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ABSTRACT
X-ray CT images are used routinely for attenuation cor-

rection in PET/CT systems. However, conventional CT-based
attenuation correction (CTAC) can be inaccurate in regions
containing iodine contrast agent. Dual-energy (DE) CT has
the potential to improve the accuracy of attenuation correc-
tion in PET, but conventional DECT can suffer from motion
artifacts. Recent X-ray CT systems can collect DE sinograms
by rapidly switching the X-ray tube voltage between two
levels for alternate projection views, reducing motion arti-
facts. The goal of this work is to study statistical methods for
image reconstruction from both fast kVp-switching DE scans
and from conventional dual-rotate DE scans in the context
of CTAC for PET.

Keywords: model-based image reconstruction, dual-
energy X-ray computed tomography, penalized weighted
least squares method, attenuation correction factors.

I. INTRODUCTION

CT-based attenuation correction (CTAC) for PET has
advantages over conventional attenuation correction by PET
transmission scans, including better spatial resolution and
lower noise. However, PET attenuation correction factors
(ACFs) must be computed for 511 keV photon energy,
whereas X-ray CT spectra cover a wide range of lower
photon energies. These spectral differences can lead to
imperfect PET attenuation correction, particularly when io-
dinated contrast agents are present [1], [2]. Conventional
CTAC approaches use a single X-ray source voltage (kVp)
and its corresponding spectrum. DECT imaging methods
have the potential to improve attenuation correction in PET
by exploiting the spectral information provided by using two
different X-ray spectra. We previously investigated a statis-
tically motivated, sinogram-domain approach for estimating
the line integrals of two material components from DECT
scans followed by computing the 511 keV ACFs [3], [4].
That approach is iterative, but is relatively fast because the
iterations are solely in the sinogram domain.

A disadvantage of sinogram-domain approaches to DECT
decomposition is that the types of regularization that are
suitable are limited. In contrast, by iteratively reconstructing
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images from the measured sinograms, one can apply a
wide variety of sophisticated regularizers because there can
be clear distinctions between different tissue types in the
images. In the sinogram domain, region boundaries are
barely visible, and other forms of prior information about
the object’s attenuation properties are not readily apparent.
Therefore, in this work we begin to explore the use of
statistical methods for reconstructing material component
images from DE sinogram data [5] for the purpose of PET
attenuation correction.

In the field of X-ray CT, there is increasing interest in
enhancing the information provided in the images through
dual-energy imaging. Dual energy (DE) CT imaging was first
proposed over 30 years ago [6], but only recently became
available for routine use in clinical CT systems. Various
technological advances have brought renewed interest in DE
CT, such as CT systems with two X-ray sources and photon
counting detectors with energy selectivity. Very recently,
commercial systems with fast kVp switching have become
available, extending an idea that previously existed only in
prototype systems [7]. This paper describes a model-based
approach to DE image reconstruction for such systems.

The conventional approach to DE CT imaging is the “dual
rotate” mode where the source is rotated around the patient at
one source voltage setting to collect a full sinogram, and then
the source voltage is changed (as quickly as the hardware
permits) and the source is rotated around again with the
new kVp to collect a second full sinogram. Using these two
full sinograms, one can reconstruct separate images of two
material components (such as soft tissue and bone) using
sinogram material decomposition followed by FBP image re-
construction [6]. Model-based image reconstruction methods
for fully sampled sinograms have also been proposed under
monoenergetic [8], [9] and polyenergetic models [5], [10]. A
drawback of this conventional “dual rotate” mode of DE CT
is that the object may move between the two acquisitions,
leading to inconsistencies between the two sinograms that
can manifest as severe artifacts in the reconstructed images.

To reduce motion effects, the “fast kVp switching” mode
alternates between high and low X-ray source tube voltages
for the projection views. This allows DE data to be collected
in a single rotation, so the motion artifacts should be
comparable to those of conventional CT imaging. Modern
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CT systems rotate in less than 0.5 seconds, and collect about
1000 projection views, so the X-ray tube high voltage must
be switched at kHz rates repeatably, which is a challenge
that has been met only recently. In this switching mode,
two sinograms are collected with only half as many pro-
jection views as could be collected otherwise. Conventional
sinogram-domain DE decomposition methods require each
ray to be measured twice by two different spectra (two
different tube voltages), but in the fast switching mode, the
even projection views are at one voltage and the odd views
are at the other voltage.

