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Abstract 

 

 

The Genomic Landscape of the Old Order Amish 

 

by 

 

Cristopher V. Van Hout 

 

 

Chair: Julie A. Douglas 

 

 

The Old Order Amish (OOA) of Lancaster County Pennsylvania are a population 

isolate with a census size of ~35,000 individuals who descended from ~200 immigrants 

from Western Europe in the early 1700s.  They have a long history of participation in 

genetic studies, for which their genealogical records and simple lifestyle offer substantial 

research advantages.  However, their demographic history has altered their genomic 

landscape relative to their European counterparts.  Knowledge of this landscape is critical 

to the design, execution, and interpretation of genetic studies in the OOA.  In this 

dissertation, I evaluate the consequences of population bottleneck and genetic drift on the 

empirical and/or expected distribution of 1) linkage disequilibrium (LD) for common 

variants, 2) rare variation (with a focus on the implications for imputation accuracy using 

an external population) and 3) genomic estimates of inbreeding in the OOA. 

 Using a high-density Single Nucleotide Polymorphism (SNP) map, I compare LD 

between OOA individuals and a reference population of European ancestry (HapMap 

CEU).  For common SNPs (Minor Allele Frequency (MAF) ≥ 0.05), allele frequencies 

and LD profiles were similar between the OOA and CEU.  Thus, public resources 
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constructed from CEU data are appropriate for analyses of common genetic variation in 

the OOA.  

To assess the portability of deep sequencing resources, e.g., 1000 Genomes 

Project, for rare SNPs (MAF<0.05), I evaluate (via simulation and small-scale empirical 

study) the impact of using CEU versus OOA haplotype reference panels on imputation 

accuracy in the OOA.  My results establish likely lower and upper bounds (0.50 and 0.75, 

respectively) of imputation accuracy for rare SNPs using 1000 Genomes Project-like 

resources in the OOA. 

 Finally, using a subset of SNPs from the high-density map above, I estimate 

genomic inbreeding coefficients and compare them inbreeding conditional on the OOA 

pedigree, and describe the distribution of autozygous segments in the study participants.  

I observed strong agreement between genomic- and pedigree-based estimates, with a 

mean inbreeding coefficient of ~0.035, approximately the offspring of half 1
st
 cousins.  

Furthermore, I establish that approximately 92% of the inbreeding in the OOA pedigree 

is due to inbreeding loops more distant than offspring of 2
nd

 cousins. 
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Chapter 1. Introduction 

 

1.1 Founder populations and isolates 

Founder populations, groups of people who are descended from substantially 

fewer number of individuals compared to cosmopolitan populations, have been popular 

populations of inference for disease and quantitative trait gene mapping [Ober and Cox 

1998].  Isolated populations are reproductively distinct from other populations, and often 

characterized by a low rate of gene flow from other populations.   Isolated and founder 

populations differ considerably in the number of founders and extent of isolation.  For 

example, Finns [Hastbacka, et al. 1992; Palo, et al. 2009; Peltonen, et al. 1999] and 

Ashkenazi Jews [Bray, et al. 2010; Risch, et al. 1995] have large populations sizes, have 

been separated for relatively long time period, and have experienced substantial gene-

flow with other groups relative to the Hutterites [Ober, et al. 2001] and the Old Order 

Amish (OOA) [Strauss and Puffenberger 2009] which is the population of inference of 

this dissertation.  Each of these isolates has a distinct population history, which is often 

not accurately characterized, but uniquely shapes its genetic features.  Thus, it is 

necessary to empirically evaluate the genomic landscape on a population-specific basis. 

1.2 Population demography of the Old Order Amish 

  The Old Order Amish of Lancaster County Pennsylvania are a population isolate 

descended from an initial founding population of approximately 200 individuals of 
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Northern and Western European ancestry in the early 1700s [Lee, et al. 2010; McKusick, 

et al. 1964].  Since then, the Amish have grown to a census population size of 

approximately 35,000 individuals [Lee, et al. 2010].  The relationships between 

individuals over approximately 15 to 20 generations of population growth are 

documented by the OOA in The Fisher Book [Beiler 1988], which has been organized 

into the Anabaptist Genealogy DataBase (AGDB) [Agarwala, et al. 2001]. 

1.3 Genetic epidemiology in the Old Order Amish 

The deep OOA genealogy has proved to be extremely useful for studies of disease 

and quantitative trait phenotypes in the OOA.  Starting in the mid 1960s, physician 

geneticists initiated studies of inborn errors of metabolism in the OOA (for review, see 

[Strauss and Puffenberger 2009]).  More recently, genome-wide linkage and association 

analyses have been conducted in the OOA for cardiovascular phenotypes [Mitchell, et al. 

2008; Roy-Gagnon, et al. 2008], diabetes [Hsueh, et al. 2000], coronary artery disease 

[Post, et al. 2007], circulating lipid profiles [Pollin, et al. 2008a], and mammographic 

breast density [Douglas, et al. 2008]. 

 The unique demographic history of the OOA has altered the genomic landscape, 

which must be taken into account in the design, execution, and interpretation of genetic 

epidemiological studies.  It is in this capacity that I hope the research in this dissertation 

will inform ongoing studies in the OOA and guide future studies in this and other 

populations. 
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1.4 Organization of this dissertation 

 I examine the extent to which the demographic history has impacted the genomic 

landscape of the OOA in three projects: the effect on common and rare Single Nucleotide 

Polymorphisms (SNPs), the impact on rare variation, and the extent of inbreeding. 

 In Chapter 2, for common Single Nucleotide Polymorphisms (Minor Allele 

Frequency (MAF) > 0.05), I compared allele frequencies and linkage disequilibrium (LD) 

profiles between the OOA and the HapMap CEU.  In the course of the analysis of genetic 

epidemiological studies, it is common to refer to public databases with densely genotyped 

individuals, such as the HapMap, to assess whether genetic markers of interest (regions 

of linkage, or SNPs with low p-values in GWAS) implicate obvious candidate genes.  

This essential interpretation step relies on similar patterns of LD between the population 

of interest and the reference population.  Additionally, in the context of the common 

variant-common disease hypothesis, a demonstration that most common variants are 

indeed shared between the OOA and more cosmopolitan populations such as the CEU at 

least allows for the possibility that findings in the OOA may generalize to other 

populations.  Prior to my publication of this work [Van Hout, et al. 2010], a genome-wide 

evaluation of allele frequency patterns and LD profiles in the OOA had not been 

published. 

 In Chapter 3, in contrast to common SNPs, rare SNPs (MAF < 0.05) could differ 

substantially in frequency between the OOA and CEU.  Since we are increasingly able to 

measure rare SNPs, the evaluation of the contribution of rare variants to variation in 

disease phenotypes and quantitative traits is now an attainable goal.  Imputing genotypes, 

i.e., using relatively few genotypes to identify the underlying haplotype from a more 
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densely typed or deeply sequenced reference panel, has attracted much attention as one 

approach for indirectly measuring genetic variation.  This strategy relies on shared 

haplotype structure via shared ancestry between the haplotype reference and the study 

participants.  Thus, in Chapter 3, I explore how population demography may have 

affected rare variation in the OOA in comparison to the CEU and evaluate imputation as 

a strategy for measuring rare variation in the OOA. 

 In Chapter 4, I compare estimates of inbreeding from genomic data to expectation 

conditional on pedigree information.  From simulated genotypes of the offspring of 1
st
 

cousins, I show that the genomic-based estimator of inbreeding is better able to capture 

true inbreeding versus expectation conditional on the pedigree.  Additionally, I estimate a  

locus-specific posterior probability of autozygosity to characterize the number and 

lengths of segments that are likely two alleles identical by descent in the OOA.  Finally, I 

evaluate the extent to which inbreeding in the OOA is due to recent inbreeding loops, i.e., 

the offspring of 2
nd

 cousins or closer. 

 In Chapter 5, I summarize the implications of this dissertation for genetic 

epidemiological and population genetic studies in the Old Order Amish and consider the 

applicability of these findings to other population isolates.  Additionally, I discuss 

potential future research projects as extensions of the ideas developed in the course of 

this dissertation. 
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Chapter 2. Extent and Distribution of Linkage Disequilibrium in the Old Order 

Amish 

2.1 Abstract 

 Knowledge of the extent and distribution of linkage disequilibrium (LD) is critical 

to the design and interpretation of gene mapping studies.  Because the demographic 

history of each population varies and is often not accurately known, it is necessary to 

empirically evaluate LD on a population-specific basis.  Here present the first genome-

wide survey of LD in the Old Order Amish (OOA) of Lancaster County Pennsylvania, a 

closed population derived from a modest number of founders.  Specifically, I present a 

comparison of LD between OOA individuals and U.S. Utah participants in the 

International HapMap project (abbreviated CEU) using a high-density single nucleotide 

polymorphism (SNP) map.  Overall, the allele (and haplotype) frequency distributions 

and LD profiles were remarkably similar between these two populations.  For example, 

the median absolute allele frequency difference for autosomal SNPs was 0.05, with an 

inter-quartile range of 0.02 to 0.09, and for autosomal SNPs 10-20 kb apart with common 

alleles (minor allele frequency ≥ 0.05), the linkage disequilibrium measure r
2
 was at least 

0.8 for 15% and 14% of SNP pairs in the OOA and CEU, respectively.  Moreover, tag 

SNPs selected from the HapMap CEU sample captured a substantial portion of the 

common variation in the OOA (~88%) at r
2
≥0.8.  These results suggest that the OOA and 

CEU may share similar LD profiles for other common but untyped SNPs.  Thus, in the 
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context of the common variant-common disease hypothesis, genetic variants discovered 

in gene mapping studies in the OOA may generalize to other populations.  

2.2 Introduction 

 Many genetic studies of complex traits and diseases are being conducted in 

population isolates, including the Old Order Amish (OOA) of Lancaster County 

Pennsylvania [Douglas, et al. 2008; Ginns, et al. 1998; Hsueh, et al. 2000; Mitchell, et al. 

2001; Mitchell, et al. 2008; Post, et al. 2007; Streeten, et al. 2006; Wang, et al. 2009b; Y, 

et al. 2009].   Whether results from these studies will generalize to other populations is 

dependent (in part) on the similarity of allele frequencies and patterns of linkage 

disequilibrium between populations.  To inform future genetic studies of the OOA and 

facilitate comparisons of findings with other populations, I conducted the first genome-

wide survey of linkage disequilibrium in the OOA and compared our findings to the 

International HapMap project [Frazer, et al. 2007].      

