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ABSTRACT

Contributions to the Analysis of Multistate and Degradation Data

by

Yang Yang

Co-Chairs: Yves A. Atchadé and Vijayan N. Nair

Traditional methods in survival, reliability, actuarial science, risk, and other

event-history applications are based on the analysis of time-to-occurrence of some

event of interest, generically called “failure”. In the presence of high-degrees of cen-

soring, however, it is difficult to make inference about the underlying failure distri-

bution using failure time data. Moreover, such data are not very useful in predicting

failures of specific systems, a problem of interest when dealing with expensive or

critical systems. As an alternative, there is an increasing trend towards collecting

and analyzing richer types of data related to the states and performance of systems

or subjects under study. These include data on multistate and degradation pro-

cesses. This dissertation makes several contributions to the analysis of multistate

and degradation data.

The first part of the dissertation deals with parametric inference for multistate

processes with panel data. These include interval, right, and left censoring, which

arise naturally as the processes are not observed continuously. Most of the litera-

ture in this area deal with Markov models, for which inference with censored data

viii



can be handled without too much difficulty. The dissertation considers progressive

semi-Markov models and develops methods and algorithms for general parametric

inference. A combination of Markov Chain Monte Carlo techniques and stochastic

approximation methods are used. A second topic deals with the comparison of the

traditional method and the process method for inference about the time-to-failure

distribution in the presence of multistate data. Here, time-to-failure is the time when

the process enters an absorbing state. There is limited literature in this area. The

gains in both estimation and prediction efficiency are quantified for various paramet-

ric models of interest.

The second part of the dissertation deals with the analysis of data on continuous

measures of performance and degradation with missing data. In this case, time-to-

failure is the time at which the degradation measure exceeds a certain threshold or

performance level goes below some threshold. Inference problems about the mean

and variance of the degradation and the imputation of the missing are studied under

different settings.
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CHAPTER I

Introduction

This dissertation consists of two parts. Part I deals with two different aspects

of multistate modeling with censored data: a) parametric inference for multistate

semi-Markov processes with panel data; and b) comparison of the efficiencies of two

methods for inference about the time-to-failure – one based on just the time-to-failure

data and the second based on modeling the entire multi-state semi-Markov process

and using the results to make inference about “failure” or time-to-absorption of the

underlying process. Both estimation and prediction efficiencies are studied.

Part II deals with analysis of degradation data in the presence of complex missing

patterns. There is an extensive literature on missing data in longitudinal studies,

but the problems studied here are different. Several topics are addressed in this part:

a) estimation of the underlying mean and variance functions which are specified in

a non-parametric form but the time-dependence structure of the degradation data

takes on different possible models, including comparison of efficiencies and robust-

ness; b) development of inference for functional regression and ANOVA techniques

in the presence of missing data; c) imputing the missing data and developing uncer-

tainty bounds; and d) predicting time-to-failure and developing associated predic-

tion intervals. This research problem originated as part of an applied project on the

1
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degradation of road pavements in Michigan.

While the two parts are distinct, they are related in that both deal with “degra-

dation data”. This connection is discussed below as part of the motivation for the

research presented in this dissertation.

Chapters II, III, and IV have been written up as individual papers which are be-

ing prepared for submission or have been submitted (Yang, Atchade and Nair 2011,

Yang and Nair 2011a, and Yang and Nair 2011b). Chapter III has been tentatively

accepted for publication. Since the papers are self contained, there is some repetition

of the motivation, notation, etc. in the different chapters.

1.1 Motivation

Traditional survival and reliability analysis are based on the time to occurrence

of some event of interest. We denoted this event generically as “failure” in this

dissertation. The event can be: death of a patient, onset of a disease, failure of a

device, completion of a task such as repair of failed equipment or servicing a customer,

default of a bank loan, marriage, divorce, having a first child, graduation, etc. There

are only two states in this situation – either the event has happened or not, and

information about intermediate states or condition of a unit is not available or taken

into account.

The modeling and analysis of time-to-failure data is a mature area with a huge

literature. See, for example, the excellent books by Andersen et al. (1992), Klein and

Moeschberger (2003), Kalbfleisch and Prentice (2002), Lawless (2003) and Meeker

and Escobar (1998). The literature covers homogeneous populations as well as het-

erogeneous situations, regression analysis with proportional hazard models, acceler-
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ated failure time models, and so on. There is extensive use of these techniques to

applications in health and medicine, reliability engineering, actuarial science, risk

analysis, and social sciences.

Data from reliability and health studies, including reliability test programs, clini-

cal trials, warranty data, and other types of field data, are subject to various forms of

censoring, leading to possibly extensive incompleteness in the available information.

For example, in engineering and manufacturing applications, there has been consid-

erable emphasis in recent years on increasing the quality and reliability of products

to be globally competitive. As reliability increases, one observes very few failures,

and most of the units are censored. During the product design and development

stage, the amount of time available for reliability estimation and assessment can be

in the order of a few months. If the products are designed with high reliability, few

units will fail in a 3-6 month window, leading to very high degree of right censoring.

It is not uncommon to have no failures during this period. Similar issues arise in

clinical trials. Hence, it will be very difficult to make reasonable inference and assess

product reliability in such situations.

Several approaches have been developed to get around these problems. In engi-

neering applications, accelerated life testing (ALT) is commonly used to induce early

failures. One analyzes the time-to-failure at accelerated conditions and uses accelera-

tion transform models to extrapolate to nominal conditions. See, for example, Nelson

(2004) and Meeker and Escobar (1998) for an overview of these methods. The main

difficulty with the use of ALT techniques is that most of the common models are

empirical (or heuristic) in nature and reduce to a linear model after a logarithmic

transformation (see Section 2.11 in Nelson 2004). The adequacy of these models for

extrapolation to design conditions is often questionable. Other approaches that have
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developed include the collection of extensive information on covariates and surrogate

variables, and using this information to improve estimation and prediction efficiency.

See, for example, Davies (1998) and Cox (1999).

A different direction that is becoming more common is the collection and analysis

of richer data on the condition or performance of the systems/subjects under study,

beyond time-to-failure. An early instance of this was the three-state illness-death

model where a subject can move from the state of being “well” to an intermediate

state of being “ill”, and not just “death”. The use of multistate models has become

increasingly popular, both in biostatistics and engineering. In a multistate model,

the system moves among different “states” with each state representing the “health”

of the system. Multistate models have been used to study many different applica-

tions. In the case of survival and reliability analysis, the states typically represent

stages of degradation, such as worsening health, and are often progressive (i.e., the

system/subject moves only in one direction). Further, one of the states will be an

absorbing state denoting the occurrence of the event of interest (“failure”). In such

cases, failure can be viewed as the end point of the underlying multi-state process

(see Aalen, Borgan and Gjessing 2008).

The primary advantage of multistate data is that information about intermediate

states is available even when time-to-failure is censored at the end of the study.

In addition to increasing the efficiency of estimating the failure distribution, the

data can also be used to predict the failure of particular systems/subjects that were

censored at the end of the study. The analysis of multistate data is the subject of

Chapter II and Chapter III.

A different type of degradation data deals with continuous evolution of the state

or performances of the system in terms of the condition of the system or degradation
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in performance. Within the engineering context, advances in sensing technologies

are making it feasible to collect extensive amounts of data on performance-related

measures and “degradation” associated with components, systems, and equipment.

Davies (1998) discusses a variety of engineering applications, types of degradation

data, and recent developments in the area of condition monitoring and system main-

tenance. These cover data from vibration and acoustical monitoring, thermography,

lubricant and wear debris analysis, etc. Meeker and Escobar (1998, Chapter 14 and

21 and references therein) describe applications in fatigue crack growth, luminosity

of light bulbs, corrosion of batteries, semiconductor (MOS) devices, etc. Modeling

and analysis of degradation data is also receiving increasing attention. Chapter IV

deals with flexible methods for inference in some degradation models in the presence

of complicated missing patterns. My interest in this research problem was motivated

by an application to road pavements that I was involved in, and the project was

funded by the Michigan Department of Transportation (MDOT). This is described

in more detail in Chapter IV.

1.2 Review and Summary of Contributions

This section provides general background and references to the problems being

addressed and summarizes the contributions in the different chapters. The first

subsection focuses on multistate modeling, applications to survival and reliability

analysis, and the contributions in Chapters II and III. The second subsection deals

with the analysis of degradation data and Chapter IV.
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(b) Recurrent Model
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(c) Twin model
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(d) Competing Risk

���

�������

	��

(e) Illness-death model

Figure 1.1: Popular Multistate Models Used in Applications
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1.2.1 Multistate Modeling

Various types of multistate models have been proposed to analyze survival, reli-

ability, and other types of event history data. Hougaard (1999) provides a review of

some models; Commenges (1999) emphasizes applications in epidemiology. See also

Chapter 8 of Kalbfleisch and Prentice (2002) and Chapter 11 of Lawless (2003). The

discussion below is based on these sources.

A multistate process can be described by a stochastic process Z(t) which takes

values in a countably infinite state space. In this dissertation, the state space is

assumed to be finite. The process Z(t) spends a random amount of time, charac-

terized by some distribution, in a given state (called sojourn or occupancy times)

and then moves to another state according to some transition probabilities. Figure

1.1 gives some examples. The traditional case can be viewed as a two-state model

with an “alive” state and a “failed” state. The “failed” state is the absorbing state

since further transitions are not possible once this state is reached. The failure time

is the duration (sojourn) time in the “alive” state before the subject moves to the

absorbing state. Several other traditional problems can also be viewed as special

cases of multistate processes. The situation with recurrent failures can be treated

as a multistate model as shown in Figure 1.1(b). The recurrent model is used to

represent repairable systems where the system fails, is repaired, and then fails again.

In this case, the “failed” state is not absorbing. The competing risks model can also

be viewed as a multistate model with multiple absorbing states as shown in Figure

1.1(d). The more interesting, non-trivial extension of the two-state survival model is

the illness-death model with two transient states – “healthy” and “ill” – and one ab-

sorbing state “dead”. As shown in Figure 1.1(e), a patient can move from “healthy”

to “ill” and then to “dead”. It is also possible for an ill patient to get better and
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move back to “healthy”.

This dissertation deals with progressive multistate models (see, for example, the

one-step “twin” model in Figure 1.1(c)). We assume that the states are ordered in

an appropriate (progressive) manner and the system moves from left to right only,

i.e., from state i to state j with j > i. Further, it is assumed that the right-most

state is an absorbing (“failure”) state and is the end-point of the process. Thus, the

traditional time-to-failure can be viewed as the time-to-reach the absorbing state.

Such progressive models are useful in capturing situations where there is monotone

degradation and the system cannot get better with time. Cases where a patient

has a particular disease or event (such as a stroke) and then gets back to being

“normal” can be handled by adding an additional state that distinguishes someone

who has always been healthy from another person who had such an event and then

has returned to being normal. While this would increase the number of states, the

analysis of progressive models is considerably easier due to the finite number of

possible transitions. A special case of progressive models is the one-step progressive

case (Figure 1.1(c)), where one can move from one state only to the one that is

immediately to its right.

Despite the increasing attention on multistate models, most of the literature

on statistical inference has focused on cases with simple structure. The Markov

model is clearly the most popular one, and it assumes that the sojourn times are all

exponentially distributed. See Kalbfleisch and Lawless (1985), the books and review

papers cited earlier for a discussion of inference under Markov models. See also Kay

(1986) and Andersen, Esbjerg and Sørensen (2000) who discuss the use of Markov

models in medical applications.

Part of the popularity of Markov models is due to the fact that inference under
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these models are relatively simple even in the presence of censoring. Extensions

to non-Markovian cases have dealt either with a small number of states or under

restrictions on the model structure or types of censoring. Sternberg and Satten

(1999) introduced a nonparametric estimator for semi-Markov multistate models with

interval-censored observations, but the underlying process is one-step progressive.

Foucher et al. (2007) proposed a likelihood estimation algorithm for interval-censored

data, but for semi-Markov multistate models with Weibull durations only. The

possibility of missing transitions was not considered there either, largely simplifying

the problem. The goal of Chapter II is to develop general parametric inference

methods for progressive semi-Markov models.

The presence of interval censoring arises naturally with multistate data as the

underlying process can rarely be monitored continuously. For example, the health

status of patients can be recorded only when they visit the doctor for periodic check-

ups; the time of onset of a disease is often unknown. In other words, the state

information is observed only at some discrete time points, leading to interval censor-

ing. (This discretely-observed state information is also called panel data.) Further,

the data can be subject to the usual left and right censoring patterns. Right cen-

soring is present when the process has not reached the absorbing state (event of

interest) by the end of the study. This also arises with traditional time-to-failure

data. Despite the fact that the process is being observed at discrete time, one could

still observe the exact time to absorption in some cases – for example in many health

situations, the time of death of a patient is available.

The presence of all these types of censoring complicates the analysis of multistate

data. To illustrate this, consider the following example. Suppose the process is

progressive, and the states are ordered, i.e., if the subject is in state i, it can only
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move forward to state j with j > i. Further assume that it started in state 1. We

observe the process at time points t1, t2, t3, and t4 and the states at these times are:

Z(t1) = 1, Z(t2) = 2, Z(t3) = 4, Z(t4) = 7. Denote ik the state the process visits

at the k−th transition, and τk the sojourn time spent in state Ik−1, k = 1, 2, 3, . . ..

Then, at time t1, we know that no transition has occurred and that τ1, the sojourn

time in state 1 is at least t1. Since Z(t2) = 2, we know that the system transitioned

from state 1 to state 2 at some time between t1 and t2 but we do not know exactly

when. Further, we only know that τ1 is censored in the interval (t1, t2]. The next

observation is Z(t3) = 4. From this, we cannot tell if the system moved from state

2 to 3 and then 4 (i1 = 2, i2 = 3, i3 = 4) or if it jumped straight from state 2 to

4 (i1 = 2, i2 = 4). Both possibilities must be considered. As far as τ2 (sojourn

time in state 2) is concerned, we do not know when the system moved to state 2 (left

censored). This is not an issue with Markov models since the exponential distribution

is memoryless, but it cannot be ignored for other distributions. So all we know is

that either t2 < τ1 + τ2 + τ3 < t3 or t2 < τ1 + τ2 < t3 depending on which set of

transitions occurred. Another complication is that now τ1 and τ2 are related because

of the censoring in data. One can see that the problem can get rather complex with

even moderate number of states. It would become intractable if we did not restrict

attention to progressive structure and allowed cycles (one can go from any state to

any other state) as the number of possible transitions is then infinite.

It is possible to develop inference methods for specific parametric distributions

with special multistate structure. For example, the problem is not too difficult for

one-step progressive models where the sojourn times are closed under convolution,

such as gamma with the same scale parameter and are independent across states

(as assumed in semi-Markov models). Then, the cumulative amount of time spent
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before reaching any state is a sum of gamma random variables with the same scale

parameter and hence is also gamma. The goal in Chapter II is to develop general

methods for parametric models with panel data.

An obvious approach is to treat this as a missing data problem (with the unob-

served/censored sojourn times and transition patterns as complete data). It turns

out, however, that the E-step is rather complex and even Monte-Carlo based meth-

ods do not work well. Chapter II develops a computationally intensive approach,

based on a combination of MCMC (Gibbs and Reversible Jump MCMC) sampling

and stochastic approximation methods for likelihood-based inference.

Chapter III deals with a related problem. Suppose we have multistate process

with an absorbing state and the time-to-absorption can be considered as the time-to-

failure. Further, suppose we are interested only in inference about the time-to-failure

(estimation of the failure distribution as well as prediction of the time-to-failure for

systems that have not failed). There are two ways in which we can deal with this: a)

analyze the entire multistate data and use the results for inference about the failure

time distribution; or b) use just the time-to-absorption (failure) data with all of the

possible censoring issues.

As an example, consider the case of consumers who have bank loans and pay

them off periodically. This can be mortgage payments, credit card payments, etc. A

customer starts in the “current” state (C) – meaning s/he has been paying at least

the minimum amount required by the bank. Over time, s/he may stay in that state

or move to a different state (1-month delinquent (D30), 2-month delinquent (D60),

etc.). Here delinquency means the minimum payment has not been made. Banking

institutions typically consider 6-month delinquency to be default (D) or failure state,

and the time-to-default distribution is of one of the quantities of interest.



12

𝐶 𝐷30 𝐷60 𝐷 𝐷90 

Figure 1.2: Delinquency Model in Credit Risk Modeling

There are clearly many other advantages to modeling the entire multistate pro-

cess. In the consumer loan example, one may want to study separately the behavior

of customers who are delinquent and then go back to being current versus those

who go straight through to default, what are the different demographic and socio-

economic characteristics of the different groups and so on. Such information can

be very useful to the banks in developing future loan programs. But suppose the

primary quantity of interest is just inference about the failure time distribution. A

natural question is whether it is worthwhile to analyze the multistate data or focus

just on the time-to-default data.

There are several different considerations in answering this question. From a

statistical efficiency point of view, it seems clear that modeling the entire multistate

data has to be at lease as good as the time-to-failure data since the former includes

the latter. But it is worth quantifying the gains in efficiency. One reason is that,

in non-Markovian models, the analysis of multistate panel data is complex. The

methods developed in Chapter II are computationally intensive and do not scale up to

situations with a large number of states. Further, the developments for semi-Markov

processes are based on model and independence assumptions that have to hold for

all the states. On the other hand, analysis of time-to-failure data, even with very

complex censoring patterns, is a mature area, and there is considerable literature and
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software available. Further, the assumptions about the time-to-failure model have

to (approximately) hold (only for the time-to-absorption and not the intermediate

states. Therefore, it is worth investigating and quantifying the efficiency gains from

using the entire multistate data.

Chapter III studies this problem for specific parametric cases. The general prob-

lem is rather involved since the cumulative sojourn times (sums of individual sojourn

times in each state) do not have closed form expressions even in the simple one-step

case where they are just convolutions. In the more general multistep case, they are

mixture distributions. Therefore, the study focuses on specific distributions and ex-

amines the performance through asymptotic analysis and simulation studies. The

gains in estimation efficiency are substantial, often more than 2-3 times, even with

small to moderate number of states. Further insights into when the efficiency gains

are high and low are also obtained. Not surprisingly, the bigger gain is with predic-

tion efficiency. This deals with the ability to predict the failure of a particular system

given the data at time of censoring. With time-to-failure data, the only information

available is that the system was working at the time the study ended and that it is

right censored. So only the population-level residual time distribution can be used

to predict failure. With multistate data, however, we know the state of the system

at the end of the study. This individual-level information is clearly a lot more in-

formative in prediction. This gain in efficiency is much higher if the system is close

to the absorbing state at the time of censoring vs being in an early state. Chapter

III studies these and related issues, and quantifies the gains under several different

scenarios.

The idea that failure can be viewed as the end point of a process has gained at-

tention recently. The concept of using Markov models to study the absorbing time of
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the system was discussed in Neuts (1981), in which the phase-type distributions was

introduced. Aalen (1995) considered the use of phase-type distributions in survival

analysis. Aalen and Gjessing (2001) further elaborated on this and examined the

shapes of hazard rates that can be obtained from times-to-absorption of different

processes. Asmussen, Nerman and Olsson (1996) and Olsson (1996) applied E-M

algorithm to estimate phase type distributions when only the censored absorbing

times are observed. In the reliability and operations-research literature, finite-state

Markov processes and semi-Markov processes have also been studied, although most

of the work relates to optimization and not inference. For example, there is an

extensive literature on partially observed Markov decision processes. Limnios and

Oprisan (2001) considered application of semi-Markov processes in the field of relia-

bility. More recently, reliability techniques are being used to analyze financial data.

