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ABSTRACT 
Single Photon Emission Computed Tomographic im- 

ages(SPECT) have relatively poor resolution. In an at- 
tempt to improve SPECT image quality, many methods 
have been developed for including anatomic information, 
extracted from higher resolution, structurally correlated Mag- 
netic Resonance images(MRI), into SPECT reconstruction 
process. These methods provide improved SPECT recon- 
struction accuracy if the anatomic information is perfectly 
correlated with the SPECT functional information. How- 
ever there exist mismatches between MRI anatomical struc- 
tures and SPECT functional structures due to different 
imaging mechanisms. It has been reported that if the MR 
structures are applied into SPECT, the mismatched part 
will cause artifacts. This paper describes a joint estima- 
tion approach which unifies MR information extraction and 
SPECT reconstruction processes to avoid these artifacts. 
Both qualitative and quantitative evaluations show that the 
method improves the SPECT reconstruction where the MR 
information matches and is robust to mismatched MR in- 
formation. 

1. INTRODUCTION 

SPECT has the capability of disclosing the functional infor- 
mation in living organs. However, the fluctuation of photon 
statistics, trade-offs between detection sensitivity and col- 
limator resolution, and limited photon rates cause the in- 
herently modest resolution in SPECT imaging. Since MRI 
give relatively high resolution images, many efforts have 
been made to apply region information, extracted from high 
resolution, structurally correlated MR images, to constrain 
the SPECT reconstruction as an image prior in a Maximum 
a posteriori (MAP) objective to improve the image qual- 
ity and quantification. Two major approaches exist for in- 
corporating structural information: line site models, which 
represent anatomic boundaries [2]; and labelling methods, 
which identify anatomic regions [4]. For example, one can 
define the region labels with preprocessed MRI and define 
the labels which define the weights in a weighted Gibb’s 
function as a penalty function in a penalized Maximum- 
likelihood objective [3], so intensity discrepancies are only 
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penalized within the same region and not across region 
boundaries. This is a spatidy-variant regularization. This 
provides improved SPECT reconstruction if the anatomi- 
cal structure is perfectly correlated with SPECT functional 
information. However, it has been reported that this type 
of “blind” use of MRI side information causes artifacts [3] 
if there is mismatch between MRI anatomic and SPECT 
functional structures. In practice, this type of mismatch 
is probable since the spin density and T I ,  T? distributions 
are not necessarily the same as SPECT tracer distribution. 
Some investigations have been done to accommodate this 
fact, such as Leahy’s “functional line sites method” [I] and 
Fessler’s “blurred weights” method [3]. To avoid fixed in- 
fluence from the mismatched MRI structure, it is better to 
allow the line sites or region labels to vary. Thus we inves- 
tigate a joint estimation approach that incorporates both 
the anatomic side information and its measurement statis- 
tics into SPECT image reconstruction. We choose region 
labels to represent the anatomical regions extracted from 
MRI into SPECT reconstruction because the region labels 
more easily favor region contiguity and need half as many 
the parameters as line sites. In this approach, each SPECT 
pixel corresponds to one region label. If two pixels have the 
same type of region labels, they tend to have the similar in- 
tensities. The region labels 1 are not simply a ”copy” from 
the segmented MRI. After being initialized with the seg- 
mented MRI, they are jointly estimated with SPECT pixel 
mean intensity parameters A, using a penalized Maximum- 
Likelihood(PML) objective. We update a SPECT mean 
intensity pixel and its corresponding region label simultane- 
ously, such that label-pixel pair updating are mutually con- 
strained. Since region labels are estimated jointly from both 
MRI and SPECT, only those parts of the MR anatomical 
regions that match the SPECT functional regions are rep- 
resented by the estimated labels, and constrain the SPECT 
intensity reconstruction, while the mismatched region la- 
bels will be updated during the joint estimation process, to 
approach the SPECT functional region. Thus the artifacts 
due to mismatch are reduced. 