 Most of the present-day OOA of Lancaster County are the descendants of 

approximately 200 individuals [Cross 1976] from central western Europe who 

immigrated to the United States in the early eighteenth century [Cross 1976; McKusick, 

et al. 1964].  Although recent data indicate that the differences in LD between isolated 

and cosmopolitan populations for common alleles are modest [Bonnen, et al. 2006; 

Service, et al. 2006], the uncertain but unique demographic history of the OOA 

necessitates empirical evaluation of LD.  
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2.3 Subjects and Methods 

OOA study subjects were recruited and genotyped (n=861) in the course of the 

Heredity and Phenotype Intervention (HAPI) Heart study [Mitchell, et al. 2008], which 

was designed to identify gene-environment interactions influencing cardiovascular traits.  

Because many closely related individuals were deliberately ascertained, I used a 

simulated annealing algorithm [Douglas and Sandefur 2008] to select a set of minimally 

related individuals (30 men and 30 women) by minimizing the maximum pair-wise 

kinship coefficient of the set.  The median [range] pair-wise kinship coefficient was 0.03 

[0.01-0.04] for the set of 60 versus 0.03 [0.01-0.3] for the entire sample of 861.  Notably, 

the maximum pair-wise kinship coefficient in the set of minimally related individuals was 

0.04, i.e., no pair of individuals were closer than first cousins, which have a pair-wise 

kinship of 0.0625.  For comparison with the OOA, I also utilized 30 men and 30 women 

(or 60 unrelated parents) from a U.S. Utah population with northern and western 

European ancestry (abbreviated CEU) in the International HapMap project [Frazer, et al. 

2007].   

2.3.1 Genotyping and QC Methods 

 DNA was extracted from whole blood by standard methods as described 

previously [Mitchell, et al. 2008].  The Affymetrix GeneChip  Human Mapping 500k 

Array Set was used for the comparison of LD patterns in both the OOA and CEU 

samples.   Genotype calls were made using a Bayesian Robust Linear Model with 

Mahalanobis (BRLMM) distance classifier [Affymetrix 2006].  Genotype data for the 

CEU sample and corresponding annotation for the platform, including chromosome and 
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genomic positions for all SNPs on the array, were obtained from the Affymetrix website 

(www.affymetrix.com). 

Individuals with >5% missing genotypes, and/or for men, >1% heterozygous 

genotypes on the X chromosome, were excluded.  A subset of autosomal SNPs (2,068), 

which were selected to have high information content (minor allele frequency (MAF) 

0.3), low pair-wise LD (maximum r
2
 of 0.44), and coverage across all autosomes 

(average inter-marker spacing of 1.3 cM) in the OOA, were used to infer relationships 

using the maximum likelihood method implemented in Relpair [Epstein, et al. 2000].  I 

excluded individuals who had an inferred relationship that differed from the pedigree 

relationship with a likelihood ratio greater than 10
6
.  Based on these combined criteria, a 

total of 24 individuals (out of 861) were excluded from further analysis. 

SNPs were required to satisfy the following quality control criteria in both 

samples:  (1) ≤ 5% uncalled genotypes; (2) ≤5 and ≤1 Mendelian inconsistencies in OOA 

and CEU samples, respectively, using pedigree diagnostics as implemented in PedCheck 

[O'Connell and Weeks 1998]; and (3) Hardy Weinberg Equilibrium (HWE) p-value≥10
-6 

by Fisher’s exact test [Wigginton, et al. 2005] as implemented in Haploview [Barrett, et 

al. 2005].  To assess genotyping accuracy, I used duplicate genotype data for 61 of the 

861 OOA subjects for whom data from the Affymetrix Genome-Wide Human SNP Array 

6.0 (overlap of 482,235 SNPs with Affymetrix GeneChip  Human Mapping 500k Array 

Set) were also available.  Only SNPs with <2 duplicate inconsistencies were retained for 

analysis.  Of the 500,447 genotypes that mapped to a single location in the human 

genome, 82,404 failed at least one QC measure in at least one sample.  Those SNPs were 

removed, leaving a total of 409,071 autosomal [Table 2.1] and 8,972 X chromosome 

http://www.affymetrix.com/
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[Table 2.2] SNPs.  For the SNPs that passed our quality control criteria, the genotype 

consistency rate among 61 duplicate pairs was 99.4%. 

2.3.2 Statistical Analyses 

Fisher’s exact test was used to compare allele frequency distributions between the 

OOA and CEU.   For common SNPs (MAF 0.05) on the same chromosome and within 

10 Mb of each other, I used the Expectation-Maximization (EM) algorithm to obtain 

maximum likelihood estimates of two-SNP haplotype frequencies and measured pair-

wise LD by the r
2
 and D’ statistics [Lewontin 1964].  Based on common SNPs, I also 

identified haplotype blocks in the CEU using an extension of the 4-gamete rule [Wang, et 

al. 2002] and estimated haplotype frequencies in both the CEU and OOA using the EM 

algorithm with a partition-ligation method [Qin, et al. 2002] for blocks with >10 SNPs as 

implemented in Haploview [Barrett, et al. 2005].  For each sample, I then calculated and 

compared the effective number of haplotypes in each block, i.e., ( pi
2
)
-1

, where pi is the 

frequency of the i
th

 haplotype in the block.  As a measure of redundancy, I identified the 

number of SNPs (or proxies) that were in strong LD with each SNP at various thresholds 

of r
2
 in each sample.  To evaluate the extent to which SNPs selected to tag variation in 

the CEU capture common variation in the OOA, I selected common tag SNPs in the CEU 

using the greedy algorithm [Carlson, et al. 2004] implemented in Haploview [Barrett, et 

al. 2005] such that every unselected SNP had an r
2
≥0.8 with one or more selected SNPs. I 

then calculated r
2
 between the tag SNPs and the remaining ‘non-tagged’ but typed SNPs 

in the OOA.  Unless specified otherwise, all analyses were carried out using a 

combination of in-house R, Perl, and C programs.  
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2.4 Results 

 For the 418,043 SNPs that passed QC, mean heterozygosity was 0.26 and 0.27 for 

the autosomes in the OOA and CEU, respectively, and 0.23 and 0.24 for the X 

chromosome.  The slightly lower heterozygosity in the OOA, in part, reflects the larger 

number of monomorphic SNPs in the OOA relative to the CEU, e.g., 68,869 versus 

57,669 for the autosomes [Table 2.1].  For example, among the monomorphic SNPs in 

the OOA (n=16,869), 24% are polymorphic in the CEU, for which the median minor 

allele frequency is 0.017 with inter-quartile range of [0.008-0.025] and maximum 0.23.  

Among all SNPs that were polymorphic in at least one sample, the median absolute allele 

frequency difference was 0.05 for the autosomes and 0.07 for the X chromosome.  At p-

value<10
-6

, OOA and CEU allele frequencies were significantly different for 799 

autosomal and 137 X chromosome SNPs. 

   The percentage of SNP pairs within 10 Mb of each other and between which 

strong LD was observed was remarkably similar between the OOA and CEU for the 

autosomes [Table 2.3] and the X chromosome [Table 2.4].  For example, for autosomal 

SNPs at an inter-marker distance of <10 kb, no evidence of recombination (D'=1) was 

observed for 79% and 75% of SNP pairs, perfect LD (r
2
=1) was observed for 20% and 

19% of SNP pairs, and useful LD (r
2

0.8) was observed for 30% and 29% of SNP pairs 

in the OOA and CEU, respectively.  Based on the CEU sample, I identified 58,097 

autosomal haplotype blocks, with a median of 3 SNPs per block and an inter-quartile 

range of [3, 4].  Among all autosomal blocks, the median effective number of haplotypes 

(ne) was 2.43 and 2.47 in the OOA and CEU, respectively, and the median of the 

differences in ne (CEU minus OOA) per block was 0.04, with an inter-quartile range of -
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0.2 to 0.3, suggesting modestly greater haplotype diversity in the CEU.  A parallel 

analysis using haplotype blocks defined in the OOA did not qualitatively differ from the 

results based on blocks defined in the CEU. 

Of common autosomal SNPs, 72% and 64% had at least one proxy at r
2
≥0.8 and 

55% and 44% had at least one perfect proxy (r
2
=1) in the OOA and CEU, respectively, 

indicating that fewer independent SNPs are required to represent variation in the OOA 

relative to the CEU.  At r
2
≥0.8, 170,979 of 310,704 common SNPs in the CEU were 

selected as tag SNPs and captured ~88% of the ‘non-tagged’ SNPs in OOA, suggesting 

that SNPs selected to tag common variation in the CEU capture much of the same 

variation in the OOA.  SNPs not captured by the CEU tag SNPs tended to be of lower 

minor allele frequency (data not shown).  Results for the X chromosome were 

qualitatively similar. 

2.5 Discussion 

In general, I found a high degree of similarity in allele frequencies and LD 

patterns in the OOA and CEU samples.  Allele frequencies were not significantly 

different between the OOA and CEU for >99% of SNPs.  Of the SNPs that had 

significantly different allele frequencies, the proportion that were monomorphic was 

1.7% and 0.9% in the OOA, and CEU, respectively.  Based on common SNPs, which 

comprised 74% and 66% of autosomal SNPs in the OOA and CEU, respectively, the 

distribution and extent of LD were remarkably similar between these two samples.  These 

data are consistent with previous theoretical predictions [Kruglyak 1999; Pritchard and 

Przeworski 2001] and recent empirical data [Bonnen, et al. 2006; Navarro, et al. 2009; 
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Service, et al. 2006; Thompson, et al. 2009], all of which point to modest differences in 

LD between isolated and cosmopolitan populations for common alleles.  The situation for 

rare alleles, however, is likely to be different as has been demonstrated in applications of 

LD mapping for monogenic diseases and traits.    

Demographic and historical information indicate that the OOA were founded 

relatively recently (~10 to 15 generations ago) by a modest number of individuals 

(several hundred) and then expanded rapidly to a current census population size 

exceeding 30,000 [Amish 2002].  Though the precise demographic details are unknown, 

it is apparent that the number of founders and rate of growth were sufficient and that the 

subsequent isolation of the OOA was too short for genetic drift and/or recombination to 

have meaningfully altered the common allele or haplotype frequency spectrum.  Our 

recent study of variation on the Y chromosome supports these observations in that much 

of the diversity observed in non-isolated populations of similar ancestry is present in the 

OOA [Pollin, et al. 2008b].  It appears that inbreeding due to the finite population size of 

the OOA was also insufficient to meaningfully alter the allele frequency distribution or 

extent of LD.  Based on the 60 OOA individuals included in our analyses, the average 

inbreeding coefficient F [Wright 1922] was 0.026 (range of 0.0003 to 0.046), which is 

too weak to generate substantial differences in LD relative to a non-isolated population 

[Hill and Robertson 1968]. 