D’Amico, Janssen and Manca (2005) applied homogeneous Markov model to inves-

tigate the company-rating status.

1.2.2 Analysis of Degradation Data with Complex Missing Patterns

As noted earlier, advances in sensing and measurement technologies have made

it possible to collect and analyze detailed information about continuous measures of

degradation and performance of systems. In the engineering context, these measures

include data from vibration and acoustical monitoring, thermography, lubricant and

wear debris analysis, etc. Meeker and Escobar (1998) describes applications in fa-

tigue crack growth, luminosity of light bulbs, corrosion of batteries, semiconductor

(MOS) devices, etc. In health and medical applications, data on patient’s health

conditions can be viewed as degradation data. Modeling and analysis of degradation
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data has received considerable attention. In this case, the time-to-failure is usually

viewed as the time at which the degradation measure exceeds a certain threshold or

performance level goes below some threshold.

My interest in this research problem was motivated by a project about analyzing

the degradation of highway road pavement, sponsored by the Michigan Department of

Transportation (MDOT). The specific degradation measure was distress index (DI).

MDOT collects visual images of road conditions by videotaping highway pavement

surfaces using a van equipped with cameras and driven at regular speeds. These

videotapes are then sent to a central location where they are viewed and scored by

the type, extent, severity, and other types of pavement defects. Points are assigned

for each distress type depending on the severity and quantity of each distress based

on pre-established algorithm, leading to a distress index for each 0.1 mile segment

of pavement. These indices are often aggregated to assign more crude measures

to larger segments of the road. The DI should be zero for a pavement that has no

distress; if the DI is 50 or more, that segment of road is a candidate for rehabilitation.

The DI scoring is done subjectively, so there is usually a lot of measurement error

and random effects. There were many instances where the DI scores were drastically

lower as the pavement aged. (Some of this could be due to the fact that parts of

the road segments could have been repaired and that information was not available.)

In addition, there was a lot of missing data. For some pavements, no records were

available before certain time period (missing to the left in the time-to-failure context),

data were missing for certain consecutive years (missing in an interval) and data were

not collected after certain years (missing to the right). In fact, few of the pavements

had complete data for the period of study.

MDOT had several goals, and the primary one was to assess the effect of different
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pavement designs and materials on the life of the pavement. It turned out that we

could not fit a reasonable parametric model to the mean degradation curve over time.

So we decided to use functional ANOVA of the form Y (t) = Xβ(t) where Y (t) is

the degradation data over time, X is the design matrix corresponding to the types

of pavement design and materials and β(t) was a time-varying measure of the effect

of the design factors. See Ramsay and Silverman (2002), Ramsay and Silverman

(2005) for a discussion of functional regression and applications. But the extensive

nature and types of missing data made the inference difficult. In particular, we

needed to develop inference procedures for the functional regression coefficients β̂(t)

in the presence of missing data. In addition, it was also of interest to see how the

profile of the pavements for particular areas would look like if the data had not been

missing (especially in the tails or right missing). It was also of interest to predict

the time-to-failure of pavements so that one can plan resources for road repairs.

Our report to MDOT was based on some heuristic analysis but it led to a more

systematic investigation as described in Chapter IV. Several inference problems are

studied in this chapter:

1. Estimating the mean and variance of the degradation data Y (t): µ(t) and σ2(t)

based on a random sample of units in the presence of different types of missing

data and for several common models for the error structure.

2. Extend the results to functional regression or ANOVA and develop appropriate

test procedures for testing various hypothesis of interest.

3. Impute the degradation at the missing values and obtain uncertainty bounds.

4. Assuming a parametric form for µ(t) and σ2(t), predict the time-to-failure and

obtain prediction intervals.
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5. The above were all done under normal error structure, so another goal was

to examine non-normal error structures and also robustness to normality and

other assumptions.

These are done under a combination of missing data patterns.

Degradation data analysis has been discussed in literature. Lu and Meeker (1993)

proposes a parametric model for the degradation data, and use the estimated sample

path to predict the corresponding time-to-failure whenever the measurement passes

certain threshold. Lawless and Crowder (2004) suggested a gamma process for the

modeling of the underlying degradation process. Nonparametric estimation for degra-

dation data has also been studied in Wang (2005), Wang (2009) and Wang (2010).

See Nelson (2004, Chapter 11) for the review of the literature of degradation. Even

though missing data issue has not been systematically addressed under the degrada-

tion setting, the literature about missing in the longitudinal study is extensive. See

Laird (1988), Lann and Robins (2003).



CHAPTER II

Parametric Inference for Multistate Semi-Markov

Models with Panel Data

2.1 Introduction

The use of multi-state models to analyze survival, risk, reliability and other event

history data is becoming increasingly common. An early application was a three-

state illness-death model in which the patient can be well, become ill, get well again

or die. Our interest in this problem arose from applications in credit risk analysis,

where lending institutions use intermediate delinquency states to develop insights

into the behavior of customers who are likely to default. There are also applications

in reliability engineering where the degradation data are modeled through multistate

models. See Andersen (1988) and Hougaard (1999) for a general discussion of mul-

tistate models and comparisons with the traditional survival analysis based on just

lifetime data.

Interval-censored data arise naturally in this context since the underlying multi-

state process can rarely be monitored continuously. For instance, the health status of

patients can be recorded only when they visit a health-care center. Such data, often

called panel data, exhibit a combination of interval, left and right-censoring. Most

of the papers in the literature focus on Markov models where statistical inference

18



19

with panel data can be handled without too much difficulty (see Kay 1986, An-

dersen, Esbjerg and Sørensen 2000). Non-Markovian situations have received only

limited attention. Sternberg and Satten (1999) introduced a nonparametric estima-

tor with interval-censored observations under some restricted conditions. Foucher

et al. (2007) developed an algorithm for likelihood estimation with Weibull sojourn

distributions but assumed that all the transitions are observed, drastically simplify-

ing the problem. More recently, Titman and Sharples (2010) developed results for

panel data with phase-type sojourn distributions. Lagakos, Sommer and Zelen (1978)

developed likelihood-based estimation methods for situations where the multistate

process is observed continuously with possible right censoring.

This chapter develops a general approach and algorithms to make parametric in-

ference for semi-Markov processes with panel data. We restrict attention to models

with progressive (or acyclic) structure although this assumption can be relaxed. The

chapter is organized as follows: Section 2.2 provides the problem formulation. The

challenges of doing parametric estimation for semi-Markov models with panel data

are discussed in Section 2.3. The next two sections develop the details of the estima-

tion algorithm involved in parametric inference for semi-Markov models with panel

data. In Section 2.4, we focus on likelihood-based inference. Section 2.4.2 describes

the use of stochastic approximation to compute the maximum likelihood estimate

(MLE) and the observed information matrix for likelihood-based inference. Section

2.4.3 discusses the algorithms for imputing (sampling) the complete data from the

incomplete panel data. In the simple one-step progressive case, this can be done

through data augmentation. For the more general multi-step progressive case, two

algorithms are studied: conditional sampling and reversible jump MCMC sampling

(RJMCMC). The latter is shown to be computationally more efficient. Extensions
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to Bayesian inference and (static) covariates are indicated in Section 2.5. Section 2.6

describes simulation studies to evaluate the performance of the proposed algorithms.

The results are illustrated on a heart transplant data set in Section 2.7. This chapter

concludes with some remarks.

2.2 Formulation

Let {Z(t), t ≥ 0} be a stochastic process where Z(t) denotes the state of the

subject at time t. The process {Z(t), t ≥ 0} takes values in the finite state space

E = {1, 2, . . . , p}. Throughout this chapter, we take p to be an absorbing state,

denoted as “failure”. Also, we assume that the process starts in state 1, i.e., Z(0) = 1.

This can be relaxed without too much difficulty. Further, we assume that the states

are ordered in some natural way, and that the subject moves from left to right only.

We refer to this as a progressive (acyclic) model. Note that only a finite number

of transitions can occur in this case. Progressive models are quite natural in health

settings where there is monotone degradation of health status over time. Cases where

a patient is ill and then recovers can be handled by adding a new state rather than

allowing the patient to return to the initial healthy state. Even though this increases

the number of states, it is useful to distinguish a patient who had recovered from a

health problem from someone who has always been healthy.

Figure 2.1 shows two examples of progressive multistate models. The top panel

deals with the one-step progressive model, where the system can move only to the

immediate right sternberg:99seem, for example, . The bottom panel allows for mul-

tiple steps and is the more general case we are interested in. This general progressive

structure is called multi-step progressive.
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(a) One-step Progressive Case

(b) Multi-step Progressive Case

Figure 2.1: Progressive multistate Models

The focus in this chapter is on time-homogenous semi-Markov processes (SMP)

which are generalizations of time-homogeneous Markov processes. It is convenient

to define an SMP in terms of its equivalent Markov renewal process as in Janssen

and Manca (2006). Consider a time-homogeneous Markov renewal process (MRP)

{(Is, τs); s = 0, 1, . . .}. That is (Is, τs) ∈ E × (0,∞) and for any n ≥ 1, (j, t) ∈

E × (0,∞),

P (Is = j, τs ≤ t|(Iu, τu), 1 ≤ u ≤ s− 1) = P (Is = j, τs ≤ t|Is−1)

= P (τs ≤ t|Is = j, Is−1)P (Is = j|Is−1) = P (τ1 ≤ t|I1 = j, I0)P (I1 = j|I0) .

The last equation arises from the time-homeogeneous assumption. Here Is is the

state the process visits at the s−th transition, and τs is the sojourn time spent in

state Is−1 before the s−th transition occurs. A MRP can be characterized by (i) the

transition probability

pij := P(Is = j|Is−1 = i), i, j ∈ E, (2.1)
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and (ii) the conditional distribution of the sojourn times, which is given by

Fij(t) := P(τs ≤ t|Is−1 = i, Is = j), i, j ∈ E, t > 0. (2.2)

Equivalently, a MRP can be characterized by its semi-Markov kernel

Qij(t) := P(τs ≤ t, Is = j|Is−1 = i) = pijFij(t), i, j ∈ E, t > 0. (2.3)

Note that Qij(∞) = pij. This implies that the marginal process {Is, s = 0, 1, . . .}

is a Markov chain with transition matrix P = (pij), also known as the embedded

Markov chain of the MRP. We assume that Fij(·) and Qij(·) are both differentiable

and denote their derivatives as fij(·) and qij(·) respectively. We will use P = (Pij)

and f(·) = (fij(·)) interchangeably with q(·) = (qij(·)) to characterize the MRP.

An important property of MRP that we will use is that the sojourn times {τs, s =

0, 1, . . .} are conditionally independent given the embedded Markov chain. For the

MRP as defined above, the number of transitions to absorption (failure) is the random

variable σ := inf{s ≥ 1 : Is = p}. Notice that in the present case of a progressive

MRP, σ ∈ {1, . . . , p−1}. We assume I0 = 1 and set τ0 = 0. Denote Z = {(Is, τs), s =

1, . . . , σ} the complete history of the MRP.

Let S0 = τ0, and Sn = τ1 + · · ·+ τn, the cumulative time to the n−th transition.

Then, we define the associated SMP {Z(t), t ≥ 0} as Z(t) = In for t ∈ [Sn, Sn+1).

Z(t) degenerates to a traditional time-to-failure analysis if p = 2. The Markov model

is the special case when Fij(·) = Fi(·), and are exponential distributions.

For a SMP (or MRP) with an absorbing state, an important quantity of interest

is the time-to-absorption (failure)

T :=
σ∑
j=1

τj.
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Since the sojourn times are conditionally independent given the embedded Markov

chain, it can be shown that in the multi-step progressive case, the cumulative distri-

bution function of T is given by

FT =
∑
j

pi0,i1,...,ik
(
Fi0,i1 ? Fi1,i2 ? · · · ? Fik−1,ik

)
,

where pi0,i1,...,ik = pi0,i1 × pi1,i2 × · · · × pik−1,ik , ? denotes the convolution operator,

and the summation is over all possible paths such that {i0 = 1 < i1 < · · · < ik = p}.

In this chapter we are interested in modeling and analyzing the individual dis-

tributions Fij, understanding their hazard behavior, and so on. We consider a para-

metric framework, assuming Fij(t) = Fij(t;φ) where φ is a vector of unknown pa-

rameters. Then, the parameter of interest for inference is θ = (φ, P ) where P is the

transition matrix defined in (2.1). Note that P is upper diagonal for the progressive

SMP. Further, for the one-step SMP, pi,i+1 = 1, so P is completely known. In this

case, σ = p− 1 and the time-to-failure can be expressed simply as

T =

p−1∑
j=1

τj,

and its distribution is a convolution of the individual sojourn time distributions.

2.3 Challenges from Censoring

If the SMP {Z(t), t ≥ 0} is observed continuously, then we have complete in-

formation on all the states visited, the times of transition, and hence the sojourn

times in all the states. In this case, inference about the underlying parameters θ is

straightforward, especially because of the conditional independence of the sojourn

times in the MRP. Lagakos, Sommer and Zelen (1978) developed the likelihood-based
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Figure 2.2: Z Unobserved Complete History, Y Observed Panel Data

estimation methods for such situation with the presence of right censoring. In prac-

tice, however, the process is rarely observed continuously. Rather, data are collected

periodically, leading to interval censoring. This type of data is sometimes referred

to as panel data. The inference problem is much more challenging in this situation.

In Figure 2.2, one realization of Z = {(τs, is); s = 1, . . . , σ} is shown along with

a typical example of a sequence of observed data. The observed data Y consist

of recording the system at time tk and observing the states xk at that time, for

k = 0, . . . , K. Here we assume t0 = 0 and X0 = I0, i.e., the origin of the process is

always observed (so later k starts from 1). Suppose the underlying model is one-step

progressive, and we observe (x1 = 1, x2 = 1, x3 = 2, x4 = 4). Then, it is clear that

i1 = 1, i2 = 2, i3 = 3, i.e., a transition must have occurred between times t2 and

t3 and two transitions must have occurred between times t3 and t4. But we do not

know the exact sojourn times in the states. All we know is that t1 < τ1 ≤ t3 and

t3 < τ1 + τ2 < τ1 + τ2 + τ3 ≤ t4. The estimation of the underlying distributions is

still not too difficult if the distributions are exponential, as we shall see. But in the

non-memoryless case, it becomes relatively difficult even in this case. The situation

becomes more difficult in the multi-step case. For example, suppose again we observe

(x1 = 1, x2 = 1, x3 = 2, x4 = 4). It is clear that no transition could have taken place

at time t2 and that one transition took place between t2 and t3. However, without
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knowing the complete data, we do not know if the system jumped from state 2 to

state 4 directly (one transition between times t3 and t4) or it moved from 2 to 3

and then 4 as is the case indicated in Figure 2.2. Both situations are possible and

we have to integrate the complete data likelihood over both scenarios. As we can

see from this case, the dimension of the complete data Z varies, depending on the

number of transitions.

Suppose, instead of x4 = 4, we had observed x4 = 7. Then, the number of possible

paths is considerably larger. The problem gets rather involved as the number of

states, number of observation times, and number of systems being observed increase.

The situation would be even a lot more complex if we allowed non-progressive models

as, in principle, there could be an infinite number of possible transitions between the

observation points.

For a single system that has been observed at times t0, . . . , tK , the likelihood

function of the panel data can be written as

L(θ|y) = P(Z(t0) = x0, Z(t1) = x1, . . . , Z(tK) = xK).

When the process {Z(t), t ≥ 0} is Markov, we can rewrite the likelihood as

L(θ|y) = P(Z(t0) = x0)
K∏
k=1

P(Z(tk) = xk |Z(tk−1) = xk−1)

= P(Z(t0) = x0)
K∏
k=1

P(Z(tk − tk−1) = xk |Z(0) = xk−1). (2.4)

The last equation arises if the Markov process is time-homogeneous. The conditional

probabilities in (2.4) can be calculated from the transition probability

P(Z(t)|Z(0)) = exp(Qt) :=
∞∑
k=0

(Qt)k

k!
,

where Q is the transition rate matrix of the time-homogeneous Markov process.

The matrix exponential exp(Qt) defined above can be approximated numerically.
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Therefore, the likelihood function can be maximized by Newton type methods (see

Kalbfleisch and Lawless 1985).

When the process is not Markov, the computation of the probabilities (and

hence the likelihood) becomes very difficult. It involves integrating the (often high-

dimensional) complete data likelihood over all possible sample paths and sample

spaces that could have given rise to the observed data. The situation becomes even

more involved if we have a combination of left and right censored data and exact

failure (time-to-absorption) for some of the systems.

2.4 Parametric Inference Procedures

In this section, we discuss likelihood-based inference. This problem falls under

the framework of the classical missing data problem, and one could use the E-M

approach to compute the MLEs. The major challenge is the E-step, which involves

obtaining the complete data likelihood given the observed data as discussed. Monte

Carlo EM has been proposed to address such situations. In this case, however, the

Monte Carlo EM does not work well, so we resort to other methods. A similar para-

metric inference procedure from Bayesian perspective is given as an extension in next

section.

2.4.1 Observed Likelihood

The presence of interval censoring arises naturally with panel data as the un-

derlying process are monitored discretely. In addition to interval censoring, right

censoring is present when the process has not reached the absorbing state by the end

of the study. Besides, despite the fact that the process is being observed at discrete
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time, one could still observe the exact time to absorption in some cases – for example

in many health situations, the time of death of a patient is available. We call this

exact failure case.

Here we will derive the observed likelihood based on a random sample of N units

(systems/subjects). Denote the observed panel data as y1:N = (y1, . . . ,yN), where

yn = {(tkn, xkn)} and the n−th sample is observed at times tkn, k = 1, . . . , Kn and

n = 1, . . . , N . Let {Zn(t), t ≥ 0} be the SMP associated to the n-th sample. We

can write the likelihood function of the observed sample as

L(θ|y1:N) =
N∏
n=1

P (Zn(t1n) = x1n, Zn(t2n) = x2n, . . . , Zn(tKn,n) = xKn,n) .

This likelihood function can be re-expressed as a continuous mixture by introduc-

ing the distribution of the complete history Z = {(Is, τs), s = 1, . . . , σ}. Let f(·;θ)

be the density of Z and for y = {(tk, xk), k = 1, . . . , K}, define

g(y|z) = P (Z(t1) = x1, . . . , Z(tK) = xK |Z = z) ,

the conditional distribution of the observed random vector (Z(t1), . . . , Z(tK)) given

the complete history Z. Then by marginalization, the likelihood can be written as

L(θ|y1:N) =

∫
Z
g(y1:N |z1:N)f(z1:N ;θ)dz1:N , (2.5)

where Z is the sample space of the complete history Z and

g(y1:N |z1:N) =
N∏
n=1

g(yn|zn), and f(z1:N ;θ) =
N∏
n=1

f(zn;θ).

To complete the description of the likelihood, we need the expression of f(z;θ)

and g(y|z). We first introduce some notations. Let I be the set of all sequences

i = (i0, i1, . . . , iσ), such that i0 = 1 < i1 < i2 < · · · < iσ = p. We use σ(i) to

represent the number of jumps along i. The set I is the sample space of the embedded
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Markov chain of the SMP, and σ(i) corresponds to the number of transitions along

path i.

For a given sample path i of the embedded Markov chain, let Ti = (0,∞)σ(i)

denote the sample space of the sojourn times along path i. The sample space of the

complete history Z is Z = ∪i∈I{i} × Ti. A generic element of Z is z = (i, τi) where

i represents a possible path of the embedded Markov chain and τi = (τ1, . . . , τσ(i))

represents a possible set of sojourn times along that path. Notice that there are

possibly different number of sojourn times along different paths. As we will see, this

particularity of the model complicates the inference.

