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ABSTRACT 

 

 

As industry strives to standardize engineering design, manufacturing, and maintenance 

processes, the focus on achieving component modularity is increasing. Component 

swapping modularity (CSM) in control systems allows component change without 

redesign of the system level controller, while achieving the required system performance. 

Opportunities to achieve CSM are emerging in control systems consisting of smart 

components connected by bidirectional communication networks. By distributing a part 

of the controller into the component module, controller recalibration can be limited to 

only the component module when the component changes.  

In this dissertation, a novel Direct Method is proposed to generate the distributed 

controller with CSM through a bi-level optimization. The distributed controller enables 

CSM and provides required system performance for each component variant. The Direct 

Method is applied to throttle actuator CSM design in engine idle speed control. The 

results demonstrate that the new Direct Method improves the CSM results compared to 

the previous 3-Step Method. In addition, the Direct Method permits the designer to trade 

off desired system performance versus achievable CSM.  

The Direct Method is then applied to design a distributed supervisory controller for 

battery CSM in plug-in hybrid electric vehicles. A novel feedback based controller for the 

charge sustaining mode is proposed. For effective controller distribution, a method based 



 

xiii 
 

on sensitivity analysis of the control signals with respect to the battery hardware 

parameter is introduced. The bi-level optimization problem for the distributed controller 

gains is solved using the Augmented Lagrangian Decomposition method. The results 

demonstrate that battery CSM can be achieved without compromising fuel economy 

compared to the centralized control case.   
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CHAPTER I 

INTRODUCTION 

 

In the broadest terms, modularity (or modularization) is an approach for organizing 

complex products and processes efficiently, by decomposing complex tasks into simpler 

portions so they can be managed independently and yet operate together as a whole [1]. 

Ulrich and Tung define modularity in terms of two characteristics of product design: (1) 

similarity between the physical and functional architecture of the design and (2) 

minimization of incidental interactions between physical components [2]. This definition 

accounts for the functional aspects of a product but ignores all other life-cycle 

characteristics [3].  Gershenson et al. state that modular design also aims to develop 

product architecture consisting of physically detachable units for rapid development, ease 

of assembly, re-use, and other life-cycle objectives [4].  

    Besides the component modularity properties of physical and functional 

independence, component swapping modularity (CSM) allows two or more alternative 

basic components to be paired with the same modular components creating different 

product variants belonging to the same product family [2]. The benefits of CSM include 

[5-7]: 1) Economy of scale; 2) Ease of product updating; 3) Increased product variety; 4) 

Decreased order lead-time; 5) Decoupled design; 6) Ease of product diagnosis, 

maintenance and disposal. 
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Changing a component in a control system may require a complete redesign of the 

entire controller for performance and stability requirements, with tremendous cost 

involved. Consumers cannot easily customize or upgrade electro-mechanical products, 

such as automobiles. However, if the control system is designed such that the component 

has CSM, the system can be easily customized and upgraded.  

A component in a control system has CSM if the component change can be 

accommodated by only recalibrating (i.e., retuning) the component controller built inside 

the component module, without redesign of the system level controller, so that the system 

performance meets a defined performance metric subject to specified constraints.  Thus 

the swappable component becomes a plug-and-play component.  

1.1. Control Methods for Component Change 

Existing control techniques that can deal with component change include robust 

control, adaptive control, and gain scheduled control. However, to some extent, they are 

not applicable for large component change. For instance, typical robust controllers are 

designed to withstand parameter variations caused by manufacturing tolerances, changes 

in operating conditions or aging; they may not generally be able to cope with large 

changes in parameters associated with swappable components. Due to a performance-

robustness trade-off, even if such a controller can be made robust for stability, the 

performance must necessarily be compromised. An adaptive controller relies on on-line 

adaptation and intricate implementation steps to assure stability, robustness to noise, and 

persistence of excitation. In many industrial applications degraded transient performance 

during the adaptation phase may not be acceptable. Certification and validation of 

adaptive controllers remains a challenge. Gain scheduled controllers may require large 
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memory and computing power of the microcontroller for implementation, which is not 

cost-efficient in realistic applications.      

One simple approach for controller implementation to accommodate component 

change is to reflash the controller gains when the component changes. This approach 

requires involvement of the original equipment manufacturer (OEM) (which owns the 

controller) every time component update occurs, and may preclude customers making 

changes independently.  

Recently, plug-and-play control is proposed to accommodate component change. 

However, it considers only system stability, without considering system performance for 

each component variant. A high level model predictive control for plug and play process 

control [8], and a hierarchical model predictive control to accommodate load variations 

on the grid [9], have been investigated only considering system stability.  

These considerations create the opportunity for further research on distributed 

controller architecture that achieves CSM, which avoids the above drawbacks. 

1.2. Networked Control Systems 

With the proliferation of low cost electronics, many control system components, such 

as sensors and actuators, can now incorporate on-board computers (i.e. CPU, memory, 

I/O interface), which have communication interfaces and can perform component specific 

control functions. These components are referred to as “smart components” [10-12]. As 

an example, today’s automobile has up to 80 microprocessors, and the software in those 

microprocessors provides 500 – 600 customer visible features [13]. An overview of the 

design considerations of smart components to integrate sensing, computing, and 

communication with limited packaging constraints is given in [14].  
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Networked Control Systems (NCSs) are spatially distributed systems for which the 

communication between controllers and intelligent I/O devices (e.g., smart sensors and 

smart actuators) is supported by a shared communication network [15]. The defining 

feature of NCSs is that the feedback signals are exchanged in the form of information 

packages through a network as shown in Figure 1.1. NCSs enable bidirectional 

communication among the smart components and the system level controller. The 

additional information exchange on the bidirectional communication network has been 

shown to improve CSM [16].   

 

 

Figure 1.1: NCS with bidirectional communication 
 

A wide variety of different networks are commercially available (e.g., ControlNet, 

DeviceNet, Ethernet, Profibus, Sercos, WorldFIP) for the implementation of a NCS 

architecture [17]. Murray et al. identify control over networks as one of the key future 

directions for control [18]. Although NCSs provide many benefits such as flexible 

architectures, reduced system wiring, ease of system maintenance and upgrade at lower 

cost [15, 19], there are some disadvantages such as communication delays, bandwidth 

limitations and packet loss [19-22]. Current research on NCSs primarily focuses on 
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understanding the effects of network delays and packet loss [15, 23]. The effects of the 

network-induced delay will not be considered in this dissertation. 

1.3. Distributed Control with CSM 

Systems with smart components connected by bidirectional communication networks 

facilitate distributed controller implementation to achieve CSM [24]. This approach to 

achieve CSM relies on distributing part of the control function, which is dependent on the 

component hardware parameters, to the component module. When component change 

occurs, only the controller implemented in the component module needs to be redesigned 

or recalibrated to achieve the required system performance. Such a distributed 

architecture is designed to achieve the required system performance for each system 

configuration and to maintain the controller in the swappable component as simple as 

possible. A simple controller in the swappable component is suitable for implementation 

in a microcontroller within the component module, which often has very limited 

computing power, and a simple controller in the swappable component also results in 

reduced engineering recalibration time and effort when the component changes.  

Figure 1.2 shows a control system in which many different types of actuators may be 

deployed. The original centralized controller is distributed into two parts, the base 

controller and the actuator controller, where the actuator controller is implemented in the 

actuator module, making the actuator a smart component. Bidirectional communication is 

introduced between the base controller and the actuator controller. The distribution 

ensures that only the actuator controller is dependent on the actuator hardware parameters, 

while the base controller remains the same for different actuator variants. Thus, when the 

actuator changes, rework in terms of controller redesign or recalibration can be limited to 
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the smart actuator only, making it a modularly swappable component, or a plug-and-play 

component, while providing the required system performance. 

 

 

Figure 1.2:  Control system with modularly swappable actuator component. 

 

Note that a controller implemented in the component module, which uses pole-zero 

cancellation (assume the component dynamic model is stable) to cancel the dynamics of 

the new component and maintain the dynamics of the original/nominal component, can 

trivially provide CSM. The shortcoming of such an approach is that the overall system 

response remains the same as for the original component, and potential performance 

improvements that can be achieved with a better component are not realized. It is, thus, of 

interest to understand if a distributed control system can be designed to achieve CSM as 

well as improved system performance for a better component variant.  

The 3-Step Method for distributed controller design to achieve CSM has been 

developed in [24].  In this approach, the centralized controller for each system 

configuration with different component variant is designed first. Then, the order and 

structure of the distributed controller is assumed, such that only the component controller 

that is built into the swappable component is dependent on the component hardware 
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parameters. Finally, the CSM metric is maximized by exact (or approximate) matching of 

the transfer function of the distributed controller with that of the centralized controller. 

The 3-Step Method has been applied to design CSM of the VCT actuator and the EGO 

sensor in a VCT engine [25]. A case study for a distributed idle speed control (ISC) 

design with throttle actuator CSM has been considered in [16].  

In [16], it was shown that the 3-Step Method can achieve throttle actuator CSM by 

distributing a ISC between a base controller and an actuator controller, where only the 

actuator controller is dependent on the actuator hardware parameter. However, no 

swapping modularity could be achieved when the actuator controller transfer function is 

relatively simple, such as first order or just gains. This could be a significant deficiency 

when computing power of the smart actuator is limited. From both computation and 

recalibration perspectives, a simple controller in the smart actuator is more amenable to 

implementation. Moreover, the current 3-Step Method is based on model matching of 

controller transfer functions, it is limited to linear controller design. Thus, in this 

dissertation, we propose a new improved Direct Method for distributed controller design 

with CSM. 

The Direct Method developed in this dissertation generates the distributed controllers 

directly by solving a bi-level optimization problem. The Direct Method is applicable to 

nonlinear, as well as linear, control systems. Moreover, unlike the 3-Step Method, the 

Direct Method simultaneously addresses the two design objectives, system performance 

and CSM, through a nonlinear optimization formulation. For multi-objective optimization, 

a simultaneous approach will deliver a better, or at least the same, solution compared to 
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that of a sequential approach [16]. Therefore, the Direct Method is expected to 

outperform the 3-Step Method. 

A solution algorithm using the Collaborative Optimization (CO) [26, 27] and 

Augmented Lagrangian Decomposition (ALD) methods [28] is implemented for the bi-

level optimization in the Direct Method.  CO is a multidisciplinary design method that 

preserves disciplinary-level design autonomy while providing a coordinating mechanism 

that ensures progress toward an optimum and compatibility between the disciplinary 

designs [27, 29-31].  CO possesses analytical features that lead to computational 

difficulties when conventional nonlinear programming algorithms are applied to the 

system-level problem [26].  The ALD method has been investigated to relax the system 

consistency constraints for sub-problem feasibility in CO [28]. The ALD algorithm 

converges to the Karush-Kuhn-Tucker points of the original problem under mild 

assumptions [28]. Compared to the general bi-level formulation, the application of CO 

and ALD methods is more complex, but provides more design freedom for each of the 

inner stage problems [32].  

To illustrate our approach, we have investigated throttle actuator CSM with respect to 

engine idle speed control (ISC). Both the 3-Step Method and the novel Direct Method 

have been applied to this case study. The results demonstrate that the Direct Method can 

significantly improve the CSM metric compared to the 3-Step Method.  In addition, the 

Direct Method allows the designer to trade off between desired system performance and 

achievable CSM. 
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1.4. Battery CSM in PHEVs 

The new Direct Method is applied to design a distributed supervisory controller for 

CSM of the batteries with different energy capacities in plug-in hybrid electric vehicles 

(PHEVs).  

PHEVs enable the transportation energy sector to access lower-cost, cleaner, and 

renewable energy from the electric grid [33].  One main barrier to the commercialization 

of PHEVs is the cost and reliability of the batteries.  Increasing the battery energy 

capacity from 20 to 40 miles of all electric range  provides an extra 15% reduction in fuel 

consumption, but it also nearly doubles the cost [34]. It is beneficial to investigate battery 

CSM in PHEVs, such that different batteries can be applied to the same vehicle 

depending on the customer driving pattern. Moreover, as battery technology advances, 

the vehicle can be easily upgraded with newer batteries (e.g., batteries with higher energy 

capacity). Thus, battery CSM in PHEVs is investigated in this dissertation.  

Current supervisory controllers for PHEVs have centralized architecture, see [35]. A 

typical PHEV operates in a charge depleting (CD) or electric vehicle (EV) mode until the 

battery state of charge decreases to a certain value, then it switches to a charge sustaining 

(CS) mode and operates like a conventional hybrid electric vehicle (HEV). The control 

strategies proposed for HEVs can be applied to the CS mode controller design for PHEVs. 

Various control design methods for HEVs are available, such as rule-based control [36-

39] and optimization-based control, (e.g., equivalent consumption minimization strategy 

[40-42], stochastic and deterministic dynamic programming [43-45]). The rule-based 

controllers are simple to implement but sub-optimal, while the optimization-based 

controllers are computationally expensive or non-causal for real-time application. A 
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machine learning framework has been investigated to find an algebraic function that 

emulates the optimal solutions generated by Dynamic Programming for various roadway 

type and traffic conditions [46]. Feedback–based supervisory controllers have also been 

developed for load following while smoothing engine power [47]. The feedback 

controller synthesized from model predictive control was experimentally evaluated and 

showed improved fuel economy compared to two baseline strategies [48].  

In this dissertation, we propose a novel feedback-based controller for the CS mode. 

The controller gains are generated though optimization to achieve optimal fuel economy 

and driving performance, while satisfying the constraints on closed loop system stability, 

battery charge sustainability and component reliability. The controller is designed with 

respect to the EPA US06 cycle, but the simulation results demonstrate that the controller 

also achieves good fuel economy, good driving performance and charge sustainability 

over other driving cycles (e.g., the EPA UDDS and HWFET cycles). The feedback-based 

controller for the CS mode facilitates controller distribution for battery CSM.  

After the centralized controller is obtained through optimization, the method based on 

sensitivity analysis of the control signals with respect to the battery parameter is applied 

to determine effective controller distribution. The distributed controller gains are 

obtained by solving a bi-level optimization using the ALD method. The simulation 

results demonstrate that the proposed distributed controller achieves battery CSM without 

compromising fuel economy compared to the centralized control case.  

1.5. Original Contributions 

A. Methodology for CSM in Control Systems 
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1. A new Direct Method for the design of distributed controllers with CSM using smart 

components and bidirectional communication is proposed. The aim of the method is 

to design a distributed controller such that the component change can be 

accommodated by only recalibrating the component controller inside the component 

module so that the system performance meets a defined performance metric subject to 

specified constraints.  This work is published in [49]. 

2. The bi-level optimization problem for the distributed controller gains in the Direct 

Method is formulated and solved using the multidisciplinary design optimization 

algorithms (e.g., Augmented Lagrangian Decomposition method). This work is 

published in [50, 51]. 

3. A method based on sensitivity analysis of the control signals with respect to the 

component hardware parameters for effective controller distribution is introduced. 

This work is published in [50]. 

B. Case Studies and Applications 

1. The Direct Method is applied to throttle actuator swapping modularity design in 

engine idle speed control (ISC) and is compared to the previous 3-Step Method [24, 

25]. It is shown that: 1) bidirectional communication among smart components can 

improve CSM compared to conventional unidirectional communication. 2) The Direct 

Method improves the CSM metric significantly compared to the previous 3-Step 

Method. The Direct Method can provide actuator CSM, while the 3-Step Method fails, 

when the actuator controller is just gains or first order, and the Direct Method can 

achieve full range of actuator CSM, while the 3-Step Method can only achieve partial 

range of actuator CSM, when the actuator controller is second order or third order. 3) 
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The Direct Method allows the designer to trade off desired system performance and 

achievable CSM when the controller distribution is of a certain structure. For instance, 

by increasing the settling time design target for ISC from 1.5 sec to 4.1 sec, the 

actuator CSM can be improved by 20% when the actuator controller is just gains. 

This work is published in [16, 49, 52]. 

2. The Direct Method is applied to achieve battery CSM in PHEVs. A novel feedback 

based controller for the charge sustaining mode for PHEVs is proposed to facilitate 

battery CSM. The controller provides good fuel economy, good driving performance 

in terms of power tracking error, and charge sustainability over three standard driving 

cycles. The method based on sensitivity analysis of the control signals with respect to 

the battery parameter is applied to define the controller distribution architecture. The 

distributed controller gains are obtained by solving a bi-level optimization using the 

ALD method. The results demonstrate that the proposed distributed supervisory 

controller achieves battery CSM without compromising fuel economy compared to 

the centralized control case. This work is published in [50, 51]. 

1.6.    Outline of the Dissertation 

    This dissertation is organized as follows. After the introduction in Chapter I, the 

general Direct Method for distributed control system design with CSM and the definition 

of CSM metric is presented in Chapter II. In Chapter III, the 3-Step Method and the 

Direct Method are applied to design a distributed ISC that achieves throttle actuator CSM. 

Then Chapter IV and Chapter V present the application of the Direct Method to battery 

CSM in PHEVs. In Chapter IV, the centralized supervisory controller is developed and 

evaluated, while in Chapter V, the distributed controller which enables battery CSM is 
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designed. Finally Chapter VI gives the summary and conclusions, and lays out some 

directions for future work. 
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CHAPTER II 

THE DIRECT METHOD FOR CONTROL SYSTEM DESIGN WITH 

CSM 
 

 

In this Chapter, the Direct Method for designing control systems with component 

swapping modularity (CSM) is introduced.  We consider CSM for one component in a 

control system, and we assume that the component is a smart component, i.e., it includes 

a microcontroller that can perform control functions and has network communication 

capability. The conventional centralized controller, thus, can be distributed into two parts, 

the system controller and the component controller, where the component controller is 

built into the smart component. By distributing the component related control functions 

into the component controller, and by introducing bidirectional communication between 

the system controller and the component controller, CSM can be achieved. 

 The component in a control system is said to have CSM if the component change can 

be accommodated by only recalibrating (i.e., retuning) the component controller inside 

the component module so that the system performance meets a defined performance 

metric subject to specified constraints.  

     In this dissertation we focus on the case when the component hardware depends on a 

parameter vector that takes values within a given continuous parameter set and the 
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number of component variants of interest, i.e., values of the parameters within the 

specified parameter set, is finite. 

    As an example, consider a system where the swappable component is an actuator, and 

the actuator variants differ by the value of a parameter which is the actuator time constant.  

The system may be configured with a finite number of different actuator components, 

each corresponding to a particular value of the time constant.  Suppose that the system 

performance metric is the settling time of the closed-loop system response, and the 

constraints are imposed on the magnitude of the control signal (in response to specified 

reference commands), on internal system stability, and on gain and phase margins. CSM 

of the actuator is achieved if the controller can be distributed between a system controller 

and an actuator controller (component controller built in the actuator component), in such 

a way that the actuator change can be accommodated by only changing the actuator 

controller without changing the system controller, and the system performance meets the 

performance (settling time) requirement under the specified constraints (control 

magnitude limits, internal system stability, gain and phase margins). 

    Clearly, CSM is dependent on the chosen distribution architecture between the system 

controller and the component controller.  For instance, consider the centralized controller 

designed for each component variant without imposing any constraints on the structure of 

this controller and suppose these controllers are feasible and can achieve the required 

performance under all the constraints of the problem.  If the entire centralized controller 

is distributed into the smart component, then CSM can always be achieved.  But this 

solution is not very appealing in terms of typical industry practice, as the controller 

recalibration effort is not reduced, but shifted to the component controller. Furthermore, 
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from the standpoint of the limited computing power of the component microcontroller, it 

is often desirable to maintain the component controller to be as simple as possible.  While 

controller simplicity can be measured in a variety of ways, in this dissertation we 

generally relate controller simplicity to controller order and the number of gains. 

Therefore, the design of distributed controller with CSM must address the inherent 

tradeoffs between achievable system performance and simplicity of the component 

controller implementation. 

In what follows, we first discuss a CSM metric to quantify the degree of CSM.  We 

then introduce a method to guide the controller distribution based on sensitivity analysis 

of the control signals with respect to the component hardware parameters. With this 

approach, some of the centralized controller gains that result in relatively high sensitivity 

of the control signals, along with the corresponding calculations, are distributed into the 

component controller. Finally, once the controller distribution architecture is determined 

using the sensitivity analysis, we present a bilevel optimization problem formulation to 

solve for the distributed controller gains.  

  The bi-level optimization formulation ensures that the resulting system controller 

gains are the same for different component variants, while the component controller gains 

can change for each component. Thus, the bilevel optimization problem addresses the 

two design objectives, system performance and CSM, simultaneously. We demonstrate 

that this bilevel optimization problem can be solved using Multidisciplinary Design 

Optimization (MDO) algorithms.  We refer to this approach as the Direct Method to 

contrast it with the previous 3-Step Method [24], which is based on exact (or approximate) 



 

17 
 

matching of the transfer function of the distributed controller with that of the centralized 

controller. 

2.1.    CSM Metric 

Consider a finite number of component variants for CSM design. Let N > 1 be the 

number of the possible component variants, and let M ≥ 1 be the number of the 

components that can be made to satisfy the CSM property. The CSM metric, MC, is 

defined as,  

 1
1C

MM
N
−

=
−

 (2.1)

When M = 1, only one component that satisfies the CSM property can be applied to the 

system. In this case, MC = 0, and the component is actually not swappable with other 

components. When M = N, MC = 1, and the full range of CSM is achieved. When N > 

M > 1, MC indicates the degree of CSM over the N considered component variants.  