Owing to similar allele frequencies and LD patterns in the OOA and CEU, CEU-

derived tag SNPs performed well in capturing common variation in the OOA, consistent 

with previous studies in other samples of European ancestry, including those from 

isolated populations [Service, et al. 2007; Willer, et al. 2006].  These results suggest that 
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the OOA and CEU samples may also share similar LD profiles for other common but 

untyped SNPs.  Thus, findings from gene mapping studies in the OOA may generalize to 

other populations in the context of the common variant-common disease hypothesis. 
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2.7 Tables 

Table 2.1 Summary of autosomal SNPs 

 OOA CEU Overlap 

    

Total genotyped 489,922 489,922 489,922 

>1 duplicate inconsistency
1
 51,459 NA NA 

>5% missing data
2
 50,085 16,896 8,973 

Mendelian inconsistencies
2,3

 3,188 1,168 202 

p<10
-6

 for HWE test
4
 379 217 116 

Passed QC filter
5
 415,440 472,851 409,071 

    

Passed QC in both OOA and CEU    

Monomorphic
4 

68,869 57,669 52,467 

Polymorphic
4 

   

MAF≥0.05 297,605 310,704 287,476 

MAF≥0.10 256,614 267,149 240,375 

MAF≥0.20 182,941 189,133 161,062 

    

OOA = Old Order Amish 

CEU = U.S. Utah residents from HapMap 

MAF = Minor Allele Frequency 

Note: SNPs that failed a QC measure in either sample were excluded from 

further analysis, and SNPs with MAF≥0.05 passing QC in both samples 

(n=287,476) were used for LD analysis. 
1 

Based on the 61 OOA individuals who were also genotyped on the 

Affymetrix 6.0 array; SNPs with more than one duplicated genotype 

discrepancy were excluded. 
2
 Based on 837 OOA and 90 CEU individuals (30 trios). 

3
 SNPs with >5 and >1 Mendelian inconsistencies in OOA and CEU, 

respectively. 
4
 Based on 60 unrelated individuals (30 men and 30 women) from each 

sample. 
5
 SNPs may fail QC in more than one way, so rows do not sum to the 

subtotal passing QC. 
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Table 2.2 Summary of X chromosome SNPs 

 OOA CEU Overlap 

    

Total genotyped 10,525 10,525 10,525 

>1 duplicate inconsistency
1
 1,061 NA NA 

>5% missing data
2
 547 461 261 

Mendelian inconsistencies
3,4

 44 246 10 

p<10
-6

 for HWE test
4
 0 0 0 

Passed QC filter
5
 9,139 10,064 8,972 

    

Passed QC in both OOA and CEU    

Monomorphic
4 

2,272 1,905 1,805 

Polymorphic
4 

   

MAF≥0.05 5,763 6,106 5,516 

MAF≥0.10 4,971 5,376 4,449 

MAF≥0.20 3,571 3,925 2,929 

    

OOA = Old Order Amish 

CEU = U.S. Utah residents from HapMap  

MAF = Minor Allele Frequency 

Note:  SNPs that failed a QC measure in either sample were excluded from 

further analysis, and SNPs with MAF≥0.05 passing QC in both samples 

(n=5,516) were used for LD analysis. 
1 

Based on the 61 OOA individuals who were also genotyped on the 

Affymetrix 5.0 array; SNPs with more than one duplicated genotype 

discrepancy were excluded. 
2
 Based on 837 OOA and 90 CEU individuals (30 trios). 

3
 SNPs with >5 and >1 Mendelian inconsistencies in OOA and CEU, 

respectively. 
4
 Based on 60 unrelated individuals (30 men and 30 women) from each 

sample. 
5
 SNPs may fail QC in more than one way, so rows do not sum to the 

subtotal passing QC. 
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Table 2.3 Linkage disequilibrium between autosomal SNPs 

Percentage of autosomal SNP pairs
1
 showing no evidence of recombination (D’=1), 

perfect LD (r
2
=1), or where useful LD is observed (r

2
0.8) 

Inter-SNP 

distance (kb) 

D’=1 r
2
=1 r

2
0.8 

OOA CEU OOA CEU OOA CEU 

10 79 75 20 19 30 29 

10-20 60 53 9 7 15 14 

20-50 43 34 4 3 9 7 

50-100 28 20 1 1 3 2 

100-200 20 11 0 0 1 1 

200-500 14 7 0 0 0 0 

500-1,000 12 6 0 0 0 0 

1,000-2,000 11 5 0 0 0 0 

2,000-5,000 10 5 0 0 0 0 

5,000-10,000 8 5 0 0 0 0 

  

OOA = Old Order Amish (n=60) 

CEU = U.S. Utah residents from HapMap (n=60) 
1
 Restricted to SNPs with minor allele frequency ≥0.05 in both samples (n=287,476). 

 

  



 

19 

 

Table 2.4 Linkage disequilibrium between X chromosome SNPs 

Percentage of X chromosome SNP pairs
1
 showing no evidence of recombination 

(D’=1), perfect LD (r
2
=1), or where useful LD is observed (r

2
0.8) 

Inter-SNP 

distance (kb) 

D’=1 r
2
=1 r

2
0.8 

OOA CEU OOA OOA CEU OOA 

10 88 85 39 35 51 49 

10-20 72 64 23 19 34 31 

20-50 60 48 12 9 21 18 

50-100 44 31 6 3 11 10 

100-200 31 19 3 1 6 4 

200-500 22 11 1 0 2 1 

500-1,000 18 7 0 0 0 0 

1,000-2,000 17 7 0 0 0 0 

2,000-5,000 15 7 0 0 0 0 

5,000-10,000 13 7 0 0 0 0 

OOA = Old Order Amish (n=60) 

CEU = U.S. Utah residents from HapMap (n=60) 
 

1
Restricted to SNPs with minor allele frequency ≥0.05 in both samples (n=5,516).   
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Chapter 3. Cataloging rare variants in the Old Order Amish - implications for 

imputation accuracy in isolated populations 

 

3.1 Abstract 

A substantial fraction of the genetic component of complex traits remains 

unexplained by the results of recent genome-wide association analyses of common SNPs, 

the so-called missing heritability problem. Thus, the contribution of rare variation to 

heritability is currently of great interest. Efforts such as the 1000 Genomes Project 

[Durbin, et al. 2010] are underway, in part, to catalog rare variants by deeply sequencing 

reference population panels. 

 For common SNPs (minor allele frequency ≥5%), I recently showed that the Old 

Order Amish (OOA) of Lancaster County, PA, an isolated population derived from a 

modest number of founders, and the HapMap CEU participants share similar allele 

frequencies and linkage disequilibrium profiles [Van Hout, et al. 2010]. Accordingly, I 

expect that reference panels like the CEU will adequately characterize common SNPs in 

the OOA.  However, for rare SNPs, the OOA and CEU may differ considerably.  Thus, in 

order to assess the portability of deep sequencing projects like the 1000 Genomes Project, 

I evaluated via simulation the impact of the population of origin of the haplotype 

reference panel (CEU versus OOA) on the imputation accuracy for rare SNPs in the 

OOA.  In addition, I used CEU and OOA empirical genotypes on chromosome 22 to 
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impute rare SNPs in the OOA and the CEU using the 1000 Genomes Project low 

coverage Pilot sequence as the haplotype reference panel. 

Using coalescent theory I simulated 100 megabases of sequence representative of 

the CEU and OOA, including 800 CEU-like and 800 OOA-like haplotypes to serve as 

reference panels and another 800 CEU-like and 800 OOA-like haplotypes to construct 

genotypes for pseudo-study participants. I masked ~95% of the study participants’ 

genotypes and used the remaining 5% to impute the masked data from each reference 

panel.  I characterized imputation accuracy by two measures: the coefficient of 

determination between the most likely imputed genotype and the true genotype, r
2
, and 

the proportion of truly heterozygous genotypes that are imputed correctly. 

As expected, based on simulations, for SNPs with MAF>5%, imputation accuracy 

as measured by r
2
 was 93% and 96% based on the CEU-like and OOA-like reference 

panels, respectively.  Similarly, for rare SNPs, 0.005<MAF<0.05, imputation accuracy 

was 75% and 86% based on the CEU-like and OOA-like reference panels, respectively.  

In the analysis using low coverage CEU data from the 1000 Genomes Pilot, imputation 

accuracy was lower.  For example, for rare SNPs, 0.01<MAF<0.05, imputation accuracy 

as measured by r
2
 was 0.50 in the OOA, consistent with the availability of fewer 

reference haplotypes in the low coverage 1000 Genomes Pilot data (120) compared to the 

simulated data (800). 

3.2 Introduction 

 A substantial fraction of the prevalence of non-Mendelian disease is unexplained 

by recent genome-wide association studies (GWAS), the so-called missing heritability 
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problem [Manolio, et al. 2009].  Of the biological phenomenon that could contribute to 

the missing heritability, rare genetic variation is of considerable interest due, in part, to 

the development of genome-scale sequencing technology [Cirulli and Goldstein 2010].  

However, some study strategies do not necessarily require direct observation of genetic 

variation.  For example, using a much smaller sample of SNPs, a common strategy is to 

impute the unobserved variation by identifying underlying haplotype blocks from a 

deeply sequenced reference panel, where the haplotypes are shared due to common 

ancestry.  In particular, the availability of deeply sequenced reference haplotype panels 

such as those of the 1000 Genomes Project [Durbin, et al. 2010] is expected to facilitate 

the imputation of sequence in diverse populations.   

In previous work [Van Hout, et al. 2010], I compared allele frequencies and LD 

profiles for approximately 250,000 SNPs with minor allele frequency (MAF) greater than 

5% in the OOA and the HapMap panel of Northern and Western European ancestry 

(CEU).  I found that the OOA and CEU have similar LD profiles, so I predict high 

imputation accuracy for common SNPs in the OOA when using a CEU haplotype 

reference panel.  However, for rare SNPs, expect that the OOA and CEU may differ 

considerably.  Here, focus on the impact of the choice of reference panel on the 

imputation accuracy of rare SNPs, which define as between 0.5% and 5% MAF.  Though 

empirical comparisons of the similarity of haplotype patterns have been carried out for a 

number of populations [Huang, et al. 2009], these studies have been limited to common 

SNPs.  Moreover, for rare SNPs, populations that have been reproductively isolated may 

differ substantially from more cosmopolitan populations like those represented in the 

1000 Genomes Project.  Thus, the suitability of reference sequence, like those of the 1000 
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Genomes Project, for the purpose of imputation of rare SNPs is central to future studies 

of the contribution of rare variation to complex traits in population isolates, like the 

OOA.  However, due to the lack of sequence data for a sufficient number of OOA 

individuals, I resort to simulating sequence data that is consistent with the known 

demographic history of the OOA.  Specifically, I compared the expected performance of 

1000 Genomes-like resources as a haplotype reference panel for imputation of rare SNPs 

in the Amish to a reference panel composed of OOA individuals, i.e., a population- 

specific panel.  Additionally, using high density SNP data [Mitchell, et al. 2008], I 

evaluated imputation accuracy using the resources that are currently available.   