The density of the complete history Z is obtained from the definition of the MRP

and is given by

f(z;θ) = f(i, τi;θ) =

σ(i)∏
s=1

qis−1,is(τs;θ), (2.6)

where qij(τ ;θ) is the derivative of the semi-Markov kernel in (2.3).

Define N(t) := max{s ≥ 0 :
∑s

j=0 τj ≤ t}. Then, it is easy to see that

g(y|i, τi) = P (Z(t1) = x1, . . . , Z(tk) = xk|Z = (i, τi))

=
K∏
k=1

1{iN(tk) = xk}. (2.7)

For a single observation y, the likelihood is then obtained by integrating out z

from the joint density of (Y,Z):

L(θ|y) =

∫
Z
g(y|z)f(z;θ)dz =

∑
i∈I

∫
Ti
g(y|i, τi)

σ(i)∏
s=1

qis−1,is(τs;θ) dτi.

For general SMPs, this observed likelihood involves high dimension integrals and

cannot be simplified further.

The formulation of the problem presented above and the expression of the like-

lihood derived in (2.5) is very general and automatically accommodates right cen-

soring, that is observation y = {(tk, xk), k = 1, . . . , K} for which xK < p. In many
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other cases, the exact failure time is additionally observed. This is the case of many

studies (as in the example presented in Section 2.7) where the time of death of pa-

tient is available. In this case the observed data are y = {t, (tk, xk), k = 1, . . . , K},

where t is the observed absorbing time of the system. This case is easily handled by

modifying g(y|z), the conditional distribution of the observed random vector given

the complete history from (2.7) to

g(y|i, τi) = 1{
σ(i)∑
j=1

τj = t}
K∏
k=1

1{iN(tk) = xk}.

2.4.2 Likelihood-Based Inference Using Stochastic Approximation and
MCMC Sampling

For general SMPs, the likelihood function L(θ|y1:N) given in (2.5) is intractable.

Therefore, computing the MLE is not straightforward. One possible approach is the

E-M (or Monte Carlo EM) algorithm. For the E-M, the Q function is given by

Q(θ′|θ) =

∫
log {g(y1:N |z1:N)f(z1:N ;θ′)} p(z1:N |θ,y1:N)dz1:N ,

where p(z1:N |θ,y1:N) =
∏N

n=1 p(zn|θ,yn) and p(zn|θ,yn) denotes the conditional

distribution of zn given yn. That is,

p(zn|θ,yn) ∝ f(zn;θ)g(yn|zn).

In the above equation, f(zn;θ) is the density of the complete history given in (2.6)

and g(yn|zn) is the conditional density of y given z. In the E-step of the E-M

algorithm, one evaluates the function Q(θ′|θ) and in the M-step this function is

maximized to yield the next estimate of the MLE. These two steps are repeated un-

til convergence. But, in the present case, the Q(·|θ) function is intractable and the
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E-M algorithm cannot be implemented in an analytical form. A common approach in

such cases is the use of the Monte Carlo EM algorithm in which the exact calculation

of Q(·|θ) in the E-step is replaced by an approximation using Monte Carlo simula-

tion from p(z1:N |θ,y1:N), see for example Wei and Tanner (1990), Delyon (1999).

Unfortunately, as we will see in Section 2.4.3, in general the conditional distribution

p(z1:N |θ,y1:N) is very difficult to sample from and we have to use MCMC techniques.

Thus, each iteration of the Monte Carlo EM algorithm requires a full-fledged MCMC

simulation from p(z1:N |θ,y1:N). Hence, it is too expensive to use Monte Carlo EM.

An alternative is the use of stochastic approximation (SA) together with MCMC

sampling. In fact, and as explained, for example, in Atchadé (2010), these two

algorithms are closely related. SA becomes computationally more attractive in cases

(such as the one dealt with in this chapter) where MCMC is needed to evaluate the Q

function in the E-M algorithm. Thus in what follows, we shall use SA to compute the

MLE. The idea of using stochastic approximation algorithms to deal with intractable

likelihood functions goes back at least to Younes (1988). A more general treatment

is given by Gu and Kong (1998). See also Cappé, Moulines and Ryden (2005) for

applications to state space models.

Define the score function h(θ|y1:N) := ∇θ logL(θ|y1:N). It is easy to see that

h(θ|y1:N) can be written as

h(θ |y1:N) =

∫
H(θ, z1:N)p(z1:N |θ,y1:N)dz1:N , (2.8)

where H(θ, z1:N) :=
∑N

n=1∇θ log f(zn;θ). The expression of H(θ, z1:N) is simple to

evaluate even for general SMPs. Let Kθ be a transition kernel on ZN with invariant

distribution p(z1:N |θ,y1:N), where we omit the dependence of Kθ on y1:N . Designing

such Markov kernel Kθ with invariant distribution p(z1:N |θ,y1:N) holds some chal-
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lenges. This is because the complete history zn lives in ∪i∈I{i}×Ti, a union of spaces

of varying dimensionality. We give more detail on building Kθ in Section 2.4.3.

Let m ≥ 1 be a given integer, {γ`, ` ≥ 1} a sequence of positive numbers, and

Γ a r × r positive definite matrix, where r is the dimension of θ. The SA algorithm

to compute the MLE generates a random process {(θ`, ζ`), ` ≥ 0} in Θ × ZN as

described in Algorithm 2.4.1.

Algorithm 2.4.1 MLE approximation by SA

Given (θ`−1, ζ`−1) ∈ Θ×ZN :

1. Set ζ(0) = ζ`−1. For s = 1, · · · ,m,

generate ζ(s)|ζ(s−1) ∼ Kθ`−1

(
ζ(s−1), ·

)
, and set ζ` = ζ(m).

2. Compute the new estimate:

θ` = θ`−1 + γ`Γ
−1

(
1

m

m∑
s=1

H
(
θ`−1, ζ

(s)
))

. (2.9)

These two steps are then iterated until convergence.

Equation (2.8) suggests that

H̄m(θ) =
1

m

m∑
s=1

H(θ, ζ(s))

is an empirical estimate of h(θ|y1:N). Thus, (2.9) is a sort of stochastic quasi-Newton

method to solve the normal equation h(θ|y1:N) = 0. If, for a particular example,

exact sampling from p(z1:N |θ,y1:N) is feasible, the MCMC simulation step of the

algorithm (Step 1) can be replaced by exact simulation from p(z1:N |θ,y1:N); however

this is rarely the case in our context.

In Algorithm 2.4.1, m is a fixed integer introduced to improve numerical stability.

In particular, m need not be large and can be set to m = 1 if the mixing of the kernels

Kθ`−1

(
ζ(s−1), ·

)
is reasonably good. In our simulations, we use a conservative value



32

of m = 100. The step size γ` is a decreasing positive sequence such that

∑
`

γ` =∞,
∑
`

γ2
` <∞.

In our simulations, we use γ` ∝ `−λ for λ = 2/3. The matrix Γ is introduced

in order to properly scale the algorithm, particularly in the vicinity of the MLE.

Ideally, we would like to use Γ = I(θ̂|y1:N), the observed information matrix eval-

uated at the MLE θ̂. Denote the observed information matrix at θ as I(θ|y1:N) =

−∇2
θ logL(θ|y1:N). By the missing information principle (as in Louis 1982), I(θ|y1:N)

has the representation

I(θ|y1:N) = h(θ|y1:N)h(θ|y1:N)′

−
∫
{∇θH(θ, z1:N) +H(θ, z1:N)H(θ, z1:N)′} p (z1:N |θ,y1:N) dz1:N . (2.10)

For a proof of (2.10), see Proposition 10.1.6 in Cappé, Moulines and Ryden (2005)

or Lemma 1 in Gu and Kong (1998). In view of this expression, and following Gu

and Kong (1998), we introduce the function

S(θ, z1:N) = −∇θH(θ; z1:N)−H(θ, z1:N)H(θ, z1:N)′.

Hence, we can estimate I(θ̂ |y1:N) recursively (along the iterations of Algorithm

2.4.1) using

Γ` = Γ`−1 + γ`
{
S̄m(θ`−1) + H̄m(θ`−1)H̄m(θ`−1)′ − Γ`−1

}
, (2.11)

where

H̄m(θ`−1) =
1

m

m∑
s=1

H
(
θ`−1, ζ

(s)
)
,

S̄m(θ`−1) =
1

m

m∑
s=1

S
(
θ`−1, ζ

(s)
)
.
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Under mild conditions, the random process θ` generated from Algorithm 2.4.1

(with Γ = Γ` estimated recursively using equation 2.11) converges to the MLE θ̂ and

Γ` converges to the observed information matrix I(θ̂|y1:N), evaluated at the MLE

θ̂. The convergence of stochastic approximation algorithms have been extensively

studied in the literature. We mention Gu and Kong (1998) and Cappé, Moulines

and Ryden (2005), where further references can also be found.

θ0 and Γ0 are needed to initialize the algorithm. From our simulation study,

the choice of Γ0 is not critical and the identity matrix works fine. Note that

Sm(θ`−1)+H̄m(θ`−1)H̄m(θ`−1)′ might not be positive definite when ` is small. In that

case, one can use m−1
∑m

k=1∇θH(θ`−1; ζ(k)) as an approximation of the information

matrix. In addition, θ0 needs to be chosen reasonable. If the interval censoring is

not too severe, we can ser
∑s

n=1 τn as the mid-point of the interval in which the s−th

transition occurred. Then, rough estimation can be done for each transition (from

state i to state j) separately by regular survival analysis. If censoring is severe, we

suggest running a short chain by data augmentation approach proposed in Section

2.5.1 and use the approximate marginal modes of θ as initials. This is feasible since

the data augmentation method is not so picky about θ0.

2.4.3 Sampling the Complete History

We now discuss how to sample the complete history from p(z1:N |θ,y1:N) by

MCMC sampling. Since zn only depends on yn, we have

p(z1:N |θ,y1:N) =
N∏
n=1

p(zn|θ,yn).

Sampling from p(z|θ,y) is essential to the proposed stochastic approximation algo-

rithm.



34

For notation convenience, let δ be the numbering of i. For instance, if i can take

two paths (1, 2, 3) and (1, 3) in I. We name (1, 2, 3) path 1 with δ = 1, and (1, 3)

path 2 with δ = 2. There is a 1-to-1 relationship between i and δ, and we will use

z = (δ, τδ) and z = (i, τi) interchangeably later. Further, denote d the number of

consistent paths of y, i.e., the number of elements in I s.t. g(y|i, τi) = 1.

From Bayes’ Theorem, given y, the density of the corresponding complete data

z is proportional to the joint density of (y, z):

p(z|θ,y) ∝ g(y|z)f(z;θ) =
d∑
j=1

g(y|δ = j, τδ)f(δ = j, τδ;θ) (2.12)

Note that sampling from p(z|θ,y) is not trivial, since the normalizing constant of

this density is difficult to calculate.

When d = 1, there is only one consistent path of y. Thus, i is known and write

δ = 1. Note that, when one-step progressive model is assumed, this is always the

case. Under this scenario, z = (δ = 1, τδ) has density

p(z|θ,y) ∝ g(y|δ = 1, τδ)f(δ = 1, τδ;θ). (2.13)

Note that, when σ(i) > 1, for each k ∈ σ(i), τk and τ−k are dependent because

of g(y|δ = 1, τδ). For instance, assume the SMP is a 4-state one-step progressive

model. If y = (t1, 1, t2, 1, t3, 2, t4, 4), δ = 1 with i = (1, 2, 3, 4) and

g(y|δ = 1, τδ) = 1{t2 < τ1 < t3, t3 < τ1 + τ2 < t4, t3 < τ1 + τ2 + τ3 < t4}.

Therefore, τ1, τ2 and τ3 are dependent since

τ1 ∈ (max(t2, t3 − τ2), min(t3, t4 − τ2 − τ3)],

τ2 ∈ (t3 − τ1, t4 − τ1 − τ3], and τ3 ∈ (0, t4 − τ1 − τ2].
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The conditional distribution of τk given τ−k is readily present through (2.13), so

Gibbs Sampling can be used to draw τδ if σ(i) > 1.

When d > 1, δ is random. Hence, z = (δ, τδ) has a discrete component δ and a

continuous component τδ with varying dimensions. Since the distribution of sojourn

times τδ is determined when δ is known, we can rewrite the joint density of z = (δ, τδ)

as a mixture

p(δ, τδ|θ,y) =
d∑
j=1

aj p(τδ|θ,y, δ = j), (2.14)

where aj := P(δ = j|θ,y) and

p(τδ|θ,y, δ = j) ∝ g(y|δ = j, τδ)f(δ = j, τδ;θ).

Note that δ follows a multinomial distribution with probability vector a = {aj, j =

1, . . . , d}, denoted as Multinomial(a). Therefore, a natural approach is to sample Z

by the conditional sampling shown in Algorithm 2.4.2.

Algorithm 2.4.2 Conditional Sampling

Given θ and y, sample z = (δ, τδ) via

1. Calculate the probability vector a as follows:

aj =

∫
g(y|δ = j, τδ)f(δ = j, τδ;θ)dτδ∑d

j′=1

∫
g(y|δ = j′, τδ)f(δ = j′, τδ;θ)dτδ

, j = 1, . . . , d,

2. Generate δ ∼ Multinomial(a).

3. Generate τ ∼ p(τδ|θ,y, δ).

In the algorithm, Step 3 is similar to (2.13) and Gibbs sampling can be used when

τδ includes more than one sojourn time. In Step 1, to get the marginal probability

vector a, we need to integrate over τδ (usually of high dimension). For general

SMPs, these integrals are numerically approximated and the computation of aj is
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very time-consuming. We will show later in the simulation study that this is the

major drawback of using conditional sampling.

Now we introduce a better sampling procedure, i.e., the reversible jump MCMC

sampling (RJMCMC). The idea is that, if sampling (δ, τδ) together from the joint

(2.12) is possible, the computational difficulty caused by sampling δ marginally in

(2.14) can be spared. Regular Metropolis-Hasting sampling or Gibbs sampling is not

suitable, since the dimension of τδ changes when δ varies. Green (1995) proposed

the RJMCMC procedure which handles the sampling of distribution with variable

dimensions. Refer to Green (1995) for convergence proof and details about the

sampling procedure. To relate our notation to Green’s, we refer to (δ, τδ) as the model

Mδ in his paper. Then, the joint distribution is the mixture of {Mδ; δ = 1, . . . , d}.

The RJMCMC procedure is given in Algorithm 2.4.3.

Algorithm 2.4.3 RJMCMC Sampling

From the current draw (δ, τδ), the new proposal can be stated as follows:

1. Select model Mδ′ with probability πδ→δ′ .

2. Generate u from some distribution ψδ→δ′(u).

3. Obtain new draw (δ′, τδ′) through a dimension matching transformation T s.t.

(τδ′ , ν) = Tδ→δ′(τ
δ, u).

The dimension of (τ δ
′
, ν) and the dimension of (τ δ, u) are equal.

4. Accept (δ′, τδ′) with probability

αδ→δ′ = min(1,
f(δ′, τδ′ ;θ)g(y|δ′, τδ′)πδ′→δψδ′→δ(ν)

f(δ, τδ;θ)g(y|δ, τδ)πδ→δ′ψδ→δ′(u)
|J |), (2.15)

where |J | =
∣∣∣∂Tδ→δ′ (τ δ,u)

∂(τ δ,u)

∣∣∣ is the Jacobian factor.

Note that the acceptance probability defined in (2.15) is easy to evaluate and
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there is no need to calculate normalizing constants. Depending on the dimension

of τδ and τδ′ , u and ν might be randomly generated from the proposal ψδ→δ′ or

they can be deterministic as long as the dimension matches. If δ′ = δ, the move is

the regular within-model sampling. The procedure coincides with the Metropolis-

Hastings algorithm.

Now we illustrate how to use RJMCMC to sample the complete history. The

detailed sampling procedure depends on the underlying multistate structure, and

the form of the panel data, i.e., whether they are only interval-censored, or includ-

ing right censoring or exact failure. Here, we focus on the interval censoring case.

The illustration of sampling along with right censoring or exact failure is given in

Appendix.

Consider a 3-state multi-step progressive model with 2 possible paths: (1, 2, 3)

and (1, 3). The challenge is then to sample Z with observed y = (t1, 1, t2, 3). There

are 2 consistent paths of y and let δ = 1 when i = (1, 2, 3), δ = 2 when i = (1, 3).

Denote τ
(ij)
s as the s−th transition made from state i to state j. The distribution of

z = (δ, τδ) given y follows (2.12) with

p(z|θ,y) ∝
2∑
j=1

g(y|δ = j, τδ)f(δ = j, τδ;θ)

where

g(y|δ = 1, τδ)f(δ = 1, τδ;θ) = 1{τ1, τ1 + τ2 ∈ (t1, t2)} × p12f12(τ1)f23(τ2),

g(y|δ = 2, τδ)f(δ = 2, τδ;θ) = 1{τ1 ∈ (t1, t2]} × p13f13(τ1).

Assume the current iterate takes δ = 2, i.e., τδ = τ
(13)
1 . To calculate the accep-

tance probability α2→1, we use the following dimension matching transformation

(τ
(12)
1 , τ

(23)
2 ) = T2→1(τ

(13)
1 ):

τ
(12)
1 = τ

(13)
1 , τ

(23)
2 = u(t2 − τ (13)

1 ), (2.16)
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where u ∼ U(0, 1). The Jacobian factor of this transformation is |J | = t2 − τ
(13)
1 .

Then, the probability of accepting the new draw (τ
(12)
1 , τ

(23)
2 ) is

α2→1 = min

1,
p12f12(τ

(12)
1 )p23f23(τ

(23)
2 )× π2→1

p13f13(τ
(13)
1 )× π1→2

|J |

 .

If the current iterate takes δ = 1, we use the dimension matching transform τ
(13)
1 =

T1→2(τ
(12)
1 , τ

(23)
2 ): τ

(13)
1 = τ

(12)
1 , and the acceptance probability α1→2 can be derived

similarly. Note that other dimension matching transformations and distributions of

u can be used as long as the interval censoring constraint is met.

Now consider the update within each path, i.e., the new iterate takes the same

path as the old one. To update for path (1,2,3), denote the current iterate as z`−1 =

(τ
(12)
`−1,1, τ

(23)
`−1,2). τ

(12)
`,1 and τ

(23)
`,2 can be sampled from p12(·) and p23(·) respectively

p12(τ
(12)
1 ) ∝ 1{τ (12)

1 ∈ (t1, t2] ∩ (t1 − τ (23)
`−1,2, t2 − τ

(23)
`−1,2)} × f12(τ

(12)
1 ),

p23(τ
(23)
2 ) ∝ 1{τ (23)

2 ∈ (t1 − τ (12)
`,1 , t2 − τ (12)

`,1 ]} × f23(τ
(23)
2 ).

To update for path (1,3) is trivial.

The sampling procedure of Z depends on how the state space is visited. When

multi-step progressive structure is assumed (possibly d > 1 for some observed y),

the sampling procedure is more involved than that of the one-step progressive model

(always d = 1 for any observed y). We have proposed two algorithms to sample

for any progressive multistate model. For the general multistate model with cyclic

structure, the joint (2.12) will now have infinity element in I with d =∞ because of

the recurrent property. For instance, even if the state information has not changed

at 2 consecutive time points, there is positive probability that the process has transit

out and back into this state when recurrent transition is allowed. Since RJMCMC is

feasible even when the number of the mixture components is unknown, the extension
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can be done in principle. However, the setup of the procedure is more complex and

may not be an efficient algorithm to pursue. Thus, we will not go further in this

chapter.

