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Abstract 

The goal of this research was to discern the effects of introducing uncertainty 

representation into a set-based design process with applications in ship design.  The 

hypothesis was that the introduction of design uncertainty would enhance the facilitation 

of set-based design practices.   

A presentation of three fuzzy logic agent based methods for the facilitation of set-based 

ship design practices is offered.  The first method utilized a type-1 fuzzy logic system to 

facilitate set-based design practices and possessed no uncertainty modeling.   The next 

two methods included the representation of design uncertainty in the set-based design 

space.  Of these two methods, one utilized a novel approach that harnessed techniques of 

randomization to model an interval type-2 fuzzy logic system, the other method made use 

of general type-2 fuzzy logic methods that were well-known, but still relatively under-

utilized in academics and industry when compared to type-1 fuzzy logic systems.   

Comparisons of the newly developed fuzzy logic systems with each other, and the type-1 

agent based fuzzy logic system provided the basis for conclusions as to the effects of 

introducing uncertainty modeling into a set-based design process.  The results of this 

experimental research have shown that the inclusion of uncertainty modeling in the set-

based design process for the negotiation of design variables enhances the overall set-

based design progression, especially when working with highly constrained designs.    
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In the case of a highly constrained design, the type-1 fuzzy logic system was unable to 

promote set-convergence within the allotted experimental time without repeated design 

failures, while the use of uncertainty modeling allowed the interval type-2 modeling and 

general type-2 fuzzy logic systems to achieve feasible set-based design convergence.  

When performing a simplistic, loosely constrained design, all three fuzzy logic systems 

were capable of facilitating the principle practices of set-based design within the feasible 

solution space; specifically, the set-based practices of delaying design decisions and 

gradual reduction of the feasible solution space. 

This research has led to the enhancement of the set-based design process by providing 

capabilities to now represent uncertainty in the set-based design space though the use of 

either the newly developed interval type-2 or general type-2 fuzzy logic systems. 
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CHAPTER 1  

INTRODUCTION  

1.1 Research Overview 

The United States Navy has, in recent years, recognized a need to begin implementation 

of set-based design (SBD) practices throughout the ship design process [Sullivan, 2008] 

[Kassel, Cooper, and Mackenna, 2010] [Eccles, 2010] [Doerry, 2009].  As recently as 

2010, the Navy’s goals for inclusion of SBD methods for early-stage ship design were 

outlined in a paper by Kassel, Cooper, and Mackenna, entitled, “Rebuilding the 

NAVSEA Early Stage Ship Design Environment” [2010].  Liker et. al. have also 

discussed the need for the development of design tools to “facilitate a proper exchange of 

information” [1996].  Liker’s paper discusses a clear need for a SBD tool to aid in the 

facilitation of the SBD methodology.   In 2003, at the University of Michigan, David J. 

Singer performed studies utilizing a hybrid agent type-1 fuzzy logic system (T1 FLS) to 

demonstrate that a design tool was capable of helping to facilitate SBD practices.  By 

helping to facilitate SBD, the design tool also resulted in more robust design solutions 

when compared to a typical point-based design approach [Singer 2003].  This dissertation 

presents research on the efforts to further improve the hybrid agent T1 FLS by adding 

uncertainty modeling capabilities to the SBD environment. The author has utilized set-

based preliminary ship design experiments to investigate the effects of introducing 
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uncertainty modeling into the SBD environment through the use of a novel interval type-

2 modeling (IT2M) and general type-2 (GT2) FLSs. 

One may ask why uncertainty is needed in the SBD process.  The simple answer is that 

all communications are uncertain to some degree [Wallsten and Budescu, 1995].  Yet, a 

typical design process treats decisions and data as crisp or well-known, and forces 

designers to make discrete decisions - in essence discarding the uncertainty associated 

with information and communications.  The SBD method possesses numerous core 

principles that guide its implementation.  One of the core principles is to achieve a 

reduction of uncertainty before making initial design decisions.  Introducing uncertainty 

modeling into the SBD environment using type-2 fuzzy logic (T2 FL), as opposed to 

type-1 fuzzy logic (T1 FL) methods, should represent an increase in the information 

available to designers when trying to make important preliminary design decisions.  How 

this additional information affects the overall SBD process is the driving question behind 

the investigation and experimental studies detailed in this thesis.  The hypothesis is that 

an enhancement of the overall SBD procedure may be achieved through the introduction 

of uncertainty representation in the SBD space.   

Set-based preliminary container ship designs were performed using a T1, a newly 

developed IT2M and general type-2 GT2 FLS SBD tool environments.  The newly 

developed IT2M and GT2 FLS SBD environments were compared to the results of the T1 

FLS SBD experimental results, which served as a baseline for the experiments.  The 

comparisons allowed for an investigation into the effects of introducing uncertainty 

modeling into the SBD space.   
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Two different containership designs were developed utilizing each of the three FLS 

design tools to perform preliminary set-based ship designs.  One ship design was loosely 

constrained (Ship E) and the other highly constrained (Ship D).   The purpose of the two 

different designs was to test the situational robustness of the SBD FLSs; would the design 

environments be capable of facilitating a SBD for both a simply constrained and highly 

constrained design.   

The experimental results showed that the introduction of design uncertainty allowed for 

enhancement of SBD processes through the increased delaying of design decisions and 

the increase in available design information.  The delaying of design decisions resulted 

from the uncertainty modeling causing a delay in the set-reduction process until 

uncertainty was adequately reduced.  The IT2M and GT2 FLS SBD environments 

increased the available design information by providing a representation of design 

uncertainty.  The uncertainty modeling proved to be particularly beneficial during the 

highly constrained ship designs.  During these designs, the uncertainty representation 

helped to prevent the elimination of design values needed for a feasible design.  Without 

the representation of design uncertainty, the T1 FLS SBD environment was unable to 

achieve a feasible design solution within the allotted experimental time.  As for the 

loosely constrained design, the uncertainty modeling of the IT2M and GT2 FLSs proved 

to be no more effective at facilitating the SBD process than did the T1 FLS SBD 

environment. 
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1.2 Dissertation Contributions 

The research outlined in this dissertation provides meaningful contributions to the field of 

engineering and design systems by demonstrating the advantages to introducing the 

representation of design uncertainty into a SBD process.  The research advances the 

facilitation of SBD practices by providing new systems for representation of uncertainty 

inherent in communication and design.  The methods also showed improved facilitation 

of principle SBD practices through the use of novel IT2M and GT2 FLS SBD 

environments.  The specific contributions of this research include: 

1) The ability to now represent uncertainty in communications and design data. 

- Through the use of the IT2M and GT2 FLS SBD environments. 

2) Enhancement of the facilitation of SBD processes. 

- Through delaying of design decisions as a result of the representation 

of design uncertainty. 

- Through the increase in available design information by graphical 

representation of design uncertainty in the IT2M and GT2 FLS SBD 

environments. 

- Through representation of robustness of the design solutions via the 

IT2M Joint Output Preference Histograms; see Chapter 5, Section 

5.3.2. 

3) Development of the new interval type-2 modeling (IT2M) FLS methods. 

- Yrand, xRU, xRL, and Slopes randomization methods. 

4) Development of the IT2M Joint Output Preference (JOP) histogram for 

identification of design value robustness in the presence of design uncertainty. 

5) Development of a simplified GT2 membership function representation that 

required function definition in only two-dimensions, as opposed to the typical 

three-dimensions. 
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These contributions help to advance the research into the fields of SBD facilitation and 

application, fuzzy logic systems, and uncertainty representation for information 

communications in the design environment. 

1.3 Dissertation Overview 

This dissertation uses the remainder of Chapter 1 to outline the differences between the 

long-practiced point-based design approach and the more recently developed set-based 

design approach.  In this discussion the drawbacks of the point-based design approach 

and the benefits of the SBD method are outlined.  A discussion of previous SBD research 

is also provided before transitioning into a description of uncertainty in design and 

communication and how it relates to SBD; Chapter 2.   

Communication is a core principle of SBD, but communications are inherently uncertain.  

Therefore Chapter 2 discusses the different types of uncertainty associated with design 

and communication of data.  Uncertainty of linguistic and numeric data can be 

represented using FLSs, as such, Chapter 2 also serves to provide the reader with an 

introduction into fuzzy set theory, as well as T1, interval type-2 (IT2), and GT2 FLSs.  

The chapter describes the FLS components and how fuzzy logic can be utilized for 

uncertainty representation.  Several detailed examples are also provided to aid in the 

explanation of fuzzy set theory and FLS operations.   

In Chapter 3 the motivation for the development of the IT2M FLS is outlined in detail, 

describing the advantages and disadvantages of a true T2 FLS.  The theory behind the 

IT2M FLS methodology and the IT2M FLS components are described.  The thesis then 

transitions into detailing the next progression of FLSs and uncertainty representation, via 
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the GT2 FLS, describing the development of a unique, simplified GT2 MF representation 

and the two-step centroid type-reduction and defuzzification process. 

Chapter 5 provides results from the preliminary development of the IT2M and GT2 FLS 

SBD environments.  These systems were compared to historical data obtained from T1 

FLS SBD facilitation research conducted by Singer [2003].  The chapter outlines the 

development of the unique IT2M FLS randomization methods and the resulting 

capabilities of the methods for uncertainty representation. 

Chapters 6 and 7 introduce the SBD environment as a FLS design tool and discuss the 

system structure involving the use of Chief engineering agent and design agents to 

perform the preliminary set-based ship designs.  The experimental design for the 

preliminary set-based ship designs is outlined in detail. 

The results of the set-based preliminary ship design experiments are outlined in detail in 

Chapter 8.  Chapter 9 discusses the conclusions formulated from the SBD experimental 

evidence, limitations of the conducted research, the author’s research contributions, and 

recommendations for future research.  

1.4 Introduction to Point-Based Design Concepts 

Current ship design practices are fraught with delays, set-backs, and communication 

flaws.  Many of these problems stem from long-standing traditional design practices, 

such as, use of the commonly applied point-based design method.  A point-based design 

process typically follows the standard design spiral; Figure 1.1.  Following the point-

based design spiral, designers begin by estimating initial discrete design parameters based 
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on a preliminary study of similar ships, cars, planes, etc. These initial design parameters 

are used as the basis for design solutions.  Trade-off studies are performed and a single 

design solution is eventually chosen.  The solution is then analyzed in increasing detail 

and altered as necessary in an attempt to reach a final feasible solution [Liker, Sobek, 

Ward, and Cristiano, 1996] [Sobek, 1990] [Singer, Doerry, and Buckley, 2009].  Figure 

1.1 demonstrates an example of a point-based design spiral for a surface cargo ship as 

detailed by J.H. Evans [1959]. 

With a point-based design, as the fidelity of the analyses increases, design flaws begin to 

surface which require quick solutions to bring the design back into the feasible solution 

space.  It is often the case that the design cannot be altered enough to achieve a feasible 

solution, at which point a new design alternative is chosen and the design spiral is 

repeated;  “The key point is that a single solution is synthesized first, then analyzed and 

changed accordingly” [Liker, Sobek, Ward, and Cristiano, 1996].  The highly iterative 

nature of the point-based design process can be quite costly and time consuming 

[Mistree, et. al., 1990].  Keane and Tibbitts [1996] highlight that the cost of design 

changes increases while design flexibility decreases as a design progresses throughout the 

various stages of development; Figure 1.2.   

The need for re-design during point-based approaches can be attributed to several 

sources.  For example, engineers are forced to choose discrete values for initial design 

parameters before they can begin the design, despite often being uncertain as to the best 

values to choose.  Point-based methods also lend themselves to the “over-the-wall” 

approach of engineering where one departmental design group completes their design 

work and then passes the project to the next group [Boothroyd, 1994].  The transfer of 
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design information from the design group to the manufacturing group is a common 

example of “over-the-wall” point-based communications. 

 

Figure 1.1 Point-based Design Spiral [Evans, 1959] 

 

Figure 1.2 Expense of Design Changes During Different Ship Design Phases, 

Adapted from Keane & Tibbits [1996] 
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The “over-the-wall” approach represents a lack of inter-department communication 

among the various design groups, and as a result, forms an entirely down-stream flow of 

information [Wheelwright and Clark, 1992].  In down-stream information flow, as an 

upstream design group works to develop a solution that best suits their needs, they often 

ignore the needs of the remaining downstream design groups.  As the design is then 

passed off to the next group in line, it is frequently necessary to perform some degree of 

re-design to accommodate the needs of the current design group; thus, creating extra 

design work and increasing costs.  This type of downstream information flow also 

encourages a sequential development of the design.  Sobek, Ward, and Liker refer to this 

sequential design development as “serial engineering” [1999]. 

During sequential design development, the downstream design groups will often delay 

their design work because they worry that they will have to restructure their design once 

they receive design information from the upstream groups [Ward, et. al, 1995].  As a 

result of this sequential design progression, the point-based design method tends to be a 

lengthy design process since design tasks cannot progress concurrently.  A further 

drawback of the point-based design approach is that the iterative process does not 

guarantee that the method will ever result on a feasible solution [Bernstein, 1997].  

Because of the drawbacks to point-based design methods, a great deal of research has 

been done into alternative design methods resulting in a vast array of newer design 

methodologies and concepts such as: Lean Product Design, Total Quality Management 

(TQM), Theory of Constraints (TOC), Concurrent Engineering (CE), Set-Base Design 

(SBD), Design for Manufacturing Assembly (DFMA), Quality Function Deployment 

(QFD), Method of Controlled Convergence, Design for Six Sigma, cross-functional 
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and/or co-located design teams, and various combinations of these concepts [Liker and 

Lamb, 2002] [Pheng and Teo, 2004] [Berry and Smith, 2005] [Mistree et. al., 1990] 

[Bernstein, 1998] [Cohen, 1995] [Pugh, 1991].     

1.5 Introduction to Set-Based Design Concepts 

The Toyota Motor Corp. is often credited with the development of SBD and the 

application of concurrent engineering (CE), having operated using set-based methods 

long before the term was even in existence.  Jeffrey K. Liker, Durward K. Sobek, and 

Allen Ward, have authored/co-authored several books and research papers documenting 

the principles that guide Toyota and the SBD process for engineering, some of which are 

listed in the references section; [Hopp and Spearman, 2008] [Ward et al. 1995], [Liker 

2004], [Sobek et. al. 1999], [Sobek 1996].   

Generally, SBD methods use a concurrent approach to engineering.  In fact, some 

researchers prefer the term set-based concurrent engineering (SBCE), since they feel it 

more accurately emphasizes the concurrent focus of SBD [Sobek, Allen, and Liker, 

1999].  Concurrent engineering emphasizes the simultaneous development of both the 

product and the production process with the goal to shorten lead times, increase quality, 

and decrease design costs [Sohlenius, 1992].  However, CE does not require the 

communication of information in terms of sets of data as is done when using SBD 

methods; work may be done concurrently, but with point-based communications. 

During the initial phase of a SBD, individual, functional design groups establish 

allowable ranges (sets) for design variables.  Thus creating a large open design space 

from which each functional design group may create their own unique sets of design 
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solutions independently [Sobek, Allen, and Liker 1999].  The set of values for each 

design variable is then gradually narrowed down as the design trade-offs are more 

completely understood [Liker, Ettlie, and Campbell, 1995].  Since there are a great 

number of designs being generated at this preliminary stage, only an initial analysis of 

each design is performed to check for satisfaction of design constraints and goals.   

After defining preliminary solutions, the different functional engineering groups then 

meet to investigate the regions within the design space containing overlapping design 

solutions.  The overlapping regions represent design solutions that are feasible for all 

functional groups.  At this stage of the design process the different functional groups 

engage in communication about the trade-offs and benefits of the overlapping feasible 

designs.  The groups then separate to rework designs, or generate new designs that fall 

within the initial region of commonality.  This entire process is repeated, steadily 

reducing the design space and performing higher fidelity analyses, until an understanding 

of all the design trade-offs is reached [Sobek, Allen, Liker, 1999].  Figure 1.3 

diagrammatically emphasizes how the SBD process works: (1) A large open design space 

is specified, whereby (2) parallel development of individual sets of initial design 

solutions occurs and regions of overlapping common solutions are identified, (3-4) 

gradually narrowing the solutions space by eliminating infeasible and less desirable 

solutions (5) until ultimately reaching a final design.  

While narrowing the design space, an emphasis is placed on set-based communication 

between the different design groups; for instance, the design and manufacturing groups.  

This emphasis on communication allows for the simultaneous upstream and downstream 

flow of information.  As an example, the design groups better understand the breadth of 
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the design space they are working within, as well as the capabilities of the manufacturing 

groups and vice versa [Bernstein, 1998].   

 

Figure 1.3 Convergence of Set-based Solution Space [Bernstein, 1998] 

The example of communications between design and manufacturing groups demonstrates 

how set-based communication allows for both intra-group and inter-group 

communications among multiple design groups.  It is important to emphasize that during 

inter-group communications, the groups are communicating about sets of values and sets 

of solutions.  When one group develops sets of solutions, but proceeds to communicate 

only their single best solution to the other design groups, there is a clear breakdown in the 

principle practice of set-based communication [Sobek, 1996].   

Communication between the design groups is also crucial for the CE aspect of SBD.    

For instance, during a SBD it is common to provide a preliminary set of designs to the 
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manufacturing group so that the design of jigs, stamps, assembly processes, etc. can 

proceed in parallel with the continued narrowing of the design space by the engineering 

groups.  Compared to point-based design, the set-based method of communication helps 

to facilitate concurrent design in which different design groups are able to work on the 

design in parallel because of the upstream and downstream information flow.   

When utilizing SBCE, to avoid costly re-design of manufacturing equipment and 

processes as the engineering groups reach a final design, the manufacturing group 

designs for a large set of possible solutions.  The set of possible solutions is based on 

information that is provided early-on from the upstream design groups.  As long as the 

final design is a subset of the initial design space, the equipment and processes designed 

by the manufacturing group will still be capable of producing the desired parts [Ward et. 

al., 1995].  To demonstrate this concept further, reference Figure 1.4 showing a large 

solution set, A, with a smaller solution sub-set, B, located within the initial set A.   

 

 

 

 

Figure 1.4 Solution Subset B, of Initial Solution Set A 

If at time t the manufacturing group is provided the solution set A, and the group then 

designs the manufacturing process to produce any part falling within set A, then the 

engineers can select any design within set A, say sub-set B at time t+1, and the 

Set A Set A 

Set B 

Time t Time t+1 
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manufacturing group will have no difficulty producing the required parts for this solution 

since the process was designed to work for any solution within set A [Sobek, 1996].  By 

designing for set A, the manufacturing group can save time and money by avoiding the 

need for costly re-design. This example demonstrates the promotion of concurrent and 

parallel engineering practices through SBD communications. 

1.5.1 Set-Based Design Principles  

There are several key advantages to the use of SBD for engineering and design.  These 

advantages separate SBD from other design methods and are part of the core principles 

which must be followed when striving to implement SBD.  Ward et. al [1995], list five 

advantages for set-based design which are quoted in italics below and discussed 

individually. 

1) Set-based concurrent engineering enables reliable, efficient communication.   

 

Efficient communication is a result of decisions being made in parallel and 

being based on sets of solutions.  As such, any subsequent decisions are still 

valid if based on a sub-set of the initial set [Sobek, 1996].  This set-based 

communication helps by allowing work to proceed concurrently since 

designers are less worried about having to re-work a design at a later date. 

 

2) Set-based concurrent engineering allows for greater parallelism in the 

process, with more effective, early use of sub-teams.   

 

The design (upstream) and manufacturing (downstream) groups can benefit by 

concurrently sharing information throughout the entire design process 

[Bernstein, 1998].  An example of the benefits of upstream flow of information 
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includes that of the development of a new manufacturing capability which may 

allow the engineers to consider designs that were previously infeasible  

 

3) Set-based concurrent engineering bases the most critical, early decisions on 

data.   

This principle is crucial since early-stage design decisions are typically the 

most uncertain and yet have the most influence on the overall design and cost 

[Bernstein, 1998].  As a design process develops, design flexibility decreases 

while the cost of making design changes increases [Keane and Tibbitts, 1996]; 

Figure 1.2.  Therefore, delaying design decisions, a core SBD practice, allows 

critical decisions to be made only after the communication of results from 

design analyses and trade-off studies have occurred and uncertainty has been 

reduced.  Without the added information gained by delaying design decisions, 

“Decision alternatives may appear equally attractive (or equally unattractive) if 

people lack the information needed to distinguish them.” [Bashers, 2001].  By 

purposefully delaying design decisions, the SBD process fosters an attitude of 

making the right decisions the first time. 

 

4) Set-based design promotes institutional learning.   

 

As the different functional groups communicate trade-offs between the various 

overlapping solutions sets, each individual design group gains insight into the 

technical aspects of the other groups.  Institutional learning also relates to the 

SBD practice developed from Toyota Motor Corp. of keeping detailed 

documentation of design decisions throughout the entire design process 
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[Sobek, 1999].  This process of documentation allows the engineers to have a 

reference database of prior technical decisions that are known to have 

previously succeeded or failed.  The design documentation is used when 

attempting to modify a current design or create a new product.   

 

5) Set-based concurrent engineering allows for a search of optimal designs.  

 

It has been shown that by searching a SBD space it is possible to achieve a 

more globally optimal design solution when compared to point-based design 

solutions for the same design project [Singer, Doerry, and Buckley, 2010] 

[Singer, 2003]. 

Based on the described advantages of the SBD method, there have been many attempts to 

apply SBD practices throughout a variety of design industries such as the U.S. 

automotive, aerospace, cellular phone, and ship building industries.  Attempts at 

implementing SBD practices have produced mixed results.  The difficulties in 

establishing SBD include:  

 the intense communication that must be utilized during design,  

 feelings of distrust among employees and a sense that the cost of delaying 

decisions and developing sets of solutions will not truly save money in the long 

run [Sobek, 1999],  

 lack of a strict outline for corporate-wide implementation of set-based design,   

 poor management of SBD projects, 

 and communicating in terms of sets of data, instead of discrete data values. 

It has been stated that, “Since there is no proven formal methodology, learning the (set-

based design) process will be slow and error-prone.” [Ward et. al., 1995].   Liker et. al. 
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have suggested that there is a need, “to develop tools which facilitate a proper exchange 

of information … information that reflects the inherent ambiguity and imprecision of 

design decisions” [1996].  Finally, “it is of utmost importance that in early stages of 

product design, we maintain design freedom by searching for satisfying solutions … 

Maintaining design freedom during the early stages of design facilitates fine-tuning and 

minimizes the changes that may occur in the later stages of design” [Wang and Terpenny, 

2003].  Set-based design provides a way to represent the ambiguities associated with 

early stage ship design and information communications.  

1.6 Set-Based Design: Historical Research & Current Research Scope 

A limited amount of research has been conducted on methods by which to facilitate the 

practice of SBD methods. Current research on methods for the practical application of 

SBD practices rely on techniques such as type-1 fuzzy logic (T1 FL), discrete event 

simulations, Responsible Agents for Product/Process Integrated Development (RAPPID), 

and parametric methods [Singer, 2003] [Wong et. al., 2007] [Nahm and Ishikawa, 2006].  

Research into the use of optimization methods, analysis tools, analytical hierarchy 

processing (AHP), expert systems, group support systems, and multi-criteria decision 

making for facilitation of SBD has also been performed.  However, these particular 

methods tend to focus on only one specific aspect of SBD; aspects such as, finding the 

optimal solution, performing trade-off analyses, team communications, or decision 

making. These methods fail to recognize that SBD requires the simultaneous 

implementation of many aspects, and to only facilitate one aspect, is to not truly facilitate 

SBD.   Each of the aforementioned methods possesses both positive and negative aspects. 
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The focus in this research was on the use of fuzzy logic systems (FLSs) to facilitate SBD, 

as FLSs have shown positive results for the application of and facilitation of SBD 

processes [Singer, 2003].  

To facilitate the use of SBD concepts such as increased communication, communication 

via sets of solutions, and recording design decisions during the design process, a SBD 

tool was developed at the University of Michigan by David J. Singer.  In Singer’s Ph.D. 

dissertation entitled, “A Hybrid Agent Approach for Set-Based Conceptual Ship Design 

Through the Use of a Fuzzy Logic Agent to Facilitate Communications and Negotiation” 

[Singer, 2003], he detailed how a fuzzy logic (FL) software client was used to elicit 

increased communication amongst student design team members and how the design tool 

helped to promote SBD principles.   

The hybrid agent FL design tool developed by Singer utilized a type-1 fuzzy logic system 

(T1 FLS).  In this set-based T1 FLS, design variables were negotiated by the FLS using 

input preference data provided by design agents.  The design agents were human subjects 

assigned to represent different functional design roles, with each design agent possessing 

unique design goals.  A human design agent would analyze a set of values for a design 

variable and, based on the agent’s unique functional design goal, describe preference for 

different design values using linguistic terms of Preferred (P), Marginal (M), and 

Unpreferred (U).  In Singer’s research, the design agents represented their linguistic 

preferences using T1 MFs.  A general example of the agent preference input phase for the 

SBD environment is shown in the left-hand side of Figure 1.5.  The FLS could operate 

using any number of design agents 1…n.  When applied to perform a preliminary 

containership design only five design agents were utilized, Cargo, Resistance, Stability, 
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Hull, and Propulsion. The goals of each agent for a ship design are discussed in     

Chapter 6, Section 1.   

 

Figure 1.5 T1 FLS Negotiation Example, Agent Preference Inputs and Joint Output 

Preference Curve for Negotiation Round 1 

The design agents’ preference information was then input into the T1 FLS where the data 

was processed and reduced to a single, joint output preference (JOP) curve.  The JOP 

curve, example Figure 1.5, represents the combined preference of all design agents, for 

each design value in the set of values [xmin,xmax].  Higher JOP values indicated a greater 

preference for the design value by all design agents.  The JOP curve data designated 

which design values were worth investigating further, and was used by a Chief 

engineering agent to narrow the set-range for further negotiations; Figure 1.6.  

Subsequent negotiations typically resulted in changes to the JOP values as design agents 

learned more about the design and the set-ranges for the design variables was reduced. 
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Figure 1.6 T1 FLS Negotiation Example, Round 2 Negotiation of the New x-Range 

with Subsequent Change in JOP Curve  

Singer has shown in his dissertation that it is indeed possible to help facilitate SBD 

practices through the use of a computational design tool.  However, Singer utilized a T1 

FLS that cannot truly represent design uncertainty because, once defined, a T1 FLS is 

comprised of fully known mathematical equations [Mendel and John, 2002].  The studies 

undertaken recently were done to discover if additional improvements to the FLS and the 

facilitation of SBD practices could be accomplished by introducing a true representation 

of design uncertainty via T2 FL methods.  In these studies, newly developed interval 

type-2 modeling (IT2M) and general type-2 (GT2) FLSs were used to create SBD 

environments which were applied for preliminary ship design. The newly developed 

FLSs attempt to provide true uncertainty modeling and an increase in the level of 

information available to human design agents for SBD communications.  By improving 

the ability to model design uncertainty, the new design environments should help to 

further promote the SBD principles of communication and delaying early design 

decisions until one can make well-informed decisions.   

The advantages for SBD cannot be ignored, but the difficulties and risks of attempting to 

implement a corporate-wide change in design methodology required to implement SBD 
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are monumental.  Ward et. al. state, “Since there is no proven formal methodology (for 

SBD), learning the process will be slow and error-prone … a U.S. company would have 

to develop a more formal approach” [Ward, et. al., 1995].  If the author can show 

improvement in the application of set-based practices through use of a FLS SBD tool 

with uncertainty modeling capabilities, then the FLS could be used by a company as a 

tool to formally integrate SBD concepts, thus reducing the total risk of incurring losses 

during the transition to, and implementation of, SBD.  Liker et. al. expressed a need for 

SBD tool research and the need to, “develop tools which facilitate a proper exchange of 

information … information that reflects the inherent ambiguity and imprecision of design 

decisions” [Liker, et. al., 1996].  The research conducted by the author aimed to directly 

fulfill the clear need for a design tool to implement the exchange of uncertain information 

and to facilitate the SBD process. 

Of the two new approaches studied for the facilitation of SBD, the first method consists 

of an IT2M FLS that utilized T1 FL methods in conjunction with a randomization 

technique to model the hypothesized benefits of a true interval type-2 (IT2) FLS.  For the 

IT2M FLS approach, the author developed four different methods of randomization; the 

key process behind the modeling methods.  The IT2M approach and the four 

randomization methods will be discussed in detail later in Chapter 3.  The second SBD 

FLS method was developed using a general type-2 (GT2) FLS to provide an additional 

level of uncertainty modeling that cannot be achieved by a T1 FLS or an IT2 FLS; the 

reasons for this are discussed in the coming chapter.  The additional design information 

provided by the newly developed SBD FLSs stem from the abilities of the new FLSs to 

describe and model design uncertainty using IT2M and GT2 FLS methods.   
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As mentioned in Section 1.2.1, one of the main principles of SBD is to purposefully delay 

making early-stage design decisions until all design trade-offs are more fully understood 

[Bernstein, 1998].  An increased understanding of design decisions can be developed 

through further analysis of design solutions, as well as the accumulation of design data 

and information.  The gathering of detailed design information represents a reduction in 

the uncertainty about the choices for design variables.  Reduction of uncertainty through 

the analysis of solution sets allows for more informed and potentially less risky decisions.  

Since early design decisions have the greatest effect on the cost of a project, delaying 

decisions, although counter-intuitive to most design methods, reduces uncertainty and 

leads to more robust designs [Bernstein, 1998].  As such, any increase in the ability to 

communicate information, especially uncertainty, is highly desirable.   

This research aims to determine if improvements to the facilitation of the SBD process 

can be achieved in the areas of communication of design information, modeling of design 

uncertainty, and other core SBD principles. 
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CHAPTER 2  

UNCERTAINTY & FUZZY LOGIC SYSTEMS 

This chapter serves to introduce the reader to the concepts of uncertainty in 

communications and design, as well as the concepts of fuzzy set theory and fuzzy logic, 

and how they are applied to model uncertainty.  The intention is to provide a brief 

introduction of these concepts so the reader may be familiar with terminology and the 

general theories applied throughout the described research. For a more in-depth 

discussion on these topics the reader is directed toward [Mendel, 2001] [Cox, 1999] 

[Castillo, et. al., 2007] [Mendel, 2007] [Mendel and John, 2002] [Mendel, John, and Liu, 

2006] [Mendel, 1995].   

2.1 Uncertainty in Communication & Design 

Communication is a core concept of the SBD philosophy.  Yet, communications are 

fraught with uncertainties and vagueness.  Wallsten and Budescu state, in reference to 

information, that, “Except in very special cases, all representations are vague to some 

degree in the minds of the originators and in the minds of the receivers” [1995].  This 

statement implies that all information possess a degree of uncertainty, whether the 

information itself is a non-crisp, uncertain value, or a crisp, totally known value.   

In human communications, “words mean different things to different people, and are 

therefore uncertain.” [Mendel, 2007].  There exist two types of uncertainty about a word, 
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the intrapersonal uncertainty, which is “the uncertainty that a person has about the word”; 

and interpersonal uncertainty, which is, “the uncertainty that a group of people have 

about the word” [Wu and Mendel, 2010] [Mendel, 2007].  Even when information is 

itself inherently certain, the information can be perceived as uncertain by the person 

receiving or conveying the information.  The perception and conveyance of information 

is greatly affected by the method of communication used. 

Humans have the ability to communicate in terms of both numerical and linguistic forms.  

