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A kinetic (transport) theory is presented for the first- and second-order (and, if necessary, higher) statisti-
cal moments of the number densities of the various particles and/or photons that describe the observable
fluctuations in the radiation distribution from an emitting system. This treatment is particularly suitable
for the analysis of Rnite, inhomogeneous systems that may be composed of detectors located outside of a
radiating source. Because we are largely concerned with the utility of kinetic theory as a physical theory,
considerable emphasis is placed upon an appropriate theoretical description of the actual observables of given
experimental situations. The quantum I.iouville equation is used to generate the coupled set of transport
equations, and basic criteria for the applicability of transport and wave theories are discussed. Quantum-
statistical effects are also quite naturally accounted for in cases where they are relevant. It is seen that
fluctuation measuremerits are useful for inferring information relevant to the dynamic interactions within a
given system. Such measurements often enjoy the feature of being passive with respect to the interacting
system of interest. To illustrate the use of this spatially dependent form of kinetic theory on a system emit-
ting optical radiation, we consider an example that interprets a fluctuation measurement on the radiation
emergent from a finite nondispersive blackbody. We conclude by discussing the problems of statistical
coupling between the radiation 6eld and detector atom distributions.

r. DTTRODUCTION

HE primary objective of this work is to present a
transport theory of the multiplet densities of

radiation distributions to facilitate the analysis of
measurements of fluctuations in radiation fields in
which spatial inhomogeneities play a significant role.

*%'ork performed under the auspices of the U. S. Atomic
Energy Commission.

Our main concern will be for the development of the
transport equations which describe the phase-space and
time variation of physically interpretable singlet and
doublet densities for the radiation system. A secondary
objective is to apply these equations (as well as others
needed for the description of detected particle densities)
to an analysis of selected examples of Quctuation
measurements on finite systems in which a consider-
ation of spatially dependent eRects is pertinent to a
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suitable interpretation of experimentally observable
information.

The term "transport theory" is being used here
generically, i.e., it is used in reference to those equations
or systems of equations required for the description of
averages of monomials of number operators in phase
space. The average of an nth-order monomial is often
referred to as an eth-order density. Common usage
usually implies that the term "transport theory" refers
to the mathematical description of a erst-order (or
singlet) density in phase space. Transport theory,
therefore, is designed to describe energy transfer
phenomena —to interpret those measurements which
depend upon more or less discrete transfers of energy
from one kind of a "particle" distribution to another.
It is also designed to describe Quctuations in the number
of such particles —both locally in phase space and
otherwise. The notion of a particle here is purely
intuitive, i.e., that of a highly localized concentration
of mass and/or charge and/or energy, etc. The notion
will be more or less useful and pictorial depending upon
the circumstances in which it is employed. Thus trans-
port theory conforms to and emphasizes the particulate
view of complex (many-body) systems. Of course, the
theory is not limited. by the viewpoint; the formally
exact (by postulate) equations descriptive of multiplet
densities are valid whether or not the systems to which
they are applied can be comprehended in intuitive
terms.

All of this is in contrast to the "Geld theory" of
complex systems. "Field theory" (or "wave theory" )
is a term used here to refer to those equations or systems
of equations required. for the description of averages of
odd-order monomials (or linear combinations thereof
for a given order) of creation and destruction operators.
To our knowledge, no terminology has been invented
for reference to the averages themselves; except for
those of first order which are commonly referred to as
fields. Since our motive here in discussing Geld theory
at all is merely to provide comparison and contrast to
transport theory, we recall in passing that Maxwell's
equations are field equations in precisely the sense
referred to above. The averages of certain Hermitian,
linear, vector functions of creation and destruction
operators define the real, vector Gelds which satisfy
Maxwell's equations. For a wide range of situations,
these fields are actually the observables of electro-
dynamics. A familiar instance of this situation is that
class of experiments which are dominated by diQ'raction
eRects.

Conversely, experiments which measure energy
transfer within, into, or out of systems to which the
radiation is not too strongly coupled may lend them-
selves nicely to a transport-theoretic analysis. An
extreme case for which this is expected to be true is that
of y-ray distributions in nuclear reactors. It might be

' R. J.Gelinas and R. K. Osborn, Nucl. Sci. Eng. 24, 184 (1966}.

noted that this spatially depend. ent kinetic theory may
ultimately be of greatest value in stellar applications.
For the present, however, measurements on such
systems that would be appropriate for discussion from
a kinetic theoretic point of view seem to be lacking.
Others to which we feel the present theory is also
applicable are cases in which the radiation emitted from
a thermal optical source may be observed by one or
more detectors placed. outside of the source. The pres-
ence of certain types of optical equipment can also be
accounted for. It should be recalled that measurements
of numbers (or number densities) of particles are
meaningfully interpreted by conventional transport
theory only if the resolving times are long compared to
characteristic lifetimes of states in systems of interest.
It will also be seen that a transport approach is most
appropriate only in instances where strong modal
dependences of the electromagnetic field are absent.

In every instance, however, we are concerned with a
careful consideration of the nature of the experi-
mentally observed quantities (with due regard also for
the dominant physical characteristics of the experi-
mental setup in general) so that perhaps the most
scient and straightforward form of theoretical
analysis will. be suggested. Very often, though, one
might expect to be dealing with systems where a clear
division between particulate and wave features is not
apparent from the distinguishing physical characteris-
tics of the system. Such an example is an experiment
that measures the ratio of the variance to mean or the
power spectral density of detected particles in a system
having a laser source. ' ' However, since the main
purpose of this paper is to present a tractable kinetic
theory for Gnite, inhomogeneous systems, we intend to
dwell only upon the simpler classes of experiments in
which numbers of detected particles are observed from
conventional, thermal radiation sources in the absence
of strong modal properties of the electromagnetic Gelds
and diffraction effects. The utility of this restricted
consideration will become apparent in Sec. V, where it
is seen that information relevant to dynamic parameters
of the interacting system can be obtained in principle
by passive measurements on the system over con-
veniently long time scales. The diagnostic potentialities
of such measurements are of course significant. Finally
it will also be seen that the approach taken herein is of
sufficient generality to account for coupling eRects
between the radiation distribution and the distribution
of detector atoms.

II. DERIVATION OF THE EQUATIONS

The arguments by which approximate transport
equations have been deduced for the Grst- and second-

~ J. A. Armstrong and Archibald %. Smith, Phys. Rev. Letters
14, 68 (1965).' D. E. McCumber, Phys. Rev. 141, 306 (1966).