Section 2 describes the method in detail. Section 3 gives 
simulation results comparing visual qualities of the recon- 
structed images and bias vs. variance trade-offs of different 
methods. Some problems we encountered and possible fu- 
ture study are described in Section 4. 
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2. JOINT ESTIMATION APPROACH FBP Segmented %%RI 

2.1. Objective Function 

We choose penalized Maximum-Likelihood as our objective, 
which can also be viewed as a Maximum a posteriori if one 
regards the penalty terms as an a priori pdf of possible im- 
age and label states from a Bayesian perspective. The joint 
objective function incorporates both the SPECT noise dis- 
tribution and the MRI side information measurement statis- 
tics, plus a joint penalty function, as: 

Qi jo in t (Ay1)  = L ( x , ~ ; Y , ~ )  - n ( ~ , 1 )  (1) 

where y is the SPECT projection data, i is the MR anatomic 
region measurement, A and 1 are SPECT intensity and la- 
bel parameters to be estimated, L and n are joint likelihood 
and joint penalty terms. So the estimation of both SPECT 
intensity A and region labels 1 wiU be: 

(i, i) = arg mitx+joint(A, 1 ) .  (2) 
A.1 

2.1.1. Joint Log-Likeiihood ~ ( ~ , & y , i )  

Since SPECT and MRI are independent imaging processes, 
their joint log-likelihood_ functions are independent and can 
be separated: L ( A , l ; y , l )  = L(A;y) + L ( l ; l ) .  
The SPECT measurement is well known to be Poisson pro- 
cess; the log-likelihood is given by [SI: 

L(X, Y) = log ~ ( Y ; A )  E C(-~L(A) + Yn log gn(A)) 
n 

where 
%(A) = x a n k  Ak  + 7, (3) 

k 

where ''5" represents the equivalence, rn is the assumed 
known scaiter. The log-likelihood of the region label vari; 
ables, L ( 1 ; l )  depends on how the anatomical information 1 
is extracted from the MR images. In our preliminary stud- 
ies, we only concentrate on dealing with MRI mismatched 
structure, so we assume that there is no registration and dis- 
tortion error in MRI. For simplicity, we also assume that the 
MRI has Gaussian noise and different regions have different 
intensities. If MRI is segmented using simple pixel-by-pixel 
thresholds, then the log-likelihood for P ( l k 1 1 k )  for i k  given 
l k  is: 

P 

L(l;f) = c l o g P ( f k l l k )  (4) 
k = l  

where P ( f k I l k )  is the probability of assigning the label i k  
to the kth pixel durkg segmentation when l k  is the true 
label. Besides, the P ( l k l l k )  also incorporates the possibility 
of existing mjsmatch in the segmented MRI. For example, 
in Fig.1, P ( l k  = Bilk = C )  can be determined by MRI 
noise statistics, however, whether there is a possible region 
D in true region has to be decided by inspecting the seg- 
mented MRI and its corresponding FBP, and then assign 
certain probability value. These values determine the ex- 
tent to which we trust each region in the MRI structural 
information. 

I I 

Figure 1: Compare FBP and MRI for P ( i k l l k )  where p rob  
able mismatch exists. 

2.1.2. Joint Penalty n(A, 1 )  

The joint penalty term O(A, 1 )  can be viewed as a log-prior 
pdf of the SPECT pixels and region labels. We adopt a 
hierarchical form of n, thus 

n(A, 1 )  = P1 Ql (A; 1 )  + Pz nz ( 1 )  

where .& and are the penalty parameters. The penalty 
terms restrict the possible space of SPECT image and re- 
gion labels. 0 1  relates the estimation of the labels 1 to the 
estimation of the intensity A, and i-2~ is a penalty term which 
encourages contiguous regions. To encourage smoothness 
within the same region but allow discontinuities between 
regions in the SPECT image, we choose Ql as: 

k = l  J € N ~  

if i k  = 13 

{ 
n/k  is the neighborhood of pixel k, usually a 2nd-order 
neighborhood. The weights uk, link the pixel k with its 
neighbors j ,  and $ ( A ,  - A,) is usually a quadratic term. 
Here label 1 are variables to be estimated. When $(Ah -A,) 
is too big, the minimization of the penalty pushes the cur- 
rent label l k  to be different from its neighbors. This penalty 
term associates the SPECT intensity vector with the la- 
bel vector, their estimations are affected by each other, in- 
stead of letting the labels extracted from MR dominate the 
SPECT reconstruction. We choose 522 as: 

(direct neighbor) 
with wk,(I) = fi/2 (diagonal neighbor) if l k  = 1, 

if i k  # 13 

P 

k = l  j E N k  

which encourages the same labels for neighboring pixels. 