Each form of communication is, “sensitive to the degrees of vagueness inherent in the 

events being described, the sources of uncertainty, and the nature of the communication 

task” [Wallsten and Budescu, 1995].  Research has shown that given a choice, humans 

prefer to communicate information to others linguistically, since they feel this mode of 

communication is more capable of conveying inherent uncertainty.  Yet, when receiving 

information from others, humans generally prefer numerical communications, since they 

view this information to be less uncertain [Wallsten and Budescu, 1995].   

To communicate in such a way, it is necessary to have a translator to map the linguistic 

terms from the person conveying information, into numerical terms for the person 

receiving the information.  It has been suggested that fuzzy logic systems (FLSs) can be 

used as the method to both represent linguistic terms (called Computing With Words) and 

convey numerical uncertainty [Lawry, 2001] [Lawry, Shanahan and Ralescu, 2003] 

[Mendel, 1999] [Wang, 2001] [Zadeh, 1999] [Wallsten and Budescu, 1995] [Wu and 

Mendel, 2009].  Figure 2.1 & Figure 2.2 illustrate a simple example demonstrating the 

purpose of information translation for conveying and receiving both linguistic and 

numeric information and communications.   
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Figure 2.1 A Typical Communications Example 

In Figure 2.1, the character is trying to linguistically emphasize that it is very hot.  

However, this linguistic description is perceived with uncertainty by the character on the 

right, leaving the character wanting to know a numeric value which could describe 

precisely how hot it is.  Figure 2.2 illustrates how an FLS helps to achieve the preferred 

communications scheme by translating the linguistically conveyed temperature to a 

numerically received value.  The nature of the communication methods utilized by the 

characters in Figure 2.2 facilitates the translation of information in a manner that is 

perceived as having the least amount of uncertainty by both the conveyor and receiver of 

the information.  

 
Figure 2.2  Preferred Communications Achieved By Data Transformation Via FLS 
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The process of designing complex systems involves vast amounts of communication 

between different functional design groups.  The communication process begins when 

design groups are first provided a set of design constraints.  The design constraints are 

supplied with the intention of guiding the development of the design.  It is at this pre-

design stage that uncertainty is first introduced into the design via the design constraints.  

Design constraints can be provided both numerically and linguistically.  In a design ship 

for example, there may be a constraint that states, “The engine room may not be near the 

sleeping berths.” or more specifically that, “The engine room may not be within 30 m of 

the sleeping berths.”  The linguistic constraint obviously possesses a degree of 

uncertainty.  The uncertainty of the linguistic constraint lies in the definition of the 

words, “not near”.  As for the numerical constraint, traditional cognition frames the idea 

of a numerical constraint as a crisp and rigid design constraint; set-based design, 

however, challenges this way of thinking. 

When defining a numerical constraint there is often some associated uncertainty that is 

typically represented by a provided tolerance.  Continuing with the engine room example, 

“30 ± 1 m”, may be a provided constraint.  With this discrete constraint, the goal is to get 

as close to 30 m as possible.  During a point-based design it may be necessary to deviate 

from the 30 m ideal value to satisfy some other design constraint and maintain a feasible 

solution.  In this case, the value is chosen out of necessity; it was not specifically 

designed for.   

In set-based design, the uncertainties of numerical constraints are represented by utilizing 

sets of design values, instead of a single value with an allowable tolerance; in example 

[27,33] m.  As described, the point-based design approach would try to get the sleeping 
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berths exactly 30 m away from the engine room.  In contrast, the set-based approach 

would enumerate design solutions based on values within the set-range of [27,33] m and 

then determine the design trade-offs for each enumeration.  The larger range of [27,33] m 

would be chosen since at the beginning of the design the allowable range of design values 

is unknown; SBD is utilized to narrow in on the allowable set-values.  With the set-based 

approach, design solutions naturally evolve and a value other than 30 m would be chosen 

only if trade-off analyses showed the design solution to be superior.     

Unlike the SBD approach, the point-based design approach does not explore the solution 

space unless forced to because of a need to make up for design inadequacies.  Thus, using 

point-based design a superior design may be missed simply because the design 

parameters chosen at the beginning of the design spiral were based on achieving the 

tightest tolerances possible.  The SBD approach purposefully develops sets of solutions 

to determine the optimal solution.  Significant cost savings can be achieved using SBD as 

designers have the opportunity to consider tradeoffs in the preliminary design stage 

before making decisions that influence the remainder of the design process [Ward, et. al., 

1995]. 

2.2 Fuzzy Logic for Uncertainty Representation 

As demonstrated by the example in the previous section, a FLS can be used to translate 

between different data types and represent design uncertainty.  In the paper, “Impacts of 

Fuzzy Logic Modeling for Constraints Optimization”, Gray, Daniels, and Signer describe 

how fuzzy logic can be used to represent the uncertainty inherent in design constrains for 

the allocation and arrangement of ship spaces [2010].  In a FLS, data translation, as well 
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as uncertainty representation, is accomplished using fuzzy logic and fuzzy set theory.  

Fuzzy methods are capable of handling uncertainty due to imprecise and vague language 

or values [Wallsten and Budescu, 1995] [Zhou and Zenebe, 2008] [Wang and Terpenny, 

2003] [Mendel, 2001].  Mathematical functions, called membership functions (MFs), are 

used in an FLS to represent uncertain data.  The MFs can be defined over a set of values 

and may have different spread or shape, all of which vary based on the context and 

method of communication the functions represent [Wallsten and Budescu, 1995].   

Fuzzy logic systems not only represent uncertainty, but also, “exploit uncertainty in an 

attempt to make system complexity manageable.” [Zhou and Zenebe, 2008], and, 

“provide smarter and smoother performance than do traditional systems.” [Chen, 2001].  

For these reasons, fuzzy logic was chosen for use by the author to develop a design tool 

capable of representing the inherent uncertainty in forms of both linguistic and numerical 

communication, each of which are essential components of SBD philosophy. 

2.3 Fuzzy Set Theory 

Fuzzy set theory operates by utilizing sets of values which allow for fuzzy decisions, as 

opposed to crisp theory which works with discrete numerical values and forces crisp 

decisions.  To illustrate the difference between fuzzy and crisp theories, consider the 

example of trying to classify people as either not tall or tall.  In this example, people 

represent a universe of discourse P, which is a set of all possible people/values, x   

[Mendel, 1995].  The sets not tall (NT) and tall (T), represent subsets of the universe of 

discourse P.  Choosing the NT classification set, crisp theory is explained in further 

detail. 
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A crisp set of values is described by listing all values     .  The listing of values can 

be described mathematically by utilizing a relationship such as that expressed by the 

general terms of Eqn. (2.1) or by a special zero-one membership function (MF),    ( ); 

Eqn. (2.2).  With crisp theory, the degree of membership in a set is described by a 

membership grade, µ(x), equal to either one or zero.  This means that all values from the 

universe of discourse are either 100% in the set or 100% out of the set.  This 

mathematical relationship is demonstrated Eqn. (2.2).  

   *                        + (2.1) 

   {
   ( )           

   ( )           
 (2.2) 

The commonly used condition for a set definition like that of (2.1) involves the use of a 

decision point, also called a cut-off point.  In crisp theory, a decision point is a crisp 

numeric value.  Typically, values from the universe of discourse will be sorted into a set 

based on whether or not the values are less-than, equal-to, or greater-than the value of the 

decision point.  The use of a decision point forces the choice of a single discrete value for 

set-classification purposes.   

Continuing with the height classification example, to sort people into sets of NT and T. a 

crisp decision point must be chosen when utilizing crisp theory mathematics.  Below the 

decision point people are considered to have 100% membership in the not tall set, with 

   ( )    and   ( )    for            , and above this point they are considered to 

have 100% membership in the tall set, with    ( )    and   ( )    for            .  

Using crisp theory, a person/value can have membership in only one set. The relationship 
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for the decision criteria for height classification is represented by the crisp zero-one MFs 

of Figure 2.3.  Notice that in Figure 2.3 the crisp decision point was set at a height value 

of xdecision = 70 inches. 

 

Figure 2.3 Crisp Membership Functions for Sets Not Tall and Tall 

In reality, the classification of people to height categories is not as simple as implied by 

the use of the crisp MFs.  There are vagaries inherent in linguistic descriptions. For one, 

words themselves may mean different things to different people [Mendel, 2007].  The 

description of someone’s height is affected by the relative height of the individual 

making the classification. As height is a relative description, a person who is 6’10” might 

consider someone 6’ to be not tall, but a person who is 5’4” might consider the same 6’ 

person to be tall.  Because of the inherent uncertainty associated with linguistic and 

numeric values, the true nature of the transition from the sets not tall to tall is much better 

represented using fuzzy set theory.   
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Using fuzzy set theory, we can describe a gradual transition from 100% membership in 

the not tall set, to 100% membership in the tall set, while in between there exists varying 

degrees of membership in both sets simultaneously.  Figure 2.4, shows how fuzzy MFs 

are used to represent the gradual change in degree of membership in not tall and tall 

fuzzy sets.   

 

Figure 2.4 Fuzzy Membership Functions for Sets Not Tall and Tall 

Continuing with the use of the not tall set, the fuzzy MF for the NT set, in the universe of 

discourse P, can be described using a MF comprised of sets of ordered pairs; equations 

(2.3), (2.4), (2.5).  The order pairs consist of the height value x and the membership 

grade,    ( ). 

   {(     ( ))       } (2.3) 

    ∑   ( )  
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    ∫    ( )  

 

 (2.5) 

Unlike the zero-one membership grade of a crisp MF, a fuzzy MF grade may be any of 

the values in the set [0,1].  Equation (2.3) provides a general description of a fuzzy set, 

(2.4) is commonly used to describe a fuzzy set that contains only discrete values, and 

(2.5) describes a fuzzy set with continuous, real-numbered values.  In equation (2.4), the 

summation sign does not actually denote arithmetic addition, but instead represents the 

set theoretic operation of union, which is the collection of all values     along with the 

associated MF    ( ).  Similarly, the integral sign in equation (2.5) does not represent 

true arithmetic integration.  It, too, is used to represent the collection of all values of 

    along with the associated MF    ( ).   

In both equations (2.4) & (2.5) the slash is used as a reminder that each of the values 

    is associated with a fuzzy membership grade    ( ).  The above terminology and 

description of fuzzy sets was adapted from an explanation of fuzzy sets provided by 

Mendel [1995] in, “Fuzzy Logic Systems for Engineering: A Tutorial”, and was used by 

Mendel to describe automobiles.  For additional information on fuzzy set theory see 

[Mendel, 2001], [Kluwer Academic Publishers, 2001], and [Nguyen and Walker, 2006].  

2.4 Fuzzy Logic Systems  

Currently there exist three main types of FLSs, the Type-1 (T1), Interval Type-2 (IT2), 

and General Type-2 (GT2) FLSs.  The IT2 and GT2 FLSs are both specific system types 
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within the broad category of Type-2 FLSs.  The differences between the Type-1 and 

Type-2 FLSs are detailed in the Section 2.4.1 and Section 2.4.2. 

2.4.1 Type-1 Fuzzy Logic System 

Type-1 FL has been used to represent uncertainty in design variables for numerous 

applications such as HVAC systems, systems controls, ship arrangements, and medical 

analyses [Ning and Zaheeruddin 2009] [Liu and Li, 2005] [Gray, Daniels, and Singer, 

2010] [Garibaldi, 1997].  A T1 FLS has four main components; a fuzzifier, fuzzy rule 

bank, fuzzy inference engine, and defuzzifier [Mendel, 2001]; Figure 2.5.  As shown in 

Figure 2.5, the T1 FLS takes in crisp valued inputs x and uses the fuzzifier to create the 

fuzzy input sets, which then pass through the fuzzy inference process activating rules in 

the fuzzy rule bank.  The fuzzy rules are then used to guide the defuzzification to a 

translated crisp output value y.   

 

Figure 2.5 Type-1 FLS Components and Processes, Adapted from [Mendel, 2001] 

A T1 FLS attempts to represent uncertainty using T1 MFs and fuzzy set theory.  In FLSs 

the typical membership function types include Gaussian (Figure 2.6), Sigmoidal, 

Trapezoidal (Figure 2.7), and Triangular, as well as many other curve shapes.  In the 
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author’s SBD environment, the x-axis represented the individual set values from 

minimum to maximum, referred to as the “set-range”; [xmin,xmax].  The membership grade 

of each MF, µi(x), was used to represent the preference value, which was displayed on the 

y-axis.  Note that in Figure 2.7, as well as the author’s FL SBD environment, the 

trapezoidal MF points have a maximum preference value of one and a minimum of zero.  

The [0,1] scale is typically used in FLSs, especially engineering applications [Cox,1999], 

as it maintains a logical correlation to percentages 0-100%, allows for the sum of 

membership grades to be held equal to one, and facilitates comparatively simplistic 

mathematical computations. 

 
Figure 2.6 Type-1 Gaussian MF 

 

Figure 2.7 T1 Trapezoidal MFs 
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Type-1 Fuzzy Logic Example 

The following example was reproduced with permission from Dr. David J. Singer’s Ph.D. 

dissertation entitled, “A Hybrid Agent Approach for Set-Based Conceptual Ship Design 

Through the Use of a Fuzzy Logic Agent to Facilitate Communications and Negotiation”, 

[Singer, 2003].  The purpose of the T1 FLS example is to demonstrate the concepts of 

FL, fuzzy set theory, and the basic operations of a T1 FLS.  The theories described in this 

example are expanded upon when discussing the IT2M and GT2 FL SBD tools later on.   

In the example, the goal was to determine a person’s level of risk for a heart condition, 

the FLS output value, given their height and weight, the FLS input values.  To begin, the 

weight variable was classified into three linguistic fuzzy sets Thin, Average, and Heavy; 

Weight = {Thin, Average, Heavy}.  The height variable was then classified into three 

linguistic fuzzy sets Short, Average, and Tall; Height = {Short, Average, Tall}.  The FLS 

output, heart condition risk level was classified into four categories, represented by the 

linguistic fuzzy set Risk Level = {Low, Average, Moderate, High}.   

Given a human subject with inputs values of weight equal to 130 pounds (lbs) and height 

equal to 5’ 3”, Figure 2.8 shows the mapping of the subject’s specific height and weight 

to the fuzzy values of each input set.  In the first FLS step, the subject’s input values were 

fuzzified into the individual fuzzy sets of weight and height. The weight value of 130 lbs 

mapped to the fuzzy sets Thin & Average, with membership grades of        ( )      

and           ( )     , respectively.  The height of 5’ 3” mapped to fuzzy sets Short 

and Average, with membership grades         ( )      and           ( )     .   
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Figure 2.8 Input Fuzzy Sets of Weight & Height for a Heart Condition Risk Level 

T1 FLS Example 

Notice how for both fuzzy variables the sum of membership values was always equal to 

one.  Next the membership grades of the fuzzy values were passed through the fuzzy rule 

bank, activating fuzzy rules which link input values to output sets.  A fuzzy rule bank 

typically consists of rules with a general IF (antecedent) … THEN (consequent) 

expression, written as: 

IF X1 is A1 AND … AND Xm is Am, Then Y is C. (2.6) 
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In equation (2.6) Xm and Y were fuzzy variables, Am and C were fuzzy input and output 

sets, respectively, and there were 1 … m total input values.  The rules of a FLS have 

considerable impact on the output of the FLS since the rules provide the link between the 

inputs and output of the FLS.  Figure 2.9 shows how the linguistic input fuzzy sets 

mapped to the various linguistic fuzzy rules and matching linguistic fuzzy output sets for 

heart condition Risk Level. 

 

Figure 2.9 Fuzzy Rule Bank for Heart Condition Risk Level T1 FLS Example 

Based on the subject’s input fuzzy set values for weight and height variables, four fuzzy 

rules were activated.  The four activated rules as indicated by the shaded areas in Figure 

2.9 are written as: 

 IF Weight is Thin AND Height is Short, THEN Risk Level is Low 

 IF Weight is Thin AND Height is Average, THEN Risk Level is Low 

 IF Weight is Average AND Height is Short, THEN Risk Level is Moderate 

 IF Weight is Average AND Height is Average, THEN Risk Level is Average 
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After a fuzzy rule was activated, fuzzy inference was used to determine the activation 

level of the consequent output fuzzy set.  The most common inference method is 

minimum-correlation inference [Cox, 1999].  This inference method is associated with 

the use of the linguistic modifier AND in fuzzy rules.  For the two inputs of this FLS, the 

minimum-correlation inference equation was: 

   *  (  )   (  )+ (2.7) 

The minimum-correlation inference process is pictorially demonstrated in Figure 2.10.  

Looking at the first rule combination, Thin AND Short, the membership grades were   

µW-Thin(x) = 0.5 and µH-Short(x) = 0.8, respectively, and the consequent (activated) output 

fuzzy set was Low Risk.  Minimum-correlation resulted in the Low Risk fuzzy set being 

clipped-off at the 0.5 activation level as this was the minimum of the activating 

membership grades.  The clipped MF area is represented by the shaded area labeled A in 

Figure 2.10.   

The final step of the FLS process was defuzzification of the fuzzy value back to a crisp 

output value.  Of the many available defuzzification methods, centroid defuzzification is 

the simplest method.  Cox [1999] provides information on how different defuzzification 

methods affect the FLS output.  The centroid defuzzification method works by essentially 

finding the x-location of the center-of-mass of the clipped output fuzzy sets.  Centroid 

defuzzification can be expressed using: 

 (   ( ))                           
∑   ̅̅ ̅   

∑   ̅̅ ̅ 
 (2.8) 
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Figure 2.10 Fuzzy Logic Inference Process for Heart Risk Level Example 

In equation (2.8),   ̅̅ ̅ represents the area of a clipped output preference fuzzy set, xr is the 

centroid of the corresponding output preference fuzzy set, and the subscript r represents 

the 1 … r activated rules at the input value x.   
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Figure 2.11 shows the calculated areas for each of the activated and clipped output fuzzy 

sets.  These values are used in the centroid defuzzification function (2.8) to calculate the 

crisp output value of heart condition risk level.   

 

Area of A = 1.75, the horizontal, x-coordinate of 

its centroid is 0.0 

 

Area of B = 0.76, the horizontal, x-coordinate of 

its centroid is 0.0 

 

Area of C = 0.76, the horizontal, x-coordinate of 

its centroid is 3.0 

 

Area of D = 1.75, the horizontal, x-coordinate of 

its centroid is 6.0 

Figure 2.11 Clipped Areas and Centroid Values of Activated Output Fuzzy Sets 

After centroid defuzzification, the crisp output for the example subject was a heart 

condition risk level of J(x,µ(x)) = 2.55 on a scale of [0,9] with zero being the lowest 

possible risk and nine being the highest possible risk.  Linguistically this would translate 

to an Average Risk Level.   



 

41 

 

A similar methodology was utilized for the FLSs of this research.  Chapter 5 provides 

extensive detail on the T1 FLS SBD method as well as a thoroughly explained example 

applied to a ship design variable.  For now, to briefly frame the context of the coming 

discussions, the reader should be aware that the T1 FLS utilized fuzzy input sets and then 

output a set of values in the form of the Joint Output Preference (JOP) curve.   

For the author’s research, the FLSs were applied to the SBD of a containership.  

Preference for set-values of ship design variables were described by human design agents 

using linguistic MFs of Unpreferred (U), Marginal (M), and Preferred (P).  The FLS 

output a joint output preference (JOP) curve that represented the overall preference for 

the individual set-values from within a large range of values for a design variable.  The 

JOP curve information provided an understanding of which design values were most 

preferred by all design agents for the ship design.  A generic example of the T1 FLS SBD 

fuzzy input sets and JOP curve output is shown in Figure 2.12.   

The Cargo and Stability design agents are negotiating the KGc design variable, with a 

set-range of [0,15] m.  The Cargo agent has chosen the U and M MFs to describe 

preference for the set values, while the Stability agent has chosen P and M preference 

MFs.  A star symbol was used in Figure 2.12 to indicate the beginning of the M MF for 

the Cargo design agent and a triangular symbol was used to indicate where the Cargo 

agent’s U MF ended.  The FLS swept across the set of input values from xmin to xmax 

creating the JOP curve.  The JOP curve in Figure 2.12 had JOP values of zero up to the 

KGc value indicated by the star symbol because up to this point the Cargo agent was 

100% Unpreferred and the Stability agent 100% Marginal for the set-values.  As the 
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Cargo agent’s preference transitioned from U to M the JOP curve transitions from zero to 

the value of three, at which point the Cargo and Stability agents are both of Marginal 

preference at a level of 100%.  This process is explained in greater detail in Chapter 5. 

 

 

 

 

Figure 2.12 Generic Example of T1 FLS SBD Fuzzy Input Sets and JOP Curve 
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The heart risk level example and the generic SBD FLS example (Figure 2.12) briefly 

demonstrated one of the most common FLSs, the T1 FLS, which is the simplest FLS, 

both theoretically and computationally.  The simplicity of a T1 FLS also limits its 

capabilities. In a T1 FLS, T1 FL MFs are inherently certain in the sense that a known 

function is being used to describe an uncertain value [Mendel, 2001].  In their paper, 

“Type-2 Fuzzy Sets Made Simple”, Mendel & John [2002] describe four sources of 

uncertainty that are present in the declaration of T1 fuzzy sets and state that, “Type-1 

fuzzy sets are not able to directly model (these) uncertainties because their MFs are 

totally crisp”.  To handle these additional uncertainties T2 FL was developed.   

2.4.2 Type-2 Fuzzy Logic Systems: Interval Type-2 & General Type-2 

Type-2 FL is capable of modeling an extra degree of uncertainty.  The uncertainty 

modeling allows for representation of the inherent uncertainty associated with the 

creation of MFs for a T1 fuzzy set.  It is hypothesized within this thesis that the extra 

degree of uncertainty modeling provided by a T2 FLS will allow for better 

communication of design information, and thus further enhance the promotion of set-

based communication of information during a SBD process.   

There are two sub-categories of T2 FL referred to as interval type-2 (IT2) FL and general 

type-2 (GT2) FL.  In an IT2 FLS, uncertainty is represented in the 2D plane using a MF 

defined by upper and lower bounds.  These bounds can be thought of as the bounds of 

uncertainty for the primary MF (a T1 MF).  Between the upper and lower bounds of an 

IT2 MF there exists an infinite number of embedded T1 MFs.  In Figure 2.13 one can see 

a primary T1 MF, which is one of the infinite number of embedded T1 MFs, as well as 
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the upper and lower bounds of uncertainty of the T1 MF.  The secondary MFs are slices 

of the IT2 MF, and are comprised of an infinite number of preference values falling 

between the upper and lower bounds.  In an IT2 MF, the preference values of the 

secondary MFs, called secondary grades, are all of equal value, meaning that each 

primary preference value is equally likely to occur; with a GT2 MF this is not the case 

[Mendel, 2001].   

 

Figure 2.13 Interval T2 Gaussian MF 

A GT2 MF uses a third dimension to further represent uncertainty information.  As seen 

in Figure 2.14, the secondary MFs of a GT2 MF are used to represent the varying 

secondary preference levels for a particular set of primary preference values between the 

upper and lower bounds of uncertainty [Mendel, 2002].  In a GT2 MF, the secondary 

MFs are used to add a weighting value to each of the primary preference values between 

the upper and lower bounds of the function, thereby describing the likelihood of 

occurrence for each primary preference value. 



 

45 

 

 

Figure 2.14 General T2 Gaussian MF 

In Figure 2.6, Figure 2.13, and Figure 2.14, the progression of uncertainty modeling 

capabilities from a T1 MF, to an IT2 MF, and finally to a GT2 MF was shown.  In Figure 

2.6, the T1 MF is a crisp-valued function, where at each value of x there is exactly one 

membership value u(x); u(x) is also referred to as the preference level.  In a T2 MF, the 

entire set of possible preference values falling between the upper and lower MFs is 

referred to as the footprint of uncertainty (FOU) for a T2 MF [Mendel, 2001].  If all of 

the secondary preference levels for the GT2 MF in Figure 2.14 were equal, then the GT2 

MF could be represented by an IT2 MF as shown in Figure 2.13. 

Type-2 FLSs are much more complex computationally and theoretically than are T1 

FLSs because of the additional degree of uncertainty modeling.  To deal with the added 

degree of uncertainty, a T2 FLS includes an additional system component, the type-

reducer.  The type-reducer is used to reduce the T2 MF inputs to sets of T1 MFs.  Figure 
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2.15 shows a system diagram for a T2 FLS; notice the addition of the type-reducer in the 

output processing block.  

 

Figure 2.15 Type-2 FLS Components 

Each of the different FLSs possesses desirable qualities.  The T1 FLS is relatively 

simplistic in comparison to the T2 FLSs.  Yet, the T2 FLSs can model various degrees of 

uncertainty.  The secondary preference level of a GT2 MF is certainly desirable for 

applications such as the modeling of uncertainty associated with linguistic and numeric 

values.  The combinations of the positive and negative features of the different FLSs led 

the author to develop a new hybrid FLS method for the modeling of design uncertainty in 

a SBD process.  The following Chapter gives a detailed explanation for the motivation 

behind the development of the novel FLS, as well as comprehensive description of the 

system theory. 
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CHAPTER 3  

INTERVAL TYPE-2 MODELING FLS  

3.1 Motivation & Inception  

Through extensively reviewing the T1 FLS SBD experiments conducted by Singer 

[2003], it was noticed that Singer did not directly test the robustness of the SBD tool to 

determine how the tool might react to designs of varying difficulty.  A hypothesis was 

developed that theorized the T1 SBD tool may not be as effective for a difficult, highly 

constrained, design as it was for the more simplistic, loosely constrained designs in 

Singer’s research.  An FLS utilizing IT2 or GT2 FL theory could prove to be more robust 

and less susceptible to the constraints defining the design problem.  The set-based design 

experimental results later confirmed this hypothesis; see Chapter 8.   

In Singer’s research [2003], he discussed the use of FL to represent uncertainty and 

vagueness of linguistic terms.  Although T1 FL can be used to represent the fuzzy 

membership between two sets, T1 FL cannot truly represent uncertainty because T1 MFs 

are known, well-defined functions consisting of crisp values [Mendel and John, 2002] 

[Mendel, 2007].  In addition to being unable to truly represent uncertainty, T1 FLSs are 

themselves uncertain.  Sources of uncertainties of T1 FLSs are described by Mendel & 

John [2002] as including: 

 Uncertainty of the words used to describe antecedents and consequents of fuzzy 

rules. 
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 Uncertainty associated with the value of consequents, which may best be 

described by a histogram of values instead of a single crisp (certain) value. 

 Uncertainty of the data due to noisy input/output signals or measuring equipment. 

The use of T2 FL allows for a more complete representation of the uncertainties 

associated with design as compared to a T1 FLS.  By developing new SBD methods and 

support tools that utilize T2 FL theory, it is possible to achieve a level of uncertainty 

representation that could not be accomplished by Singer’s T1 FLS SBD tool.   

There are numerous methods by which to represent T2 fuzzy sets and perform the type-

reduction phase for a T2 FLS.  Such methods include approaches like the Karnik-Mendel 

(KM) algorithms, enhanced KM algorithms, z-slice, α-plane method, wavy slice, point-

valued, horizontal slice, and centroid type-reduction [Wu and Mendel, 2009] [Wagner 

and Hagras, 2008] [Mendel, Liu, and Zhai, 2009] [Mendel and Liu, 2008] [Liu, 2007] 

[Nie and Wan Tan, 2008] [Wu and Wan Tan, 2005].  Despite the improvements to speed 

achieved by using one of the above mentioned type-reducers, T2 FLSs still possess a 

great deal of mathematical, theoretical, and computational complexity.  When discussing 

the complexities of T2 FL, Mendel and John [2002] make the following observations 

stating that, Type-2 fuzzy sets are difficult to understand and use because:  

1) The three-dimensional nature of type-2 fuzzy sets makes them very 

difficult to draw and visualize. 

2) There is no simple collection of well-defined terms that let us effectively 

communicate about type-2 fuzzy sets, and to then be mathematically 

precise about them (terms do exist but have not been precisely defined). 
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3) Derivations for (set theory) formulas for the union, intersection, and 

complement of type-2 fuzzy sets all rely on using Zadeh’s Extension 

Principle [Zadeh, 1975]. 

4) Using type-2 fuzzy sets is computationally more complicated than using 

type-1 fuzzy sets. 

These complexities of the T2 FLSs led to the hypothesis that the use of a GT2 FLS for 

the SBD environment may be prohibitively burdensome for the intended users, especially 

since the users would be required to specify preference data in three dimensions.  

Eventually the author developed a simplified process for the definition of GT2 FLS 

membership functions for facilitation of SBD (Chapter 4, Section 4.1.1), thereby 

eliminating the hypothesized burdens. 

Although GT2 FLSs possess drawbacks due to the required computational time and 

theoretical complexity, the potential benefits of the T2 systems for uncertainty modeling 

remain highly desirable.  Recognizing a need for a simplistic method for uncertainty 

representation, the author developed four novel FLSs, each of which utilize T1 FL 

methods to represent the advantages in uncertainty modeling of an IT2 FLS.  The new 

systems are referred to as interval type-2 modeling (IT2M) FLSs.  

To create the IT2M FLS, it was first necessary to determine where the resulting 

advantages of a true IT2 FLS stem from.  After careful analysis of T1 and IT2 FLS 

components it was realized that the significant difference between T1 and IT2 FLSs is in 

the definition of the MFs for each of the systems.  The FL MFs affect the activated FL 

rules and thus directly affect the FLS output.  The use of IT2 MFs has two principle 

effects on a FLS: 
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1) The preference value of an active MF is represented by a set of possible values as 

opposed to a one single value and,  

2) Opportunities for changes in rule activation due to MF curve uncertainty are now 

possible. 

The first key effect of IT2 MFs can be seen by comparing the graphs of Figure 3.1 and 

Figure 3.2.  Figure 3.1 shows that for any FL rule involving the MFs evaluated at x1, 

there is only one possible set of preference values for the two MFs; µ1(x1) ≈ 0.3 (●) and 

µ2(x1) ≈ 0.7 (♦).  In Figure 3.2, the T1 MFs have been blurred to IT2 MFs to represent the 

uncertainty of the functions.  A rule evaluation at x1 now results in a range of possible 

output preference values with, µ1(x1) ≈ [0.3,0.8] and µ2(x1) ≈ [0.2,0.7].    

 

Figure 3.1 T1 Trapezoidal MFs 
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Figure 3.2 Interval T2 Trapezoidal MFs 

By comparing the variable value of x2 in the T1 and IT2 fuzzy sets, Figure 3.1 & Figure 

3.2 respectively, the second key effect of T2 MFs is seen. With the T1 MFs, a FL rule 

involving only the dashed curve would be activated.  The rule activation would be at a 

preference value of µ2(x2) = 1.0.  However, for the same value of x2 in the IT2 fuzzy set, a 

rule involving both MFs would now be activated, resulting in a range of possible 

preference values; µ1(x2) ≈ [0.0,0.225] and µ2(x2) ≈[0.775,1.0].  Changes in rule 

activation can have a profound effect on the resulting outputs of a FLS. The IT2M 

approach utilizes randomization of “defining” MF data points to model the key effects of 

true IT2 MFs.   
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The experimental FLS SBD tool used only trapezoidal and triangular MFs.  When using 

trapezoidal MFs, there are four points considered as “defining” points.  The defining MF 

curve points are necessary to describe the shape of a trapezoidal MF.  For the trapezoidal 

and triangular MFs, the defining curve points are abbreviated as x-ll, x-lu, x-ru, and x-rl, 

for left-lower, left-upper, right-upper, and right-lower, respectively.  The defining curve 

points are shown on the labeled trapezoidal MF in Figure 3.3.   