3.3 Methods for the analysis of imputation accuracy using simulated data 

  To evaluate imputation accuracy, I simulated data representative of the expected 

release of phase one of the 1000 Genomes Project data which is expected to contain 400 

individuals of European descent who would be appropriate to include in a haplotype 

reference panel for imputation of genotypes in the OOA.  Though these 400 individuals 

are from four distinct ancestries, namely 100 individuals each from Utah with Northern 

and Western Europe ancestry (CEU), Italy (TSI), Britain (GBR), and Finland (FIN) 

(1000genomes.org), I assumed that all 400 individuals were CEU-like.  

  CEU-like haplotypes were simulated by a coalescent process by the method 

described by Kingman[Kingman 1982] and implemented by Hudson [Hudson 2002]  and 

a parameterization that generates haplotypes with allele frequency spectra and linkage 

disequilibrium patterns that are consistent with those of HapMap CEU [Schaffner, et al. 

2005].  Amish-like haplotypes were simulated by sampling 400 haplotypes from the 
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ancestral CEU-like population 20 generations in the past, after modeling exponential 

growth to an extant population size of 55,000.  This parameterization reflects the 

demographic history of the OOA population, which is thought to have been founded by 

approximately 200 individuals in the early 1700s and expanded to a census size of 

approximately 35,000 individuals  [Beiler 1988; Lee, et al. 2010].  The increase in extant 

population in the coalescent parameterization in comparison to the census size is intended 

to account for emigration from OOA community.  Migration between the CEU-like 

population and the Amish-like population was assumed to be zero, consistent with the 

long term reproductive isolation and the negligible impact of gene flow from the Amish 

population to the CEU population.   All other parameters were left at their default values, 

with a coalescent effective population size of the CEU-like population of 100,000, 

mutation rate per nucleotide per generation of 1.5x10
-8

, and a gene conversion rate of 

4.5x10
-9

.  Each simulated haplotype was one million nucleotides in length. 

 I generated three different configurations of simulated sequence.  In each 

configuration, 800 haplotypes were chosen to form the haplotype reference panel, and 

800 haplotypes were randomly paired to form the diploid genotypes of the 400 pseudo-

study participants.  First, 800 OOA-like and 800 CEU-like haplotypes were simulated 

from the same coalescent tree, representing a study strategy that uses an external, CEU-

like reference panel consisting of 800 haplotypes to impute genotypes for 400 OOA 

pseudo-study participants.   Second, 1600 OOA-like haplotypes were simulated, 

representing a study strategy that uses an internal, or study specific, reference panel 

consisting of 800 haplotypes to impute genotypes for 400 OOA pseudo-study 

participants.   Third, for completeness, 1600 CEU-like haplotypes were simulated, 
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representing a study strategy that uses an external reference panel of 800 haplotypes for 

imputation for 400 CEU pseudo-study participants.  One hundred independent replicates 

of each of the three configurations were generated. 

 For each replicate, 5% of non-monomorphic sites in the study participants were 

randomly selected as observed genotypes, while the remaining 95% of genotypes were 

masked.  Uniformly masking 95% of SNPs resulted in an allele frequency spectrum for 

the observed SNPs that closely resembled the frequency spectrum on the Affymetrix 

500k chip [Table 3.1].  The observed genotypes were used to impute the masked 

genotypes from the haplotype reference panel using the Markov chain haplotyping 

algorithm implemented in MaCH [Li, et al. 2009; Li, et al. 2010] with greedy scoring and 

20 iterations of the Markov chain with sampling from all 800 haplotypes.  The solution 

for each imputed genotype is specified as the most likely genotype, i.e., the genotype that 

was imputed most often across the iterations of the Markov chain. 

 I estimated imputation accuracy by two different measures:  r
2
, which is defined 

as the square of correlation between the true genotype and the most likely imputed 

genotype as estimated by an expectation maximization algorithm, and heterozygous 

agreement, abbreviated ‘HetAgree’, which is the proportion of truly heterozygous 

genotypes that were imputed correctly.  To investigate how imputation accuracy differs 

by minor allele frequency, I computed the mean imputation accuracy for each measure 

within bins defined by the MAF in the haplotype reference panel.  Because imputation 

accuracy decreases near the ends of the simulated haplotypes, due to reduced information 

in the observed SNPs (data not shown), genotypes within 200 kilobases of either end of 
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the simulated sequence were omitted from measures of accuracy to minimize the edge 

effects on imputation accuracy. 

3.4 Methods for the analysis of imputation accuracy using empirical data 

 To evaluate imputation accuracy using empirical data, I limited the scope of 

analysis to chromosome 22 for simplicity.  I constructed two analysis scenarios, both 

using empirical CEU sequence data as the haplotype reference panel to impute genotypes 

for 1) OOA and 2) CEU individuals.  Specifically, the low density pilot project 1 draft of 

the 1000 Genomes Project, which consists of approximately 2-fold genome wide 

coverage for 60 unrelated CEU individuals, was used as the haplotype reference panel.  

The July 2010 draft of these data was downloaded from 

http://www.sph.umich.edu/csg/abecasis/MaCH/download/.  This draft included 101,568 

variable sites on chromosome 22, of which 70,572 were annotated with refSeq IDs.  As 

samples for CEU and OOA individuals, I used genotypes from the Affymetrix 500k SNP 

chip for the same 60 unrelated CEU individuals provided by Affymetrix 

(http://www.affymetrix.com/support/technical/sample_data/500k_hapmap_genotype_dat

a.affx) and 60 minimally related Amish individuals [Van Hout, et al. 2010].    Based on 

annotation information provided by Affymetrix, these data include 6,102 SNPs with 

refSeq IDs on chromosome 22, of which 5,100 were annotated with refSeq IDs in the 

1000 Genomes project draft data. 

 I uniformly masked 5% of the 5,100 SNPs with MAF < 0.1 on chromosome 22 in 

the 60 CEU and OOA study participants and compared the masked genotypes to those 

imputed using the 1000 Genomes pilot data as the haplotype reference panel.  Settings for 
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imputation using the MaCH algorithm and definitions of imputation accuracy were the 

same as those described for the simulated data.  To remove the potential for differences in 

genotype strand orientation to falsely reduce imputation accuracy, SNPs in which the 

strand could not be unambiguously resolved, e.g., C/G or A/T SNPs, were omitted from 

the analysis.  I repeated the masking and imputation of genotypes on chromosome 22 two 

hundred times. 

3.5 Results 

 The mean imputation accuracies for the three configurations of study population 

and haplotype reference panel are given in Table 3.1.  In general, imputation accuracy 

increased with minor allele frequency, and for rare SNPs, imputation accuracy was higher 

when the haplotype reference panel was drawn from the same population as the study 

population.  As expected, for common SNPs in the OOA (MAF > 0.05 in the reference 

panel) imputation accuracy by the r
2
 and HetAgree measures was high, 0. 93 and 0.97, 

respectively, using a CEU-like haplotype reference compared to 0.96 and 0.98, 

respectively, using the OOA-like haplotype reference.  In contrast, for rare SNPs in the 

OOA (0.005 < MAF < 0.05 in the reference panel) r
2
 and HetAgree were 0.75 and 0.82, 

respectively, using a CEU-like haplotype reference and 0.86 and 0.90, respectively, using 

an OOA-like haplotype reference.  The inter-quartile range (IQR) for the r
2
 measure of 

imputation accuracy in simulated haplotypes is given in [Table 3.2].  As expected, I 

observed greater variability in imputation accuracy for lower minor allele frequency 

SNPs. 
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 I also classified the imputation errors by type using the CEU reference haplotypes 

to impute genotypes in the OOA.  As expected, for rare SNPs (0.005 < MAF ≤ 0.05), 

approximately 75% of SNPs that are imputed incorrectly are instances in which truly 

heterozygous genotypes are imputed incorrectly as major allele homozygous genotypes 

[Table 3.3].    The distribution of imputation errors was not qualitatively different for the 

other simulation scenarios [Data not shown]. 

 Imputation accuracy using empirical 1000 Genomes Project low coverage pilot 

data as the haplotype reference for imputation of OOA and CEU genotypes was 

uniformly lower than in the simulated data [Table 3.4].  For SNPs in the OOA, 0.01 < 

MAF ≤ 0.05, imputation accuracy by the r
2
 and HetAgree measures was 0.50 and 0.35 

using a CEU-like haplotype reference.  This difference is likely due, in part, to the 

decreased number of reference haplotypes available in the empirical data (n=120) 

compared to the simulations (n=800).  Inter-quartile range (IQR) for the r
2
 measure of 

empirical imputation error is given in Table 3.5.   

3.6 Discussion and conclusions 

 By comparing an optimistic scenario using simulated data with simplifying 

assumptions of no genotyping or phasing error to a scenario using existing but limited 

resources (which are improving rapidly), I have established upper and lower bounds for 

the imputation accuracy that are likely to be observed in practice.  Specifically, 

simulations imputing OOA-like genotypes using a CEU-like reference panel mimics a 

realistic study in which haplotypes for 400 individuals of European ancestry in the full 

Phase 1 1000 Genomes Project are available, for which the mean imputation accuracy for 
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rare SNPs (0.005 < MAF ≤ 0.05) by the r
2
 measure is expected to be approximately 0.75.  

Using 1000 Genomes pilot data for chromosome 22, consisting of haplotypes for only 60 

CEU individuals to impute genotypes in the OOA, the mean imputation accuracy for rare 

SNPs was approximately 0.5.  Because the r
2
 is directly related to the sample size, this 

can be interpreted as requiring an approximate doubling of the number of study 

participants to retain equivalent power to detect an effect in a test of association. 

 I have shown that imputation accuracy of rare SNPs in the Old Order Amish is 

only marginally improved by using a population specific haplotype reference panel.  For 

example, the r
2
 measures of imputation accuracy for rare SNPs in the OOA-like 

population were 0.86 and 0.75 using a population-specific OOA-like haplotype reference 

and a CEU-like panel, respectively.  These observations are consistent with the finding of 

an increase in imputation accuracy by the r
2
 measure of approximately 4% for rare SNPs 

using population specific haplotype reference in the Finns [Surakka, et al. 2010].  