Note that the CSM metric defined here is related to, and consistent with, the earlier 

definition in [24]. However, we consider a finite number of components that can 

potentially be swapped. The previous work considered the components to be 

continuously dependent on a parameter vector. 

2.2.    Controller Distribution   

Suppose the component has N variants, and the corresponding component parameter 

vector 1 2[ , , ..., ] p

p

nT
np p p R= ∈p , takes on the following values, {p1,  p2, …, pN} = PD 

⊂PC, where PC  is a continuous set of the component parameter vector, and np is the 

dimension of p. 
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Figure 2.1 shows the block diagram of the centralized controller. For the system 

configuration with component parameter vector p ∈  PD, denote the plant model including 

the component as Gp(p), and the centralized controller as Gc(xc(p)), with controller gains 

xc ∈  Rn, where n is the dimension of xc. The inputs to the controller are the feedback 

signal vector y, and input signal vector q. The output of the controller is the control 

vector ( , , , )c =u p q y x 1[ ( , , , ),cu p q y x  2 ( , , , ), ..., ( , , , )] u

u

nT
c n cu u R∈p q y x p q y x , where 

nu is the dimension of u.  

 

 

Figure 2.1: Block diagram of the centralized controller 

 

Assume the design objective for the centralized controller is to minimize a cost 

function that is related to a specific performance metric F, with respect to the controller 

gains xc, for a given component parameter vector p, 

 ( , ( ))cF p x p  (2.2)

and to satisfy the imposed constraints: 

 g (p, xc(p)) ≤ 0, (2.3)

 h (p, xc(p)) = 0. (2.4)
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The centralized controller for each system configuration with component parameter 

vector p ∈  PD can be designed by conventional methods. Our approach here is first to 

assume the controller structure (e.g., state feedback control, feed-forward control, etc.), 

then to solve for the controller gains, xc, using an optimization problem of the following 

form: 

min ( , ( ))
c

cF
x

p x p
 

Subject to: 

g (p, xc(p)) ≤ 0, 

h (p, xc(p)) = 0. 

We assume that for each system configuration with component parameter vector p ∈  

PD, the above optimization is feasible, and the optimal system performance, F *(p, xc
*(p)), 

satisfies the required performance metric. 

A diagram of the plant with the distributed controller is illustrated in Figure 2.2. The 

conventional centralized controller is distributed into two parts, the system controller and 

the component controller. Denote the system controller as Gs(xs), with controller gains, 

xs 1mR∈ , and the component controller as Gm(xm(p)), with controller gains, xm 2mR∈ , 

where only the component controller gains, xm, are dependent on the component 

parameter, p. Bidirectional communication is introduced between the system controller 

and the component controller. Denote the signals on the communication network as s1 

and s2. Depending on the controller distribution structure, q1 and q2 are vectors formed 

from the input signal vector q; y1 and y2 are vectors formed from the feedback signal 

vector y; u1 and u2 are vectors formed from the control vector u, compared to the 

centralized controller in Figure 2.1. 
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Figure 2.2: Diagram of the distributed controller. 

 

We now introduce a method based on sensitivity analysis of the control signals with 

respect to the component parameters to guide the definition of the distributed controller 

architecture.  Consider the optimal values of the centralized controller gains, xc
*(p) = 

[xc,1
*(p), xc,2

*(p), … xc,n
*(p)], where , and assume that these values can be 

regressed (curve fitted) so that xc
*(p) is defined for all p ∈  PC. 

We define the normalized sensitivity of the control vector, u, with respect to the 

component parameter vector, p, through the controller gain, xc,j , where  j∈ {1, 2, …, n}, 

as, 

 ,
,

,
1

( )
( )

( )

c j
n c j n

c j
j

S x
S x

S x
=

=

∑
 

(2.5)

S (xc,j) is the sensitivity of the control vector, u, with respect to the component parameter 

vector, p, through the controller gain, xc,j : 
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 *
,

,
1 1 ,

( )( , , , )( )
pu nn

c ji c
c j

i k c j k

xuS x
x p= =

∂∂
=

∂ ∂∑∑
pp q y x  (2.6)

The control signal ( , , , )i cu p q y x  is the ith component of ( , , , )cu p q y x as in Figure 2.1, 

kp ∈p is a component parameter. The sensitivity of the control signals, S (xc,j),  through 

the controller gain, xc,j, is defined using the chain rule. S (xc,j) depends on the input signals 

to the controller, q and y, that are multiplied by the controller gains, and the sensitivity of 

the optimal values of the controller gains with respect to the component parameters. If 

each sensitivity of the control signals, S (xc,j), for j∈  {1, 2, …, n}, is zero, then there is no 

need to distribute the controller, and the centralized controller can achieve CSM.  

    Here we use the same weight for each control signal and for each component 

parameter. For specific applications, different weights can be used depending on the 

magnitude of the control signals and the magnitude of the component parameter. 

 The sensitivity, S (xc,j), depends on the values of q, y and p. In our case study, we used 

the mean value over the operating range for q and y, and middle-of-the-range values for p.  

The normalized sensitivity, Sn (xc,j), is used to define the controller distribution. The 

basic approach is to distribute the controller gains that result in the highest sensitivity of 

the control signals, along with the corresponding calculations, into the component 

controller. If the system performance requirements cannot be satisfied with such a 

distributed controller architecture, where the component controller is the simplest in 

terms of the number of the controller gains, more controller gains that results in relatively 

high sensitivity of the control signals, along with the corresponding calculations, may 

need to be distributed into the component controller. Examples can be found in Chapter 

V for battery CSM design in PHEVs. 
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2.3.    The Direct Method  

The sensitivity analysis in the preceding subsection is used to guide the distributed 

controller architecture decisions. In this section, we demonstrate how the distributed 

controller gains, i.e., the system controller gains, xs, and the component controller gains, 

xm, are determined.   

First we consider an All-in-One optimization for the distributed controller gains. In this 

case, the cost function is the sum of the cost function for each component variant. The 

design variables are the system controller gains, xs, and the component controller gains, 

xm,i, which correspond to the component variant with parameters pi, where i ∈  {1, 2, …, 

N}. 

,1 ,2 ,

2
,

, , , ..., 1
min ( ( , , ))

s m m m N

N

i s m i
i

F
=
∑

x x x x
p x x  

Subject to: 

g (pi, xs, xm,i) ≤ 0, 

h (pi, xs, xm,i) = 0, i ∈  {1, 2, …, N}. 

where F, g and h are defined in equations (2.2), (2.3) and (2.4). 

 The All-in-One formulation is conceptually straightforward, but it is hard, if not 

impossible, to handle numerically, due to the large number of design variables and 

constraints. In order to facilitate the numerical solution, the All-in-One optimization 

problem is re-formulated as a bilevel optimization problem.
   

The bilevel optimization problem has two iterative stages, as illustrated in Figure 2.3. 

The master problem in the outer stage generates the system controller gains, xs
*, while the 

sub-problems in the inner stage, corresponding to each system configuration with 
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different component variant, generates the component controller gains, xm,i
*, for the 

system configuration with component parameter vector pi, where  i ∈  {1, 2, …, N}.   At 

each iteration, the system controller gains generated by the outer stage optimization 

problem are fixed as parameters for each of the inner stage optimization problem. 

Consequently, the inner stage problems are independent of each other and can be solved 

in parallel.  

 

 

Figure 2.3: Flowchart of a bilevel optimization problem 

 

The ith inner stage optimization problem Pi searches for the optimal values of xm,i that 

minimizes the cost function for the system configuration with component parameter 

vector pi, where i ∈  {1, 2, …, N}. 

,

*
,min ( , , )

m i
i i s m iF F=

x
p x x  

Subject to: 

g (pi, xs, xm,i) ≤ 0, 

h (pi, xs, xm,i) = 0. 
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The outer stage optimization searches for the optimal values of xs that minimizes the 

square of the 2-norm of the cost function values computed from the inner stage, without 

constraints. 

* * * 2
1 2 2max ( ) || [ , , ..., ] ||

s
s NH F F F=

x
x  

The above general bilevel optimization formulation provides an approach to 

coordinating the design of the system controller gains and the component controller gains. 

Bilevel optimization problems are studied in Multidisciplinary Design Optimization [26, 

53]. It was shown that the bilevel optimization of the kind we consider here converges 

locally at a super-linear rate assuming that the problem minimizer satisfies the strong 

linear independence constraint qualification condition [54]. A major difficulty with the 

general bilevel optimization approach is that the numerical optimization algorithm breaks 

down when one of the sub-problems in the inner stage is infeasible at one of the master 

problem iterates. To overcome this difficulty, Braun [55] allows the global variables (the 

system controller gains in our case) to take different values with each of the sub-problems. 

Then, the global variables for all the problems in the inner stage are forced to converge to 

the same value by using penalty functions. In the sequel, the Augmented Lagrangian 

Decomposition method [28] is applied to reformulate and solve the bilevel optimization 

problem. 

Specifically, we introduce auxiliary variables xs,i, to serve as local copies of the shared 

system controller gains, xs, for the system configuration with component parameter 

vector, pi, where  i∈  {1, 2, …, N}. The design variables xs and xs,i are forced to be equal 

by the consistency constraint 1 1( 1): N m N mR R+ ⋅ ⋅c 6 , which is defined as ,1 ,2( , , ,s s sc x x x  

,..., )s Nx = 1 2[ , , ..., ]T T T T
Nc c c  = 0, with , ,( , )i s s i s s i= −c x x x x , where 1m

i R∈c  is the vector of 
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consistency constraints for the system configuration with the component parameter vector 

pi, and m1 is the dimension of xs. 

The consistency constraints are relaxed by an augmented Lagrangian penalty function 

1: N mR Rφ ⋅ 6 . 

 2
,2

1

( ) ( ( , ))
N

T
i i s s i

i

φ φ
=

= + =∑c v c w c c x xD  (2.7)

with the penalty function for each system configuration with component parameter vector 

pi, 1: m
i R Rφ 6 , defined by: 

 2

, , , 2
( ( , )) ( ) ( )T

i i s s i i s s i i s s iφ = − + −c x x v x x w x xD  (2.8)

where: 1
1 2[ , , ..., ] N mT T T T

N R ⋅= ∈v v v v  is the vector of Lagrange multiplier estimates for the 

consistency constraints, and 1
1 2[ , , ..., ] N mT T T T

N R ⋅= ∈w w w w  is the vector of penalty weights, 

with 1m
i R∈v , 1m

i R∈w . The symbol ◦ represents the Hadamard product: an entry-wise 

product of two vectors, such that a ◦ b = [a1, ..., an]T ◦ [b1, . . . , bn]T = [a1b1, . . . , anbn]T. 
 

The outer stage optimization minimizes the penalty function with respect to the system 

controller gains, xs: 

 
,1

( ) ( ( , ))N
i i s s ii

φ φ
=

=∑c c x x  (2.9)

The outer stage problem has no constraints, and it can be solved analytically: 

 
,

* 1 1

1

1( )
2arg min ( )

( )s

N N

i i s i i
i i

s N

i i
i

φ = =

=

−
= =

∑ ∑

∑
x

w w x v
x c

w w

D D

D
 

 

(2.10)

In the inner stage optimization for each system configuration with component 

parameter vector pi, where  i∈  {1, 2, …, N}, the objective function includes two terms, 
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the cost function F as defined in equation (2.2), and the penalty function as defined in 

equation (2.8).  

, ,
, , ,,

min ( , , ) ( ( , )
s i m i

i s i m i i i s s iF φ+
x x

p x x c x x  

Subject to: 

g (pi, xs,i, xm,i) ≤ 0, 

h (pi, xs,i, xm,i) = 0. 

The design variables for each inner stage optimization are the auxiliary variables, xs,i, 

and the component controller gains, xm,i. The relaxation error between xs,i and xs are 

driven to zero by the penalty function in the objective function.  

The flowchart for the solution algorithm is illustrated in Figure 2.4. At each iteration of 

the outer stage problem, a new estimate of xs is generated and each of the inner stage 

problems is solved using xs as a parameter; the penalty weights v and w are updated using 

the method of multipliers [56] to gradually drive the penalty function to zero for the 

consistency of xs and xs,i. This procedure is repeated until a feasible solution that satisfies 

the consistency constraints c < ε, for each inner stage optimization, is found, or until the 

maximum number of function evaluations is reached, where ε is the error tolerance. 

A good initial guess is important for the numerical solution of this bilevel optimization 

problem. For our problem, such an initial guess can be easily generated using the optimal 

values of the centralized controller gains. The solver “fmincon” in MATLAB can be used 

to solve the inner stage nonlinear constrained optimization problems. 

Once the distributed controller and the corresponding system performance over the 

distributed controller architecture for each system configuration with different component 

variant by the Direct Method are obtained, the CSM metric, MC, can be calculated based 
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on the system performance requirements. Only the components that satisfy the defined 

system performance requirements under the specified constraints are considered to have 

CSM. 

 

 

Figure 2.4: Flowchart of the solution algorithm for the bilevel optimization 

 

2.4.    Summary and Remarks 

In this Chapter, the definition of CSM in control systems was introduced; the control 

system design for CSM was considered and the CSM metric was defined quantitatively to 

measure the degree of CSM. A method based on sensitivity analysis of the control signals 

with respect to the component parameters has been introduced to guide controller 

distribution between the system level controller and the component level controller. The 
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Direct Method was introduced to generate the distributed controller gains with CSM by 

solving a bilevel optimization problem.  

The bilevel optimization formulation in the Direct Method ensures that the system 

level controller gains are independent of the component hardware parameters, while the 

component controller gains can be dependent on the component hardware parameters. In 

this way, the change in the component can be accommodated by only recalibrating the 

relatively simple component controller that is built into the component module, without 

the redesign or recalibration of the system level controller.  With this approach, we make 

the component a plug-and-play component, and each component variant meets the 

defined performance metric under specified constraints. 
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CHAPTER III 

THROTTLE ACTUATOR CSM FOR ENGINE ISC 

 

 

In this Chapter, a case study of distributed controller design to achieve throttle actuator 

component swapping modularity (CSM) from the perspective of engine Idle Speed 

Control (ISC) is presented.  

The primary objective of an engine ISC system is to regulate the engine speed to a set-

point despite torque disturbances, due to accessory loads (e.g., air conditioning, power 

steering, alternator, etc.) and due to engagement of the transmission. A typical ISC 

strategy includes a PID control for the air loop, a proportional feedback control for the 

spark loop, and several feed forward controls realizing compensations for accessory loads, 

engine temperature, ambient temperature and barometric pressure [57]. Approaches to 

ISC based on modern control theory have also been considered, including LQ based 

optimization [58], H∞ control [59], and l1 control [60]. Additional ISC improvements are 

made possible through the preview and feed forward control of known or measurable 

disturbances, such as, for example, air conditioning or power steering load. A design 

technique, which includes lead compensation, feed forward and a disturbance observer, is 

presented for ISC systems with minimal spark reserve levels in [61].   
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The focus of this study is to analyze the swapping modularity of the ISC design for the 

air path of the engine with respect to the throttle actuator time constant. Specifically, we 

seek to distribute a centralized ISC into a base controller and an actuator controller, 

where the actuator controller is built into the actuator component, such that the actuator 

change can be accommodated by only recalibrating the actuator controller, and the 

system performance meets the performance requirement under specified constraints. Both 

the 3-Step Method and the Direct Method are applied to this case study. In addition, we 

will demonstrate that bidirectional communication between the base controller and the 

actuator controller improves CSM compared to unidirectional communication.  

For the ISC case study in this Chapter, the controller structure is assumed in transfer 

function forms. The controller distribution is based on order assumptions of the 

distributed controllers. All the potential controller distribution cases are considered to 

compare the new Direct Method with the previous 3-Step Method.  

In what follows, first, the engine model and the throttle actuator model are given; the 

performance requirement for controller design and the distributed controller architecture 

are presented. Second, the 3-Sptep Method and the Direct Method are applied to design 

the distributed controller with actuator CSM. Finally, the two methods are compared, and 

conclusions are given.  

3.1. System Description 

   The throttle actuator is modeled as a first order system with a time constant τ. The 

nominal value for the time constant is τ0 = 0.05, which may refer to the original choice of 

the throttle actuator. The actuator is simplified to have unit DC gain. A nonzero DC gain 
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can be easily accommodated by the controller. The actuator transfer function from the 

reference throttle position (deg) to actual throttle position (deg) is as follows, 

 1
1aG

sτ
=

+
 (3.1)

   A Ford F-150 engine model [9] linearized around an idle speed operating point with 

the nominal throttle position, load torque and engine speed set, respectively, as uth,0 = 

3.15 (deg), ML = 31.15 (Nm) and N = 800 (rpm), is used to obtain the engine transfer 

function from the deviation in the throttle position (deg) to the deviation in engine speed 

(rpm) , 

 
2

572.2997
1.545 2.228

dt s
eG e

s s
−=

+ +
 (3.2)

The engine transfer function from the deviation in the disturbance torque (Nm) to the 

deviation in the engine speed (rpm) is given as, 

 
2

37.04 57.22
1.545 2.228t

sG
s s
− −

=
+ +

 (3.3)

The delay dt is between the intake stroke of the engine and torque production, and 

corresponds approximately to 360 degree of crankshaft revolution. Consequently, it is 

calculated as, 

 60 0.075 (sec)dt N
= ≈  (3.4)

A first order Padé approximation of the delay 0.075dt = is applied, 

 
2

2

1 1 0.03752
1 0.03751

2

d

d
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t ds
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t se se t sse

−

−
− −

= ≈ =
++

 

(3.5)
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With this approximation, a pole-zero pair is added to the delay-free transfer function, 

thereby permitting the resulting plant model to be treated with conventional control 

methods.  

The closed-loop system is illustrated in Figure 3.1. In the Figure, Gc is the centralized 

controller, r is the reference engine speed, u is the control signal to the throttle actuator, y 

is the actual engine speed, and d is the disturbance torque. 

 

eGaGcG

tG

 

Figure 3.1: Engine ISC closed loop system. 

 

The performance requirement for controller design is that the engine speed converges 

to the set-point within a specified time despite torque disturbances, under constraints on 

the magnitude of the control signal (in response to prescribed disturbance torque), and on 

the maximum excursion of engine speed from the set-point. To be specific, a step torque 

disturbance d(t) = 10 (Nm) is applied at time 0, while the set-point for the engine speed 

deviation is maintained at r(t) = 0 (rpm). Note that the engine model is linearized around 

the idle speed operating point. At r(t) = 0 (rpm), the actual engine speed is 800 rpm. The 

engine speed converges to the set-point with settling time ts ≤  ts,target = 1.5 (sec). The 

magnitude of the control signal ustep(t) corresponding to a 10 (Nm) step torque 
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disturbance, is limited to the range [umin, umax] = [-3, 13] (deg) around the linearization 

position of 3.15 (deg). The maximum excursion of engine speed, Mp, is constrained to ± 

10% of the speed set-point value (i.e., 800 rpm). 

Consider N (= 21) throttle actuators with parameter τ ∈  {τ1, τ2, …, τN} = {0.01, 

0.02, …, 0.21}⊂  [0.01, 0.21] for actuator CSM design.  

The centralized controller Gc as shown in Figure 3.1 is distributed into two parts, the 

base controller, CBC(xBC), with controller gains, xBC, and the actuator controller, 

CA(xA(τ)), with controller gains, xA, where only the actuator controller gains, xA, are 

dependent on the actuator hardware parameter, τ.  

Bidirectional communication is introduced between the base controller and the 

actuator controller. The signals on the communication network are illustrated in Figure 

3.2, where all the dynamics of the actuator and the plant are grouped into P(τ). The input 

to the base controller is the error signal, e; the control signal from the actuator controller 

is, u; and uca and yac denote the signals on the bidirectional communication network 

between the base controller and the actuator controller.   

 

 

Figure 3.2: Bidirectional communication between the base controller and the actuator 
controller. 
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With bidirectional communication, not only can the base controller, CBC(xBC), send 

signal uca to the actuator controller, but the actuator controller, CA(xA(τ)), can also send 

back signal yac to the base controller. The base controller and the actuator controller 

become MIMO controllers and are defined as,  

 [ ]11 12( )BC BC BC BCC C=C x  (3.6)

 
11

21

( ) A
A A

A

C
C
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

C x  (3.7)

    By analyzing Figure 3.2 and using the notation presented in equations (3.6)-(3.7), the 

equations representing individual signals are 

 
11 12ca BC ac BCu C y C e= +  (3.8)

 
11ac A cay C u=  (3.9)

 
21A cau C u=  (3.10)

Equations (3.8)-(3.10) can be rewritten in matrix form as 
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11 12

11

1
1 0

ca BC BC

ac A

u C C
e

y C

−−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦⎣ ⎦

(3.11)

 
[ ]21 0 ca

A
ac

u
u C

y
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (3.12)

    Therefore, the equivalent overall distributed controller with e as input, u as output is 

given by: 

[ ]
1

11 12 21 12
, 21

11 11 11

1
( , , ( )) 0

1 0 1
BC BC A BC

c dis BC A A
A BC A

C C C CG C
C C C

τ τ
−−⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎣ ⎦
x x (3.13)

In order to illustrate the advantage of bidirectional communication as shown in Figure 

3.2, conventional unidirectional communication is also considered. The distributed 
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controller architecture with unidirectional communication is given in Figure 3.3. There is 

a one directional connection between the base controller and the actuator controller. Both 

the base controller and the actuator controller are single input single output systems. 

 

 

Figure 3.3: Distributed Controller architecture with unidirectional communication. 
 