 

Figure 3.3 Defining Curve Points for Trapezoidal (and Triangular) MFs 

To define a triangular MF, the x-coordinate values of the x-lu and x-ru defining curve 

points were simply set equal to each other.  Note that in the SBD FLS, the upper defining 

curve points always have a preference value of one and the lower points a preference 

value of zero. 
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The newly developed IT2M FL SBD environments work by allowing human design 

agents to define uncertainty bounds on their T1 MFs.  The shapes of the T1 MFs are then 

randomly altered within the defined uncertainty bounds to create new T1 MFs.  The 

IT2M FLS then uses T1 FL to sweep across the range of values for the negotiated 

variable, resulting in a Joint Output Preference (JOP) curve describing the overall 

preference level for the entire set-range.   

The process of randomizing the T1 MFs was then repeated for a specified number of 

iterations to produce a composite of JOP curves; example Figure 3.4.  By plotting all JOP 

curves in the same figures it was possible to represent the uncertainty associated with the 

JOP solution [Gray and Singer, 2008] [Gray, Daniels, and Singer, 2010]; Sections 5.3.1 

and 5.3.2 go into further details of this assertion.  Four different randomization schemes 

for IT2M FL were developed by the author and are discussed in detail in the remainder of 

Chapter 3.   

 

Figure 3.4  JOP Curve Plots for IT2M FLS Example 
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3.2  Yrand IT2M FLS 

Of the four different IT2M FLSs developed to facilitate SBD, the Yrand IT2M FLS was 

the first attempt at uncertainty modeling.  The Yrand IT2M FLS works by randomizing 

the preference value, µ(xi), for all set values, xi, of the design agents’ input MFs.  When 

using FLSs for engineering applications, it is often desirable to maintain a normalized 

[0,1] preference scale [Cox, 1999].  Therefore, during the IT2M FLS Yrand 

randomization process the maximum allowable preference level was set to a value of one, 

corresponding to 100% or a preference level of one.  Any preference values that were 

randomized to a value greater than one were rounded back down to one.  Similarly, 

preference values that randomized below zero, were rounded back up to zero.   

To achieve Yrand randomization of the design agents’ T1 MFs using a SBD FLS, a 

human agent was required to input a σ value to describe his/her degree of uncertainty;  

the actual data entry process is discussed in Chapter 6.  Sigma represented a percent of 

standard deviation about the MF preference value of u(xi).  The FLS then converted the 

provided σ (%) to a decimal equivalent and randomly selected a value from the decimal 

interval of [-σ, σ] to add to the T1 MF preference value, resulting in an altered preference 

value µ’(xi).  The basic Yrand randomization process is shown in    Eqn. (3.1).  The term 

rand() in Eqn. (3.1) represents the process of randomly selecting an σ value from the 

interval [-σ, σ] and is based on a Uniform distribution.   

  (  )   (  )      (,    -) (3.1) 

The actual IT2M Yrand computational process utilized the following steps at each set 

value, xi , to calculate the randomized MF preference values,   (  ):  
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1) The entered σ(%) value was converted to a decimal value using:             

           ( )    ⁄  

2) A pseudo-random number was generated from a Uniform set of values [0,1], 

using: xrandU  = rand([0,1]) 

3) The pseud-random number was converted to a number between, ,  (   )-, 

using:                     

4) This value was then converted to a number between, [-σ , σ], using:                       

                   

5) Finally, the randomized MF preference value was calculated, using the current 

MF preference value u(xi) and the converted pseudo-random number        , 

using:   (  )    (  )           

Figure 3.5 shows an example of two trapezoidal T1 MFs and the resulting Yrand IT2M 

MFs after one iteration of IT2M Yrand randomization.  The randomized MFs represent 

the uncertainty in the original definition of the MFs’ preference values µ(xi).  Notice that 

there are no preference values below zero or above one, which maintains the desired [0,1] 

preference scale.  

 

Figure 3.5 Two Trapezoidal MFs After Yrand Randomization Process 

µ1(x) = 0.9 

µ2(x) = 0.4 

x 
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3.3 Parametric Linking 

After examining randomized MFs which had passed through the IT2M Yrand 

randomization FLS process it became clear that, in a break from traditional FLSs 

designed for engineering applications, the randomized MFs were not maintaining the 

summation of membership grades equal to a total value of one.  This fact is demonstrated 

by the two data points labeled in Figure 3.5, where the sum of µ1(x) = 0.9 and µ2(x) = 0.4 

is equal to 1.5 total.  The summation of MF preference values to a total value of one is 

not a requirement for FLSs.  However, from a practical standpoint it makes logical sense 

that the membership grades (preference values) of the MFs should sum to one, to 

represent a total membership of 100%.  Therefore, a process of parametrically linking the 

MFs was developed to ensure that the summation of preference values to a total value of 

one was maintained between adjacent MFs.  For the Yrand IT2M FLS the parametric 

linking occurred between the preference values µ(xi), of adjacent MFs.  The results of 

parametrically linking the IT2M Yrand randomized MFs is discussed in Chapter 5, 

Section 5.3.1.   

For the remaining IT2M FLS methods, xRU, xRL, and Slopes, as the name implies, the 

parametric linking process created a linked relationship between defining curve points of 

adjacent MFs.  For two MFs the linked relationships were formed between the defining 

points, x-ru of MF1 and x-ll of MF2 indicated by “*”, and x-rl of MF1 and x-lu of MF2 

indicated by “◊”; Figure 3.6  After the MFs were parametrically linked, any movement of 

a linked defining point during the randomization of the MFs would result in the point’s  
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Figure 3.6 Parametrically Linked Defining Points of MFs 

parametric partner being moved by an identical amount, and in the matching direction. 

The parametric movement of linked defining curves points enabled the software to 

maintain the desired summation of MFs; Eqn. (3.2).  The remaining IT2M FLSs, 

described in following sections, utilized the parametric linking process during the 

randomization procedure. 

  (  )    (  )      (3.2) 

In the SBD software developed by the author, the randomization process and parametric 

linking would take place from the left-to-right, or right-to-left, based on a simulated coin 

flip.  The coin flip step was included to eliminate any leftward or rightward bias that 

could form by the randomization and parametric linking of MFs. 

1 2 
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3.4 xRU, xRL, and Slopes IT2M FLS 

Each of the remaining IT2M FL randomization methods employed the use of parametric 

linking to maintain the summation of MF preference values to a total level of one 

throughout a variable’s set-range.  The three IT2M FLS methods were each created to 

represent what the author felt were the most logical methods remaining for the 

randomization of a MF curve shape.   

The xRU randomization process was created to allow a design agent to describe 

uncertainty in the definition of the upper-right, x-ru, defining trapezoidal curve point.  

The design agent defined positive and negative epsilon values, ±ε, which were used to 

establish the upper and lower bounds of uncertainty surrounding the x-ru defining curve 

point; Eqns. (3.3) & (3.4).  The +ε value did not have to be equal to the –ε value.  The 

units of epsilon matched the dimensional units of the variable that the design agent was 

negotiating. 

upperbound = x-ru + ε (3.3) 

lowerbound = x-ru - ε (3.4) 

To achieve the randomization of the xRU MF defining points Eqn. (3.5) was used.  In 

Eqn. (3.5), the upperbound and lowerbound terms refer to the x-coordinate for the maximum 

and minimum uncertainty bounds as established by the design agent, and Rnd was a 

randomly generated number chosen from a Uniform distribution between [0,1].   
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     (                     )                 (3.5) 

Figure 3.7 shows examples of the xRU randomization method as applied to a fuzzy set of 

T1 MFs.  The figure shows examples of positive and negative movements of the x-ru 

defining MF curve points that could be produced by the xRU randomization method.  

Although not shown, the randomized points fall within the uncertainty bounds that would 

have been defined by a design agent.  The circular symbols “○” in Figure 3.7 indicate the 

defining MF curve point that was independently randomized, while the triangular 

symbols “  ” indicate the parametrically moved (dependent) MF curve points. 

 

Figure 3.7 xRU IT2M Randomization Method Examples 

In fuzzy logic theory, it is typical that a MF does not overlap itself.  This is particularly 

important for T1 MFs, as each MF should be designed to possess only a single preference 

value µ(xi), for each input value, xi; represented by Eqn. (3.6). 

+ move - move 
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                (  ) (3.6) 

A T1 MF that does overlap itself is considered to have an improper curve shape because 

the shape simultaneously represents more than one preference value.  Figure 3.8 shows 

an example of an improper T1 MF curve shape.  In a T1 FLS, if a MF were to 

simultaneously possess multiple preference values for a single input, x, then the 

overlapping MFs would represent a preference of over 100% and violate the summation 

rule; Eqn. (3.2).   

 

Figure 3.8 Improper Trapezoidal Curve Shape 

To avoid the formation of improper MF curve shapes during the randomization process it 

was necessary to create limitations on the bounds of uncertainty that could be defined by 

a design agent for the IT2M MFs.  The limits helped to ensure that only acceptable 

trapezoidal curve shapes would be created during each of the IT2M FL randomization 

processes.   

x 
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Figure 3.9 & Figure 3.10 show the MF curve shapes resulting from extending the 

trapezoidal MFs of Figure 3.6 to the extreme bounds of the xRU IT2M FLS uncertainty 

limits.  

 

Figure 3.9 MF Curve Shapes for Maximum Negative Uncertainty, xRU IT2M 

 

Figure 3.10 MF Curve Shapes for Maximum Positive Uncertainty, xRU IT2M 
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In each of the figures, the independently randomized curves were represented by the “○” 

symbols and labeled “Rand. MF1”, the dependent (parametrically linked curve) was 

plotted using “+” symbols and labeled “Rand. MF2”.  When using the xRU 

randomization method, the randomization of the right-upper defining point, x-ru, was 

limited to move between x-rl and x-lu of the MF being independently randomized.   

Maximum negative xRU randomization resulted in the independently randomized curve 

collapsing into a triangular function, Figure 3.9, while maximum positive randomization 

resulted in a the formation of virtual step function where the two curves meet, Figure 

3.10.  The word “virtual” was used to describe the step function MF curve shape since the 

MF was not allowed to fully expand to a step function; this ensured that the MF would 

not simultaneously represent more than one preference value at the same time.   

The next logical step after development of the xRU IT2M randomization method was the 

creation of an xRL IT2M randomization method.  As the name implies, the xRL IT2M 

randomization method allowed a design agent to enter ±ε units to describe the uncertainty 

in the location of the right-lower x-rl, trapezoidal defining curve point.  Again, the ±ε 

value did not have to be equal in magnitude.  Figure 3.11 shows examples of positive and 

negative xRU randomizations for a fuzzy set of T1 MFs.  Again, the circular symbols 

“○” in Figure 3.11 indicate the defining MF curve points that were independently 

randomized, while the diamond symbols “ ” indicate the parametrically moved 

(dependent) MF curve points.  The xRL IT2M randomization was accomplished using 

Eqns. (3.3) – (3.4) with the x-rl point in place of the x-ru point. 
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Like the xRU IT2M FL randomization method, the xRL IT2M randomization method 

also required the application of rules to enforce limitations on the maximum positive and 

negative uncertainty values that could be input into the IT2M FLS.  Figure 3.12 & Figure 

3.13 show the curve shapes resulting from extending the trapezoidal MFs to the extreme 

 

Figure 3.11 xRL IT2M Randomization Method Examples 

bounds of the xRL IT2M FL randomization uncertainty limits.  In the xRL IT2M method, 

the randomization of the right-lower point, x-rl, was limited to fall between x-ru1 and x-

ru2; the subscripts are used to indicate MF1 versus MF2.  The value x-ru1 was the right-

upper point on the independent MF being randomized and x-ru2 was the right-upper point 

on the dependent MF immediately to the right.  Maximum negative xRL IT2M 

randomization produced the virtual step function again, while maximum positive XRL 

randomization collapsed the dependent MF to a triangular curve. 

The xRL and xRU IT2M FL randomization methods allow a user to define uncertainty in 

the slope of the MFs.  Both the xRL and xRU IT2M randomization methods represent the 

+ move 

- move 
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idea that a design agent is uncertain about where the transition between preference MFs 

should occur and at what rate the transition should occur.  The Slopes IT2M 

randomization method was created to allow for a different viewpoint of MF uncertainty. 

 

Figure 3.12 MF Curve Shapes for Maximum Negative Uncertainty, xRL IT2M 

 

Figure 3.13 MF Curve Shapes for Maximum Positive Uncertainty, xRL IT2M 
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In the Slopes IT2M method the right-upper and right-lower defining curve points, x-ru 

and x-rl, are simultaneously randomized by an equal amount and in the same direction.   

Figure 3.14 shows examples of the IT2M FLS Slopes randomization independently 

applied to two of the MFs, with one randomization in the positive x-direction and the 

other the negative x-direction. The independently randomized MF defining curve points 

are represented by the circular symbols “○” in Figure 3.14, while the parametrically 

moved (dependent) MF curve points are represented by the triangular symbols “  ”. 

 

Figure 3.14 MF Curve Shapes for Maximum Positive Uncertainty, Slopes IT2M 

The Slopes randomization process allowed the actual slope of the initially defined T1 MF 

to be maintained throughout the entire randomization process.  With the Slopes method, a 

design agent could express confidence in the shape of the transition region between MFs, 

but uncertainty as to where the transition region should begin and end.  The uncertainty 

- move 

- move 

+ move 

+ move 
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was described using ±ε values; the values did not have to be equal.  During 

randomization of the MFs the Slopes IT2M FL randomization method affected the 

overall width of the MF, specifically the region of preference level equal to one, thereby 

expanding or contracting the MF in the region of 100% membership.   

As with the xRL and xRU IT2M FLSs, the Slopes IT2M FLS also required rules to 

govern the maximum allowable uncertainty bounds an agent could establish for their 

MFs. Figure 3.15 & Figure 3.16 show the curve shapes resulting from extending the 

trapezoidal MFs to the extremes of the Slopes IT2M FLS uncertainty limits.  Throughout 

the Slopes IT2M FL randomization, the maximum uncertainty bounds were limited to 

allowing the independent MF to be contracted by moving x-ru to x-lu (Figure 3.15) and 

thus collapsing the independent MF, or expanded by moving x-rl up to x-ru2, collapsing 

the dependent MF (Figure 3.16).  By restricting the allowable uncertainty bounds for 

each of the IT2M FLS randomization methods, it was possible to avoid the formation of 

any impractical MF curve shapes while still being capable of modeling the key effects of 

T2 FL MFs.   

The impacts of the different randomization methods for IT2M FLS are discussed in detail 

in Chapter 5, Section 3.  Computer software was created to facilitate the actual process of 

defining MFs, entering uncertainty bounds, and specifying linguistic preference for 

design variables.  Chapter 6 provides information about the software and the 

human/machine interfaces that were developed to facilitate the SBD process.   
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Figure 3.15 MF Curve Shapes for Maximum Negative Uncertainty, Slopes IT2M 

 

Figure 3.16 MF Curve Shapes for Maximum Positive Uncertainty, Slopes IT2M 
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CHAPTER 4  

GENERAL TYPE-2 FUZZY LOGIC SYSTEM 

4.1 Type-2 Membership Functions 

A T1 FLS utilizes well-defined MFs in an attempt to model uncertainty.  Because the 

MFs of a T1 FLS are known functions, the T1 FLS cannot truly model uncertainty.  

Type-2 FLSs were created in order to represent true uncertainty.  The MFs of T2 FLSs 

can be used to describe the uncertainty of linguistic and numeric values, as well as the 

uncertainty associated with the definition of a MF.  Interval type-2 (IT2) FLSs represent 

the uncertainty in a uniform manner using a footprint of uncertainty (FOU); Figure 4.1 

shows the FOUs for two trapezoidal IT2 MFs.  With IT2 MFs, like those shown in  

Figure 4.1, it is possible that at any x-location a MF possesses a set of preference values.  

This is in direct contrast of T1 MFs which are designed to possess only one preference 

value for each input value x.  In an IT2 FLS, each preference value in the set of values 

has a uniform chance of occurring; there is no opportunity to express if one preference 

value is more likely to occur than another.   

General type-2 (GT2) MFs utilize a third dimension to allow the expression of a non-

uniform distribution for the set of preference values at each x-location.  The GT2 MFs are 

thought of as adding a weighting value to each of the preference values within the entire 

set of possible values.  The weighting values of the third dimension are more commonly 

referred to as the secondary preference values.  There are an infinite number of possible 
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T1 MFs embedded in a T2 MF.  A GT2 MF uses the secondary preference values to 

describe which function(s) are the most likely to occur. 

 

Figure 4.1 Footprint of Uncertainty Example for Two Trapezoidal MFs 

If the T2 MF was vertically sliced at x, in Figure 4.1, the slice for an IT2 MF would show 

a uniform distribution for the secondary preference values.  The same slice for a GT2 MF 

might show any type of function, such as Gaussian, triangular, trapezoidal, sigmoidal, 

etc…, to describe the secondary preference levels of the T2 MF’s primary preference set.  

To further illustrate the difference in the IT2 and GT2 MFs, Figure 4.2 shows an example 

of secondary preference MFs for the vertical slice at x in Figure 4.1.  Notice that the IT2 

secondary MF is of a uniform distribution while a triangular secondary MF is used to 

describe the distribution of the GT2 MF’s set of primary MF values.  A triangular MF 

was arbitrarily chosen for this example.  In reality, any assortment of function types could 

have been used to describe the secondary preference levels of the primary preference set 

for the GT2 MF.   

x 
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Figure 4.2 Secondary Membership Functions for IT2 and GT2 MFs 

There are numerous ways to represent a T2 fuzzy set [Mendel, 2001].  Each 

representation provides a different method to decompose the three-dimensional fuzzy set 

into parts which are, individually, easier to work with than the whole.  Some examples of 

these GT2 fuzzy set representations include the point-valued, vertical slice, wavy-slice, 

horizontal slice, α-plane, and z-slice representations [Mendel and Liu, 2008] [Mendel, 

Liu, and Zhai, 2009] [Wagner and Hagras, 2008]. 

To create GT2 MFs with a SBD FLS it was initially thought that a design agent would 

need to define a secondary MF at each of the xi locations within the set of values for a 

design variable.  This meant if a set-range for a design variable was discretized into one 

hundred individual values then a design agent would have to create one hundred 

secondary MFs, plus the upper and lower bounds of uncertainty for the primary MF.  In 

addition, a design agent would be required to view the MFs in three dimensions.   
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From a spatial standpoint humans are much more accustomed to viewing graphical data 

using only two-dimensional figures, and many people have difficulty thinking of data 

from a three-dimensional point-of-view.  Because of the difficulties people have with 

cognitive processing three-dimensional data, concern arose that the process of defining 

GT2 MFs in three dimensions would be too cumbersome for the design agents, resulting 

in a time consuming and frustrating experience for the design tool users. To avoid 

frustrating and confusing the users of the SBD FLS and negatively impacting SBD 

experiments a simplified method for the creation of GT2 MFs was developed. 

4.1.1 Simplified GT2 MF Definition Process  

The simplified process for GT2 MF definition required a design agent to first define the 

T1 primary MFs of a fuzzy set.  The design agents were instructed to identify the T1 

primary MF as the MF that was “most likely” to describe their preference for the values 

of a variable’s set-range.  After creating the T1 primary MFs, the second step was to 

define the upper and lower bounds of uncertainty for each T1 primary MF.  When 

creating the uncertainty bounds for the primary MF, the design agents could enter ±ε 

uncertainty values on either, or both, the right-upper and right-lower, x-ru and x-rl, 

defining MF curve points.  The ±ε values used to describe the MF uncertainty were not 

required to be of equal value.  This method of uncertainty definition allowed for more 

flexibility in defining uncertainty bounds than that of the IT2M FLS methods.  Figure 4.3 

shows an example of a simplified GT2 MF from the perspective of a design agent.   
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Figure 4.3 Example of User Defined, Simplified GT2 MF 

After defining the primary MF and associated uncertainty bounds, the design agent’s role 

in defining the GT2 MFs was finished. From this point on, the SBD FLS took control by 

creating data for the three-dimensional GT2 MFs.  The FLS utilized the preference values 

of the upper bound, primary T1 MF, and lower bound to create triangular secondary MFs 

at each xi for the entire set-range of discretized design values.  For demonstration 

purposes only, the fully 3-D GT2 MF created from the simplified GT2 MF of Figure 4.3 

is shown in Figure 4.4.  Looking closely at Figure 4.4, the individual vertical slices used 

to create the 3-D MF can be seen.  It is easy to understand how a human design agent 

could easily become overwhelmed had they been required to individually define each of 

the secondary MFs seen in Figure 4.4.  With the use of a color scale, the same GT2 MF 

can be viewed in 2-D; Figure 4.5.   The 2D color representation of the GT2 MF,      

Figure 4.5, contains the same information as the simplified GT2 MF of Figure 4.3. 

x-rl 

x-ru 

+εxru 

+εxrl - εxrl 

- εxru 



 

73 

 

 

Figure 4.4 Example of 3-D GT2 MF Based on Simplified GT2 MF of Figure 4.3 

 

Figure 4.5 2-D Representation of the GT2 MF of Figure 4.4 
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When creating the secondary MFs from the simplified GT2 MF, the preference values of 

the primary T1 MF were used as the apex for each of the triangular secondary MFs.  

From the apex of a triangular secondary MF, the secondary preference values gradually 

decreased, eventually becoming zero at the points of the upper and lower uncertainty 

bounds.  In some cases the apex of the secondary MF was equal to the upper or lower 

uncertainty bound resulting in the formation of right triangles.  The secondary MFs for 

three vertical slices of the GT2 MF (Figure 4.4) were taken at x = [18.5, 19.5, 20.5], and 

the triangular secondary MFs for each slice were plotted in Figure 4.6.  Note how right-

triangles were created for the secondary MFs at x = 18.5 and x = 20.5, where the primary 

MF was aligned with an uncertainty bound.  At x = 19.5, the primary MF was between 

the uncertainty bounds, resulting in the secondary MF shown in Figure 4.6.  The 

secondary preference levels assign a weighting value or “likelihood of occurrence” to the 

primary MF values within the FOU. 

 

Figure 4.6 Slices of the GT2 MF Example of Figure 4.3 - Figure 4.5 
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4.2 General Type-2 FLS Type-Reduction 

Once the GT2 MFs were created via the simplified two-step GT2 process, a type-

reduction method was needed to reduce the T2 fuzzy sets to T1 fuzzy sets before finally 

defuzzifying the data into a format useful for the SBD process.  As mentioned in   

Chapter 3, Section 1, there are several methods by which to achieve type-reduction of T2 

fuzzy sets.  For the SBD FLS the type-reduction process had to work quickly to avoid 

adding significant computational time.  More importantly, the type-reduced data-set had 

to be formatted in a manner that was useful for set-based analyses in the hybrid agent 

FLS negotiation process.   

An extensive literature search was performed to determine what type-reductions methods 

were available, which were most commonly used, and which was purported to be the 

fastest.  The literature search led to the use of centroid type-reduction, employing the 

Enhanced Karnik-Mendel (EKM) algorithms [Wu and Mendel, 2009] for the GT2 FLS 

SBD tool.  Centroid type-reduction was chosen since it “is one of the most popular 

methods in applications” [Liu, 2008].  The EKM algorithms were chosen because of the 

algorithm’s speed and computational simplicity.   

A set of historical data was used to run tests to determine if the EKM algorithms were 

appropriate for use in the SBD hybrid agent FLS.  The historical data utilized three 

design agents, Resistance, Cargo, and Stability, to negotiate the beam (B) variable of a 

containership design.  Original MFs from the historical data were extended to GT2 MFs, 

and then type-reduced using the EKM algorithms.  The Resistance agent’s GT2 fuzzy set 

input is shown below; Figure 4.7 & Figure 4.8 show the GT2 MFs in 3-D and 2-D, 
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respectively.  Human design agents were allowed to describe their preference for design 

set-values by using linguistic terms Preferred (P), Marginal (M), and Unpreferred (U).   

The Resistance design agent preferred a ship with a small beam length, which explains 

the logic behind the linguistic preference choices of P, M, and U, in that order. 

 

Figure 4.7 Resistance Agent's GT2 Fuzzy Set from Historical Data 

 

Figure 4.8 2-D View of Resistance Agent's GT2 Fuzzy Set 



 

77 

 

To represent the GT2 fuzzy sets, the author first tried using the α-plane representation.  

An α-plane is a horizontal (x-y plane) slice of a GT2 MF.  “The two-dimensional α-plane, 

denoted   ̃, is the union of all primary membership(s) whose secondary grades are 

greater than or equal to the special value α ”, and is represented mathematically using 

Eqn. (4.1), [Liu, 2008],  

  ̃  ⋃ (   )   ̃(   )         where   ⋃ (  ̃( ))
     (4.1) 

The α = 0 plane corresponds to the FOU of a GT2 MF [Mendel and Liu, 2008].  The α-

value is equivalent to the z-value, called the secondary preference value and the y-value is 

equal to the primary preference value.  Equation (4.1) simply implies that a GT2 MF can 

be represented by summing all the individual α-planes from [0,1].  An example of 

different α-planes for a GT2 MF is shown in Figure 4.9.  In Figure 4.9 Liu [2008] uses 

the u symbol to represent y-axis primary preference values and the α symbol to represent 

z-axis secondary preference values. 

 

Figure 4.9 Example of α-planes of a GT2 MF [Liu, 2008] 
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Using the α-plane representation of GT2 MFs, the centroid of each α-plane was then 

found by means of Eqn. (4.2), which reduces the GT2 MF to a T1 MF consisting of the 

centroid values of the α-planes from α = [0,1] [Mendel, Liu, and Zhai, 2009] [Mendel 

and Liu, 2008] [Liu, 2008].  The T1 fuzzy MF could then be defuzzified to a crisp output. 

   ∫  
      

∫   ̃(     )      ̃(     )
      

(
∑     

 
   

∑   
 
   

)⁄  (4.2) 

In Eqn. (4.2),    ̃(     ) is an α-plane, there are i = 1…N values in each α-plane, and, ×, 

represents the fuzzy logic operation of t-norm.  For centroid type-reduction, only 

minimum t-norm is considered appropriate.  In a simpler form, Eqn. (4.2) can be written 

as Eqn. (4.3) which states that, “For minimum t-norm operations, centroid type-reduction 

for a type-2 fuzzy set  ̃ is the union of the centroids of its associated type-2 fuzzy sets 

 ̃( ), with   ,   -.” [Liu, 2008].   

   ∫         . ̃( )/

  ,   -

 ∫         (        . ̃( )/)

  ,   -

 (4.3) 

The theory for centroid type-reduction of the α-planes of GT2 fuzzy sets was applied to 

the GT2 MFs that were created from the historical FLS data.  As an example, the α-plane, 

centroid type-reduced, T1 fuzzy set of the Resistance agent is displayed in Figure 4.10.   

The SBD hybrid agent FL design tool utilized a fuzzy logic rule bank that relied upon the 

MFs of the fuzzy set maintaining the summation of preference values to a total of one.  It 

was evident from Figure 4.10 that the α-plane centroid type-reduced fuzzy set did not 

maintain this relationship.  The fuzzy sets of other design agents’, Cargo and Stability, 

produced similar results as those seen for the Resistance agent.   
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Figure 4.10 α-Plane, Centroid Type-Reduced, MFs of Resistance Agent's  

GT2 Fuzzy Set 

If the MFs of Figure 4.10 were defuzzified, the JOP curve would contain incomplete 

information about the set values due to the gaps wherever the type-reduced MFs did not 

cross.  Because of these results, the α-plane representation of the GT2 MFs could not be 

utilized in the SBD environment.  Since the type-reduced data from the α-plane 

representation proved not to be useful for the SBD hybrid agent FLS, another type-

reduction method needed to be selected for the GT2 FLS.   

After trying several more methods of GT2 fuzzy set representation and type-reduction, 

the combination that proved to be the best for use in the FL SBD tool was the vertical 

slice representation [Mendel, 2007] [Liu, 2008] [Mendel, Liu, and Zhai, 2009] [Mendel 

and Liu, 2008] [Mendel and John, 2001], combined with centroid type-reduction [Karnik 

and Mendel, 2000] [Liu, 2008], and the EKM algorithms [Wu and Mendel, 2007] [Wu 

and Mendel, 2009].   

P M

 

U
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A GT2 MF can be represented mathematically using Eqn. (4.4).  In the vertical slice 

representation a GT2 MF, Eqn. (4.4), is comprised of the sum of slices taken vertically at 

each value, xi, within the domain of the variable; Eqn. (4.5). A vertical slice is referred to 

as a secondary MF,   ̃( ); represented by Eqn. (4.6).  In Eqn. (4.6) the secondary MF is 

a function of the secondary preference value, fx(y), which itself is a function of the 

primary preference value, y.  Equations (4.4) – (4.6) are adapted from [Mendel, Liu, Zhai, 

2009]. 

 ̃  {((   )   ̃(   ))            ,   -} (4.4) 

 ̃  ∫   ̃( )  

    

 (4.5) 

  ̃( )    ̃(   )  ∫   
      ,   -

( )   (4.6) 

The vertical slice representation was chosen for the SBD FLS since the simplified 

method employed by the FLS to create triangular secondary MFs of the GT2 MFs, was 

equivalent to the creation of vertical slices.  The centroid type-reduction method was 

chosen for its computational simplicity.  The method worked by calculating the location 

of the centroid of each triangular vertical slice along the primary preference y-axis.  Also, 

as demonstrated by Figure 4.11, the method produced type-reduced fuzzy sets that 

maintained the desired overlap of type-reduced MFs thereby providing sufficient 

preference data for defuzzification throughout the entire set-range. 
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Figure 4.11 Vertical Slice, Centroid Type-Reduced, MFs of Resistance Agent’s  

GT2 Fuzzy Set 
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CHAPTER 5  

INITIAL TESTING OF FUZZY LOGIC SYSTEMS & RESULTS 

5.1 Primer on the Structure of the Set-based Fuzzy Logic Design 

Environment 

Before continuing discussion of the IT2M and GT2 FLS tests and results, it is pertinent to 

first understand the structure of the set-based design environment.  The current research 

was based upon a hybrid agent T1 FL SBD tool developed by David J. Singer [2003]. Dr. 

Singer’s original FLS SBD experimental data, referred to as the baseline data from here 

on, were used to provide input data for the IT2M and GT2 FLSs while the systems were 

in the initial research and development stage.   

The original T1 FLS was utilized to perform set-based preliminary ship design 

experiments.  In the construct of the SBD environment, the ship designers were modeled 

as domain agents in charge of describing their individual preference for the negotiation of 

a particular ship design parameter.  The agents’ preference information was described 

using any combination of three linguistic values of Preferred (P), Marginal (M), and 

Unpreferred (U).  For the SBD experiments, design agents were instructed that the U 

linguistic preference should be used only when trying to convey that a design value could 

not be used to satisfy the agent’s functional design goal.  The linguistic values were 

represented by trapezoidal and triangular FL MFs that were created by the human design 

agents.   
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The entire SBD process was overseen by a Chief engineering design agent.  The Chief 

engineering agent’s responsibilities included the selection of a design parameter for 

negotiation, setting the amount of time allowed for the negotiation process, and guiding 

the narrowing of set-ranges of negotiated design variables.  Figure 5.1 shows a graphical 

representation of the design agents that are involved during the use of the set-based FLS 

design tool for a ship design.  The diagram also represents the lines of communication 

between the FLS and the hybrid design agents. 

