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rise occurred earlier and the current continued rising
at a faster rate (curves c, d). With the voltage exceeding
Uo by only a few volts the current became excessive,
being limited mainly by the external resistance. The
critical voltage agreed closely with the "turn-over"
value obtained on application of a continuous 50-cycle
voltage. '

No proper explanation seems to have been given so
far for the large increase in leakage current observed as
the voltage is raised and the contact point reaches high
temperature. In the usual rectifier rnodeV' current
carriers are taken to Qow from the metal into the semi-
conductor on application of inverse voltage; but the
number of carriers available in the metal is not increased

by high temperature. The explanation seems to be that
by the mechanisms 1 and 2 described abov- image
force and tunnel effect—the current rises beyond the

' 'The current pulse as displayed on the cathode-ray screen
remained steady for curves a and b. When the mean power
exceeded about 25 mw, the current pulse crept up visibly. The
power loss then apparently exceeded the heat dissipation, with
the rectifier temperature increasing from one pulse to the next.

saturation value postulated in the simple theory. The
ensuing power loss raises the local temperature at the
contact point until intrinsic conduction sets in. Elec-
trons are thus raised into the conduction band at a fast
rate, leaving the same number of holes behind in the
valency band. These electron-hole pairs are generated
within the barrier or in its neighborhood suKciently
close by to drift towards it within their lifetime (10 '
to 10 ' second). Although the barrier is practically
insuperable for the predominant carriers (electrons in
e-type germanium), there is, of course, no barrier to
stop the minority carriers (holes). This part of the
leakage current is thus expected to rise exponentially
with temperature and to become dominant as the
intrinsic temperature is approached. The possibility of
electrons and holes simultaneously carrying the current
has already been discussed, " but the origin of the
minority carriers, namely, intrinsic generation, seems to
have escaped explanation so far.

' J. Bardeen and W. H. Brattain, Phys. Rev. 75, 1208 (1949).
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By a unitary transformation a rigorous equivalence theorem is established for the pseudoscalar coupling
of pseudoscalar mesons (neutral and charged) to a second-quantized nucleon field. By the transformation
the linear pseudoscalar coupling is eliminated in favor of a nonlinear pseudovector coupling term together
with other terms. Among these is a term corresponding to a variation of the effective rest mass of the
nucleons with position through its dependence on the meson potentials. The question of the connection
of the nonlinear pseudovector coupling with heuristic proposals that such a coupling may account for the
saturation of nuclear forces and the independence of single nucleon motions in nuclei is brieQy discussed.
The new representation of the Hamiltonian may have particular value in constructing a strong coupling
theory of pseudoscalar coupled meson fields. Some theorems on a class of unitary transformations of which
the present transformation is an example are stated and proved in an appendix.

INTRODUCTION
" 'N a recent communication' by one of the present
~ - authors it was demonstrated that by performin'g a
particular unitary transformation on the Hamiltonian
describing the interaction of a nucleon with a neutral
pseudoscalar meson field through pseudoscalar coupling
a new representation of the Hamiltonian was obtained
which gave prominence to some features of this theory
which are obscured in the usual representation. The
present paper is the first of a series whose purpose is to
generalize these results and to investigate, and perhaps
exploit, their significance in our understanding of
nucleonic properties and nuclear forces.
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f AEC Predoctoral Fellow.
f Now at Oak Ridge National Laboratory, Oak Ridge, Ten-

nessee.
' L. L. Foldy, Phys. Rev. 84, 168 (1951).

The unitary transformation referred to above can be
regarded as generating a rigorous equivalence theorem,
correct to all orders in the coupling constant, connecting
the simple pseudoscalar coupling in the original repre-
sentation with pseudovector coupling in the new
representation. The latter is particularly interesting
because the pseudovector coupling term has a nonlinear
character of a type which one would anticipate would
lead to saturating of the nucleon-meson coupling in the
presence of large meson potentials. The attractive
possibility is therefore suggested that within the frame-
work of the ordinary pseudoscalar meson theory with
simple pseudoscalar coupling may lie just the elements
of nonlinear behavior responsible for the saturation of
nuclear forces and for the relative independence of
one-particle motions in nuclei (as evidenced by nuclear
shell structure) which have been proposed on a heuristic
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basis by several workers. ' The new representation also
has the advantage of exhibiting the Hamiltonian in a
form in which nonrelativistic strong-coupling methods
can be applied to its investigation; in the conventional
representation, the pseudoscalar theory with pseudo-
scalar coupling has evaded such treatment. However,
further discussion of these points will be left for suc-
ceeding papers in this series and the present paper will
be concerned only with the establishment of rigorous
equivalence theorems. We may then justify our atten-
tion to the present results simply on the basis that in
view of recent experimental evidence favoring the pi-
meson as having pseudoscalar character, ' any new
results concerning the properties of pseudoscalar fields