2.5 Extensions

2.5.1 Bayesian Inference Using Data Augmentation

Even though we focus on likelihood-based inference in Section 2.4, Bayesian in-

ference can be made using a related data augmentation approach. Here we briefly

discuss how to make Bayesian inference under the same setting. See Tanner and

Wong (1987) and Hobert (2009) for more details about data augmentation.

Let p(θ) be the prior distribution of the parameter θ. The posterior distribution

given the observed data y1:N is

p(θ|y1:N) ∝ p(θ)p(y1:N |θ).

Note that p(y1:N |θ) is the likelihood function given in Section 2.4.1, so p(θ|y1:N)

is still intractable. For general SMPs, the exact sampling of θ from p(θ|y1:N) is

difficult, so we augment the complete history z1:N by data augmentation. Here we

assume that the complete history z1:N can be sampled from p(z1:N |θ,y1:N) by MCMC

sampling from a transition kernel Kθ with invariant distribution p(z1:N |θ,y1:N). The

details of the sampling procedures have been discussed in Section 2.4.3. It is obvious

that when augmenting z1:N ,

p(θ|y1:N) =

∫
p(θ|y1:N , z1:N)p(z1:N |y1:N)dz1:N =

∫
p(θ, z1:N |y1:N)dz1:N .

One iteration of the data augmentation algorithm can be describes as follows:
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Algorithm 2.5.1 Data Augmentation

Given (θ`−1, ζ`−1) ∈ Θ×ZN :

1. Generate ζ`|ζ`−1 ∼ Kθ`−1
(ζ`−1, ·), where Kθ denotes a Markov kernel with

invariant distribution p(z1:N |θ,y1:N).

2. Generate θ`|y1:N , ζ` ∼ Kζ`(θ`−1, ·), where Kζ a Markov kernel with invariant
distribution p(θ|z1:N ,y1:N).

Iterate through the two steps and keep θ` after a burn-in period. With proper

slicing, the draws θ` should be samples from the posterior p(θ|y1:N). Credible inter-

vals can be formed based on the samples to make inference on the underlying SMP.

Notice that no multiple ζ is needed, i.e., m = 1 as in Tanner and Wong (1987).

Contrary to sampling from p(θ|y1:N), the sampling from p(θ|z1:N ,y1:N) is straight-

forward, and for some distributions, exact sampling is feasible.

2.5.2 Covariate Analysis

The discussion so far has been focused on parametric estimation based on a

random sample. It is straightforward to extend the proposed algorithms to include

static covariate effects. For Markov models, the proportional hazards model is usually

imposed on the transition rate functions, i.e.,

qij = q
(0)
ij exp(ω′βij),

where q
(0)
ij is the baseline and ω the covariate vector and βij the associated covariate

effect. Hence, for sample with covariate ω,

λωi := −qii =
∑
j 6=i

q
(0)
ij exp(ω′βij)

is the new rate for the exponential sojourn time in state i.
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For general SMPs, the proportional hazards model is imposed on the conditional

distribution of the sojourn time. For instance, assume the sojourn time in state i

before moving to state j follows a Weibull distribution with shape parameter γij

and scale parameter ηij = 1/λij. Then, for the sample with covariate ω, its hazard

function for transition from state i to state j is

λωij(t) = λ
γij
ij γijt

γij−1 exp(ω′βij) := λ
ω γij
ij γijt

γij−1, (2.17)

where λωij = λij exp(ω′βij/γij). This sample follows a Weibull distribution with still

γij parameter but a new scale parameter λωij. Therefore, the density of the complete

history Z in (2.6) needs to be adjusted accordingly when covariates are included.

2.6 Simulation Study

This section presents simulation studies of parametric estimation based on panel

data. Here we focus on likelihood-based inference. Bayesian inference can be simi-

larly done, and we will not duplicate the work here. First for Markov models, the

estimates by conditional sampling and the estimates by RJMCMC sampling are com-

pared to the MLE obtained by direct likelihood estimation. The properties of the two

sampling procedures are investigated. Then, the estimation for semi-Markov mod-

els with panel data is performed using the proposed algorithms. The advantage of

RJMCMC sampling over conditional sampling is overwhelming and is recommended

for use in practice. All the computation is done on a desktop with 4-core i5 CPU @

2.67 GHz.
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2.6.1 Markov Models

We first evaluate the convergence performance of the proposed SA algorithm,

i.e., whether θ` and Γ` converges to the MLE and the observed information matrix.

For illustration purpose, we assume the panel data y1:N are random samples with

interval censoring only. We will introduce right censoring, exact failure and covariate

effect in Section 2.7.

For Markov models, the likelihood-based inference can be done through numerical

method as in Kalbfleisch and Lawless (1985). The estimated MLE and the observed

information are used as reference. To construct panel data y1:N , we generate the

complete history z1:N first. Then, a number of observation time points {ti : ti =

i × ∆t} are picked in advance and only state information at those time points are

recorded. The value of ∆t controls the severity of the interval censoring. Fixed

observation points ti are mainly used here for the convenience of simulation.

Consider a 3-state multi-step progressive Markov model with the parameters

of interest θ = (λ12, λ13, λ23). The corresponding conditional distribution F (t) =

(F12(t), F13(t), F23(t)) and the transition probability are

F12 = F13 = Exp(λ12 + λ13), F23 = Exp(λ23), p12 = λ12/(λ12 + λ13). (2.18)

The interval-censored samples y1:100 are generated from (2.18) with θ = (1, 1, 1) and

∆t = 0.4.

To fulfill stochastic approximation updates, we setm = 100 and γ` = 1/(10+`2/3).

Figure 2.3 shows two traceplots of 2000 iterates from stochastic approximation, one

by conditional sampling (dot) and one by RJMCMC sampling (solid). They have

the same initials. The MLEs obtained by direct likelihood estimation (grey) are also

shown in the figure as reference. The convergence of the SA updates is visible. In



43

0 500 1000 1500 2000

0.
94

0.
96

0.
98

1.
00

1.
02

Iteration

λ 1
2

0 500 1000 1500 2000

1.
31

0
1.

31
5

1.
32

0
1.

32
5

1.
33

0
1.

33
5

1.
34

0

Iteration

λ 1
3

0 500 1000 1500 2000

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

Iteration

λ 2
3

Figure 2.3: Markov Model: Iterates from Stochastic Approximation by Conditional
Sampling (dots), by Reversible Jump MCMC Sampling (solid). The
Maximum Likelihood Estimates (grey line) are given as reference.

the RJMCMC sampling proposal, π12 = π21 = 0.5 and T2→1 defined by (2.16) in

Section 2.4.3 is used. To investigate the acceptance rate of the RJMCMC sampling,

we perform data augmentation with uniform prior for θ. The average acceptance

rate of the proposal is 61%, which indicates good mixing of MCMC sampling.

Table 2.1 shows the last iterate θ2000 and its variance estimates from Γ2000 by con-

ditional sampling and RJMCMC sampling respectively, and compared to the MLE θ̂

from direct likelihood estimation. Clearly, the estimates from the proposed procedure

converge to the right limit. Note that, for Markov models, conditional sampling is
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exact sampling, since the weights for the mixture component a = (a1, . . . , ad) shown

in (2.12) have explicit forms and no numerical approximation is needed. That is why

the estimates are slightly closer to the MLE than those by RJMCMC.

MLE Conditional RJMCMC

λ12 1.015 (0.663, 1.367) 1.015 (0.664, 1.367) 1.014 (0.666, 1.364)

λ13 1.314 (0.931, 1.697) 1.314 (0.931, 1.698) 1.315 (0.933, 1.696)

λ23 0.980 (0.653, 1.306) 0.979 (0.653, 1.305) 0.978 (0.655, 1.303)

Table 2.1: Parameter Estimates Along With Approximate 95% Confidence Interval

We also compare the performance of the two sampling procedures. Simulated

samples are generated under three different settings as shown in Table 2.2. With the

stopping criterion that the last 10 iterates satisfy ‖θ`− θ̂‖1 < 0.0005, the average it-

erations needed are recorded for the two sampling procedures and are shown in Table

2.2. Averaging over 500 samples, the number of iterations by RJMCMC sampling

is about twice many as the ones by conditional sampling under all settings. This is

consistent with the acceptance rate obtained in the data augmentation procedure.

However, we will see later that the number of iterations is not the major issue that

matters in the estimation. The more important problem is the computation time

needed to iterate.

Setting Conditional RJMCMC

N = 100, ∆t = 0.4 496 790

N = 500, ∆t = 0.4 117 213

N = 500, ∆t = 0.2 52 94

Table 2.2: Iterations Needed For Convergence (Averaging Over 500 Datasets)
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2.6.2 Semi-Markov Models

When Z(t) is assumed to be a SMP, direct likelihood estimation is not feasible.

Here, we further compare the two sampling procedures. The computation time

needed for update by conditional sampling deteriorates when the underlying process

is assumed to be semi-Markov. y1:100 are now generated under the following 3 settings

with ∆t = 0.3:

(1) F12 = LN(−1, 1), F13 = LN(−1, 1), F23 = LN(−1.5, 1), p12 = 0.6

(2) F12 = W (1.25, 1.2), F13 = W (1.25, 1.2), F23 = W (1, 2), p12 = 0.4

(3) F12 = W (1.25, 1.2), F13 = LN(−1, 1), F23 = Exp(2), p12 = 0.6

Here, LN(µ, σ2) is a lognormal distribution characterized by its mean µ and vari-

ance σ2; W (η, γ) denotes a Weibull distribution with shape parameter γ and scale

parameter η. For conditional sampling, the weights for the mixture components

a = (a1, . . . , ad) needs to be approximated numerically. The integrals involved in

calculating a are approximated by function adapt with eps = 0.01 in R program-

ming system. To save computation time, only 3000 iterations are run.

Figure 2.4 shows two traceplots of estimates θ by stochastic approximation based

on sample generated by Model (1). The dot lines are updated by conditional sam-

pling, and the solid ones are updated by RJMCMC sampling. The convergence be-

havior is visible in the figure. Besides, the variation of the iterates from two sampling

approaches is comparable. In Table 2.3, the computation times of 3000 iterations

by conditional sampling and RJMCMC sampling are given for the three models.

The advantage of using RJMCMC sampling is obvious. Stochastic approximation

by conditional sampling takes much longer time to iterate than that by RJMCMC

sampling (at least 15 times longer).
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Figure 2.4: Semi-Markov Model with LogNormal Sojourn Times: Iterates from
Stochastic Approximation by Conditional Sampling (dot), by Reversible
Jump MCMC Sampling (solid)
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Conditional RJMCMC

Model (1) 152 10

Model (2) 302 11

Model (3) 203 11

Table 2.3: Computation Time of Running 3000 Iterations (Rounded by Minute)

Besides, the computation time needed by RJMCMC sampling is about the same

no matter what distribution Fij(·) is. When conditional sampling is used, Fij(·) does

matter (determines how hard it is to approximate aj, j = 1, . . . , d). For instance,

Model (2) takes almost twice amount of time to iterate as Model (1).

2.7 Coronary Allograft Vasculopathy Example

In this section, we use our proposed alogithm to analyze a real data set. This

example data set is provided in R package msm, called cav. Under Markov assump-

tion, Sharples (2003) used this data set to study the progression of coronary allograft

vasculopathy (CAV), a post-transplant deterioration of the arterial walls.

Figure 2.5: multistate Model Constructed to Analyze the Progression of Coronary
Allograft Vasculopathy Disease (CAV)

Between August 1979 and January 2002, 622 patients underwent angiography

annually or biennially. At each checkup, the patients were classified into 4 states

according to their angiography results: (1) normal coronary angiography, (2) 0−70%
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senosis, (3) > 70% stenosis, and (4) death (absorbing state). All patients were

assumed to be CAV free at transplantation (origin of the study), then followed up

until death or until their most recent coronary angiography if alive at the time of data

analysis. The death of the patient was recorded with accuracy, and right censoring

is present for some patients. Refer to Appendix for details regarding sampling for

panel data with right censoring and exact failures. The structure of the underlying

model is given in Figure 2.5 with the following 2 assumptions:

1. CAV is not spontaneously reversible. For instance, any patient with a pattern

of measurements of the form 1-2-1 must have been misreported. In the data

set, 58 of 622 patients had reversed senosis status. For illustrative purpose, we

remove them in our analysis.

2. If any patient has an observed path 1-3, he/she must have gone through state

2 somewhere in between. (This must be true based on the definition of the

states.)

Path 1-2-3-4 1-3-4 1-2-4 1-4 1 1-2 1-2-3 1-3

Count 32 17 34 95 239 55 8 13

Table 2.4: The Counts of Observed Sample Paths in CAV data

Among the rest 564 patients, We pick 491 patients, whose primary diagnostic in-

formation are available (for covariate analysis later). The 491 patients have one of

the 8 paths shown in Table 2.4. Based on our proposed stochastic approximation

algorithm, a semi-Markov model can be estimated based on this panel data set. Here

we assume Weibull sojourn times, i.e. Fij(t) = W (γij, ηij). Denote θ̂SM and Γ̂SM

the estimated MLE and the observed information evaluated at the MLE obtained by

SA. For comparison purpose, a Markov model is also fitted and is actually a nested
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model of SMP with γij = 1 and ηij = ηi. Under Markov assumption, denote its

MLE as θ̂M and the estimated information matrix as Γ̂M . We approximate numer-

ically the log-likelihood at θ̂M , i.e. lM , the log-likelihood at θ̂SM , i.e. lSM and the

corresponding deviance, i.e. 2(lSM − lM).

Markov semi-Markov Deviance df p-value

No Covariate -1248 -1221 54 7 0

With Covariate -1239 -1207 64 7 0

Table 2.5: The Log-likelihood Evaluated at the Maximum Likelihood Estimates Un-
der Markov and Semi-Markov Assumptions, Fitted with Covariate or No
Covariate, Along with the Deviance

In Table 2.5, the results in “No Covariate” row are obtained by assuming y1:491

are a random sample; while the results in “With Covariate” row are obtained by

introducing covariate effect. The included covariate is IHD primary diagnosis. IHD

is the most common cause of death in most Western countries, and a major cause

of hospital admissions. This covariate is binary, i.e., IHD = ischaemic heart disease

(coded as 1), IDC = idiopathic dilated cardiomyopathy (coded as 0). Here we as-

sume proportional hazard model as (2.17). Under these two settings, the p-value for

the corresponding likelihood ratio tests are almost 0. This indicates semi-Markov

model fits the CAV data set significantly better than Markov model. In addition to

test Markov assumption, we can also perform likelihood ratio test to study whether

including the covariate improves the fit or not. Under Markov and semi-Markov

assumption, the p-value for testing covariate effect (not shown in table) are cor-

respondingly 0.003 and 0.0003 (df = 5). Judging by the deviances, however, the

improvement in the fit is larger by assuming a SMP than including the binary co-

variate into Markov model.

Now that it has been shown that semi-Markov model fits this data set better,
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Table 2.6: Approximates of Maximum Likelihood Estimates and their 95% Con-
fidence Interval from Stochastic Approximation by Reversible Jump
MCMC Sampling Under Semi-Markov Assumption

(a) Without Covariate

shape γij scale ηij probability pij

1→ 2 1.28 (1.10, 1.47) 7.43 (5.95, 8.90) 0.67 (0.40, 0.932)

1→ 4 1.90 (1.52, 2.28) 9.67 (7.35, 11.9)

2→ 3 1.21 (0.92, 1.50) 2.10 (1.57, 2.62) 0.76 (0.11, 1.00)

2→ 4 2.05 (0.19, 3.91) 4.47 (2.42, 6.53)

3→ 4 1.03 (0.69, 1.37) 3.72 (2.48, 4.96)

(b) With Covariate

shape γij scale ηij covariate βij probability pij

1→ 2 1.32 (1.14, 1.50) 9.80 (7.56, 12.0) 0.69 (0.34, 1.04) 0.68 (0.43, 0.94)

1→ 4 1.97 (1.55, 2.39) 9.40 (6.44, 12.3) -0.11 (-0.80, 0.57)

2→ 3 1.30 (0.98, 1.61) 1.81 (1.09, 2.52) -0.40 (-1.00, 0.19) 0.78 (0.36, 1.00)

2→ 4 5.44 (1.83, 9.05) 5.84 (4.85, 6.83) 7.58 (2.13, 13.0)

3→ 4 1.06 (0.83, 1.28) 2.94 (1.96, 3.92) -0.41 (-0.86, 0.03)

the MLEs obtained under SMP setting are studied. In Table 2.6(a), the MLEs and

their corresponding 95% confidence intervals (by normal approximation) are shown.

The shape column gives the estimates of the shape parameters associated with each

transition. Clearly, transition 1 → 2 and transition 1 → 4 both have their shape

estimates significantly larger than 1, which indicates that Markov assumption is

not adequate. The scale column show the estimates of the scale parameters. The

larger the scale estimate is, the bigger the variance of the transition is. Among all,

transition 1→ 4 has the largest scale estimate and the widest CI. This is due to the

fact that many right-censored (at state 1) observations are included in the data. The

estimates of the transition probabilities are given as well. The variance associated

with those estimates are large though. For comparison purpose, the estimates of the

semi-Markov models including one binary covariate are also given in Table 2.6(b).
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The estimated shape and scale parameters are consistent to those in Table 2.6(a);

however, the estimates associated with transitions starting from state 2 changes a

bit, especially γ̂24 now significantly bigger than 1. Besides, the scale and covariate

effect estimates of transition 2 → 4 also have large values and large variance. This

may be due to the fact that only 34 samples present with path 2-4, and among these

34 samples, it is also possible that state 3 may be visited. Other than the transition

2 → 4, we find the covariate effect associated with transition 1 → 2 is significantly

larger than zero. This indicates that the patient with IHD diagnosed before the

transplant has a high risk of advancing to the moderate state (state 2) than those

who have not.

With the estimated parameters in Table 2.6(a), we can estimate a1 and a2 in (2.14)

for the 34 observations with observed path 1-2-4. Let δ = 1 indicate i = (1, 2, 3, 4),

and δ = 2 indicate i = (1, 2, 4). Denote t′1 and t′3 the observation time points when

the patient was last seen in state 1 and state 2. Similarly, let t′2 and t′4 be the

observation time points when the patient was first seen in state 2 and state 4. Here

t′1, t
′
2, t
′
3, t
′
4 are not nessarily consecutive observation points. Three observations are

shown in Table 2.7. Their estimated probabilities of going through state 3 are given

as well, i.e. â1. If t′4 − t′3 is large, the probability of going through state 3 increases!

The probability of the third observation is the highest in the data set.

Obs t′1 t′2 t′3 t′4 â1

1 5.99 7.08 10.42 10.67 0.08

2 0 2.00 2.00 2.54 0.50

3 0 2.02 2.02 14.14 0.99

Table 2.7: The Conditional Probability of Going Through State 3 of the Censored
Observation with Observed Path 1-2-4
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2.8 Conclusions

Semi-Markov models provide a more general structure for modeling and analyz-

ing multistate data than Markov models. However, in the presence of censoring,

the inference problem becomes challenging. This chapter has developed a general

methodology for parametric estimation of progressive semi-Markov multistate pro-

cesses with interval censored observations, possibly coupled with exact failure and

right censoring. The methods can be used to make likelihood-based inference and

Bayesian inference. From simulation stuyies, we find sampling complete history Z

efficiently is essential for the estimation, and recommend using RJMCMC sampling

for reliable estimation and shorter computation time. By the proposed algorithm, we

fit a semi-Markov model on CAV data, and it fits much better than a Markov model.

The methods proposed here are computationally intensive and work for moderate

number of states.