2.2. Reconstruction Algorithm 

We apply an iterative Space-Alternating Generalized EM 
(SAGE) [5] algorithm for the penalized Maximum-Likelihood 
objective because of its faster convergence and its mono- 
tonicity. In SAGE, the penalized likelihood + j o i n t ( A , l )  
is maximized by maximizing 4 k ( X k ,  l k ;  A ' , l ' ) , ,  which is the 
sum of the conditional expectation Q k ( X k , X ' )  of the log- 
likelihood and the penalty terms of the hidden-data space 
[5]. Each pixel-label pair is jointly updated by holding the 
remaining pixel-label pairs fixed: 

2308 



Figure 2: Top(a): The phantom of SPECT tracer distri- 
bution. Middle( b): Simulated segmented MRI region map 
with perfectly matching information. Bottom(c): Simu- 
lated segmented MRI region map with mismatched side in- 
formation (a missing hot elliptical region). 

SAGE algorit,hms monotonically increase both 4k and 
iPJOtnt((X, 1). However the penalty term $21 contains mixed 
discrete and continuous variables, the objective function is 
non-concave, so the SAGE here does not guarantee global 
convergence. To avoid local maxima, we use a deterministic 
annealing procedure by changing PZ exponentially as a func- 
tion of iteration number until a specified value is reached. 

3. SIMULATION RESULTS 

Some preliminary simulations are performed to compare the 
results from the joint estimation method and other image 
reconstruction methods in terms of both visual quality and 
bias vs. variance relationship. A simple parallel collimated 
SPECT imaging system is simulated, with a 46-bin detector 
and 90 sampling angles over the 180-degree range. The im- 
age field is discretized into 64 x 64 pixels. The bin width is 
2-pixel, and the detector response is triangular with 4-pixel 
FWHM. We ignore the attenuation. All of each SPECT 
projection sets have about 500,000 counts with 15% as- 
sumed known scatter, Poisson noise is simulated. Figure 2 
are the phantoms used in these simulations. 

Figure 3 shows images reconstructed in methods other 
than joint estimation. (a) is a filtered-backprojection with 
a 3rd-order Butterworth window, at fc = BO. Fig.3(b) 
through Fig.3(d) are from penalized SAGE with weighted 
Gibbs quadratic penalty. (b) is without any anatomical in- 
formation, using uniformly weighted Gibbs quadratic penalty. 
In order to reduce noise, the image has to be globally regu- 
larized, so it looks blurry across all the region boundaries. 
In (c) the Gibbs weights were defined by the perfect MRI 
anatomical regions, Fig.2(b). Thus the regions are smooth, 
and boundaries are sharp. This shows the ultimate (also un- 
realistic) performance of applying MRI side information. In 
Fig.3(d), Fig.Z(c) was used as side information to define the 
weights in the penalty term. Where the anatomical regions 
match the SPECT functional region, the reconstruction is 
as good as Fig.S(c); where mismatch exists, then the hot 
region in SPECT is blurred about the same amount as in 
Fig.S(b) where the penalty is uniformly weighted. 

