Defining the augmented objective function as in (5) and
then alternating between updating and one of the ’s as in
Table I leads to the incremental EM algorithms [3], [31]. The
COSEM algorithm [2], [30], a special case of the incremental
EM for emission tomography, can be readily derived.

APPENDIX B
GLOBAL CONVERGENCE PROOF

In this appendix we prove the convergence of the in-
cremental optimization transfer algorithm given in Table I.

10A random vector ZZZ with probability distribution f(zzz;xxx) is called an ad-
missible complete-data vector for f(yyy;xxx) if f(yyy; zzz;xxx) = f(yyyjzzz)f(zzz;xxx) [40],
[41]. A special case is that YYY is a deterministic function of ZZZ .
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Define , and define a map
such that where

is computed by (T-1)–(T-3)
for . Suppose that the algorithm gener-
ates a sequence (or a sequence by taking the first
component of ), given some initial point . Define
an augmented solution set as follows:

(27)

where is defined in (7). We impose the following assumptions.
Assumption 1: Each and is differentiable

with respect to on a nonempty, closed, and convex set
for all , and each is continuous with respect to

on for all .
Assumption 2: The solution set of stationary points defined

in (7) is nonempty and, therefore, so is the augmented solution
set defined in (27).

Assumption 3: The iterates are bounded where
.

Assumption 3 is ensured by either of the following sufficient
conditions.

Assumption 3 : A level set defined by
is bounded where is the augmented objective function

defined in (5).
Assumption 3 : The feasible set is bounded.
Note that Assumptions 1 and 3 imply Assumption 2 by the

Weierstrass’ Theorem [45, p. 654]. We assume that the surro-
gates satisfy the following conditions.

Condition 1: The functionals satisfy the minorization
conditions in (3).

Condition 2: The following derivatives match for all and
:

(28)

where is the column gradient operator with respect to the
first argument11 (see [42] for less restrictive conditions).

Condition 3: There exists a unique maximizer in (T-1).
The following is sufficient for Condition 3.
Condition 3 : Each is strictly concave for all

, and there exists a maximizer of
over for all .

Condition 4: There exists a unique maximizer in (T-2).
The following is sufficient for Condition 4
Condition 4 : For all , , where

the equality holds if and only if .
Even if there exist , such that and

, using a modified surrogate
for a fixed will lead to Conditions 4 and 4.

Condition 5: If is a bounded subset of , then
is also

bounded.
Note that Assumption 3 implies Condition 5. Using the

above assumptions and conditions, we prove a series of lemmas
necessary for proving convergence.

11If xxx is an interior point of X , Condition 2 is implied by Condition 1 [55,
Lemma 3.3].

Lemma 1: The map such that is contin-
uous.

Proof: The map is the composition of
maps: where

,
and with

. Since each is contin-
uous, it is only necessary to show that is continuous [50, p.
187]. Let be a sequence from with for all

. Suppose that and that
. It suffices to show that

. Suppose that does not converge to . Then,
there exists a subsequence of such that
for some by Condition 5. By the definition of

, . By letting
, we have

since is continuous by Assumption 1. But this is a contradic-
tion in view of the definition of and Condition 3. Therefore,
it must be the case that , and the conclusion follows.

Lemma 2: The iterates generated by (T-1)–(T-3) yield
monotonic increases in , that is, for all .

Proof: It follows from the cyclic block coordinate ascent
updates in (T-1) and (T-2).

Lemma 3: Suppose that is a fixed point of ,
that is, . Then, where is defined in (27).

Proof: For the fixed point , in view
of Condition 3, one can show that . Since

is a maximizer of over , it follows that
for all [45, p.

194]. Therefore, by Condition 2, for all
, and it follows that .

Lemma 4: If , then .
Proof: If , then is not a fixed point of by

Lemma 3. Combining Conditions 3 and 4 and Lemma 2 leads
to the conclusion.

Now we prove the following theorem on the convergence of
the incremental optimization transfer algorithm.