 

Figure 5.1 Diagram of Agent Communications Paths for FL SBD Environment 

The FL SBD tool process began with the Chief engineer submitting a request for 

negotiation of a ship design variable.  Negotiating design agents would then input their 

preference information for the set-values of the negotiated design variable as provided by 

the Chief engineering agent.  After all negotiating design agents input a fuzzy set of MFs 

describing their linguistic preference for the negotiation of the design parameter, the FLS 

swept across the set of possible design values, [xmin,xmax], concurrently considering each 

agent’s preference information for the design variable.  The FLS then produced a joint 
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output preference (JOP) curve describing the results of the combined preference 

information from each design agent.  The JOP curve was comprised of crisp output 

preference values, J(µ(xi),xi).  The JOP curve possessed one joint output preference value 

for each discretized set-range input value xi, in the entire negotiation set-range, [xmin,xmax].  

The Chief engineer and design agents would use the information from the JOP curve to 

narrow the design space for the next round of set-based negotiation of the design 

parameter.   

Figure 5.2 shows an example of this SBD process utilizing only two design agent inputs.  

In the example shown in Figure 5.2, the FLS read the linguistic preference inputs from 

the two design agents, resulting in the activation of various rules in the FL rule matrix as 

the FLS swept across the set-range.  After rule activation, the data passed through the 

steps of fuzzy inference and defuzzification resulting in the JOP curve values for the 

negotiated variable.  The JOP curve was then used by the Chief engineering agent to trim 

(reduce) the set-range for additional negotiation. 

One aspect of the current research involved the promotion of the set-based practice of 

concurrent design.  To accomplish this task, all the SBD FLSs used minimum-correlation 

inference to concurrently consider each agent’s input preference information as the 

system swept across the set of possible design values within the design space.  Minimum-

correlation inference selects the minimum preference value among the 1 → j activating 

MFs; Eqn. (5.1). 

   {  (  )    (  )      (  )} (5.1) 
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Figure 5.2 FLS Design Environment Process from Inputs to Output 

As with the original set-based FLS design tool, Singer’s meta-rule concept [2003] was 

used to create a rule matrix that governed the size and activation of an output preference 

function.  After the inference process, centroid defuzzification was used to reduce the 

output preference function to a single crisp value for each set value xi, resulting in a JOP 

curve for the negotiated variable.  The centroid defuzzification equation is shown in   
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Eqn. (5.2).  The subscript j represents the 1…N rules that were activated at a particular 

location xi along the x-coordinate axis.  The term xcj represented the centroid for the 

activated preference function that was a known value based on the number of negotiating 

design agents; [Singer, 2003].  The area of the activated preference function, which was 

clipped during the inference step, was represented by, aj, and J(xi) represented the 

resulting preference (utility) value for the JOP curve at xi; Eqn. (5.2) matches Eqn. (2.8) 

but with slightly different notation. 
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5.2 Initial Fuzzy Logic Systems Tests – T1 FLS Base Data  

While developing and testing the IT2M and GT2 FLSs for the SBD environment, it was 

desirable to have a consistent set of data to use for the FLS inputs.  As the new SBD 

FLSs were derivatives of the hybrid agent T1 FLS SBD tool developed by Singer [2003], 

it was natural to use historical data from one of the set-based ship design experiments 

performed by Singer during his research. 

The example outlined here shows the baseline MF input data and the resulting JOP curve 

data that was obtained from the original T1 SBD process.  This baseline data was utilized 

as input data in the research and development of the IT2M and GT2 FLSs.  The resulting 

output for the beam negotiation was later used for comparison to the IT2M and GT2 

FLSs’ JOP curve results.  In this simplified example, the beam negotiation was 

performed by three design agents: Cargo, Resistance, and Stability; their input preference 
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MFs are shown in Figure 5.3.  Note that in the SBD tool, the FLS required the first and 

last MF of a fuzzy set to have a preference value equal to one.  This was done to ensure 

the preference values summed to a total of 1.0 at the extremes of the set-range.  

The actual roles of each functional design agent are discussed in Chapter 6.  For now, 

Figure 5.3 provides insight into the motivations of each design agent when defining 

linguistic preference MFs for the beam design variable.  The first fuzzy set in Figure 5.3 

was created by the Cargo design agent. The Cargo agent chose to use triangular and 

trapezoidal MFs to emphasize that at discrete set-values an exact number of containers 

could be placed across the beam of the ship. The second fuzzy set was created by the 

Resistance design agent and third fuzzy set by the Stability agent.   

When trying to reduce the resistance of a ship, a designer typically prefers the smallest 

beam possible.  This preference was reflected in the Resistance agent’s fuzzy set.  To 

increase the stability of a ship, the ship’s beam can be increased.  The Stability agent’s 

fuzzy set, Figure 5.3, mirrored this preference for larger beam values. Notice that at the 

upper end of the beam variable set-range the Resistance agent used the U MF to indicate 

that these set-values resulted in a resistance that was unacceptably large.  In opposition, 

the Stability agent used the U MF at the lower end of the beam set-range indicating that 

these beam values could not supply the ship with the required stability.  The SBD FLS is 

unique in its ability to handle competing and conflicting preference inputs, such as those 

expressed by the Resistance and Stability agents. 

Based on Singer’s meta-rule concept [2003], having three negotiating design agents input 

preference information into the FLS resulted in the creation of five output preference  
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Figure 5.3 Design Agents' Preference T1 Fuzzy Sets for Beam Negotiation 

 

Figure 5.4 Output Preference Functions 

Cargo 

Resistance 

Stability 
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functions; Figure 5.4.  Associated with these output preference functions was a set of 

antecedent (IF…) and consequent (THEN,) actions for the fuzzy rule set listed in Table 

5.1.  Table 5.1 also lists the centroid value for each of the output preference functions. 

Table 5.1 Fuzzy Rule Set for the Beam Negotiation Example, Antecedents and 

Consequents Based on Three Negotiating Design Agents 

 

Rule 

# 

 

IF… 

THEN, Activate 

Output Preference 

Function… 

Centroid of Output 

Preference Function 

1 Any MF Unpreferred Trim (T) 0.00 

2 All MFs Marginal Marginal (M) 2.25 

3 
Marginal, Marginal, 

Preferred 

Marginally-Preferred 

(MP) 
4.50 

4 
Marginal, Preferred, 

Preferred 
Preferred (P) 6.75 

5 All MFs Preferred Emphasize (E) 9.00 

 

After preference input, the T1 FLS swept across the set-range for the beam variable, from 

minimum to maximum, performing each of the four FLS processes for all set-values, xi.  

To briefly illustrate this process, examine the specific beam set-value of x = 21.5 m in 

Figure 5.3.  At the set-value of x = 21.5 m, the Cargo and Resistance agents each had one 

active MF of the Marginal linguistic type. Since both of these agents had only one active 

MF, the preference level for each of the agent’s MFs was equal to                                  

µC-M(21.5) = µR-M(21.5) = 1.0, or linguistically 100% Marginal.    

The Stability agent had two active MFs at the set-value of x = 21.5 m.  The Stability 

agent’s two active MFs had associated preference levels of µS-M(21.5) = 0.375 and        

µS-P(21.5) = 0.625 for the linguistic preferences of Marginal and Preferred, respectively.  
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These values are equivalent to 37.5% and 62.5% membership in the Marginal and 

Preferred fuzzy sets, respectively.  Note how the MFs maintain the desired summation of 

set-membership to 1.0, or 100% for the fuzzy sets.  Based on the activated MFs at            

x = 21.5 m (Figure 5.3), for the three negotiating design agents, two different fuzzy logic 

rules were activated:   

 Rule #2, “All agents Marginal”, 

 Rule #3, “Marginal, Marginal, Preferred”.  

Each fuzzy rule had a consequent that instructed the FLS what output preference function 

to activate.  The activated output preference functions corresponding to Rule #2 and #3 

were “Marginal” and “Marginally-Preferred”, respectively.  Using minimum-correlation 

inference, the height of the activated output preference function was then clipped, and the 

new area of the clipped output preference function was determined for use in the centroid 

defuzzification process.  For the FLS input x = 21.5 m, the minimum-correlation on rule 

#2 resulted in a clip height of µmin-corr1(x) = 0.375, and for rule #3 µmin-corr2(x) = 0.625.  

The area of each clipped output preference function was equal to a1(21.5) = 1.107 and 

a2(21.5) = 1.670 squared units, for rules #2 and #3, respectively.  The subscripts 1 and 2 

represent the two activated fuzzy rules. 

Each of the activated output preference functions had a centroid value,    
, that was used 

during the centroid defuzzification process, j = 1…n for the n activated rules; for this 

example n = 2.  The centroid value for output preference function Marginal, activated by 

rule #2 was,    
  2.25, and for Marginally-Preferred, activated by rule #3,    

  4.5.  

The centroid and clipped output preference areas were then input into the centroid 
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defuzzification formula Eqn. (5.2) to determine the final JOP value for the beam set-

value of x = 21.5 m.  The resulting JOP curve value was J(x = 21.5) = 3.603.  The 

maximum obtainable JOP value is µ(x) = 9.0.  The data for the entire FLS process 

utilizing the example point x = 21.5 m is summarized in Table 5.2 and Table 5.3. 

Table 5.2 Active MFs and Preference Levels 

 for FLS Analysis of Beam Set-Value x = 21.5 m 

x = 21.5 Active MF(s) 
Preference 

Level(s) 

Cargo Marginal ------------ 1.0 ------------ 

Resistance Marginal ------------ 1.0 ------------ 

Stability Marginal Preferred 0.375 0.625 

 

Table 5.3 Defuzzification Data for FLS Analysis of Beam Set-Value x = 21.5 m 

Activated 

Rules 
Minimum-

Correlation 
Clip 

Height 
Clipped 

Output Area Centroid 

#2, All M min(1,1,0.375) 0.375 1.10742 2.25 

#3, MMP min(1,1,0.625) 0.625 1.66992 4.50 

  
Defuzzified Value =   3.60285 

 

As the FLS swept through the entire set-range, the process generated a JOP value for 

each beam value in the set-range, resulting in the JOP curve shown in Figure 5.5.  Notice 

how the JOP curve of Figure 5.5 has zero preference values in the ranges of 

approximately x = [17,19.8] and x = [23.5,25].  Looking back at the fuzzy sets input by 

the design agents, Figure 5.3, notice that in the region, x = [17,19.8], the Stability agent 

had input a MF with linguistic preference of Unpreferred, at a preference level of one.  In 

the second region, x = [23.5,25], the Resistance agent had input an Unpreferred linguistic 

preference, with a preference level of one.  Since, design values were 100% Unpreferred 
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in these two regions, through minimum-correlation inference and centroid type- 

reduction, the FLS negotiation resulted in JOP curve values equal to zero within these 

two set-ranges.  JOP values of zero indicated to the Chief engineering agent that these 

set-values were unacceptable for the design.   

 

Figure 5.5 JOP Curve from T1 FL SBD Negotiation of Beam Set Values 

Following SBD protocol, a Chief engineering agent viewing the JOP curve would be able 

to reduce the set of beam values to between B = [20,23.5] m  for the subsequent 

negotiation round. The JOP curve in Figure 5.5 is used throughout Chapter 5, Section 3, 

to aid in the illustration of the changes elicited by introducing uncertainty modeling into 

the SBD tool through use of IT2M and GT2 FLSs.  This T1 FLS beam negotiation JOP 

curve is often referred to as the “base” JOP curve throughout this thesis. 

All JOP curves had a joint preference scale with minimum and maximum obtainable 

values of Jmin(x) = 0.0 and Jmax(x) = 9.0.  This was a result of how the FLS used the 

100% Unpreferred 

by Stability Agent 
100% Unpreferred 

by Resistance Agent 
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output preference MFs and centroid defuzzification process to compute the JOP values.  

The first and last output preference MFs always possessed centroid values of    
  0.0 

and    
  9.0, respectively.  To obtain a JOP value of J(x) = 0.0, based on the meta-rule 

concept [Singer, 2003], one or more design agents must have input a linguistic preference 

of Unpreferred, at a preference level of one (100% Unpreferred).  This would result in 

activation of rule #1 only, with a centroid of x = 0.0, which in turn resulted in a JOP 

value of zero after centroid defuzzification.   

To obtain the maximum JOP value, all negotiating agents must have input the linguistic 

preference of Preferred, at a preference level of one (100% Preferred).  This would result 

in the activation of the final rule in the fuzzy rule bank, “All agents Preferred”.  The 

output preference function for this rule had a centroid at x = 9.0, which based on input 

preference values of one and using Eqn. (5.2) for centroid defuzzification, would result in 

the maximum JOP value of J(x) = 9.0. 

5.2.1 Ideal Iteration Level 

The IT2M FLS models uncertainty through the randomization of T1 MFs.  To achieve 

the uncertainty modeling, the randomization of the T1 MFs and the FLS steps, input to 

output, must be applied iteratively.  Figure 5.6 shows an example of an IT2M MF that 

has been created from a T1 MF that has been processed through fifty iterations of xRU 

randomization.   To run the IT2M FLSs efficiently, it was necessary to determine an ideal 

number of iterations that would be suitable for use with all of the IT2M FLS methods.  

With the IT2M FLS there is a tradeoff between the time required to perform a set of 

iterations and the amount of uncertainty represented in the JOP solution space.   
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Figure 5.6 Fifty Iterations of a Randomization Process 

To highlight the tradeoff between time and uncertainty representation, Table 5.4 lists the 

required average run times based on several different iteration levels when utilizing the 

IT2M FLS with the Yrand randomization method.  Note that if the program run-times 

look rather long, correct function was the overall goal when designing the program and 

the algorithms have not been optimized for speed.     

Table 5.4 Iterations and Average Program Run Time Data for IT2M FLS  

Using the Yrand Randomization Method 

Number of Iterations Average Run Time (sec) 

10 5 

100 42 

1000 604 

1000000 33000 

To further demonstrate the tradeoff of uncertainty modeling obtained via different 

iteration levels, the JOP histogram data representation is introduced in Figure 5.7 & 

Figure 5.8, showing the changes in uncertainty modeling using the xRU randomization 

method, having been run for ten iterations and one thousand iterations, respectively. 
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Figure 5.7 xRU IT2M FLS JOP Histogram After 10 Iterations 

 

Figure 5.8 xRU IT2M FLS JOP Histogram After 1000 Iterations 
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The JOP histograms were developed by dividing the cumulative JOP plots into a grid and 

counting each time a JOP curve point fell inside one of the grid bins; Chapter 5 provides 

a detailed discussion on the development of the JOP histograms.  Figure 5.7 and Figure 

5.8 have many similarities.  However, looking at the region near the beam value of, x = 

17 m, in the one thousand iteration JOP histogram, the counts in this area make a much 

smoother transition as the joint preference value increases from      J(µ(17),17) = 0 up to 

J(µ(17),17) ≈ 4.  In comparison, the bins in the same region of the ten iteration JOP 

histogram appear sporadic and choppy; Figure 5.7.  By using a greater number of 

iterations, there is an increased understanding of the uncertainty in the design space.   

Increasing the number of iterations used during each run of the IT2M FLS allowed one to 

gain confidence in the choice of certain design values. This confidence was gained by 

interpreting the data presented in the JOP histograms.  For instance, if a design value was 

highly preferred and had a high count of occurrence on the JOP histogram an engineer 

could feel confident in choosing to use this value for their design.  A value that was less 

preferred but also had a high number of counts on the JOP histogram may be worth 

investigating as an alternative design solution.  Using the IT2M FLS JOP histogram 

information when exploring the JOP solution space, helped promote SBD practices by 

reducing uncertainty and increasing the amount of information available for making 

design decisions.  

The JOP histogram data proved to offer an additional source of data analysis that was not 

present in either the T1 or GT2 SBD FLSs.  Using the IT2M JOP histogram, one could 

identify the design values that were robust in the presence of design uncertainty.  The 

robust design values would be those that possessed both a high level of preference and a 
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high count of occurrence in the JOP histogram.  The JOP histogram data could be utilized 

in optimization routines and to set a “threshold of robustness” criterion for set-reduction.  

This threshold would allow the Chief engineering agent to narrow the design space to 

include only design values that had a JOP histogram count above a specified level.  The 

full impacts and benefits of the JOP histogram for SBD are discussed in further detail in 

the results; Chapter 8.   

From preliminary test results (Figure 5.7, Figure 5.8, Figure 5.9) it was clear that the 

iteration level affected the IT2M FLS’s ability to represent uncertainty in the design 

space.  As such it was necessary to determine how many iterations were needed to gain a 

suitable representation of the uncertainty in the JOP solution space.  To determine the 

ideal iteration level, the historical T1 FLS base-data was used to perform a tradeoff 

analysis between time required to perform a set number of iterations and the total 

representation of the solution space.   

 

Figure 5.9 Averaged-Value JOP Curves for 10, 100, 1000, and 10
6
 Iterations of the 

Yrand IT2M FLS method 
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Different iteration levels were tested in incremental steps for the IT2M SBD FLS.  Each 

set of IT2M FLS JOP curve data was then averaged into a single, averaged-value JOP 

curve.  The averaged-value JOP curve, created from the set of iterations, was then 

compared to an averaged-value JOP curve created from one million iterations. The one 

million iterations averaged-value JOP curve was used to provide a baseline of 

comparison between the results of the different iteration levels; Figure 5.9.  From    

Figure 5.9, it is observed that the averaged-value JOP curves of one hundred and one 

thousand iterations resemble the averaged-value JOP curve of 10
6
 iterations quite closely. 

To further analyze the different iteration levels, the length-squared (L-squared) distance 

between an averaged-value JOP curve, Javg(x), for a particular iteration level and the 

averaged-value JOP curve from one million iterations, Jmill(x), was calculated for each 

set-value x, using Eqn. (5.3).  

   .    ( )       ( )/
 

 (5.3) 

Figure 5.10 shows a plot of L-squared distances between the averaged-value JOP curves 

for one million iterations and the iteration levels of ten, one hundred, and one thousand 

iterations.  It is apparent from Figure 5.10 that the averaged-value JOP curve for one 

thousand iterations was most similar in shape to that of one million iterations, followed 

by the averaged-value JOP curves of one hundred and ten iterations, respectively. 
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Figure 5.10 Plot of L-Squared Distances for Different Iteration Levels of the Yrand 

IT2M Method Compared to the Maximum of 10
6
 Iterations 

Since all JOP curves contained the same number of set values, xi, it was possible to 

calculate the average L-squared distance for each iteration level data set.  The average   

L-squared distance provided a single value, which could be used to easily compare each 

of the iteration-level data sets; Table 5.5. 

Table 5.5 List of Averaged L-Squared Distances Between Averaged JOP Curve 

Values for Different Iteration Levels of Yrand IT2M FLS Method 

Number of 

Iterations 

L-Squared Distance to 

10
6
 Average JOP Curve 

10 17.65 

100 10.90 

1000 10.44 

Besides the uncertainty modeling provided by the iteration levels, the time required to 

complete all iterations was also of great importance.  In fact, time to complete all 

iterations had a great influence on the final choice of an ideal iteration level.  The time 

required to complete one thousand iterations versus one hundred iterations was rather 

significant; Table 5.4.  Visually the one thousand iterations averaged JOP curve appeared 



 

100 

 

to be the most similar to the averaged value JOP curve of one million iterations.  

However, the average L-squared distance values, Table 5.5, showed that overall, the 

difference between the averaged value JOP curves of one hundred and one thousand 

iterations, when compared to one million iterations was quite low. 

After comparing JOP curves and histogram data, L-squared plots and average L-squared 

values, and the time to complete all iterations, it was decided that one hundred iterations 

was the ideal iteration level.  One hundred iterations were chosen over higher iteration 

levels because it provided an excellent balance between uncertainty modeling capabilities 

and the amount of time required to complete all iterations. 

Although most of the examples and data shown in this section were results of the Yrand 

randomization method, the same analyses were done for the remaining IT2M FLS 

randomization methods.  After extensive tradeoff analyses utilizing test data from all the 

IT2M FLS randomization methods, it was determined that one hundred iterations was the 

most suitable iteration level to use for all the IT2M FLSs based on uncertainty modeling 

capabilities and required run time. 

5.3 Results of Initial Tests 

5.3.1 Yrand IT2M FLS 

The T1 FLS historical data was used to provide the design agent input preference MF 

data for the Yrand IT2M FLS preliminary tests.  Using the ideal iteration level, one 

hundred iterations of the IT2M FLS Yrand randomization method were completed using 

the historical input data.  For the preliminary tests, the sigma value of Eqn. (3.1) was set 
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to a value of 0.1, equivalently 10%.  Figure 5.11 shows the composite plotting of all one 

hundred JOP curves, as well as the average JOP curve and the baseline T1 JOP curve. 

After examining the results of the Yrand process in Figure 5.11, it was seen that the 

Yrand method failed to invoke the second key principle effect of IT2 MFs:  

2) Opportunities for changes in rule activation due to MF curve uncertainty are 

now possible.   

 

 

Figure 5.11 Yrand IT2M FLS JOP Curve Results Using 100 Iterations 

The Yrand randomization method clearly affected only the JOP level and did not result in 

the creation of new non-zero preference values from additional rule activation.   Since, 

the Yrand randomization method affected only the preference value of the T1 MFs, and 

not the width or shape of the MFs, there was no opportunity for changes in rule activation 
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due to the modeling of uncertainty.  In addition to this problem, as mentioned in the 

previous chapter, the Yrand IT2M FLS did not maintain the summation of MF preference 

values to 100% or 1.0.  Although a FLS is not required to enforce MFs to sum to one, 

typical FLSs for engineering applications do strive to maintain the logical summation of 

MF preference values to one [Cox, 1999].  

Before abandoning the Yrand IT2M FLS, an investigation was performed to determine 

how the FLS JOP curve results for the Yrand method would change if the MFs of the 

design agents’ fuzzy sets were parametrically linked.  For the Yrand IT2M FLS, the 

parametric linking occurred at the preference level for all MF data points.  One MF 

would be independently randomized, the adjacent MF’s preference values would be 

parametrically adjusted so that the summation of preference values would remain equal to 

one at each µ(xi).  Figure 5.12 shows a set of MFs for the Cargo design agent before 

parametric linking, while Figure 5.13 shows the change in the MFs when the curves are 

parametrically linked.  The parametric linking in Figure 5.13 began with the leftmost MF, 

but as with the parametric linking for the other IT2M FLS methods, a simulated coin flip 

was used to determine if parametric linking began with the leftmost or rightmost MF. 

The Yrand IT2M FLS was updated to provide parametric linking of the MFs and the 

historical T1 data was again used to provide the FLS input MFs.  Figure 5.14 shows that 

parametrically linking of the MFs for the Yrand IT2M FLS did result in the activation of 

new fuzzy rules.  The additional rule activation resulted in the new, non-zero, preference 

values in the regions before x ≈ 20 and after x ≈ 23.5; these regions are labeled in     
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Figure 5.12 Cargo Agent's Fuzzy Set for Yrand IT2M FLS without Parametric 

Linking of MF Preference Values 

 

 

Figure 5.13 Cargo Agent's Fuzzy Set for Yrand IT2M FLS With Parametric 

Linking of MF Preference Values 

P dependently 
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Figure 5.14.  Previously, the average JOP curve from the non-parametrically linked FLS, 

Figure 5.11, had joint preference values of,  J(x) = 0.0, in these regions. 

 

Figure 5.14 Average JOP Curve of the Yrand IT2M FLS When Input MFs Were 

Parametrically Linked 

As a Chief engineer, the minor changes in the JOP values would not be considered 

significant enough to warrant continued analysis and investigation.  Therefore, the Chief 

engineering agent would have reduced the set-range by the same amount in both the 

parametric and non-parametric cases for the following negotiation round; for this 

example.  

By parametrically linking the membership functions for the Yrand IT2M FLS method no 

additional design insight was gained and the ability to model uncertainty was not 

affected.  The information obtained from the two Yrand IT2M FLS tests led the author to 

conclude that modeling of the uncertainty for both the preference level and the locations 

of the MF curve defining points was needed to fully invoke the two key benefits of T2 

MFs.   

Newly activated  

non-zero JOP values 
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Since the Yrand method of randomization did not produce MFs that satisfied both key 

effects of IT2 MFs, this randomization method was not pursued any further for the IT2M 

FLS process.  Although the Yrand randomization method was deemed not fully 

appropriate for the IT2M FLS SBD uncertainty modeling process, the Yrand IT2M FLS 

tests did provided data that helped in determining what aspects of randomization needed 

to be changed in order to model both of the key effects of T2 MFs.  The conclusions 

drawn from the Yrand IT2M FLS preliminary tests led to the eventual development of the 

xRU, xRL, and Slopes IT2M FLSs.   

5.3.2 xRU, xRL, and Slopes IT2M Results 

As mentioned in Chapter 3, the xRU, xRL, and Slopes IT2M FLS methods of 

randomization were developed to model the key aspects of T2 MFs, stated again below:  

1) The preference value of an active (T2) MF is represented by a set of possible 

values as opposed to a one single value and,  

2) Opportunities for changes in rule activation due to MF curve uncertainty are now 

possible. 

The historical T1 FLS design data for the negotiation of a ship’s beam was again utilized 

as input data for the preliminary testing and development of the IT2M FLS 

randomization methods of xRU, xRL, and Slopes. As shown in Chapter 5, Section 2, the 

beam negotiation was performed utilizing preference inputs from three design agents, 

Cargo, Resistance, and Stability.  Each of the three IT2M FLS methods, xRU, xRL, and 

Slopes, was tested using one hundred iterations for the IT2M FLS randomization process. 

The use of one hundred iterations was made based on the analyses done to determine the 
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ideal iteration level, Chapter 5, Section 2.1.  When testing each of the IT2M FLS 

methods, the maximum allowable uncertainty was added to the MFs of the design agents’ 

fuzzy sets.  The maximum allowable uncertainty bounds for each method were described 

in Chapter 3, Section 4.   

Figure 5.15 - Figure 5.17 show the composite graphing of all one hundred JOP curves 

created by the iterative process of the IT2M FLS for the xRU, xRL, and Slopes 

randomization methods, respectively.  Each figure also displays the JOP curve resulting 

from taking the average JOP value at each individual set-value, xi.  To illustrate how the 

uncertainty modeling effects the JOP curves, the figures also show the T1 historical 

“base” JOP curve data.  The average-value JOP curve was created in order allow for a 

more direct comparison between the IT2M FLS results and, the T1 and GT2 FLS results, 

which are each comprised of only a single JOP curve.   

 

Figure 5.15 xRU IT2M FLS JOP Curve Results 
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Figure 5.16 xRL IT2M FLS JOP Curve Results 

 

Figure 5.17 Slopes IT2M FLS JOP Curve Results 
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The results of Figure 5.15 - Figure 5.17 showed that the IT2M FLSs permitted the 

modeling of the uncertainty associated with a JOP curve solution produced by use of the 

T1 FLS.  From the figures, it was apparent that the two key effects of T2 MFs were being 

correctly modeled by the IT2M FLSs.  For example, in Figure 5.15, at x ≈ 21.5 m, there 

exists a range of possible JOP values, and at x ≈ 17.25 m, there were non-zero preference 

values created from rule activation that did not occur in the JOP curve of T1 FLS.  The 

IT2M FLSs represented the design agents’ MFs as having a set of possible preference 

values for each input value, xi.  As a result, changes in the JOP curve shape occurred due 

to the activation of new or different fuzzy rules.   

Often, a complex design problem will not possess one optimal answer.  The IT2M FLSs 

used the representation of uncertainty to show a more realistic depiction of a design 

space.  From a design and engineering point-of-view, the composite graph of the 

randomized JOP curves was useful because it showed the formation of an upper and 

lower bound of uncertainty associated with the JOP solution space.  By viewing the 

multiple JOP curves it was possible to search the solution space for alternative design 

solutions and observe the effects of uncertainty on the FLS JOP curve solution.   

The averaged JOP curve provided a general sense of the overall preference for each 

design value taking into consideration the often conflicting preferences of the design 

agents.   It was also possible to gain a general understanding of how the introduction of 

uncertainty into the design environment affected the JOP values in the solution space.  

The data from the randomized and averaged JOP curves provided information beyond 

what was present in the T1 FLS.  One of the key principles of SBD is to delay design 

decisions until uncertainty has been reduced.  By modeling the uncertainty in the design 
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space the IT2M FLS was increasing the information available for making informed 

design decisions.  For instance, the IT2M FLS JOP curves provided a means to visually 

inspect the level of uncertainty from one round to the next and to determine if levels of 

uncertainty were reducing as the SBD process continued. 

To further utilize the IT2M FLS results JOP histograms were created by dividing the JOP 

design space into a 20x20 grid.  The 20x20 grid size was chosen arbitrarily based on the 

desire to offer enough fidelity to provide useful information that could be easily 

interpreted visually.  Smaller and larger grid sizes were tried, but it was decided that the 

grids were either too coarse or too fine.  Each time a JOP curve point passed through a 

bin in the grid, the total bin count for that bin was increased.  The JOP histogram bin 

counts related how frequently a JOP curve passed through a particular bin and a design 

agent to determine if a JOP value occurred frequently, or if the JOP value was simply an 

outlier.   

By using the JOP histograms to convey the uncertainty of the solution space, designers 

could understand which solutions were robust in the presence of uncertainty.   If a 

preference value occurred frequently, a designer could have a greater sense of 

confidence, meaning reduced uncertainty, when choosing the value to analyze in further 

detail.  The additional analysis of the JOP solution space using a JOP histogram provides 

a method to further reduce design uncertainty (a core SBD principle) when making 

critical design decisions, hence providing additional promotion of SBD beyond the 

capabilities of the T1 and GT2 FLS.  The enhancements provided by the JOP histograms 

are discussed further in the results, Chapter 8. 
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In the initial design and development phase, the JOP histograms were created and 

displayed in 3-D; as in Figure 5.18 - Figure 5.21.  Later on when refining the IT2M FLS 

for the SBD preliminary ship design experiments, it was decided that the same 

information could be conveyed using a much simpler 2-D color plot.  As such, the IT2M 

FLS JOP histograms for the set-based preliminary ship design experiments are displayed 

in 2-D using a gray-scale to indicate bin counts; examples are shown in Chapter 6.  The 

JOP histograms of Figure 5.18 - Figure 5.21, were based on the results shown in Figure 

5.11 - Figure 5.17, using one hundred iterations during each run. 

 

Figure 5.18 Yrand IT2M JOP Histogram, 

 Based on Historical Beam Negotiation Inputs 
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Figure 5.19 xRU IT2M JOP Histogram,  

Based on Historical Beam Negotiation Inputs 

 

Figure 5.20 xRL IT2M JOP Histogram,  

Based on Historical Beam Negotiation Inputs 
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Figure 5.21 Slopes IT2M JOP Histogram, 

 Based on Historical Beam Negotiation Inputs 

A few notes need to made in regards to the JOP histograms shown above.  Firstly, the 

counts for the zero preference values have been removed from the histogram data.  The 

data was removed because in certain regions all one hundred JOP curves passed through 

the same bins of zero preference; example x ≈ [17,19] in Figure 5.16.  Since it was clearly 

evident from the JOP curve plots that all preference values are zero for certain regions, 

the bin counts for zero preference values added no additional information in the JOP 

histograms.  In some cases the bin counts for the zero preference values resulted in bin 

counts so large that useful interpretation of results was quite difficult; Figure 5.22.  From 

a design and engineering standpoint, the non-zero preference counts provided more value 

in the JOP histograms than the zero preference counts.  Although the zero value 

preference bin counts were removed from the JOP histograms, the zero preference JOP 

data was kept in the JOP curve plots for use by the Chief engineering and design agents.   
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Figure 5.22 xRU IT2M JOP Histogram, Including Zero Preference Counts 

Another point of interest was that some of the JOP histogram counts exceeded a value of 

one hundred, which was the total number of IT2M FLS iterations run.  The cause for 

these bin counts was a result of how the variable set-range was discretized into individual 

set values, xi.  The historical beam variable set-range for the preliminary tests was,          

B = [17,24.8] m.  The data was discretized using a step size of 0.1, resulting in 

approximately seventy-eight individual set values.  Dividing the set values by the grid 

length of twenty resulted in approximately four set-values per bin width.  It was possible 

that a group of four set-values could have had JOP values that were similar enough in 

quantity to each other that they would have fallen within the same bin.  If this were to 

happen for every iteration, then the total bin count could be as high as 400.  Because of 

the large variation in total bin counts for the JOP histograms of the IT2M FLS SBD 
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results, it was not possible to choose a single scale for the z-axis “count” without losing 

fidelity in some of the JOP histograms; hence the varying scales for the JOP histogram 

counts. 