4 Charles Freed and Hermann A. Haus, Phys. Rev. 141, 287
(1966}.
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OD(t) i
PD,Hj, —

Bt A,

(3)

where II is the Hamiltonian of the system. It is useful
to write H as

In this case B~ describes the kinetic energy of the
2-type particle (this includes the contribution from the
free photon field), and V represents all other contri-
butions to the energy of the system.

The first step in the present derivation of a transport
equation is to display (generically)

F(t+ r) F(t) OI'—r O'F/Ot' OF
1+— + =— (5)

Ot 2 OF/Ot Ot

for suKciently small r and for densities which do not
vary too rapidly in time. For example, if F(t) e'I~,
then the above approximation implies the neglect of a
series of terms, the largest of which is O(r/T) for
r/T(1. An obvious lower limit for r is effective inter-
action times; which, in the case of natural sources, will

' R. K. Osboxn, Phys. Rev. 130, 2142 (1963).
R. K. Osborn and M. Natelson, J. Nucl. Energy 19, 61.9

(1965).

order densities of the radiation system have been
presented elsewhere' ' in several analogous contexts,
and hence require only minimal attention here. The
singlet densities for particles of kind A are defj.ned by

F~(X, K, at) =L1/(2m. )'j Trp" (X,K,a)D(t), (1)

and the doublet densities for particles of kinds A and
8 by

F~ e( X, K, a; X',K', b t)—=L1/(2m)'j Trp" (X,K,a)
&&p'(X', K',b)D(t) . (2)

The operators p" (X,K,a) are number operators whose
eigenvalues in a diagonalizing representation represent
the possible numbers of particles of kind 2 in the phase-
space hypercell centered at the point (X,K). The labels
u and b specify the quantum numbers necessary to
complete the description of the particle's state. They
designate such things as polarization, spins, and internal
states. All particles in a given phase cell are assigned the
coordinates of the center of the cell, their momenta
being given by P= ItK. The volume of the cells is (2~)'.
Evidently these phase points are discretely distributed;
however, whenever appropriate, they will be assumed
to be suBliciently dense to be regarded as a continuum.
The quantity D is the density operator for the system.
The system is comprised of all of the particles of all
kinds necessary for a model adequate to the inter-
pretation of a given experiment.

The density operator is assumed to satisfy the
Liouville equation given by

not likely exceed 10 ' sec. It is to be noted that this
approximation (coarse graining in time) is a necessity
and not merely a calculational trick, since it is meaning-
less to compare densities at two instants closer together
than an interaction time.

It can then be shown' ' that, in a representation
which diagonalizes the number operator, the equation
for the singlet density of the A-type particles can be
written as

P (p„„"(X,K,a) —p„„"(X,K,a))T„„D„„(t)
(27r)3-

+terms oR-diagonal in D(t) . (6)

YVe have introduced v" to represent the velocity of the
A -type particles. Note that v"—= t'gK/m~ when
applies to an ordinary particle, and m~ is the mass of
the particle. tA'hen A applies to photons, v~=—cQ where
c=3X10'" cm/sec for a nondispersive medium, and Q
is the direction vector for the photon. T„.„stands for
the probability per unit time for a transition to occur
between an initial state designated by e and a Anal
state designated by e'. The summation over m and n'
includes all initial and Anal states. Expressions for
T„.„can be obtained by conventional perturbation
techniques when both the initial and Anal states are
stable. Damping theory is invoked to account for hnite
lifetime effects in appropriate circumstances. Many
approximations are required to go from (1), (3), and
(5) to (6)—all of which have been displayed explicitly,
some interpreted qualitatively, but few estimated
quantitatively. Since many of these considerations have
been dealt with specifically in Refs. 5 and 6, we proceed
at this point to writing the generic doublet equation
Lneglecting terms proportional to oG-diagonal elements
of D(t) henceforthj as

—+v~ v+ve v' Fm~~(X, K,a; X',K',b; t)

1
P T. „Lp„„~(X,K,a)p„„~(X',K', b)

(27r)' n n

—p„„~(X,K,a)p„„e(X',K',b)$D„„(t). (7)

Note that the gradients which appear in the equations
at this point are symbolic and have the meaning of a
6.nite di6erence in the density of interest at two ad-
jacent cells in condguration space, divided by the linear
dimension of the cells. They will take on the usual
meaning of gradients when we pass to the continuum
for densely spaced points.

turther specialization of these equations requires
considering individually the relevant interactions on the
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right-hand side of the balance equations. To do this it
is useful to restrict our attention to the dependence of
the transition probability per unit time, T ~, upon
occupation numbers only. In the cases that we consider,
the binary collision assumption is made so that T„„
bears a proportionality to p „ for each annihilation
process as well as a proportionality to L1&p„„g (where
the plus and minus signs go with bosons and fermions,
respectively) for each creation process. If, in the
creation of a particle, p„„is not negligible compared to
unity, the effect of quantum statistics will be observed.

In systems that we will consider, the dominant pro-
cesses are the production of photons by source atom

transitions, their absorption by detection processes, and
perhaps some self-absorption by the source. In instances
where optical equipment such as a beam splitter or a
polarizer is present, terms to account for photon
scattering are included in addition to the above pro-
cesses. If then in writing the equations for the densities
of particles that describe the system (in this case
photons and photoelectrons), we use the superscript A
to represent the set composed only of photons and of
detected particles (photoelectrons) and let A' include
all other kinds of particles, we have for the set of singlet
equations after summing over photon polarizations and
photoelectron spins:

8 1—+v" V F,"(X,K,t)= P D„„(t)(L1+p„„~(X,K,a)$ P p„„~'(X,Ki,ai)
83 (2s.)' n, a

XI T,(a,Ki Ki,ai, K2,a,)+p„„~(X,K",a")T,.(a,Ki K„a,; Km, am' K",a")j
—p„„~(X,K,a) P p„„~'(X,Ki,ai)LT, (a,K

~
Ki,ai, K, ,a,)

A'KI, ai
Kp, ag,K",a"

+(Imp. .~(X,K",a"))T,.(a",K"
~
Ki ai,. K2am~ K,a)j}. (8)

Note that

Fi"(X,K,t) =Q Fi~(X,K,a, t)

p" (X,K)=P p~(X,K,a).