Theorem 1: Suppose that is a sequence generated by
(T-1)–(T-3) with and that Assumptions 1–3 and
Conditions 1–5 hold. Then, any limit point of is an element
of .

Proof: The conclusion follows from the Zangwill’s Con-
vergence Theorem [73, p. 91] with Assumption 3; and Lemmas
1, 2 and 4.

The following corollaries and lemmas also hold when “ ”
is replaced with “ ” for all .

Corollary 1: Suppose is a sequence obtained by taking
the first component from in Theorem 1. Then, any limit point
of is an element of .

Proof: Use Theorem 1, Assumption 3, and the definition
of in (27).

Corollary 2: If is concave, then any limit point of
is a global maximizer of over . Moreover, if is strictly
concave, then converges to the global maximizer of over

.
Proof: Use Corollary 1 and [45, Proposition 2.1.2].
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When is not strictly concave, there is no guarantee that the
algorithm converges to a limit. However, convergence can be
established by additionally assuming that the solution set is
discrete.

Lemma 5: Suppose is a sequence from Corollary 1.
Then, .

Proof: It follows from [74, Theorem 3.1] that
. Since

, it must be the case that
.
Lemma 6: Suppose is a sequence from Corollary 1.

Additionally, suppose that the set is discrete. Then, con-
verges to an element in .

Proof: Let be a set of limit points of . Then,
by Theorem 1. But, by Lemma 5, is connected [75, p. 173].
Since is both discrete and connected, it is a singleton.

The above lemma implies that if stationary points of (2) are
isolated, then the algorithm converges to one of them.
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[27] H. Erdoğan and J. A. Fessler, “Monotonic algorithms for transmission
tomography,” IEEE Trans. Med. Imag., vol. 18, no. 9, pp. 801–814, Sep.
1999.

[28] D. P. Bertsekas, “A new class of incremental gradient methods for least
squares problems,” SIAM J. Optim., vol. 7, no. 4, pp. 913–926, Nov.
1997.

[29] A. Gunawardana and W. Byrne, “Convergence of EM Variants,” ECE
Dept., The Johns Hopkins Univ., Baltimore, MD, Tech. Rep. CLSP Re-
search Note no. 32, Feb. 1999.

[30] I. -T. Hsiao, A. Rangarajan, and G. Gindi, “A new convergent MAP
reconstruction algorithm for emission tomography using ordered subsets
and separable surrogates,” in Proc. IEEE Int. Symp. Biomedical Imaging,
2002, pp. 409–412.

[31] A. J. R. Gunawardana, “The Information Geometry of EM Variants for
Speech and Image Processing,” Ph.D. dissertation, The Johns Hopkins
Univ., Baltimore, MD, 2001.

[32] D. Blatt, A. O. Hero, and H. Gauchman, “A convergent incremental gra-
dient method with a constant step size,” SIAM J. Optim., submitted for
publication.

[33] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” J. Roy. Statist. Soc. Ser. B,
vol. 39, no. 1, pp. 1–38, 1977.

[34] D. R. Hunter and K. Lange, “Rejoinder to discussion of “Optimiza-
tion transfer using surrogate objective functions”,” J. Comput. Graph-
ical Statist., vol. 9, no. 1, pp. 53–59, Mar. 2000.

[35] K. Lange and R. Carson, “EM reconstruction algorithms for emission
and transmission tomography,” J. Comput. Assist. Tomogr., vol. 8, no. 2,
pp. 306–316, Apr. 1984.

[36] I. -T. Hsiao, A. Rangarajan, P. Khurd, and G. Gindi, “An accelerated
convergent ordered subsets algorithm for emission tomography,” Phys.
Med. Biol., vol. 49, no. 11, pp. 2145–2156, Jun. 2004.

[37] J. Qi, R. M. Leahy, S. R. Cherry, A. Chatziioannou, and T. H. Farquhar,
“High resolution 3D Bayesian image reconstruction using the microPET
small-animal scanner,” Phys. Med. Biol., vol. 43, no. 4, pp. 1001–1014,
Apr. 1998.