Effects of Randomization Methods 

By inspection of the JOP and average JOP curves, Figure 5.11 - Figure 5.17, and the JOP 

histograms, Figure 5.18 - Figure 5.21, it was seen that each of the four different IT2M FL 

randomization methods produced distinctly unique output results.  The different FLS 

outputs were products of how the design agents designed their input MFs and the IT2M 

FL randomization method used.  However, since the preliminary tests all used the same 

base data for the FLS inputs, the differences in JOP curves seen in these figures were due 

to the different IT2M FL randomization methods.  Changing the shape of the MFs 

through randomization could cause a drastic change in rule activation.  This drastic 

change was clearly evident in Figure 5.15 & Figure 5.17 for xRU and Slopes 

randomization methods.   

The average JOP results for the Yrand randomization method, showed only minor 

deviations that were centered about the baseline JOP curve.  This result was sensible 

since the Yrand method used a uniform random distribution centered about the original 

base MFs to perturb the preference levels of the MFs, thereby forming upper and lower 

bounds of uncertainty.  Because the Yrand IT2M FLS did not alter the width of the 

preference MFs, it was incapable of activating new fuzzy rules that could have potentially 

resulted in new, non-zero, JOP values.  That activation of additional fuzzy rules and the 

resultant output of new, non-zero JOP values did occur when utilizing the other IT2M 

FLS randomization methods.   
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The xRU, xRL, and Slopes IT2M averaged JOP results each showed that the uncertainty 

in the set-range of x ≈ [19,20], Figure 5.15 - Figure 5.17, resulted in a new JOP curve 

shape.  A similar result was seen for the set-range of x ≈ [17,17.75], Figure 5.15 &   

Figure 5.17, for the xRU and Slopes method.  Looking specifically at the xRU 

randomization, the JOP curves showed non-zero preference values over the region of 

approximately  x ≈ [17,17.75].  The cause for this dramatic change in JOP curve shape 

was directly related to the change in shape of the Stability agent’s Unpreferred (U) MF.   

When the Stability agent’s U MF decreased in width due to randomization it became 

possible for other fuzzy rules to be activated; rules which yielded non-zero preference 

levels.  To demonstrate this result, Figure 5.23 shows the Stability agent’s original 

historical fuzzy set.  In Figure 5.24, the Stability agent’s U MF has been xRU randomized 

using the maximum negative deviation allowed for the x-ru defining point of the U MF; 

x-ll of the M MF has been parametrically moved as well. 

 

Figure 5.23 Original Historical Fuzzy Set for Stability Agent  
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Figure 5.24 Stability Agent's Fuzzy Set After Single xRU Randomization  

of the U MF  

From Figure 5.23, it is seen that in the original T1 fuzzy set the only active rule from 

xϵ[17,19.9] was, “IF any agent unacceptable, THEN activate output preference function 

Trim”, because in this region only the U MF was active and it was active at a preference 

level of one; see FL rules Table 5.1.  The activated Trim output preference function and 

centroid defuzzification produced only zero values for this region, since the centroid of 

the Trim output preference function centroid was located at zero.   

Looking at Figure 5.24, xRU randomization allowed for additional rule activation 

because of the change in MF curve shapes.  After the single xRU randomization, the 

Stability agent had a fuzzy preference that was both Unpreferred and Marginal to varying 

degrees in the range in the range xϵ[17,19.9].  After all one hundred xRU iterations the 

randomized FLS T1 MFs repeatedly resulted in additional rule activation and non-zero 

JOP levels for the set-range of approximately xϵ[17,17.75], as seen in Figure 5.15.  A 

similar explanation applies for the changes in JOP output for both xRL and Slopes IT2M 

FLS randomization results.   
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Comparison of IT2M FLS Randomization Methods 

It is inappropriate to state that one IT2M FLS method of randomization truly performed 

better than another IT2M FLS method.  From a designer’s perspective, each IT2M FLS 

method possessed unique benefits for uncertainty modeling.  The IT2M FLSs produced 

different resulting JOP curves as was shown previously in Figure 5.11 - Figure 5.17.  The 

Yrand IT2M randomization method does not alter the width of a MF, and as a result there 

was no change in rule activation within the FLS.  The JOP curves produced by the IT2M 

FLS Yrand randomization method all possessed approximately the same range of non-

zero preference values.  Only the uncertainty in the preference value for the negotiation 

variable could be modeled using the Yrand IT2M FL randomization method.  The 

remaining three methods of randomization were capable of altering both the shape and 

preference levels of the baseline T1 MFs in order to model the key effects of true T2 

MFs. 

Using the xRU randomization method for the IT2M FLS, a drastic change in the shape of 

the JOP curve in terms of the range(s) of non-zero preference values resulted.  This result 

was caused by additional rule activation in the FLS that stemmed directly from the 

uncertainty modeling provided by the IT2M FLS SBD tools.  As discussed previously, 

when using the historical T1 MF data for the beam negotiation, up to an x-value of,          

x ≈ 20, the only rule activated was one that resulted in JOP values of zero only.  The xRU 

randomization method altered the width of the design agents’ preference MFs, which 

directly caused further FL rule activation.  As a result of the new/additional rule 

activation, a new range of non-zero preference values evolved from the uncertainty 

representation, in the approximate set-range of xϵ[17,17.75]; Figure 5.15. 
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The xRL IT2M FLS randomization method was capable of producing the same types of 

rule activation changes as seen in the xRU IT2M FLS example.  However, because of 

how the design agents defined the input linguistic preferences in the historical T1 FLS for 

the beam negotiation, additional rule activation did not occur in this particular case.   

The Slopes IT2M FLS randomization method elicited a change in the JOP curve shape 

when compared to the historical T1 FLS JOP curve.  Figure 5.17 showed that as a result 

of changes in rule activation due to the IT2M FL Slopes randomization method, the JOP 

curves possessed two additional regions of non-zero preference values.   

The results discussed so far were based on the initial IT2M FLS SBD tool tests which 

themselves were dependent upon the historical preference input MFs of design agents and 

the corresponding fuzzy logic rule bank.  The purpose of using the historical data was to 

allow the author to gauge if the FLSs were working as predicted and to ensure that the 

IT2M FLS randomization methods were capable of representing uncertainty in the JOP 

solution space.  It was quite logical to expect similar trends in uncertainty modeling 

capabilities when using the IT2M FLSs for different applications; such as the negotiation 

of a different design variable. 

The conveyance of information directly relates to how the IT2M FLS represented 

uncertainty of the design variable and of the resulting JOP curves.  As a designer trying 

to choose a particular IT2M FLS randomization method, it would be best to ask, “What 

properties of my system do I feel are uncertain?”, “What properties do I have confidence 

in?”, and “How do I want to convey the uncertainty of my preference MFs?”   These 

questions can help a design agent to choose the most appropriate IT2M FLS 
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randomization method for the representation of design uncertainty.  The author offers the 

following suggestions when trying to decide which IT2M FLS randomization method to 

choose for your own FLS. 

The xRU randomization method should be used for the IT2M FLS if, when designing a 

MF, there is uncertain about where to locate the x-ru MF defining point, but not the x-rl 

point.  With the xRU IT2M FL randomization method, a design agent can express 

uncertainty in the range of membership grades possessing a value of one in the MF.  In 

example, the range xϵ[17,19.9] for the U MF of Figure 5.23.  When using the xRU IT2M 

FL randomization method, a design agent should be fairly certain about the location of 

the x-rl defining MF curve point, as only the location x-ru point is independently 

randomized.   

Conversely, the xRL IT2M FL randomization method should be used when there is 

uncertainty about the location of the x-rl MF defining curve point, but not the x-ru point.  

When using the xRL IT2M FL randomization method, a design agent should be fairly 

certain about the location of the x-ru defining MF curve point.  The xRL IT2M FL 

randomization method places an emphasis on the uncertainty associated with the rate of 

transition from a membership grade of one to zero, which is equivalent the slope of the 

MF.  For example, transition region of xϵ[21,21.8] of the M MF in Figure 5.23. 

Both of the xRU and xRL IT2M FLS SBD randomization methods allow a design agent 

to model uncertainty in the width of a MF, while simultaneously modeling uncertainty in 

the rate of transition from a MF of one linguistic type, to that of another linguistic type.  

The Slopes IT2M FL randomization method was different than the xRU and xRU 
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randomization methods because, it allowed the user to represent uncertainty in the width 

of the MF, while simultaneously representing a sense of certainty in the rate of transition 

from one linguistic preference, to a MF of a different linguistic preference.  The Slopes 

randomization method would be best utilized when one desires to model uncertainty in 

the location and overall width of the MF, but not the rate of transition between the MFs. 

Additional recommendations for when to use each IT2M FLS randomization can be made 

based solely on the JOP curve data, Figure 5.11 - Figure 5.17, for each of the 

randomization methods.  The Yrand IT2M FLS randomization method displayed the least 

amount of T2 MF uncertainty modeling due to the fact that it cannot model uncertainty in 

the width of a MF or the locations of the MF defining points.  The xRU and xRL IT2M 

FLS randomization methods appeared to have relatively similar uncertainty modeling 

capabilities, while the Slopes randomization appeared to represent a large degree of 

uncertainty.  Therefore, it would be suggested to use the Slopes IT2M FLS randomization 

method at the earliest stages of design when uncertainty is the greatest, followed by the 

use of the xRU or xRL IT2M FLS randomization methods, and lastly the Yrand IT2M 

FLS randomization method during the latest stages of design when uncertainty has been 

greatly reduced.   
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CHAPTER 6  

FUZZY LOGIC SET-BASED DESIGN TOOL 

6.1 Set-based Hybrid Agent Design Tool Structure & Agent Roles 

The hybrid agent fuzzy logic software was created for the purpose of testing facilitation 

of SBD theories and methodologies.  For this research, the set-based hybrid agent FL 

software was configured to perform set-based preliminary containership designs.  To 

achieve this goal, human design agents were organized into a design group and each 

agent was assigned one of five functionally independent design roles.  The design agent 

roles for the preliminary ship designs were the Cargo, Resistance, Stability, Hull, and 

Propulsion; this is similar to what has been done historically for preliminary ship designs 

[Singer, 2003].  In addition to the functional hybrid design agent roles, at the highest 

level of the set-based hybrid agent structure was the Chief engineering agent controlling 

the entire SBD process.   

In the hybrid agent FL SBD tool, two-way communications existed between the design 

agents and the Chief engineering agent, between the FL software and the Chief 

engineering agent, and between the FL software and the design agents.  The back-and-

forth communications allowed the Chief engineering agent to send requests for 

information from the design agents and to then receive their responses.  Two-way 

communications also served as the input-output pathways to the SBD tool FLS software.  
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The communication paths between the Chief engineering agent, functionally independent 

design agents, and the FLS SBD tool software are shown in Figure 6.1. 

 

Figure 6.1 Lines of Communication Between Hybrid Agents and Fuzzy Logic 

Software in SBD Tool 

The SBD tool software also provided some one-way communication paths.  The paths 

were not shown in Figure 6.1 to retain clarity in the diagram.  The one-way 

communication lines were set up so that a design agent could receive information 

regarding auxiliary variables.  In the SBD hybrid agent FL software tool an auxiliary 

variable was defined as a ship design variable that was require by a design agent as an 

input for an analysis tool, but for which the design agent was not involved in the 

negotiation of the design variable. An example of an auxiliary variable in the preliminary 

ship design was, Cwp, waterplane coefficient.  This variable was controlled by the Hull 

agent, since it directly affected the form of a ship and hence had a great impact on the 

total displacement of the ship.  The Stability and Resistance design agents were not 
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significantly affected by the choice of Cwp, however the agents still needed the set-range 

of the variable to perform set-based analyses using their individual analysis tools.  Hence, 

Cwp was an auxiliary variable for the Stability and Resistance agents. 

During the set-based preliminary ship design, the Chief engineering agent was 

responsible for setting the pace of set-based communications.  To facilitate 

communication of design variables in a set-based manner the hybrid agent FL SBD 

software provided the Chief engineering agent a graphical user interface (GUI) with tools 

to control variable set-ranges and request negotiations of design variables.  The GUIs for 

the Chief engineering agent and design agents are discussed in Section 2 of this chapter. 

Each of the functional design agents had an independent goal for the preliminary ship 

design. Outlined below are the specific design goals for each of the independent, 

functional design agents: 

 Cargo Agent – Responsible for ensuring the required number of twenty-foot 

equivalent units (TEU), a.k.a containers, fit into the ship’s hull and onboard the 

ship’s deck in order to meet the owner’s design requirements. 

 Resistance Agent – Responsible for calculating the thrust necessary to achieve the 

required ship speed, Vk , in order to meet the owner’s design requirements. 

 Stability Agent – Responsible for guaranteeing transverse stability of the ship by 

ensuring that the transverse metacentric height, GMt, was satisfactory. Simply 

put, ensure that the ship floats upright. 

 Hull Agent – Responsible for assuring that the ship’s displacement was greater 

than or equal its weight, so that the ship floats. 

 Propulsion Agent – Responsible for determining the required installed engine 

power to meet the design speed requirement, and to pick an engine that could 

supply this power. 
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With each agent working to satisfy its own goal, it was likely that the design agents 

would have conflicting preferences for the same design values.  The hybrid agent FL 

SBD tool was developed to deal specifically with the competing and conflicting 

constraints found in all complex system design scenarios and to facilitate the SBD 

process. 

6.2 Hybrid Agent Fuzzy Logic Software Language and Development 

The hybrid agent SBD tool was developed using the Java™ programming language to 

create GUIs that allowed the human design agents to interact with the FLS SBD tool by 

inputting preference information for set-ranges of ship design variables.  The Java™ 

GUIs allowed design agents to use fuzzy logic MFs to describe linguistic preferences of 

Unpreferred (U), Marginal (M), and Preferred (P).  After design agents input preference 

information for a design variable’s set-range values, the FLS performed a negotiation of 

the input data to produce a single joint output preference (JOP) curve that describes the 

overall preference for each of the set values for the design variable.  For the FL SBD tool, 

the JOP values, J(xi), range in scale from [0,9].  A JOP value of zero indicated the design 

value was completely unacceptable for at least one design agent, while a JOP value of 

nine indicated all design agents were completely certain that they preferred the design 

value.   

The Java™ platform was chosen for the development of the SBD design tool because the 

“technology's versatility, efficiency, platform portability, and security make it the ideal 

technology for network computing” [ORACLE, 2011].  Using Java™ programming, the 

software was developed with an object oriented structure, calling upon Java™ Remote 
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Method Invocation (RMI) to allow the software to operate as a networked-based system.  

The network-based system allowed the hybrid FL design agents to work independently 

on their own personal computers (PCs) and in different locations, all while being 

connected to a central host computer that acted as a networked server.  The Java™ RMI 

enabled the communications between the Chief engineering agent, design agents, and the 

SBD FLS tool.  Information on the set-based communications and SBD process was 

stored in data files on the host computer for further analysis.   

The original T1 FLS SBD tool theory and mathematics for the hybrid agent T1 FLS were 

created by David J. Singer [2003], with the Java™ programming outsourced to a 

consultant, Dr. J. Eric Ivancich. The author’s research has focused on the investigation of 

the effects of adding uncertainty modeling to the SBD process via newly developed 

IT2M FLSs, and a GT2 FLS hybrid agent design tools.  The theory and mathematical 

processes for the new SBD FLSs were developed by the author and initially coded using 

MATLAB programming software.  

Since the goal of this research was to determine the effects of adding uncertainty to set-

based communications, not to test the author’s programming efficiency, help was sought 

for development of the newly developed hybrid agent IT2M FL and GT2 FL SBD tools. 

Outside programming help was necessary to avoid negatively impacting the SBD 

experiments and skewing results due to limitations of the software and functionality of 

the GUIs.   

With permission from Dr. David Singer, the original T1 FLS hybrid agent SBD tool code 

was updated to include uncertainty modeling capabilities by way of IT2M and GT2 FLSs.  
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Because of his intimate knowledge of the T1 FLS hybrid agent software, Dr. J. Eric 

Ivancich was again consulted for the updating of Singer’s T1 FL hybrid agent SBD tool 

Java™ research code. 

6.2 Software Interfaces 

There are two main sets of GUIs in the hybrid agent SBD FLS tool, those for use by the 

Chief engineering agent and those for the design agents.  The agents’ GUIs were 

developed to facilitate simplistic and intuitive data input and to aid in set-based 

communications. 

6.2.1 Chief Engineering Agent Interfaces 

The Chief engineering agent’s GUIs were identical for the T1, IT2M, and GT2 FLSs.  

The Chief engineer agent was in charge of controlling the entire SBD process.  The Chief 

agent had a “Main Interface” GUI that displayed information about the design agents’ 

status and the ship design variables; Figure 6.2.   

Note that in Figure 6.2, as well as many of the following figures, there were references to 

a variable Dave_B.  This variable name was created for the sole purpose of differentiating 

between negotiations of the design variable beam (B), which were based on inputs from 

the historical T1 FLS data versus new negotiations for the B variable using human 

agents’ preference inputs.  In addition, for simplicity during the design and preliminary 

test stages the Dave_B variable was negotiated by only three design agents: Cargo, 

Resistance, and Stability.  The true beam variable, B, was negotiated by all five design 

agents. 



 

 

 

 

 

Figure 6.2 Chief Engineering Agent's Main Interface GUI 
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In the “Main Interface” GUI, the design agents’ status referred to whether or not a design 

agent was connected or disconnected to the SBD tool software.  A data table provided 

information about a design variable’s name, units, set minimum and maximum values, 

status, and “Due In” time.  There are three status states for a design variable, 

1) Status Completed – This state indicated the variable was not involved in an active 

negotiation and informed the Chief engineering agent exactly how many negotiations 

have been completed for the design variable. 

2) Status In Progress – This state indicated that the design variable was currently being 

negotiated.  Information was also provided to the Chief engineering agent as to how 

many design agents were still working on entering preference information for the 

negotiation of the design variable.  When the system was waiting for only two design 

agents, the GUI would display the names of the design agents.  

a. If the design agent(s) failed to submit preference information before the 

allotted time limit, the status would read “In Progress/Overdue”. 

3) Controlled by … Status – This status was reserved for design variables that were not 

negotiated.  The set-ranges of these variables were controlled by the agent listed in 

the “Controlled by …” status window. 

The Chief engineering agent initiated the SBD negotiation process by requesting the 

negotiation of a design variable using the “New Negotiation Round…” button on the 

“Main Interface” GUI.  Clicking this button opened a new dialog window, the 

“Negotiation Set-Up” GUI; Figure 6.3.   

When sending the design agents a request for negotiation, the Chief engineering agent 

specified the set-minimum and -maximum values for the design variable and provided a 

time limit for the set-based negotiation.  The time limit for the negotiation of the design 

variable appeared in the “Due In” column on the Chief engineer’s “Main Interface” GUI.   
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Figure 6.3 Chief Engineering Agent's Negotiation Set-Up GUI 

Once submitted, the time limit began to count down to zero, and the count-down was 

displayed on the “Main Interface” GUI.  The time limit was used to try to maintain a 

constant takt time throughout the SBD.  Takt time is defined as, “the average time 

between outputs”, and is, “a German word used to describe a Japanese system that 

indicates a precise interval of time” [Hopp and Spearman, 2008].   

The time limit was provided to the design agents with the intention that it be used to help 

gage how much time the agent should allot to perform design analyses before finally 

entering preference information.  No penalty was assessed if a design agent failed to enter 

preference data before the time limit expired.  However, the “Due In” status would 

change from a time value, to a status statement of “Overdue”.   

Depending on the FLS being used for the SBD process, the “Get Values/History” button 

would display different FLS results.  When using the T1 or GT2 FLSs, after first 

selecting a design variable by clicking on the variable name, clicking on the “Get 

Values/History” button resulted in a new display window; the “FLS Results” screen.  The 
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“FLS Results” screen displayed the JOP curve result for the most recent negotiation 

round.  After the first negotiation round, the “FLS Results” screen contained two tabs, 

one displayed the most recent JOP curve only, while the other tab displayed a plot of the 

current and previous JOP curve results together; Figure 6.4 and Figure 6.5. 

The “FLS Results” screen also displayed the set-minimum and -maximum from the most 

recent negotiation round; labeled the “Old Minimum” and “Old maximum”.  The “FLS 

Results” screen could also be opened by double-clicking the left-mouse button on the 

variable name in the table of the Main Interface screen. 

After the first round of negotiation, when the Chief engineering agent went to request a 

new negotiation round, the “Negotiation Set-Up” GUI opened with an addition to the 

previous information shown in Figure 6.3.  The GUI now included a display of the JOP 

curve results similar to those in Figure 6.4 and Figure 6.5.  When starting a new 

negotiation round, the Chief engineering agent used the additional JOP curve information 

to determine how to trim the set-range, thereby establishing a reduced set-range for the 

new negotiation round. As an alternative to using the “New Negotiation Round …” 

button, double-clicking the right-mouse button on a variable name also opened the 

“Negotiation Set-Up” GUI.   

When using the IT2M FLS, the “FLS Results” screen displayed the unique JOP curve 

results for this particular FLS; that being the cumulative plotting of all JOP curves, one 

curve per iteration, and the averaged value JOP curve.   The IT2M FLS used additional 

post processing of the JOP curve results to create a JOP histogram data for each 

negotiation round.  For the IT2M FLS, the “FLS Results” screen also contained tabs for  
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Figure 6.4 FLS Results Screen for T1 and GT2 FLSs, Displaying Current JOP 

Curve Only 

 

Figure 6.5 FLS Results Screen for T1 and GT2 FLSs, Displaying Current and 

Previous JOP Curves Simultaneously 
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the JOP histogram displays; one with zero preference values included and a one for the 

JOP histogram without the zero preference values.  All four tabs are shown in the screen 

shot of the “FLS Results” screen for the IT2M FLS; Figure 6.6.  For comparison, the JOP 

histogram results based on the JOP curve data of Figure 6.6 are shown in Figure 6.7 and 

Figure 6.8. 

 

Figure 6.6 IT2M FLS JOP Curve Results Display in the New Negotiation Set-Up 

GUI for the Chief Engineering Agent 

Similar to the T1 and GT2 FLSs, when starting an additional negotiation round, the Chief 

engineering agent was provided the JOP curve negotiation results for the most recent 

negotiation.  The displayed IT2M FLS results included a cumulative plot of JOP curves, 

averaged value JOP curves for previous and current negotiation rounds, and current JOP 
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Figure 6.7 IT2M FLS JOP Histogram Data Based on JOP Curve Data of Figure 6.6, 

With Zero Preference Values Removed 

 

Figure 6.8 IT2M FLS JOP Histogram Data Based on JOP Curve Data of Figure 6.6, 

Including Zero Preference Values 
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histograms with and without zero preference values.  The Chief engineering agent used 

the JOP curve data to make informed decisions as to how to reduce the set-range for the 

new negotiation round. 

The Chief engineering agent’s “Main Interface” GUI also had a “Get Agent Status” 

button.  The “Get Agent Status” button was used by the Chief engineering agent to view 

the status of the design agents in reference to specific design variables.  After selecting a 

variable name from the table and then clicking the “Get Agent Status” button, a new 

window would open displaying the names of the negotiating agents; the connection 

status, “connected” or “disconnected”; and the preference status for negotiation, 

“submitted”, “un-submitted” (if negotiation in progress), or “nothing pending”.  This 

information was used by the design agent to control the flow of the SBD negotiations. 

The final button found on the Chief engineer’s Main Interface screen is the “Disconnect” 

button.  This button was used at the end of a SBD to properly disconnect a design agent 

from the networked software.  The program recorded all instances of connection and dis-

connection from the program while a SBD was in progress.   

6.2.2  Design Agent Interfaces 

Design Agents’ Main Interface 

A design agent’s “Main Interface” GUI was identical for all hybrid agent SBD tool FLSs.  

Figure 6.9 shows an example of the Resistance agent’s “Main Interface” GUI for the FL 

SBD tool.  All of the design agents’ “Main Interface” GUIs had the same general layout.  

Many of the same features that were present on the Chief engineering agent’s “Main 

Interface” GUI were also found on the design agents’ “Main Interface” GUI.   
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Figure 6.9 Example of Design Agents' Main Interface 

For the negotiated design variables, the “Get Values/History” button provided the same 

information that the Chief engineering agent was able to view for the JOP curve results of 

each of the SBD tool FLSs.  The JOP curve data of previous negotiation rounds was used 

by design agents to aid in performing SBD analyses of design variables and for the 

development preference information for set-based negotiations.  

The design agents also had an “Auxiliary Variables” table in their “Main Interface” GUI.  

As mentioned previously, auxiliary variables were ship design variables that a design 

agent needed as an input into one of their analysis tools, but which were not negotiated 

by the design agent.  The set-ranges for these variables were automatically updated as 

they were reduced through set-based negotiations by other design agents.  Selecting a 

variable in the “Auxiliary Variables” table and then clicking the “Get Values/History” 
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button opened a pop-up window displaying the current set-minimum and -maximum 

values for the variable; labeled as the “Old” minimum and maximum. 

Using the left-mouse button and double-clicking on the variable name would display the 

historical values for the negotiated or auxiliary variables.  Double-clicking a negotiated 

design variable with the right-mouse button opened the design agent’s “Preference Data 

Input” GUI; the GUI could also be opened using the “Submit Data …” button on the 

agent’s “Main Interface” GUI.  The “Preference Data Input” GUI was used by the design 

agents to define the individual MFs that describe linguistic preferences for different 

ranges within a set of values for a design variable.   

When the Chief engineering agent requested the negotiation of a design variable, the 

negotiating design agents were notified via a pop-up window; example Figure 6.10.  The 

pop-up window displayed the date, time, variable name, and notification of a requested 

negotiation.  The window also notified a design agent when negotiations were completed.  

Design agents could use the pop-up notifications window and the “Main Interface” GUI 

to determine which variables needed to be negotiated and to assign a priority to the 

negotiation requests. 

To determine linguistic preferences for the different set values of a design variable, the 

design agents used individualized analysis tools.  These tools consisted of computer 

programs separate of the SBD tool software; for example, specially designed Microsoft 

Excel© spreadsheets and C++ programs.  Once a design agent had determined linguistic 

preferences for set values, the “Preference Data Input” GUI was used to create the MFs 

which represented the agent’s linguistic preferences.   
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Figure 6.10 Example of Design Agents’ Notifications Pop-Up Window 

Design Agents’ Preference Data Input GUIs for T1, IT2M, & GT2 FLSs 

The “Preference Data Input” GUI was used by the design agents to create the MFs for the 

modeling of linguistic preference and design uncertainty.  As mentioned previously, all 

the FLSs used trapezoidal and triangular MFs.  The MFs were described by four defining 

curve points, left-lower (x-ll), left-upper (x-lu), right-upper (x-ru), and right-lower (x-rl); 

reference Figure 3.3.  At all times the upper defining curve points had a preference value 

of one, while the lower points maintained a preference value of zero.   

The appearance of the “Preference Data Input” GUI changed depending on which FLS 

was being used for the set-based negotiations.  However, overall the GUI maintained the 

same general appearance and functionality between the different FLSs.  The Type-1 FLS 

was used as the basis for which the other FLSs were designed.  In a similar manner the 
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“Preference Data Input” GUI for the T1 FLS was the basis for the “Preference Data 

Input” GUI of the IT2M and GT2 FLSs.   

When the “Preference Data Input” GUI opened, by default, the design agent was 

automatically presented with five MFs of linguistic preference, U, M, P, M, and U , in 

that order.  An example of the T1 FLS default “Preference Data Input GUI” is shown in 

Figure 6.11 for the first round of negotiation.  The GUI lists the number of MFs and the 

associated set values for each of the defining MF curve points, as well as the linguistic 

preference of the MF.  An additional MF was added by clicking on the row in the 

“Trapezoid Table” and then clicked on the “Split Trapezoid” button.  To remove a 

trapezoid, the user pressed Ctrl+mouse-click to select two adjacent MFs from the 

“Trapezoid Table”, and then clicked the “Join Trapezoids” button.  The addition and 

subtraction of MFs allowed design agents to define as few or as many MFs as needed to 

linguistically describe preference of the set-range values for a design variable.  

There were two methods to change the location of the MF defining curve points and 

linguistic preference of a MF.  The most accurate method for defining the MF curve 

points was to enter exact set-values into the “Trapezoidal Table”.  The simplest method 

for changing the MF curve shape and location of the defining curve points was to use the 

drop-and-drag points positioned at each of the defining curve points located on the MFs 

in the “Preference Plot”.  After defining the location of a MF defining curve point for one 

MF, the parametrically linked MF defining curve point of the adjacent MF was 

automatically updated in the “Trapezoidal Table” and in the “Preference Plot”; refer to 

Chapter 3, Section 3 for a review of the parametric linking concept.   
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Figure 6.11 Initial State of Design Agent's Preference Data Input GUI for T1 FLS  

Java™ code was in place to try and limit a user from defining an improper MF curve 

shape.  In the event an improper curve shape was created by a design agent, the program 

contained error checking code that notified the design agent to the presence of an error in 

the fuzzy set.  The code then described which MF was causing the error and what the 

error was in the “Errors” box of the “Preference Data Input” GUI.  Design agents were 

not allowed to submit preference information until all errors were corrected.  Besides the 
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MF curve shape errors, a design agent also received an error message when attempting to 

place two MFs of the same linguistic type side-by-side.   

The linguistic preference of a MF could be changed by clicking the MF’s type label in the 

“Trapezoidal Table” and then selecting the desired linguistic preference type from a drop-

down menu; again linguistic preference choices were Unpreferred (U), Marginal (M), and 

Preferred (P).  The linguistic preference of a MF could also be changed by clicking on 

the symbol for the linguistic preference of the MF in the “Preference Plot” and then 

selecting the desired preference type from the drop-down menu.   

After splitting, joining, and altering the MFs of a fuzzy set the “Preference Plot” of a 

design agent’s fuzzy preference data may look something like that of Figure 6.12.   

Once the first round of set-based negotiation was complete, the “Preference Data Input” 

GUI changed appearance to include a display of the design agent’s fuzzy set and the JOP 

curve(s) from the previous negotiation round.  Since a computer display has a limited 

amount of space for applications and windows, tabs were used to switch between views 

of the agent’s previous MFs or the JOP curve(s); Figure 6.13 and Figure 6.14.  Note that 

the figures have been cropped and formatted to fit onto a single page.   

From one round of negotiation to the next round, the Chief engineering agent would have 

reduced the set-range of the design variable.  To highlight this fact, and to help 

differentiate the set-ranges of the current and previous negotiation rounds, the eliminated 

set-values were grayed-out in the plots of the previous fuzzy set and JOP curve data.  