The typical solution to this problem in fast switching
DE imaging is to interpolate both sinograms in the angular
direction to fill in the “missing” views. Then one can
apply conventional DE decomposition followed by FBP
reconstruction. However, such interpolation might compro-
mise spatial resolution. Furthermore, DE decomposition is a
noise-amplifying process, so statistical image reconstruction
methods have the potential to improve image quality sig-
nificantly relative to FBP in DE imaging [5]. This paper
proposes a model-based image reconstruction method for
DE CT that reconstructs the two material component images
(e.g., soft tissue and bone) directly from the under-sampled
sinograms without any interpolation. We report preliminary
simulation results suggesting that this iterative method has
the potential to improve image quality compared to the
conventional interpolate/FBP approach.

Although current generation PET/CT scanners do not have
the fast-kVp switching mode, it is conceivable that future
PET/CT scanners will have this capability. Furthermore, the
general approach proposed here is applicable not only to
fast-kVp switching scans, but also to other DECT modes
where there is “mismatch” between the rays in the high-
and low-energy sinograms. For example, in a dual source
system with different radial sampling patterns, or in a dual-
helix scan where the high-kVp and low-kVp helical source
trajectories differ.

We have previously investigated both penalize-likelihood
and penalized weighted least squares (PWLS) methods for
DECT reconstruction. In this work we focus on a PWLS
method that estimates two material components from under-
sampled sinograms (without using any interpolation). We
then combine those material component images estimates
at 511 keV and reproject the PET resolution and to form
ACFs. By using suitable regularization methods applied to
the basis material density images, the proposed method has
the potential to improve ACF accuracy compared to previous
sinogram-domain approaches [4], [11].

II. DUAL-ENERGY RECONSTRUCTION

II-A. Dual-energy CT model

Let ymi denote the CT measurement for the ith ray for
the mth incident spectrum, m = 1, ..., M0, i = 1, ..., Nd. We

assume that the measurements are random variables with the
following ensemble means:

ȳmi �

∫
Imi(E) exp

(
−

∫
Li

μ(�x, E) d�

)
dE + rmi, (1)

where
∫
Li

· d� denotes the line integral along the ith ray,
Imi(E) denotes the product of the mth incident source
spectrum, the detector gain for the ith ray, rmi denotes
additive background contributions, and μ(�x, E) denotes the
linear attenuation coefficient (LAC) of the object being
scanned at the spatial location �x.

We assume LAC can be represented using basis functions
that are separable in the spatial and energy dimension as
follows [6]:

μ(�x, E) =

L0∑
l=1

Np∑
j=1

βl(E)bj(�x)ρlj , (2)

where βl(E) denotes the energy-dependent mass-attenuation
coefficient (MAC) of the lth material type, {bj(�x)} are
(unitless) spatial basis functions such as square pixels, and
ρl = (ρl1, ..., ρlNp

) denotes the vector of unknown density
values of lth material type for each of the Np voxels. Using
(1), (2), we rewrite the ensemble means of the measurements
as follows:

ȳmi(ρ) = Imie
−fmi(ρ) + rmi (3)

fmi(ρ) � − log
(∫

pmi(E)e−
PL0

l=1
βl(E)·[Aρl]i dE

)
, (4)

where Imi =
∫

Imi(E) dE denotes the total intensity for
the mth incident spectrum and the ith ray, pmi(E) �

Imi(E)/Imi, A denotes the Nd × Np system matrix having
elements,

aij �

∫
Li

bj(�x) d�. (5)

II-B. Conventional Interpolation/FBP approach

Most conventional approaches to sinogram-domain DE
CT imaging have estimated the object, {ρl}

Lo

l=1, from fully
sampled measurements, {ymi}

Nd

i=1. For fast kVp switching
mode, not all sinogram rows are measured, so sinogram-
domain methods require interpolation.