[38] R. M. Leahy and J. Qi, “Statistical approaches in quantitative positron
emission tomography,” Statistics and Computing, vol. 10, no. 2, pp.
147–165, Apr. 2000.

[39] K. Sauer and C. Bouman, “A local update strategy for iterative recon-
struction from projections,” IEEE Trans. Signal Process., vol. 41, no. 2,
pp. 534–548, Feb. 1993.



296 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 25, NO. 3, MARCH 2006

[40] J. A. Fessler and A. O. Hero, “Space-alternating generalized expecta-
tion-maximization algorithm,” IEEE Trans. Signal. Process., vol. 42, no.
10, pp. 2664–2677, Oct. 1994.

[41] , “Penalized maximum-likelihood image reconstruction using
space-alternating generalized EM algorithms,” IEEE Trans. Image
Process., vol. 4, no. 10, pp. 1417–1429, Oct. 1995.

[42] M. W. Jacobson and J. A. Fessler, “Properties of optimization transfer
algorithms on convex feasible sets,” SIAM J. Optim., submitted for pub-
lication.

[43] J. Nocedal, “Large scale unconstrained optimization,” in The State of the
Art in Numerical Analysis, I. S. Duff and G. A. Watson, Eds. Oxford,
U.K.: Clarendon, 1997, pp. 311–338.

[44] D. R. Hunter and K. Lange, “A tutorial on MM algorithms,” Am. Statis-
tician, vol. 58, no. 1, pp. 30–37, Feb. 2004.

[45] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA:
Athena Scientific, 1999.

[46] W. Byrne and A. Gunawardana, “Comments on “efficient training algo-
rithms for HMM’s using incremental estimation”,” IEEE Trans. Speech
Audio Process., vol. 8, no. 6, pp. 751–754, Nov. 2000.

[47] I. A. Elbakri and J. A. Fessler, “Statistical image reconstruction for
polyenergetic X-ray computed tomography,” IEEE Trans. Med. Imag.,
vol. 21, no. 2, pp. 89–99, Feb. 2002.

[48] S. Sotthivirat and J. A. Fessler, “Image recovery using partitioned-sepa-
rable paraboloidal surrogate coordinate ascent algorithms,” IEEE Trans.
Image Process., vol. 11, no. 3, pp. 306–317, Mar. 2002.

[49] Q. Li, S. Ahn, and R. M. Leahy, “Fast hybrid algorithms for PET image
reconstruction,” in Proc. IEEE Nuclear Science Symp. Medical Imaging
Conf., 2005, to be published.

[50] D. G. Luenberger, Linear and Nonlinear Programming, 2nd
ed. Reading, MA: Addison-Wesley, 1984.

[51] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming:
Theory and Algorithms. New York: Wiley, 1993.

[52] L. A. Shepp and Y. Vardi, “Maximum-likelihood reconstruction for
emission tomography,” IEEE Trans. Med. Imag., vol. 1, no. 2, pp.
113–122, Oct. 1982.

[53] F. Natterer and F. Wübbeling, Mathematical Methods in Image Recon-
struction. Philadelphia, PA: SIAM, 2001.

[54] A. Rangarajan, P. Khurd, I.-T. Hsiao, and G. Gindi, “Convergence Proofs
for the COSEM-ML and COSEM-MAP Algorithms,” Medical Imag.
Proc. Lab., State Univ. of New York, Stony Brook, NY, Tech. Rep. 03-1,
Dec. 2003.

[55] S. Ahn, “Convergent Algorithms for Statistical Image Reconstruction in
Emission Tomography,” Ph.D. dissertation, Univ. Michigan, Ann Arbor,
MI, 2004.

[56] J. A. Fessler, “Statistical image reconstruction methods for transmis-
sion tomography,” in Handbook of Medical Imaging, Volume 2. Med-
ical Image Processing and Analysis, M. Sonka and J. M. Fitzpatrick,
Eds. Bellingham, WA: SPIE, 2000, pp. 1–70.
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