The reader is also alerted to a specialization that is
implicit in Eq. (8), and subsequently in Eq. (10), as
they are written here. That is, in the systems considered
in this paper we neglect photon scattering within the
emitting source but include photon scattering for cases
in which photons may scatter in an exterior region
(from the source) prior to detection. In addition, the
cases that we consider are such that the radiation is not
too strongly coupled to the source system, and the
source atom distribution is assumed to be known. The
question of photons scattering with other photons is not
of interest for our purposes, and the process is accord-
ingly neglected herein. In this regard, the e6ect of
interactions of detected particles with their own kind,
and with atoms of the photo-cathode materials, are
inferred by introducing (at a later point) a factor that
suitably accounts for the macroscopic characteristics of
the detection system. In these inhomogeneous systems
there is no Chrect interaction of particles in the detection
part of the system, for instance, with the optical
equipment or with the radiation source atoms. Cor-
responding statements can be made regarding the source
atoms and optical components. The reemission, by the
detector atoms, of radiation with the properties of the
source radiation is assumed to be negligible. In the
above equations the quantity T,(a,K~Ki, a&,. K2,a2) is

the transition probability per unit time per atom for the
emission of an A-type particle with wave vector K and
quantum state label u. The state of the atom prior to
undergoing a transition is designated by Ki, ai. The
wave vector associated with the atom in its initial state
is Ki, and ai represents the initial internal state of the
atom. Then K&, a2 are defined analogously for final
states of the atom (after a transition). The quantity
T,(a,K

~
Ki,ai, K2,a~) represents the transition prob-

ability per unit time per atom for the absorption of an
A-type particle with wave vector K and quantum
labels a. The initial and 6nal states of the atom involved
in the transition are designated by Ki, ai and K&, u&,

respectively, as above. For the emission and absorption
of photons by source atoms, T, and T„are matrix
elements that go into each other upon interchanging the
initial and 6nal source atom states that are involved.
%hen the detection process is considered, one 6nds that
T, (for the emission of photoelectrons) is proportional
to the photon occupation numbers; and the sum over
initial states includes a summation over the variables
of the photon operator. Since we are considering
emission and/or absorption of single particles, only those
final states for which Lp„.„.~(X,K,a) —p„„"(X,K,a)j is
plus or minus one, respectively, are contributors from
the summation over all 6nal states. The quantity
T,.„.(a,K~Ki,ai, K~,a2~K",a") is the transition prob-
ability per unit time per atom for an A-type particle
with initial wave vector K" and quantum state label
u" to undergo a scattering interaction resulting in the
A-type particle having a final wave vector K and quan-
tum label u. The initial and 6nal states of the scattering
atoxn are designated as above. The symmetry properties
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«T (a,KIK~a~ K~,a2IK" a") and T-(a" K" IK~,a~
Km, am~ K,a) are apparent, and the stimulated emission
of particles other than photons is taken to be negligible.

In like manner as in (8) we can write the set of doublet
equations (once again restricting A and 8 to photons
and detected particles) as

8—+v" V+v~ O' Fp»(X, K; X',K'; I)
Bt

g D„„(t)[L1ap.„~(X,K,a)jp. ~(X',K', b) g p„„"'(X,K»ag)
(2z)6 n, a, s

XLT,(a,K( K»ag, K2 a2)+p„„"(X,K",a")T„(a,K
~
Kyat, K2a2( K",a")j+Liap„g(X', K',b)j

Xp„„"(X,K,a) P p„„'(X',K»br)LT, (b,K'i K»bg,. Kmb2)+p„„(X',K",b")T.,(b,K'i Ki bi, K2b2i K",b")jB',Kl,bl
Ks,bs, K",b"

—p„„(X,K,a)p „(X',K', b) ( g p '(X,K»ag) {T.{g,K ~ K»a&, K2,a2)+LIap„„"(X,K",a")j
A ',Kl,al

XTS,(a,K ~K»ax., K2,a, ~K,a)}+ P p„„'(X',K»bg){T.(b,K ~K»bg,. K2,b~)
B',Kl, bl

Ks,bs,K",b"

+(1ap„„~(X',K",b")jT«(b",K"
~
Kg, bg, Kp, b2~ K,b)})+(2~)'8(X—X') (B(K—K')b~~b. ,

X{I1&p „"(X,K,a)3 Z p„„'(X,K»a&)P 8(a~KIK»a~~ K2,u2)+p„„~(X,K",a")
A ',Kl,al

Ks,as,K",a"

XT„(a,K~K»ag, K2,a2~K",a")j+p„„~(X,K,a) g p„„-'(X,K),ag)
A Kl al

X(T,(a,K
~
K»a&, K2,a2)+L1~p„„"(X,K",a")jT«(a",K"

~
E&,g&, K2,a2~ K,a))}

b~gb. t{p„—(X,K,a) P p„„"'(X,K»ag)fiap„„(X,K',a)jT„(a,K'i K,,a, ; K,,a, i K,g)
A', Kl,al

Ks,a2

+p„„(X,K',a) P p~~ '(X,K»ag)Limp „{X)K,a)T,.(a)K~K»ag, K2,a2~K', a)}
A', Kl,al

Ks, as —(1—8»)p„„'(X,K,a)R»(K ~ K'))]. (10)

The quantity R»(K-+ K') is the probability per
unit time that a particle of type A with wave vector K
is absorbed and a 8-type particle is subsequently
reemitted with wave vector K . This applies in particu-
lar to the emission of photoelectrons from a photon
detection event, such that p„„~(X,K,a)R»(K-+ K')
is given by

p„„"(X,K, ,a) Q p„„~~(X,K»ag)T. (K',b~K»ux, - Ka, a2),
Kl al
Ks,as

where the superscript A ~ represents detector atoms,
and R denotes photons (in T, we will neglect the photo-
electron occupation number p„~(X,K',b) compared to
unityj. The above equations have been written in
a more or less generalized form (except for the special-
izations that were indicated above) in hope that they
may be useful for more general applications in the
future. The specializations invoked are for the sake of
temporary convenience only, and it is clear in principle

that strictly generic forms for these equations can
be written with only little more eftort but somewhat
more space.

III. EXPERIMENTAL OBSERVABLES OF A
FLUCTUATION MEASUREMENT

The very notion of Quctuations requires the considera-
tion of at least second-order statistical quantities. In
considering energy transfer measurements, such as the
detection of radiation by photocathodes, it is convenient
to work in terms of the doublet (and singlet) densities
of the detected particles. It is easily shown that the
mean-square value of the fluctuations in the number of
detection events in the time interval T from a single
detector, located at X, may be expressed as

((gg D)2) {(g D)2) (g D)2

deX VDD(X X T)= V~D(T). (11)
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e( )=l
(D.V.JI

a2V»(X„X„r)
t'X, —. (17)

In the case of a single-detector experiment one lets
{D.V.}i={D.U.}2={D.V.}.The next step is to write
(and subsequently solve) the set of equations for

fp (t), for fpn (t), and. for the other quantities (particu-
larly cross-doublet densities for radiation and d.etected.
particles) that will be seen to couple these densities to
the radiation distribution.