    The overall distributed controller with e as the input and u as the output is then given 

by:  

 
, ( , , ( )) ( ) ( ( ))c dis BC A BC BC A AG C Cτ τ τ=x x x x  (3.14)

where xBC, xA are controller gains of the distributed controllers CBC and CA respectively. 

Only xA can depend on the actuator parameter, τ. 

3.2. Design with the 3-Step Method 

The 3-Step Method was developed in [24]. As its name suggests, this method includes 

three steps, the centralized controller design, controller distribution, and swapping 

modularity optimization. The main idea is to obtain the distributed controllers such that 

they match exactly, or approximately, certain pre-computed centralized controllers.  

A. Centralized Controller Design 

In order to arbitrarily assign the closed-loop pole locations, the centralized controller 

Gc is assumed to be fourth order, which equals the order of the plant (including the 
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throttle actuator and the engine model with delay approximation). The controller transfer 

function in general pole zero form is assumed as, 

 1 2 3 4

1 2 3

( )( )( )( )
( )( )( )c

k s z s z s z s zG
s s p s p s p
+ + + +

=
+ + +

 (3.15)

The controller gains are represented using a vector xc = [k, z1, z2, z3, z4, p1, p2, p3]. The 

centralized controller Gc(τ, xc(τ)) for each system configuration with actuator parameter, τ 

∈{0.01, 0.02, …, 0.21} can be designed by an optimization formulation of the following 

form. 

c
cmin ( , ( ))st τ τ

x
x  

Subject to: 

g1:   , max 0p pM M− ≤  

g2:   max( ) 0stepu t u− ≤  

g3:  min ( ) 0stepu u t− ≤  

g4:   Real ( poles(Gc(τ, xc(τ)) ) ≤ 0 

g5:   Real ( zeros(Gc(τ, xc(τ)) ) + ε1 ≤ 0 

g6:   Real ( poles (Gcl (τ, xc(τ)) ) + ε2 ≤ 0 

where ts is the settling time of the engine speed; MP is the maximum excursion of engine 

speed; ustep(t) is the control input; Gcl (τ, xc(τ)) represents the closed loop system. The 

constraint g1 is imposed to limit the maximum excursion of engine speed; g2 and g3 are 

introduced to limit the magnitude of the control input corresponding to the 10 (Nm) 

disturbance torque; g4 enforces non-positive real parts of the controller poles. The 

controller may have a pole at the origin for integral control; g5 enforces minimum phase 
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zeros for the controller; g6 enforces negative real parts of the closed loop poles for system 

stability, where ε1, ε2 are vectors of small positive values for robustness. 

In numerical implementation, the solver “fmincon” in MATLAB® is used to solve the 

optimization problem. For each system configuration with actuator parameter, τ ∈  {0.01, 

0.02, …, 0.21}, and corresponding obtained optimal centralized controllers, the system 

responses are given in Figure 3.4. The 2% settling time for each configuration satisfies 

the design target, ts ≤  ts,target = 1.5 (sec). The maximum excursion of the engine speed is 

within ± 80 rpm (± 10% of 800 rpm). The control input signals, which are plotted in 

Figure 3.5, is within [-3, 13] (deg). Note that the throttle position is linearized around 

3.15 (deg), so the actual throttle position limit is [0.15, 16.15] (deg). 

 

 

Figure 3.4: Closed-loop disturbance rejection responses for each actuator application with 
corresponding optimal centralized controller. 
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Figure 3.5: Control signals for each actuator application with corresponding optimal 
centralized controller. 

 

To facilitate the existence of the swapping modularity solution, we employ a heuristic 

approach developed by [25]. This approach entails replacing an optimal centralized 

controller by an approximate optimal centralized controller using the following analysis:  

suppose that as τ varies away from nominal value of τ = τ0 = 0.05, certain poles or zeros 

are essentially unchanged (specifically, suppose they remain within 5% of the nominal 

pole or zero magnitude for all or a range of τ, where the nominal poles and zeros are 

those which correspond to τ = τ0).  We then maintain such poles and zeros at the nominal 

values in the approximate optimal centralized controller. 
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Figure 3.6: Poles and zeros of the optimal centralized controllers in the complex plane for 
each actuator application 

 

The poles and zeros of the centralized controller for τ ∈  {0.01, 0.02, …, 0.21} are 

plotted in Figure 3.6. We observe the pole p = 0 is essentially unchanged for τ ∈  {0.01, 

0.02, …, 0.21} the pole p = - 0.27 is essentially unchanged for τ ∈  {0.03, 0.04,…,0.18} 

and the zeros z1,2= - 2.07±2.3i are essentially unchanged for τ ∈  {0.03, 0.04,…,0.21}. 

The poles and zeros of the approximate centralized controller for τ ∈  {0.01, 0.02, …, 

0.21} are plotted in Figure 3.7.  
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Figure 3.7: Poles and zeros of the approximate optimal centralized controllers in the 
complex plane for each actuator application. 

 

The closed loop responses and the control input signals for the systems with different 

throttle actuator parameter τ ∈  {0.01, 0.02, …, 0.21}, and corresponding approximate 

optimal centralized controllers, are plotted in Figure 3.8 and 3.9. These responses are 

virtually indistinguishable from the closed-loop responses with the original optimal 

centralized controllers in Figure 3.4 and 3.5. Then we use the approximate optimal 

centralized controllers to obtain the distributed controllers in step 3 (i.e., optimization of 

CSM). 
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Figure 3.8: Closed-loop disturbance rejection responses for each actuator application with 
corresponding approximate optimal centralized controller. 

 

 

Figure 3.9: Control signals for each actuator application with corresponding approximate 
optimal centralized controller. 
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B. Order assumption of the distributed controller 

Table 3.1 summarizes all the cases considered to determine the effect of the controller 

distribution, where the notation BnAm refers to a distributed controller with an nth order 

base controller, and an mth order actuator controller. In order to assign the closed-loop 

pole locations arbitrarily, we have n+m = 4. Note that in case B4A0, most of the control 

algorithm resides in the base controller, while the actuator controller is just gains. A 

simple actuator controller is desirable as it entails low computing effort as well as low 

recalibration effort when the actuator changes. However, the simplicity of the actuator 

controller may make it more difficult to achieve the required system performance, 

because only the actuator controller is changeable when the actuator changes.  

 

Table 3.1: Case descriptions for controller distribution 

Cases B4A0 B3A1 B2A2 B1A3 B0A4 

Order of CBC (xBC) 4 3 2 1 0 

Order of CA (xA) 0 1 2 3 4 
 

C. Optimization of CSM 

The cost function is the CSM metric of the actuator, MC, as defined in equation (2.1). 

 

,1 ,2 ,, , , ...,

1max
1BC A A A N

C
MM
N
−⎧ ⎫=⎨ ⎬
−⎩ ⎭x x x x

(3.18)

 ( )CM cardinality P=  (3.19)

where PC = {τi | this optimization problem has a feasible solution for τi, i ∈  {1, 2, …, N}},   
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The design variables are the controller gains of the base controller xBC, and the 

controller gains of the actuator controller xA,i, for each actuator parameter τi, i ∈  {1, 2, …, 

N}. The constraints include: the equality constraints, as in equations h1, to match the 

optimal solution of the centralized controller (obtained in step 1) with the distributed 

controller, defined by equation (3.13) for bidirectional communication case, and defined 

by equation (3.14) for unidirectional communication case; stability and minimum phase 

requirements for the base controller and the actuator controller. The controllers may have 

a pole at the origin for integral control. 

h1: *
, ,( , ( )) ( , , )c i c i c dis i BC A iG Gτ τ τ− =x x x 0  

g7: Real( poles(CBC (xBC)) ) ≤ 0 

g8: Real( zeros(CBC (xBC)) ) + ε3 ≤ 0 

g9: Real( poles(CA (xA,i)) ) ≤ 0 

g10: Real( zeros(CA (xA,i)) ) + ε4 ≤ 0 

where *( , ( ))c i c iG τ τx is the optimal solution for the centralized controller for each 

actuator variant with τi, i ∈  {1, 2, …, N},  and ε3 and ε4 are vectors of small positive 

values.  

The actuator CSM metric obtained using the 3-Step Method for both the unidirectional 

communication case and the bidirectional communication case are given in Figure 3.10.  
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Figure 3.10: CSM metric values for the unidirectional communication case and the 
bidirectional communication case by the 3-Step Method. 

 

We observe that the swapping modularity improves, as the order of the actuator 

controller increases. When the actuator controller is first order or just gains, no swapping 

modularity can be achieved by the 3-Step Method for both the unidirectional 

communication case and the bidirectional communication case. In other words, it is 

impossible to achieve the target system performance (ts ≤  ts,target) by changing only the 

throttle actuator gains when the throttle actuator changes. The full range of swapping 

modularity (i.e., MC = 1) is achieved only when the actuator controller is fourth order for 

both communication cases. This is reasonable, since in this case the controller is moved 

entirely to the actuator. The bidirectional communication improves the actuator CSM 

metric compared to the unidirectional communication when the actuator controller is 

second or third order.  
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The design results by the 3-Step Method have demonstrated the advantage of the 

bidirectional communication over the unidirectional communication for CSM. However, 

no CSM could be achieved by the 3-Step Method when the smart actuator comprises a 

simple built-in controller, which is a first order transfer function or just gains. This could 

be a deficiency when component computing power and cost are limited. From both 

computation and calibration perspectives, simple controllers are generally more amenable 

to implementation in the smart component.  

3.3. Design with the Direct Method 

The controller distribution cases as in Table 3.1 are all considered by the Direct 

Method. For each controller distribution case, the distributed controller gains with 

actuator CSM are obtained by solving a general bilevel optimization problem in the 

following form. The notations are the same as for the 3-Step Method in the preceding 

Section. 

The ith inner stage optimization Pi minimizes the settling time for the system 

configuration with actuator parameter τi, with respect to the actuator controller gains xA,i, 

where i ∈  {1, 2, …, N}, and N = 21. The design constraints for each inner stage 

optimization include: limit on engine speed excursion, limit on the magnitude of the 

control input signal, stability of the closed loop system and, stability and minimum phase 

of the actuator controller and the base controller. The controllers may have a pole at the 

origin for integral control. ε3 and ε4 are vectors of small positive values.  

,

*
,min ( , , )

A i
i s BC A i ih t τ=

x
x x  

Subject to: 



 

46 
 

q1: ,max 0p pM M− ≤  

q2: max( ) 0stepu t u− ≤  

q3: min ( ) 0stepu u t− ≤  

q4: Real( poles(Gcl (xBC, xAi, τi)) )  + ε2 ≤  0   

q5: Real( poles(CA (xA,i)) ) ≤ 0     

q6: Real( zeros(CA (xA,i)) ) + ε4 ≤  0   

q7: Real ( poles(CBC (xBC)) ) ≤ 0     

q8: Real( zeros(CBC (xBC)) ) + ε3 ≤ 0 

The outer stage optimization minimizes the square of the 2-norm of the objective 

function values computed from the inner stage, with respect to the base controller gains 

xBC, with no constraints. 

* * * 2
1 2 2min ( ) || [ , , , ] ||

BC
BC NH h h h=

x
x "  

A flowchart of the solution algorithm for this general bilevel optimization problem is 

illustrated in Figure 3.11. At each iteration, a new estimate of xBC is generated and each 

of the inner stage problems is solved using xBC as a parameter. This procedure is repeated 

until a feasible solution that satisfies the goal attainment, ts ≤ ts,target, for each inner stage 

optimization is found. It is possible that there does not exist a feasible solution for some i 

∈  {1, 2, …, N}, i.e., the constraints cannot be satisfied for the component with parameter 

pi. In this case, the inner stage optimization stops when the maximum number of function 

evaluations is reached.  
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Figure 3.11: Flowchart for the bi-level optimization. 

 

The bi-level formulation ensures that the resulting base controller gains xBC are the 

same for each actuator variant, while the actuator controller gains xA can be different for 

each actuator variant.  

In numerical implementation, we use the solver “fmincon” and “fminsearch” in 

MATLAB® for the inner stage and the outer stage optimization problems, respectively. 

The solution and feasibility information of each inner stage optimization are recorded for 

CSM calculation. A good initial condition for the bilevel optimization can be obtained by 

distributing an optimal centralized controller for the nominal value of τ, τ0 = 0.05, using 

equations h1 in Section 3.2. 

    After solving the bilevel optimization problem, the CSM metric, MC, can be calculated 

from equation (2.1), where M is calculated using equation (3.20).  



 

48 
 

 ( )CM cardinality P=  (3.20)

where PC = {τi | this optimization problem has a feasible solution for τi, i ∈ {1, 2, …, N} 

and ts ≤ ts,target }. 

Here we start with the case B3A1 as described in Table 3.1.  

Figure 3.12 and 3.13 illustrate the closed-loop disturbance rejection responses and the 

control signals for the systems with different throttle actuators with parameter τ ∈  {0.01, 

0.02, …, 0.21} and corresponding B3A1 type distributed controllers obtained by the 

Direct Method.  

 

 

Figure 3.12: Closed-loop disturbance rejection responses for each actuator application 
with corresponding B3A1 type distributed controllers obtained by the Direct Method. 
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Figure 3.13: Control signals for each actuator application with corresponding B3A1 type 
distributed controllers obtained by the Direct Method. 

 

The settling time for each configuration satisfies the design target, ts ≤  ts,target  = 1.5 

(sec). In this case, when the throttle actuator changes, only the first order actuator 

controller needs to be recalibrated, but the third order base controller remains the same. 

So we can achieve the full range of CSM by only distributing a first order controller (m = 

1) into the actuator module. 

To see if we can further simplify the actuator controller, the case B4A0 is also 

considered, for the same design target, ts ≤  ts,target  = 1.5 (sec). Figure 3.14 and 3.15 

illustrate the closed-loop disturbance rejection responses and the control signals for the 

systems with different throttle actuators with parameter τ ∈  {0.01, 0.02, …, 0.13} and 

corresponding B4A0 type distributed controllers obtained by the Direct Method. The 

distributed controller gains, that satisfy the design target, exist only for τ ∈  {0.01, 
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0.02,…,0.13}. Comparing this result to the case B3A1, we see the tradeoff between the 

complexity of the actuator controller and the achievable CSM.  

In the case B4A0, by only changing the actuator controller which is just gains (m = 0), 

actuator CSM can be achieved for τ ∈  {0.01, 0.02,…,0.13} without redesign of the fourth 

order base controller. This saves a lot of recalibration effort when the actuator changes. A 

pure gain controller in the smart actuator is also very easy and cheap to implement.  

 

 

Figure 3.14: Closed-loop disturbance rejection responses for each actuator application 
with corresponding B4A0 type distributed controllers obtained by the Direct Method. 
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Figure 3.15: Control signals for each actuator application with corresponding B4A0 
type distributed controllers obtained by the Direct Method. 

 

Figure 3.16 compares the actuator CSM results using bidirectional communication 

network by the Direct Method and the 3-Step Method. The Direct Method provides equal 

or larger actuator swapping modularity compared to the 3-Step Method in all distribution 

cases considered. In the case B4A0, when the actuator controller is just gains, the Direct 

Method can provide partial range of CSM, MC = 0.6. In the case B3A1, when the actuator 

controller is first order, the Direct Method achieves the full range of CSM, MC = 1. In 

contrast, the 3-Step Method failed to achieve partial range CSM in either of these two 

cases.  And full range of CSM can be achieved only when the actuator controller is fourth 

order. Therefore, the Direct Method improves CSM compared to the previous 3-Step 

Method.  
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Figure 3.16: CSM metric values by the 3-Step Method and by the Direct Method. 

 

Considering the case B4A0 further, if one relaxes the settling time requirement to 

ts,target  = 4.1 (sec), feasible solutions for the distributed controller gains in a larger range, 

for τ ∈  {0.01,0.02,…,0.17} can be achieved. See Figure 3.17 and 3.18 for the closed-loop 

disturbance rejection responses and the control signals for the systems with different 

throttle actuators with parameter τ ∈  {0.01, 0.02, …, 0.17} and corresponding B4A0 type 

distributed controllers obtained by the Direct Method for the relaxed settling time target.  
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.  

Figure 3.17: Closed-loop disturbance rejection responses for each actuator application 
with corresponding B4A0 type distributed controllers obtained by the Direct Method for 

the relaxed settling time target. 
 

 

Figure 3.18: Control signals for each actuator application with corresponding B4A0 type 
distributed controllers obtained by the Direct Method for the relaxed settling time target. 
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By compromising some system performance, CSM can be improved. This shows 

another advantage of the Direct Method. The designer can make a tradeoff between the 

desired system performance and CSM when full range of swapping modularity is not 

achievable. As discussed above for case B4A0, if ts,target  = 1.5 (sec),  we obtain MC = 0.6, 

but if ts,target  = 4.1 (sec), we obtain MC = 0.8. Thus for different system performance 

design targets, ts,target, one obtains a different CSM metric, that corresponds to a different 

range of τ, which satisfies swapping modularity.  Let the inverse of the settling time 

represent the system performance. The tradeoff between the two competing design 

objectives, system performance (i.e., 1/ts,target) and CSM,  is illustrated  in Figure 3.19. 

Using such curves, designers can balance desired system performance and CSM 

according to specific application scenarios. 

 

 

Figure 3.19: Illustration of the tradeoff between desired system performance and CSM 
for case B4A0. 
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3.4. Comparison of the 3-Step Method and the Direct Method 

    The 3-Step Method sequentially addresses the two design objectives, system 

performance and CSM, in two steps (step 1 and step 3), while the Direct Method 

combines the design for CSM and system performance into one bi-level optimization, 

and addresses the two design objectives simultaneously. For multi-objective optimization 

problem, a simultaneous approach generally delivers a solution which is at least as good 

as, or better than, that of a sequential approach [62]. Therefore, the Direct Method is 

expected to deliver better, or at least the same, results compared to the 3-Step Method. 

The results of throttle actuator CSM in engine ISC indicate that the Direct Method can 

improve CSM significantly compared to the 3-Step Method, as shown in Figure 3.16.  

The 3-Step Method generates the distributed controllers by matching with certain pre-

computed centralized controllers. The current method based on model matching of 

transfer functions is limited to the case of linear controller design. In contrast, the Direct 

Method relies on solving a nonlinear optimization problem to obtain the distributed 

controller gains directly. The nonlinearities of the controlled plant or the controller can be 

easily incorporated into the optimization formulation. Thus, it is a more general approach, 

which is applicable to the design of both linear and nonlinear controllers.     

3.5. Summary 

In this Chapter we examined two approaches to the controller design for CSM in the 

context of throttle actuator swapping modularity for engine idle speed control. Both the 

3-Step Method and the Direct Method were implemented using nonlinear programming 

methods. The results demonstrate that: 1) bidirectional communication improves CSM 

compared to unidirectional communication by applying the 3-Step Method; 2) the Direct 
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Method provides improved CSM compared to the 3-Step Method. The 3-Step Method 

provides no swapping modularity for the case B3A1 or the case B4A0, and the actuator 

controller has to be fourth order to achieve the full range of swapping modularity. 

However, the Direct Method provides the full range of swapping modularity, MC = 1, for 

the case B3A1. While for the case B4A0, it provides partial range of swapping 

modularity, MC = 0.6; 3) unlike the 3-Step Method, the Direct Method permits one to 

simultaneously address and trade off the two design objectives, system performance and 

CSM. 

 

 

 

 

 

 

 

     

 

 

 

 

 



 

57 
 

CHAPTER IV 

FEEDBACK BASED SUPERVISORY CONTROLLER FOR PHEV 

 

 

Presently, supervisory controllers for PHEVs have centralized architectures, see [35]. 

A typical PHEV operates in a charge depleting (CD) or electric vehicle (EV) mode before 

the battery state of charge (SoC) decreases to a certain value, then it switches to a charge 

sustaining (CS) mode and operates like a conventional hybrid electric vehicle (HEV). 

The control strategies proposed for HEVs can be applied to the CS mode controller 

design for PHEVs. As reviewed in Chapter I, various control design methods for HEVs 

are available. For instance in [48],  feedback controllers based on model predictive 

control have been experimentally evaluated and showed improved fuel economy 

compared to two baseline strategies.  

In this dissertation, we propose a novel feedback-based controller for the CS mode to 

facilitate distributed controller design for battery CSM. The controller is designed with 

respect to the EPA US06 cycle, but the simulation results demonstrate that the feedback 

based controller also achieves good fuel economy, good driving performance and charge 

sustainability over other driving cycles (e.g., the EPA UDDS and HWFET cycles).  

In this Chapter, first, the control-oriented model of a PHEV used in this analysis is 

presented. The dynamics of the engine and the electric machines are much faster than that 
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of the battery. Thus, we use static models for the engine and the electric machines, while 

only the battery is modeled as a first order system with the battery SoC as the state. 

Second, the feedback-based centralized supervisory controller for the CS mode is 

introduced. The controller gains are obtained though optimization to achieve optimal fuel 

economy and optimal driving performance, while satisfying the constraints on closed 

loop system stability, battery charge sustainability and component reliability. Finally, the 

obtained controllers are evaluated over three standard driving cycles.  

4.1.    Vehicle Model 

The control-oriented vehicle model is presented in this Section. The model inputs are 

the wheel power command, Pw,cmd, and the reference battery SoC, socr. The system 

outputs are the actual wheel power delivered, Pw, engine fuel consumption, fuel, and 

actual battery SoC, soc. A diagram of a series PHEV is shown in Figure 4.1.  