For joint estimation, penalized SAGE is applied to up- 
date each pixel-label pair ((Xk, lk) in four alternative raster 
scan orders. An idealized L(1. i) table is built and used 
according to the assumptions and procedure described in 
section 2, see Table I. X is initialized with ramp filtered 
FBP reconstruction result, and 1 is initialized with Fig.?(c) 

Figure 3: Top row:(a:left)FBP re- 
construction. (b.right):SAGE reconstruction with uniform 
8 neighbor regularization. Bottom row:(c:left)SAGE with 
perfect MRI anatomical region information. (d:right)SAGE 
with mismatched MRI anatomical information. 

which represents mismatched MRI anatomical information. 
The reconstruction results are shown as Fig.4(a) and (b). 
We use fixed = 2-' and an exponentially increased 

or deterministic annealing pro- 
cess in the penalty terms. Even though there was no region 
information associated with the hot region, the joint es- 
timation partially recovers the labels for that region and 
helps to prevent the blurring observed in both Fig.3(b) and 
Fig.3(d). The newly estimated region labels are basically 
dependent on SPECT data, so they are not the same as the 
true region labels, due to the noise in SPECT data. 

To avoid anecdotal performance comparison and to ob- 
serve the improvement in quantification, we generated 50 
SPECT noisy projection realizations and evaluated the bias 
vs. standard deviation (std) trade-offs for the hot region in 
terms of its concentration among different methods. For the 
cases where the perfect MRI side information is available, 
we use the ideal ROI labels to define the region. For joint 
estimation with mismatched MRI side information, we use 
estimated labels to define that region. For uniform regular- 
ization and fixed application of MRI cases, we use 75% of 
the peak value in a bigger region containing the ROI as a 
threshold to define the estimated ROI. The concentration 
is then the averaged counts per pixel in that defined region. 
Fig.5 shows the bias vs. STD comparison. When the per- 
fectly matched MR anatomical information is used to define 
the weights of the penalty, it gives ultimate performance, 
i.e. for a given standard deviation, it has the smallest bias 
(case 1). On the contrary, when there is no MRI side infor- 
mation, we can only apply uniform regularization to con- 
trol the trade-off between image resolution and noise. For 
given standard deviation, this gives the highest bias( case 
2 ) .  and vice versa. Very similar performances are observed 
in filtered-backprojections with 3rd-order Butterworth win- 
dow(Case 3) at fc = 0.3,0.5,0.7 and 0.9 and a Wiener fil- 
ter which incorporates the triangular detector response at 

pz = 20.5 2mtn(3,:te+atton) f 
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Figure 4: Joint estimation initialized with mismatched 
MRI. (a). left: reconstructed image, (b). right: estimated 
labels 
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Figure 5: Bias vs. STD in terms of t,he concentration of the 
given ROI. 

fc = 0.4,0.6,0.8,1 .O as the following: 

sincZ ( f / f ~ )  
sinc4 (f/fN) + (-& . 

f~ corresponds to 0.5 cycles per detector bin(Case4). If 
MRI information has some mismatch, such as  the missing 
ROI in case 5, fixed application of this MRI information will 
give the artifact - blurring in the reconstructed SPECT im- 
age, so the performance is as poor as case 2 .  When the joint 
estimation is initialized with mismatched MRI anatomical 
information, it is able to partially recover the region and 
prevent blurring across the region boundaries, so that the 
estimation performance (case 6) of concentration in that re- 
gion is better than case 2, 3 and 4. From the curve we see 
that case 1 and case 6 are closer, which shows the robustness 
of the joint estimation. 

4. SUMMARY 

potential of robustly incorporating &!RI side information. 
In our preliminary study, the L(1; 1) is established by hu- 

man observation, and simple pixel-by-pixel threshold seg- 
mentation is assumed. For more robust application of the 
joint estimation, an automatic and more systematic method 
has to be developed in future study. We have also observed 
that in joint estimation, the convergence is sensitive to the 
(31. P 2 )  pair, i.e. there exist a range of ( P I ,  P z )  which will 
lead the estimation converge to a converge to a local max- 
imum close to the global maximum, otherwise the estima- 
tion of both X and 1 will converge to a local maximum far 
from the global maximum. We think that is related to the 
discreteness of the label variables. 
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Table 1: Ideal probability distribution of P(ikJ2~). 

We have shown that the joint estimation approach preserves 
the benefit of applying the correlated anatomical side infor- 
mation, so the estimation bias and variance are reduced. 
It can also reduce the influence from the mismatched re- 
gion information. So the joint est,imat,ion approach has the 
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