IV. FURTHER REDUCTION A5'D A, METHOD
az SOLUTION OP THE COVILED SET

OF TRANSPORT EQUATIONS

Referring back to Eqs. (8) and (10) and the attendant
discussion there, we see that the emission and absorp-

A. Papoulis, Probability, Eamon VariaMes, aed Stochastic
Processes (McGxavr-Hill Book Company, Inc., Ne~ York, 1965).

The angular brackets denote expectation values, so that
for instance (Xpn) is the mean number of detection
events accumulating in a time interval of length T; and
{D.V.} represents the detector volume. The variance
of detected particles, Vnn(X, X,T) is defined by

VDn(XX T)—=AD(X,X,T)—LfP(X,T)i' (12)

The quantities on the right-hand side of Eq. (12) can
be obtained in practice by straightforward data analysis
techniques from a suitable recording of the detection
events. Thus the connection between theory and experi-
ment is quite direct in this case. Note that a cross
covariance of the detection events in a two-detector
experiment is defined analogously (for detectors located.
at X, and X,) as

Vnn(X, ,X,,T)—= f2 (Xi,X2,T)—fiD(Xi, T)fp(X2, T).
(13)

Another useful quantity for fluctuation measure-
ments is the generalized cross-correlation function g(r)
associated with the Quctuating currents from two
detectors. It is dered as

4 (r) =-'(1+&)(~~i(t)~~2(t+r) )

where I' is simply a permutation operator that inter-
changes 1 and 2. Note that, for currents from stationary
systems, P is a function of r only. We have defined

AS(t) in Eq. (14) as

ss (t) = s(t) —(s(t) ), (15)

where 8(t) is the instantaneous value of the output
current. It is also noted that (8(t)) is simply the time
rate of change of the expected. number of detected
particles in time t, or

(8(t) )= 8 fiD(t)/Bt= constant (16)

for stationary systems. It can then be shown' that

tion probabilities T, and T, are nonzero only for source
atoms and detector atoms. Scattering terms &vill be
included only to account for the interaction of radiation
with selected pieces of optical equipment outside of the
emitting source, and the photon occupation nurgber is
neglected in comparison to unity in the exterior region
(to the source). Since photon scattering is otherwise
neglected in our systems, T„will usually be a very
localized function in space. The distributions of the
atoms comprising optical equipment, of the radiation
source, and of the photocathode material are assumed
to be known. Detected particles are simply recorded and
their number merely accumulates with time. Finally
we integrate photoelectron energies and directions over
their entire range, neglect photoelectron streaming, and.

assume photon densities to be stationary. It is then a
straightforward matter to write the reduced set of
equations, starting with the photoelectrons (detected.
particles) D as

8f/(X, t)
=AfP(X)H(t),

often(X, X',t)--= {afPD(X,X',t)+a'f, D~(X,X',t)}H(t)

+~(X—X')AfP(X)H(t), (»)
where

d fR(X)= d'g rn—(x)f"(X,x) =rD dO f~(X,Q), (20)
fo)

and rn is the detection rate for photons. In Eq. (20) the
subscript has been intentionally omitted on the density
of photons, designated by R, for the sake of generality;
and in addition we are now using f to represent densities
in the continuous phase space (as contrasted to Ii in
discrete space). We have also invoked the use of a step
function H(t) to accompany detection rates; and {Q}
is the set of vectors subtended by the detector as seen

by the source. The use of H(t) is a convenient means of
accounting for the physical condition that no photons
are detected before the detectors are turned on at t=o.
Recall that we are interpreting experiments of this type
to be such that the charged particles arising from
d.etection events are simply recorded and merely
accumulate from t= 0 to t, and that all charged-particle
(photoelectron) densities and cross densities are
assumed to be zero at t=o. Therefore it is seen that D
densities are continuous functions of time. Their rates
(first time derivatives of the densities) are discontinuous
at t =0. Of course, second time derivatives of D densities
are then singular at t=o. The equation for the photon
singlet is

Lcm V+r, (X)+n(X)—e(X)lfP(X,Q)

= e(X,Q)p„+ dQ" 5'"(Q"-+ Q)r, (X)fP(X,Q"), (21)

where r, (X) is the photon scattering rate per photon,
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and n(X) and e(X) are the photon absorption and.
emission rates, respectively, in the source per photon.
For convenience, we have assumed 0. and e to be
isotropic. The photon scattering frequency,
(Q" —+ Q)dQ, is the probability that a photon traveling
initially in direction Q", will upon scattering, have a
final direction in dQ about Q. Also in these equations

c=3&&10"cm/sec is the speed of light, as the media are
assumed to be nondispersive. Equation (21) for the
photon singlet density is recognized to be a Boltzmann
equation with an external source, i.e., spontaneous
emission. This source is proportional to the source atom
density, as are o. and c on the left-hand side of the
equation. The photon doublet equation is

Lc(Q.V+O' V')+a(X)+r, (X)+a(X')+r, (X'))f,s~(X,Q; X'Q')

where

dQ" (r, (X)r"(Q"—+ Q)f ~a(X,Q"; X',Q')+r, (X')5'"(Q"—+ Q')f s"(X,Q; X',Q")}

+6(X,Q)p„fP(X',Q')+fP(X, Q)e(X', Q')p„+B(X—X')H(X; Q,Q'), (22)

H(X; Q,Q') —=S(Q—Q')(.(X,Q)p.+ Lr, (X)+~(X)+.(X))f,"(X,Q)

dII" r, (X)&-(Q"—+ Q)f,a(X Q")}—r, (X)F"(Q + Q') f,"(X,Q)

—r, (X')5"(Q' —& Q)fP(X',Q') . (23)

The equation for the cross-doublet density of photons and detected particles is

ted/Bf+cQ' V'+r, (X')+a(X')) f n~ (X; X',Q'; t) = 6f,~"(X; X',Q')H (t)+ e(X',Q') p,.f p (X,t)

rln" rg(X')r-(Q" —+ Q') fg (X; X',Q"; t) —8(X—X')rn(X)fP(X, Q)H(/). (24)

Note that the equation for fis" (X,Q; X'; t) is obtained
by interchanging arguments. %e have also used
u=—e—e. Recalling that the observables of an occupa-
tion-number fluctuation experiment are related to the
detected particle variance, it is convenient to obtain the
transport equations for the variances. From Eqs.
(18)—(24) we find

cl VnD(X, X', r) = (6V"D (X,X',r)+6' VD~(X,X',r)