Furthermore, these results suggest that studies using SNP data of a similar density to that 

of the Affymetrix 500k chip are likely to observe modest imputation accuracy for rare 

SNPs compared to studies using chips with a higher density.  Specifically, the union of 

Illumina 1M and Affymetrix 6.0 arrays, i.e. HapMap 3, for imputation contain 

approximately 5 times the density of SNPs as the Affymetrix 500k chip.  Studies using 

HapMap 3 to impute genotypes report substantially higher imputation accuracy in 

comparison to the present study [Altshuler, et al. 2010; Durbin, et al. 2010]. 

 Through the simulated haplotypes in the OOA and CEU, it is possible to gain 

insight into the expected differences in the full allele frequency spectra between the two 

populations [Table 3.6].  For example, comparison of simulated allele frequencies in the 
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CEU and OOA suggest that most of the variation in the OOA is likely to be cataloged by 

a reference sample of 400 individuals of European ancestry as in Phase 1 of the 1000 

Genomes Project.  Approximately 1.8% of the variable sites (variable in the OOA or 

CEU) had MAF>0.005 in 800 OOA-like haplotypes but were monomorphic in the CEU-

like haplotypes [Table 3.6].  Thus, even rare variation in the OOA is likely to be well 

represented in the 1000 Genomes Project data.  Furthermore, though only a small 

proportion of alleles that are monomorphic in a sample of 400 CEU individuals are 

predicted to drift to MAF > 0.01 in the OOA, it is noteworthy at least one example of an 

allele that has drifted to substantially higher allele frequency in the OOA has been 

documented.  Specifically, the G55T allele of the APOC3 gene, rs76353203, has MAF 

0.05 in the OOA, but is monomorphic in a sample of 214 unrelated ‘Caucasians’ [Pollin, 

et al. 2008a].  It is likely that over the length of the genome, while the proportion may be 

small, the number of alleles that may have drifted to meaningfully higher frequency in 

the OOA could be large.  In this context, studies of isolated populations may deliver 

substantially higher power to detect the contribution of these alleles to complex 

phenotypes, particularly given the increased power for the identifying rare sequence 

variation in large pedigrees. 

 Finally, the simplifying assumptions of the simulations, most notable error free 

sequence information, that have been made in the course of the current study represent 

limitations to the inference that should be drawn from these results.  Further tuning of the 

coalescent parameters, including a parameterization that accounts for four distinct 

European populations, simulation of haplotypes longer than one megabase in length, and 

increasing the number of iterations of the imputation algorithm, could all result in 
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estimates of imputation accuracy that are closer to those of full scale empirical analyses.  

Limitations of the analysis of empirical data for chromosome 22 include the limited 

availability of haplotypes in the reference panel, i.e., 120 haplotypes vs. 800 Phase 1 

1000 Genomes Project.  Also, a more comprehensive analysis would include all available 

data, instead of focusing on chromosome 22.  However, given computational constraints, 

and in the absence of empirical data, the development of upper and lower bounds for the 

accuracy of imputation for rare SNPs that are likely to be observed in a large scale study 

are a necessary step toward evaluating whether and how to integrate genotype imputation 

strategies into existing genetic epidemiological studies.   Populations with similar 

demographic histories, such as the Hutterites [Thompson, et al. 2010], are likely to have 

similar imputation accuracies to those estimated in the Old Order Amish.  Additionally, 

the simulation strategy that I implemented to evaluate the predicted performance of 

resources like the 1000 Genomes project could be adapted to model other populations. 

3.7 Acknowledgements 

I thank Drs. Braxton Mitchell and Alan Shuldiner, for their collaboration on the 

HAPI Heart Study.  I acknowledge Matt Zawistowski and Sebastian Zollner for their 

helpful suggestions, particularly regarding the implementation of the imputation strategy.  

I gratefully acknowledge the Amish Research Clinic Staff, our Amish liaisons, and the 

Amish community, whose support and cooperation made this study possible. This 

research was supported by NIH grants T32 HG00040, U01 HL0201, and R01 

(CA122844). 



 

35 

 

3.8 Tables 

Table 3.1. Distribution of the number of SNPs (proportion of 1000 Genomes1) on 

chromosome 22 in different datasets 

 
    

 1000 Genomes
1
 Affymetrix

2
 Uniform 5%

3
 

    

    0  < MAF ≤ 0.05 31,460 699 (0.02) 1,573 (0.05) 

0.05 < MAF ≤ 0.1 15,433 551 (0.04) 772 (0.05) 

0.1 < MAF ≤ 0.2 18,340 937 (0.05) 917 (0.05) 

0.2 <  MAF ≤ 0.3 13,633 834 (0.06) 682 (0.05) 

0.3 < MAF ≤ 0.4 11,204 700 (0.06) 560 (0.05) 

0.4 < MAF ≤ 0.5 10,980 657 (0.06) 549 (0.05) 

    

MAF > 0 101,050 4,378 (0.04) 5,053 (0.05) 

Counts (proportions) of SNPs for 60 unrelated CEU individuals from different datasets 

binned by MAF. 

MAF = Minor Allele Frequency 
1
 Genetic variants in the 1000 Genomes low coverage pilot, July 2010 annotation. 

2
 Non-monomorphic SNPs that pass quality control measures (see text for details) on the 

Affymetrix 500k chip 
3
 Five percent of the SNPs in the 1000 Genomes pilot data, i.e. the product of 0.05 and 

the number of SNPs in each MAF bin. 
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Table 3.2.  Mean imputation accuracy in simulated sequence 

    

Reference population
1
 CEU 

OOA 

OOA 

OOA 

CEU 

CEU Study population
2
 

 
      

 
r
2
 HetAgree r

2
 HetAgree r

2
 HetAgree 

 
      

0.005 <MAF≤  0.01 0.52 0.67 0.77 0.81 0.64 0.66 

0.01   <MAF≤  0.025 0.77 0.76 0.89 0.87 0.79 0.76 

0.025 <MAF≤  0.05 0.87 0.83 0.93 0.91 0.85 0.81 

0.05   <MAF≤  0.1 0.93 0.88 0.95 0.93 0.91 0.86 

0.1     <MAF≤  0.5 0.97 0.93 0.98 0.96 0.96 0.92 

 
 

 

 

   

0.005 <MAF≤  0.05 0.75 0.82 0.86 0.90 0.73 0.80 

0.05   <MAF≤ 0.5 0.93 0.97 0.96 0.98 0.92 0.96 

 
1 

Ancestry of the haplotype reference panel
 

2
 Ancestry of the individuals for which genotypes are imputed 

OOA = Old Order Amish 

CEU = U.S. Utah residents from HapMap 

MAF = Minor Allele Frequency in the reference population 

r
2
 = Squared correlation between the true genotype and the most likely imputed genotype 

HetAgree = Proportion of truly heterozygous genotypes that were imputed correctly 

The values reported are the means of measures of imputation accuracy for 100 replicates 

of simulated haplotypes one megabase in length  for each reference/study configuration.  

For each minor allele frequency bin, the minimum number of SNPs was 40,000.   
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Table 3.3.  Inter-Quartile range for r
2
 measure of imputation accuracy in simulated 

sequence 

    

Reference population
1
 CEU 

OOA 

OOA 

OOA 

CEU 

CEU Study population
2
 

 
     

 
1stQ 3rdQ 1stQ 3rdQ 1stQ 3rdQ 

 
      

0.005 <MAF≤  0.01 0.42 0.97 0.71 0.99 0.40 0.97 

0.01   <MAF≤  0.025 0.60 0.98 0.81 0.99 0.59 0.98 

0.025 <MAF≤  0.05 0.76 0.99 0.88 1 0.71 0.98 

0.05   <MAF≤  0.1 0.85 0.99 0.93 1 0.84 0.99 

0.1     <MAF≤  0.5 0.94 1 0.96 1 0.93 1 

 
 

0.005   <MAF≤  0.05 0.57 0.98 0.80 0.99 0.54 0.98 

0.05     <MAF≤ 0.5 0.92 1 0.96 1 0.91 1 

 
1 

Ancestry of the haplotype reference panel
 

2
 Ancestry of the individuals for which genotypes are imputed 

OOA = Old Order Amish 

CEU = U.S. Utah residents from HapMap 

MAF = Minor Allele Frequency in the reference population 

r
2
 = Squared correlation between the true genotype and the most likely imputed genotype 

The values reported are the first quartile and third quartile of the distribution of the r
2
 

measure of imputation accuracy for 100 replicates of simulated haplotypes one megabase 

in length  for each reference/study configuration.  For each minor allele frequency bin, 

the minimum number of SNPs was 40,000.   
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Table 3.4.  Distribution of imputation errors 

Error type
1
 P(AA|Aa) P(Aa|AA) All Other 

 
   

0.005<MAF ≤ 0.01 0.913 0.084 0.003 

0.01  <MAF≤ 0.025 0.849 0.140 0.011 

0.025< MAF≤ 0.05 0.801 0.174 0.025 

0.05  <MAF≤ 0.1 0.725 0.218 0.057 

0.1    <MAF≤ 0.5 0.438 0.300 0.262 

    

0.005  <MAF≤ 0.05 0.749 0.234 0.017 

0.05     <MAF≤ 0.5 0.477 0.292 0.232 

 
1
 Proportions were calculated for 100 replicates of simulated haplotypes one megabase in 

length using CEU haplotype reference panel to impute SNPs in the OOA   

P(AA|Aa) = the probability that a truly heterozygous genotype was imputed incorrectly 

as a major allele homozygous genotype 

P(Aa|AA) = the probability that a truly major allele homozygous genotype was imputed 

incorrectly as a heterozygous genotype  

OOA = Old Order Amish 

CEU = U.S. Utah residents from HapMap 

MAF = Minor Allele Frequency in the reference population 
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Table 3.5.  Mean imputation accuracy for chromosome 22 data 

   

Reference population
1
 CEU 

OOA 

CEU 

CEU Study population
2
 

 
    

 
r
2
 HetAgree r

2
 HetAgree 

 
    

0.01   <MAF≤  0.025 0.47 0.36 0.64 0.26 

0.025 <MAF≤  0.05 0.51 0.34 0.69 0.41 

0.05   <MAF≤  0.1 0.58 0.36 0.74 0.41 

     

0.01   <MAF≤  0.05 0.50 0.35 0.67 0.36 

 
1 

Ancestry of the haplotype reference panel
 

2
 Ancestry of the individuals for which genotypes are imputed 

OOA = Old Order Amish 

CEU = U.S. Utah residents from HapMap 

MAF = Minor Allele Frequency in the reference population 

r
2
 = Squared correlation between the true genotype and the most likely imputed genotype 