This action can be seen in the screen shots of the “Preference Data Input” GUI, Figure 

6.13 & Figure 6.14, for a subsequent negotiation round. 
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Figure 6.12 Example of Design Agent's T1 FLS Preference Data Input GUI for 

Beam Negotiation, Round 1 

All of the characteristics of the design agents’ T1 FLS “Preference Data Input” GUIs 

discussed so far were also found in the GUIs of the IT2M and GT2 FLSs.  Because of the 

added uncertainty modeling capabilities of the IT2M and GT2 FLSs, the “Preference 

Data Input” GUIs for these FLSs also include methods for defining the uncertainty 

associated with the definition of the primary MFs.   
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Figure 6.13 T1 FLS Design Agent's Preference Data Input GUI after Round 1 

Negotiation, Showing Previous Round’s Fuzzy Set 

 

Figure 6.14 T1 FLS Design Agent's Preference Data Input GUI after Round 1 

Negotiation, Showing Current JOP Curve Result 
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As discussed in Chapter 3, the author has created several unique randomization methods 

for the representation of uncertainty via an IT2M FLS.  Each of the IT2M randomization 

methods required additional columns in the “Trapezoidal Table” to allow for the 

definition of precise ±ε uncertainty values.  As an alternative, the design agents were 

given the ability to define the uncertainty bounds using drop-and-drag points that were 

added to the MF “Preference Plot”.  The additional columns and the uncertainty bound 

drop-and-drag points for the xRU, xRL, and Slopes IT2M FLS randomization methods 

are shown in Figure 6.15 - Figure 6.17.  To save space each of the “Preference Data 

Input” GUI screen shots were taken during the first negotiation round, which does not 

include the additional JOP curve data, JOP histogram data, or fuzzy set data from the 

previous negotiation round. 

 

Figure 6.15 xRU IT2M FLS Preference Data Input GUI Example, Round 1 
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Figure 6.16 xRL IT2M FLS Preference Data Input GUI Example, Round 1 

 

Figure 6.17 Slopes IT2M FLS Preference Data Input GUI Example, Round 1 
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As demonstrated in the IT2M FLS “Preference Data Input” GUI examples, the ±ε 

uncertainty units do not have to be of equal value.  The design agents were allowed to 

define the uncertainty bounds as small, or as large, as deemed appropriate as long as the 

bounds did not exceed the maximum limits which were discussed in Chapter 3, Section 4.  

If a design agent attempted to define an uncertainty bound that exceeded the maximum 

allowable limits, an error message would be displayed in the “Errors” section of the 

“Preference Data Input” GUI and the uncertainty bound would change to a red color.  

Preference data could not be submitted until all errors were corrected.  

After the first round of negotiation the design agents’ “Preference Data Input” GUI for 

the IT2M FLS updated to include tabs which allowed the design agent to switch between 

views of all JOP curves plots for the IT2M FLS iterations or the agent’s MFs from the 

set-range of the previous negotiation round.  Figure 6.18 shows an example of the 

“Preference Data Input” GUI for the IT2M FLS after the first negotiation round.  A plot 

of the JOP curves for the IT2M FLS has been selected for viewing in Figure 6.18. 

The GT2 FLS design agent “Preference Data Input GUI” was designed to be similar in 

style and functionality to the GUI of the IT2M FLS.  The “Trapezoid Table” in the 

“Preference Data Input” GUI, for the GT2 FLS, had two additional columns for the 

definition of the ±ε uncertainty values associated with the upper and lower trapezoidal 

defining curve points, x-ru and x-rl.  The ±ε values for the defining curve points could be 

entered independently of one another, and, as with the IT2M FLS, the positive and 

negative epsilon uncertainty values were not required to be equal quantities.  The ±ε 

uncertainty values could also be set by using the associated drop-and-drag points on the 

MFs located in the fuzzy set “Preference Plot”.   
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Figure 6.18  Example of IT2M FLS Design Agents’ Preference Data Input GUI for 

Additional Negotiation Rounds, Previous Round’s JOP Curve Data Shown 

When using the GT2 FLS, design agents could use the “Preference Data Input” GUI to 

“Split” (add) or “Join” (remove) Preference MFs, select linguistic preference type, and 

enter or set MF defining curve points, in the same manner as the T1 and IT2M FLSs.  

After the first round of negotiation, the Preference Data Input GUI of the GT2 FLS 

included tabs to enable viewing of the most recent JOP curve result and the design 

agent’s preference MFs of the previous round.  Note that because of the extra T2 FLS 
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process of type-reduction, the JOP result of the GT2 FLS was a single curve, much like 

that of the T1 FLS, but ultimately of a different shape due to the modeling of the inherent 

design uncertainty.  Figure 6.19 shows an example of the “Preference Data Input” GUI 

when using the GT2 FLS for the SBD process. 

 

Figure 6.19 Example of GT2 FLS Design Agents’ Preference Data Input GUI for 

Additional Negotiation Rounds, Previous Round’s JOP Curve Data Shown 

Post-Preference Data Input Survey 

In order to collect insightful data from the human design agents that was not evident from 

the raw design data, such as the design agents’ motives for specific choices that were 

made when creating and defining a preference fuzzy set, the author created a post-
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preference data input survey.  The survey contained twelve questions, ten multiple choice 

and two short answer.  The design agents were required to answer each question in order 

to complete the final step of the preference data input process.  Many of the SBD survey 

questions used in the post-preference data input questionnaire were adapted from 

questions used by Chang and Tien [2006] in, “Quantifying Uncertainty and Equivocality 

in Engineering Projects”.  The post-preference data input survey is shown in Figure 6.20.  

All survey questions and answer choices are located in Appendix A.    
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Figure 6.20 Post-Preference Data Input Survey Questions GUI 
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CHAPTER 7  

SET-BASED EXPERIMENTAL DESIGN & DETAILS 

7.1 Experimental Design  

The goal of the SBD experiments was to test the effects of introducing uncertainty 

modeling into the SBD process.  It was hypothesized that adding uncertainty 

representation to the design process would positively enhance SBD facilitation.  To test 

the author’s hypothesis preliminary ship designs were completed using the T1, IT2M, and 

GT2 FLS SBD tools.  The results of these set-based ship design experiments are 

discussed in detail in Chapter 8. 

To ensure successful scientific experiments, it was crucial to design the experiments in 

such a way as to avoid the introduction of bias and to eliminate as many sources of 

variability as possible.  To avoid experimental bias the author created two different ship 

designs for the SBD experiments.  One ship design, referred to as Ship E, was established 

with loose design constraints.  The second ship design was developed with rigid design 

constraints and referred to as Ship D.  Both preliminary ship designs were of the standard 

containership type.  The use of the two different ship designs with varying degrees of 

difficulty in the design constraints allows this research to also test for the robustness of 

the FL SBD tool applications.  If a FL SBD tool method is robust, it should easily 

facilitate the SBD process for both Ship E and Ship D.  Testing the robustness of the FL 
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SBD environment in this manner was something that Dr. Singer failed to illustrate in his 

dissertation [2003].  

To create the different ship designs and associated design constraints, the author analyzed 

a database of approximately 1,000 container ship designs to develop regression equations 

for LWL, B, and T based on constraints of TEU capacity and service speed.  The criteria 

that constituted the preliminary ship designs as easy or difficult relates to the design 

constraints and producibility of the designs.  The Ship E design was less difficult because 

the design constraints were rather loose.  Therefore, there were many satisfactory ship 

designs solutions, and these solutions had principle design characteristics that were all 

well below the maximum allowable values of the design constraints.  Although Ship D 

was a smaller containership design, in terms of TEU capacity, the maximum allowable 

principle design constraints were set to such a low tolerance, that there was only a very 

narrow range of values that would produce a feasible design solution; making Ship D a 

very difficult design. 

Several principle ship design characteristics were used as governing constraints for the 

preliminary ship designs.  The ship design characteristics directly affected the difficulty 

of each design; these design constraints are listed in Table 7.1.  Some constraints and 

principle ship design characteristics were equal for both ship designs, these constraints 

are not listed in Table 7.1. 

The complete list of ship design requirements for Ship E and Ship D are found in 

Appendix B and C respectively.  Although it may appear as though the Ship E design 
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would be more difficult because many of the constraint values for the design were much 

larger than those of Ship D, naval architecturally this was not the case.  

Table 7.1  Principle Ship Design Constraints 

Design Constraint (units) Ship E Ship D 

TEU Capacity 4,000 8,000 

Avg. TEU Weight (t) 14.0 13.5 

Endurance Range (nm) 4475 2000 

Service Speed @ 85% Maximum 

Continuous Rating (knots) 
22-26 Speed ≥ 25 

Endurance Days 26 18 

Complement: Officers and Crew 25 22 

Maximum Length of Waterline, LWL (m) 360 300 

Maximum Beam, B (m) 51 33 

Maximum Draft, T (m) 25 12.75 

   

Since the SBD process required the participation of human subjects, the experiments 

were subject to the requirements of the University of Michigan’s Institutional Review 

Board (IRB) process.  To comply with the requirements of the IRB, each human subject 

that participated in the SBD experiments was randomly assigned an anonymous 

identification number (ID#).  The design agents used the ID# when logging into the SBD 

software.  By using the ID#’s, the software was able to anonymously tag all set-based 

communications with a design agent’s ID#, which facilitated post-processing of data.   

The design agents were asked to answer pre-experiment and post-experiment surveys to 

gauge their individual design experience and familiarity with the concepts of SBD before 

and after the experiments.  To maintain anonymity the design agent ID#’s were also used 

when filling out the pre- and post-experiment surveys.  The questions for the pre-



 

 

153 

 

experiment survey and post-experiment survey can be viewed in Appendix D and E 

respectively.  

The use of human subjects introduced an unavoidable source of variability into the design 

experiments due to the different levels of education, design experience, intelligence, and 

familiarity with SBD concepts.  In addition, one must account for the learning curve 

associated with the use of computer software.  To minimize the effects due to 

uncontrollable sources of variability, the following steps were taken:  

 A human subject was allowed to participate in only two SBD experiments, and 

during each experiment the human subject was randomly assigned a design agent 

role. 

o Done to minimize the effects due to a learning curve. 

 A human subject was never assigned the same design agent role. 

o Done to minimize the effects of a learning curve and account for 

variability in subject experience, design knowledge and intelligence. 

 Human subjects were randomly assigned to participate in the design experiments 

for Ship E and Ship D. 

o Done to account for variability in subject experience, design knowledge, 

and intelligence. 

 Human subjects were randomly assigned to different FLS SBD experiments of 

T1, IT2M, and GT2. 

o Done to minimize the learning curve affects and account for variability of 

subjects’ knowledge and experience. 

 Order of experiments was randomized by ship design and FLS type. 

o Total of six possible test cases selected at random. Done to minimize the 

learning curve affects and account for variability of subjects’ knowledge 

and experience. 
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One may notice that the random assignments for participation in a SBD experiment did 

not limit a subject from participating in experiments for the same ship design type, or the 

same FLS type.  For instance, a subject may have been randomly assigned to participate 

on a Ship E design using the T1 FLS, and a different experiment with the same Ship E 

design, but using the IT2M FLS.  The author felt that assigning subjects to the 

experiments in this way would help to account for variability in levels of education, 

experience, and intelligence.  If a subject was randomly assigned to participate in two 

SBD experiments that were of the same ship design type, or the same FLS type, it was 

felt that the experience a subject may gain from the initial experiment would only help to 

level-out the potential inexperience of another designer. 

In an ideal situation, the author would have performed a standard statistical hypothesis 

testing procedure using x number of participants and y experimental tests to achieve the 

desired level of statistical confidence to either accept or reject the null-hypothesis at a 

statistically significant level.  The human subjects would have all had the same level of 

education and work experience and each subject would have randomly been assigned to 

participate in each of the possible experimental scenarios.  

The author’s situation was less than ideal.  Because of the need for familiarity with ship 

design, the author was limited to the subject pool of students from within the Department 

of Naval Architecture and Marine Engineering, at the University of Michigan.  Within 

that small subject pool, the author chose to select only students who had some prior 

design experience, seniors and graduate students, in an attempt to reduce variability in 

education and experience levels.  The small subject pool size forced the author to use 

pair-wise comparisons between the different ship designs and FLS experiments, resulting 
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in a total of six individual SBD tool experiments; two ship designs, Ship E and Ship D, 

and three FLSs, T1, IT2M, and GT2.   

All human subjects were required to attend a pre-experiment training session.  The 

purpose of the training session was to provide the subjects with an equal opportunity to 

learn about SBD concepts, design agent roles and goals, and how to operate and interact 

with the SBD FL hybrid agent tool and the ship design analysis tools.  The subjects were 

also instructed on the difference between the FLSs, how to create MFs, and how to define 

uncertainty bounds using the different FLSs.   

7.2 Experimental Design Tool Set-Up 

The FL SBD tool software was set up to run a set-based preliminary ship design using a 

Chief engineering agent, and five design agents of the Cargo, Resistance, Stability, Hull, 

and Propulsion design functionalities.  This meant that each test required a total of six 

subjects.  Since, the Chief engineering agent greatly affects the flow of the SBD, without 

a detailed familiarity of SBD principles the design process would be hindered.  

Therefore, it was thought best to maintain a consistent knowledge and experience level 

throughout all of the SBD tool experiments and as such, the author acted as the Chief 

engineering agent for all of the SBD experiments.  

The design agents were in charge of negotiating the ship design variables for the 

preliminary set-based ship designs using a FL SBD tool to facilitate the SBD process.  

The complete list of negotiated design variables is found in Appendix F.  To develop 

preference opinions for the negotiated variables, the design agents were each provided 

ship design analysis tools in the form of specially adapted spreadsheets or other naval 
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architectural and marine engineering computer software.  Table 7.2 lists the tools utilized 

by each design agent to perform design analyses.   

Table 7.2 List of Design Agents' Analysis Tools 

Design Agent Design Analysis Tool(s) 

Cargo Container Arrangements Spreadsheet 

Resistance 
Powering Prediction Program 

Hydrostatic Values Spreadsheet 

Stability 
Stability Estimate Spreadsheet 

Hydrostatic Values Spreadsheet 

Hull 
Hull Displacement Spreadsheet 

Hydrostatic Values Spreadsheet 

Propulsion 

Preliminary Power Estimation Spreadsheet 

Propeller Optimization Program 

Hydrostatic Values Spreadsheet 

The goal of the preliminary set-based ship design experiments was not to prove the 

effectiveness of SBD for developing an optimal design, since this research hypothesis 

was previously investigated by Singer [2003].  Instead, the goal here was to investigate 

the effects of introducing uncertainty modeling into the SBD environment.  Therefore, 

during the SBD experiments it was not critical for the set-ranges of the ship design 

variables to be narrowed down until a single design remained.  As such, to focus on 

maintaining consistency in the experimental procedure, each SBD tool experiment was 

given a total of six hours to work towards set-reduction of the negotiation design 

variables for a preliminary ship design.   

The six hour time span included time allowances, which provided the SBD team with 

occasional breaks.  Since the design agents are tasked with entering their linguistic 

preferences for the design variables based solely on the analyses they conduct for their 
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independent functional design goal, the design agents were instructed not to discuss 

details of the experiment during their breaks so that they would not accidentally be 

influenced by the goals and preferences of the other design agents.  For the same reason, 

verbal communications were also kept to a minimum during the SBD experiments. 

Since the author’s goal was to only test the hypothesis that uncertainty modeling would 

enhance the SBD process, it was not necessary to test each of the individual IT2M FLS 

randomization methods.  Therefore, the Slopes IT2M FL randomization method was 

chosen for the initial SBD tool ship design experiments.  It was thought that this method 

would allow the design agents to describe the largest variabilities in design uncertainty.   

Later, after analyzing the experimental results, an additional experiment was run using 

the Ship E design requirements and the IT2M FLS.  For this additional Ship E set-based 

preliminary ship design experiment, the IT2M FLS was set up so that the design agents 

could select one of the randomization methods, xRU, xRL, or Slopes, to represent the 

uncertainty of the preference MFs in their fuzzy set.  The motivation for this additional 

test is discussed in the results section, Chapter 8. 
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CHAPTER 8  

EXPERIMENTAL SET-BASED SHIP DESIGN RESULTS 

8.1 Explanation of Set-Based Experimental Data and Analyzed Results 

One of the main principles of SBD is the delaying of design decisions until there is a 

reduction in overall design uncertainty.  The delaying of design decisions helps to avoid 

the design getting stuck in an infeasible solution space.  For a FL SBD tool to be 

classified as aiding in the facilitation of SBD, it was expected that the set-ranges of the 

ship design variables would gradually narrow throughout the course of a preliminary ship 

design experiment.  Set-based design relies on an increase in information and a reduction 

of design uncertainty before making the crucial early-stage design decisions.  Therefore, 

it was also reasonable to expect that the levels of design uncertainty would decrease as 

the design process continued.   

A total of six SBD experiments were initially run.  These experiments included designs 

based on two unique containerships, which are referred to as Ship D and Ship E.  The 

Ship D design possessed highly restrictive design constraints, making it difficult to find a 

feasible design solution, whereas the Ship E design constraints were very relaxed and 

several feasible solutions were known to exist.  Each ship design was attempted using the 

T1, IT2M-Slopes, and GT2 FLS SBD methods.  Singer [2003] has shown that a T1 FLS 

can facilitate the SBD process.  Therefore, in the new experiments, the T1 FLS was used 

as a baseline of comparison when trying to investigate the effects of introducing 
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uncertainty modeling into the SBD process.  After running the six initial design 

experiments, a seventh experiment was run in which design agents were allowed to 

choose which randomization method they used to represent the uncertainty of the MFs.  

This additional test, referred to by the label IT2M-Choice, was tested with the Ship E 

design, with the experimental goal of deciphering if further SBD enhancement could be 

achieved using this IT2M-Choice FLS.   

Table 8.1 shows a summary of the overall SBD experimental results for the seven 

completed set-based ship designs.  A SBD experiment was considered an overall success 

if it facilitated the basic SBD principles such as the gradual narrowing the solution space 

and set-variable ranges while leading to feasible design solutions.  A design failure 

resulted when a feasible design solution did not exist within the design space or any of 

the design agents were unable to satisfy their functional design goal by the end of the set-

based ship design experiment.   

Table 8.1 Summary of SBD Overall Experimental Results 

FLS Design Method Ship Design Experiment Result 

Type-1 Ship D Failed SBD 

IT2M-Slopes Ship D Successful SBD 

GT2 Ship D Successful SBD 

Type-1 Ship E Successful SBD 

IT2M-Slopes Ship E Successful SBD 

GT2 Ship E Successful SBD 

IT2M-Choice Ship E Successful SBD 

The remainder of this section is used to describe how the data was post-processed after 

the SBD experiments.  Section 8.2 provides details into the results and conclusions based 

on the analyzed data.  In Section 8.2.1 an assessment of SBD facilitation is provided and 
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discussion of general trends that were observed in all the SBD experiments is given.  An 

analysis of the trade-offs, benefits, and drawbacks of each FLS SBD method based on the 

experimental results follows in Section 8.2.2 for the highly constrained (Ship D) SBD 

experiments and Section 8.2.3 for the loosely constrained (Ship E) SBD experiments. 

Data on many different experimental variables was recorded during the SBD experiments 

with the goal of providing evidence to either support or reject the experimental 

hypothesis, “adding uncertainty modeling capabilities to the FL SBD tool functionality 

enhances the overall SBD process”.   After post-processing the experimental data, it was 

determined that the magnitude of a set-range and the magnitude of the uncertainty bounds 

of a design variable were the most effective at illustrating the set-based properties of the 

FLS design tool environments.  The magnitude of a set-range was calculated using     

Eqn. (8.1) and the magnitude of the uncertainty bounds, the distance between ±ε 

coordinate values, using Eqn. (8.2).  In an ideal SBD one would expect these values to 

decrease with time.   

set-range = set_max – set_min                     (8.1) 

‖           ‖    (  )  (  )   (8.2) 

Figure 8.1, showing a single, simplified GT2 MF for the beam design variable, can be 

used to explain the concepts of set-range magnitude and magnitude of uncertainty in 

further detail.  As an example, the set-range magnitude is calculated in Eqn. (8.3) and 

illustrated in Figure 8.1 using the dash-dot double-arrow.  Because the figure shows a 

GT2 MF, there are uncertainty bounds associated with both the x-ru and x-rl defining MF 

curve points.  The calculated magnitude of uncertainty associated with x-ru is shown in 
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Eqn. (8.4) and for x-rl in Eqn. (8.5), and illustrated using the dotted double-arrows in 

Figure 8.1. 

 

Figure 8.1 A Single, Labeled, Simplified GT2 MF from a Design Agent’s Fuzzy Set 

Describing Preference for Beam Set-Values 

set-range = 24.8 – 17 = 7.8 (8.3) 

‖     ‖                    (8.4) 

‖     ‖                    (8.5) 

The magnitude of the uncertainty as was plotted in the results figures was derived by first 

calculating the magnitude of uncertainty associated with each individual MF in a design 

agent’s fuzzy set; as was done for the MF of Figure 8.1, using Eqn. (8.2).  The values of 

magnitude of uncertainty for the entire fuzzy set were then used to create an average 

value for the magnitude of uncertainty for a design agent’s fuzzy set.  The average 

magnitude of uncertainty was used as the, “magnitude of uncertainty”, as plotted in the 

results figures shown throughout Chapter 8, as well as in Appendix H and Appendix J for 

x-rl 

x-ru 

+εxru 

+εxrl - εxrl 

- εxru 
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the Ship D and Ship E set-based ship design experiments, respectively.  Appendix G for 

Ship D, and Appendix I for Ship E, include all results of the set-range magnitude for each 

negotiated design variable and associated FLS SBD method plotted versus time.   

In all the results figures, the experimental data was plotted versus time in order to judge 

the speed of set-reduction, to view the rate of uncertainty reduction, and to allow for 

quick comparison of the properties of one design variable to those of another.  The x-axis 

was scaled with units of minutes and was held at a constant maximum value of 320 

minutes for all Ship D SBD experimental plots, and 350 minutes for all Ship E SBD 

experiments plots.   

Since, the negotiation rate of design variables in each experiment was subject to the 

working pace of the individual design agents, the negotiation rounds of each experiment 

did not occur at exactly the same time intervals.  Also, the first negotiation of some 

design variables did not occur until well after the SBD experiment was begun.  These two 

points are illustrated in Figure 8.2 where the set-range for the block-coefficient (Cb) 

design variable is plotted from start to end using the experimental time recorded for the 

individual SBD tests.  Looking specifically at the first negotiation round of the Cb design 

variable, it was seen that each SBD experiment began the first negotiation round at a 

different time.  Note that as shown in Figure 8.2, when the experimental time scale was 

used the phrase “Experimental Time” appeared on the x-axis.  
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Figure 8.2 Ship D, Set-Ranges for Cb Negotiation vs. Experimental Time Scales 

Since there was variability in the rate at which set-based negotiations occurred, as well as 

when the first round of negotiation occurred for each SBD experiment, the time data 

indicating when a negotiation round occurred was converted from the experimental time 

scale to an absolute time scale using Eqn. (8.6).  In Eqn. (8.6), i = 1…n time steps, t is the 

experimental time in minutes, and t(1) was the experimental time for the start of the first 

negotiation round.  The t(1) value was generally unique for each design variable.   The 

purpose of the absolute time scale was to allow for more straightforward comparisons 

between the data gathered from each SBD experiment.  For instance, by using the 

absolute time scale, the FLS SBD method which spent the most time negotiating the Cb 

design variable for the Ship D design is now easily determined in Figure 8.3, which 

displays the same Cb set-range data as was plotted in Figure 8.2, but the data was plotted 

using the absolute time scale instead.   

       ( )   ( )   ( ), for i = 1…n (8.6) 
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Figure 8.3  Ship D, Set-Ranges for Cb Negotiation vs. Absolute Time Scales 

Since the absolute time scale allowed for quicker data comparison between the different 

SBD experiments, it was also used when plotting the magnitude of uncertainty versus 

time for the SBD experiment variables.  The results and figures shown in this chapter, as 

well as in Appendix G – Appendix I, which utilized the absolute time scale are 

identifiable with the label “Time” appearing on the x-axis of the figures. 

In all of the SBD experiments the principle design variables of length-of-waterline 

(LWL), beam (B), depth (D), and draft (T) were each used to begin the SBD process.  

That is, within the first five minutes of the SBD experiments beginning, the Chief 

engineering agent would have submitted a request for the negotiation of those principle 

design variables.  These principle design variables were chosen to begin the set-based 

preliminary ship design process because they all significantly impact the final design 

solution.  Figure 8.4 plots the magnitude of set-range data for the Ship D SBD 

experiments using the experimental time scale and it shows how the negotiation of the 

principle design variable, beam (B), began at approximately the same time in each 

experiment.  As a SBD progressed, negotiations of the remaining design variables would 
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begin.  For example, the Cb negotiations plotted in Figure 8.2 which were started well 

after the beginning of the first set-based negotiation round. 

 

Figure 8.4 Set-Range Magnitude Plots for Ship D Experiments, B Negotiation, 

Experimental Time Scale  

One limitation of the SBD experiments was that it was not possible to control the rate at 

which a design team conducted their set-based negotiations.  The Chief engineering agent 

could suggest that a specific amount of time to be spent on analyses before the set-based 

negotiation, but a time limit was not specifically enforced.  As a result, when starting the 

first negotiation round for any additional design variables, beyond the principle design 

variables, it was difficult to start these negotiations at the same time during each SBD 

experiment.   

Efforts were made by the Chief engineering agent to try and ensure that the first 

negotiation round for the additional design variables began at the same time in each SBD 

experiment.  Figure 8.5 shows one example in which the first negotiation of the cargo 

box length (Lc) occurred at approximately the same time during each of the Ship D SBD 

experiments.  However, as was shown previously in Figure 8.2, it was not always 
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possible to achieve a consistency between the start of negotiation for all SBD 

experiments.  The inconsistencies due to varying negotiation rates represent one 

limitation of the SBD experiments. 

 

Figure 8.5  Magnitude of Set-Range for Lc vs. Experimental Time, First 

Negotiations Began at Approximately the Same Time 

It was mentioned earlier that a consistent time scale, [xmin,xmax],  was used when plotting 

the Ship D design results and again for the Ship E design results.  However, it was not 

possible to set a consistent scale for the y-axis in all plots of the set-range magnitude or 

the magnitude of uncertainty values for the SBD experiments since not all design 

variables had units on the same order of magnitude or same dimensional units.  To 

maintain some degree of consistency, the maximum y-axis value was held consistent 

within experiments of the same ship type design; Ship D or Ship E.  For example, the 

magnitude of uncertainty for the Ship D IT2M FLS experiment and the Ship D GT2 FLS 

experiment were both set to have the same y-max value in order to allow for quick 

comparisons between the results for the two unique SBD FLS methods when working on 

the same ship design.   



 

 

167 

 

Some of the negotiated design variables possessed non-dimensional coefficients.  The 

abbreviation “nd” was used when plotting the coefficients’ data to indicate the variable 

was non-dimensional.   

8.2 Set-Based Design Experimental Results 

The goal of this research was to determine the effects of introducing uncertainty into the 

SBD procedure.  The experimental hypothesis was that the introduction of uncertainty 

into the design space would aid in the enhancement of the SBD process.  The core 

principles of SBD theory were used as guidelines to determine if the FL SBD tools were 

indeed facilitating SBD.  Graphically, facilitation of SBD would be demonstrated by the 

following properties: 

1) Gradual narrowing of the set-ranges for the negotiation variables of the ship 

design. 

2) Frequent set-based communications, in the form of multiple negotiation rounds 

throughout the SBD process. 

3) Gradual reduction of the magnitude of design uncertainty associated with a 

design variable. 

- As design agents gain information about design space, it was expected that 

uncertainty would decrease. 

8.2.1 Assessment of Set-Based Facilitation by the Fuzzy Logic Systems 

The first task after conducting the set-based ship design experiments was to determine if 

each of the FLS design environments were facilitating the principle components of SBD.  

Once facilitation of SBD practices was determined, the focus could then switch to the 

analysis of the experimental hypothesis.  The results in this section were provided as 
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evidence to show that each FLS environment was indeed facilitating principle SBD 

practices. 

By thoroughly examining the data from all seven set-based ship design experiments, 

several general trends were observed for both the Ship E and Ship D design experiments 

when utilizing the T1, IT2M-Slopes, IT2M-Choice, and GT2 FLS SBD environments.  

As opposed to showing the over ninety charts and graphs of the analyzed data for all 

experiments, a select sample of figures has been chosen for display in this chapter in 

order to facilitate the discussion of the general trends that were observed in all of the set-

based ship design experiments.  These figures represent the trends that were seen 

throughout the individually graphed experimental data in Appendix G – Appendix J, and 

these trends embody the principles of the SBD methodology.   

The first general trend observed throughout the SBD experiments was the narrowing of 

the variable set-ranges as a SBD process continued.  This trend was noticed for all of the 

FLS SBD environments in both the Ship E and Ship D design experiments.  Figure 8.6, 

for the Ship D experiments, and Figure 8.7, for the Ship E experiments, each represent a 

sample of the general trend in set-reduction observed throughout the SBD experiments.   

Figure 8.6 and Figure 8.7, as well as the figures of Appendix G (Ship D) and Appendix I 

(Ship E), demonstrate the facilitation of the core SBD principle of narrowing a set-range 

and eliminating infeasible values so that only feasible solutions remain.  Although the T1 

FLS was able to facilitate the act of SBD set-reduction, the method itself did experience 

difficulties remaining in the feasible design space when performing the set-reductions for 
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the highly constrained ship design, Ship D.  These results, as well as other general 

observations for the Ship D experimental results are discussed in detail in Section 8.2.2.   

 

Figure 8.6 Narrowing of Set-Range for the B Design Variable During Ship D SBD 

Experiments, Plotted Versus Absolute Time 

 

Figure 8.7 Narrowing of Set-Range for the B Design Variable During the Ship E 

SBD Experiments, Plotted Versus Absolute Time 

Although there were some atypical results, the overall trends reflected in the set-range 

plots match the graphical properties that one would look for in a SBD process.  For 

instance, Figure 8.6 and Figure 8.7 plot the magnitude of set-range of the beam variable 
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for the set-based experimental designs of Ships D & E, respectively.  These figures 

exemplified the ideal gradual set-range narrowing that should be present in a SBD.  Some 

atypical trends in set-reduction were witnessed, but in general these trends were simply 

outliers compared to the general trends observed for the whole set of SBD experiments.  

In many cases the atypical trends could be quite easily explained by looking at the 

experimental survey data.   

An atypical set-reduction trend was frequently a result of the need to re-open a set-range 

at some point during the SBD.  The re-opening of a set-range was both allowable and 

necessary when a set-range had been reduced to a point at which any of the negotiating 

design agents could no longer meet their functional goal(s) using values within the 

current set.  Figure 8.8 shows how the set-range for the draft negotiation variable had to 

be re-opened for the T1 FLS after approximately 115 minutes and after approximately 

180 minutes for the GT2 FLS Ship D experiments. 

 

Figure 8.8 Ship D, Set-Ranges for T Negotiation vs. Absolute Time 
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Also demonstrated in magnitude of set-range plots, examples Figure 8.6 - Figure 8.8, was 

the frequent occurrence of set-based negotiations that was expected when facilitating the 

SBD process.  In the figures, each line-marker indicates that a set-based negotiation took 

place at that point in time.  The set-based negotiations were facilitated by use of the 

developed FLS SBD tools.  Based on the collected experimental data, it was possible to 

determine the average number of set-based negotiations for each of the seven set-based 

ship design experiments conducted.  The average number of negotiation rounds for a 

SBD experiment was determined by calculating the total quantity of negotiation rounds 

for all of negotiated design variables and then dividing the sum by thirteen, which was 

the total number of negotiated design variables for each SBD experiment.  Table 8.2 lists 

the average number of negotiation rounds completed for each SBD experiment using the 

different FLS SBD environments. 