 

 

SC – supervisory controller 
EGU – internal combustion engine and generator unit 
BAT – battery 
EM – electric machine 
z – feedback state vector 

Figure 4.1: Diagram of the PHEV. 
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The supervisory controller generates the engine/generator power command and the 

battery power command. The wheels are driven by the electric motor. The battery is 

being charged, when the battery power Pb is negative.  

We only consider the power flows in this system. Lower level controllers, which 

realize the power demand from the components, are not considered. We focus on a series 

HEV configuration due to its relevance to PHEVs and to a variety of other HEVs 

including fuel cell hybrids. 

The component sizes of the nominal vehicle configuration used in this paper are listed 

in Table 4.1. This PHEV is representative of current designs, such as the 2011 Chevrolet 

Volt.  In the sequel, the controller will be designed to enable CSM between four batteries 

with different energy capacity (and different all electric range capability) for the same 

vehicle, while delivering corresponding optimal fuel economy and driving performance.  

 

Table 4.1: Nominal vehicle configuration 

PHEV All Electric Range (AER) (mile) 30 

Engine Engine Power (kW) 50 

Generator Generator Power (kW) 50 

Battery Battery  Capacity (kWh) 12 

 Battery Maximum Power (kW) 110 

Motor Motor Power (kW) 110 

Vehicle Vehicle Weight (kg) 1680 
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4.1.1.   Engine 

The engine is modeled using a static fuel consumption map from ADVISOR [63] as 

given in Figure 4.2.  

 

 

Figure 4.2: Engine fuel consumption map (g/W/h). 

 

A combustion engine can achieve a required power (excluding the maximum power) 

with different combinations of torques and speeds. However, given a required power 

level, there is usually a unique pair of engine torque and speed which achieves minimum 

fuel consumption. The Optimal Operating Points Line (OOP-Line) can be defined as the 

curve on which the fuel consumption is minimized for each power level [47].  

Using the data points of the fuel consumption map in Figure 4.2, the OOP-Line can be 

constructed as plotted in Figure 4.3. The blue dots represent the data points from the 

engine fuel consumption map, and the green line is the OOP-Line consisting of the most 

efficient points corresponding to each requested power level.  In order for the engine to 
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operate along the OOP-Line, the engine should avoid large transients. This is based on 

the perspective that aggressive engine transients and engine operation away from the 

OOP Line may degrade fuel economy and emissions. The maximum rate of requested 

engine power output change can be constrained, e.g., to 3.5 kW/sec for a system 

considered in [47], or to 11 kW/sec for a system considered in [48]. If the rate of engine 

power output change is constrained, the engine can smoothly and efficiently operate 

along the OOP-Line responding to power commands. 

 

 

Figure 4.3: Fuel consumption v.s. engine power along engine OOP Line. 

 

4.1.2.   Battery  

The battery efficiency is assumed to be 0.9bη = . The battery is modeled as an 

integrator with parameter Bs [48]. 
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,s b cmdsoc B PΔ = −

i
 (4.1)

where rsoc soc socΔ = − .  The battery SoC is the only state of the powertrain system.  

    Here we consider four candidate batteries for CSM design. As a benchmark 

comparison, in the 2011 Chevrolet Volt, the energy capacity of the Lithium-ion battery is 

16 kWh, which can provide roughly 40 mile all electric range (AER) with a battery 

weight of 175 kg. Four batteries with similar characteristics are scaled to have the 

parameters in Table 4.2. 

    
 

Table 4.2: Battery parameters 

# Battery number 1 2 3 4 

AER (mile) All-electric range 60 45 30 15 

Eb (kWh) Battery energy capacity 24 18 12 6 

Bs (e-5) Battery parameter 1.29 1.71 2.57 5.14 

Wb (kg) Battery weight 263 197 131 66 

 

4.1.3.   Electric Machines 

The motor and generator are modeled using a constant mean efficiency 0.85m gη η= = . 

This assumption can be easily relaxed by incorporating efficiency maps. 

4.1.4.   Vehicle Dynamics 

The vehicle longitudinal dynamics includes the acceleration force, the rolling 

resistance force, and the aerodynamic force. 
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 2

2
d

z
A C vF ma fF ρ

= + +  (4.2)

where m is the vehicle mass, kg; a is the longitudinal acceleration, m/s2; f is the rolling 

resistance coefficient; Fz is the normal force on the vehicle, N; A is the vehicle cross 

sectional area, m2;    ρ is the air density, kg/m3;  Cd is the drag coefficient; and v is the 

longitudinal velocity, m/s.  

    The vehicle longitudinal dynamics is used to calculate the wheel power command for 

the vehicle to follow the driving cycles that are specified with vehicle speed. 

4.2.    Feedback Based Supervisory Controller  

Assume that the PHEV operates in two main modes, the charge depleting (CD) mode 

when battery SoC is larger than a certain reference value, socr, and the charge sustaining 

(CS) mode once the battery SoC reaches socr. Regenerative braking is activated when the 

wheel power command is negative. If the battery SoC goes outside the specified range 

[socmin, socmax], the priority of the control strategy is to drive the battery SoC back to the 

interval. 

In the CD mode, the battery provides the propulsion energy. The engine is used to 

satisfy the transient load demand beyond the power capacity of the battery. In the CS 

mode, the control strategy is to optimize fuel economy and driving performance, while 

sustaining battery charge.  

The CD mode and regenerative braking control are straight-forward, hence, we focus 

on designing the controller for the CS mode. First, a feedback-based control structure is 

proposed. Then the controller gains are obtained through optimization. In the 

optimization, the wheel power command is assumed to be non-negative and regenerative 
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braking is excluded. Finally, the obtained controller is tested in realistic simulations over 

three standard driving cycles, with negative wheel power command and regenerative 

braking included, to evaluate fuel economy, driving performance and battery charge 

sustainability. 

4.2.1.   Controller Structure 

Two integrators are introduced to regulate battery SoC and to eliminate wheel power 

tracking error in steady-state. Recall that the powertrain system is modeled as first order 

with the battery SoC as the single state. The three states of the closed loop system are as 

follows, 

 1 rz soc soc soc= Δ = −  (4.3)

 
2 ( ) ( )rz soc dt soc soc dt= Δ = −∫ ∫  (4.4)

 
3 ,( )w cmd wz P P dt= −∫  (4.5)

where, state z1 represents the deviation of battery SoC, soc, from the reference value, socr; 

state z2 represents the integral error of battery SoC; and state z3 represents the integral 

error between power command, Pw,cmd, and actual power delivered, Pw. The actual power 

equals the engine power Pe and the battery power Pb. 

The control algorithm includes state feedback control, feed-forward control and the 

terms representing information exchange between the engine power command Pe,cmd and 

the battery power command Pb,cmd. 

 , 1 , ,e cmd w cmd e b cmdP n P k P= + +1K z  (4.6)

 , 2 2 , ,b cmd w cmd b e cmdP n P k P= + +K z  (4.7)
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where z = [z1 z2 z3]T  is the state vector; K1 = [k1 k2 k3] and K2 = [k4 k5 k6] are state 

feedback gain vectors; n1 and n2 are feed-forward gains; ke and kb are controller gains that 

represent the information exchange. 

The regulation of battery SoC should be slow to allow the battery to augment the 

engine in transients, while the wheel power tracking should be fast and accurate for good 

driving performance and safety. In order to achieve different convergence rates for 

different states, we employ eigen-structure assignment [64] to decouple the state z3 from 

the other two states, z1 and z2, which are related to battery SoC. Assume the desired 

closed loop poles are p1, p2 and p3, we obtain equations (4.8a) - (4.8f) relating the 

controller gains and the desired poles: 

 1 2
1

( ) b

s g

p pk
B

η
η

+
= −  (4.8a)

 1 2
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s g
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=  (4.8b)
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η η

= −  (4.8c)
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= −  (4.8d)

 2
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b

k
k

η
η

= −  (4.8e)

 6 0k =  (4.8f)

    The six feedback gains are uniquely determined by the closed loop poles for a 

specific vehicle configuration with battery parameter Bs. Note that k6 equals 0, k4 and k5 
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are determined by k1 and k2 respectively. Therefore, we have three independent feedback 

gains, k1, k2 and k3 to optimize. 

4.2.2.   Optimization of the Controller Gains  

    The aggressive driving cycle of EPA US06 (see Figure 4.4) is chosen to generate the 

controller gains through optimization.  

 

 

Figure 4.4: EPA US06 driving cycle. 

 

The wheel power command for the vehicle to follow the US06 cycle is saturated to 

non-negative values and used for the controller gain optimization. The non-negative 

wheel power command for the vehicle with battery 3 (Bs = 2.57e-5) to follow the US06 

cycle is plotted in Figure 4.5. The wheel power command for vehicles with the other 
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considered batteries to follow US06 cycle are similar to this figure, but a larger battery 

requires larger wheel power command due to larger battery weight.  

 

 

Figure 4.5: The saturated non-negative wheel power command for the vehicle with 
battery 3 (Bs = 2.57e-5) to follow the US06 cycle. 

 

In order to check the battery charge sustainability, we set the initial battery SoC as the 

reference SoC, socr. The lowest value of socr is desirable since we would like to use the 

battery in the CD mode as much as possible. On the other side, socr should be large 

enough to satisfy the required battery energy availability for the CS mode. Thus, socr can 

be determined based on the energy needed for the CS mode. Since SoC varies between 0 

and 1, a smaller battery needs to have a larger socr to satisfy the required battery energy 

availability for the CS mode. After determining the reference battery SoC and the amount 

of battery energy needed in the CS mode driving for the nominal vehicle configuration 
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(parameters illustrated in Table 4.1), the reference battery SoC for the other battery 

applications with different energy capacity can be scaled according to the nominal case. 

The reference battery SoC, socr, is chosen as {0.25, 0.27, 0.30, 0.40}, respectively, for 

the battery variant with parameter, Bs = {1.29e-5, 1.71 e-5, 2.57 e-5, 5.14 e-5}.    

In the optimization for the controller gains, the cost function J includes three terms: 

engine fuel consumption, equivalent fuel consumption from the battery at the end of the 

driving cycle, and accumulated vehicle power tracking error. 

 
,0 0

( ) ( ) ( ) ( )f fT T

ice eqf r f w cmd wJ m t dt K soc soc P t P t dtα= + − + −∫ ∫�  (4.9)

where: ( )icem t� represents the engine fuel consumption; socf  is the battery SoC at the end 

of the driving cycle;  Keqf is the equivalent fuel consumption factor from external charge 

[65]; and α is the penalty weight to drive the power tracking error to zero.  

The controller gains are: k1, k2, k3, k4, k5, k6 , n1, n2, ke and kb. The feedback gains k4, k5 

and k6 are calculated from k1, k2 and k3 using equations (4.8a) – (4.8f) from eigen-

structure assignment. Thus, the design variables for the optimization are k1, k2, k3, n1, n2, 

ke and kb. 

The optimization constraints include: (1) stability of the closed loop system with the 

linear controller for the CS mode, which is enforced by the closed loop pole locations; (2) 

upper and lower power limits of the engine; (3) limit on engine power rate of change to 

smooth engine power during continuous engine operation; (4) upper and lower power 

limits of the battery; (5) upper and lower limits on battery SoC, soc(t); (6) upper and 

lower bounds on battery SoC at the end of the driving cycle to enforce charge 

sustainability.  
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The controller gains for each battery application are optimized using the solver 

“fmincon” in MATLAB®, with the penalty weight α = 100, and the equivalent fuel 

consumption factor, Keqf, as {747.96, 564.25, 375.44, 187.72} respectively, for each battery 

variant with parameter, Bs = {1.29e-5, 1.71 e-5, 2.57 e-5, 5.14 e-5}.  

The vehicle performance for each battery application with corresponding optimal 

centralized controller is listed in Table 4.3. The fuel economy considering both fuel 

consumption from the engine and equivalent fuel consumption from the battery at the end 

of the driving cycle are evaluated in miles per gallon (MPG). The driving performance is 

evaluated using the maximum power tracking error, errP,max, in kW. The battery charge 

sustaining performance is evaluated by the deviation of the final SoC from the reference 

SoC:  

 
, 100%f r

dev p
r

soc soc
soc

soc
−

= ⋅  (4.10)

From Table 4.3, the wheel power tracking error is very small, which ensures good 

driving performance. The deviation of battery SoC at the end of driving cycle is within 

±2% as in the optimization constraints. We impose strict constraints on SoC deviation at 

the end of driving cycle, because we do not consider regenerative braking during the 

optimization. The SoC deviation at the end of driving cycle may be larger when 

regenerative braking is included. Actually regenerative braking can be considered as a 

disturbance to the feedback controlled system. Assume that the charge sustainability is 

satisfied if the SoC deviation at the end of driving cycle, ,dev psoc , is within ±10% when 

regenerative braking is considered.  
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Good fuel economy is also achieved for each battery application. Note that the fuel 

economy, MPG, is calculated considering both fuel consumption from the engine and 

equivalent fuel consumption from the battery at the end of the driving cycle.  

In the simulation with initial battery SoC, soc = socr, a smaller battery with larger 

value of Bs provides higher fuel economy compared to that of a larger battery. This is due 

to the battery weight penalty as given in Table 4.2. Note that the four considered batteries 

are all large enough to meet the power demand, because the reference SoC is determined 

by the required battery energy availability. On the other hand, a larger battery with higher 

energy capacity can provide higher fuel economy through extended all electric range. 

Therefore, a larger battery will still provide larger overall fuel economy considering both 

all electric range and charge sustaining range [34]. 

 

Table 4.3: Vehicle performance for each battery application with corresponding optimal 
centralized controller to follow the saturated non-negative power command from  the 

US06 cycle 

Bs (e-5) MPG errp,max socdev,p 

1.29 27.58 2.16e-7 -2% 

1.71 28.17 8.10e-8 -2% 

2.57 28.78 4.65e-8 -2% 

5.14 29.40 3.61e-6 -2% 
 

The SoC trajectories for each vehicle configuration, with the four batteries considered 

in Table 4.2 and corresponding optimal controllers, to follow the saturated non-negative 
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power command from the US06 cycle, are plotted in Figure 4.6. The initial battery SoC 

in the simulation is the reference SoC respectively for each battery application. We see 

that the obtained controller from the optimization problem tends to use the battery power 

as much as possible while satisfying the charge sustainability constraints. 

 

Figure 4.6: Battery SoC profiles for each battery application with corresponding 
optimal centralized controller to follow the saturated non-negative power command from 

the US06 cycle. 
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An example power split between the engine and the battery for the vehicle with battery 

3 (Bs = 2.57e-5) to follow the saturated non-negative power command from the US06 

cycle is given in Figure 4.7. We see the engine provides the slowly changing power, 

which is roughly the moving average of the wheel power command, while the battery 

assists in handling the transients.  

 

Figure 4.7: An example power split between the engine and the battery for the vehicle 
with battery 3 (Bs = 2.57e-5) and corresponding optimal centralized controller to follow 

the saturated non-negative power command from the US06 cycle. 
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4.2.3.   Controller Evaluation  

The obtained controller is tested over three standard driving cycles to evaluate fuel 

economy, driving performance in terms of wheel power tracking error and battery charge 

sustainability. Now the original wheel power command is applied. Regenerative braking 

is activated when wheel power command is negative, and the engine is shut off without 

delivering power. 

Although the controller gains are optimized over the EPA US06 driving cycle, the 

EPA UDDS driving cycle as given in Figure 4.8 and the EPA HWFET driving cycle as 

given in Figure 4.9 is also used to evaluate the proposed controller.  

 

 

Figure 4.8: EPA UDDS driving cycle. 
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Figure 4.9: EPA HWFET driving cycle. 

 

The vehicle performance for each battery variant with corresponding optimal 

centralized controller obtained in Section 4.2.2 to follow the three standard driving cycles 

are listed in Tables 4.4 – 4.7. The fuel economy in MPG considering both fuel 

consumption from the engine and equivalent fuel consumption from the battery at the end 

of the driving cycle, the driving performance evaluated by the maximum power tracking 

error, errP,max, in kW, and the battery charge sustaining performance evaluated by  the 

deviation of the final SoC from the reference SoC, socdev,p, are defined the same as in 

Table 4.3.  
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Table 4.4: Performance results for the vehicle with battery 1 (Bs = 1.29e-5) and 
corresponding optimal centralized controller 

Driving Cycle MPG errP,max socdev,p 

EPA US06 34.93 1.45e-6 -3.99% 

EPA HWFET 53.78 3.24e-7 -0.87% 

EPA UDDS 55.88 4.43e-7 -1.52% 
 

Table 4.5: Performance results for the vehicle with battery 2 (Bs = 1.71e-5) and 
corresponding optimal centralized controller 

Driving Cycle MPG errP,max socdev,p 

EPA US06 34.92 1.04e-6 -3.29% 

EPA HWFET 54.24 2.31e-7 -0.52% 

EPA UDDS 56.47 3.20e-7 -1.25% 

 

Table 4.6: Performance results for the vehicle with battery 3 (Bs = 2.57e-5) and 
corresponding optimal centralized controller 

Driving Cycle MPG errP,max socdev,p 

EPA US06 36.05 2.97e-8 -5.33% 

EPA HWFET 55.19 4.67e-9 -0.79% 

EPA UDDS 57.88 7.56e-9 -1.30% 
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Table 4.7: Performance results for the vehicle with battery 4 (Bs = 5.14e-5) and 
corresponding optimal centralized controller 

Driving Cycle MPG errP,max socdev,p 

EPA US06 36.73 2.15e-6 -7.41% 

EPA HWFET 55.92 4.98e-7 -0.76% 

EPA UDDS 59.12 7.28e-7 -1.57% 
 

From Tables 4.4 – 4.7, the proposed controller provides good fuel economy for each 

battery application over different driving cycles. The wheel power tracking error, errP,max, 

is less than 2.15e-6 kW for all simulation scenarios, which ensures good driving 

performance. The maximum deviation of battery SoC at the end of the driving cycles, 

socdev,p, is -7.41% for all simulation scenarios. For the mild EPA UDDS and HWFET 

cycles, the maximum socdev,p for all battery applications is -1.52%. 

For the US06 driving cycle, an example power split between the engine and the battery 

for the vehicle with battery 3 (Bs = 2.57e-5) and corresponding optimal centralized 

controller obtained in Section 4.2.2 to follow the US06 cycle is given in Figure 4.10. 

When the wheel power command is positive, the engine provides the slowly changing 

power, while the battery provides the transient power command. When the wheel power 

command is negative, the engine is shut off without delivering power, and the battery is 

charged by regenerative braking. 



 

77 
 

 

Figure 4.10: An example power split between the engine and the battery for the vehicle 
with battery 3 (Bs = 2.57e-5) and corresponding optimal controller over the US06 cycle. 

 
 

The SoC trajectories for each vehicle configuration with the four batteries and 

corresponding optimal centralized controllers obtained in Section 4.2.2 to follow the 

US06 cycle, are plotted in Figure 4.11. The initial battery SoC in the simulation is the 

reference SoC respectively for each battery application.  
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Figure 4.11: Battery SoC profiles for each vehicle configuration with different 

batteries and corresponding optimal controllers over the US06 cycle. 
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An example power split between the engine and the battery for the vehicle with battery 

3 (Bs = 2.57e-5) and corresponding optimal centralized controller obtained in section 

4.2.2 to follow the UDDS cycle is shown in Figure 4.12.  

 
Figure 4.12: An example power split between the engine and the battery for the vehicle 

with battery 3 (Bs = 2.57e-5) and corresponding optimal controller over the UDDS cycle. 
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The SoC trajectories for each vehicle configuration with the four batteries and 

corresponding optimal controllers obtained in Section 4.2.2 to follow the UDDS cycle are 

plotted in Figure 4.13. 

 

Figure 4.13: Battery SoC profiles for each vehicle configuration with different 
batteries and corresponding optimal controller over the UDDS cycle. 
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An example power split between the engine and the battery for the vehicle with battery 

3 (Bs = 2.57e-5) and corresponding optimal centralized controller obtained in Section 

4.2.2 to follow the HWFET cycle is shown in Figure 4.14. 

 
Figure 4.14: An example power split between the engine and the battery for the vehicle 

with battery 3 (Bs = 2.57e-5) and corresponding optimal controller over the HWFET 
cycle. 
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The SoC trajectories for each vehicle configuration with the four batteries and 

corresponding optimal controllers obtained in Section 4.2.2 to follow the HWFET cycle 

are plotted in Figure 4.15.   

 
Figure 4.15: Battery SoC profiles for each vehicle configuration with different 

batteries and corresponding optimal controller over the HWFET cycle. 
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4.3.    Summary 

In this Chapter, we presented a control-oriented model for a PHEV. The component 

sizes of the nominal vehicle configuration are typical of current designs such as the 2011 

Chevrolet Volt.  Four candidate batteries with different energy capacities (and different 

all electric range capabilities) for the same vehicle are chosen for CSM design. The 

battery parameters are scaled based on the parameters of the battery in the 2011 

Chevrolet Volt. Then a novel feedback-based controller for the CS mode to facilitate 

distributed controller design for battery CSM is introduced. The controller gains are 

obtained though optimization to achieve optimal fuel economy and driving performance, 

while satisfying the constraints on closed loop system stability, battery charge 

sustainability and component reliability. Although the controller is designed with respect 

to the EPA US06 cycle, the simulation results demonstrate that the feedback based 

controller also achieves good fuel economy over other driving cycles (e.g., the EPA 

UDDS and HWFET cycles). In the meantime, the maximum wheel power tracking error 

is less than 2.15e-6 kW for all simulation scenarios, which ensures good driving 

performance. The maximum deviation of the battery SoC at the end of the driving cycles 

is -7.41% of the reference SoC for all simulation scenarios, which ensures charge 

sustainability. 