may prove to have value in the future.
Previous derivations of equivalence theorems4 have

been concerned with obtaining a pseudoscalar coupling
which is equivalent to a given pseudovector coupling.
In the present treatment the emphasis is reversed,
pseudoscalar couplings being reduced (to within certain
other coupling terms) to an equivalent pseudovector
coupling. The virtue of this procedure is that it makes
easier the transition to an appropriate nonrelativistic
Hamiltonian for the study of nonrelativistic problems.
In the present paper the results of the earlier communi-
cation referred to above, which dealt with the case of a
single nucleon interacting with a neutral pseudoscalar
field, have been generalized by dealing with nucleons in
the second-quantized representation and by considering
four types of meson fields: two types of neutral fields,
the charged field, and the symmetrical field. The work
has also been carried out only in the Schrodinger
representation though there appears to exist no diK-
culty in generalizing the results to the interaction
representation. The execution of the transformations is
e6'ected in the following section. Use is made there of
several theorems on unitary transformations which
may have wider application than in the establishment
of the present results. Statements and proofs of these
theorems are given in an appendix.

RIGOROUS EQUIVALENCE THEOREMS

In this section we shall actually carry out the type of
canonical transformation referred to in the introduction
in order to derive rigorous equivalence theorems for
pseudoscalar coupling. We do not attempt to derive
the theorem in its most general form but content
ourselves with four special cases: (1) the charge-
symmetrical neutral theory in which the coupling
constants of the neutron and proton to the neutral
meson field have the same sign, (2) the charge-anti-

' L. I. SchiG, Phys. Rev. 80, 137 (1950); 83, 239 (1951);84, 1,
10 (1951). See also: W. Heisenberg, Z. Naturforsch. Sa, 251
(1950); R. Finkelstein and M. Ruderman, Phys. Rev. Sl, 655
(1951);F. Bloch, Phys. Rev. 83, 1062 (1951).

~See, for example, R. E. Marshak, Revs. Modern Phys. 23,
137 (1951).' E. C. Nelson, Phys. Rev. 60, 830 (1941);F. J. Dyson, Phys.
Rev. 73, 929 (1948); K. M. Case, Phys. Rev. 76, 1 (1949).

symmetrical neutral theory in which the coupling
constants have opposite sign, (3) the charged theory,
and (4) the symmetrical theory. The last is, of course,
a combination of (2) and (3) with equal coupling
constants for neutral and charged mesons. Complete
generality has not been attempted in that an arbitrary
mixture of all meson fields has not been considered, nor
has the inclusion of pseudovector coupling in the
original Hamiltonian. The interaction of the particles
with electromagnetic fields has also been omitted. The
methods employed can all be generalized to take care
of these omissions, but it was not felt worthwhile to
consider a more general case without some specific
application of it in view. In -order to avoid duplication
of effort and to save space we shall introduce a notation
which allows all of these cases to be treated together.

Our notation is as follows: We employ pp to represent
the potential of the charge-symmetrical neutral meson
field, q ~ and y2 to represent the potentials of the
charged meson field, and q3 to represent the potential
of the charge-antisymmetrical neutral meson field; 7rp,

m &, ~2, and m 3 represent respective canonically conjugate
momenta. ' We employ 7.

&, r2, and v3 to represent the
components of the isotopic spin vector of the nucleon
field, and where convenient we also use vp to represent
the unit isotopic spin matrix. To unify the treatment
of the four diferent cases we introduce the quantities

C = r, p;, II= r,m;, y= (y,y, ) &.

Here and in what follows a repeated Latin subscript is
to be summed over the following values:

0 (only) in the charge-symmetrical neutral theory;
3 (only) in the charge-antisymmetrical neutral theory;
1, 2 in the charged theory;
1, 2, and 3 in the symmetrical theory.

The following relation then holds in all cases:

We may now write the Hamiltonian in all cases in
the form

iX=K~+3Cp+Kjy
where

X = $*(PM+e p)Pdx

BCu=2 Lrrp ,+7'v; V'p, +Ii. N, v;ldx

3C,=ij ~P*Py54gdx.

Here P* and P represent the wave functions of the

' The connection between q I, q2, xi, m-2 and the usual variables
q, q*, m., ~* employed to represent the charged meson field is
given by the following equations:

v =(v*+v)/~ v =&(v' —v)/~2
w, = i~+w*)/Vl, n, =i(w r*)/v2—



proton-neutron held in the usual eight-component
representation, M represents the nucleon mass, p, the
meson mass, g is the coupling constant (in rationalized
units), p is the operator i—V, and units are employed
in which 5 and e are unity. Quantities which are
functions of position such as P*(x) and s(x) will be
primed when they are to be evaluated at a primed
coordinate, vis. , P*'=P*(x'), )r'= w(x'), etc.