+b(X—X')afP(X)}II(r). (25)

Vns(X, X',r) —=fP"(X,X',r) —fP (X,r)fis(X') . (27)

The equation for V (X; X',Q', r), as an example, is

Pa/ar+cQ' v'+r, (X')+a(X'))VD" (X X' Q'; r)

dn" r, (X')S-(Q"~ Q') V»(X X',Q" .)
+AV"s(X X' Q')H(r)

—b(X—X')ri) fP(X,Q)H(r) . (28)
The quantities ViiD(X,X',r) ancl. V "(X,X', r) are in like manner

defined as V»(X,X') =—f2'~(X,X') —f,s(X)f,"(X')

+r, (X')P'"(Q"~ Q') V»(X,Q; X',Q"))+S(X—X')H(X; Q,Q') . (30)

V~D(X,X',r)—= f2"D(X,X', r) —fi~(X)fP(X', r) (26) and. satisfies the equation

t c(Q V+Q' V')+ r, (X)ya(X)+r, (X')+a(X'))V»(X,Q; X',Q')

dn" Lr, (X)S-( Q~ Q) V~"(X,Q"; X',Q')

The boundary conditions for the variances relating to detected particles are

Viia(0) = Vi'z(0) = Van(0) =0.
Using these boundary conditions, we find by differentiating (25) that

(31)

cl2 VDiDa(r)

Bv'

8 VsD(Xi, X2,r) 8 VD~(Xi,Xg,r)
H(r)+S(X,—X,)i1fP(X,)S(.) I .

BT BT
(»)
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If we consider a two-detector experiment, the last term of Eq. (32) goes to zero. So we are left only with the task
of solving for V~~ and V~~.

We can formulate a method of solution by considering 6rst the equation for the radiation singlet density. Equa-
tion (21) can be written as an integral equation by incorporating an appropriate Green's function as' [letting.(X; a)p, —=s(x,o)7

f P(XO) = daX' G(x',X)S(X',e)+ d'X' dn" r,.(X')r-(e"~ a)G(X',X)f P(X',O"), (33)

Ol

where

I(x,n) —=

. Z-0

f ~(X,Q) =I(X,Q)+Sf,~(X,Q),

=o

dE.'
— (r, (x—E'~)+a(X—Z'o)) S(X—Za, ~). (35)

The integral opertor R is defined as

efp(x, ~)= d3x' dn"
g=0

By successive iterations one gets

whel e

dp (exp —[r,(X)+a(X)jp}B(x—cpQ —X')r, (X')F"(0"—+ Q)f "(X',a") . (36)

and the equation for V" (nX,Q;X'; t) is obtained by
interchanging arguments of Eq. (42).

At this point let us make a brief digression to consider
the statistical properties of just the radiation distri-
bution of a blackbody system. For a system of this
type, in which the source atoms are in kinetic equilib-
rium at a temperature T, it can be shown that the
radiation emission and absorption rates are related as

f, '(X,a) =P S,(X,~),
t=0

(37)

I,(x,a) = l(x,e) = [f/(x, a)1,

S,(x,a) =e.r;, (X,~) = ov'1, (x,~) . (39)

The solution for V"~ follows in exactly the same
manner. As for V~n (t) and Vn~(t), it is equally straight-
forward but somewhat more tedious to solve the time-
dependent Boltzmann equation. One just introduces
the appropriate time-dependent Green's function.

V. STATISTICAL PROPERTIES OF A

M.ACKBODY AND FLUCTUATION
MEASUREMENTS THEREOF

In this section we consider a simple system comprised
of only the radiating source and the detectors with their
associated circuitry. It is seen that the set of equations
describing this system is the same as in the previous
section, except that all terms pertaining to photon
scattering are deleted. That is, we now have, for just.
those equations relating to radiation distributions,

[cgp. v+a(X)jfP (X,Q) = e(X,Q)p„,

[(cz.v+cz'. v')+a(x)+a(x') gV»(x, o; X',n')
=S(X—X')S(a—a')(.(X,~)p,

+[~(x)+.(X)jf P(x,a)}, (41)

[a/at+ca' V'+a(X') jvn~(x; X',Q'; t)
=(Av~~(x; X',0')—B(x—X')rDfg" (x Q)}H(t) (42)

8 K. M. Case, I'. de HoGmann, and G. Placzek„ Introductiorl, to
tuse Theory of Xeltron Diffusion (U. S. Government Printing
Once& Washington, D. C., I953}.

n(~) = e(~) exp(h„/0), (43)

b„=—&el&,

0=—kT.

(44a)

(44b)

U(x) —= Itc~fP(x), (46)

we get the conventional expression for blackbody
radlatlon

8mb v'

U(v) =
c8 cAv/8

(47)

We have used p„= 1/(27r) 3 and transformed to frequency
space according to 2xvq=ca. We also summed over
polarizations X and dropped the subscript from vq. Then
solving for the photon variance, analogous to our
previous Eq. (30) (except for scattering terms), we get

V~a(x,x; X',L') =5(x—X')8(x—x')

&& [f~'(~)/(1 —c '"")3, (48)

which is in agreerlient with the result of Landau and
Lifshitz. It is interesting to note from Eq. (48) that the

L. D. Landau and K. M. Lifshitz, Statistical Physics (Addison-
Wesley Publishiag Company, Reading, Massachusetts, 1958}.

The equilibrium distribution for the photon singlet den-

sity for a suKciently large homogeneous system is there-
fore given by

f~'(~) =p./(c '""—1)

If we define an energy density,
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blackbody radiation distribution is expected to depart
from Poisson only so long as the energy of the radiation
that we detect is not significantly greater than kT for
the source atom distribution. The implication is clear,
therefore, that in principle the eRective temperature of
the source atoms in appropriate systems may be in-
ferred from the behavior of the fluctuations in the
detected particle distribution as a function of the radi-
ation energy that is observed. For more on this topic the
reader is referred to Ref. 10, which applies more
generally to such a measurement in a dispersivemedium.
The possibility of such a temperature measurement was
also inferred in Ref. 11.