The “interpolation/FBP method” reconstructs the object
from under-sampled sinograms. Using two steps, the inter-
polation/FBP method estimates {ρl}

L0

l=1 from {ymi}i∈Im
,

where the sets of indices {Im}M0

m=1 are a partition of whole
index set I = {1, ..., Nd}. The usual estimate of fmi is to
invert (3):

f̂mi � − log

(
smooth

{
Ymi − rmi

Imi

})
, for i ∈ Im, (6)

where radial smoothing is often included to reduce noise,
e.g., [12]. Using angular interpolation, one can estimate f̂mi

for all i = 1, 2, ..., Nd. Then one applies conventional DE
decomposition [6], followed by FBP reconstruction. This
approach is fast but suboptimal.
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II-C. Penalized Weighted Least Square (PWLS) ap-
proach

We propose to estimate the component density images ρ
directly by including a spatial roughness penalty R(ρ) in the
following PWLS cost function:

ρ̂ = arg min
ρ≥0

Ψ(ρ) (7)

Ψ(ρ) �

M0∑
m=1

∑
i∈Im

wmi

2
(f̂mi − fmi(ρ))2 + R(ρ), (8)

where wmi denotes weights that we define as follows:

wmi = Ymi, for i ∈ Im. (9)

These weights are a reasonable choice since CT measure-
ments are approximately Poisson distributed and in the
absence of smoothing the approximate variance of f̂mi is

Var(f̂mi) ≈
Var(Ymi)

(ȳmi − rmi)2
. (10)

Note that (8) uses only the measured rays (i ∈ Im); no
interpolation is used. The regularizing penalty term in (8) is
given by the following:

R(ρ) =

L0∑
l=1

Np∑
j=1

∑
k∈Nj

ψ(ρlj − ρlk), (11)

where ψ is a potential function and Nj is a neighborhood
of pixel j. We used the modified regularization in [13] to
attempt to provide approximately uniform spatial resolution.
For ψ we used an edge-preserving hyperbola [14] ψ(t) =√

1 + (t/δ)2, where δ = 0.1 g/cm3.
We minimized the cost function in (8) using 100 iterations

of a conjugate graduate method with a monotone line search
technique [15]. We initialized the iterations using the object
estimated by the interpolation/FBP method.

III. ATTENUATION CORRECTION FACTORS

We assume PET measurements have independent Poisson
distribution:

Yi ∼ Poisson{Ȳi(λ)}, i = 1, ..., Nr,

where Nr denotes the number of detector pairs, and Ȳi

denotes the mean of the ith measurement:

Ȳi(λ) =
∑

j

piaijλj + si, (12)

where the survival probability is

pi = exp

(
−

∫
Li

μ(x; 511)dx

)
.

The system matrix is aij and scatter and randoms are si. λj

denotes the distribution of the radio-isotope.
For reconstructing the PET emission images, one must

compensate for the attenuation of annihilated photons at the

PET energy (511 keV). In CTAC, the ACF for the ith ray
is defined as follows:

ACFi � exp

( L0∑
l=1

βl(E)[Aρ̂l]i

)∣∣∣
E=511keV

, (13)

where ρ̂l is an estimated density map corresponding to the
lth material.

In this work, we focused on the error in the PET images
due to imperfections in the ACFs, so we generated noiseless
PET data Ȳi using (12 with no scatter or randoms (si =
0). We then multiplied the PET sinograms by the estimated
ACFs (13) and applied the FBP method to reconstruct PET
emission images.

We investigated four choices for the material density im-
ages ρ: i) The true density maps ρ; ii) density map estimates
ρ̂ formed by the “interpolate/FBP” approach, from fast-kVp
switching DE sinograms; iii) density map estimates ρ̂ formed
from fully sampled DE sinograms with sinogram-domain
decomposition followed by FBP reconstruction, called the
“FBP method”; iv) density map estimates ρ̂ reconstructed
by the iterative PWLS method.

IV. RESULTS

We performed a preliminary examination of the proposed
methods using a DECT phantom study and a simulation of
DE-based CTAC for PET.

IV-A. Phantom

We applied the proposed method to dual-energy CT scans
of a phantom. The sinogram data was fully sampled so we
downsampled the high- and low-energy sinograms to emu-
late a fast-kVp switching scan. (This emulation is imperfect
because it disregards the finite rise and fall times of the tube
kVp [16], [17] that can degrade spectral separation in an
actual fast-kVp scan.) The rotation center is 54.1 cm from
the source, and the detector is 94.9 cm form the source.
The projection space was 888 radial samples × 820 angular
views and The reconstructed images were 512 × 512 with
0.1 × 0.1 cm2 pixel size. We applied the conventional
FBP reconstruction method, dual-energy interpolation/FBP
reconstruction method, and the proposed regularized PWLS
method with source voltages 80kVp and 140kVp. This
phantom scan was a low dose, 10mA, study.