We now wish to perform a unitary transformation on
the Hamiltonian. "

with the provision that the generator of the transfor-
mation 5 be so determined that the pseudoscalar
coupling term is eliminated from the Hamiltonian in
favor of a pseudovector coupling term. We assume that
5 cRn. bc written ln thc forIQ'

4dw 1 ~Cq
=~ P* u y—— u V')t —-sin2wu VI —

(Ey)

sin'w —u ~l —
I ~dx

Ey)
dÃ $4' )

=~ P u p —— u V'4 ——sin2w —g u V~
dQ 2 dQ

4(u VC)-(u VC)4——sin w
2

e' 2)~l~a' ~v'+I'v v jdxe "

5=t)I)*sfdx, , s =p'(4/p) w,

where w'=wL)t (x')j is a function of )t' only.
The actual execution of the unitary transformation is

facilitated by the use of several general theorems on
unitary transformations of this type whose statement
and ploof Rrc glvcn ln thc Appcndlx. By thc Usc of
Theorem III of the Appendix we may write

so that the only remaining term to be evaluated is
'es'J' )pr., de 's. To evaluate this term we write it as

' es8~ .g
—i8~s8~,~-i8/X

e'e ~$*(PM+~fPy'C)gdxe 's

f~e"(P3f+ifPy'C)e ")Idx

e 7l')e = 'r +iJ)I lP I s ) 'ir)]1// dx

/*I cosw+~y' sinw ((PM+—~fPy'"4)
)

X )
cosw —sy'—sinw ~fdx)

( -f4
=~ y+ PSX) cos2w+ —sin2w

~

M
+jfPy'4)~ cos2w ——sin2w ( ttdx,)

e's P*u yPdxe 's= P*e"u ye "Pdx
I", t',

t', (
' P~ cosw+iy' —sinw ~u p)

1 dw d (Cq—P~s' —sin 2w —p
.2 dy dq;Ey)

i sirPm dC dC
4 — 4

2 p dy;

On examining these results we note that the pseudo-
scalar coupling term can be eliminated by the choice

w(y) = -,'tan-'(fy/M).

Combining Rll of thc Rbovc I'csUlts, cRIrylng oUt solTlc

slmpll6cations, Rnd lntIoduclng thc RbblcvlRtlon

M'=M(1+ f'y'/3P)t,

the transformed HRIMltonlan cRn bc %'I'lttcn Rs

H=e'sXe 'e=K +X„+Zi+Zs+Ha+p4+Bg,

whclc K~ Rnd 3' have thc same mcRnlngs Rs above Rnd

X
~

cosw —its—sinw ~)ldx Pi f*(kf* 3f)fdx, —— —
)



M
H2= —— P* (e V'C+y~II)

4~ (M*)'

+(o VC+y'Il) Pdx,
(M*)' i

fp M~ M-
(O' ' C'0')(+'~&+& ~')

4J y'(M*)'

present calculations (as well as the earlier calculation
of Dyson') demonstrate that the distinction between
a meson-nucleon coupling which is linear in the meson
potential and one which is nonlinear is largely artihcial
in that a linear coupling in one representation of the
Hamiltonian may be strongly nonlinear in another
representation.

M*—M
+( g + g ) (p2 @ ) pox Notation:

y'(M*)'

M*—M
H4= —-!P* (Cr, ~,4)(e Vy,+s.,)

8~ p'M*

Let lP~ (x) and A(x) with o run111ng through the
values I, 2, , I be a set of operators which are
functions of position and which obey the Jordan-Pauli
anticommutation relations:

M*—3f!-
+(a Vrp,+.~,) (4'7, r,C') — Pdx,

I ! fMr; fy'(M~ M)—
4* V' + (4'r' @V')—

8 ~ (M*)' p'(M*)'

iaaf* —M 2

(Cr,—r,e) P dx.
2)PM*

We now discuss briefly the nature of the various
interaction terms. II~ represents a nonlinear spin-
independent coupling of the meson held to the nucleons;
its (meson) vacuum expectation value can be directly
interpreted as a contribution to the renormalization of
the nucleon mass. II2 represents a simple pseudovector
coupling term but with a nonlinear coefI1cient of a
type which one would expect to lead to saturation
e6ects in strong meson potentials. II3 is a somewhat
more complicated nonlinear pseudovector coupling
term which vanishes in the two neutral meson theories.
It is probably associated with the correlations existing
between the emission of successive charged mesons
resulting from the change in the isotopic spin coordinate
of the nucleons. H4 which also vanishes in the two
neutral meson theories, represents a nonlinear vector
coupling of the meson held to the nucleons of a rather
unfamiliar character. II5 represents a "contact" or
"direct" interaction term; the second and third terms
in the bracket in 85 vanish for the two neutral meson
theories.