Turning our attention now to the physical observ-
ables of a fluctuation measurement, we deduce ex-
pressions for the variance (and/or cross-covariance) of
detected particles for three cases (listed as I, II, and
III below). The realism of the model in each succeeding
case improves as we proceed, and we devote attention
to even the very idealized model in Case I because of
the widespread discussion that has appeared pertaining
to the result that is obtained.

f R —ep/g (52)

Solving Eq. (50) and substituting the result into Eq.
(49), which is then integrated from 1=0 to t= Ts, we
get

(Nr, D)
VRD(Ts) = (NrsR) 1+ — for Tp&)1/a, (53)

+TQ

and
ap./2 = (u—.)/—16~'

(N, D) r fRT—(54)

(55)

Of course formula (53) is recognized to correspond to
the result obtained by Purcell. "'4 More will be said on

"R. K. Osborn and A. Z. Akcasu, University of Michigan
Technical Repor t administered through Ofhce of Research
Administration, ORA Project 07599, 1966 (unpublished).' R. Hanbury Brown and R. Q. Twiss, Proc. Roy. Soc. 243A,
pg. 29I (1957) Eq. (2.20).

"H the atomic states have Gnite lifetimes it can be shown that
a in Eq. (54) is proportional to the spectral bandwidth for a giveo
line of radiation, so long as observation times are long compared
to the lifetimes of the emitting and absorbing states. Indeed it is
evident in the present analysis (from the explicit calculation of
expressions for a and ~) that y ' is the lifetime associated with the
emitting and absorbing atomic states.

'~ E. M. Purcell, Nature 178, 1449 (1956).
"McCornbie iRef. 16l has also presented an analogous calcu-

Jaf3oni

Consider an experiment with a single detector that is
sensitive to all photon energies in a system that is
suSciently large and homogeneous so that the set of
coupled transport equations reduces to

BV"D(t)/Bt=r&(VR" (t)+VDR(t)+f R)EX(t), (49)

$8/Bt+a)VRR =r~( VR"—fi")H (t), (5o)
VRR (1/p ) (f R)2+f R (51)

the observability of this eRect at later points in our
discussion.

In this case let us consider a spatially dependent,
Quite experiment in which two distinct point detectors
view the radiating system from separate observation
points (X and X' with ~X—X'~&To/c) in a vacuum
outside the radiating source. If a photon is observed by
one detector, it is not available for detection by the
other detector. In this case, Eqs. (40)—(42) are readily
solved and one finds VRR(X,X', Ts) =0 unless the exten-
sion of the line joining X and X' extends into some region
of the radiating source. It has also been assumed that
not every photon incident upon the first detector is
necessarily absorbed by it. If these conditions are
fulfilled one finds

Vno(X, X',Ts) ~ (Nr, n) (56)

Here again the implications are apparent regarding the
possibility of measuring the temperature of the system
from a fluctuation measurement (see Ref. 10 for a more
general consideration of the details of such a measure-
ment). In this case the d.etectors are assumed to be
sensitive only to a limited range of photon energies
about 8„, and X and X' are assumed to be "on the same
side" of the radia, tion source (that is, the source cannot
lie between the two detectors). Aside from the trivial
conclusion that both detectors must "see" the source,
this result is still not very startling —for, one notes that
when considering photons about the phase point
(X",s:) (in the source), the probability for the emission
of a photon at (X",x) is enhanced due to the dependence
of the transition probability per unit time, T,(x~ Ki,ar,.

Ks, us) (proportional to L1+pR (X",x)j) upon the photon
occupation number in the final state. It is of particular
importance to recall here that, due to the uncertainty
principle, we have (at the outset) coarse-grained li space
into six-dimensional phase cells of volume h' or greater
such that the coordinate X" merely locates the center
of a three-dimensional cell in configuration space that
is compatible with the momentum uncertainty implied
by the spectral bandwidth of the radiation line that is
being observed. Thus the origin of this correlation eRect
is explicitly seen to arise from the Bose-Einstein
statistical properties of the radiation emission process
within a single phase cell. '" The eRect is potentially
observable when both detectors can "see" photons with
a given direction vector having their origin in a common
phase cell. It is seen that the first term of Eq. ( 3),
(Nr, D), does not appear in Eq. (56) Land subsequently

"This eGect is best observed in simple chaotic source systems
in the absence of strong modal effects. Modal eGects or other
processes may tend to change the over-all statistical properties of
the total system, such that the simple Bose-Einstein statistical
features that obtain for the radiation, per se, may become un-
observable. Such is the case, for instance, for a single mode of a
jaser operating well above threshold.
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in Eq. (57)) because, by using two distinct detectors
that physically occupy different phase cells, the "self-
correlated" random noise associated with just the
detectors is eliminated. It should be noted that the
notion of the phase cell has not entered the present
analysis in an ad hoc or intuitive manner, but is rather
a fundamental concept as indicated above. Its role is
central to a theory that attempts a simultaneous de-
scription of the spatial and momentum dependence of
physically observable quantities, such as distribution
functions that are associated in practice with measure-
ments on finite, inhomogeneous systems.

Case III

Finally we consider a situation very much like Case
II, but now using more realistic detectors of finit,
nonzero eollme. In this case the variance is nonzero only
if the detectors are aligned within a distance Ts/c of
each other, one behind the other, along a line of sight
extending into the radiation source. Furthermore at
least some portion of each detector must commonly
share one or more lines of sight extending into the
source. %e then get

+TO

where Argus represents the effective area of "overlap"
between the two detectors (noting that one is behind
the other) as viewed from the radiating source. Of
course, in the limit that these finite detectors approach
point detectors, one can show that the results of Eqs.
(56) and (57) become identical. This result as well as
the final remarks of Case II above are recognized to
constitute a generalization of the work of Purcell" and
McCombie" in which an infinite homogeneous model
was implied, corresponding to Case I above. The
difference lies in the fact that the present treatment,
which specifically accounts for photon streaming and
other finite, spatially dependent effects, now gives
specific information regarding the geometric require-
ments for seeing the "photon bunching" effect. In
Appendix A we will analyze an example suggested by
Purcell, i.e., to consider a two-detector experiment in
which the initial beam of radiation from a chaotic
optical source is split by a polarizer. The observable
quantity is the cross-covariance of detected particles
from photocathodes placed in the resultant beams of
radiation with orthogonal polarizations. While the
result is well known, the present approach accounts for
the macroscopic result from a deductive point of view
that explicitly exhibits the microscopic origin of the
effect. This effect is seen to be a direct consequence of
the quantum selection rules that obtain for the com-

'~ C. W. Mccombie, in Iilectuution, Relaxation, and Resonance
in Magnetic Systems, edited by D. Ter Haar (Plenum Press, Inc. ,¹wYork, 1962).

puted expressions for the emission (and absorption)
transition rates that appear in the kinetic equations.