Fig. 1 shows the component material images reconstructed
by the three methods. Fig. 1(a)-(b) shows the conventional
(fully sampled) FBP images, whereas Fig. 1(c)-(d) shows
interpolation/FBP method from emulated fast-kVp switching
views. Both methods’ results are noisy and have many
streaks due to the low dose of this CT data. However, the
PWLS images, in Fig. 1(e)-(f), have successfully reduced
streak artifacts and yield lower noise than other two methods
even though it also the used under-sampled CT data. For
completeness, we also applied the proposed method to

2512



FBP method

 

 

1 512

1

512   0

2.6

(a) Soft tissues

FBP method

 

 

1 512

1

512   0

2.6

(b) Bone minerals
Interpolation/FBP method

 

 

1 512

1

512   0

2.6

(c) Soft tissues

Interpolation/FBP method

 

 

1 512

1

512   0

2.6

(d) Bone minerals
 

Regularized PWLS method

 

 

1 512

1

512   0

2.6

(e) Soft tissues

 
Regularized PWLS method

 

 

1 512

1

512   0

2.6

(f) Bone minerals
Regularized PWLS method
with Interpolated DE data

 

 

1 512

1

512   0

2.6

(g) Soft tissues

Regularized PWLS method
with Interpolated DE data

 

 

1 512

1

512   0

2.6

(h) Bone minerals

Fig. 1. First row: FBP method, Second row: Interpola-
tion/FBP method, Third row: PWLS method, Fourth row:
PWLS method from interpolated DE data.

the interpolated DE data. Fig. 1(g)-(h) shows the resulting
images. As shown in Fig. 1, the proposed method has the
almost the performance is very similar to Fig. 1(e) and (f).

IV-B. Simulation

To evaluate the performance of the proposed method for
CTAC, we compared it to two traditional methods: the (fully
sampled) FBP method and the interpolation/FBP method.
We applied three methods to simulated data with the same
parameters in real phantom data.
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Fig. 2. NRMSE of estimated density maps: Interpola-
tion/FBP method, and the proposed method.

Fig. 2 shows the NRMSE plot of estimated density maps
with different incident intensities, I0. We observed that the
proposed method significantly reduces the NRMSE of soft
tissue and bone minerals compared to the interpolation/FBP
method.
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Fig. 3. Reconstructed PET emission images using competing
attenuation correction methods.

Fig. 3 shows the (FBP) reconstructed PET emission im-
ages based on the various methods for estimating the ACFs.
The PET images in Fig. 3(d) are based on ACFs from
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the PWLS DE reconstruction method. This CTAC approach
provides reduced noise and streak artifacts compared to the
other methods in Fig. 3(b)-(c).
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Fig. 4. NRMSE of reconstructed PET images: Interpo-
lation/FBP method, and the proposed method, versus I0

(number of incident X-ray photons per ray).

Fig. 4 compares the NRMSE of the reconstructed PET
images. The NRMSE of the PET image based on the
PWLS ACFs is significantly lower than the other competing
methods investigated here.

V. DISCUSSION

We presented an iterative PWLS algorithm for DE CT re-
construction, motivated by improving attenuation correction
in PET. The regularized method estimates the two material
component images directly from DE sinograms including
the type of under-sampled DE data that is collected by fast
kVp switching CT systems. Unlike other DE CT algorithms,
the proposed method estimates material component images
directly from only half as many projection views without any
interpolation operation. Using these estimated DE CT images
yields more accurate ACFs than conventional approaches.

Our next step is to evaluate the method with real pa-
tient data and to investigate penalized-likelihood methods.
Additionally, we observed undesirable variations in spatial
resolution and cross talk between the soft tissue and bone
material images. We need to analyze the spatial resolution
and noise properties of statistical methods for DE recon-
struction and use this analysis to improve the design of the
regularizers. This problem is relatively challenging because
of the nonlinearities of beam hardening in DECT with
polyenergetic spectra.
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