HetAgree = Proportion of truly heterozygous genotypes that were imputed correctly 

The values reported are the means of measures of imputation accuracy for 200 

independent imputation analyses of chromosome 22 for each reference/study 

configuration.  For each minor allele frequency bin, the minimum number of SNPs was 

1,000.   
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Table 3.6.  Inter-Quartile range for r
2
 measure of imputation accuracy for 

chromosome 22 data 

   

Reference population
1
 CEU 

OOA 

CEU 

CEU Study population
2
 

 
    

 
1stQ 3rdQ 1stQ 3rdQ 

 
    

0.01   <MAF≤  0.025 0.08 0.81 0.27 0.95 

0.025 <MAF≤  0.05 0.15 0.86 0.45 0.99 

0.05   <MAF≤  0.1 0.25 0.90 0.56 0.98 

     

0.01   <MAF≤  0.05 0.12 0.85 0.38 0.98 

 
1 

Ancestry of the haplotype reference panel
 

2
 Ancestry of the individuals for which genotypes are imputed 

OOA = Old Order Amish 

CEU = U.S. Utah residents from HapMap 

MAF = Minor Allele Frequency in the reference population 

r
2
 = Squared correlation between the true genotype and the most likely imputed genotype 

The values reported are the first quartile and third quartile of the distribution of the r
2
 

measure of imputation accuracy for chromosome 22 for each reference/study 

configuration.  For each minor allele frequency bin, the minimum number of SNPs was 

1,000.   
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Table 3.7.  Comparison of minor allele frequency in simulated haplotypes 

 
    CEU     

      

OOA MAF=0  0<MAF<0.5%   0.5≤MAF<1%  1≤MAF<5%  MAF≥5% 

 

 MAF=0 - 26.7 0.6 0 0 

0<MAF<0.5% 17.4 12.3 1.1 0.1 0 

0.5≤MAF<1% 1.7 1.8 3.7 0.5 0 

1≤MAF<5% 0.1 0.2 0.7 10.0 0.2 

MAF ≥5% 0 0 0 0.2 22.7 

OOA = Old Order Amish 

CEU = U.S. Utah residents from HapMap 

MAF = Minor Allele Frequency in the reference population 

Cross classification of the percent of variable sites for different minor allele frequency 

bins for 981,159 variable sites (in either the CEU or the OOA)  in 100 realizations 

simulating 800 CEU-like and 800 OOA-like haplotypes 1 megabase  in length. 
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Chapter 4.  Genomic estimates of inbreeding in the Old Order Amish 

 

4.1 Abstract 

Using a hidden Markov model and genome-wide map of Single Nucleotide 

Polymorphisms (SNPs), I estimated inbreeding for 837 Old Order Amish individuals who 

were recruited in the course of the HAPI Heart study [Mitchell, et al. 2008].  I observed 

strong agreement between genomic and pedigree-based estimates.  Moreover, both 

measures indicated that the mean inbreeding coefficient for these study participants is 

approximately 0.035, or similar to the expected inbreeding coefficient for the offspring of 

half 1
st
 cousins.  Using SNP specific probabilities of autozygosity, I further characterized 

the number and lengths of autozygous segments in the study participants.  Additionally, I 

demonstrated that the preponderance of autozygosity in the OOA is likely due to many 

distant inbreeding loops, consistent with the OOA tradition of avoiding marriage between 

close relatives. 

 

4.2 Introduction 

The Old Order Amish community of Lancaster County Pennsylvania (OOA) is a 

population founded by approximately 200 individuals of Western European ancestry in 

the early 1700s  [Cross 1964].  Over approximately 15 generations, the OOA have grown 

to a census size of approximately 35,000 individuals [Agarwala, et al. 2001; Lee, et al. 
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2010].  Their pedigree has been meticulously documented  in the Fisher Book [Beiler 

1988], and subsequently incorporated into the Anabaptist Genealogy Database (AGDB) 

[Agarwala, et al. 2001]. 

The population demographic history of the OOA lends itself to studies of rare 

recessive traits [McKusick, et al. 1964].  Since the mid 1960s, the OOA have been the the 

population of inference for gene mapping studies of rare metabolic disorders [Strauss and 

Puffenberger 2009].  Despite the fact that detection and characterization of long 

homozygous and autozygous regions in humans has received considerable theoretical and 

empirical attention for both cosmopolitan populations [Broman and Weber 1999; Clark 

1999; Gibson, et al. 2006; Li, et al. 2006] and population isolates [Chapman and 

Thompson 2002; Leutenegger, et al. 2003; Sheffield, et al. 1998; Wang, et al. 2006], no 

genome-wide characterization of inbreeding and the distribution of autozygous segments 

in the OOA has been published. 

In the OOA, inbreeding is driven by demographic history, namely, population 

growth from a moderate number of founders and limited exogamy.  The distinctive 

cultural identity of the OOA, including non-proselytizing religious traditions and 

marriage within the church, are considerable barriers to gene flow from more 

cosmopolitan populations.  Practically all of the Old Order Amish are related, [Lee, et al. 

2010] meaning that any two individuals inherited a proportion of their genomes from a 

recent common ancestor.  Specifically, the expected proportion of the genome that is 

shared identical by descent (IBD) between two individuals is defined by their kinship 

coefficient [Lange 1997; Malécot 1948].  By extension, offspring of related individuals 

can inherit loci for which both alleles are descended from a single recent ancestor, i.e., 
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IBD, and the individual is inbred.  The inbreeding coefficient is defined as the probability 

that two alleles at a locus in an individual are IBD.  However, cryptic relatedness, due to 

errors or omissions in the pedigree, or by undocumented relatedness between the 

founders of the OOA, may result in underestimated inbreeding.   

Accurate knowledge of inbreeding is important in the design, execution and 

interpretation of genetic epidemiological studies in isolated populations, such as the 

OOA.  For example, underestimation of inbreeding can produce false positive results in 

the context of linkage analyses [Miano, et al. 2000].  Also, in models of the architecture 

of complex traits, inbreeding results in a redistribution of variance components, 

specifically, decreasing narrow sense heritability [Falconer 1989].  Additionally, 

inbreeding inflates estimates of linkage disequilibrium (LD) [Zhang, et al. 2004] and 

increases homozygosity compared to Hardy Weinberg Expectation (HWE) [Song and 

Elston 2003].   

To address the possibility of underestimation of inbreeding due to incomplete 

and/or inaccurate pedigree information in the OOA, I estimated inbreeding coefficients 

from only genomic data, i.e., independent of any pedigree information.  Furthermore, I 

describe the distributions of counts and lengths of IBD, and provide evidence that the 

vast majority of autozygosity in the OOA is likely due to multiple inbreeding loops that 

are deep in the pedigree, i.e., more distant than offspring of 2
nd

 cousins. 

4.3 Study participants and genotype data 

 OOA study participants (n=868) were initially recruited to participate in the 

Heredity and Phenotype Intervention (HAPI) Heart Study [Mitchell, et al. 2008], which 
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was designed to detect genetic loci that interact with environmental exposures to modify 

risk factors for cardiovascular disease.  Recruitment efforts focused on multigenerational 

families of relatively healthy adult men and women.  Genome-wide Single Nucleotide 

Polymorphisms (SNPs) for 861 participants were measured using the Affymetrix 500k 

genotyping array.  Quality control measures are described in detail elsewhere [Van Hout, 

et al. 2010].  Briefly, SNPs with >5% missing data, >5 Mendelian errors, more than one 

duplicate inconsistency based on the 61 OOA individuals who were also genotyped on 

the Affymetrix 6.0 array, or deviation from Hardy Weinberg Expectation (HWE) with p-

value < 10
-6

 were omitted.  After Quality Control (QC) measures, >85% of autosomal 

SNPs (415,440 of 489,922) on the chip were retained for downstream analysis.  

Additionally, study participants with more than 5% missing data (n=9), males with >1% 

heterozygous SNPs on the X chromosome (n=5), and individuals with relationship 

discrepancies (n=16) were identified.  By failing to meet one or more of these criteria, 24 

individuals were omitted, with a final count of 837 study participants for further analysis. 

4.4 Methods and statistical analyses 

 Inbreeding coefficients conditional on the pedigree, FPed, for 837 study 

participants were computed from pedigree information using PedHunter version 2.0 

[Agarwala, et al. 1998; Lee, et al. 2010] and the AGDB version 5 [Agarwala, et al. 2001] 

which includes of all known paths of descent between the parents of the study 

participants. 

I estimated the genomic inbreeding coefficient, FGeno, of each study participant 

using a hidden Markov model and Markov chain Monte Carlo, as implemented in the 
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program FEstim [Leutenegger, et al. 2003].  Briefly, SNPs for each individual are 

modeled by a hidden Markov chain with IBD status (autozygous or allozygous) as the 

hidden state.  The model is parameterized in terms of the inbreeding coefficient, F, and 

the rate of change in IBD status per centiMorgan (cM), A, where F=0.1 and A=0.2 were 

used for this analysis.  The parameters F and A and their 95% confidence intervals (CIs) 

were estimated via maximum likelihood for each individual from the Markov model 

using Baum’s algorithm [Baum L.E. 1970].  In addition to the genome-wide estimates, 

the posterior probability of autozygosity was estimated for each genotype.  This model 

assumes that population allele frequencies and map positions at each SNP are known and 

that SNPs are in linkage equilibrium. 

For the 415,440 autosomal SNPs that passed QC, allele frequencies and pair-wise 

estimates of LD between SNPs on the same chromosome were estimated from of a subset 

of 60 minimally related Amish individuals as previously described [Van Hout, et al. 

2010].  Briefly, a subset of 60 individuals were selected from the HAPI study using a 

simulated annealing algorithm as implemented in the program PedMine [Douglas and 

Sandefur 2008] to minimize the maximum pair-wise kinship coefficient between 

individuals in the subset.  The maximum kinship coefficient was approximately 0.047 or 

less than that of 1
st
 cousins, with average kinship 0.029.  By comparison, the maximum 

kinship for a random set of 60 individuals from the HAPI study population was 0.16.  

The average and maximum inbreeding coefficient (FPed) for the set of 60 minimally 

related individuals did not meaningfully differ from those of the complete study (data not 

shown). 
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To estimate inbreeding from genomic information, I selected an informative map 

of low LD SNPs using a windowing approach as implemented in the software PLINK 

[Purcell, et al. 2007].  For computational efficiency, I maximized the information content 

by considering only SNPs with MAF > 0.35.  SNPs were pruned such that the r
2 

measure 

of pair-wise LD was less than 0.2 for all pairs of SNPs within a window of 200 SNPs.  