Here we use a practical approach to solve for the controller gains that reduces 

computation time. The wheel power command is saturated to non-negative values and 

used for the controller gain optimization, thus, regenerative braking is excluded. The 

obtained controller is then evaluated over the driving cycles with regenerative braking 

included. The results show that this approach delivers good fuel economy, good driving 
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performance in terms of power tracking error, and battery charge sustainability (the final 

SoC is within ±7.14% of the reference value).  
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CHAPTER V 

BATTERY CSM FOR PHEV 

 

 

As discussed in Chapter I, extended all electric range of PHEVs further reduces fuel 

consumption and provides higher fuel economy. A big hurdle for PHEV 

commercialization is the cost and reliability of batteries. Thus, it is beneficial to 

investigate a decoupled design of the vehicle and the battery component. The battery 

component becomes a swappable module if the battery change can be accommodated by 

only recalibrating the controller built inside the battery module so that the vehicle 

performance meets the performance that is achievable by redesigning the entire 

centralized controller.  

Some potential benefits from battery CSM in PHEVs are as follows: 

1) Consumer oriented vehicles can be developed. For the same size vehicle, the 

consumers can choose the battery size for their vehicle according to their daily 

driving patterns and budget. 

2) As the battery technology advances, the vehicle can be easily upgraded by simply 

plugging in a new battery with higher energy capacity to extend the all electric 

range for higher efficiencies. 

3) Having a range of battery alternatives for use will increase the flexibility to choose 

battery components from different suppliers for lower cost. 
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4) From a manufacturing point of view, a modularized battery component lowers the 

coupling risk of the vehicle system, and enables parallel design to decrease the 

lead-time. 

5) From the battery supplier point of view, the battery component can be easily 

customized by deploying different battery controllers for different vehicle 

companies. 

In this Chapter, first, using the centralized controller obtained in Chapter IV, a 

controller distribution architecture is proposed based on the sensitivity analysis of the 

control signals with respect to the battery hardware parameter. Second, the distributed 

controller, which achieves battery CSM and optimizes fuel economy, is obtained by 

solving a bi-level optimization problem. The Augmented Lagrangian Decomposition 

method is employed to solve the bi-level optimization problem. As was the case for the 

centralized controller design in Chapter IV, a non-negative wheel power command is 

applied in the optimization and regenerative braking is excluded. Third, the obtained 

distributed controllers are evaluated in terms of fuel economy, driving performance and 

charge sustainability over the US06 cycle with regenerative braking included. Finally, the 

design results of the centralized controller and that of the distributed controller which 

provides battery CSM are compared.  

5.1.    Controller Distribution Architecture 

A distributed controller architecture for the PHEV is introduced in Figure 5.1. 

Compared to the vehicle diagram with a centralized supervisory controller in Figure 4.1, 

the centralized supervisory controller is distributed into two parts: the vehicle system 

controller (VSC), which is fixed with the vehicle, and the battery system controller (BSC), 
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which resides in the battery module and thus is swappable along with the battery. Such an 

implementation assumes that the battery is a smart component, which has an embedded 

microcontroller to perform control functions and to communicate with the VSC over a 

network, see the dashed line in Figure 5.1. Other physical implementations are also 

possible, e.g., the VSC and the BCU can be physically implemented in the same 

microprocessor and the BCU software and calibration can be “reflashed’’ when the 

battery changes.   

 

 

Figure 5.1: Diagram of the vehicle components with distributed supervisory controller. 

 

    The controller distribution between the VSC and the BSC addresses the tradeoff 

between performance (generally highest when the controller is entirely within the BSC) 

and simplicity of the BSC implementation (desirable in terms of computing and 

calibration effort). Here we relate the controller simplicity to controller order and the 

number of gains.  

We determine the effective controller distribution between the VSC and the BSC using 

the sensitivity analysis of the control signals with respect to the battery parameter. To 
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facilitate the sensitivity analysis, the optimal values of the controller gains obtained in 

Chapter IV are fitted using fourth order polynomials, see Figure 5.2. 

 

 

Figure 5.2: The fourth order polynomial fit of the centralized controller gains. 

 

Let xi ∈  {k1, k2, k3, n1, n2, ke, kb}, i = 1:7, denote the controller gains, thus we get 

 2 3 4
0, 1, 2, 3, 4,( )i s i i s i s i s i sx B c c B c B c B c B≈ + + + +  (5.1)

Recall that the control signals, ,e cmdP  and ,b cmdP , are functions of the controller gains, 

the states and the wheel power command as in equations (4.6) and (4.7). The normalized 

gain sensitivity with respect to the battery parameter as defined in equation (2.5) is, 

 * *
, ,

* *7
, ,

1

( )

e cmd b cmdi i

i s i s
n i

e cmd b cmdi i

i i s i s

P Px x
x B x B

S x
P Px x

x B x B=

∂ ∂∂ ∂
+

∂ ∂ ∂ ∂
=

∂ ∂∂ ∂
+
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Figure 5.3 shows the normalized sensitivity calculated using the mean value over the 

operating range of z and Pw,cmd, and middle-of-the-range value of Bs. We see that k1 is the 

most sensitive gain, k2 is the second most sensitive gain, while the other gains are less 

sensitive in comparison.  

 

 

Figure 5.3: Sensitivity of controller gains with respect to the battery parameter. 

 

Based on this sensitivity analysis, two distribution cases are considered. In Case 1, k1 

and k2, along with the related calculations, are distributed into the BSC. In Case 2, k1 

along with the related calculations, are distributed into the BSC. Note that k4 and k5 are 

dependent on k1 and k2, respectively, from eigen-structure assignment, therefore, k4 and k5 

follow the distribution pattern of k1 and k2, respectively. 

To be specific, in Case 1, the linear controller for the CS mode in the VSC is: 
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3 ,( )w cmd wz P P dt= −∫  (4.5)

 , 3 3 1 , ,e cmd w cmd e b cmd beP k z n P k P P= + + +  (5.3)

 6 3 2 , ,eb w cmd b e cmdP k z n P k P= + +  (5.4)

The corresponding linear controller in the BSC in Case 1 is 

 1 rz soc soc soc= Δ = −  (4.3)

 
2 ( ) ( )rz soc dt soc soc dt= Δ = −∫ ∫  (4.4)

 , 4 1 5 2b cmd ebP k z k z P= + +  (5.5)

 1 1 2 2beP k z k z= +  (5.6)

In Case 2, the linear controller for the CS mode in the VSC is: 

 
2 ( ) ( )rz soc dt soc soc dt= Δ = −∫ ∫  (4.4)

 
3 ,( )w cmd wz P P dt= −∫  (4.5)

 , 2 2 3 3 1 , ,e cmd w cmd e b cmd beP k z k z n P k P P= + + + +  (5.7)

 5 2 6 3 2 , ,eb w cmd b e cmdP k z k z n P k P= + + +  (5.8)

The corresponding linear controller in the BSC in Case 2 is 

 1 rz soc soc soc= Δ = −  (4.3)

 , 4 1b cmd ebP k z P= +  (5.9)

 1 1beP k z=  (5.10)

   The signal paths on the network between the VSC and the BSC are detailed in Figure 

5.4. The CD mode control and regenerative braking (RB) control reside in the VSC. The 

controller for the CS mode is distributed between the VSC and the BSC as described 

above in Case 1 and Case 2. 
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Figure 5.4: The signal paths on the network between the VSC and the BSC. 

 

5.2.    Optimization of the Distributed Controller Gains 

The sensitivity analysis in the preceding subsection has been used to guide the 

distributed controller architecture decisions. In this section we demonstrate how the 

distributed controller gains can be obtained by solving a bi-level optimization problem 

using the Augmented Lagrangian Decomposition method [28], as discussed in Chapter II. 

 Specifically, consider N (= 4) batteries as given in Table 4.2. Denote the controller 

gains in the VSC as xs, and the controller gains in the BSC as xm,i, for each vehicle 

configuration with battery parameter Bs,i, i ∈ {1, …, N}. Introduce auxiliary variables xs,i, 

to serve as local copies of the shared controller gains xs for the vehicle configuration with 

battery parameter Bs,i. The design variables xs and xs,i are forced to be equal by the 

consistency constraint 1 1( 1): N m N mR R+ ⋅ ⋅c 6 , which is defined as ,1 ,2 ,( , , , ..., )s s s s Nc x x x x = 



 

92 
 

1 2[ , , ..., ]T T T T
Nc c c  = 0, with , ,( , )i s s i s s i= −c x x x x , where 1m

i R∈c  is the vector of consistency 

constraints for the system configuration with battery parameter Bs,i. 

The consistency constraints are relaxed by an augmented Lagrangian penalty function 

1: NmR Rφ 6 . 

 2
,2

1

( ) ( ( , ))
N

T
i i s s i

i

φ φ
=

= + =∑c v c w c c x xD  (5.11)

with the penalty function for each system configuration with component parameter Bs,i, 

1: m
i R Rφ 6 defined by: 

 2

, , , 2
( ( , )) ( ) ( )T

i i s s i i s s i i s s iφ = − + −c x x v x x w x xD  (5.12)

where: 1
1 2[ , , ..., ] N mT T T T

N R ⋅= ∈v v v v  is the vector of Lagrange multiplier estimates for the 

consistency constraints, and 1
1 2[ , , ..., ] N mT T T T

N R ⋅= ∈w w w w is the vector of penalty weights, 

with 1m
i R∈v , 1m

i R∈w . The symbol ◦ represents the Hadamard product. 
 

The outer stage optimization minimizes the penalty function with respect to the 

controller gains in the VSC, xs: 

 
,1

( ) ( ( , ))N
i i s s ii

φ φ
=

=∑c c x x  (5.13)

The outer stage problem has no constraints. It can be solved analytically: 
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(5.14)

In the inner stage optimization for each vehicle configuration with battery parameter 

Bs,i, the objective function includes two terms, the cost function J, which is defined in 

equation (4.9), and the penalty function as defined in equation (5.12).  
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The design variables of each inner stage optimization are the auxiliary variables, xs,i, 

and the controller gains in the BSC, xm,i. The relaxation error between xs,i and xs are 

driven to zero by the penalty function in the objective function. The constraints for each 

battery application are the same as described in Chapter IV Section 4.2.2 for centralized 

controller design. The inner stage problems can be solved using nonlinear programming 

methods.  

At each iteration of the outer stage problem, a new estimate of xs is generated and each 

of the inner stage problems is solved using xs as a parameter; the penalty weights v and w 

are updated using the method of multipliers [56] to gradually drive the penalty function to 

zero for the consistency of xs and xs,i. This procedure is repeated until a feasible solution 

that satisfies the consistency constraints c < ε, for each inner stage optimization is found, 

or until the maximum number of function evaluations is reached, where ε is the error 

tolerance. 

A good initial guess is very important for this bi-level optimization problem, and the 

design results from the centralized controller can be employed. The solver “fmincon” in 

MATLAB is used to solve the inner stage optimization problems, while the outer stage 

problem is solved analytically by equation (5.14). 

The distributed controller gains for the CS mode are obtained by the above bi-level 

optimization over the US06 driving cycle. 

    For Case 1, the resulting controller gains for the VSC are:  

3 1.8164k = , 1 0.0062n = , 0.0574ek = , 2 1.2305n = , 0.0512bk = . 



 

94 
 

The controller gains for the BSC in Case 1 for each battery application are listed in Table 

5.1. The controller gains k4, k5 and k6 can be calculated from k1, k2 and k3 using equations 

(4.8a) – (4.8f) from eigen-structure assignment.  

The vehicle performance metric for each battery application with corresponding 

distributed controller in Case 1 to follow the saturated non-negative power command 

from the US06 cycle is also listed in Table 5.1. The fuel economy in MPG considering 

both fuel consumption from the engine and equivalent fuel consumption from the battery 

at the end of the driving cycle, the driving performance evaluated by the maximum power 

tracking error, errP,max, in kW, and the battery charge sustaining performance evaluated 

by  the deviation of the final SoC from the reference SoC, socdev,p, are defined the same as 

in Table 4.3 in Chapter IV. We see the fuel economy of the distributed control in Case 1 

is almost the same as that of the centralized control case given in Table 4.3. The 

maximum power tracking error in all simulation scenarios is less than 6.18e-4 kW. The 

battery charge sustainability evaluated by the deviation of the final SoC from the 

reference SoC is within ± 2% as in the constraints. 

 

Table 5.1: Performance results for each battery application with corresponding 
distributed controller in Case 1 to follow the saturated non-negative power command 

from the US06 cycle 

Bs (e-5) k1 k2 MPG errp,max socdev,p 

1.29 917.42 1.59 27.58 6.18e-4 -2% 

1.71 1000 1.34 28.16 6.02e-4 -2% 

2.57 466.87 0.93 28.78 5.82e-4 -2% 

5.14 222.23 0.50 29.40 5.54e-4 -2% 
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The SoC trajectories for each vehicle configuration, with the four batteries and 

corresponding distributed controllers in Case 1, to follow the saturated non-negative 

power command from the US06 cycle, are plotted in Figure 5.5. The initial battery SoC 

in the simulation is the reference SoC respectively for each battery application.  

 

Figure 5.5: Battery SoC profiles for each battery application with corresponding 
distributed controller in Case 1 to follow the saturated non-negative power command 

from the US06 cycle. 
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An example power split between the engine and the battery for the vehicle with battery 

3 (Bs = 2.57e-5) and corresponding distributed controller in Case 1 to follow the saturated 

non-negative power command from the US06 cycle is given in Figure 5.6. We see the 

engine provides the slowly changing power, which is roughly the moving average of the 

wheel power command, while the battery provides the transients.  

 

Figure 5.6: An example power split between the engine and the battery for the vehicle 
with battery 3 (Bs = 2.57e-5) and corresponding distributed controller in Case 1 to follow 

the saturated non-negative power command from the US06 cycle. 
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    For Case 2, the controller gains for the VSC are:  

2 1.3315k = , 3 1.8164k = , 1 0.0062n = , 0.0574ek = , 2 1.2305n = , 0.0512bk = . 

The controller gains for the BSC in Case 2 and the vehicle performance metric for each 

battery application with corresponding distributed controller in Case 2 to follow the 

saturated non-negative power command from the US06 cycle are listed in Table 5.2, 

where MPG, errP,max and socdev,p, are defined the same as in Table 4.3 in Chapter IV. The 

fuel economy of the distributed control in Case 2 is not as good as that of the centralized 

control case. It will be compared in detail in next Section after including the regenerative 

braking. The maximum power tracking error in all simulation scenarios is less than 

2.10e-3 kW. The battery charge sustainability evaluated by the deviation of the final SoC 

from the reference SoC is within ± 2%. 

 

Table 5.2: Performance results for each battery application with corresponding 
distributed controller in Case 2 to follow the saturated non-negative power command 

from the US06 cycle 

Bs (e-5) k1 MPG errp,max socdev,p 

1.29 1978.70 27.56 2.10e-3 -2% 

1.71 1355.19 28.15 2.10e-3 -2% 

2.57 1052.21 28.58 2.00e-3 -2% 

5.14 674.10 28.92 1.90e-3 -2% 

 

The SoC trajectories for each vehicle configuration, with the four batteries and 

corresponding distributed controllers in Case 2, to follow the saturated non-negative 
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power command from the US06 cycle, are plotted in Figure 5.7. The initial battery SoC 

in the simulation is the reference SoC respectively for each battery application.  

 

Figure 5.7: Battery SoC profiles for each battery application with corresponding 
distributed controller in Case 2 to follow the saturated non-negative power command 

from the US06 cycle. 
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An example power split between the engine and the battery for the vehicle with battery 

3 (Bs = 2.57e-5) and corresponding distributed controller in Case 2 to follow the saturated 

non-negative power command from the US06 cycle is given in Figure 5.8.  

 

Figure 5.8: An example power split between the engine and the battery for the vehicle 
with battery 3 (Bs = 2.57e-5) and corresponding distributed controller in Case 2 to follow 

the saturated non-negative power command from the US06 cycle. 
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5.3.    Distributed Controller Evaluation  

In this Section, the distributed controllers in Case 1 and Case 2 are evaluated according 

to the original power command from US06 cycle. Regenerative braking is activated when 

wheel power command is negative, and the engine is shut off without delivering power.  

    The maximum power tracking error and the deviation of the final battery SoC from 

the reference SoC for each battery application with corresponding distributed controllers 

in Case 1  and Case 2 to follow the US06 cycle is given in Table 5.3, where errP,max and 

socdev,p are defined the same as in Table 4.3 in Chapter IV. 

 

Table 5.3: Performance results for each battery application with the distributed controller 
in Case 1 and Case 2 over the US06 cycle 

 Case 1 Case 2 

Bs (e-5) errP,max socdev,p errP,max socdev,p 

1.29 3.76e-4 -3.99% 1.29e-3 -2.65% 

1.71 3.64e-4 -3.37% 1.26e-3 -3.52% 

2.57 3.55e-4 -5.30% 1.21e-3 -4.77% 

5.14 3.35e-4 -7.40% 1.18e-3 -5.38% 
 

The maximum power tracking error for each vehicle configuration to follow the US06 

cycle is 3.76e-4 kW for Case 1, and 1.29e-3 kW for Case 2. The maximum deviation of 

the final battery SoC from the reference SoC for each vehicle configuration to follow the 

US06 cycle is -7.4% for Case 1, and -5.38% for Case 2. Thus, the driving performance 
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and charge sustainability are satisfied for both distribution cases. The fuel economy in 

terms of MPG is compared with that of the centralized control case in Section 5.4.    

The SoC trajectories for each vehicle configuration with the four batteries and 

corresponding distributed controllers in Case 1 to follow the US06 cycle, are plotted in 

Figure 5.9. 

 

Figure 5.9: Battery SoC profiles for each battery application with corresponding 
distributed controller in Case 1 over the US06 cycle. 
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An example power split between the engine and the battery for the vehicle with battery 

3 (Bs = 2.57e-5) and corresponding distributed controller in Case 1 to follow the US06 

cycle is given in Figure 5.10. 

 

Figure 5.10: An example power split between the engine and the battery for the vehicle 
with battery 3 (Bs = 2.57e-5) and corresponding distributed controller in Case 1 over the 

US06 cycle. 
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The SoC trajectories for each vehicle configuration with the four batteries and 

corresponding distributed controllers in Case 2 to follow the US06 cycle, are plotted in 

Figure 5.11. 

 

Figure 5.11: Battery SoC profiles for each battery application with corresponding 
distributed controller in Case 2 over the US06 cycle. 
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An example power split between the engine and the battery for the vehicle with battery 

3 (Bs = 2.57e-5) and corresponding distributed controller in Case 2 to follow the US06 

cycle is given in Figure 5.12. 

 

Figure 5.12: An example power split between the engine and the battery for the vehicle 
with battery 3 (Bs = 2.57e-5) and corresponding distributed controller in Case 2 over the 

US06 cycle. 
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5.4.    Controller Comparison and Discussion 

The driving performance and charge sustaining objectives are satisfied with the 

centralized control, and the distributed control in Case 1 and Case 2, as shown in Tables 

4.4 - 4.7 and Table 5.3. The fuel economy results over the US06 cycle are compared in 

Figure 5.13. We assume that the centralized controller set the benchmark for fuel 

economy and are normalized as 1 respectively for each battery application. 

 

 

Figure 5.13: Normalized fuel economy comparison between the PHEV with centralized 
controller and the PHEV with distributed controllers that provide battery CSM. 

 

From Figure 5.13, in the distributed control Case 1, battery CSM can be essentially 

achieved without compromising fuel economy compared to the centralized control case. 

In the distributed control Case 2, battery CSM is achieved by compromising some fuel 

economy (less than 3%). This shows a tradeoff between the simplicity of BSC and the 
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achievable fuel economy. As more controller gains are moved to the BSC, more design 

freedom is available to achieve better fuel economy, since only the BSC can be 

recalibrated when the battery changes. However, a simple BSC implementation is 

desirable as it entails low computing effort as well as low recalibration effort. 

Based on the above results, the distributed controller in Case 1 is preferred. In this case, 

four gains of the feedback-based controller, along with the related calculations, are 

distributed into the BSC, while the rest of the controller for the CS mode, together with 

the CD mode and regenerative braking control, remain in the VSC. With this approach, 

battery CSM is achieved without compromising fuel economy versus the centralized 

control case. At the same time, the BSC is reasonably simple. As the controller 

functionality related to the battery SoC are confined to the BSC, the estimation of battery 

SoC (not considered in this paper) can be confined to the BSC as well,  making the 

battery module functionally independent both in hardware and software. 

From Figure 5.13, in the distribution control Case 2, one can make a tradeoff between 

desired fuel economy and achievable battery CSM. If the desired fuel economy is the 

same as that of the centralized control, only one battery with parameter, Bs = 1.71e-5, 

satisfies the performance requirement and can be applied to the PHEV. If the desired fuel 

economy is within 2% of degradation of the fuel economy that is achievable by the 

centralized controller, then, two batteries satisfy the performance requirement and can be 

swapped with each other to create PHEV product variant. If the desired fuel economy is 

within 3% of degradation of the fuel economy that is achievable by the centralized 

controller, then, all the four batteries satisfy the performance requirement and can be 

swapped with each other to create PHEV product variant. 
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5.5.    Summary 

Battery CSM in PHEVs is achieved by the proposed distributed supervisory controller. 