CHAPTER III

Inference for Time-to-Failure in Multistate

Semi-Markov Models: A Comparison of Marginal

and Process Approaches

The traditional approach to reliability and survival analysis is based on collecting

and analyzing time-to-failure (TTF) data. In many situations, however, failure is the

end point of an underlying multistate process: a system (subject, equipment, etc.)

moves among different “states” before reaching an absorbing state. There are many

examples of such multistate processes in medical, engineering, finance, and social

science applications (see, for example, Kay 1986, Andersen 1988, Andersen et al.

1992, Andersen, Esbjerg and Sørensen 2000, Aalen 1995, Commenges 1999, Limnios

and Oprisan 2001, D’Amico, Janssen and Manca 2005, Foucher et al. 2007, Kang

and Lagakos 2007). Development of statistical inference methods for these models

has also received considerable attention (in addition to the above references, see

Lagakos, Sommer and Zelen 1978, Kalbfleisch and Lawless 1985, Andersen et al.

1992, Hougaard 1999, Sternberg and Satten 1999, Aalen and Gjessing 2001, Janssen

and Manca 2006, Liquet and Commenges 2010, Titman and Sharples 2010).

This chapter deals with a specific inference problem associated with multistate

models. Let {Z(t), t ≥ 0} denote the multistate process, taking values in a finite

53
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state space E = {1, 2, . . . , p}. Throughout, state p is assumed to be an absorbing or

failure state (the end point of the process). We will use the terms “absorption” and

“failure” interchangeably in this chapter. The data are obtained by recording Z(t),

the state of the system. If the recording is continuous until time-to-absorption, we

will know the states of the system at all times and the transition times, including

when it moved to the absorbing state, i.e., the exact TTF. This is rarely done in

practice. It is more common to observe the system periodically and record the state

it is in. This results in interval censoring – we know only the states of the system

at the observation times but not the when the transitions occurred. In addition, we

may not know the number of transitions that occurred during the interval. Further,

if we stop observing the system before the TTF, the data are right censored. The

resulting data are often called panel data (see Kalbfleisch and Lawless 1985). It

is quite difficult to make inferences based on panel data, and we will discuss the

challenges shortly.

The goal here is to make inference about the system’s TTF: estimation of the

TTF distribution and prediction intervals for the TTF given that the system has not

failed by time t. We compare two different approaches to this inference problem. One

is based on just the TTF data of N systems, subject to different forms of censoring.

We will refer to it as the marginal method as it is based on just the TTF data and

ignores additional information about the various states that the system has gone

through. The other approach, which we call the process approach, involves modeling

the entire multistate process of the system, estimating the underlying parameters and

using this to make inference. For prediction, the process approach will use additional

information on which state the system is in at the time of right censoring and how

long it has been in that state. We restrict attention to progressive semi-Markov
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processes (defined formally in Section 3.1). The problem studied in this chapter

has also been discussed, albeit not as formally, in the literature (see, for example,

Andersen 1988, Liquet and Commenges 2010).

It may seem intuitive that the process-based method should be more efficient,

especially for the prediction problem. The goal of this chapter is to examine and

quantify these advantages in selected parametric models. This is an important prob-

lem for the following reasons. Parametric inference for multistate processes is chal-

lenging in the presence of censored data. Several authors have developed methods

in special cases (see, for example, Lagakos, Sommer and Zelen 1978, Sternberg and

Satten 1999, Foucher et al. 2007). More recently, Titman and Sharples (2010) devel-

oped results for general panel data with phase-type sojourn distributions. Chapter

II developed computationally-intensive methods for general parametric sojourn dis-

tributions. The general techniques in Chapter II do not scale up to large number

of states. On the other hand, there are well-developed methods in the literature for

doing marginal inference based on TTF data. So, if the efficiency loss in doing the

marginal inference is small, one can bypass the process approach if one is interested

in just inference related to the TTF.

However, the results in this chapter show that inference based on the process

method is considerably more efficient, with estimation efficiencies being 2-3 times

more than the marginal method even with relatively small number of states. The

gain in prediction efficiency is also considerable. The latter is especially important

if we are interested in predicting failure at the individual system level, which would

be the case with expensive or highly-critical systems.

The rest of the chapter is organized as follows. Section 3.1 provides the back-

ground and problem formulation. Section 3.2 deals with estimation efficiency for
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parameters such as the mean, variation and quantiles of the TTF distribution. The

analysis for estimation efficiency will be done under the following data collection

schemes:

• Complete: sample paths/TTFs continuously observed until absorption;

• Right-censored: sample paths/TTFs continuously observed until some censor-

ing time point;

• Interval-censored: sample paths/TTFs observed periodically at discrete time

points.

Section 3.3 compares the prediction efficiency of the two methods in terms of the

width and coverage probabilities of the prediction interval for the TTF of a system

given that it has survived up to some time t (therefore right-censored at t).

For reasons that will become apparent, we restrict attention for the most part to

the gamma sojourn times for the parametric model, although the inverse Gaussian

and normal are briefly discussed as well.

3.1 Formulation and Background

We consider the time-homogeneous semi-Markov multistate models (SMP) Z(t)

as defined in Section 2.3. The process Z(t) is fully determined by the transition

matrix P as (2.1) and the conditional distributions Fij(t), i, j ∈ E defined in (2.2)

or the semi-Markov kernels Qij(t) as (2.3). Assume Fij(x) = F0(x;φ) where F0 is

some known baseline distribution and φ denotes the unknown parameters. Thus,

the unknown parameters consist of θ = (φ, P ). For notation convenience later, we

denote the random transition time occurred from state i to state j as Xij. Therefore,



57

Xij has the cumulative distribution function Fij(·).

We restrict attention to progressive models in this chapter. Specifically, we as-

sume that the states are arranged in some naturally increasing order and that the

system can move only from left to right, i.e., no cycling back to previous states. Such

models have been considered by many authors for different applications in the liter-

ature. This is a reasonable assumption for characterizing situations with monotone

degradation. In this case, only the upper-diagonal elements of transition matrix can

be nonzero. A special case that we will consider in some detail is the one-step pro-

gressive model where one can move from state i to state (i+ 1) only, i.e., pi,i+1 = 1,

and hence the transition matrix P is known.

3.1.1 Time-to-Failure Distribution

The distribution of T , the TTF of the multistate process, is introduced here. We

can write T as a function of the transitions and Xij’s as follows.

For the one-step progressive case,

T = X12 +X23 + · · ·+Xp−1,p. (3.1)

The marginal distribution of T is given by the convolution of the distributions of the

individual Xij’s. Therefore, the mean and the variance of T are given by the sums

of the means and variances of the individual components. Common distributions,

such as Weibull and lognormal, for Xij’s are not closed under convolution, so the

distribution of T in these cases have complex forms. In order to do some analytical

calculations, we will focus for the most part on gamma distributions with the same

scale parameter. The special case of the inverse Gaussian with this convolution

property will also be briefly considered.
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For the multi-step progressive case,

T =
∑
j

Ii0,i1,...,ik

(
X

(j)
i0,i1

+X
(j)
i1,i2

+ · · ·+X
(j)
ik−1,ik

)
, (3.2)

where i0 = 1, ik = p and the sum j is over all possible paths {i0 = 1 < i1 <

. . . < ik = p} from the initial state 1 to the absorbing state p. Note that there

are J = 2p−2 possible such paths. Further, the choice of the path depends on the

transition probabilities of Z(t).

As an example, consider the case with 4 states. There are four possible paths:

{1, 2, 3, 4}, {1, 2, 4}, {1, 3, 4}, and {1, 4}, so

T = I{1,2,3,4}(X
(1)
12 +X

(1)
23 +X

(1)
34 )+I{1,2,4}(X

(2)
12 +X

(2)
24 )+I{1,3,4}(X

(3)
13 +X

(3)
34 )+I{14}X

(4)
14 .

(3.3)

Note that X
(1)
12 and X

(2)
12 in the first and second components of the sum in equation

(3.3) are independent copies of the random variable X12. The reason is that a

given system can take only one of the 4 possible paths, and different systems are

independent of each other.

In this multi-step case, the distribution of the TTF is a finite mixture distribution

with J = 2p−2 elements. We can write the density explicitly as

fT (t) =
∑
j

pi0,i1,...,ikfi0,i1 ∗ fi1,i2 ∗ · · · ∗ fik−1,ik(t), (3.4)

where, as before, the sum j is over all possible paths {i0 = 1 < i2 < . . . < ik =

p}. Here, pi0,i1,...,ik := E(Ii0,i1,...,ik) = pi0,i1pi1,i2 · · · pik−1,ik , fis,is+1(t) is the density of

Xis,is+1 and ∗ denotes the convolution operator.

From standard properties of mixture distributions (see Mclachlan and Peel (2000)),

we get the mean of the TTF distribution as

µT := E(T ) =
∑
j

pi0,i1,...,ik
(
µi0,i1 + µi1,i2 + · · ·+ µik−1,ik

)
, (3.5)
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where µis,is+1 is the mean of Xis,is+1 . From the independence of the sojourn distri-

butions under the semi-Markov property, we get the variance of T as

σ2
T := Var(T ) =

∑
j

pi0,i1,...,ik

(
σ2
i0,i1

+ σ2
i1,i2

+ · · ·+ σ2
ik−1,ik

)
+

∑
j

pi0,i1,...,ik

(
µ2
i0,i1

+ µ2
i1,i2

+ · · ·+ µ2
ik−1,ik

)
− µ2,

where σ2
is,is+1

is the variance of Xis,is+1 .

3.1.2 Challenges with Process-based Inference with Censored Data

We briefly describe the challenges in inference for multistate processes based on

interval-censored or panel data. Recall that this is one of the reasons for considering

the marginal approach.

Consider a multistate process with p = 5 states. Suppose the process is observed

at times ti, i = 1, 2, 3, and the states of the system at these times are yi, i = 1, 2, 3

with y1 = 2, y2 = 4, y3 = 5. (As before, we assume the system starts at time 0

in state 1.) So, we know that the system transitioned from state 1 state 2 at some

time during the interval (0, t1] but we do not know when. Further, we know that the

system moved from state 2 to state 4 during the interval (t1, t2] but we do not know

if it moved first to state 3 and then state 4 or straight from state 2 to state 4. In

addition, the exact times of the transitions are unknown.

For exponential distributions, this type of incompleteness does not pose a ma-

jor problem. The likelihood can be written down and maximized using numerical

methods (see Kalbfleisch and Lawless 1985). For semi-Markov models with non-

exponential distributions, however, the inference problem becomes quite challenging.

Chapter II develops a computationally intensive approach for doing parametric in-

ference in such cases. However, the computational burden involved is quite high for
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situations with a large number of states. See also Titman and Sharples (2010) for

inference with phase-type sojourn distributions.

3.2 Comparison in Estimation Efficiency

In this section, we will compare the estimation efficiency of the process estimator

and the marginal estimator. As we have mentioned before, most TTF distributions

are not closed under convolution. In order to do some analytical calculations, we

discuss the illustrative normal case, the gamma case and the inverse Gaussian case.

3.2.1 Illustrative Case: Normal Distributions

We start with the normal distributions as an illustrative case; they are not com-

monly used to model TTF data which are non-negative random variables. Consider

just the one-step progressive situation with N complete observations. Therefore, the

process data Xn
ij and the absorbing time Tn are observed exactly for n = 1, . . . , N .

Let Xj,j+1 ∼ N(µj, σ
2
j ), j = 1, . . . , p − 1. Assume that µj > 0 and µj/σj is

sufficiently large so that the probability of a negative value is very small. In such a

case, the normal distribution can be used to model (non-negative) TTF data. Note

that T =
∑p−1

j=1 Xj,j+1 ∼ N(µT , σ
2
T ), where µT =

∑p−1
j=1 µj and σ2

T =
∑p−1

j=1 σ
2
j .

The loglikelihood function based on N event history data is:

lN(P ) = −
N(p− 1)

2
log(2π)−

p−1∑
j=1

N

2
log σ2

j −
p−1∑
j=1

1

2σ2
j

N∑
n=1

(Xn
j,j+1 − µj)2 (3.6)
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Maximum likelihood estimate satisfies ∀j = 1, . . . , p− 1,

∂lN(P )

∂µj
= − 1

σ2
j

N∑
n=1

(µj −Xn
j,j+1) = 0, (3.7)

∂lN(P )

∂σ2
j

= − n

2σ2
j

+
1

2σ2
j

n∑
i=1

(Xn
j,j+1 − µj)2 = 0. (3.8)

The inverse of Fisher information matrix for the parameters is

I −1
N (P ) =

1

N
diag{σ2

1, · · · , σ2
p−1, 2σ

4
1, · · · , 2σ4

p−1}. (3.9)

If we instead model T =
∑p−1

j=1 Xj,j+1 directly, the maximum likelihood estimator

then satisfies

∂lN(M)

∂µT
= − 1

σ2
T

N∑
n=1

(µT − Tn) = 0 (3.10)

∂lN(M)

∂σ2
T

= − N

2σ2
+

1

2σ2
T

N∑
n=1

(Tn − µT )2 = 0. (3.11)

The inverse of Fisher information for (µ, σ2) is

I −1
N (M) =

1

N
diag{σ2

T , 2σ
4
T}. (3.12)

For µT , the maximum likelihood estimator (MLE) based on process data is

µ̂T (P ) =
∑p−1

j=1 X̄j,j+1 where X̄j,j+1 =
∑N

n=1X
n
j,j+1/N . This is easily seen to be

identical to the MLE based on marginal TTF data µ̂T (M) =
∑N

n=1 Tn/N . So there

is no efficiency gain in using the process data.

Consider next the estimation of the variance parameter σ2
T . The usual unbiased

estimator of σ̂2
j (P ) =

∑N
n=1

(
Xn
j,j+1 − X̄j,j+1

)2
/(N − 1) ∼ σ2

jχ
2(N − 1)/(N − 1),

where χ2(N − 1) denotes the chi-square distribution with N − 1 degree of free-

dom. From these, we get the process estimator σ̂2
T (P ) as the sum of the indi-

vidual estimators for each state. On the other hand, the marginal estimator is

σ̂2
T (M) =

∑N
n=1

(
Tn − T̄

)2
/(N − 1) ∼ σ2

Tχ
2(N − 1)/(N − 1).
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The relative efficiency (RE) of the marginal estimator to the process estimator,

given by the ratio of the variance of the process estimator over the marginal estimator,

is
∑p−1

j=1 σ
4
j/σ

4
T . This is always less than one and reduces to 1/(p − 1) when the

σ2
j ’s are all the same. The equal σ2

j ’s is the worst-case scenario. For example, if

(σ2
1, . . . , σ

2
4) = (1, 2, 3, 4), the RE is 0.3 compared to 0.25 in the equal σ2

j ’s case. If

one of the σ2
j ’s is much larger than all the others, the RE will be close to one. In

general, the marginal estimator can be considerably less efficient than the process

estimator, especially when there is a relatively large number of states involved.

The quantiles of the distribution are of more interest in practice. The u−th

normal quantile of the TTF distribution can be expressed as tu = µT +σT zu where zu

is the u−th quantile of standard normal. We can get the asymptotic variances (aVar)

of σ̂T using Taylor series as: aVar[σ̂T (M)] =
σ2
T

2N
and aVar[σ̂T (P )] =

∑p−1
j=1 σ

4
j/σ

2
T

2N
.

From this, we see that the asymptotic relative efficiency (ARE) of the marginal

estimator to the process estimator of tu is

ARE(tu) =
1 + z2

u/2
∑K

j=1 σ
4
j/(σ

2
T )2

1 + z2
u/2

. (3.13)

As |zu| ranges between 0 (the median/mean) and ∞ (extreme quantiles), this ARE

varies from that of the median/mean estimator to that of the standard deviation

estimator (which is the same as the variance estimator). So the ARE for the quan-

tiles varies between 1 and
∑p−1

j=1 σ
4
j/(σ

2
T )2. For extreme upper and lower quantiles,

the marginal estimator can suffer from the same type of severe inefficiency as the

variance estimator.
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3.2.2 Gamma Distributions

Now suppose that the duration times Xij have gamma distributions, which is a

natural family used for TTF data. Specifically, let Fij = G(κij, θ), ∀i, j, i.e., gamma

distribution with shape parameter κij and common scale parameter θ. Under this

setting, the gamma family is closed under convolution.

One-Step Progressive Case

The TTF under a one-step progressive model is also from the gamma family.

Here, assume Xj,j+1 ∼ G(κj, θ). Then, T ∼ G(
∑p−1

j=1 κj, θ). Let κT =
∑p−1

j=1 κj and

ψ(x) be the logarithm of gamma function.

Consider estimation with complete observations (no censoring case) first. For

n = 1, . . . , N , we observe Xn
j,j+1, j = 1, . . . , p − 1 and the TTF’s Tn. The log-

likelihood based on N random samples is

lN(P ) =

p−1∑
j=1

(κj − 1)
N∑
n=1

log(Xn
j,j+1)− 1

θ

N∑
n=1

Tn −NκT log θ −N
p−1∑
j=1

ψ(κj),

where κT =
∑p−1

j=1 κj and ψ(x) is the logorithm of gamma function. Solving score

functions and MLE satisfies

∂lN(P )

∂κj
=

N∑
n=1

logXn
j,j+1 −N log θ −Nψ′(κj) = 0, j = 1, . . . , p− 1(3.14)

∂lN(P )

∂θ
=

1

θ2

N∑
n=1

Tn −
NκT
θ

= 0, (3.15)

The corresponding Fisher information matrix is

IN (P ) = N


ψ
′′
(κ1) 0 · · · 0 1/θ

0 ψ
′′
(κ2) · · · 0 1/θ
· · · · · · · · ·

0 0 · · · ψ
′′
(κp−1) 1/θ

1/θ 1/θ · · · 1/θ κT /θ
2

 . (3.16)
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This can be inverted to get the asymptotic covariance matrix of MLE.

From this, we get the asymptotic variances of κT and θ as

aVarP (κT ) =
κT∆P −∆2

P + ∆

N(κT −∆P )
=

κT∆P

N(κT −∆P )
− ∆2

P −∆

N(κT −∆P )
, (3.17)

aVarP (θ) =
θ2

N(κT −∆P )
, (3.18)

where ∆P =
∑p−1

j=1 1/ψ
′′
(κj) and ∆ =

∑p−1
j=1 1/ψ

′′
(κj)

2.

For marginal data, the log-likelihood function for κT and θ is

lN(M) = (κT − 1)
N∑
n=1

log(Tn)− N

θ

N∑
n=1

Tn −NκT log θ −Nψ(κT ). (3.19)

The Fisher information matrix is

IN (M) = N

(
ψ
′′
(κT ) 1/θ

1/θ κT /θ
2

)
. (3.20)

From this, we get the asymptotic covariance matrix of the marginal MLE as

1

N(κT −∆M )

(
κT∆M −θ∆M

−θ∆M θ2

)
, (3.21)

where ∆M = 1/ψ
′′
(κT ).

Therefore, the ARE’s, given by the ratio of the asymptotic variance of the process

estimator to that of the marginal estimator, are:

ARE(κT ) =
κT −∆M

κT −∆P

·
(

∆P

∆M

− ∆2
P −∆

κT∆M

)
, (3.22)

ARE(θ) =
κT −∆M

κT −∆P

. (3.23)

Note that these ARE’s do not depend on the scale parameter θ.

The expression in (3.22) is less than
κT −∆M

κT −∆P

·
∆P

∆M

since ∆2
P > ∆ for any

κj > 0, j = 1, . . . , p − 1. In addition, it can be shown that ∆P < ∆M . Thus, both

ARE’s are smaller than 1, so the marginal estimators of κT and θ are always less
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efficient than the corresponding process estimators. This loss is largest when the κi’s

are small (close to zero). When all the κi’s are large, ∆P/∆M is close to one.