VI. ON RAMATI05'-DETECTOR-ATOM
COUPLING

It can finally be noted that our kinetic theoretic
formalism has been developed with the retention of
sufhcient statistical generality in the generic equations
LEqs. (8) and (10)$ to account for effects such as the
coupling between the radiation and detector atom
distributions. Thus the present theory can be system-
atically applied to examine, in explicit terms, the
extent to which the incident-radiation distribution may
affect the distribution of detector atoms. In a great part
of the literature dealing with radiation measurements,
"weak coupling" is assumed. That is, the detector atom
distribution is assumed to be known and to be inde-
pendent of the incident radiation impinging upon the
detector. We have also made this assumption in Secs.
IV and V Lalthough the generic equations (8) and (10)
are perfectly general in this respect), inasmuch as our
major effort has been to develop a l.inetic theory
appropriate to the analysis of Quctuations in radiation
distributions in finite, inhomogeneous systems. "

To recognize the point at which our work departs
from numerous other approaches in which the "weak-
coupling" approximation is made, it is well to recall the
operational ~cans by which this approximation was
invokeQ in the respective cases. Representative of much
of the existing work in this area, Kelley and Kleiner"
have demonstrated in considerable detail that the
"weak-coupling" assumption allows the assertion that
the output of a photodetector is proportional to the
instantaneous intensity of the incident radiation field.
The utility of being able to make this assertion lies in
the fact that correlations in the detector outputs can be
simply stated in terms of just the field correlation
functions whether viewed classically or quantum
mechanically. Therefore, using the work of Kelley and
Kleiner" as a convenient point of reference, it is seen
that they accomplish the "weak-coupling" approxi-
mation by a factorization on the density matrix, per se,
as in their Eq (4.11)..Once this is done the possibility
of deductively accounting for higher-order statistical
coupling is, of course, lost. On the other hand, the
density matrix employed in deriving the generic kinetic
equations for multiplet densities herein is the density
matrix for the total system. Approximations such as the
"weak-coupling" approximation are accomplished by
later reductions on the generalized multiplet densities,
which are the variables, or observables, of the theory.
Therefore the restrictions imposed by this approxi-
mation procedure are readily relaxed in the present

"In view of this "weak-coupling" specialization, our results for
the illustrative examples of Secs. IV and V, except for the spatially
dependent generalizations, are equivalent to the results obtained
from other points of view (see Refs. 13, 46, 20)."P. L. Kelley and W. H. Kleiner, Phys. Rev. 136, A316 (1964),
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This factorization asserts that V~"=0, which is tanta-
mount to assuming that the detector atom distribution
F~~ is known in principle, independent of the radiation
field. To examine the implications of this specialization
(to the next higher statistical order), the above factori-
zation is not assumed, and ternis proportional to V-~~

are retained in the existing equations as well as now
including additional equations for U~R and for VD~(t),
as we shall see. Thus the following set of equations is

sufficiently general to account for radiation and detector
atom coupling to lowest statistical order (we are
considering an infinite homogeneous system here only
for the sake of convenience to the present illustrative
example; in general one can account for finite sects
with no basic difhculty, as well).

BFP(t)/Bt =MDF,~F,RH(t)+(MDV~RH(r) )
(»)

a VDD (t)/R = 2MDF, ~ VDR(t)+MDF g~F PH(t)
+($2MDFPV"D+MDV"R jH(t)) (59)

[g/g]+~ )VDR(g) ~ $VRR F RjH(()
+(MD', R—1jV~RH(t) MDF, RV"D(t)), —(60)

~ F R ~p (M VAR). (6&)

where

V'RR —g F R+ ~F R

LF R I)VAR) (62)

& D JI/ID~ 1

p~ =8+'rD .

(63)

We have invoked the prescription of Ron" to truncate
triplet densities in this set of equations as

F BcD F BF cF D+F RVcD+F c UBD+F DVBc (65)'
It is also noted that the quantity r, replaces the
quantity denoted as u in our equations in previous
sections. It is therefore apparent that Eqs. (58)—(62)

'9 A. Ron, J. Math. Phys. 4, 1182 {j.963).

case, and the generality of our basic theory is not im-
paired in any fundamental way. A truncation of the
multiplet densities at a given statistical order can then
be systematically evaluated by relaxing that reduction
to the next higher statistical order. The price paid for
retaining multiplet densities of higher and higher
statistical order is that a progressively larger set of
coupled equations must be solved. But the additional
equations, in any case, are all of the same mathematical
form as the lower-order equations; so the difFiculties
associated with generalization here are problems in
accounting and not in concept. Specifically, it can be
recalled that, in Sec. IV, we specialized our set of
equations to obtain the "weak. -coupling" approximation
(between the radiation and detector atoms) by letting

PAR PAPE

are strict analogs of Eqs. (49)-(52) that apply to the
illustrative example in Sec. V—the only difterence being
that terms arising due to the retention of radiation-
detector-atom coupling appear in ( ) in the present
instance. Accordingly it is clear from a comparison of
the structure of these two sets of equations that the
conventional result of Purcell'3 and many others""
Lsee Eq. (53)j is now extended and takes on a more
general form (that is dependent upon V"R, among other
factors) by the above inclusion of coupling effects. Of
course it is necessary to deduce equations of motion for
F~" V"D(t), and V~R in order to obtain order-of-
magnitude estimates of the relevance of these coupling
sects. Deduction of these additional equations of
motion from Eqs. (8) and (10) is entirely straight-
forward, but it is found that the parameters entering
these equations are distinctive of particular physical
features of individual experimental systems of interest.
To proceed further from this point, devoting adequate
attention to the sizeable array of details that arise, is a
sizeable, although tractable, program worthy of sepa-
rate consideration. Such an extended program is not
crucial to (or, in fact, compatible with) the present
development of the basic elements of a spatially
dependent kinetic theory of higher statistical order for
radiating systems and is therefore deferred to a later
report.