A novel feedback-based controller for the CS mode is proposed to facilitate battery CSM 

design. A sensitivity analysis of the control signals with respect to the battery parameter 

is introduced for effective controller distribution. The distributed controller which 

enables battery CSM is then obtained by solving a bi-level optimization problem using 

the numerical algorithm of the Augmented Lagrangian Decomposition method. The bi-

level formulation ensures that only the controller gains in the BSC depend on the battery 

parameters, while the VSC remains the same for different battery applications. With such 

a distributed controller implementation, the battery module can be swapped without 

redesign or recalibration of the VSC, so that the vehicle performance meets the 

performance achievable by redesigning the entire centralized controller. 

Two distributed control cases are considered. In Case 1, four controller gains of the 

linear controller for the CS mode, along with the related calculations, are distributed into 

the BSC, while the rest of the controller for the CS mode, together with the CD mode and 

regenerative braking control, remain in the VSC. Battery CSM is achieved for the four 

considered batteries, without sacrificing fuel economy. While in Case 2, only two 

controller gains of the linear controller for the CS mode, along with the related 

calculations, are distributed into the BSC. Battery CSM is achieved for the considered 

batteries, while compromising some fuel economy (less than 3%) compared to the 

centralized control case. This shows a tradeoff between the simplicity of the BSC and the 

achievable fuel economy. In order to maintain the fuel economy of the vehicle with 

centralized control, the distributed control architecture in Case 1 is preferred.    
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In the distribution control Case 2, one can make a tradeoff between desired fuel 

economy and achievable battery CSM. If the desired fuel economy is the same as that of 

the centralized control, only one battery with parameter, Bs = 1.71e-5, satisfies the 

performance requirement and can be applied to the PHEV. If the desired fuel economy is 

within 3% of degradation of the fuel economy that is achievable by the centralized 

controller, then, all the four batteries satisfy the performance requirement and can be 

swapped with each other to create PHEV product variant. 

At present, the battery is modeled as an integrator with only one parameter, which 

represents the energy capacity. If the current battery is replaced with a battery of a 

different type, instead of only changing the controller gains in the BSC, the controller 

structure in the BSC can also be redesigned to accommodate the new dynamics of the 

battery hardware. The BSC can then communicate with the VSC to achieve optimal fuel 

economy. This can be a topic for continuing research. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

 

 

In this dissertation, distributed controller design to achieve component swapping 

modularity (CSM) in control systems is investigated.  With the proliferation of low cost 

electronics, many control system components, can now incorporate microcontrollers, 

which have communication interfaces and can perform component specific control 

functions. These components are referred to as “smart components”. Bidirectional 

communication among the smart components can be used to facilitate CSM design.  The 

networked control system is a natural setting to realize bidirectional communication. By 

distributing the centralized controller among a smart component and a system level 

controller, which are connected by a bidirectional communication network, swapping 

modularity of the smart component can be achieved. The distribution ensures that only 

the controller in the swappable component is dependent on the hardware parameters of 

this component and needs to be recalibrated if the component changes, while the system 

level controller remains the same for different component applications. Thus, whenever 

the component changes, simply plugging in a new component, which has component 

related control within its module, without redesign of the system controller, will provide 



 

110 
 

the required system performance. Such an approach can lead to significant savings in 

engineering time, as well as other economic benefits. 

The previous 3-Step Method for control system design with CSM is reviewed. The 3-

Step Method generates the distributed controllers by matching with a certain pre-

computed centralized controller for each component application. The 3-Step Method 

sequentially addresses the two design objectives, system performance and CSM. 

Meanwhile, the model matching of transfer functions is limited to linear controller design. 

The novel Direct Method for control system design with CSM, introduced in this 

dissertation, employs a bi-level optimization formulation to generate the distributed 

controllers directly. The bi-level optimization ensures that the resulting distributed 

controller gains will satisfy the CSM property, and the Direct Method enables the 

designer to address the two design objectives simultaneously. For multi-objective 

optimization, a simultaneous approach generally delivers a solution which is at least as 

good as, or better than, that of a sequential approach. Therefore, the Direct Method is 

expected to outperform the 3-Step Method. Moreover, the Direct Method relies on 

solving a nonlinear optimization problem to obtain the distributed controller gains. The 

nonlinearities of the controlled plant or the controller can be easily incorporated into the 

optimization formulation. Thus, compared to the precious 3-Step Method, it is a more 

general approach, which is applicable to the design of both linear and nonlinear 

controllers.     

To illustrate the developments and conclusions, both the 3-Step Method and the Direct 

Method have been applied to the problem of throttle actuator CSM from the perspective 

of engine Idle Speed Control (ISC). For the 3-Step Method, both the unidirectional 



 

111 
 

communication case and the bidirectional communication case are studied. The results 

demonstrate that bidirectional communication improves CSM compared to unidirectional 

communication.  

When solving the ISC problem using the 3-Step Method, we have also employed a 

heuristic approach to approximate the optimal centralized controller to facilitate the 

existence of the solution for actuator CSM as proposed in [25]. The results show that the 

3-Step Method fails to provide actuator CSM when the actuator controller is first order or 

just gains, and only partial range of actuator CSM can be achieved when the actuator 

controller is second order or higher order. This could be a deficiency when component 

computing power and cost are limited. From both computation and calibration 

perspectives, simple controllers are generally more amenable to implementation in the 

smart component. In contrast, the Direct Method shows a significant improvement over 

the 3-Step Method in generating actuator CSM, with the same system performance 

requirement. The Direct Method can achieve partial actuator CSM when the actuator 

controller is just gains, and full range of CSM when the actuator controller is first order. 

In addition, the Direct Method permits the designer to trade-off the two design objectives, 

desired system performance and CSM, according to specific application scenarios. 

The Direct Method is then applied to the important engineering problem of achieving 

battery CSM for PHEVs. A novel feedback-based controller for the CS mode is proposed 

to facilitate battery CSM design. The controller gains are obtained though optimization to 

achieve optimal fuel economy and optimal driving performance, while satisfying the 

constraints on closed loop system stability, battery charge sustainability and component 

reliability. The controller is designed with respect to the aggressive EPA US06 cycle, but 
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the simulation results demonstrate that the feedback based controller also achieves good 

fuel economy, good driving performance and charge sustainability over other driving 

cycles (e.g., the EPA UDDS and HWFET cycles).  

The centralized supervisory controller for the PHEV is distributed into two parts: 1) 

the vehicle system controller (VSC), which is fixed with the vehicle, and 2) the battery 

control unit (BSC), which resides in the battery module and, thus, is swappable along 

with the battery. The controller distribution between the VSC and the BSC addresses the 

tradeoff between performance (generally highest when the controller is entirely within 

the BSC) and simplicity of the BSC implementation (desirable in terms of computing and 

calibration effort). For effective controller distribution, we proposed a method based on 

sensitivity analysis of the control signals with respect to the battery parameter. Only the 

controller gains that result in high sensitivity of the control signals, along with the 

corresponding calculations, are distributed into the BSC. Two distributed control cases 

are considered. In Case 1, four controller gains of the linear controller for the CS mode, 

along with related calculations, are distributed into the BSC. The rest of the controller for 

the CS mode, together with the CD mode and regenerative braking control, remain in the 

VSC. While in Case 2, only two controller gains of the linear controller for the CS mode, 

along with the related calculations, are distributed into the BSC.  

The distributed controller gains are then obtained by solving a bi-level optimization 

problem. The bi-level formulation ensures that only the controller gains in the BSC 

depend on the battery parameters, while the VSC remains the same for different battery 

applications. The bi-level optimization is solved using the Augmented Lagrangian 

Decomposition (ALD) method. Compared to the general bi-level formulation, the 
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application of the ALD method is more complex, but provides more design freedom for 

each of the inner stage problems.  

The results show that battery CSM is achieved for the four batteries considered, 

without compromising fuel economy compared to the centralized case, by the distributed 

controller in Case 1. While for the distributed controller in Case 2, battery CSM is 

achieved for the four batteries considered, while compromising some fuel economy (less 

than 3%) compared to the centralized control case. This shows a tradeoff between the 

simplicity of the BSC and the achievable fuel economy. In order to maintain the optimal 

fuel economy of the vehicle with centralized control, the distributed control architecture 

in Case 1 is preferred.    

Some potential directions for future research are: 

1. Distribution of adaptive and robust controllers to achieve CSM.  

2. New optimization formulation that facilitates solution algorithms and exploits linear 

matrix inequalities (LMI) and bi-linear matrix inequalities (BMI) techniques. 

3. Development of CSM design techniques and formulation for nonlinear controller 

design. 

4. The treatment of the delay and data loss in the control network. 

5. Swapping modularity design for multiple components concurrently, e.g., the engine 

and the battery at the same time in PHEVs.  
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APPENDICES 

 

 

Appendix A: MATLAB Codes Used in Chapter IV and V 

 
% generate the wheel power command from the driving cycles that are 
% specified by vehicle speed 
% driving profile (speed mph) 
drivingcycle = 1; %1:US06 acceleration %2:EPA UDDS cycle %3:EPA Highway cycle 
switch (drivingcycle) 

   case 1 
       %load US06 cycle  
       load CYC_US06.mat;  
   case 2 
       %load EPA urban cycle  
       load CYC_UDDS.mat; 
   case 3 
       %load EPA highway cycle  
       load CYC_HWFET.mat;  

end 
time = cyc_mph(:,1); 
time_step = cyc_mph(2,1)-cyc_mph(1,1); 
time_final = 1*length(cyc_mph(:,2)); 
speed = cyc_mph(:,2)*1609.35/3600; %m/s 
t = time;u = speed; 
% distance 
distance = sum(cyc_mph(:,2)*time_step/3600) 
% plot the speed profile 
figure; 
plot(t,cyc_mph(:,2),'LineWidth',2.5); 
ylabel('Vehicle speed profile (mph)','FontSize',14); 
xlabel('Time (sec)','FontSize',14); 
title('US06 cycle','FontSize',14); 
% calculate wheel power command 
Bs0 = [1.29 1.71 2.57 5.14]*1e-5;   
m0 = [263 197 131 66]; % kg 
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n = length(Bs0); 
Data_Pw(:,1) = t; 
Data_Pwp(:,1) = t; 
for i = 1:n 

   m = m0(i)+1550+86; g = 9.81; f = 0.009; 
   Fz = m*g; FA = 2; ro = 1.2; Cd = 0.335; 
   v = u; 
   nl = length(v); 
   a(1) = 0; 
   for j = 1:nl-1 
       a(j+1) = (v(j+1)-v(j))/time_step; 
   end 
   F = m*a'+f.*Fz+FA*ro*Cd/2*v.^2; 
   Pwc = F.*v/1000;  % unit from W to kW 
   % nonnegative power command 
   Pwcp = Pwc; 
   nl = length(Pwcp); 
   for k = 1:nl 
       if Pwcp(k)<0 
           Pwcp(k)=0; 
       end 

    end 
    Data_Pw(:,i+1) = Pwc; 
    Data_Pwp(:,i+1) = Pwcp; 
    Data_Pw_sum(i) = sum(Pwc)/3600; % kWs -> kWh 
end 
% save data 
save  Pw_US6 Data_Pw 
save  Pwp_US6 Data_Pwp 

 
 

 
% Centralized optimal supervisory controller for the CS mode for the PHEV 
% it includes three files: main file, objective function, and constraint function 
% main file 
clear all; clc; close all 
global Pb_max Pb_min Pe_max Pe_min soc_max soc_min poles_cl max_Ped con_max soca Pwa 
global Bs b_scale d_scale soc_d soc_i socfmin t Pwc Pe_o fc_o soc_f cost_driv cost_bat 
global Pemax Pemin Pbmax Pbmin socmax socmin c Pe Pb MPG E_factor belta iter Pe_chg_max  
global eff_e eff_b eff_m Pe_c soc_max_deviation socfmax socfmin 
% parameters 
eff_m = 0.85; eff_b = 0.9; eff_e = 0.85; 
Bs0 = [1.29 1.71 2.57 5.14]*1e-5;  
n = length(Bs0);  
soc_d0 = [0.2522 0.2686 0.3014 0.4]; 
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soc_i0 = soc_d0; 
socfmin0 = soc_d0*(1-0.02); 
socfmax0 = soc_d0*(1+0.02); 
Pe_chg_max = 5; 
Pemax = 50; Pemin = 0; Pbmax = 110; Pbmin = -Pbmax; 
socmax = 0.9; socmin = 0.2; 

 
% % penalty weights in the objective function 
% Bsw = Bs0*1e-3; % battery parameter w.r.t. power with unit Watt 
% PUC = 1000*3.8*0.75; % petroleum unit change 1 gallon = 1000*3.8*0.75 gram = 2850 gram 
% PEF = 82049*3600; % petroleum-equivalency factor is 82,049 Watt-hours per gallon charged 
by external source 
% E_factor = PUC/PEF./Bsw % equivalent factor bost_bat -> fuel in gram 
E_factor = [747.961694157487,564.251804364420,375.436025472046,187.718012736023;]; 
belta = 100; 
% simulation input  
load Pwp_US6 
t = Data_Pwp(:,1); Pwcp = Data_Pwp(:,2:n+1); 
% engine OOP Line 
Peo1 = [-1e50 0 
636.074561681784,1908.22368504535,2532.93977241139,3805.08889577496,4441.1634574567
4,5077.23801913853,5713.31258082031,7067.00135167805,8079.15499795419,9687.28779157
751,11074.7254292459,12462.1630669143,14076.6424080615,14938.9635800201,17078.55938
68772,19218.1551937343,20080.4763656929,22596.1512571444,25598.7355463260,25967.005
6798283,30098.2531655800,34588.2580625944,39087.7756818483,43587.2933011022,48086.8
109203560,57076.3334366244,1e50]; 
efupro1 = [-1e5 0 
0.544464471404623,0.297323633726156,0.267625786993999,0.236336134222391,0.227372851
657720,0.220655402755786,0.227468737552148,0.221746101637281,0.215755236833728,0.21
8996281068938,0.213339826354583,0.217609092854815,0.213136052833294,0.220593616307
321,0.214732397324911,0.217125939401324,0.218002796361895,0.219494016638424,0.23062
2328564479,0.223539058433262,0.237290847435876,0.245393103770643,0.254804982536398,
0.265585658646697,0.265267747140208,0.267803467385868,1e5]; 
Pe_o = Peo1;  
fc_o_gWh = efupro1; 
fc_o = fc_o_gWh/3600.*Pe_o; % unit: g/W/h --> g/s 

 
% initial conditions 
% --------- (1) 
% k1 = 978; k2 = 3;k3 = 2; 
% n1 = 0/eff_e/eff_m; ke = 0; n2 = 1/eff_b/eff_m; kb = 0; 
% x0 = [k1 k2 k3 n1 ke n2 kb]; 
% --------- (2) 
result_i = [1.29E-05 1.71E-05 2.57E-05 5.14E-05 
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27.58036999 28.163226 28.78317646 29.39853694 
0.005043952 0.005372 0.006028001 0.008000004 
0.038664425 0.03754035 0.036244665 0.034351765 
917.4164857 1000 466.8684947 222.2322524 
1.590840229 1.343633326 0.930707782 0.496792457 
1.816356715 1.816356715 1.816356715 1.816356555 
0.006166201 0.006166201 0.006166201 0.006166204 
0.057388405 0.057388405 0.057388405 0.057388405 
1.23050642 1.23050642 1.23050642 1.23050659 
0.051198011 0.051198011 0.051198011 0.051198011]; 
ij = 2; 
k1 = result_i(5,ij); 
k2 = result_i(6,ij); 
k3 = result_i(7,ij); 
n1 = result_i(8,ij); 
ke = result_i(9,ij); 
n2 = result_i(10,ij); 
kb = result_i(11,ij); 
x0 = [k1 k2 k3 n1 ke n2 kb]; 
% variable bounds    
k1l = 0; k2l = 0; k3l = 0;  
n1l = 0; kel = 0; n2l = 1; kbl = 0;  
k1u = 1000; k2u = 5; k3u = 10;  
n1u = 1; keu = 1; n2u = 2; kbu = 1; 
lb = [k1l k2l k3l n1l kel n2l kbl]; 
ub = [k1u k2u k3u n1u keu n2u kbu]; 
% scale to [-1, 1] 
d_scale = 2./(ub-lb); 
b_scale = -(ub+lb)./(ub-lb); 
% new scale 
lb = -ones(1,7); 
ub = ones(1,7); 
options = optimset('TolX',1e-6,'TolFun',1e-6, 'MaxFunEvals',1e6,'Display','iter','LargeScale','off'); 
clr = {'r--','g-', 'b:', 'm-.'}; 
for iter = 1:n 
    x0 = result_i(5:11,iter)'; 
    x0 = d_scale.*x0+b_scale; 
    Bs = Bs0(iter); 
    Pwc = Pwcp(:,iter); 
    soc_d = soc_d0(iter); soc_i = soc_i0(iter); 
    socfmin = socfmin0(iter); socfmax = socfmax0(iter);  
    [xi, h, exitflag] = fmincon(@objfun_clr_nw,x0,[],[],[],[],lb,ub,@confun_clr_nw,options); 
    x = (xi-b_scale)./d_scale; 
    result_data(:,iter) = [Bs, MPG, cost_bat, cost_driv, x]; 
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    con_max_all(iter) = con_max; 
    soc_max_dev(iter) = soc_max_deviation; 
    figure(10+3); 
    plot(t,soca,clr[66],'LineWidth',2.5) 
    ylabel('soc','FontSize',12.5) 
    xlabel('Time (sec)','FontSize',12.5); 
    legend('Bs = 1.29e-5','Bs = 1.71e-5', 'Bs = 2.57e-5', 'Bs = 5.14e-5'); 
    hold on; 
    axis tight; 
    figure(10+4); 
    plot(t,Pwc-Pwa,'b-o'); 
    xlabel('Time (sec)','FontSize',12.5); 
    hold on; 
    axis tight; 
    figure(10+5); 
    plot(t,Pb,'g--',t,Pe,'b-',t,Pwc,'r:','LineWidth',2.5) 
    legend('P_{b}','P_{e}','P_{w,cmd}') 
    xlabel('Time (sec)','FontSize',12.5); 
    hold on; 
    axis tight; 
    xo = xi;  
end 
 
 
 
% Centralized optimal supervisory controller for the CS mode for the PHEV 
% objective function 
function f = objfun_clr_nw(xi) 
global Pb_max Pb_min Pe_max Pe_min soc_max soc_min poles_cl fuel max_Ped soca Pwa 
global Bs b_scale d_scale soc_d soc_i t Pwc Pe_o fc_o soc_f cost_driv cost_bat 
global Pemax Pemin Pbmax Pbmin socmax socmin c Pe Pb MPG E_factor belta iter 
global eff_e eff_b eff_m Pe_c soc_max_deviation 
% scale of the variables 
x = (xi-b_scale)./d_scale; 
% x0 = [k1 k2 k3 n1 ke n2 kb]; 
k1 = x(1); k2 = x(2); k3 = x(3); n1 = x(4); ke = x(5); n2 = x(6); kb = x(7); 
k4 = -k1/eff_b*eff_e; 
k5 = -k2/eff_b*eff_e; 
k6 = 0; 
K = [k1 k2 k3;k4 k5 k6]; 
K1 = K(1,:); 
K2 = K(2,:); 
% closed loop system   
Adiv = (1-kb*ke)+((1-kb*ke)==0)*1e-8; 
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Acl = [Bs*(K2+kb*K1)/Adiv; 1 0 0; -
eff_m*eff_e*(K1+ke*K2)/Adiveff_m*eff_b*(K2+kb*K1)/Adiv]; 
Bcl = [Bs*(n2+kb*n1)/Adiv; 0; 1-eff_m*eff_e*(n1+ke*n2)/Adiv-
eff_m*eff_b*(n2+kb*n1)/Adiv]; 
Ccl = [1 0 0; eff_e*(K1+ke*K2)/Adiv; eff_b*(K2+kb*K1)/Adiv]; 
Dcl = [0; eff_e*(n1+ke*n2)/Adiv; eff_b*(n2+kb*n1)/Adiv]; 
sys1 = ss(Acl,Bcl,Ccl,Dcl); 
% simulation 
y = lsim(sys1,Pwc,t); 
soca = soc_d*ones(size(y(:,1)))-y(:,1); 
Pe = y(:,2); 
Pb = y(:,3); 
Pwa = eff_m*(Pb+Pe); 
figure(1); 
plot(t,soca,'LineWidth',2.5) 
ylabel('soc','FontSize',12.5) 
xlabel('time (sec)','FontSize',12.5) 
figure(2); 
plot(t,Pb,'b--',t,Pe,'g-','LineWidth',2.5) 
legend('Pb','Pe') 
xlabel('time (sec)','FontSize',12.5) 
% calculate constraints related variables 
poles_cl = eig(Acl); 
% soc limit 
soc_min = min(soca); soc_max = max(soca); 
soc_f = soca(length(soca)); 
soc_max_deviation = min(soca)-soc_d; 
% power limit 
Pe_min = min(Pe); Pe_max = max(Pe); 
Pb_min = min(Pb); Pb_max = max(Pb); 
% Pe_dot 
for i = 1:length(t)-1 
    Ped(i) = Pe(i+1)-Pe(i); 
end 
max_Ped = max(Ped);   
% objective function 
% % engine OOP Line 
Pe_c = Pe/eff_e*1e3; 
fuel0 = interp1(Pe_o,fc_o,Pe_c,'linear'); 
fuel = sum(fuel0); 
cost_bat = (soc_d - soc_f); 
cost_driv = sum(abs(Pwc-Pwa)); 
alpha = E_factor(iter); 
% MPG 
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% equivalent fuel consumption gram -> gallon 
FUEL = (fuel+alpha*cost_bat)/(1000*3.8*0.75); 
distance_US6 = 8.008; % US06 
MPG = distance_US6./FUEL; % mile per gallon 
f = fuel+alpha*cost_bat+belta*cost_driv; 