Since parameters of the models are themselves not of direct interest in actual

applications, we consider estimation efficiency of the mean, standard deviation and

quantiles of the TTF distribution. We first consider the asymptotic relative efficien-

cies and then examine finite-sample relative efficiencies.

Recall that the mean of T is µT = θκT in this gamma case. It can be shown that

µ̂T (P ) = µ̂T (M), i.e., the MLEs of the mean using the process data is the same as

that from the marginal data. Thus, for the mean, the two approaches are equally

efficient, even though both θ̂(P ) and κ̂T (P ) are more efficient than θ̂(M). Therefore,

there is no gain in using process data, just as in the normal case.

The standard deviation of T is σT = θ
√
κT . With some algebra, the ARE(σT )

can be computed as

ARE(σT ) =
κT −∆M

κT −∆P

·
∆P + 4(κT −∆P )

∆M + 4(κT −∆M)
. (3.24)

Figure 3.1 shows the ARE(σT ) under different settings. The left panel shows the

comparisons for a 3-state model. The horizontal-axis corresponds to κ1/κT with

κT = κ1 + κ2. We see that as κ1/κT goes from zero to 1/2, ARE(σT ) decreases

from 1 to some lower bound that depends on κT . It decreases with the magnitude

of κT . The right panel studies the effect of increasing the number of states but

keeping the κj’s equal. As expected, the ARE(σT ) decreases as the number of states

increases, but it stabilizes after about 20 states. Again, the ARE(σT ) decreases with

the magnitude of κT .

Denote the u−th quantile of G(κT , θ) by Qu(κT , θ). The asymptotic variances

of the quantile estimators have no closed form expressions, and we calculated them
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(a) 3-state model with κT = κ1 + κ2
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(b) p-state model with κj = κT /(p− 1)

Figure 3.1: Asymptotic Relative Efficiency of the Marginal Estimator to the Process
Estimator for σT Under Two Settings

numerically. The AREs of the quantiles are also given in Table 3.1 and will be

discussed later.

Now let us consider the more realistic case with censoring. Suppose that the

observations now are right or interval-censored. For the TTF data, the computations
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of the asymptotic variances of the estimators using the marginal approach have been

studied extensively and can be handled using numerical methods. The corresponding

computations for the process method is much more involved. We describes the issues

briefly but omit the details. Now, suppose N systems with a mixture of exact failures

and right-censored data are available. The log-likelihood function of the process data

is

`N(P ) =

p−1∑
j=1

Nj,j+1∑
n=1

δj,n log fj,j+1(x̃nj,j+1) + (1− δi,n) logSj(x̃
n
j,j+1), (3.25)

where δj,n = 0 if x̃nj,j+1 is right-censored, and = 1 otherwise. Further Nj,j+1 is the

number of transitions from state j to j + 1, and fj,j+1(x) is the density of G(κj, θ).

We can use numerical methods to calculate the Hessian matrix of `N(P ) and use this

to obtain the asymptotic variances of the quantities of interest.

If interval-censored process data are present, the log-likelihood function is

`N(P ) =
N∑
n=1

log

(∫
Rn

p−1∏
j=1

fj,j+1(xnj,j+1)

p−1∏
j=1

dxnj,j+1

)
, (3.26)

where Rn = {(anj , bnj ]; j = 1, . . . , K s.t. anj < xnj,j+1 ≤ bnj } denotes the interval cen-

soring constraints of the n−th system. Direct evaluation of this log-likelihood is

difficult. Instead, we use the methods in Chapter II to approximate the information

matrix and then get the asymptotic variances.

Table 3.1 shows the AREs for a 4-state model with (κ1, κ2, κ3, θ) = (1, 2, 3, 2).

The values for right censoring were generated randomly according to exponential

distributions. The parameters of the distributions were chosen so that the required

right-censoring percentages were achieved on average. We considered two situations:

12% right censoring and 67% right censoring. The end points for interval censoring

were also chosen randomly from exponential distributions with mean C̄. The interval

censoring is more severe when C̄ is large.
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Parameter µT σT Q.10 Q.25 Q.50 Q.75 Q.90

True Values 12.00 4.90 6.30 8.44 11.34 14.85 18.55

No censoring 1.00 0.47 0.55 0.75 0.98 0.95 0.79

12% Right-censored 0.98 0.46 0.56 0.76 0.97 0.92 0.77

67% Right-censored 0.76 0.33 0.61 0.81 0.82 0.65 0.52

Interval-censored with C̄ = 0.33 1.00 0.49 0.56 0.76 0.98 0.94 0.80

Interval-censored with C̄ = 10 0.96 0.58 0.63 0.74 0.92 0.93 0.81

Table 3.1: One-Step Progressive Case: Asymptotic Relative Efficiencies (of the
Marginal Estimators to the Process Estimators) for the Mean, Standard
Derivation and Quantiles

The AREs of µT are close to one except when there is severe right censoring. For

the standard deviation, the AREs range from 0.58 to 0.33, indicating (as was the

case with complete data) a substantial loss with the use of the marginal approach.

Turning to the quantiles Qu, the AREs for the medians and even for Q.75 are not

too bad, except perhaps for the case with high right censoring. The AREs for Q.25

are generally lower than those for Q.75. This is due both to the asymmetric nature

of the gamma distribution and less right censoring at Q.25. This pattern is also

present for Q.90 versus Q.10. In general, the marginal method performs quite poorly

in estimating the lower quantiles compared to the process-based method. Note also

that, the loss in efficiency for severe interval censoring is not as bad as that for severe

right censoring. This may be due to the fact that there is corresponding efficiency

loss for process data also with interval censoring.

Table 3.2 shows the finite-sample relative efficiencies for sample size N = 100.

The values were obtained through simulation. We chose a moderate value since

there is very high censoring in some cases and the calculations requite a reasonable

sample size. While the numbers vary from the asymptotic case, the conclusions are

qualitatively the same. In particular, the REs for the mean are reasonably good
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Parameter µT σT Q.10 Q.25 Q.50 Q.75 Q.90

True Values 12.00 4.90 6.30 8.44 11.34 14.85 18.55

No censoring 1.00 0.60 0.50 0.68 0.93 1.02 0.93

12% Right-censored 0.96 0.51 0.53 0.73 0.93 0.92 0.80

67% Right-censored 0.64 0.33 0.53 0.67 0.67 0.58 0.49

Interval-censored with C̄ = 0.33 0.98 0.52 0.55 0.74 0.97 0.96 0.82

Interval-censored with C̄ = 10 1.00 0.47 0.69 0.87 0.99 0.88 0.69

Table 3.2: One-Step Progressive Case: Finite Sample Relative Efficiencies (of the
Marginal Estimators to the Process Estimators) for the Mean, Standard
Derivation and Quantiles

except when there is severe right censoring. The marginal method performs poorly

in estimating the standard deviation. Its performance is again poor for the lower

quantiles compared to the upper ones.

Multi-Step Progressive Case

Now consider the general multi-step progressive case. As noted in (3.2), the TTF

follows a finite mixture distribution. For simplicity, we rewrite its density in (3.4) as

f(t) =
J∑
j=1

pjfj(t), (3.27)

where pj = pi0,i1,...,ik , fj = fi0,i1 ∗ · · · ∗ fik−1,ik and J = 2p−2 is the number of all

possible paths. Here fij is the density of G(κij, θ).

When there is no censoring, likelihood-based inference based on the entire process

data is straightforward since we know all the transitions and the sojourn times in

different states. The log-likelihood for the marginal approach based on TTF data is

obtained from the corresponding mixture model. Inference for parametric finite mix-

ture models has been studied extensively (see, for example, Mclachlan and Peel 2000)

using the EM algorithm. In this section, we restrict the performance comparisons to
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estimators of the mean, standard deviation and quantiles.

The computations become a lot more involved when there is censoring. We will

omit the details here and refer readers to Chapter II for details with right-censored

and interval-censored process data.

Consider a 4-state model with (κ12, κ13, κ14, κ23, κ24, κ34) = (8, 2, 2, 10, 8, 6), θ = 1

and p12 = 0.4, p13 = 0.3, p23 = 0.5. These result in a different set of values for the

mean, standard deviation, and quantiles, compared to the one-step case. But the

censoring set up in Tables 3.3 and 3.4 is mostly the same as the one-step progressive

case. The only difference is that C̄ = 2 instead of 10 for the second interval censoring

case.

Parameter µT σT Q.10 Q.25 Q.50 Q.75 Q.90

True Values 11.00 8.76 1.19 3.12 8.83 17.52 24.08

No censoring 0.98 0.82 0.93 0.80 0.78 0.74 0.68

10% Right-censored 0.98 0.79 0.97 0.88 0.85 0.85 0.75

55% Right-censored 0.71 0.45 1.04 0.86 0.67 0.63 0.46

Interval-censored with C̄ = 0.33 1.00 0.85 0.95 0.88 0.88 0.89 0.80

Interval-censored with C̄ = 2 0.96 0.90 0.58 0.60 0.42 0.77 0.36

Table 3.3: Multi-Step Progressive Case: Asymptotic Relative Efficiencies (of the
Marginal Estimators to the Process Estimators) for the Mean, Standard
Deviation and Quantiles

Tables 3.3 and 3.4 show, respectively, the AREs and finite-sample (N = 100) REs.

The behavior for the mean is very similar to the one-step case. Interestingly, the

efficiency values for the standard deviation are higher. Of course, the computations

here have been done for only one value of σT , so it is difficult to generalize. Since

the relative efficiencies of the standard deviation are now higher, so are those of the

lower quantiles. Another interesting observation is the lower figures for the upper

quantiles compared to those for the one-step case. Again, we cannot generalize these
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conclusions due to the limited nature of the investigations. Our main point here is

to just provide an indication of the efficiency losses in specific cases.

Parameter µT σT Q.10 Q.25 Q.50 Q.75 Q.90

True Values 11.00 8.76 1.19 3.12 8.83 17.52 24.08

No censoring 1.00 0.84 0.97 0.85 0.82 0.89 0.80

10% Right-censored 0.98 0.75 0.96 0.84 0.85 0.85 0.72

55% Right-censored 0.46 0.19 1.00 0.81 0.60 0.45 0.20

Interval-censored with C̄ = 0.33 1.03 0.88 0.96 0.90 0.86 0.92 0.88

Interval-censored with C̄ = 2 1.01 0.92 0.83 0.89 0.88 0.96 0.83

Table 3.4: Multi-Step Progressive Case: Finite Sample Relative Efficiencies (of the
Marginal Estimators to the Process Estimators) for the Mean, Standard
Deviation and Quantiles with Finite Sample

3.2.3 Inverse Gaussian Distributions

We consider a special case of the inverse Gaussian distribution with the closure

property under convolution. Recall that, if Xj,j+1 ∼ IG(µwj, λw
2
j ), j = 1, . . . , p− 1

(inverse Gaussian with location µwj and scale λw2
j ), the sum is also inverse Gaussian,

i.e., ∑
j

Xj,j+1 ∼ IG(µ
∑
j

wj, λ(
∑
j

wj)
2). (3.28)

To ensure identifiability, we take w1 = 1.

Consider first the one-step progressive case. Inference for the TTF under the

marginal case has been studied extensively (see, for example, Seshadri 1999). For

the process data, the log-likelihood function of N systems with no censoring is

lN(P ) =
p− 1

2
log

λ

2π
+N

p−1∑
j=2

logwj−
3

2

p−1∑
j=1

N∑
n=1

logXn
j,j+1−

p−1∑
j=1

N∑
n=1

λ(Xn
j,j+1 − µwi)2

2µXn
j,j+1

.

(3.29)

One can use this to compute the information matrix and the asymptotic variances.

We omit the details.
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The mean of the TTF distribution is given by µT = µ
∑

j wj. It can (again) be

shown that MLE of µT is the same under the process and marginal cases. So there

is no gain in efficiency, following the same pattern for the gamma and normal cases.

The asymptotic variance of the scale parameter λT = λ(
∑

j wj)
2 under both

approaches can also be computed directly. For example, for p = 4, the asymptotic

variance for the process-based MLE is

2λ2(1 + w2)4 ×
2µ+ 2µw2

2 + λw2 + λw2
2

2µ+ 2µw2
2 + 2λw2 + 2λw2

2 + 2µw2

. (3.30)

The corresponding value for the marginal MLE is 2λ2(1+w2)4. Computing the ratio

of these two values show that scale estimator from the process data is always more

efficient.

Table 3.5: Inverse Gaussian Durations: Asymptotic Relative Efficiencies (of the
Marginal Estimators to the Process Estimators) for the Mean, Standard
Derivation and Quantiles

(a) One-step case: (w2, w3) = (2, 3)

Parameter µT σT Q.10 Q.25 Q.50 Q.75 Q.90

True Value 12.00 4.00 7.50 9.12 11.37 14.20 17.31

No censoring 1.00 0.57 0.57 0.75 0.97 0.97 0.85

44% Right-censored 0.87 0.45 0.57 0.75 0.89 0.80 0.67

88% Right-censored 0.48 0.20 0.61 0.72 0.58 0.40 0.31

(b) Multi-step case: (w13, w14, w23, w24, w34) = (2, 3, 3, 4, 1), p12 = 0.6,
p13 = 0.3, p23 = 0.5

Parameter µT σT Q.10 Q.25 Q.50 Q.75 Q.90

True Value 8.40 3.88 3.93 5.55 7.83 10.57 13.54

No censoring 1.00 0.61 0.70 0.67 0.76 0.88 0.82

33% Right-censored 0.95 0.49 0.67 0.66 0.74 0.85 0.70

76% Right-censored 0.68 0.24 0.59 0.62 0.68 0.63 0.38

We used numerical calculations to compute the AREs of the standard deviation

and quantiles in complete and censored data situations. The details are tedious but
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straightforward. The results for a 4-state case for the one-step progressive model

are given in Table 3.5(a). The corresponding results for multi-step progressive case

given in Table 3.5(b). The overall conclusions are qualitatively the same as those for

the gamma case.

3.3 Comparison in Prediction Efficiency

We compare the prediction efficiencies of the marginal and the process approaches

under various scenarios. Specifically, the goal is to predict the failure time of a system

given that it has not failed by a specified time t. For the marginal method, we do not

have any information about the system except that it is alive at the right censoring

time t. For the process case, however, we know that the system was in a particular

state (say s < p) at the censoring time t. This can be quite informative in predicting

the failure time of the system.

We will use two quality metrics for the prediction intervals to assess the two

approaches. They are: a) the lengths of the prediction intervals, and b) the (con-

ditional) coverage probability given that a system was in some specific state at the

last observation time. The prediction comparison is intrinsically biased towards the

process-based approach since it uses more information than the marginal approach.

But this is of course the basic goal here – to quantify the gain in using the process-

based approach.

Since the underlying parameters of the multistate model are unknown, one would

first have to estimate them based on data from N systems. These estimated values

will be used to develop prediction intervals for a new system or perhaps even one

of the N systems that has not failed. So, in reality, one would have to incorpo-
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rate this estimation uncertainty in the prediction intervals in making the efficiency

comparisons. However, this makes the problem extremely challenging in most cases

except the normal. Since our goal is to develop a qualitative understanding and we

have already covered the estimation efficiency in the previous section, we will as-

sume that the parameters are known in this section. This simplifies the calculations

considerably and allows us to focus directly on the prediction problem. Since the

process-based approach is more efficient in terms of efficiency, we can treat the rela-

tive efficiencies here as lower bounds when one also wants to incorporate estimation

uncertainty.

We will consider only one-step progressive models with gamma durations in

this section. Assume, as before, that Xj,j+1 ∼ G(κj, θ), j = 1, . . . , p − 1, so

T =
∑p−1

j=1 Xj,j+1 ∼ G(κT , θ), κT =
∑p−1

j=1 κj. We use the notation Gt(κT , θ) for

the conditional distribution [T |T > t], i.e., a gamma distribution truncated from

below by t.

We restrict attention to symmetric prediction intervals even though they are not

the shortest intervals. The 100(1− α)% symmetric prediction interval based on the

marginal data, IM = (lM , uM), satisfies

∫∞
uM

fT (x)dx∫∞
t
fT (x)dx

= 1− α/2 and

∫ lM
t

fT (x)dx∫∞
t
fT (x)dx

= α/2, (3.31)

where fT is the density of G(κT , θ).

For the process-based approach, we have complete information of the system

until time t. Then, we know that, the system is at state s (< p) at time t, and that

it entered the state s at time t0. Further, define Si:j(·) as the survival function of

Xi,i+1 + · · ·+Xj−1,j. Denote the 100(1− α)% symmetric prediction interval for the

process method as IP = (lP , uP ). We discuss the computation of the upper prediction
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interval uP for various cases of interest. The lower prediction interval is obtained

similarly.

(1) s = p− 1: Then, [Xp−1,p|Xp−1,p > t− t0] ∼ Gt−t0(κp−1, θ), so∫∞
uP−t0

fp−1,p(x)dx∫∞
t−t0 fp−1,p(x)dx

= 1− α/2; (3.32)

(2) s = 1: Here t0 is 0, so we must have P(X12 + · · · + Xp−1,p > uP |X12 > t) =

1− α/2. This gives ∫∞
t
S2:p(uP − x)f1,2(x)dx∫∞

t
f1,2(x)dx

= 1− α/2; (3.33)

(3) 1 < s < p− 1: In this case,

P(X12 + · · ·+Xp−1,p > uP |X12 + · · ·+Xs−1,s = t0, X12 + · · ·+Xs,s+1 > t)

= P(Xs,s+1 + · · ·+Xp−1,p > uP − t0|Xs,s+1 > t− t0) = 1− α/2. (3.34)

Hence, ∫∞
t−t0 Ss+1:p(uP − t0 − x)fs,s+1(x)dx∫∞

t−t0 fs,s+1(x)dx
= 1− α/2. (3.35)

To study the prediction efficiency, we compare the width of IM with that of IP

and examine the coverage probability of IM which need not equal 1 − α when we

know that the system was in state s at the time of right censoring. Recall that the

coverage of IP is 1− α by construction. The ratio of the widths r = IP/IM depends

on time t, t0 and the censored state s. In order to examine their influence on the

outcome, we selected t, t0 in the following way. Suppose the system is in state s at

time t:

• pick t0 as the p1% quantile of G(
∑s−1

i=1 κi, θ), i.e., the distribution of X12 +

· · ·Xs−1,s;
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• pick z as the p2% quantile of G(κs, θ), i.e. the distribution of Xs,s+1, and let

t = t0 + z.