VII. DISCUSSION

The main objective of this paper has been to present
a physically interpretable space- and momentum-
dependent kinetic theory to higher statistical order
(than the first) for radiating systems. Incorporating the
statistical axioms of quantum mechanics and using the
Liouville equation to express the dynamical axiom,
equations of motion for observable variables are de-
duced in rather general terms. These variables are
chosen to be expectation values of first- and second-
(and, if necessary, higher) order moments of number
densities of particles and photons comprising a given
system. It is an elemental part of the development that
the simultaneous specihcation of the space and momen-
tum dependence of these multiplet densities is com-
patible with, and, in fact, limited fundamentally by the
uncertainty principle. This limitation is accounted for
formally by coarse graining the six-dimensional phase
space into hypercells of volume h' or greater. It can be
realized that the phase cell concept is basic to the
foundations of any physical theory attempting a space-
and momentum-dependent description of 6nite, in-
homogeneous systems. It becomes particularly im-
portant in radiating systems because the extent of the
three-dimensional portion of the phase cell in con-
6guration space may be of macroscopic proportion for
the radiation. Thus the distribution functions that we
are dealing with are to be interpreted in a coarse-grained
sense. In contrast, the analogous distribution functions,

'0 J . Mendel a,nd E. 'Pfolf, Rey. Mod, Phys. 37, 23j. {1965),
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discussed from a classical point of view, must be
interpreted. in the limit of venishilg d'xd'p. Since this
is not physically meaningful, the approach taken herein
is felt to be a favorable alternative. Our treatment
therefore has been quantum mechanical, incorporating
the statistical axioms of quantum mechanics to de6ne
expectation values, and using the quantum Liouville
equation to express the behavior of the joint probability
density for the entire system. Further specializations
are achieved by approximations on expectation values
of number operators (multiplet densities) and not on
the density matrix, per se. This is of particular im-
portance for maintaining statistical generality so that
explicit account may be taken of coupling effects as
discussed in Sec. VI. It has been our intent to examine
from a tractable, deductive kinetic theoretic point of
view relevant portions of the underlying basis upon
which the study of stochastic processes may be ex-
ploited to infer information pertinent to the dynamic
behavior of an interacting system by passive observa-
tions on the emergent radiation distributions. In order
to be able, ultimately, to propose and suitably interpret
measurements on more complicated systems we have
devoted appreciable commentary to the importance of
an appropriate recognition and de6nition of the dis-
tinguishing characteristics of the actual observables and
of the dominant physical features of individual experi-
mental situations.
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APPENDIX A: THE EFFECT OF A POLARIZING
BEAM SPLITTER ON A FLUCTUATION

MEASUREMENT

Let us now consider the system illustrated by Fig. 1.
We have let S(X,Q) be the image of a 61tered, chaotic
mercury arc source focused on an aperture having

Polarizer, P

S(X,fl)
A

0)

=- X

FIG. 1. Line drawing of a fluctuation experiment including a
polarizer to split the initial beam. y& accounts for any difference in
path lengths.

dimensions much greater than the mean wavelength of
the radiation. We are now considering a system with a
polarizer P present in the path of the beam emitted
from the secondary source S(X,Q). Thus photons from
the initial beam that have a given polarization repre-
sented by f, (X=X&), are transmitted to detector Dz.
Photons having the orthogonal polarization (repre-
sented by J,, X=X2) are scattered to detector D&. We
assume that the radiation source is such that photons
having the above polarizations are distributed randomly
in the initial beam impinging upon P. It is apparent here
that the function of the polarizer is essentially that of a
photon scatterer. We therefore consider that the
photons (with polarization X=X~) in the beam im-

pingent upon detector Dj have been simply transmitted
by the polarizer. Photons in the scattered beam (with
polarization X=X2) that impinges upon detector Dm are
assumed, of course, to have been scattered. by the
polarizer. It now remains only to solve the appropriate
set of equations, using the iteration technique described
by Eqs. (33)—(39). The set of working equations for
this case is written as (we cannot sum over photon
polarizations here):

Lc~.v+w(X, x)jf, (X,a,x)=.(X,a,z)&„+ dn" r, (X,x")s-(o",x"~a,x)fP (X,~",x"), (A1)

A (X,x)=—r, (X,x)+a(X,x), (A2)

(c(~.v+a'. v')+ A (X,x)+ a (X',V)$v~'(X,~,x; X',~',x')

dQ" {rs(X,X")0'"'(0",X"—+ Q,X) V~" (X,Q",9'; X',O', 9)+rs(X',X")

xs-(a" v'~ ~',~)v»(x, a,xx',a",v')}+b(x—x')a(x a x a' ~') (A3)
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where

a(X; a,x; a', x') =t (a—a')s„(.(X,a,x)t „+La(X,x)+2e(X,x)1

Xfp(X,a,x)+ dQ" r, (X,x")5-{a",V' a,x)fp(X,Q",x")}

—re(X,X)&-(Q,X —+ Q', X')fP(X,Q,X)—rs(X', P')S-(Q'li' —+ a,x)f ~(X',Q', li'). (A4)

[a/at+ca v+A(Xx)lv»(Xax X't)=r (X') dQ' V~~(X,Q,X; X',Q', x') —8(X—X')f,&(X',Q', x') H(t)

+ dQ" re(X,X")F-(Q",X"~ Q, li) V" (X,a",1%.";X', t). (A5)

The equation for V"~(X;X',Q', X', t) is obtained by
interchanging the primed and unprimed arguments.
Noting that the polarizer is very localized in space we
can write

r, (X;,~,)=r,{H)(t+~T)a,—X,j—e(ta, —X,)}
for X;=X2

=0 for X;=)„, (A6)

then get
a(xi)d

fP(Xi,ai, lii) =~{ai,lii) p. 1—e ——

fp(X„Q„~,) =o,

fp(X2, Q2, ki) =0,

fi (X2)Q2iliR) =F (Ql ~ Q2)E(al)liQ)p„

(A10)

where B is again the unit step function and AT is the
thickness of the polarizer. In the limit that AT ap-
proaches zero, we have

lim (1/aT)(eL(t+th, r)a,—X;j
—a(la, —X)}~ s(X—ta, ) (A7)

lim (rehT/c) =—probability that a scattering event will
d 7'-+0 occur when a photon (with X;=li2)

impinges upon the polarizer.

The angular dependence for a photon-scattering event
is given by

S-(a,l ~ Q„X,) =Jr-(a, ~ Q,)~(a,—a)~»„(AS)

~-(a, l a„l,) =o. (A9)

If we assume that a photon scatters but once (at most)
at the polarizer, only one iteration is needed to obtain
an exact solution of our set of working equations. We

a(X,)d
X 1—e ——— . (A 12)

%e have used the physical condition that a photon with
polarization X2 impinging upon the polarizer is scattered
with certainty and appears in the reQected beam
(without being absorbed by the polarizer). We have
also assumed that the photon absorption and emission
rates, n and e, are constant within the source, and that
the effective source thickness is d for photons traveling
in dQi about Qi. Solving for V" (Xi,ai,ki., X2,t) and
V (Xi, Xi,Q2, X2, t), we find after. some substitution
and manipulation, that

V i ~(T)=0 (A13)

This result from the present deductive approach is in
agreement with the statement of Purcell" and others" "
that orthogonal components of randomly polarized
(unpolarized) radiation are uncorrelated.

"%.Martienssen and E. Spiller, Phys. Rev. Letters 16, 531
(1966).