 
 
 
% Centralized optimal supervisory controller for the CS mode for the PHEV 
% constraint function 
function [c,ceq] = confun_clr_nw(x) 
global Pb_max Pb_min Pe_max Pe_min soc_max soc_min poles_cl max_Ped Pe_chg_max 
global Pemax Pemin Pbmax Pbmin socmax socmin c Pe Pb con_max soc_f iter socfmin socfmax  
% inequalities c <= 0 
c(1) = Pe_max - Pemax; 
c(2) = Pemin - Pe_min; 
c(3) = Pb_max - Pbmax; 
c(4) = Pbmin - Pb_min; 
c(5) = soc_max - socmax; 
c(6) = socmin - soc_min; 
c(7) = max_Ped - Pe_chg_max; 
np = length(poles_cl); 
for i = 1:np 
    c(7+i) = real(poles_cl(i)); 
end 
c(8+np) = socfmin - soc_f; 
c(9+np) = soc_f - socfmax; 
con_max = max(c); 
% equality constraints 
ceq = []; 

 
 
 
% Polynomial fit of controller gains 
Bs = [1.29 1.71 2.57 5.14]*1e-5;  % battery parameter w.r.t. power with unit Watt 
n = length(Bs) 
E_factor = [747.961694157487,564.251804364420,375.436025472046,187.718012736023;]; 
% input  
load Pwp_US6 
t = Data_Pwp(:,1); 
Pwcp = Data_Pwp(:,2:n+1); 
soc_d0 = [0.25 0.27 0.3 0.4]; 
soc_i0 = soc_d0; 
val = 1:4;   
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eff_m = 0.85; eff_b = 0.9; eff_e = 0.85; 
result_data = [1.29E-05 1.71E-05 2.57E-05 5.14E-05 
27.58038771 28.17052855 28.78202658 29.39853584 
0.005044 0.005371527 0.006027976 0.008 
2.06E-05 7.15E-06 2.19E-06 0.000218312 
917.5031731 996.9141767 465.4384124 222.1987975 
1.590831582 1.295020006 0.929342823 0.496768346 
1.815835659 3.922687567 1.571820202 1.818680108 
0.006180712 0.059858397 0.005963246 0.006166723 
0.057398264 0.014262721 0.055456965 0.057387406 
1.230490123 1.233048302 1.233092198 1.230516879 
0.051198195 0.012722171 0.049466248 0.051187345]; 
% fit the controller gains 
Bs0 = result_data(1,:); 
k1 = result_data(5,:); k2 = result_data(6,:); k3 = result_data(7,:);  
n1 = result_data(8,:); ke = result_data(9,:);  
n2 = result_data(10,:); kb = result_data(11,:); 
% parameters from linear fitting  
polyn = 4;                           
f_k1 = polyfit(Bs0(val),k1(val),polyn); 
f_k2 = polyfit(Bs0(val),k2(val),polyn); 
f_k3 = polyfit(Bs0(val),k3(val),polyn); 
f_n1 = polyfit(Bs0(val),n1(val),polyn); 
f_ke = polyfit(Bs0(val),ke(val),polyn); 
f_n2 = polyfit(Bs0(val),n2(val),polyn); 
f_kb = polyfit(Bs0(val),kb(val),polyn); 
% unscaled linear fitted values 
fk1 = polyval(f_k1,Bs0); 
fk2 = polyval(f_k2,Bs0); 
fk3 = polyval(f_k3,Bs0); 
fn1 = polyval(f_n1,Bs0); 
fke = polyval(f_ke,Bs0); 
fn2 = polyval(f_n2,Bs0); 
fkb = polyval(f_kb,Bs0); 
% scalling factor  
k1_sca = 10000; k2_sca = 10; k3_sca = 100; n1_sca = 1; 
ke_sca = 1; n2_sca = 10; kb_sca = 1; 
% scalled optimal value 
k1_s = k1/k1_sca; 
k2_s = k2/k2_sca; 
k3_s = k3/k3_sca; 
n1_s = n1/n1_sca; 
ke_s = ke/ke_sca; 
n2_s = n2/n2_sca; 
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kb_s = kb/kb_sca; 
% scalled fitted value 
fk1_s = fk1/k1_sca; 
fk2_s = fk2/k2_sca; 
fk3_s = fk3/k3_sca; 
fn1_s = fn1/n1_sca; 
fke_s = fke/ke_sca; 
fn2_s = fn2/n2_sca; 
fkb_s = fkb/kb_sca; 
% plot actual and fitted scaled controller gains 
figure('Name','fitting controller gains') 
plot(Bs0,k1_s,'bo', 'LineWidth',2.5); 
hold on; 
plot(Bs0,fk1_s,'b-.', 'LineWidth',2.5); 
hold on; 
plot(Bs0,k2_s,'md', 'LineWidth',2.5); 
hold on; 
plot(Bs0,fk2_s,'m-', 'LineWidth',2.5); 
hold on; 
plot(Bs0,k3_s,'gh', 'LineWidth',2.5); 
hold on; 
plot(Bs0,fk3_s,'g--', 'LineWidth',2.5); 
hold on; 
plot(Bs0,n1_s,'mp', 'LineWidth',2.5); 
hold on; 
plot(Bs0,fn1_s,'m:', 'LineWidth',2.5); 
hold on; 
plot(Bs0,ke_s,'cs', 'LineWidth',2.5); 
hold on; 
plot(Bs0,fke_s,'c-', 'LineWidth',2.5); 
hold on; 
plot(Bs0,n2_s,'k>', 'LineWidth',2.5); 
hold on; 
plot(Bs0,fn2_s,'k:', 'LineWidth',2.5); 
hold on; 
plot(Bs0,kb_s,'r<', 'LineWidth',2.5); 
hold on; 
plot(Bs0,fkb_s,'r-', 'LineWidth',2.5); 
hold on; 
xlabel('\rm Battery parameter \it B_{s}','FontSize',12.5); 
% title('1^{st} order polynomial fit','FontSize',12.5); 
title('4^{th} order polynomial fit','FontSize',12.5); 
figure('Name','controller gains') 
plot(Bs0,k1_s,'-.bo','LineWidth',2.5); 
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hold on; 
plot(Bs0,k2_s,'-md', 'LineWidth',2.5); 
hold on; 
plot(Bs0,k3_s,'--gh', 'LineWidth',2.5); 
hold on; 
plot(Bs0,n1_s,':mp', 'LineWidth',2.5); 
hold on; 
plot(Bs0,ke_s,'-cs', 'LineWidth',2.5); 
hold on; 
plot(Bs0,n2_s,':k>', 'LineWidth',2.5); 
hold on; 
plot(Bs0,kb_s,'-r<', 'LineWidth',2.5); 
legend('\it k1/1e4','\it k2/10','\it k3/1e2','\it n1','\it ke','\it n2/10','\it kb') 
xlabel('\rm Battery parameter \it B_{s}','FontSize',12.5); 
 
for i = 1:n 
    Bs = Bs0(i); 
    soc_d = soc_d0(i); soc_i = soc_i0(i); 
    k1 = fk1(i); k2 = fk2(i); k3 = fk3(i); n1 = fn1(i);  
    ke = fke(i); n2 = fn2(i); kb = fkb(i); 
    k4 = -k1/eff_b*eff_e; k5 = -k2/eff_b*eff_e; k6 = 0; 
    K = [k1 k2 k3;k4 k5 k6]; 
    K1 = K(1,:); K2 = K(2,:); 
%    closed loop system   
    Adiv = (1-kb*ke)+((1-kb*ke)==0)*1e-6; 
    Acl = [Bs*(K2+kb*K1)/Adiv; 1 0 0; -eff_m*eff_e*(K1+ke*K2)/Adiv-
eff_m*eff_b*(K2+kb*K1)/Adiv]; 

Bcl = [Bs*(n2+kb*n1)/Adiv; 0; 1-eff_m*eff_e*(n1+ke*n2)/Adiv-
eff_m*eff_b*(n2+kb*n1)/Adiv]; 
    Ccl = [1 0 0; 0 1 0; 0 0 1]; 
    Dcl = [0; 0; 0]; 

sys1 = ss(Acl,Bcl,Ccl,Dcl); 
y = lsim(sys1,Pwc,t); 

    z1 = y(:,1); z2 = y(:,2); z3 = y(:,3); 
    z1_data(:,i) = z1; z2_data(:,i) = z2; z3_data(:,i) = z3; 
    % mean 
    z1m(i) = mean(mean(z1_data)); 
    z2m(i) = mean(mean(z2_data)); 
    z3m(i) = mean(mean(z3_data)); 
    Pwm(i) = mean(mean(Pwc)); 
end 
 
 
% Sensitivity analysis of the obtained centralized controller gains 
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syms bs z1 z2 z3 Pw_cmd 
syms k1 k2 k3 k4 k5 k6 n1 ke n2 kb 
K1 = [k1, k2, k3]; K2 = [k4, k5, k6]; z = [z1 z2 z3]'; 
% control signal 
Pe_cmd = (K1+ke*K2)/(1-kb*ke)*z+(n1+ke*n2)/(1-kb*ke)*Pw_cmd; 
Pb_cmd = (K2+kb*K1)/(1-kb*ke)*z+(n2+kb*n1)/(1-kb*ke)*Pw_cmd; 
% different Pe_cmd and Pb_cmd w.r.t. x 
diff_Pe_k1 = diff(Pe_cmd,'k1') 
diff_Pe_k2 = diff(Pe_cmd,'k2') 
diff_Pe_k3 = diff(Pe_cmd,'k3') 
diff_Pe_k4 = diff(Pe_cmd,'k4') 
diff_Pe_k5 = diff(Pe_cmd,'k5') 
diff_Pe_k6 = diff(Pe_cmd,'k6') 
diff_Pe_n1 = diff(Pe_cmd,'n1') 
diff_Pe_ke = diff(Pe_cmd,'ke') 
diff_Pe_n2 = diff(Pe_cmd,'n2') 
diff_Pe_kb = diff(Pe_cmd,'kb') 
diff_Pb_k1 = diff(Pb_cmd,'k1') 
diff_Pb_k2 = diff(Pb_cmd,'k2') 
diff_Pb_k3 = diff(Pb_cmd,'k3') 
diff_Pb_k4 = diff(Pb_cmd,'k4') 
diff_Pb_k5 = diff(Pb_cmd,'k5') 
diff_Pb_k6 = diff(Pb_cmd,'k6') 
diff_Pb_n1 = diff(Pb_cmd,'n1') 
diff_Pb_ke = diff(Pb_cmd,'ke') 
diff_Pb_n2 = diff(Pb_cmd,'n2') 
diff_Pb_kb = diff(Pb_cmd,'kb') 
% fitted controller gains 
% from fitted_central_network_controller_11_20.m (run this file first) 
% Linearized controller gains w.r.t. battery paramter Bs (bs = delt_Bs) 
% 4th order poly 
k1 = f_k1(1)*bs^4+f_k1(2)*bs^3+f_k1(3)*bs^2+f_k1(4)*bs+f_k1(5); 
k2 = f_k2(1)*bs^4+f_k2(2)*bs^3+f_k2(3)*bs^2+f_k2(4)*bs+f_k2(5); 
k3 = f_k3(1)*bs^4+f_k3(2)*bs^3+f_k3(3)*bs^2+f_k3(4)*bs+f_k3(5); 
n1 = f_n1(1)*bs^4+f_n1(2)*bs^3+f_n1(3)*bs^2+f_n1(4)*bs+f_n1(5); 
ke = f_ke(1)*bs^4+f_ke(2)*bs^3+f_ke(3)*bs^2+f_ke(4)*bs+f_ke(5); 
n2 = f_n2(1)*bs^4+f_n2(2)*bs^3+f_n2(3)*bs^2+f_n2(4)*bs+f_n2(5); 
kb = f_kb(1)*bs^4+f_kb(2)*bs^3+f_kb(3)*bs^2+f_kb(4)*bs+f_kb(5); 
% %linear 
% k1 = f_k1(1)*bs+f_k1(2); 
% k2 = f_k2(1)*bs+f_k2(2); 
% k3 = f_k3(1)*bs+f_k3(2); 
% n1 = f_n1(1)*bs+f_n1(2); 
% ke = f_ke(1)*bs+f_ke(2); 
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% n2 = f_n2(1)*bs+f_n2(2); 
% kb = f_kb(1)*bs+f_kb(2); 
k4 = -k1/eff_b*eff_e; k5 = -k2/eff_b*eff_e; k6 = 0; 
% substitute the fitted controller gains 
diff_Pe_k1 = subs(diff_Pe_k1); 
diff_Pe_k2 = subs(diff_Pe_k2); 
diff_Pe_k3 = subs(diff_Pe_k3); 
diff_Pe_n1 = subs(diff_Pe_n1); 
diff_Pe_ke = subs(diff_Pe_ke); 
diff_Pe_n2 = subs(diff_Pe_n2); 
diff_Pe_kb = subs(diff_Pe_kb); 
diff_Pb_k1 = subs(diff_Pb_k1); 
diff_Pb_k2 = subs(diff_Pb_k2); 
diff_Pb_k3 = subs(diff_Pb_k3); 
diff_Pb_n1 = subs(diff_Pb_n1); 
diff_Pb_ke = subs(diff_Pb_ke); 
diff_Pb_n2 = subs(diff_Pb_n2); 
diff_Pb_kb = subs(diff_Pb_kb); 
% polyn = polynomial order  
% use the first order derivative 
x_bs = [f_k1(polyn), f_k2(polyn), f_k3(polyn), f_n1(polyn), f_ke(polyn), f_n2(1), f_kb(polyn)]; 
% diffrenciate above differentials w.r.t. bs 
k1_stv_Pe = diff_Pe_k1*x_bs(1); 
k2_stv_Pe = diff_Pe_k2*x_bs(2); 
k3_stv_Pe = diff_Pe_k3*x_bs(3); 
n1_stv_Pe = diff_Pe_n1*x_bs(4); 
ke_stv_Pe = diff_Pe_ke*x_bs(5); 
n2_stv_Pe = diff_Pe_n2*x_bs(6); 
kb_stv_Pe = diff_Pe_kb*x_bs(7); 
k1_stv_Pb = diff_Pb_k1*x_bs(1); 
k2_stv_Pb = diff_Pb_k2*x_bs(2); 
k3_stv_Pb = diff_Pb_k3*x_bs(3); 
n1_stv_Pb = diff_Pb_n1*x_bs(4); 
ke_stv_Pb = diff_Pb_ke*x_bs(5); 
n2_stv_Pb = diff_Pb_n2*x_bs(6); 
kb_stv_Pb = diff_Pb_kb*x_bs(7); 
% substitute the values for bs0, mean value of z and Pw_cmd 
Bs0 = [1.29 1.71 2.57 5.14]*1e-5;  
z1 = mean(z1m); z2 = mean(z2m); z3 = mean(z3m); Pw_cmd = mean(Pwm); 
bs = mean(Bs0); 
% substitute the values  
diff_Pe_k1 = subs(diff_Pe_k1); 
diff_Pe_k2 = subs(diff_Pe_k2); 
diff_Pe_k3 = subs(diff_Pe_k3); 
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diff_Pe_n1 = subs(diff_Pe_n1); 
diff_Pe_ke = subs(diff_Pe_ke); 
diff_Pe_n2 = subs(diff_Pe_n2); 
diff_Pe_kb = subs(diff_Pe_kb); 
diff_Pb_k1 = subs(diff_Pb_k1); 
diff_Pb_k2 = subs(diff_Pb_k2); 
diff_Pb_k3 = subs(diff_Pb_k3); 
diff_Pb_n1 = subs(diff_Pb_n1); 
diff_Pb_ke = subs(diff_Pb_ke); 
diff_Pb_n2 = subs(diff_Pb_n2); 
diff_Pb_kb = subs(diff_Pb_kb); 
k1_stv_Pe = subs(k1_stv_Pe); 
k2_stv_Pe = subs(k2_stv_Pe); 
k3_stv_Pe = subs(k3_stv_Pe); 
n1_stv_Pe = subs(n1_stv_Pe); 
ke_stv_Pe = subs(ke_stv_Pe); 
n2_stv_Pe = subs(n2_stv_Pe); 
kb_stv_Pe = subs(kb_stv_Pe); 
k1_stv_Pb = subs(k1_stv_Pb); 
k2_stv_Pb = subs(k2_stv_Pb); 
k3_stv_Pb = subs(k3_stv_Pb); 
n1_stv_Pb = subs(n1_stv_Pb); 
ke_stv_Pb = subs(ke_stv_Pb); 
n2_stv_Pb = subs(n2_stv_Pb); 
kb_stv_Pb = subs(kb_stv_Pb); 
x_stv = [k1_stv_Pe, k2_stv_Pe, k3_stv_Pe, n1_stv_Pe, ke_stv_Pe, n2_stv_Pe, kb_stv_Pe;    
k1_stv_Pb, k2_stv_Pb, k3_stv_Pb, n1_stv_Pb, ke_stv_Pb, n2_stv_Pb, kb_stv_Pb]; 
P_x_stv = [diff_Pe_k1, diff_Pe_k2, diff_Pe_k3, diff_Pe_n1, diff_Pe_ke, diff_Pe_n2, diff_Pe_kb; 
    diff_Pb_k1, diff_Pb_k2, diff_Pb_k3, diff_Pb_n1, diff_Pb_ke, diff_Pb_n2, diff_Pb_kb]; 
% plot the gain sensitivity using bars 
xplot = 1:7 
figure('Name','dP/dx'); 
bar(xplot,abs(P_x_stv)', 'group'); 
legend('\delta\it P_{e} / \delta\it x', '\delta\it P_{b} / \delta\it x') 
axis tight 
set(gca,'XTickLabel',{'k1','k2', 'k3','n1','ke', 'n2','kb'}) 
figure('Name','dP/dBs'); 
bar(xplot,abs(x_stv)', 'group'); 
% xlabel('Controller gains','FontSize',12.5); 
legend('\it x_{stv, Pe}', '\it x_{stv, Pb}') 
axis tight 
set(gca,'XTickLabel',{'k1','k2', 'k3','n1','ke', 'n2','kb'}) 
x_stv = abs(x_stv(1,:))+abs(x_stv(2,:)); 
figure('Name','sum dP/dBs'); 
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bar(xplot,x_stv'); 
% xlabel('Controller gains','FontSize',12.5); 
ylabel('\it x_{stv}','FontSize',12.5); 
axis tight 
set(gca,'XTickLabel',{'k1','k2', 'k3','n1','ke', 'n2','kb'}) 
figure('Name','dx/dBs'); 
bar([1:7],abs(x_bs), 'group'); 
% xlabel('Controller gains','FontSize',12.5); 
ylabel('\delta\it x / \delta\it B_{s}','FontSize',12.5) 
axis tight 
set(gca,'XTickLabel',{'k1','k2', 'k3','n1','ke', 'n2','kb'}) 
 
 
 
% Distributed controller for CS mode for the PHEV in distribution Case 1 
% it includes three files: main file, objective function, and constraint function 
% main file 
clear all;clc; close all 
% bi-level optimization using augmented lagrangian method  
% outter stage (analytical solution) 
% inner stage (fmincon) 
global v w cc cc0 V W CC Data1 n m1 m2 iteri itero pf gama beta con_max 
% v w (penalty weights); c c0 (discrepancy of the consistency constraints) 
% n m (number of considered components, number of gains of the base controller) 
% itero (iteration of the outer stage opt); iteri (inter # of inner stage) 
% pf (vector of the penalty functions) 
global d_scale b_scale yt k1 k2 k3 k4 k5 k6 n1 n2 ke kb soca Pe Pb Pwa     
global Pb_max Pb_min Pe_max Pe_min soc_max soc_min poles_cl max_Ped fuel_e_g E_factor 
belta  
global Bs b_scale d_scale soc_d soc_i t Pwc Pe_o fc_o soc_f cost_driv cost_bat 
global Pemax Pemin Pbmax Pbmin socmax socmin c Pe Pb iteri socfmin socfmax Pe_chg_max 
global eff_e eff_b eff_m Pe_c MPG 
% parameters 
eff_m = 0.85; eff_b = 0.9; eff_e = 0.85; 
Bs0 = [1.29 1.71 2.57 5.14]*1e-5;  
n = length(Bs0);  
soc_d0 = [0.2522 0.2686 0.3014 0.4]; 
soc_i0 = soc_d0; 
socfmin0 = soc_d0*(1-0.02); 
socfmax0 = soc_d0*(1+0.02); 
Pe_chg_max = 5; 
Pemax = 50; Pemin = 0; 
Pbmax = 110; Pbmin = -Pbmax; 
socmax = 0.9; socmin = 0.2; 



 