The window was shifted by 20 SNPs, and the pruning process was repeated for the next 

200 SNPs.  The resulting set of 12,201 SNPs had an average minor allele frequency of 

0.44 and average inter-SNP distance of 0.29 cM.  The mean pair-wise r
2
 between all 

SNPs on the same chromosome in the map was 0.018.  Moreover, 90% of these pairs had 

r
2
 less than 0.051 and 99% had r

2
 less than 0.13.  Map position information was provided 

by the array manufacturer [Affymetrix]. 

Since a detailed assessment of the statistical properties of FGeno as estimated by 

FEstim has not been published, I implemented a gene-dropping strategy to evaluate the 

estimator FGeno.  Genotypes and founder labels for 12,000 SNPs (MAF 0.45) in linkage 

equilibrium were simulated for the offspring of 1
st
 cousins according to Mendel’s laws, as 

implemented in the genedrop program of MORGAN [Thompson 2005].  The true 

inbreeding coefficient, FTrue, was defined as the proportion of genotypes where both 

alleles were derived from the same founder.   Genomic estimates of inbreeding, FGeno, 

using only the 12,000 SNPs were estimated using the FEstim algorithm.   I simulated 

genotype data for 1000 independent replicates. 

I also used the simulated genotypes and founder allele labels to examine the 

extent to which the hidden state of the Markov chain (autozygous or allozygous) is 

captured by the posterior probability (PP) of autozygosity at each SNP across a range of 
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PP thresholds.  For each of 12,000 SNPs in 1000 replicates of the offspring of 1
st
 cousins, 

the sensitivity (probability that PP of autozygosity ≥ threshold given the SNP was truly 

autozygous) and specificity (probability that PP of autozygosity < threshold given the 

SNP was truly allozygous) of the FEstim method to detect autozygosity were estimated 

for a range of posterior probability thresholds. 

To characterize the number and length of autozygous segments from SNPs, I used 

the PP of autozygosity at each SNP as estimated by FEstim to infer multi-SNP segments 

of the genome where two alleles are likely to be IBD, i.e., autozygous.   Segments were 

inferred as autozygous if two or more sequential SNPs on the same chromosome had a 

PP of autozygosity ≥ 0.7. 

I used pedigree information to determine whether any of the OOA study 

participants were the offspring of closely related individuals, specifically, the offspring of 

1
st
 cousin or 2

nd
 cousin matings.  For each study participant, I compared the number of 

great-grandparents and great-great-grandparents of a non-inbred individual, 8 and 16, 

respectively, to the number of unique ancestors in the OOA pedigree.  For example, 

individuals who are the offspring of 1
st
 cousins have exactly six unique great-

grandparents, in contrast to eight for a non-inbred individual. 

4.5 Results 

4.5.1 Genomic and pedigree-based estimates of inbreeding 

 The mean [range] inbreeding coefficient conditional on the OOA pedigree (FPed) 

for 837 OOA study participants was 0.034 [0.0003-0.076] [Table 4.1], which is 
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approximately equivalent to the expected inbreeding coefficient for the offspring of half 

1
st
 cousins. 

In the analysis of genomic estimates of inbreeding, the FEstim algorithm 

converged for approximately 99% of study participants (835 of 837).  The pedigree 

derived estimates of inbreeding for the two study participants whose genomic estimates 

failed to converge were less than 0.0003, representing the two lowest inbreeding 

coefficients of all participants in the study.  These two individuals did not converge for 

different initial values of F and A were omitted from further analyses.  Point estimates of 

inbreeding for the other 835 study participants did not meaningfully change for different 

initial values of F and A (data not shown).   

 The mean [range] of FGeno was 0.036 [0.003 – 0.102] [Table 4.1].  Comparing 

FGeno and FPed, the mean [range] within individual difference was approximately 0.002 [-

0.048 – 0.044].  For approximately 89% of the study participants (745 of 835), the 95% 

confidence interval for FGeno contained the expected inbreeding coefficients conditional 

on the pedigree.  Furthermore, for approximately 94% of the study participants (788 of 

835) FGeno was significantly greater than zero at α=0.05. 

4.5.2 Evaluation of FEstim algorithm 

I evaluated the performance of the FEstim algorithm from the simulated 

genotypes and founder allele labels that were generated via gene dropping on the 

offspring of 1
st
 cousins pedigree.  The mean within individual difference between FGeno 

and FTrue was 0.0015 [Table 4.2], indicating a small positive bias in the genomic estimate 

of inbreeding.  I compared the statistical efficiency, i.e., the ability of the estimator to 
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capture truth, between the genomic estimator and the pedigree-based expectation, i.e., 

given that the expected inbreeding coefficient (FPed) for the offspring of 1
st
 cousins is 

0.0625.  The mean absolute difference (MAD), i.e., |FGeno - FTrue|,  was 0.002, while the 

MAD of between FGeno and FPed was 0.019.  For approximately 92% of replicates, (FGeno - 

FTrue) was less than (FGeno - FPed).  Furthermore, the 95% confidence intervals for FGeno 

contained FTrue in 100% of replicates, while only approximately 90% (897 of 1000) 

contained the expected inbreeding coefficient FPed. 

4.5.3 Inference of autozygous segments 

I inferred autozygous segments for the 835 OOA study participants using a PP 

threshold of autozygosity of at least 0.7 for at least two consecutive SNPs.  At this 

threshold, sensitivity and specificity were 96.0% and 99.9%, respectively, for the 

simulated offspring of 1
st
 cousins [Table 4.3].  Summary statistics for the number and 

lengths of IBD segments inferred in the OOA study participants are provided in Table 

4.3.  The mean total length of inferred IBD segments was approximately 107 cM, or 

approximately 3.1% of the length of a 35 Morgan genome.  The maximum total length 

IBD for an individual in the study was approximately 328 cM, or approximately 9.4% of 

a genome of length 35 Morgans.  Despite both the negative bias of 96% sensitivity in the 

identification of truly autozygous SNPs and the small positive bias in the FGeno estimator, 

these proportions were similar to the mean and maximum estimates of FGeno of 0.034 and 

0.102 [Table 4.1]. 

I used the OOA pedigree to determine whether study participants were the 

offspring of 1
st
 cousins and/or 2

nd
 cousins by comparing the observed number of unique 
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ancestors to the expected number of ancestors in a non-inbred pedigree.  I identified 152 

OOA individuals for whom the most recent inbreeding loop was the offspring of 2
nd

 

cousins.  For completeness, zero offspring of 1
st
 cousins, 2 offspring of half 2

nd
 cousins, 

15 offspring of double 2
nd

 cousins and one offspring of triple 2
nd

 cousins were also 

identified from the pedigree information.  The impact of 2
nd

 cousin matings on inbreeding 

in the OOA can be characterized by subtracting the expected inbreeding due to known 2
nd

 

cousin matings, if any, from each study participant’s inbreeding coefficient conditional 

on the entire pedigree.  The mean FPed is 0.034 [Table 4.1], whereas the mean FPed after 

removing the contribution of all 2
nd

 cousin matings is 0.031. 

4.6 Discussion 

This report is the first comparison of genomic and pedigree-based inbreeding in 

the OOA.  Strong agreement between genomic and pedigree based inbreeding implies 

that undocumented relationships and inaccuracies in the pedigree have had a small 

aggregate effect on the inbreeding coefficients of the OOA.  Additionally, mean 

inbreeding coefficients as estimated by both methods are approximately 0.035, or 

approximately equivalent to the offspring of half 1
st
 cousins (0.031).   

There were no observed offspring of 1
st
 cousin matings, and for approximately 

80% of (667 of 837) study participants, pedigree information indicates that the most 

recent inbreeding loop was more distant than the offspring of 2
nd

 cousins.  By subtracting 

the inbreeding coefficient due to offspring of 2
nd

 cousin loops from FPed, I observed only 

a small change in the average inbreeding coefficient in all study participants, from 0.034 

to 0.031.  This demonstrates that the aggregate contribution of many distant inbreeding 
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loops, i.e., offspring of 3
rd

 cousin and more distant, constitutes approximately 92% (0.031 

/ 0.034) of the autozygosity in these study participants.  This observation is consistent 

with the OOA practice of avoiding 1
st
 cousin marriages [McKusick, 1978]. 

The proportion of the study participants who were inferred to be autozygous was 

calculated for each SNP.  At a PP threshold of 0.7, SNPs were most likely to be 

autozygous in approximately 3.3% of the study population, consistent with the mean 

genome-wide estimate of inbreeding of approximately 3.5%.  Notably, the minimum 

number of individuals for which any of the 12,201 SNPs was inferred as autozygous was 

8 [data not shown].   Single SNPs are very likely to be embedded in autozygous segments 

that are many cM in length.  For example, the mean length of an inferred segment with 

two alleles IBD in the OOA study participants was 9.7 cM [Table 4.3] and includes on 

average 33 SNPs given an average inter-SNP distance of approximately 0.29 cM.  

Though it is possible that small regions of the genome that do not tolerate autozygosity 

have escaped detection, no such regions were observed in the course of this analysis.  

Regions of the genome that do not tolerate autozygosity may, for example, be 

incompatible with life, and would be interesting candidates for further study.   The lack 

of evidence for such regions in the HAPI study sample is noteworthy insofar as there are 

very few populations with genetic data and suitable demographic histories in which a 

similar analysis would be possible. 

Inference of IBD in the OOA is limited, in part, by a balance between fulfilling 

the assumption of the FEstim method that SNPs are in linkage equilibrium and the 

density of SNPs available for analysis.  While relatively small violations of the 

assumption of linkage equilibrium between SNPs inflate estimates of inbreeding 
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[Polasek, et al. 2010], it is impractical to completely eliminate LD in a map of SNPs that 

are sufficiently dense for the genomic estimation of inbreeding in the OOA.  However, 

despite sources of error in the genomic estimator of inbreeding, including residual LD 

between the SNPs and the small positive systematic bias (described in results), 

simulations indicate that the FGeno estimator captures the true inbreeding substantially 

more accurately than FPed.   

The limited genetic map resolution also impacts the lower limit of detection of the 

length of autozygous segments. For example, the expected inbreeding coefficient for the 

offspring of 5
th

 cousins is 0.5
12

, which, on average, results in a total autozygous length of 

approximately 0.8 cM, given a sex averaged map of about 35 Morgans, and is likely to be 

inherited as a single autozygous region.  Autozygous segments of this size are unlikely to 

be detected using the methods described in this analysis because as the length of a 

segment, and correspondingly, the number of contiguous homozygous SNPs decreases, 

the likelihood of homozygosity due to autozygosity approaches the likelihood of 

homozygosity due to random chance. 