Table 8.2 Average Number of Set-Based Negotiations Per SBD Experiment 

FLS Type Ship D Ship E 

T1  3.1 5.6 

IT2M (Slopes) 4.5 4.2 

IT2M (Choice) N/A 6.4 

GT2 5.1 3.9 

 

Through utilization of the SBD FLS environments, design agents were given the means 

to communicate data in a set-based manner.  As the list in Table 8.2 indicates, frequent 

set-based communications occurred during the SBD experiments, as each negotiation 

round required the use of set-based communication.  In general, the results shown in this 

chapter and Appendices G – J, demonstrate that the set-based communications led to the 
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gradual reduction in the magnitude of each design variable set-range and overall levels of 

design uncertainty. 

To also facilitate SBD the process there should be a gradual reduction in the overall 

design uncertainty as the design process continues.  The reduction of uncertainty 

typically results from an increase in design information.  In the SBD experiments each 

negotiation round helped to narrow the design space and increase the information about 

the remaining feasible design space through the process of set-based negotiations.   

Unlike the T1 FLS SBD environment, the newly developed IT2M FLS and GT2 FLS 

SBD environments were capable of modeling design uncertainty.  In these FLSs the 

design uncertainty was represented by the design agents describing upper and lower 

uncertainty bounds with the use of epsilon uncertainty points.  The magnitude of design 

uncertainty was then calculated for each negotiation round of a SBD experiment using 

Eqn. (8.2) and the process described earlier in Section 8.2.1.  Figure 8.9 show examples 

of the magnitude of uncertainty plotted versus the absolute time scale for the negotiation 

of the draft (T) design variable for the GT2 FLS Ship D SBD experiment; in Figure 8.9 

both the uncertainty associated with the x-ru and x-rl MF defining curve points is shown. 

Throughout the IT2M and GT2 FLS SBD experiments it was observed that the 

magnitude of design uncertainty closely reflected the magnitude of the set-range for a 

design variable.  For instance, as shown in Figure 8.10 the set-range magnitude increased 

during the fifth negotiation round of the GT2 FLS Ship D SBD experiment, at 

approximately 180 minutes.  It the same time the magnitude of design uncertainty 
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increased, as shown in Figure 8.9.  This trend was reflected throughout all of the IT2M 

and GT2 FLS SBD experiments.   

The ability to actually represent the levels of design uncertainty at each stage of the SBD 

process represents a significant enhancement to the overall facilitation of SBD practices.  

The enhancements to the facilitation of the SBD process are discussed in the following 

section. 

 

Figure 8.9 Magnitude of T Design Uncertainty for GT2 FLS Ship D SBD vs. 

Absolute Time Scale 
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Figure 8.10 Magnitude of T Set-Range for Ship D SBD Experiments vs.        

Absolute Time Scale 

8.2.2 Enhancement of SBD Through Introduction of Uncertainty Modeling 

In the previous section it was shown that each of the FLS SBD methods was indeed 

capable of facilitating SBD practices.  Now the focus may be turned to the main research 

goal, which was to determine if the IT2M and GT2 FLSs were able to enhance the SBD 

process through the modeling of design uncertainty when compared to the T1 FLS SBD 

environment.  Analysis of the SBD results provided evidence in support of the research 

hypothesis that uncertainty modeling was able to enhance the SBD process. Unique 

insights into the performance of the FLS SBD methods were gained from separately 

examining the results for the highly constrained ship design and loosely constrained ship 

design experiments. 

Results of Highly Constrained (Ship D) Set-Based Ship Design Experiments 

The greatest evidence in support of the research hypothesis was seen by comparing the 

T1, IT2M-Slopes, and GT2 FLS SBD experimental results for the Ship D preliminary 

set-based ship designs.  The set-range plots of the negotiated ship design variables 
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showed several important generalities for the T1 FLS SBD tool Ship D experiments as 

compared to the IT2M-Slopes and GT2 FLS SBD tool Ship D experiments. 

 Overall, the T1 FLS had fewer negotiation rounds per ship design variable 

compared to both the IT2M and GT2 FL SBD tools.  

 Overall, much less time was spent performing SBD negotiations of the ship 

design variables compared to that of the IT2M and GT2 FL SBD tools. 

 Overall, the magnitudes of the final set-ranges for the T1 FLS were larger than 

those of the IT2M and GT2 FL SBD tools. 

Evidence supporting these overall trends of the Ship D SBD experiments is listed in 

Table 8.3, as well as being shown in Figure 8.11 - Figure 8.13.  Table 8.3 provides values 

for the average time spent negotiating a ship design variable and the average number of 

negotiation rounds performed for the SBD of Ship D using the T1, IT2M-Slopes, and 

GT2 FLS design environments.  The table also lists the total number of minimal set-

ranges for each of the FLS SBD Ship D experiments.  The total number of minimal set-

ranges was calculated by examining each of the negotiated design variables and then 

comparing the magnitude of the final set-range of each FLS type in order to determine 

which FLS had the smallest final set-range.  The FLS with the smallest set-range was 

considered to have the “minimal” set-range for that negotiation variable. 

Table 8.3 Analysis of Ship D Set-Based Ship Design Experimental Data 

 T1 IT2M-Slopes GT2 

Average Negotiation 

Time (min) 
107.7 200.8 244.2 

Average Negotiation 

Rounds 
3 5 5 

Total Number of 

Minimal Set-Ranges 
2 5 6 
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Figure 8.11 Ship D, Set-Ranges for B Negotiation vs. Absolute Time 

 

Figure 8.12 Ship D, Set-Ranges for Lm Negotiation vs. Absolute Time 

 

Figure 8.13 Ship D, Set-Ranges for T Negotiation vs. Absolute Time 
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Figure 8.11 shows the gradual set-based narrowing that was expected for a SBD process.  

Each of the individual FLS methods as plotted in Figure 8.11 was seen to have reduced 

the set-range for the beam (B) design variable.  In the case of the Ship D design 

experiments, the IT2M-Slopes FLS managed to reduce the B set-range further than the T1 

or GT2 FLS methods and would thus be considered to have the minimal set-range for the 

B variable in this case.  Figure 8.11 also shows that there was very little reduction in set-

range between the fourth and fifth negotiation rounds for the GT2 FLS Ship D 

experiments.  The final observation was for the T1 FLS curve, which had only three 

negotiation rounds and did not reduce the set-range by as much as the IT2M-Slopes or 

GT2 FLS methods.    A similar trend of gradual set-reduction is seen in Figure 8.12, 

which shows the magnitude of the set-range for the length of the machinery room (Lm) 

plotted versus absolute time.  For the Lm negotiation the GT2 FLS achieved the minimal 

set-range, followed closely by the IT2M FLS, and at almost six times the set-range 

magnitude, the T1 FLS. 

In general, most of the plots of set-range versus time showed trends of gradual set-

reduction, similar to those of Figure 8.11 and Figure 8.12.  In some instances however, it 

became necessary to re-open and re-negotiate a variable’s set-range.  This action was 

necessary when design values that were needed to develop a feasible solution were 

eliminated from the set-range making the design infeasible.  A design would be 

considered infeasible, if for any reason, a design agent was unable to meet the functional 

design goal assigned to their agent role.  For instance, as shown in Figure 8.13, during 

both the T1 and GT2 FLS experiments the draft (T) set-range needed to be re-opened for 

re-negotiation.   
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Records from the collected survey data indicated that during the GT2 FLS Ship D SBD 

experiment the Stability design agent was unable to meet their functional design goal 

with the set-range values at t ≈ 120 minutes.  As a result the Chief engineering agent     

re-opened the set-range for re-negotiation at this time.  A similar course of action was 

taken during the T1 FLS Ship D SBD experiment.  In the T1 FLS experiment, the set-

range was reduced such that the Hull design agent could no longer meet their functional 

goal of ensuring the ship stayed afloat.  Therefore, the Chief engineering agent re-opened 

the set-range and re-negotiation ultimately ending up with a set-range magnitude of       

1.5 m. 

When a set-range needed to be re-opened, it was because critical design values that were 

needed for a feasible design were eliminated.  The pre-mature elimination of set-values 

can be a result of human input error or the complex interdependency of design variables.  

In example, if the current set-ranges were very narrow for the variable sets of length-of-

waterline (LWL), B, and T yet provided for a feasible solution, further reduction in any 

one of the three sets may cause a design agent to no longer be able to satisfy their 

functional design goal.  The Chief engineering agent does not know if the necessary set-

values were eliminated from the top or bottom of the set-range, and must re-open the 

range in both directions.  By doing so, the re-negotiation of the set-range based on new 

analyses and an increased amount of available design information, should result in a 

newly reduced feasible set-range that was shifted towards either the upper or lower range 

of values.  

The process of re-negotiation can be explained by examining the GT2 FLS magnitude of 

set-range curve in Figure 8.14.  Prior to re-negotiation (t ≈ 120 min) the magnitude of the 
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GT2 FLS T set-range was 1.25 m based on [xmin,xmax] = [11.5,12.75] m. The set-range 

was then re-opened to a magnitude of 4.75 m, [xmin,xmax] = [8,12.75] m. Finally, the set-

range was eventually reduced to a magnitude of 1.15 m, [xmin,xmax] = [10.6,11.75] m at 

around t ≈ 300 min.  Notice how after re-negotiation the set-range shifted to include 

smaller T values that had been previously eliminated from the set-range at t ≈ 120 min.   

 

Figure 8.14 Ship D, Set-Ranges for T Negotiation vs. Absolute Time 

The cause for re-negotiation was often the result of the complex interactions that occur 

between design variables of complex systems.  It is possible that the set-reduction of a 

single set-range can affect the feasibility of values in other variable set-ranges.  For 

instance, when the fourth negotiation of the T variable for the GT2 FLS SBD of Ship D 

began at t ≈ 120 min, the design agents were performing analyses based upon depth (D) 

set-range data from the third D negotiation which occurred at t ≈ 100 min; Figure 8.15.  

The JOP curve for the T negotiation resulted in JOP values of only zero, indicating that a 

design was infeasible for the entire set-range of T values and that the range needed to be 

re-opened.   
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Similarly, before the T set-range had been re-opened, a new GT2 FLS D negotiation was 

begun at    t ≈ 160 min.  Since this negotiation was based on T set-range data which still 

needed to be re-opened for negotiation, the JOP data for the D negotiation resulted in 

only zero JOP values, indicating that the D set-range needed to be re-opened for 

negotiation.   The complex relationship between the T and D design variables highlights 

just one of the many intricate relationships existing between design variables of a 

complex design.  Eventually the T set-range and D set-range were simultaneously re-

opened for negotiation at t ≈ 180 min.  

 

Figure 8.15 Set-Range Magnitude for D Negotiation of Ship D SBD vs.          

Absolute Time 

This example also highlights another limitation of the SBD experimental methodology.  

It was not previously known if there was a benefit to negotiating every design variable 

during a single negotiation round or if the design variables could be continuously 

negotiated as needed.  It was thought that negotiating every design variable would be 

more time consuming and continuing to negotiate a converged set-range would consume 

time that design agents could spend on analyses for other design variables.  Since it was 

necessary to limit the experimental time for each SBD study, the method of allowing the 
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Chief engineering agent to submit negotiation requests for specific design variables at 

will was utilized in the SBD experiments, as opposed to requiring the negotiation of 

every design variable each round.  The scope of these experiments was limited as the 

experiments were not designed to determine if one method of negotiation was better than 

the other.  The example above, however, appears to indicate that there may be some 

benefit to negotiating every design variable during each round so that all design analyses 

would be based on the most up-to-date set-range data.   

As discussed previously, T1 FLSs do not truly model uncertainty because the systems 

rely on fully known mathematical functions to represent data.  However, the IT2M and 

GT2 FLSs have been shown to be capable of representing design uncertainty [Gray, 

Daniels, and Singer, 2010], [Gray and Singer, 2008].   

For a single design variable there are several negotiating design agents.  Therefore, in the 

magnitude of uncertainty plots, the uncertainty defined by each negotiating design agent 

was graphed individually.  The GT2 FLS allowed for uncertainty inputs of ±ε around the 

x-ru and x-rl defining MF curve points.  Therefore, the magnitude of uncertainty for a 

negotiation variable of a GT2 FLS was represented using two separate plots.  In one plot, 

the magnitude of epsilon uncertainty range was shown for the x-ru MF defining curve 

points, and in the other plot, the x-rl uncertainty magnitude was shown.  

To properly facilitate the SBD concept of reducing design uncertainty in a highly 

constrained ship design, the magnitude of uncertainty plots of the Ship D SBD 

experiments should show a gradual reduction in the uncertainty associated with the 

design agents’ MFs.  Figure 8.16 and Figure 8.17 show the magnitude of uncertainty for 
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the design agents involved in the negotiation of the B ship design variable, for the Ship D 

experiments using the IT2M-Slopes and GT2 FLS methods, respectively. 

Notice how in both of the figures the uncertainty of all the design agents gradually 

reduces over time.  In Figure 8.16 the Resistance agent did have an increase in design 

uncertainty near t ≈ 120 min, but the uncertainty was quickly reduced thereafter.  Survey 

data indicated that the Cargo and Propulsion design agents felt very certain about the 

preference for B design values, which is why these design agents had no uncertainty 

associated with the definition of their MFs and thus a magnitude of uncertainty equal to 

zero for all negotiation rounds; Figure 8.16. 

Overall, the plots for the magnitude of uncertainty for the design variables of the IT2M 

and GT2 FLS Ship D experiments displayed the general trend of a gradual reduction in 

the magnitude of uncertainty associated with the design agents’ MFs.  The plots provide 

evidence that the IT2M and GT2 FLSs offer enhancement of the SBD practice of 

delaying design decisions until there is a reduction of design uncertainty.  The T1 FLS 

was not capable of representing the uncertainty in definition of linguistic preference and 

therefore cannot graphically represent the reduction of design uncertainty that occurs in a 

SBD process. 

The values listed in time for the different FLS methods, it may appear that the T1 FLS 

method was superior in this category.  However, with SBD the fastest method is not 

always the best method, as is the case here. 

Table 8.4 provide strong evidence of the abilities of the IT2M-Slopes and GT2 FLS SBD 

tool methods to enhance the overall SBD process.  The IT2M-Slopes and GT2 FLS 
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methods utilized more set-based negotiations and possessed more minimal-set ranges for 

the Ship D SBD than did the T1 FLS.  Both of these properties indicate an enhancement 

in the facilitation of SBD practices.  Looking at the average negotiation  

 

Figure 8.16 IT2M (Slopes), Ship D, Magnitudes of Uncertainty for B vs. Time 
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Figure 8.17 GT2, Ship D, Magnitudes of Uncertainty for B vs. Time 

time for the different FLS methods, it may appear that the T1 FLS method was superior 

in this category.  However, with SBD the fastest method is not always the best method, as 

is the case here. 

Table 8.4 Analysis of Ship D Set-Based Ship Design Experimental Data 

 T1 IT2M-Slopes GT2 

Average Negotiation 

Time (min) 
107.7 200.8 244.2 

Average Negotiation 

Rounds 
3 5 5 
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Total Number of 

Minimal Set-Ranges 
2 5 6 

The average negotiation time, listed in time for the different FLS methods, it may appear 

that the T1 FLS method was superior in this category.  However, with SBD the fastest 

method is not always the best method, as is the case here. 

Table 8.4, for the T1 FLS SBD tool was approximately half of the average negotiation 

time for the other FLS methods.  The reason for this short negotiation time for the T1 

FLS Ship D SBD experiment was that this experiment resulted in a catastrophic design 

failure.  Normally during a SBD, if a design variable set-range was narrowed to the point 

where a design agent could no longer satisfy their functional goal, the set-range was re-

opened by the Chief engineering agent and negotiations repeated.   

In the case of the T1 FLS Ship D SBD experiment, the failure was considered to be 

catastrophic because the root cause of the design failure could not be traced to a single 

design variable or even several design variables.  As a result, all of the negotiation 

variable set-ranges would have needed to be re-opened for re-negotiation.  At the point in 

time when the design failure occurred, the T1 FLS SBD Ship D experiment had already 

utilized over half of the time that was allotted for the SBD experiment.  Because so many 

of the design variable set-ranges needed to be re-opened, it would have been as if the 

design was starting over from the beginning.   

With only a small portion of the allotted experimental time remaining, it would not have 

been possible to adequately narrow the set-ranges.  Thus, the T1 FL SBD tool experiment 

for the Ship D design was terminated, and classified as a catastrophic design failure.  This 
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explains why the small value for the average negotiation time of the T1 FLS was a 

negative aspect in this case.   

Based on the plotted data for the magnitude of set-range and magnitude of uncertainty 

versus time for the IT2M and GT2 FL SBD experiments as compared to the T1 FLS SBD 

experiment, there was strong evidence that the quick convergence rate of the set-ranges 

for the T1 FLS experiment was the root cause of the catastrophic design failure.  Without 

the presence of design uncertainty, the set-ranges for the T1 FLS Ship D experiment were 

quickly narrowed before the design tradeoffs were fully understood.  It is hypothesized 

that the quick set-range convergence led to the elimination of design values that were 

needed to have a feasible ship design for the T1 FL SBD Ship D experiment.  An 

examination of the depth variable for the Ship D design experiments shows evidence in 

support of this hypothesis. 

The final set-minimum and -maximum values for the depth variable of the Ship D SBD 

experiments are listed in Table 8.5. Based on the Ship D design constraints, to produce a 

feasible ship design, it was necessary to have a depth value of less than the 17.5 m set-

minimum possessed by the T1 FLS at the end of the Ship D SBD experiment.  In both the 

IT2M and GT2 FLS SBD experiments, the set-minimum for the depth variable was 2.5 m 

lower than in the T1 FLS, at a value of 15 m and 15.85 m, respectively, by the end of the 

experiments.   

Table 8.5 Set-Minimum and Set-Maximum Values for the Final Round of Depth 

Variable of the Ship D SBD Experiments 

FLS Type Set-Minimum (m) Set-Maximum (m) 
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T1 18 21 

IT2M 15 18.4 

GT2 15.85 18.25 

The set-range plot for the negotiation of the Ship D depth (D) variable, Figure 8.18, 

showed that as early as (approximately) 115 minutes into the T1 FLS SBD experiment 

the depth set-range had converged to a magnitude lower than that of the IT2M and GT2 

FLS final set-range magnitudes.   

 

Figure 8.18 Ship D, Set-Ranges for D Negotiation vs. Time 

Without design uncertainty modeling to aid in the purposeful delaying of the convergence 

process until uncertainty was reduced, the T1 FLS reached convergence of the depth set-

range too quickly eliminating set-values needed for a feasible ship design.  The IT2M 

FLS SBD depth set-reduction was more gradual and required approximately 60 minutes 

longer to negotiate than did the T1 FLS.  The GT2 FLS SBD Ship D depth set-reduction 

required four more negotiation rounds and almost 150 minutes extra, to reach the final 

set-range as compared to the T1 FLS Ship D set-based depth negotiation.   
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Looking at the JOP curves resulting from the second round of depth negotiation during 

the Ship D SBD experiments, there was a striking difference in the range of non-zero JOP 

values; Figure 8.19 - Figure 8.21.  As the figures show, the T1 FLS and GT2 FLS JOP 

curves indicate that the set-ranges should be reduced to approximately [17.5,22] m and 

[17,24.5] m respectively, for a third negotiation round.   

 

Figure 8.19 T1 FLS Ship D SBD, Round 2 Depth Negotiation JOP Curve 

 

Figure 8.20 IT2M (Slopes) FLS Ship D SBD, Round 2 Depth Negotiation JOP Curve 

new xmin 
new xmax 

new xmin new xmax 
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Figure 8.21 GT2 FLS Ship D SBD, Round 2 Depth Negotiation JOP Curve 

Eventually the GT2 set-range was re-opened for re-negotiation and ultimately reduced to 

the set-range of approximately [15.85,18.25] m; Figure 8.22.  The early set-reduction in 

T1 FLS experiment contributed to the catastrophic failure of the T1 FLS Ship D SBD as 

the set-range for D was further reduced to approximately [18,21], which excluded the 

depth value needed for a feasible design; Figure 8.23.  The IT2M FLS depth set-range 

maintained a gradual set-reduction with final set values of D = [15,18.4] m after the third 

negotiation round; Figure 8.24. 

 

Figure 8.22  GT2 FLS Ship D SBD, Round 8 Depth Negotiation JOP Curve 

new xmax new xmin 

Final xmin Final xmax 
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Figure 8.23 T1 FLS Ship D SBD, Round 4 Depth Negotiation JOP Curve 

 

Figure 8.24 IT2M (Slopes) FLS Ship D SBD, Round 4 Depth Negotiation JOP Curve 

The absolute time scale (described in Chapter 8, Section 8.1) was used to plot the set-

range data shown in Figure 8.18.  Because the time data was adjusted to the absolute time 

scale, the figure does not show the fact that just under an hour’s worth of time remained 

in the T1 FLS SBD experiment by the final negotiation round.  It was at this point in time 

when the T1 FLS ship design became infeasible.  The interdependence of the design 

variables, discussed earlier in this section, meant that many design variable set-ranges 

would have had to have been re-opened for negotiation to try and search for a feasible 

solution.  So, although it was possible to re-open the set-range during the GT2 FLS SBD 

Final xmin Final xmax 

Final xmin 

Final xmax 
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experiment, it was not possible to take the same course of action during the T1 FLS SBD 

experiment since meaningful analyses and negotiations could not take place within the 

limited experimental time remaining. 

The general trends for the reduction of the set-ranges and the magnitudes of uncertainty 

show that the SBD process was enhanced by the use of uncertainty modeling.  It was also 

shown that without uncertainty modeling to delay set-reduction, the T1 FLS Ship D SBD 

experiment failed for the highly constrained ship design. The IT2M and GT2 FLS Ship 

SBD experiments were capable of reducing the set-ranges without catastrophic failure 

during the Ship D design, a clear enhancement of the SBD process over the T1 FLS SBD 

environment.  The GT2 FLS SBD experiment proceeded at a slower pace than the T1 

FLS experiment.  The slower SBD negations allowed the pre-mature set-reduction of the 

lower set-ranges values during second round negotiation of the depth variable for the 

GT2 FLS SBD experiment to be noticed before a catastrophic design failure occurred. 

 

Results of Loosely Constrained (Ship E) Set-Based Ship Design Experiments 

The main goal of the Ship E SBD experiment was to determine if introducing uncertainty 

modeling into the SBD process would enhance the overall SBD experience as 

hypothesized.  Also of interest during the Ship E design experiments was to examine how 

the different SBD FLSs would function for a less constrained ship design.  The Ship E 

design was a much simpler containership design because of the loose design constraints.  

Thus, within the solution space there were several feasible design solutions and as a 

result, there were no catastrophic design failures during the Ship E SBD experiments.   
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As with the Ship D SBD experiments, the Ship E experiments also showed gradual 

reduction of the magnitude of the set-ranges and magnitudes of uncertainty of the ship 

design variables.  Excellent examples of gradual, set-based range reduction include the B, 

D, and KGc negotiations show in Figure 8.25, Figure 8.26, and Figure 8.27, respectively.  

Overall, the GT2 FLS SBD tool performed the best, followed by the T1 and IT2M FLS 

SBD tools.  This assessment was based on the total number of minimum set-ranges, as 

well as the generally smooth and gradual reductions of the set-range of each design 

variable.   

 

Figure 8.25  Magnitude of Set-Range for B Negotiations, Ship E SBD Experiments 

vs. Absolute Time Scale 

 

Figure 8.26 Magnitude of Set-Range for D Negotiations, Ship E SBD Experiments 

vs. Absolute Time Scale 
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Figure 8.27 Magnitude of Set-Range for KGc Negotiations, Ship E SBD Experiments 

vs. Absolute Time Scale 

 Initially the Ship E design was completed using only the T1, IT2M-Slopes 

randomization method and GT2 FLSs.  The results for the IT2M-Slopes FLS were 

unexpected, as the FLS underperformed for the Ship E SBD experiments compared to the 

other T1 and GT2 FLS methods.  Figure 8.25 and Figure 8.28 demonstrate the meaning 

of “underperformance” for the IT2M-Slopes SBD FLS, where it is shown that the B and 

machinery vertical center-of-gravity (KGm) set-ranges for the IT2M-Slopes FLS had a 

much greater final magnitude than either the T1 or GT2 FLSs; especially for KGm. 

 

Figure 8.28 Ship E, Set-Ranges for KGm Negotiation vs. Time 
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Unlike the Ship D design experiments, the Ship E SBD experiments had only one 

instance in which a set-range needed to be re-opened for re-negotiation. The re-opening 

of the set-range occurred during the IT2M-Slopes FLS Ship E experiment; Figure 8.29.  

The Ship E design was a much simpler design than Ship D design because there were 

multiple feasible design solutions.  This meant that within each set-range there were 

several set-values that could be chosen to produce a feasible solution and to satisfy the 

design agents’ functional design goals.  As such, it is understandable that the Ship E 

design would be less likely to reduce a set-range to the point at which there were no 

longer any feasible set-values, thus requiring the set-range to be re-opened for re-

negotiation.   

After reviewing the initial Ship E SBD experimental results, it was hypothesized that the 

IT2M FLS Slopes randomization method was too limited in its ability to model the 

uncertainty associated with the design agents’ MFs, as compared to the GT2 FLS.  This 

hypothesis led to the testing of an alternative, mixed method, IT2M FLS (IT2M-Choice). 
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Figure 8.29 Ship E, Set-Ranges Magnitudes for Lc Negotiation vs. Absolute Time 

In the IT2M-Choice FLS SBD Ship E experiment, the design agents were given the 

freedom to select one of three IT2M randomization methods, xRU, xRL, or Slopes, for 

the modeling of the uncertainty associated with the preference MFs of their entire fuzzy 

set.  This meant that uncertainty modeling methods could be mixed on a per agent basis. 

For instance, the Cargo agent could choose to use the xRL randomization method for the 

MFs of its fuzzy set and the Resistance agent could choose to use the Slopes 

randomization method for the MFs of its fuzzy set.   

Design agents were provided guidelines for choosing an appropriate IT2M FL 

randomization method for the modeling of the design uncertainty of their linguistic 

preference MFs.  The advice provided was similar to the suggestions outlined at the end 

of Chapter 5, Section 3.2.  The results from the mixed method IT2M FLS are labeled in 

the above set-range plots as “IT2M-Choice”, versus, “IT2M-Slopes” for the initial IT2M 

FLS experiment which utilized only the Slopes randomization method for uncertainty 

modeling.   Although in some instances the IT2M-Choice FLS showed improvements in 

set-reduction over the IT2M-Slopes FLS, Figure 8.25 - Figure 8.28, the system still did 
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not produce set-reductions nearly as great in magnitude as those seen in the GT2 FLS 

experiments.   

Upon further studying the magnitude of set-range versus absolute time plots for the Ship 

E SBD experiments, it was noticed that the IT2M-Choice FLS had consistently more 

negotiation rounds than did the GT2 FLS SBD experiment.  Also, the set-reduction 

between negotiation rounds of the IT2M-Choice FLS was more gradual than that of the 

GT2 FLS.  Figure 8.30 shows one of the many set-range plots that possessed the above 

mentioned qualities.  There were several plausible causes for the performance of the 

IT2M FLSs during the Ship E experiments.  Each cause was related to the representation 

of uncertainty when using the IT2M FLS SBD tool.   

 

Figure 8.30 Ship E, Set-Range Magnitudes for T Negotiations vs. Absolute Time 

It was possible that the design agents were unknowingly influenced by the default 

uncertainty bounds of the IT2M FLS SBD environment.  The default uncertainty bounds 

for the IT2M FLS MFs were twice as large as the default uncertainty bounds of the GT2 

FLS MFs.  Figure 8.31 shows the default uncertainty bounds for the IT2M-Slopes FLS 
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SBD tool with ±ε = 0.435 units by default, which were twice as large as the uncertainty 

bounds shown in Figure 8.32 for the GT2 FLS SBD tool with  ±ε = 0.2175.  It was 

originally thought that the difference would not have a significant impact on the 

experimental outcomes since the design agents were given the freedom to change the 

uncertainty bounds as they deemed appropriate.  However, after examining the 

magnitude of uncertainty plots and reviewing survey data, in most cases the initial 

magnitude of uncertainty for the IT2M FLSs was in fact greater than that of the GT2 

FLS.  This result indicates that the default uncertainty bounds may have actually 

influenced the design agents’ choice of uncertainty bounds for their MFs.   

With uncertainty bounds approximately twice as large as those of the GT2 FLS, the 

IT2M FLS would have needed to perform more negotiation rounds to reduce uncertainty 

to the same levels that the GT2 FLS began with.  This affect was witnessed in the 

magnitude of uncertainty plots of the IT2M FLSs.  The plots showed how the magnitude 

of uncertainty associated with a design agent’s fuzzy set started out (in general) much 

larger than that of the GT2 FLS, requiring approximately one to two negotiation rounds 

before being reduced to uncertainty levels similar to that of the GT2 FLS.   

Figure 8.33 - Figure 8.35 demonstrate this observation using the IT2M-Slopes, IT2M-

Choice, and GT2 FLS SBD negotiations of the cargo vertical center of gravity (KGc) 

design variable.  Notice how in Figure 8.33 and Figure 8.34 for the IT2M FLS 

experiments the magnitude of uncertainty at round one is approximately twice the 

magnitude of uncertainty for round one of the GT2 FLS experiment, Figure 8.35.  By the 

second negotiation round the magnitude of uncertainty for the IT2M FLS methods had 

reduced to levels similar to what the GT2 FLS experiment began with. 
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Figure 8.31  IT2M-Slopes FLS MFs Shown With Default Uncertainty Bounds 

 

Figure 8.32 GT2 FLS MFs Shown With Default Uncertainty Bounds 
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Figure 8.33 IT2M (Slopes), Ship E, Magnitudes of Uncertainty for KGc vs. Time 

 
Figure 8.34 IT2M (Choice), Ship E, Magnitudes of Uncertainty for KGc vs. Time 

 
Figure 8.35 GT2, Ship E, Magnitudes of Uncertainty for KGc vs. Time 



 

 

200 

 

The IT2M FLS JOP curve plots contained additional uncertainty information due to the 

plotting of the JOP curve resulting from each iteration of the IT2M FLS randomization; 

example Figure 8.36.  This information contained a great deal of uncertainty as compared 

to the single JOP curves output by the T1 and GT2 FLS SBD tools.  As the Chief 

engineering agent, the additional uncertainty information often made it difficult to 

determine a discrete point at which to trim the set-range for a subsequent negotiation 

round.  To avoid elimination of plausible solutions, the Chief engineering agent took a 

cautious approach to the set-reduction process.  The cautious set-reduction process 

further delayed the overall set-reduction of the set-ranges for the IT2M FLS SBD 

experiments as compared to the T1 and GT2 FLS SBD methods.   

 

Figure 8.36 IT2M-Choice FLS, Ship E SBD, Round 1, LWL Negotiation JOP Curve 

The output of the SBD experiments was directly related to the information input into the 

FLS by the human design agents.  Upon review of the JOP curves for the Ship E SBD 

experiments, it was noticed that many of the JOP curves for the IT2M FLS SBD 

experiments contained no preference values of zero. Examples of this type of JOP curve 
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include Figure 8.36, which shows the IT2M-Choice FLS SBD JOP curve for the  length 

of the waterline (LWL) Ship E negotiation and Figure 8.37, which shows the GT2 FLS 

SBD JOP curve, also for the Ship E LWL negotiation. 