We discuss the results for a 6-state model with scale parameter θ = 2 and shape

parameters κ1 = 5, κ2 = 4, κ3 = 3, κ4 = 2, κ5 = 1. The 95% prediction intervals

IM and IP were obtained for different values of t0, t, and s. The ratios r = IP/IM

and the coverage probabilities IM (in parentheses) are given in Table 3.6. There

are three blocks in the table, corresponding to three states s at the time of right

censoring. Within each block, t0 was chosen to represent the 0.1, 0.5 and 0.9 quantiles

of G(
∑s−1

i=1 κi, θ) (top to bottom respectively). Further, z was taken to be the 0.1,

0.5 and 0.9 quantiles of G(κs, θ) (left to right).

s = 5 z = 0.21 z = 1.39 z = 4.61

t0 = 18.9 0.27 (0.62) 0.28 (0.68) 0.30 (0.80)

t0 = 27.3 0.34 (0.87) 0.35 (0.88) 0.38 (0.91)

t0 = 37.9 0.44 (0.93) 0.45 (0.93) 0.48 (0.94)

s = 3 z = 2.20 z = 5.35 z = 10.6

t0 = 10.9 0.61 (0.94) 0.60 (0.99) 0.65 (1.00)

t0 = 17.3 0.68 (1.00) 0.71 (1.00) 0.79 (0.99)

t0 = 26.0 0.88 (0.97) 0.90 (0.97) 0.97 (0.96)

s = 1 z = 4.87 z = 9.34 z = 15.99

0.98 (0.96) 0.93 (0.95) 0.93 (0.87)

Table 3.6: Prediction Efficiencies and Coveragese of 95% Prediction Intervals Con-
structed by the Marginal Method with κ1 = 5, κ2 = 4, κ3 = 3, κ4 = 2,
κ5 = 1

When the system is censored at state 5 (close to the absorbing state), the marginal

prediction intervals are considerably wider than the process intervals (as to be ex-

pected) with values as low as 0.27. This is so despite the fact that their (conditional)

coverage probabilities are lower than 0.95, and much lower in some cases. When the

system is censored at state 3 (middle state), the marginal intervals are wider than
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the process intervals but much less so than before (again as to be expected). The

conditional coverage probabilities are now higher than 0.95 in most cases. When the

system is at state 1 at the time of right censoring, IM and IP are comparable in

width. Note, though, that the conditional coverage probability of IM decreases with

z. In summary, the loss in prediction efficiency for the marginal method can be very

substantial. As to be expected, this loss is especially big when the system is close to

the absorbing state at the time of censoring.

Table 3.7 shows similar results for a different set of parameters: κ1 = 1, κ2 = 2,

κ3 = 3, κ4 = 4, κ5 = 5. The efficiency loss of the marginal method is less severe

in this case. This can be explained by the fact that the sojourn times in the states

closer to the absorbing state have bigger means(κ5 = 5 now compared to κ5 = 1

before), so being closer to the absorbing state is not as predictive as before.

s = 5 z = 4.87 z = 9.34 z = 16.0

t0 = 12.4 0.55 (0.87) 0.52 (0.89) 0.53 (0.93)

t0 = 19.3 0.66 (0.97) 0.63 (0.95) 0.62 (0.95)

t0 = 28.4 0.85 (0.98) 0.78 (0.97) 0.74 (0.96)

s = 3 z = 2.20 z = 5.35 z = 10.6

t0 = 2.20 0.88 (0.94) 0.86 (0.98) 0.85 (0.97)

t0 = 5.35 0.88 (0.98) 0.86 (0.97) 0.88 (0.93)

t0 = 10.6 0.88 (0.95) 0.89 (0.92) 0.99 (0.81)

s = 1 z = 0.21 z = 1.39 z = 4.61

1.00 (0.95) 1.00 (0.95) 1.00 (0.93)

Table 3.7: Prediction Efficiencies and Coveragese of 95% Prediction Intervals Con-
structed by the Marginal Method with κ1 = 1, κ2 = 2, κ3 = 3, κ4 = 4,
κ5 = 5

Figure 2 provides a different view of the comparisons. We simulated TTFs from

a 6-state model with θ = 2 and κ1 = 5, κ2 = 4, κ3 = 3, κ4 = 2, κ5 = 1. These TTFs

were randomly right censored with censoring times t (∼ Exp(0.1)). If the units had
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(b) Censored at state 3
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(c) Censored at state 1

Figure 3.2: Prediction Intervals Constructed by the Marginal and the Process Meth-
ods and the Hold-out TTFs
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not occurred yet at time t, we constructed 95% prediction intervals based on the

marginal and process methods. Sixty prediction intervals of the remaining life T − t

are shown in each panel. Additionally, we kept the exact TTFs to check how well

the prediction intervals did.

We see that, when the data are censored at state 5, the IM ’s are much wider than

IP . In fact, most of the “true” remaining life times are located at the lower part of

the interval. This explains why IM has lower coverage than nominal. If the middle

point of the interval (median residual life) is used as a point predictor, the prediction

from the marginal method will substantially overestimate the residual TTF. When

the observations are censored at state 3, most of the intervals IM cover the points,

but the width of IM is still wider than IP .

On the other hand, when the observations are censored at state 1, IM ’s are only

slightly wider than IP . Notice that the lower bound for IM is usually smaller than

the lower bound for IP . This suggests that the point prediction from the marginal

method will under-predict the residual TTF. These results are consistent with the

findings in Table 3.6.

3.4 Concluding Remarks

Even if the time-to-event (“failure”) is an end-point of an underlying process, it

is tempting to ignore the process data and analyze just the TTF data. There are

several reasons for this: a) the analysis of TTF data has been extensively studied and

there are many existing methods and software packages for analyzing such data; and

b) the analysis of the process data, on the other hand, is more involved, especially

when in the presence of censoring. So practitioners may not go to the extra length
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to model and analyze the process data. The results in this chapter show that the

efficiency losses that one can incur in ignoring the additional information in the

process data is very high. This is especially so when one is interested in predicting

failures at individual system level.

It is also worth noting that inference for multistate processes in an active area of

research. See Titman and Sharples (2010) for inference for general panel data under

phase-type sojourn distributions that appears to scale up to large number of states.

We are also currently exploring approximate algorithms that will allow the general

methods in Chapter II to scale up. Thus, it is quite likely that the challenges with

inference for multistate models with panel data will be addressed to a large extent.

This chapter has focused exclusively on comparisons in terms of estimation and

prediction efficiencies in this chapter. Of course, there are many other reasons for

considering an analysis of multistate data, including the development of much better

insights into the behavior of the underlying process. For example, in the context of

a particular disease, Andersen (1988) noted that more biological insight was gained

by analyzing the steps in the disease process.

Finally, we note that the analysis of multistate data rely on more assumptions

than that based just on TTF data. The former involves specification of models for the

sojourn times in each state, for their dependence structure (independence for semi-

Markov process), for time dependence structure (assumed to be time-homogeneous

in this chapter), etc. It would be of interest to also take into account robustness

considerations in comparing the performance of the two methods.



CHAPTER IV

Modeling and Analysis of Degradation Data with

Missing Patterns

4.1 Background

4.1.1 Degradation Data

Recent advances in sensing and measurement technologies are making it feasible

to collect extensive amounts of data on degradation and performance-related mea-

sures associated with components, systems, and manufacturing equipment. Davies

(1998) discusses a variety of engineering applications, types of degradation data, and

recent developments in the area of condition monitoring and system maintenance.

These cover data from vibration and acoustical monitoring, thermography, lubricant

and wear debris analysis, etc. Meeker and Escobar (1998, Chapter 14 and 21 and

references therein) describes applications in fatigue crack growth, luminosity of light

bulbs, corrosion of batteries, semiconductor devices, etc.

Our interest in this research problem was motivated by an application on the

degradation of road pavement data collected by the Michigan Department of Trans-

portation (MDOT). This is discussed in more detail in the next section.

With degradation or performance data, time-to-failure is viewed as the first time

point when the degradation level exceeds a certain threshold (or performance level

81
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goes below a threshold). This threshold is usually defined by subject-matter consid-

erations. For example, with MDOT’s road pavement data, the engineers classify the

pavement as having “failed” and in need of repair if the distress index (DI) exceeded

50. Such a definition of failure works only for certain types of failure modes, and

degradation or performance data are not useful with catastrophic failures.

4.1.2 Road Pavement Data and Distress Index

This research was stimulated by a project, funded by the Michigan Department of

Transportation (MDOT), to analyze degradation of road pavement data on highways

to determine if certain types of designs and materials led to longer life of pavements

than others. An overview of the design and management of road pavements can be

found in Peterson (1987), Haas, Hudson and Zaniewski (1994). In particular, there

are different choices for design and materials used in pavement construction.

The specific degradation variable that was available was a measure called distress

index (DI). MDOT collects visual images of road conditions by videotaping highway

pavement surfaces using a van equipped with cameras and driven at regular speeds.

These videotapes are then sent to a central location where they are viewed and

scored by the type, extent, severity, and other types of pavement defects. Points

are assigned for each distress type depending on the severity and quantity of each

distress based on pre-established algorithm, leading to a distress index for each 0.1

mile segment of pavement. These indices are often aggregated to assign more crude

measures to larger segments of the road. The DI should be zero for a pavement

that has no distress; if the DI is 50 or more, that segment of road is a candidate for

rehabilitation.



83

The DI scoring is done subjectively, so there is usually a lot of variability due to

different individuals who do the scoring. The individuals were not the same from

year to year, and it was common to find DI scores that were not monotone. In

addition, there was a lot of incomplete data. For some pavements, no records were

available before certain time period (missing to the left), data were missing for certain

consecutive years (missing in an interval) and data were not collected after certain

years (missing to the right). In fact, few of the records had complete data for the

period of study.
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Figure 4.1: The Distress Indices of Highway Pavements (dots) with Different Coarse
Aggregate Types (Joined by Pavement)
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Figure 4.1 shows the DI values for different pavements recorded over several years

for different types of pavement designs. Each connected curve corresponds to one

pavement. The x-axis is age (service life) of the pavement and y-axis is the DI. We see

that different pavements were measured at different ages, and some measurements are

missing. Besides, the degradation paths of the pavements constructed with different

design display different patterns and there is a lot of variability even within groups.

There is also a lot of missing data.

Several questions were of interest in this application. Are there differences in

the design factors and pavement materials in terms of performance? Can we predict

when a particular pavement needs repair? Distress indices have been studied in the

literature. See, for example, Abu-Lebdeh et al. (2003) for a comprehensive summary

of recent developments in pavement distress index models. Most of the models in

the literature assume that the data follow a parametric form (typically a sigmoidal

function) over time. In our case, however, there is no clear parametric form for the

degradation data. This is in part due to the poor quality of data. So we resorted to

flexible specifications of the mean and variance functions in our analysis.

4.1.3 Missing Patterns

The DI values shown in Figure 4.1 are given by years. Notice that the records for

most pavements have missing data. For instance, if the pavement was constructed

before the inspection starts, the observations at the beginning of the degradation

paths would be missing. All the pavements with Crushed Concrete design fall into

this category. Secondly, the inspection period for some pavement ended earlier than

others, resulting in the missing at the end. Moreover, measurements for some years
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are not collected or not available, leading to missing data in the middle.

Table 4.1 shows the recorded DI values for 4 highway pavements. The observa-

tion window for a complete degradation path ranges from age 2 to age 18, and the

measurements were usually taken every other year. The n−th row stands for the

n−th pavement, and the t−th column represents all the DIs recorded at pavement

age 2t. NA denoted missing DI values. There are quite a few missing data in these

4 pavements.

Pavement 2 4 6 8 10 12 14 16 18

1 0 0 0 0.1 0.9 1.1 13.7 14.7 13.7

2 NA NA 0.2 0.3 1.1 0.6 1.5 11.5 16.7

3 NA NA 0.1 0.1 0.1 0.4 NA NA 16.2

4 0.1 0.2 1.3 0.9 0.7 NA NA NA NA

Table 4.1: The Distress Indices of 4 Pavements (‘NA’ Means Missing)

Notice also that the DI values for pavements decrease occasionally. This is usually

due to measurement error and variations in the scoring. In some cases, the non-

monotonicity could be due to partial road repairs which were not taken into account

in the DI data.

The missing data issues here have been considered extensively in the literature.

However, the problem formulation and research questions in this chapter are some-

what different from those in the existing literature, as we will see later.

4.1.4 Missing Data: Literature Review

Degradation data analysis has been considered by many authors in the literature.

Lu and Meeker (1993) used degradation measures to estimate the corresponding

time-to-failure distribution parametrically. Lawless and Crowder (2004) suggested a



86

gamma process as the model of the underlying degradation process. Nonparametric

estimation for degradation data has also been studied in Nair and Wang (2011),

Wang (2005), Wang (2009) and Wang (2010). See Meeker and Escobar (1998) for

additional references and discussion. However, inference with missing degradation

data has not been considered much.

There is an extensive literature on missing data relating to longitudinal studies.

Methods have been developed under various concepts of “missingness” (see, for ex-

ample, Laird and Ware 1982, Laird 1988, Lann and Robins 2003, Little 1995, Little

and Rubin 2002, Schafer and Graham 2002, Schafer 1997). This refers to the under-

lying mechanism that causes the missing values (Rubin 1976). If the probability of

missing is completely independent of the measurements (observed or unobserved), it

is called missing completely at random (MCAR). If the missing mechanism depends

on the observed measurements but not the unobserved ones, it is missing at random

(MAR). When MCAR and MAR are assumed, the distribution of missing can be ig-

nored for likelihood-based (including Bayesian) inference on the measurements; they

are sometimes referred to as “ignorable” missing. When the data are not missing

at random, the missing data cannot be ignored and one has to develop a model for

including the data in the analysis.

In engineering applications, such as the one discussed here, the data are often

missing because they were not collected due to lack of resources or because they

were not archived. So it is reasonable to assume that they are missing at random.

A possible exception may be data missing in the right tail (sometimes referred to as

“dropout”). This may be pavements that had been repaired, so the missingness may

be informative. We will not consider this problem in the current chapter.

Most of the inference with missing data in the literature have been developed
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under a multivariate normal model (Little 1976). Some of the following structures for

the variance-covariance matrix have been considered: identity, exchangeable, certain

types of patterned matrices, and autoregressive (Liang and Zeger 1986, Jennrich

and Schluchter 1985, and references therein). Most of the popular models used to

analyze longitudinal data, such as the regression model, marginal model and random

effects model, assume multivariate normality (see Diggle, Liang and Zeger 1994).

Both maximum-likelihood estimators (MLEs) and and restricted MLEs have been

considered. The robustness of normal models was studied in Little (1988). Liang and

Zeger (1986) and others since then have developed generalized estimation equations

(GEE) to analyze longitudinal data. GEE is based on quasi-likelihood ideas and does

not require a full specification of the likelihood function, and only mean, variance

and autocorrelation structure are needed. In addition to the above references, see

the excellent books by Diggle, Liang and Zeger (1994), Fitzmaurice, Laird and Ware

(2004), Daniels and Hogan (2008) and the references therein.

With incomplete data, the EM algorithm (Dempester, Laird and Rubin 1977)

and its Monte Carlo variants have been commonly used for parameter estimation

in longitudinal data analysis. For normal models, Jennrich and Schluchter (1985)

studied likelihood estimation with unbalanced data (induced by the missing patterns)

by using Newton-Raphson, Fisher scoring, and generalized EM algorithms. Laird,

Lange and Stram (1987) studied a random-effects model using EM algorithms with

arbitrary covariance structure and missing data, again under normal assumption.

Calvin (1993) used EM algorithm to do restricted maximum likelihood estimation

(REML) in unbalanced multivariate variance-components models. GEE provides

consistent estimators when the data are MCAR and not with MAR (Laird 1988).

As an extension, the weighed GEE was introduced to correct the bias and give
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consistent estimates when the data are MAR (Robins, Rotnitzky and Zhao 1994,

1995). Nonignorable missingness has also been extensively studied, especially in the

context of dropouts in surveys. See, for example Little (1995), Diggle and Kenward

(1994), Joseph and Molenberghs (2009) and references therein.

There are also software packages for analysis with ignorable missing: SAS proce-

dures PROC MIXED, PROC GLIMMIX and PROC NLMIXED, and the Splus/R

functions lme, nlme, etc.

4.1.5 Formulation

In this section, we present a formulation of the models for the problems we are

interested in. Denote the degradation data as Y c(t), t = 1, . . . , T , where T is the

end point of the data collection period. Consider first the case where the N units

can be viewed as iid. For n = 1, . . . , N ,

Y c
n (t) = µ(t) + εn(t), t = 1, . . . , T,

where n denotes the records corresponding to the n−th unit in the sample, µ(t) is

the mean of Yn(t), and εn(t) is the random error with zero mean and variance σ2(t).

The dependence structure of Y c
n (t) over time will be specified later.

Let Tn be a subset of 1, . . . , T indicating the time points for which we have

available data for the n−th unit. Missing to the left would imply that Tn = {`, ` +

1, . . . , T} for some ` > 1. Missing to the right means Tn = {1, 2, . . . , u − 1, u} for

some u < T . Missing in an interval means that Tn = {1, 2, `, u, . . . , T} for some

` < u+ 1, i.e., no observations were recorded during the period `+ 1, . . . , u− 1. Any

particular record can have a combination of such missing patterns. Throughout this

chapter, we assume that the data are missing completely at random.
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We will denote the complete data as Y c
n (t), t = 1, . . . , T and the observed data

(with missing patterns) as Yn(t), t ∈ Tn, i.e., the subset of Y c
n (t) that corresponds to

Tn. Later, we will use Y c
n and Yn to indicate Y c

n (t), t = 1, . . . , T and Yn(t), t ∈ Tn.

We have several inference goals of interest:

1. Develop inference methods for µ(t) and σ2(t) based on N units and compare

their efficiency under different dependence structures.

2. Impute Y c
n (t) at the missing values and obtain uncertainty bounds.

3. Predict the failure time (time-to-exceed a threshold) for a particular Yn(t),

under some parametric form for µ(t) and σ2(t).

4. Consider heterogeneous data such as that from a regression study or designed

experiments. Using a functional regression or ANOVA model, develop inference

procedures for the regression coefficients β(t) and develop appropriate test

procedures for testing various hypothesis of interest.

In this chapter, topics (1), (2) and (4) are studied. Topic (3) will be pursued as part

of future work.

4.1.6 Organization of the Chapter

Section 4.2 deals with inference for µ(t) and σ2(t). Results are obtained for vari-

ous dependence structures under a multivariate normal model. Two special cases are

considered. Direct likelihood estimation and EM algorithms are examined. Inference

under non-normal (gamma) setting is presented in Section 4.3. The normal theory

methodology is generalized to one-way ANOVA and regression problems in Section

4.4. Imputation of missing data and development of associated uncertainty bounds
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are considered in Section 4.5.

4.2 Inference for µ(t) and σ2(t) under Normality

We describe some general results here and, for the sake of completeness, include

some known results in the literature. The complete data Y c
n follows a T -dimensional

multivariate normal distribution, i.e.,

Yc
n ∼ MVN T (µ,ΣY ),

where µ = (µ(1), . . . , µ(t)) and ΣY captures both the variances and the dependence

structure over time.

4.2.1 Maximizing the Observed Data Likelihood Function

The observed data (with missing patterns) Yn is also multivariate normal but

with dimension Tn. Let the number of elelments in Tn be pn, i.e., there are pn

observed data points. Denote by C the T × T identity matrix, and Cn the pn × T

submatrix of C, i.e., the t−th row of C is in Cn only when Y c
n (t) is observed. For

example, if T = 5 and Yn = (Y3, Y4), pn = 2, and Cn =

(
0 0 1 0 0
0 0 0 1 0

)
. We then

have

Yn ∼ MVN pn(µn,Σn),

where µn = Cnµ, and Σn = CnΣYC
′
n.

As discussed before, when the data are missing completely at random, one can get

unbiased estimators by ignoring the missing data. It can be shown that the resulting

estimators are optimal for the model where the data are not correlated over time.
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The observed likelihood function based on N observed data y = {y1, . . . ,yN} is

`(µ,ΣY ; y) = −
N∑
n=1

{
pn
2

log(2π) +
1

2
log |ΣY,n|

}
−

N∑
n=1

{
1

2
(yn − µn)

′
Σ−1
Y,n(yn − µn)

}
.

The corresponding score function for µ is

∂`

∂µ
=

N∑
n=1

C ′nΣ−1
Y,n(yn − Cnµ).

This is of the form w −Mµ for some vector w which is a function of the data and

and the matrix M which depends on ΣY . So, if ΣY is known or can be estimated,

we can use this score function to solve for µ.