4.7 Conclusions 

For 835 Old Order Amish individuals, I estimated inbreeding coefficients from 

genomic information, and observed strong agreement between genomic and pedigree-

derived estimates.  The mean inbreeding coefficient using genome-wide SNPs and 

pedigree information was approximately 0.035 by both approaches, and approximately 

equivalent to the offspring of half 1
st
 cousins.  I have also summarized the number and 

lengths of autozygous segments in the OOA study population.  Based on pedigree 
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information, I show that there are no inbreeding loops closer than that of the offspring of 

2
nd

 cousins.  Additionally, the contribution of all offspring of 2
nd

 cousin inbreeding loops 

is approximately 8% of the mean inbreeding in the OOA, indicating that the majority of 

inbreeding in this study population is due to the aggregate effect of many distant loops, 

specifically, more distant than the offspring of 2
nd

 cousins. 
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4.9 Tables 

Table 4.1.  Distribution of genomic and pedigree-based estimates of inbreeding in 

the OOA 

 
   

 FGeno FPed FGeno - FPed 

    

Minimum 0.003 0.0003 -0.0475 

1
st
 Quartile 0.024 0.027 -0.0110 

Mean 0.036 0.034 -0.0018 

Median 0.034 0.034 -0.0004 

3
rd

 Quartile 0.024 0.041 0.0078 

Maximum 0.102 0.076 0.0443 

MAD   0.0115 

 

The genomic estimate of inbreeding (FGeno) was estimated for 835 OOA study 

participants using only SNP data from the study participants, i.e., ignoring the pedigree.  

The pedigree inbreeding coefficient (FPed) is an expectation conditional on all known 

paths of descent between the parents of HAPI study participants from the AGDB. 

OOA = Old Order Amish 

MAD = Mean Absolute Difference, i.e., | FGeno - FPed |. 
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Table 4.2. Distribution of genomic-derived and actual inbreeding coefficients for 

simulated offspring of 1st cousins 

 
    

 FGeno FTrue FGeno - FTrue FGeno – FPed 

     

Minimum 0.016 0.008 -0.004 -0.047 

1
st
 Quartile 0.049 0.047 0.000 -0.014 

Mean 0.065 0.064 0.002 0.001 

Median 0.063 0.061 0.001 0.001 

3
rd

 Quartile 0.080 0.079 0.003 0.018 

Maximum 0.172 0.170 0.011 0.110 

MAD   0.002 0.019 

 

Genotypes (n=12,000) in linkage equilibrium were simulated for the offspring of 1
st
 

cousins via gene dropping. The true inbreeding coefficient (FTrue) is defined as the 

proportion of genotypes in an individual with two identical founder labels.  The genomic 

estimate of inbreeding (FGeno) was estimated by the FEstim algorithm using only 

simulated SNPs.  The results of 1,000 replicates are shown. 

FPed   = Inbreeding conditional on pedigree for offspring of 1
st
 cousins 

MAD = Mean Absolute Difference, i.e., | FGeno - FTrue | and | FGeno - FPed | 
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Table 4.3. Classification of marker autozygosity by posterior probability 

thresholding 

   

Threshold Sensitivity
1
 Specificity

2
 

   

0.1 98.9 99.2 

0.2 98.6 99.5 

0.3 98.4 99.6 

0.4 98.2 99.7 

0.5 97.3 99.7 

0.6 96.4 99.8 

0.7 96.0 99.9 

0.8 93.8 99.9 

0.9 91.1 99.96 

To assess the sensitivity and specificity of autozygosity for a range of posterior 

probability (PP) thresholds, founder allele labels and genotypes were simulated for 

12,000 SNPs (MAF 0.45) in linkage equilibrium for 1000 offspring of 1
st
 cousin matings 

via gene dropping.  True autozygosity was determined by comparing the founder allele 

labels at each SNP.  The posterior probability of autozygosity for each SNP was 

estimated using a hidden Markov model as implemented in FEstim. 

 
1
  Sensitivity is defined as the percent of markers for which the PP of autozygosity was ≥ 

PP threshold given that the marker was truly autozygous. 
2
  Specificity is defined as the percent of markers for which the PP of autozygosity was < 

PP threshold given that the marker was truly allozygous.  
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Table 4.4.  Distribution of segments IBD in OOA study participants 

 
 

  Mean Range 

   

Number of segments IBD per individual 10.5  [1 – 26] 

Length per IBD segment (cM) 9.7  [3.6 – 25.8] 

Longest IBD segment per individual (cM) 24.1 [4.3 – 92.4] 

Total length IBD per individual (cM) 107.2  [5.1 – 322.8] 

   

 

For n=835 study participants, the posterior probability of autozygosity for 12,201 SNPs 

were estimated in a hidden Markov Model.  Autozygous segments were inferred from the 

posterior probability of autozygosity of at least 0.7 for at least two consecutive SNPs on 

the same chromosome. 

OOA = Old Order Amish 
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Chapter 5.  Discussion 

 

5.1 Implications of findings 

Other studies of population isolates, like the OOA, have observed strong 

similarity in allele frequency patterns and linkage disequilibrium (LD) profiles in 

comparison to the HapMap CEU, including the Hutterites [Thompson, et al. 2010] and 

the isolates of the Dalmatian islands of Croatia [Navarro, et al. 2010].  Additionally, these 

reports support a fundamental element of the common-disease common-variant 

hypothesis, namely that common SNPs that contribute to variation in disease phenotypes 

or quantitative traits in these populations exist in more cosmopolitan populations.  A 

potential downside to this strong similarity, however, is the growing evidence that the 

predicted increase in power of association studies due to extensive LD in isolated 

populations [Bonnen, et al. 2006] may not have materialized [Huyghe, et al. 2010], at 

least with regard to common SNPs. 

 While the emerging story for common SNPs may not be surprising, the extent to 

which rare SNPs are shared between the OOA and the CEU may be less intuitive.  

Currently, the 1000 Genomes Project is measuring rare variation in large enough number 

of individuals to meaningfully study rare SNPs in a moderate number of populations, 

with stated goals (1000genomes.org) of cataloging most genetic variation above 

approximately MAF 0.01 and providing haplotype reference panels both for the purposes 
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of imputing genotypes in various study populations and combining studies with genotype 

data from different platforms for meta-analysis.  Prior to the investigation described in 

Chapter 3, it was unclear as to whether the creation of a deeply sequenced haplotype 

reference panel in the OOA would result in improved imputation as compared to the 1000 

Genomes Project resources.  The results of this study suggest that, at least using the 

imputation strategy as implemented in Chapter 3, the creation of a population-specific 

haplotype reference panel in the OOA is likely to result in only a small gain in imputation 

accuracy.  This information is likely to be useful when contemplating study strategies for 

measuring rare variants in other isolated populations.  More broadly, simulating 

haplotypes and conducting mock analyses prior to proposing and/or executing genetic 

sequencing studies may offer important insights and identify potential pitfalls of newer 

approaches such as imputation. 

 In chapter 4, I compared estimates of inbreeding derived from genomic data, 

namely, SNPs to those from pedigree data.  I also evaluated the genomic estimator of 

inbreeding using simulated data, and observed that it captured the true inbreeding 

coefficient better than the pedigree data.  Additionally, both the genomic and pedigree-

derived estimates had high agreement, suggesting that even though they may be less 

precise, the pedigree based estimates capture most of the inbreeding in the OOA, i.e. the 

pedigree based estimates are not substantially underestimating the true inbreeding in this 

population.  Thus, cryptic relatedness among the founders of the OOA and/or errors and 

omissions in the pedigree information are unlikely to result in an underestimation of 

inbreeding. 
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5.2 Future directions 

 The comparison of allele frequencies and LD profiles for common SNPs between 

the OOA and CEU as described in Chapter 2 has proved to be an important resource for 

applied human genetic studies in the OOA.  Though the work in this thesis has focused 

on applied projects, often in the context of gene mapping, there are theoretical treatments 

of LD in populations.  In particular, models of LD and population size [Sved 2009], and 

of LD and inbreeding [Haldane 1949; Hill 1975; Sved 1971] have received considerable 

theoretical attention.  It is humbling to consider the anachronism of how early theorists 

might have dealt with the richness and availability modern genome-wide data. 

In the investigation of the accuracy of imputation of rare variants described in 

Chapter 3, the imputation strategy that was implemented makes no use of the extensive 

pedigree that exists for the OOA.  It is likely that strategies that use prior information 

about the relatedness of the study population could substantially increase imputation 

accuracy for rare variants.  In fact, there are a number of algorithms and computational 

strategies that have been developed to incorporate family information for imputation of 

genotypes [Burdick, et al. 2006; Kirkpatrick, et al. 2010; Meuwissen and Goddard 2010].  

However, implementation of these strategies using deep pedigrees like those of the OOA 

is challenging, though, pedigree trimming approaches [Liu, et al. 2008] which retain 

many of the 1
st
 and 2

nd
 degree relationships in larger pedigrees, could be useful tools with 

which to manage the computation complexity of imputation in large families. 

 Another strategy to potentially increase imputation accuracy might be to 

maximize the genetic diversity of the haplotype reference panel, e.g., manipulate the 

composition of the haplotype reference panel to include a set of minimally related 
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individuals.  For example, the simulated annealing algorithm [Douglas and Sandefur 

2008] that was implemented to select the set of 60 minimally related individuals for the 

purposes of allele frequency and LD estimation is an obvious first choice for the 

identification of unrelated individuals in this context. 

 Each of the strategies outlined above should be compared to develop a clear idea 

as to which imputation strategy might have the highest accuracy.  Populations with well 

characterized pedigrees are uniquely suited to accurately identify rare variation because 

related individuals can be used to reduce uncertainty in measuring rare genotypes, so it is 

certain that efforts to evaluate the contribution of rare variation to disease phenotypes and 

quantitative traits will continue to be pursued in populations with well documented 

genealogies, like the OOA.  It is worth noting that until accurate whole genome 

sequencing becomes practical for large studies, efforts to refine imputation strategies may 

result in substantial cost savings compared to study strategies that conduct deep 

sequencing all of the study participants. 

 In Chapter 4, as part of my exploratory analysis, none of the 12,201 SNPs were 

inferred (via the PP of autozygosity > 0.7 for at least two SNPs on the same 

chromosome) to be allozygous for all 835 OOA study participants.  Moreover, in this 

preliminary analysis, the distribution of the proportion of the study participants who were 

autozygous at a given locus appeared to be consistent with random chance.  It is possible 

that a similar analysis in a larger number of study participants may reveal regions of the 

genome which are autozygous less often than by chance, possibly due to the lethal 

recessive action of genes in the region of autozygosity. 
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