 

Figure 8.37 GT2 FLS, Ship E SBD, Round 3, LWL Negotiation JOP Curve 

As a Chief engineering agent, JOP curves without zero preference values were 

particularly difficult to reduce because, a JOP curve without zero preference values tells 

the Chief engineering agent that all set-values are acceptable for the design. When faced 

with a JOP curve possessing no zero preference values, the Chief engineering agent had 

two courses of action:  

1) Wait until other ship design variable set-ranges were reduced and then re-submit 

the set-range for negotiation to determine if a design agent’s preference for set-

values had changed as a result of other design variable set-ranges being reduced,  

or  

2) Make a best estimate of where to trim the set-range based upon the JOP values 

that were less-preferred.     
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The first option was the most preferable as it invoked the SBD principle of delaying 

design decisions until the design trade-offs were more fully understood.  Typically, if the 

JOP curve was still without zero preference values after employing option (1), the Chief 

engineering agent would invoke option (2).  This process can be seen in Figure 8.38 for 

the IT2M-Choice FLS SBD negotiation of the Ship E design variable T.  As a result of 

the two step procedure that often occurred during the IT2M FLS experiments, the process 

took longer to reduce set-ranges for the ship design variables.  

 
Figure 8.38 Ship E, Set-Ranges for T Negotiation vs. Time 

In general, the Ship E SBD experiments as a whole resulted in more JOP curves that were 

without zero preference values than compared to the highly constrained Ship D SBD 

experiments.  As there were many satisfactory solutions for the Ship E design, it was 

logical that the design agents would label set-values as Unpreferred far less than in the 

Ship D design.  Without the use of the Unpreferred linguistic label by a design, a JOP 

curve would result in only non-zero preference values.  The frequent occurrence of JOP 

curves without zero preference values for a simply constrained design would further 

delay the set-reduction process for a SBD.  However, it is possible that the delay in set-

reduction would be balanced out by the overall simplicity of a loosely constrained design.  
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Since the SBD experiments were not specifically designed to test this theory, it can only 

be hypothesized that for a simply constrained design it would be harder to reduce the set-

ranges because of the lack of Unpreferred design values within the set-ranges for the 

design variables.   

The use of uncertainty modeling was employed for the Ship E SBD via the IT2M-Slopes, 

IT2M-Choice, and GT2 FLS SBD environments.  In general, the IT2M and GT2 FLS 

SBD methods showed the gradual reduction of design uncertainty that would be expected 

for the facilitation of SBD.  As with the Ship D SBD experiments, the representation of 

design uncertainty for the loosely constrained Ship E SBD represents a clear 

enhancement of the SBD process over the T1 FLS SBD method that is incapable of 

representing true design uncertainty.  Appendix J contains all plots of the uncertainty 

magnitude versus absolute time for the Ship E SBD experiments.  Several examples of 

the uncertainty representation for the Ship E SBD experiments are shown in Figure 8.39 

– Figure 8.41 for the B design variable.   

 
Figure 8.39 IT2M (Slopes), Ship E, Magnitudes of Uncertainty for B vs. Time 
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Figure 8.40 IT2M (Choice), Ship E, Magnitudes of Uncertainty for B vs. Time 

 
Figure 8.41 GT2, Ship E, Magnitudes of Uncertainty for B vs. Time 

There were a few cases during the magnitude of set-range and the magnitude of 

uncertainty reduction for both the Ship D and Ship E SBD experiments that could not be 

directly explained through the need to re-open the set-range.  Since, the majority of the 

results followed the SBD trends as expected, these few cases must be attributed to the 
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variabilities associated with human subjects.  By examining the survey data it was 

possible to support this theory.  For instance, in the IT2M-Choice Ship E SBD 

experiment a human subject was randomly assigned to the design role of Resistance 

agent, a role in which they later reported in the survey data they had very little previous 

experience.  This led the subject to maintain a high degree of uncertainty throughout the 

entire design process, despite the narrowing of set-ranges and the increase in information 

as the design progressed.  Figure 8.42 shows an example of this occurrence. 

 
Figure 8.42 IT2M (Choice), Ship E, Magnitudes of Uncertainty for Vk vs. Time 

In most cases the plot of uncertainty over time showed a gradual reduction in the 

magnitude of uncertainty for both the Ship D and Ship E SBD experiments.  However, in 

some cases the magnitude of design uncertainty actually increased.  It was explained in 

the previous section that the increase in uncertainty magnitude typically coincided with 

the re-opening of a set-range for re-negotiation; this was not always the case however.   

In some cases the atypical trends could not be attributed to a design agent’s inexperience 

with a particular agent role.  Since the SBD experiments utilized human subjects for the 

design agents and the FLS linguistic preference inputs, the experiments were not without 

the inherent variability of human thought and cognition.  This is to say that a human 
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design agent may change their level of uncertainty based on a feeling about the current 

direction of the design, based on their intuition, or based on some other intangible reason.  

Thus, some of the atypical trends in uncertainty may be attributed to the uncontrollable 

influence of human variability, cognition, and free will.   

The purpose of collecting the post-preference input survey data from the design agents 

was so that any atypical trends could, potentially, be explained by the data provided by 

the design agents.  For instance, the Stability and Hull design agents explained in the 

survey data that their design uncertainty increased for the structural vertical center of 

gravity (KGs) negotiations, Figure 8.43, because when they viewed the IT2M FLS JOP 

curve results they noticed the uncertainty associated with the JOP curve and started to 

feel uncertain about their linguistic preference inputs as well.  

 

Figure 8.43 Magnitude of Uncertainty for KGs Negotiations vs. Absolute Time,    

Ship E, IT2M-Choice FLS 

In addition to the variability of human cognition, the SBD experiments were also limited 

to be filled by a small group of naval architect and marine engineering students from 

within the University of Michigan.  Not all students possessed the same level of design 
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experience.  The subjects were randomly assigned to design roles and design teams in 

order to minimize the variability in subject intelligence and experience.   

The figures in Chapter 8 showed examples of the general trends that were witnessed 

during the SBD experiments.  In some instances atypical trends were witnessed, but in 

most cases the trends could be explained by graphical data or linguistic survey data. 

Using the results data and figures generated from the SBD experiments it was possible to 

make several conclusions as to the efficacy of each SBD FLS method for the facilitation 

of SBD and as to the capabilities of uncertainty modeling to further enhance the SBD 

process. 
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CHAPTER 9  

CONCLUSIONS, RECOMMENDATIONS, & FUTURE RESEARCH 

9.1 Conclusions 

This research work was completed to test the hypothesis that representing uncertainty in 

the SBD space would enhance the facilitation of SBD and SBD principle practices.  To 

test this hypothesis set-based experimental ship designs were conducted for both highly 

constrained and loosely constrained containership designs.  Three different methods were 

used to facilitate the SBD process.  These methods utilized T1, IT2M, and GT2 FLS 

environments to promote set-based practices such as, set-based communications and 

reductions in the set-ranges of design variables.   

The T1 FLS SBD tool had previously been shown by Singer [2003] to be capable of 

facilitating SBD and reaching a global optimum.  Type-1 FLS SBD experiments were 

performed in this research to provide a baseline of data when searching for enhancements 

to the facilitation of the SBD process through the uncertainty modeling provided by the 

IT2M and GT2 FLS SBD environments. The SBD experiments utilizing the T1 FLS 

revealed that the T1 FLS SBD environment was capable of facilitating SBD, to a degree.  

For the Ship E SBD in which there were numerous feasible design solutions as a result of 

having loose design constraints, the T1 FLS SBD tool performed well.  The T1 FLS SBD 

tool was able to easily provide a means for reducing set-ranges and narrowing the 

solution space by eliminating less desirable solutions, hence facilitating the SBD process 
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for the loosely constrained ship design.  However, the relatively quick rate of set-

reduction during the T1 FLS SBD Ship D experiments, as compared to the set-reduction 

rate of the IT2M and GT2 FLS Ship D experiments, proved to be a weakness of the T1 

FLS SBD tool.   

The T1 FLS environment did not possess the ability to model design uncertainty and the 

Ship D SBD design experiment ended with a catastrophic design failure.  The IT2M and 

GT2 FLSs SBD experiments however were able to gradually reduce the set-ranges of the 

Ship D design variables because these FLSs contained uncertainty modeling that helped 

to facilitate the SBD practice of purposefully delaying design decisions.  The delaying of 

design decisions was particularly evident in the IT2M FLS SBD tool experiments.  The 

extra information provided by the representation of uncertainty in the JOP curve solution 

space caused the Chief engineering agent to take a more gradual approach to the set-

reduction process.  The more gradual set-reduction during the IT2M FLS SBD 

experiments provided the time necessary for a more complete understanding of design 

trade-offs to develop, while simultaneously promoting the reduction of design 

uncertainty.   

For the Ship D, highly constrained, SBD experiments the T1 FLS ended as a catastrophic 

failure since the system was not able to stay within the feasible design space.  The IT2M 

and GT2 FLSs, however, were able to successfully reduce variable set-ranges and narrow 

the solution space while maintaining design feasibility.  As such, the results of the SBD 

experiments illustrate that the representation of design uncertainty provides the following 

SBD enhancements:  
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 Enforcement of the SBD practice of delaying design decisions; especially when 

utilizing the IT2M FLS, 

 Increase in the available information for decision making; in example the IT2M 

FLS cumulative JOP plots and JOP histograms,  

 Improved understanding of the complex interactions between the ship design 

variables by both delaying design decisions and increasing available design 

information. 

 A means to track the reduction of design uncertainty throughout the SBD process. 

 Robustness to the level of design difficulty; the IT2M and GT2 FLS methods 

successfully facilitated SBD practices for both the loosely and highly constrained 

ship designs. 

The enhancements provided by the addition of uncertainty modeling to the IT2M and 

GT2 FLSs were critical in preventing the pre-mature elimination of crucial design values 

from the set-ranges during a highly constrained ship design.  A few set-ranges had to be 

re-opened during the GT2 FLS SBD Ship D experiment, however, the delaying of design 

decisions provided enough time to realize the set-reduction error and the sets were re-

opened and the negotiation process continued smoothly.   

Although the IT2M FLS did not achieve the same magnitude of set-reductions as seen in 

the GT2 FLS experiments, it can be argued that the more gradual set-reduction also 

prevented the IT2M FLS from pre-maturely reducing the set-ranges of the design 

variables during the Ship D SBD experiment.  Analyses of the experimental results have 

shown that the IT2M FLS experiments may have possessed higher levels of initial design 

uncertainty due to the design agents being unintentionally influenced by the default 

uncertainty bounds of the IT2M FLS environment.  The default uncertainty bounds for 

the IT2M FLS were in fact, twice as large as the GT2 FLS.   The larger initial design 
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uncertainty for the IT2M FLS SBD experiments consequently resulted in a slower set-

reduction process, which explains the smaller magnitudes of set-reduction observed for 

the IT2M FLS SBD experiments. 

The experimental results have shown that, although beneficial for facilitating the SBD 

practices of delaying design decisions, the modeling of design uncertainty appeared less 

beneficial for a loosely constrained ship design.  Since a loosely constrained ship design 

possess many feasible design solutions, it is easy to quickly reduce the set-ranges of 

design variables without the worry of eliminating critical design values needed for a 

feasible design.  

 It was also observed during the Ship E SBD experiments that because of the vast feasible 

solution space, many of the JOP curve results were without zero preference values that 

are typically used by the Chief engineering agent to identify how to reduce the set-range 

of a design variable for further negotiation.  It was thought that the lack of zero JOP 

values and the resulting difficulties in set-reduction would have slowed down the set-

reduction process for the simplistic Ship E SBD.  However, analysis of the set-range data 

for the Ship E experiments showed that greater magnitudes of set-reduction were still 

achieved for the loosely constrained ship design as compared to the highly constrained 

ship design.  Since the Chief engineering agent knew that many feasible solutions existed 

for the Ship E design, it was easy to reduce the set-ranges without the worry of 

prematurely eliminating design values needed to achieve a feasible solution, even without 

the presence of zero preference values. 
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Several measures were taken to reduce the experimental variability resulting from the use 

of human subjects.  However, when using human subjects it is not possible to completely 

eliminate the variability in human nature and individual cognitive processing.  As such, 

the experiments were limited in the capacity to control the levels of human variabilities.  

Despite the inherent variabilities associated with the involvement of human subjects in 

the SBD experiments, the overall the experimental data and figures provided evidence in 

support of the hypothesis that the SBD process can be enhanced through the introduction 

of uncertainty modeling.  The magnitude of set-range and magnitude of uncertainty plots 

both demonstrated gradual reductions throughout the SBD process; thus, enabling the 

facilitation of the SBD principles of gradual elimination of infeasible solutions, the 

reduction of uncertainty, and the increase in design information for making crucial design 

decisions.   

The development and creation of the JOP histogram provided a truly novel tool for the 

enhanced analysis of SBD negotiations.  With any complex system robustness and design 

flexibility are always considered to be of great importance.  The U.S. Navy is constantly 

trying to design ships with ever increasing flexibility to fulfill multiple mission roles.  

When designing for flexibility, a design must have situational robustness and cannot be 

optimized for a single mission only.  The JOP histogram of the IT2M FLS allows a 

designer to determine not only the most preferred set-values from within a variable’s set-

range, but also the set-values that occur most frequently in the presence of design 

uncertainty, which indicates robustness.  The designer can then choose to further 

investigate the set-values with the highest JOP rating, as well as set-values that have 

robustness to design uncertainty; a highly desirable characteristic for any design.  It is 
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envisioned that the JOP histogram data could be used for optimization routines or as a 

“threshold of robustness” to provide additional criteria for set-reduction and trade-off 

studies. 

The tools and methods developed for this research represent a significant contribution to 

the field and naval architecture and marine engineering (NA&ME).  Through research the 

author has accomplished: 

1) The representation of uncertainty in design and communication through the use of 

IT2M and GT2 FLSs, 

2) The enhancement of SBD facilitation through,  

a. Representation of design and communication uncertainty 

b. Identification of robust design solutions (IT2M JOP histogram) 

c. Delayed set-reduction resulting from uncertainty modeling 

i. Avoided premature elimination of feasible solutions 

ii. Provided robustness to SBD method 

3) Development of new interval type-2 modeling methods 

- Yrand, xRU, xRL, and Slopes randomization methods 

4) Creation of IT2M Joint Output Preference Histogram 

5) Development of a simplified GT2 MF representation (2-D) 

Although the methods and tools developed for this research were applied to the field of 

NA&ME for complex ship design, they could each be easily applied to the general field 

of complex systems design in order to facilitate SBD.  For instance, the FLS SBD tools 

could be applied to mechanical or aerospace design to perform the SBD of either an 

automobile or airplane, respectively. 



 

 

214 

 

9.2 Recommendations for Future Work 

The research conducted for this dissertation was not without limitations, as no one set of 

trials can test all experimental hypotheses.  As such, there is room for further 

investigation on the facilitation of SBD.  The results of this research also led to the 

formulation of several new hypotheses which require further, in depth, investigation.  The 

areas envisioned for continued research include: 

1) Conducting additional SBD experiments to identify the performance benefits of 

the IT2M FLSs compared to that of the GT2 FLS.  This could be accomplished by using 

the SBD environments to produce a ship design with a known optimal solution and then 

comparing the SBD results of each SBD FLS to the known optimal solution.   

2) This research has shown that the SBD tools indeed facilitated the SBD process 

and that the newly developed IT2M and GT2 FLSs were able to enhance the SBD 

process.  However, the results were based on relatively few design experiments as there 

was a limited subject pool from which to draw acceptable experimental participants.  It 

would be useful to create a simple design experiment that could allow the author to draw 

upon a much larger subject pool so that statistical hypothesis testing could be performed 

to further support the conclusions of this research. 

3) A current limitation of the SBD environments is that each of the design agents 

has an equal preference weight when negotiating a design variable.  That is to say, that no 

single design agent can influence the negotiation process more than the other design 

agents.  In reality, when negotiating a design variable, although many design agents may 

be involved in the variable negotiation because they each have a preference for the values 
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within the set-range, the design agents should not all have an equal influence on the 

negotiation of the variable.  There is a need to research and develop a methodology which 

allows for certain design agents to have more influence over the negotiation of a design 

variable then do the other negotiating design agents.  It is possible that a weighting value 

could be provided for each negotiating design agent and this value would be incorporated 

into the FLS processes. 

4) One of the main components of SBD is the set-based communications process.  

Currently the set-based communications between human design agents are facilitated 

through the use of a FLS software environment.  It has long been thought that a computer 

cannot capture or reproduce the extensive range of knowledge of an experienced 

engineer.  This thought was one of the main motivations for designing the SBD FLSs to 

include the linguistic inputs from human design agents.  With continued research and 

development the human design agents could potentially be replaced by optimization 

codes which would represent each functional design discipline.  It would then be possible 

to test the hypothesis that a SBD team of human design agents could outperform a strictly 

computational SBD tool.   

It would be of interest to test the SBD process when utilizing the computerized design 

agents (optimization codes), versus human design teams comprised entirely of subjects 

with only college level education and design experience, subject groups with only 1 – 4 

years of design experience, and subject groups with over 4+ years of design experience, 

and finally, groups with a mixture of design experience.  This would allow the 

experiments to show if a SBD team of human design agents could outperform 
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computational design agents and demonstrate the influence of experience on the design 

process. 

 5)  In the SBD experiments the Chief engineering agent was given the free will to 

submit a request for negotiation of a design variable at any time during the SBD 

experiment.  This meant that some design variables were negotiated more than others.  It 

also meant that a new negotiation request could be submitted while other design variables 

were still being negotiated by the design agents.  The research did not test to see if 

negotiating every design variable each round would result in a more efficient SBD 

process.  Therefore, there is an opportunity to investigate the advantages or disadvantages 

to the two different modes of SBD negotiation. 
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Appendix A  

Post-Preference Data Input Survey 

Questions & Answer Choices 

 

1) How would you rate your overall level of uncertainty for this negotiation round? 

- High 

- Moderate-High 

- Moderate 

- Low-Moderate 

- Low 

2) How many membership functions did you use to describe your preference for the 

negotiated set of values? 

- 1 

- 2 

- 3 

- 4 

- 5 

- 6 

- 7 

- 8 

- 9 

- 20 

- More than 10 

3) What was your motivation for using x# of membership functions for the 

negotiation of the values set? 

 

 

 

Short Answer 
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4) Did you utilize this variable's Joint Output Preference (JOP) curve data from the 

previous negotiation round to make preference decisions for this negotiation 

round?  

- Yes 

- No 

- N/A, first negotiation round 

5) Did you utilize JOP curve data from other variables to make preference decisions 

for this negotiation round? 

- Yes 

- No 

- N/A, first negotiation round 

6) Did you utilize your preference curve data (MFs) from the previous negotiation 

round to design your preference functions for this negotiation round?  

- Yes 

- No 

7) What were your reasons for choosing the +- epsilon (or sigma %) values for each 

membership function? (Enter "N/A" if using Type-1 System) 

 

8) Compared to previous negotiation rounds for this variable, How many 

membership functions (MFs) did you use to describe your preference? 

- Fewer MFs 

- More MFs 

- Same MFs 

- N/A, first negotiation round 

9) Compared to previous negotiation rounds for this variable, how would you 

describe the uncertainty bounds for your membership functions? 

- Wider uncertainty bounds 

- Narrower uncertainty bounds 

- Approximately equal uncertainty bounds 

- N/A, first negotiation round 

- N/A, Type-1 FLS 

Short Answer 
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10) Compared to previous negotiation rounds for this variable, how would you rate 

your level of design uncertainty for this negotiation? 

- Greater design uncertainty 

- Less design uncertainty 

- Same level of design uncertainty 

- N/A, first negotiation round 

11)  When describing your membership functions for the negotiation of the design 

variable this round, do you feel that you had ____ information, than previous 

rounds? 

a. more 

b. less 

c. same 

d. N/A, first negotiation round 

12) The time you were given to perform design analyses before entering your 

membership function data to describe your preference for the design variable 

was ____ ? 

a. more than adequate 

b. adequate 

c. less than adequate 
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Appendix B 

Design Constraints for Ship E 

Primary Design Requirements: 

 

 Your company has been asked to respond to a request for a bid for a standard 

containership operating between ports located in Sydney, Australia and Hong Kong, China.   

The vessel needs to satisfy the following requirements: 

 

1) Carriage of 8,000 TEU (Twenty foot Equivalent Units) with an average weight of 13.5 

tonnes with a VCG at 45% of the container height in accordance with ISO standards.  

o There is no requirement for preferential loading control of the vessel; i.e. the 

ability to accommodate a uniform container weight vertically and longitudinally 

2) Endurance range of 4475 nautical miles, at service speed for fuel and 26 days of 

provisions and water 

3) Service speed at 85% Maximum Continuous Rating within the range of 22-26 knots, 

with 26 knots being preferred. 

4) Vessel must be of all steel construction and be designed to commercial standards 

including the requirements for Safety of Life at Sea (SOLAS) and the Germanischer 

Lloyd classification society.   

o Specific attention should be given to the minimum GMt requirement 

o The vessel will be flagged in Australia, but operated with a U.S. crew 

5) 26 days of endurance 

6) Complement of 25 officers and crew 

7) Maximum length of waterline (LWL): 360 m 

8) Maximum beam (B): 51 m 

9) Maximum draft (T): 25 m 

10) Only one propeller is to be used 

11) You may assume LCG = LCB, thus trim = 0, and Taft = Tforward 

 

 The customer seeks a minimum after tax Required Freight Rate (RFR) vessel design 

based upon the following economic assumptions: 

 

 ship economic life    18 years 

 voyage length per round trip   4475 nm 

 min. average speed made good on voyages  22 knots 

 port calls of 2 days each per round trip  2  

 utilization (% containers paying on each voyage)  85% 

 operation days per year   340 
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Appendix C 

Design Constraints for Ship D 

Primary Design Requirements: 

 

 Your company has been asked to respond to a request for a bid for a standard 

containership for use along the U.S. Atlantic Coastline operating out of the Newport News 

Marine Terminal in Newport News, VA.   The vessel needs to satisfy the following 

requirements: 

 

1) Carriage of a minimum of 4,000 TEU (Twenty foot Equivalent Units) with an average 

weight of 14.0 tonnes with a VCG at 45% of the container height.  

o There is no requirement for preferential loading control of the vessel; i.e. the 

ability to accommodate a uniform container weight vertically and longitudinally 

2) Endurance range of 2,000 nautical miles, at service speed for fuel and 18 days of 

provisions and water 

3) Service speed at 85% Maximum Continuous Rating of no less than  25 knots 

4) Vessel must be of all steel construction and be designed to commercial standards 

including the requirements of the American Bureau of Shipping and the U.S.C.G. 

o Specific attention should be given to the minimum GMt requirement 

o The vessel will be flagged in the United States and operate with a U.S. crew 

5) 18 days of endurance 

6) Complement of 22 officers and crew 

7) Maximum length of waterline (LWL): 300 m 

8) Maximum beam (B): 33.0 m 

9) Maximum draft (T): 12.75 m 

o Based on size limitations of the ports of operation 

10) Only one propeller is to be used 

11) You may assume LCG = LCB, thus trim = 0, and Taft = Tforward 

 

 The customer seeks a minimum after tax Required Freight Rate (RFR) vessel design 

based upon the following economic assumptions: 

 

 ship economic life    20 years 

 voyage length per round trip   2000 nm 

 average speed made good on voyages  25 knots (minimum) 

 port calls of 1 day each per round trip  8  

 utilization (% containers paying on each voyage)  85% 

 operation days per year   350 
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Appendix D 

Pre-Experiment Design Agent Survey Questions 

and Answer Choices 
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Appendix E 

Post-Experiment Design Agent Survey Questions 

and Answer Choices 
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Appendix F 

SBD Tool Agent Variables Map
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Appendix G 

Magnitude of Set-Range vs. Time Plots 

for Ship D SBD Experiments 

 

Ship D, Set-Ranges for B Negotiation vs. Time 

 

Ship D, Set-Ranges for Cb Negotiation vs. Time 
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Ship D, Set-Ranges for D Negotiation vs. Time 

 
Ship D, Set-Ranges for KGc Negotiation vs. Time 

 
Ship D, Set-Ranges for KGm Negotiation vs. Time 
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Ship D, Set-Ranges for KGs Negotiation vs. Time 

 
Ship D, Set-Ranges for Lc Negotiation vs. Time 

 
Ship D, Set-Ranges for Lm Negotiation vs. Time 
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Ship D, Set-Ranges for LWL Negotiation vs. Time 

 
Ship D, Set-Ranges for T Negotiation vs. Time 

 
Ship D, Set-Ranges for Threqd Negotiation vs. Time 
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Ship D, Set-Ranges for Vk Negotiation vs. Time 

 
Ship D, Set-Ranges for Wm Negotiation vs. Time 
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Appendix H 

Magnitude of Uncertainty vs. Time Plots 

for Ship D SBD Experiments 
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IT2M (Slopes), Ship D, Magnitudes of Uncertainty for B vs. Time 

 

GT2, Ship D, Magnitudes of Uncertainty for B vs. Time 
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IT2M (Slopes), Ship D, Magnitudes of Uncertainty for Cb vs. Time 

 

GT2, Ship D, Magnitudes of Uncertainty for Cb vs. Time 
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IT2M (Slopes), Ship D, Magnitudes of Uncertainty for D vs. Time 

 

GT2, Ship D, Magnitudes of Uncertainty for D vs. Time 
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IT2M (Slopes), Ship D, Magnitudes of Uncertainty for KGc vs. Time 

 

GT2, Ship D, Magnitudes of Uncertainty for KGc vs. Time 
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IT2M (Slopes), Ship D, Magnitudes of Uncertainty for KGm vs. Time 

 

GT2, Ship D, Magnitudes of Uncertainty for KGm vs. Time 
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IT2M (Slopes), Ship D, Magnitudes of Uncertainty for KGs vs. Time 

 

GT2, Ship D, Magnitudes of Uncertainty for KGs vs. Time 
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IT2M (Slopes), Ship D, Magnitudes of Uncertainty for Lc vs. Time 

 

GT2, Ship D, Magnitudes of Uncertainty for Lc vs. Time 
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IT2M (Slopes), Ship D, Magnitudes of Uncertainty for Lm vs. Time 

 

GT2, Ship D, Magnitudes of Uncertainty for Lm vs. Time 
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IT2M (Slopes), Ship D, Magnitudes of Uncertainty for LWL vs. Time 

 

GT2, Ship D, Magnitudes of Uncertainty for LWL vs. Time 
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IT2M (Slopes), Ship D, Magnitudes of Uncertainty for T vs. Time 

 

GT2, Ship D, Magnitudes of Uncertainty for T vs. Time 
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IT2M (Slopes), Ship D, Magnitudes of Uncertainty for Threqd vs. Time 

 

GT2, Ship D, Magnitudes of Uncertainty for Threqd vs. Time 
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IT2M (Slopes), Ship D, Magnitudes of Uncertainty for Vk vs. Time 

 

GT2, Ship D, Magnitudes of Uncertainty for Vk vs. Time 
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IT2M (Slopes), Ship D, Magnitudes of Uncertainty for Wm vs. Time 

 

GT2, Ship D, Magnitudes of Uncertainty for Wm vs. Time 
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Appendix I 

Magnitude of Set-Range vs. Time Plots 

for Ship E SBD Experiments 

 
Ship E, Set-Ranges for B Negotiation vs. Time 

 
Ship E, Set-Ranges for Cb Negotiation vs. Time 
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Ship E, Set-Ranges for D Negotiation vs. Time 

 
Ship E, Set-Ranges for KGc Negotiation vs. Time 

 
Ship E, Set-Ranges for KGm Negotiation vs. Time 
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Ship E, Set-Ranges for KGs Negotiation vs. Time 

 
Ship E, Set-Ranges for Lc Negotiation vs. Time 

 
Ship E, Set-Ranges for Lm Negotiation vs. Time 
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Ship E, Set-Ranges for LWL Negotiation vs. Time 

 
Ship E, Set-Ranges for T Negotiation vs. Time 

 
Ship E, Set-Ranges for Threqd Negotiation vs. Time 
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Ship E, Set-Ranges for Vk Negotiation vs. Time 

 
Ship E, Set-Ranges for Wm Negotiation vs. Time 
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Appendix J 

Magnitude of Uncertainty vs. Time Plots 

for Ship E SBD Experiments  
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IT2M (Slopes), Ship E, Magnitudes of Uncertainty for B vs. Time 

 
IT2M (Choice), Ship E, Magnitudes of Uncertainty for B vs. Time 

 
GT2, Ship E, Magnitudes of Uncertainty for B vs. Time 
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IT2M (Slopes), Ship E, Magnitudes of Uncertainty for Cb vs. Time 

 
IT2M (Choice), Ship E, Magnitudes of Uncertainty for Cb vs. Time 

 
GT2, Ship E, Magnitudes of Uncertainty for Cb vs. Time 
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IT2M (Slopes), Ship E, Magnitudes of Uncertainty for D vs. Time 

 
IT2M (Choice), Ship E, Magnitudes of Uncertainty for D vs. Time 

 
GT2, Ship E, Magnitudes of Uncertainty for D vs. Time 
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IT2M (Slopes), Ship E, Magnitudes of Uncertainty for KGc vs. Time 

 
IT2M (Choice), Ship E, Magnitudes of Uncertainty for KGc vs. Time 

 
GT2, Ship E, Magnitudes of Uncertainty for KGc vs. Time 



 

 

258 

 

 
IT2M (Slopes), Ship E, Magnitudes of Uncertainty for KGm vs. Time 

 
IT2M (Choice), Ship E, Magnitudes of Uncertainty for KGm vs. Time 

 
GT2, Ship E, Magnitudes of Uncertainty for KGm vs. Time 
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IT2M (Slopes), Ship E, Magnitudes of Uncertainty for KGs vs. Time 

 
IT2M (Choice), Ship E, Magnitudes of Uncertainty for KGs vs. Time 

 
GT2, Ship E, Magnitudes of Uncertainty for KGs vs. Time 
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IT2M (Slopes), Ship E, Magnitudes of Uncertainty for Lc vs. Time 

 
IT2M (Choice), Ship E, Magnitudes of Uncertainty for Lc vs. Time 

 
GT2, Ship E, Magnitudes of Uncertainty for Lc vs. Time 
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IT2M (Slopes), Ship E, Magnitudes of Uncertainty for Lm vs. Time 

 
IT2M (Choice), Ship E, Magnitudes of Uncertainty for Lm vs. Time 

 
GT2, Ship E, Magnitudes of Uncertainty for Lm vs. Time 



 

 

262 

 

 
IT2M (Slopes), Ship E, Magnitudes of Uncertainty for LWL vs. Time 

 
IT2M (Choice), Ship E, Magnitudes of Uncertainty for LWL vs. Time 

 
GT2, Ship E, Magnitudes of Uncertainty for LWL vs. Time 
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IT2M (Slopes), Ship E, Magnitudes of Uncertainty for T vs. Time 

 
IT2M (Choice), Ship E, Magnitudes of Uncertainty for T vs. Time 

 
GT2, Ship E, Magnitudes of Uncertainty for T vs. Time 



 

 

264 

 

 
IT2M (Slopes), Ship E, Magnitudes of Uncertainty for Threqd vs. Time 

 
IT2M (Choice), Ship E, Magnitudes of Uncertainty for Threqd vs. Time 

 
GT2, Ship E, Magnitudes of Uncertainty for Threqd vs. Time 
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IT2M (Slopes), Ship E, Magnitudes of Uncertainty for Vk vs. Time 

 
IT2M (Choice), Ship E, Magnitudes of Uncertainty for Vk vs. Time 

 
GT2, Ship E, Magnitudes of Uncertainty for Vk vs. Time 
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IT2M (Slopes), Ship E, Magnitudes of Uncertainty for Wm vs. Time 

 
IT2M (Choice), Ship E, Magnitudes of Uncertainty for Wm vs. Time 

 
GT2, Ship E, Magnitudes of Uncertainty for Wm vs. Time 
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