128 
 

% penalty weights in the objective function 
E_factor = [747.961694157487,564.251804364420,375.436025472046,187.718012736023;]; 
belta = 100; 
% updating parameters for the penalty function 
gama = 0.2; beta = 2; 
MFEval = 1e3; % maximum function evaluation number for the inner stage optimization 
% input  
load Pwp_US6 
t = Data_Pwp(:,1); 
Pwcp = Data_Pwp(:,2:n+1); 
% engine OOP Line 
Peo1 = [-1e50 0 
636.074561681784,1908.22368504535,2532.93977241139,3805.08889577496,4441.1634574567
4,5077.23801913853,5713.31258082031,7067.00135167805,8079.15499795419,9687.28779157
751,11074.7254292459,12462.1630669143,14076.6424080615,14938.9635800201,17078.55938
68772,19218.1551937343,20080.4763656929,22596.1512571444,25598.7355463260,25967.005
6798283,30098.2531655800,34588.2580625944,39087.7756818483,43587.2933011022,48086.8
109203560,57076.3334366244,1e50]; 
efupro1 = [-1e20 0 
0.544464471404623,0.297323633726156,0.267625786993999,0.236336134222391,0.227372851
657720,0.220655402755786,0.227468737552148,0.221746101637281,0.215755236833728,0.21
8996281068938,0.213339826354583,0.217609092854815,0.213136052833294,0.220593616307
321,0.214732397324911,0.217125939401324,0.218002796361895,0.219494016638424,0.23062
2328564479,0.223539058433262,0.237290847435876,0.245393103770643,0.254804982536398,
0.265585658646697,0.265267747140208,0.267803467385868,1e20]; 
Pe_o = Peo1; 
fc_o_gWh = efupro1; 
fc_o = fc_o_gWh/3600.*Pe_o; % unit: g/W/h --> g/s 
% initial conditions 
% ------ (1) 
result_fit = [1.29E-05 1.71E-05 2.57E-05 5.14E-05 
27.57925543 28.15637466 28.7816803 29.39857406 
0.005044 0.005371945 0.006027631 0.007999528 
4.17E-07 4.74E-06 7.75E-06 5.65E-05 
953.2477222 953.2889945 435.0499285 225.5133684 
1.591087265 1.33780788 0.918188024 0.498861964 
0.049846337 1.816498924 4.448105781 6.502090769 
0.006171547 0.006169865 0.006169202 0.006248172 
0.057452116 0.057452161 0.057452117 0.057411594 
1.230432321 1.230433849 1.23043456 1.230410262 
0.051245869 0.051245971 0.051245517 0.051205999]; 
ij = 2;  
k1 = result_fit(5,ij); 
k2 = result_fit(6,ij); 



 

129 
 

k3 = result_fit(7,ij); 
n1 = result_fit(8,ij); 
ke = result_fit(9,ij); 
n2 = result_fit(10,ij); 
kb = result_fit(11,ij); 
x00 = [k1 k2]; 
y00 = [k3, n1, ke, n2, kb]; 
m1 = length(y00); % number of gains of the base controller (# of y) 
m2 = length(x00); % number of gains of the actuator controller (# of xi) 
xvar = [y00 x00]; 
% variable bounds    
k1l = 100; k2l = 0; k1u = 1000; k2u = 5;  
k3l = k3*0.9; n1l = n1*0.9; kel = ke*0.9; n2l = n2*0.9; kbl = kb*0.9; 
k3u = k3*1.1; n1u = n1*1.1; keu = ke*1.1; n2u = n2*1.1; kbu = kb*1.1; 
lb = [k3l n1l kel n2l kbl k1l k2l]; 
ub = [k3u n1u keu n2u kbu k1u k2u]; 
% scale to [-1, 1] 
d_scale = 2./(ub-lb); 
b_scale = -(ub+lb)./(ub-lb); 
% new scale 
lb = -ones(1,m1+m2); 
ub = ones(1,m1+m2); 
xvar_scale = d_scale.*xvar+b_scale; 
y0 = xvar_scale(1:m1); x0 = xvar_scale(m1+1:m1+m2); 
y00 = xvar(1:m1); x00 = xvar(m1+1:m1+m2); 
n_head = 4; %(Bs, MPG, cost_bat, cost_driv) 
Data1 = zeros(n_head+m1+m2,n); % each column includes (Bs, fuel, cost_bat, cost_driv, y, x) 
for j = 1:n 
    Data1(:,j) = [zeros(1,n_head), y0, x0]';  
    testa(:,j) = [zeros(1,n_head), y00, x00]'; % to see the initial actual value 
end  
tests = Data1; % to see the initial scaled value 
Datay(:,1) = y00'; 
ebslon = 10^(-5);      %stop tolerance   
%  ------------   penalty function ---------------- 
% initial penalty function weights 
% V = zeros(n*m1,1); % linear penalty weights 
% W = zeros(n*m1,iterom); % quadratic penalty weights 
% the first columns of V and W are initial values of v and w,  
%termed as v0,w0 
V(1:n*m1,1) = zeros(m1*n,1); % v0 
W(1:n*m1,1) = 2*ones(m1*n,1); % w0   
% initial discrepancy of consistency constraints 
cc = 0*y0';   
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% Discrepancy of consistency constraints  (n*m1,1);  
for i = 1:n 
    CC((m1*(i-1)+1):(m1*i),1) = cc; 
end 
pf = zeros(n,1); % calculated in objfuni.m 
options = optimset('TolX',1e-6,'TolFun',1e-
6,'MaxFunEvals',MFEval,'Display','iter','LargeScale','off'); 
clr = {'r--','b:','g-','k-.','m-x'}; 
for itero = 1:200 
    yt = y0;                     
    for iteri = 1:n 
        x0i = [yt, Data1(n_head+m1+1:n_head+m1+m2,iteri)'];  % scaled value 
        Bs = Bs0(iteri); 
        Pwc = Pwcp(:,iteri); 
        soc_d = soc_d0(iteri); soc_i = soc_i0(iteri); 
        socfmin = socfmin0(iteri); socfmax = socfmax0(iteri); 
        % penalty function 
        % the previous step value of v and w.  
        % note itero+1 is the current v and w. 
        v = V((m1*(iteri-1)+1):(m1*iteri),itero)'; 
        w = W((m1*(iteri-1)+1):(m1*iteri),itero)'; 
        cc0 = CC((m1*(iteri-1)+1):(m1*iteri),itero); 
        v = v+2*w.*w.*cc0';    % update of v      
        for j = 1:m1           % update of w     
            if cc(j)> gama*cc0(j) 
                w(j) = beta*w(j); 
            end 
        end 
        V((m1*(iteri-1)+1):(m1*iteri),itero+1) = v'; 
        W((m1*(iteri-1)+1):(m1*iteri),itero+1) = w';        
        [xi, h, exitflag] = fmincon(@objfuni_2,x0i,[],[],[],[],lb,ub,@confuni_2,options); 
        x_show = (xi-b_scale)./d_scale; % actual data 
        Data(:,iteri+(itero-1)*n) = [Bs, MPG, cost_bat, cost_driv, x_show]'; 
        % update the solution only when inner loop converges 
        if h < 1e3 && h > 0 
            Data1(:,iteri) = [Bs, MPG, cost_bat, cost_driv, xi]'; 
        end     
        con_max_all(iteri) = con_max; 
        % penalty function 
        % discrepancy of equality constraints 
        for j = 1:m1 
             cc(j) = Data1(j+n_head,iteri)-yt(j); 
        end 
        CC((m1*(iteri-1)+1):(m1*iteri),itero+1) = cc;       
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        figure(10*itero); 
        plot(t,soca,clr{iteri},'LineWidth',2.5); 
        hold on; 
        ylabel('soc','FontSize',12.5); 
        xlabel('time (sec)','FontSize',12.5); 
        legend('Bs = 5e-6','Bs = 10e-6', 'Bs = 15e-6', 'Bs = 20e-6'); 
        axis tight 
        figure(1+10*iteri); 
        plot(t,Pwc,'r:','LineWidth',2.5); 
        hold on; 
        plot(t,Pe,'b-','LineWidth',2.5); 
        hold on; 
        plot(t,Pb,'g--','LineWidth',2.5); 
        hold on; 
        legend('P_{w,cmd}','P_{e}','P_{b}'); 
        xlabel('time (sec)','FontSize',12.5); 
        axis tight 
        figure(2+10*iteri); 
        plot(t,Pwc-Pwa,'r:','LineWidth',2.5) 
        xlabel('time (sec)','FontSize',12.5); 
        axis tight 
    end 
    % analytical solution 
    ys1 = zeros(1,m1); 
    ys2 = ys1; 
    ys3 = ys1; 
    for ki = 1:n 
        v = V((m1*(ki-1)+1):(m1*ki),itero+1)'; 
        w = W((m1*(ki-1)+1):(m1*ki),itero+1)'; 
        ys1 = ys1+w.*w.*Data1(n_head+1:n_head+m1,ki)'; 
        ys2 = ys2+v; 
        ys3 = ys3+w.*w; 
    end 
    y0 = (ys1-1/2*ys2)./ys3; 
    y0_show = (y0-b_scale(1:m1))./d_scale(1:m1); 
    Datay(:,itero+1) = y0_show';     
    % stop criteria 
    error = max(abs((CC(:,itero+1)))) 
    cma = max(con_max_all)  % check the constraints feasibility 
    if error < ebslon && cma < 1e-5  
        break; 
    end    
end 
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% Distributed controller for CS mode for the PHEV in distribution Case 1 
% objective function 
function h = objfuni_2(xi) 
global v w cc cc0 V W CC Data1 n m1 m2 iteri itero pf gama beta con_max 
global d_scale b_scale yt k1 k2 k3 k4 k5 k6 n1 n2 ke kb soca Pe Pb Pwa     
global Pb_max Pb_min Pe_max Pe_min soc_max soc_min poles_cl max_Ped fuel_e_g E_factor 
belta  
global Bs b_scale d_scale soc_d soc_i t Pwc Pe_o fc_o soc_f cost_driv cost_bat 
global Pemax Pemin Pbmax Pbmin socmax socmin c Pe Pb iteri 
global eff_e eff_b eff_m Pe_c MPG 
% scale of the variables 
x = (xi-b_scale)./d_scale; 
k3 = x(1); n1 = x(2); ke = x(3); n2 = x(4);  kb = x(5); 
k1 = x(6); k2 = x(7);  
k4 = -k1/eff_b*eff_e; 
k5 = -k2/eff_b*eff_e; 
k6 = 0; 
K = [k1 k2 k3;k4 k5 k6]; 
K1 = K(1,:); K2 = K(2,:); 
% closed loop system   
Adiv = (1-kb*ke)+((1-kb*ke)==0)*1e-8; 
Acl = [Bs*(K2+kb*K1)/Adiv; 1 0 0; -eff_m*eff_e*(K1+ke*K2)/Adiv-
eff_m*eff_b*(K2+kb*K1)/Adiv]; 
Bcl = [Bs*(n2+kb*n1)/Adiv; 0; 1-eff_m*eff_e*(n1+ke*n2)/Adiv-
eff_m*eff_b*(n2+kb*n1)/Adiv]; 
Ccl = [1 0 0; eff_e*(K1+ke*K2)/Adiv; eff_b*(K2+kb*K1)/Adiv]; 
Dcl = [0; eff_e*(n1+ke*n2)/Adiv; eff_b*(n2+kb*n1)/Adiv]; 
sys1 = ss(Acl,Bcl,Ccl,Dcl); 
% simulation 
y = lsim(sys1,Pwc,t); 
delt_soc = y(:,1); 
soca = soc_d*ones(size(y(:,1)))-y(:,1); 
Pe = y(:,2); 
Pb = y(:,3); 
Pwa = eff_m*(Pb+Pe); 
figure(1); 
plot(t,soca,'LineWidth',2.5) 
ylabel('soc','FontSize',12.5) 
xlabel('time (sec)','FontSize',12.5) 
figure(2); 
plot(t,Pb,'b--',t,Pe,'g-',t,Pwa,'r-o',t,Pwc,'c-.','LineWidth',2.5) 
legend('Pb','Pe','Pw_a','Pw_{cmd}') 
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xlabel('time (sec)','FontSize',12.5) 
% calculate constraints related variables 
poles_cl = eig(Acl); 
soc_min = min(soca); soc_max = max(soca); 
soc_f = soca(length(soca)); 
Pe_min = min(Pe); Pe_max = max(Pe); 
Pb_min = min(Pb); Pb_max = max(Pb); 
% Pe_dot 
for i = 1:length(t)-1 
    Ped(i) = Pe(i+1)-Pe(i); 
end 
max_Ped = max(Ped);   
% objective function 
% % engine OOP Line 
Pe_c = Pe/eff_e*1e3; 
fuel0 = interp1(Pe_o,fc_o,Pe_c,'linear'); 
fuel = sum(fuel0); 
cost_bat = (soc_d - soc_f); 
cost_driv = sum(abs(Pwc-Pwa)); 
alpha = E_factor(iteri); 
% MPG 
% equivalent fuel consumption gram -> gallon 
FUEL = (fuel+alpha*cost_bat)/(1000*3.8*0.75); 
distance_US6 = 8.008; % US06 
MPG = distance_US6./FUEL; % mile per gallon 
f = fuel+alpha*cost_bat+belta*cost_driv; 
% penalty function 
for j = 1:m1 
    cc(j,1) = xi(j)-yt(j); 
end 
% quadratic penalty function 
QuaPen = (w.*cc')*(w.*cc')'; 
% Linear penalty function 
LinPen = v*cc; 
% objective function of the outer stage 
pf(iteri) = LinPen+QuaPen; 
h = f + pf(iteri); 
 
 
 
% Distributed controller for CS mode for the PHEV in distribution Case 1 
% constraint function 
function [c,ceq] = confuni_2(xi) 
global v w cc cc0 V W CC Data1 n m1 m2 iteri itero pf gama beta con_max 
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global Pb_max Pb_min Pe_max Pe_min soc_max soc_min poles_cl max_Ped fuel fuel_eq 
global Bs b_scale d_scale soc_d soc_i t Pwc Pe_o fc_o soc_f socfmin socfmax 
global Pemax Pemin Pbmax Pbmin socmax socmin c Pe Pb iteri Pe_chg_max 
% inequalities c <= 0 
c(1) = Pe_max - Pemax; 
c(2) = Pemin - Pe_min; 
c(3) = Pb_max - Pbmax; 
c(4) = Pbmin - Pb_min; 
c(5) = soc_max - socmax; 
c(6) = socmin - soc_min; 
c(7) = max_Ped - Pe_chg_max; 
np = length(poles_cl); 
for i = 1:np 
    c(7+i) = real(poles_cl(i)); 
end 
c(8+np) = socfmin - soc_f; 
c(9+np) = soc_f - socfmax; 
con_max = max(c); 
% equality constraints 
ceq = []; 
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Appendix B: SIMULINK Models Used in Chapter IV and V 

 
a. Vehicle model for the centralized control case 
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# 2 Controller when soc ∈  (0, socmin ] in the VSC 

 
 
 
# 3 CS mode controller in the VSC 

 
 
 
# 4 CD mode controller in the VSC 
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# 5 Regenerative braking controller in the VSC 

 
 
 
# 6 

 
 
 
# 7 

 
 
 
# 8 
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# 9 

 
 
 
# 10 

 
 
 
 

b. Vehicle model for the distributed control Case 1 
 
 

 
 

11 

12 

13 
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Compared to the centralized control case, the only difference is the supervisory 
controller for CS mode. It is distributed into two parts, the VSC and the BSC. 

 
 
# 11  

 
 
 
# 12 CS mode controller in the VSC in Case 1 

 
 
 
# 13 CS mode controller in the BSC in Case 1 
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c. Vehicle model for the distributed control Case 2 
 
 

 
 
 
Compared to the distributed control case 1, the only difference is the CS mode 

controller in the VSC and the BSC.  
 
 
# 14 CS mode controller in the VSC in Case 2 
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# 15 CS mode controller in the BSC in Case 2 
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Appendix C: Ideas on Distributed Controller Design Using LMI and 
BMI for CSM 

 

a. Linear matrix inequalities 

A linear matrix inequality (LMI) has the form [67]: 

 
0

1

( ) 0
m

i i
i

F x F x F
=

+ >∑�  (C.1)

where mx R∈  is the variable and the symmetric matrices T n n
i iF F R ×= ∈ , i = 0, …, m, are 

given. The inequality symbol in (C.1) means that F(x) is positive-definite, i.e., uTF(x)u > 

0 for all nonzero nu R∈ .  

b. Bilinear matrix inequalities 

A bilinear matrix inequality (BMI) is of the form [67]: 

 
0

1 1 1 1
( , ) 0

m n m n

i i j j i j ij
i j i j

F x y F x F y G x y H
= = = =

+ + + >∑ ∑ ∑∑�  (C.2)

where Gj and Hij are symmetric matrices of the same dimension as Fi, and ny R∈  

c. Controller design using LMI formulation 

    For instance, for state feedback control for a single LTI model, we assume full 

measurement of its state vector x. The control structure is as follows,  

 

Consider a regulation problem with disturbance d, and let e denote the regulation error. 

Setting 2, ,
x

d z e z
u

ω ∞

⎡ ⎤
= = = ⎢ ⎥

⎣ ⎦
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Given a state-space realization of the plant P(s), 

1 2

1 11 12

2 2 22

x Ax B B u
z C x D D u
z C x D u

ω
ω∞

= + +
= + +
= +

i

 

The closed loop system is given in state-space form by 

2 1

1 12 11

2 2 22

( )
( )
( )

x A B K x B
z C D K x D
z C D K x

ω
ω∞

= + +
= + +
= +

i

 

The 2H , H∞ performance and pole placement can be formulated as LMIs [68]. For 

instance, for 2H performance, the 2H norm of the closed-loop transfer function from ω to 

z2 does not exceed v if and only if there exist two symmetric matrices X2 and Q such that, 
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(C.3)

With the change of variable Y: = KX2, the above inequalities lead to LMI. Then the 

controller gains in K can be calculated from Y = KX2 [68]. 

d. Distributed controller structure for LMI formulation  

If the structure and the parameter dependency of the distributed controllers are 

assumed a priori, the overall distributed controller (equivalent centralized controller) as 

calculated by equation (3.13) results in a fixed structure controller. The design of a fixed 

structure controller reduces, under appropriate assumptions, to a bi-linear matrix 

inequality (BMI) problem as given in Appendix C. Unfortunately, BMI solvers are not 
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capable of efficiently handling large number of design variables.  Hence a nonlinear 

optimization formulation is proposed in this dissertation. 

For the distributed control system in Figure 3.2, assume that the distributed controllers 

in state-space have the following form, 
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(C.5)
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(C.6)
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i

 

(C.7)

Equations (C.4) to (C.7) represent the model for CBC11, CBC12, CA11 and CA21, 

respectively. 
 

    Combine the sub-controllers, we get the overall distributed controller as, 

[ ]

1
1 1 1 1

2 2 2 2

1 1 1 2 1 1
1

2 1 2 2 2 2

2

1

2
2

1

2

0 0 0
0 0 0

0 0
0 0

0 0 0

b
b b a b

b b b b

a b a b a a
a

a b a b a a

a

b

b
a

a

a

x A B C x
x A x B

e
B C B C A xx
B C B C A x

x

x
x

u C
x
x

⎡ ⎤
⎢ ⎥ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

i

i

i

i

 

Assume the controlled plant model as, 
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p p p p

p p

x A x B u E d

y C x

= + +

=

i

 

The closed loop system with the states 
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T
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in state-space form is: 
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    If all the sub-controllers are assumed to be in the controllable canonical form, the Acl 

and Ccl will be linear with respect to the unknown controller gains. For example, for a 

fourth order CBC11, we can assume 

[ ]1 1 1 14 13 12 11

14 13 12 11

0 1 0 0 0
0 0 1 0 0

, , .
0 0 0 1 0

1

b b b b b b b

b b b b

A B C c c c c

a a a a

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − − ⎣ ⎦⎣ ⎦  

The unknown controller gains are 14 13 12 11 14 13 12, , , , , ,b b b b b b ba a a a c c c and 11bc . 

For the 2H norm performance, the 2H norm of the closed-loop transfer function from ω 

to z2 does not exceed v if and only if there exist two symmetric matrices X2 and Q such 

that, 
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(C.8)

Compared to the inequalities in (C.3), if we use the change of variables (Y1 : = AclX2 

and Y2 : =CclX2) to make the above inequalities into LMI, the major computation hurdle is 

to solve for the unknown controller gains and the entries of X2 and Q from Y1 = AclX2 and 

Y2 =CclX2. 

    The inequalities in (C.8) are actually BMIs with the variables as the controller gains in 

Acl and Ccl, and the entries of X2 and Q. Solution algorithms for BMIs can be applied. The 

global algorithms, which are applicable to modest size problems with a few variables, 

include Branch and Bound algorithm [69], lagrangian dual global optimization algorithm 

[70], generalized benders decomposition [71]. The local algorithms, which are 

computationally fast, but depend on initial condition and may not converge to the global 

optima, include coordinate descent method [72], rank-minimization method [73], XY-

centering algorithm [74], and path-following method [75].  

    Meanwhile, in order to achieve CSM for the actuator, the actuator controller (CBC11 

and CBC12), can change with the actuator module when the actuator changes, but the base 

controller (CA11 and CA21) remains the same. Thus, the controller gains of the base 

controller and the actuator controller have different design freedom. This needs to be 

considered in the solution algorithm as well. Two approaches, an all in one optimization 

and a bi-level optimization, have been introduced in Chapter II, Section 2.5, to handle the 

different design freedom of the controller gains. 
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