It will be noted that when K„and Ilj are combined
they form a Hamiltonian corresponding to nucleons
whose effective rest mass M* is a function of position
t11I'ough its. dependence on the nleson potential:
M*= (M'+ f'P')l. In a succeeding paper some indica-
tions will be pointed out that this position dependence
of the mass leads to such strong repulsion between
nucleons at separations of the order of the meson
Compton wavelength or smaller as possibly to preclude
the existence of any bound states between two nucleons,

A hnal point which is worth mentioning is that the

L4-*(x), A(x') 3+=~-p~(x —x'),

Cf«*(x) A*(x')j+=L4-(x) A(x') 3+=0.

The quantities s p(x) represent the matrix elements of
an e&(n Hermitian matrix s(x). The matrix elements
of the matrix s are assumed to commute with one
another and with P* and P. The quantity 5 is defined by

5= P *(x)s p(x)A(x)dx,

where repeated indices are summed from 1 to e in
accordance with the usual summation convention. The
nP element of a function f(s) of the matrix s will be
written (f(s)} p. For example,

(p }~p 8~p+$$~p s~pspp/2 $$~ps»sbp/3 +
The quantity Q p(x, 8/Bx) is the aP element of an e)&e
matrix which is not necessarily Hermitian. The matrix
elements of Q are assumed to commute with P*(x')
and P(x'), but because of the presence of the differ-
entiation operators, they do not commute with j*(x)
and f(x); they do not necessarily commute with the
matrix elements of s.

%here no confusion can. arise, subscripts will be
dI'opped from matrix pI'oducts) PM. )

P.*(x')f p* &"&}.pQ„(x)(p-' "}„4,(x')
(x')p""'Q(x)p "*'V(x')

Position coordinates of which operators are functions
will be suppressed by writing tt,* for P *(x) and Q p'

for Q p(x'), for example.
The following readily established theorem will be

used extensively in the proofs given below:

L4*~A O'BV]=L4-*~-p6 4"*'»~'A']
=4 «*'O' *L~.pB»' B»'~-p)AA'—

+P *Id pBp,
'—B p'Ap, jig, h(x —x')

=4&*'4«'L~-p B»'ApA'
+f„*LA,B'j,f~b(x x'). (A-I)—
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Here A and 8' are two nXn matrices.

Theorem I:
Proof: Define

Q r —eirsQ e
—its

or

eiSQ e iS -{e ie—} Pp {eisa,}

eiSye iS —
e
—i'

whence, as in the proof of Theorem I, one finds

BQ„.&/8&=i[S, Q„, ].
Proof: Define

Then
S—eire e

—i)8
Then making use of the hypothesis together with
(A-1) one can readily show that

0-'+"=0-'+(~4-'/~k)dk= e'"'0-'e '""
=4-'+idt[S, 4-'],

so
4-'/~k=&l S 0-'].

We will now show that

p.&= {e-'r }.SA

is a solution of Eq. (A-2).
We have on differentiating (A-3)

aP.&/ay= i{e—'& }.-psp, y„,

(A-2)

(A-3)

Q„„=Q„.+i/ ~f *'[s p', Q„.]gp'dx'

is a solution of the above equation and by the same
reasoning as in Theorem I, one establishes the present
theorem. Note that Q„„ is not included in the matrix
product occurring under the integral sign. This theorem
also holds if Q,„ is not a matrix element of an @X'
matrix but still satisfies the hypothesis. Corollary:
If the matrix element Q„„commutes with all matrix
elements of s, then

eisQ e is Q—

and on evaluating the commutator

[S,f ]= [f„*'s„„'P„'{e' '} pfp

—{e '&'} P P *' ,s„'f„'] xd'

Theorem III:
If all matrix elements of Q commute with all matrix

elements of s then

e's f *Q„„g„dxe 's= e's ' Q*Q—Pdxe 's

{e '&s} pbp„5(x x')s„„'P„'dx'—

= —{e-&}.pSSA, .

Hence we see that the equation is satisfied. Since

f '=f, we obtain on setting /=1:

(P.&)S=,=e"4.e-*'={e-"}.8 p.

Proof: We have

ess f *Q P dxe 's

t f*e"Qe "fdx.

Corollary:
eiSQAe —iS /leis p pv v

e' P *e—' e' Q e ' e' P e ' dx

Theorem II:

then

[s.p", [s,p', Q„.]]=0,

and using Theorem I and the corollary to Theorem II,
we obtain

r
eiS iiiesQPdXe iS P 4{pie} Q

— {e ie}—
e' Q„,e ' =Q„,+j P.*'[{e'"}.SQ„.{e '"}p„

—Q„.b ~]P~'dx'
I $4eseQe ssslidx

~ ~

~

=Q~+i 4'-*'[s-p's Q~.]A'dx' This theorem could also be established by the methods
employed in the proof of Theorems I and II.