The score function for ΣY is difficult to solve in general. Jennrich (1986) proposed

several algorithms using Newton-Raphson method and a generalized EM approach.

In the next few subsections, we develop explicit expressions for the EM algorithm

for the special variance structures that we are interested for our application. These

provide faster convergence than the Newton-Raphson or generalized EM algorithm.

4.2.2 Models for the Increment Zc(t) = Y c(t)− Y c(t− 1)

It is more natural to consider Zc(t) = Y c(t)− Y c(t− 1), the incremental degra-

dation. Define Y c
n (0) = 0 and let Zc

n(t) = Y c
n (t) − Y c

n (t − 1), t = 1, 2, . . . , T be the

increments.

If the original data are multivariate normal, the Zc
n are also multivariate normal:

Zc
n ∼ MVN T (θ,ΣZ),

with the mean vector θ = (θ(1), . . . , θ(T )) and the covariance matrix ΣZ . Corre-

spondingly, we can write the mean of Y c(t) as µ(t) =
∑t

k=1 θ(k) and ΣY = BΣZB
′
,
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where

B =


1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0

· · ·
1 1 1 · · · 1

 .

One advantage of studying increments, which is well known in the literature,

is that (additive) random effects that are attributable to individual units can be

removed by this differencing. Another reason is that the mean degradation increases

with time. Even though we are using a normal model here, we will assume the signal

to noise ratio θ(t)/τ(t), where τ 2(t) is the variance of Zc(t), will be large so that the

probability of the Zc’s being negative will be small. This will ensure that the Y ’s

are generally increasing.

Later, we will consider two models for the independent increments, i.e., ΣZ is di-

agonal with elements diag{τ 2(1), . . . , τ 2(T )}. Write τ 2 = (τ 2(1), . . . , τ 2(T )). Denote

tn = Tn ∪ {0}. The number of elements in tn is pn + 1. For ease of notation, write

tn = {s1, s2, . . . spn+1}. We partition the observed Yn based on s1, s2, . . . , spn+1, i.e.,

Gn(t) := (Gn(s1 : s2), Gn(s2 : s3), . . . , Gn(spn : spn+1)),

with Gn(i : j) := Y c
n (j) − Y c

n (i). Gn := Gn(tn) denotes the observed differences.

When independent increments are assumed, any two components of Gn are indepen-

dent and G = {Gn, n = 1, . . . , N} are sufficient statistics for the observed likelihood.

The MLE’s can be obtained by optimizing of the likelihood based on G directly.

4.2.3 Model 1: No relationship between mean and variance

If Zc
n(t) ∼ N (θ(t), τ 2(t)), we have

Gn(i : j) ∼ N (θi:j, τ
2
i:j),
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where θi:j :=
∑j

t=i+1 θ(t) and τ 2
i:j :=

∑j
t=i+1 τ

2(t). The observed likelihood function

is:

`(θ, τ 2; G) = −1

2

∑
1≤i<j≤T

Nij∑
n=1

{
log(2π) + log τ 2

i:j +
(Gn(i : j)− θi:j)2

τ 2
i:j

}
,

where i and j run over all the possible values such that Gn(i : j) are fully observed,

and Nij is the number of observations such that Yn(i) and Yn(j) are observed (so

Gn(i : j) as well). Then, the score functions are

∂`

∂θ(t)
=

∑
i,j

∂`

∂θi:j
· ∂θi:j
∂θ(t)

=
∑

i,j:i<t≤j

Nij∑
n=1

Gn(i : j)− θi:j
τ 2
i:j

, (4.1)

∂`

∂τ 2(t)
=

∑
i,j

∂`

∂τ 2
i:j

·
∂τ 2

i:j

∂τ 2(t)
= −1

2

∑
i,j:i<t≤j

Nij

τ 2
i:j

−
Nij∑
n=1

(Gn(i : j)− θi:j)2

(τ 2
i:j)

2

 , (4.2)

for t = 1, . . . , T . Notice that the gradient ∇θ` is linear in θ. After some algebra, it

can be shown

∇θ` = Σ−1
Z (b− Aθ).

Therefore, the MLE θ̂ satisfies θ̂ = A−1b. Here A = (atk) is a T × T matrix and

b = (b1, . . . , bT )T is a T -dim column vector with

atk =

min{k−1,t−1}∑
i=0

T∑
j=max{k,t}

N
[t]
ij ·

τ 2(t)

τ 2
i:j

, (4.3)

bt =
t−1∑
i=0

T∑
j=t

N
[t]
ij∑

n=1

Gn(i : j) · τ
2(t)

τ 2
i:j

 , (4.4)

where N
[t]
ij is Nij if i < t ≤ j, 0 otherwise.

With constant variance, i.e., τ 2(1) = · · · = τ 2(T ) = τ 2, A and b do not depend on

τ 2 anymore. The MLE θ̂ can be obtained immediately. In addition, τ 2
i:j = (j − i)τ 2.

Plugging θ̂ in (4.2), the MLE τ̂ 2 can be obtained directly as well. The observed

information at θ̂ is Σ̂−1
Z A, where Σ̂Z is evaluated at τ̂ 2.



94

In general, A and b are functions of τ 2. ∇θ` depends on τ 2 and ∇τ2` = 0

cannot be solved explicitly. But they can be obtained by solving the score functions

numerically. Another approach is to optimize over the profile likelihood of τ 2. This

is valid, since θ is fully determined by τ 2. In our experience, the likelihood and

profile likelihood estimations are slower than the proposed EM algorithm, especially

when T is large and when we are under the latter ANOVA setting.

Now we consider the EM algorithm. To iterate through the E-step and the M-

step of EM algorithm, the following function is defined. Given the current estimate

θ0 and ΣZ,0,

Q(θ,ΣZ |θ0,ΣZ,0) := EZc|θ0,ΣZ,0,y [logL(θ,ΣZ ; Zc)] ,

where L(θ,ΣZ ; Zc) is the likelihood of Zc = {Zc
n;n = 1, . . . , N}. The expectation is

taken over Zc conditioning on y and the current estimate θ0 and ΣZ,0. The E-step

derives the form of Q(θ,ΣZ |θ0,ΣZ,0), while the M-step maximizes the Q function

over θ and ΣZ to get the new update. Fact IV.1 is used for the derivation later.

Fact IV.1. Let Z have a multivariate normal distribution. Partition Z = (Z1,Z2)

with mean vector θ = (θ1,θ2), covariance matrix

Σ =

(
Σ11 Σ12

Σ′12 Σ22

)
Suppose Σ22 is nonsingular. Then the conditional distribution of Z1 given Z2 = z2

is N(θ1 + A(z2 − θ2),Σ∗) for A = Σ12Σ−1
22 , Σ∗ = Σ11 − Σ12Σ−1

22 Σ′12.

Under the independence increment assumption, ΣZ is determined by τ 2. Given

θ0 and τ 2
0 , we have

Q(θ, τ 2|θ0, τ
2
0 ) = −

T∑
t=1

N∑
n=1

{
1

2
log(2πτ 2(t)) +

1

2τ 2(t)

[
Sn,2(t)− 2θ(t)Sn,1(t) + θ2(t)

]}
,
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where Sn,1(t) := E(Zc
n(t)|yn,θ0, τ

2
0 ), Sn,2(t) := E((Zc

n(t))2|yn,θ0, τ
2
0 ). Sn,1(t) and

Sn,2(t) need to be calculated in the E-step if Zc
n(t) is not observed. Note that the

expectation Sn,2(t) does not necessarily equal to S2
n,1(t). From Fact IV.1, we have

(1) Missing to the left: yn(u) for t = 1, . . . , u − 1 are missing with only yn(u)

observed. This can be taken as a special case of interval missing to be discussed

in (2).

(2) Missing in an interval: yn(`), yn(u) are observed, but yn(t), t = `+ 1, . . . , u− 1

are missing. For t = `+ 1, . . . , u, we have

Sn,1(t) = θ0(t) +
τ 2

0 (t)

τ 2
0 (`+ 1) + · · ·+ τ 2

0 (u)

[
yn(u)− yn(`)−

u∑
k=`+1

θ0(k)

]
,

Sn,2(t) = S2
n,1(t) +

(
1− τ 2

0 (t)

τ 2
0 (`+ 1) + · · ·+ τ 2

0 (u)

)
τ 2

0 (t).

(3) Missing to the right: yn(t) for t = ` + 1, . . . , T are missing with only yn(`)

observed. Then, for t = `+ 1, . . . , T ,

Sn,1(t) = θ0(t), Sn,2(t) = θ2
0(t) + τ 2

0 (t).

For ease of notation, if Zc
n(t) is observed, write Sn,1(t) = Zc

n(t) and Sn,2(t) = (Zc
n(t))2.

The expectations for data with missing to the left and missing in an interval are

dependent on the increment yn(u) − yn(`). Take a simple example. If ` = 0 and

u = 2, the conditional expectation of Zc
n(1) is adjusted by τ 2(1)/(τ 2(1) + τ 2(2)) ×

[yn(2) − EY c
n (2)] comparing to its unconditional mean. Therefore, if yn(2) is larger

than EY c
n (2), the conditional expected value of Zc

n(1) should also be larger for this

subject. In addition to the change of mean, the conditional variance of Zc
n(1) is

shrunk by τ 2(2)/(τ 2(1) + τ 2(2)) comparing to the unconditional one. On the other

hand, for missing to the right data, the expected values are not dependent on its last

observed yn(`).
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The maximization of Q(θ, τ 2|θ0, τ
2
0 ) over θ and τ 2 in the M-step is straightfor-

ward. For t = 1, . . . , T , the update θ1 and τ 2
1 satisfies

θ1(t) = S̄N,1 and τ 2
1 (t) = S̄N,2(t)− θ2

1(t),

where S̄N,1(t) =
∑N

n=1 Sn,1(t)/N and S̄N,2(t) =
∑N

n=1 Sn,2(t)/N . Iterate through the

E-step and the M-step until convergence and the MLEs are obtained.

In general, with missing data, the expression of θ̂ is quite involved. Here, we

show its form under a simple but nontrivial setting. Assume constant variance over

time and T = 3. We observe 2 units, with y2 fully observed, and y1 having one

component missing,

1. if y1(1) missing: θ̂(1) = y2(1) + δ, θ̂(2) = y2(2)− y2(1) + δ, θ̂(3) = ȳ(3)− ȳ(2),

where δ = 1
4
(y1(2)− y2(2)) and ȳ(t) denotes the average at time t.

2. if y1(2) missing: θ̂(1) = ȳ(1), θ̂(2) = y2(2)− y2(1) + δ, θ̂(3) = y2(3)− y2(2) + δ,

where δ = 1
4
[(y1(3)− y1(1))− (y2(3)− y2(1))].

3. if y1(3) missing: θ̂(1) = ȳ(1), θ̂(2) = ȳ(2)− ȳ(1), θ̂(3) = y2(3)− y2(2).

The three cases respectively indicate missing to the left, missing in an interval and

missing to the right. Notice that, when there is missing to the left or missing in

an interval, an adjustment δ is added to the usual unbiased estimate. For instance,

consider the missing to the left case, if y1(2) > y2(2), we have θ̂(1) > y2(1). This in-

dicates, the mean estimate at time 1 is adjusted upward if the unit y1 (with missing)

degrades faster than y2 at time 2. For missing to the right, however, this adjustment

is not displayed.
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4.2.4 Model 2: Mean-Variance Structure

We consider now the case where the mean and variance are related by

τ 2(t) = τ 2θα(t).

In this case, ΣZ is diagonal with elements diag{τ 2θα(1), . . . , τ 2θα(T )}. As the value

of α varies, this covers a broad range of mean-variance relationshipss. In particular,

if α = 0, we get the simple increments model with constant variance τ 2(t) = τ 2.

Under this assumption,

Gn(i : j) ∼ N (θi:j(α), τ 2θi:j(α)),

where θi:j(α) :=
∑j

t=i+1 θ
α(t).

The observed likelihood function can be expressed in terms of G:

`(θ, τ 2, α; G) = −1

2

∑
1≤i<j≤T

Nij∑
n=1

{
log(2π) + log τ 2 + log θi:j(α) +

(Gn(i : j)− θi:j)2

τ 2θi:j(α)

}
,

Then, the score functions are

∂`

∂θ(t)
=

∑
i,j

∂`

∂θi:j
· ∂θi:j
∂θ(t)

+
∂`

∂θi:j(α)
· ∂θi:j(α)

∂θ(t)

= −
∑

i,j:i<t≤j


Nij∑
n=1

θi:j −Gn(i : j)

τ 2θi:j(α)
+

 Nij

θi:j(α)
−

Nij∑
n=1

(Gn(i : j)− θi:j)2

τ 2θ2
i:j(α)

 · αθα−1(t)

2


∂`

∂τ 2
= −1

2

∑
i,j

Nij

τ 2
− 1

τ 4

Nij∑
n=1

(Gn(i : j)− θi:j)2

θi:j(α)

 .
∂`

∂α
=

∑
i,j

∂`

∂θi:j(α)
· ∂θi:j(α)

∂α

= −1

2

∑
i,j:i<t≤j

 Nij

θij(α)
−

Nij∑
n=1

(Gn(i : j)− θi:j)2

τ 2θ2
i:j(α)


j∑

t=i+1

log θ(t)θα(t)

The MLEs do not have closed form expressions, but they can be obtained by solving

these score functions numerically. The Hessian of ` can be evaluated to get variance

estimates.
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Now consider the corresponding EM algorithm. Given the current estimate θ0,

α0 and τ 2
0 , we have

Q(θ, α, τ 2 |θ0, α0, τ
2
0 ) =

−
T∑
t=1

N∑
n=1

{
1

2
log(2πτ 2θα(t)) +

1

2τ 2θα(t)

[
Sn,2(t)− 2θ(t)Sn,1(t) + θ2(t)

]}
,

where Sn,1(t) := E(Zc
n(t)|yn,θ0, α0, τ

2
0 ) and Sn,2(t) := E((Zc

n(t))2|yn,θ0, α0, τ
2
0 ). We

will see later that Sn,1(t) only depends on θ0 and α0. The EM algorithm is similar

to that of the previous independent increment case with only mild modification. In

the E-step, given an observation with missing in an interval `+ 1, . . . , u,

Sn,1(t) = θ0(t) +
θα0 (t)

θα0 (`+ 1) + · · ·+ θα0 (u)

(
yn(u)− yn(`)−

u∑
k=`+1

θ0(k)

)

Sn,2(t) = S2
n,1(t) +

(
1− θα0 (t)

θα0 (`+ 1) + · · ·+ θα0 (u)

)
τ 2

0 θ
α0
0 (t).

Missing to the left is a special case of with ` = 0. When there is missing to the right,

it is the trivial case with Sn,1(t) = θ0(t) and Sn,2(t) = θ2
0(t) + τ 2

0 θ
α0
0 (t). It is obvious

that the expectations are not linear in θ anymore.

On the other hand, in the M-step, the update θ1, α1 and τ 2
1 satisfies

α1τ
2
1 =

α1

θα1
1 (t)

S̄N,2(t)− 2(α1 − 1)

θα1−1
1 (t)

S̄N,1(t) +
α1 − 2

θα1−2
1 (t)

, t = 1, . . . , T, (4.5)

τ 2 =
1

T

T∑
t=1

S̄N,2(t)− 2S̄N,1(t)θ1(t) + θ2
1(t)

θα1
1 (t)

, (4.6)

T∑
t=1

log θ1(t) =
1

τ 2
1

T∑
t=1

log θ1(t) · S̄N,2(t)− 2S̄N,1(t)θ1(t) + θ2
1(t)

θα1
1 (t)

, (4.7)

Combining the T equations in (4.5) and plugging in (4.6), we have

T∑
t=1

S̄N,1(t)

θα1−1
1 (t)

=
∑
t=1

1

θα1−2
1 (t)

,
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Especially, when α = 2, we have

T∑
t=1

S̄N,1(t)

θ1(t)
= T,

S̄N,2(i)

θ2
1(i)

− S̄N,1(i)

θ1(i)
=

S̄N,2(j)

θ2
1(j)

− S̄N,1(j)

θ1(j)
, ∀i, j ∈ {1, . . . , T},

Iterate through the E-step and the M-step until convergence and the MLEs are ob-

tained.

4.3 Inference under Gamma Model

The procedures proposed in the last section can be generalized to the exponen-

tial family. Here we will briefly discuss the gamma case, i.e., Zc
n(t)’s are gamma

distributed with shape parameter κ(t) and common scale parameter θ. When the in-

crements Zc
n(t)’s are assumed to be gamma distributed, we cannot model directly the

missing Yn(t)’s, and we focus on the missing Zn(t)’s. We consider the independent

increment model here, i.e., Zc
n(t) ∼ G(κ(t), θ). Write κ = (κ(1), . . . , κ(T )). Then,

we have Gn(i : j) ∼ G(κij, θ), where κi:j =
∑j

t=i+1 κ(t).

The observed likelihood function can be expressed in terms of G:

`(κ, θ; G) =
∑

1≤i<j≤T

Nij∑
n=1

{
(κi:j − 1) log(Gn(i : j))− 1

θ
Gn(i : j)− κi:j log θ − ψ(κi:j)

}
,

where ψ(·) is the logarithem of gamma function. The score functions are

∂`

∂κ(t)
=

∑
i,j

∂`

∂κi:j
· ∂κi:j
∂κ(t)

=
∑

i,j; i<t≤j

Nij∑
n=1

logGn(i : j)−Nij log θ −Nijψ
′(κi:j),

∂`

∂θ
=

∑
i,j

 1

θ2

Nij∑
n=1

Gn(i : j)− Nijκi:j
θ

 .

Even though the MLEs do not have closed form expressions, they can be obtained

by solving these score functions numerically. The Hessian of ` can be evaluated to

get variance estimates. However, the convergence could be slow when T is large.
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Consider the EM algorithm now. Given the current estimate κ0 and θ0,

Q(κ, θ|κ0, θ0) =
T∑
t=1

N∑
n=1

{
(κ(t)− 1)Sn,3(t)− 1

θ
Sn,1(t)− κ(t) log θ − ψ(κ(t))

}
,

where Sn,3(t) := E(logZc
n(t)|Gn(i : j),κ0, θ0) and Sn,1(t) = E(Zc

n(t)|Gn(i : j),κ0, θ0).

Since independent increments are assumed, the expectation of the right missing ob-

servations Zc
n(t) follows its unconditional distribution, i.e., G(κ(t), θ). Thus, Sn,1(t) =

κ(t)θ. The nontrivial case is to find the conditional distribution of interval missing

observations (left missing included). Given Gn(i : j), we have

Zc
n(t)

Gn(i : j)
∼ B(κ(t), κi:j − κ(t)), for t = i+ 1, . . . , j,

which follows a Beta distribution. Therefore, Sn,1(t) = Gn(i : j)×κt/κi:j. Sn,3(t) does

not have a close form expression based on this distribution, but can be approximated

by Monte Carlo methods.

As for the M-step, the update cannot be obtained explicitly and is found by using

numerical method such as Newton-Raphson.

Iterating through the E-step and the M-step, the MLEs are obtained at the con-

vergence. Under this setting, the variance estimate of MLEs cannot be obtained as

the normal case, so are approximated by numerically evaluate the Hessian of ` at the

MLEs.

4.4 Functional Regression and Analysis of Variance

In Section 4.2, the inference problem based on iid samples was discussed. Now we

study the extension to regression problem for normal independent increment models,

i.e.,

Zc
n(t) = x′nβ(t) + εn(t), where εn(t) ∼ N (0, τ 2(t)),
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where xn is the d-dim covariates associated with the n-th observation, and β(t) the

corresponding covariate effects at time t. The inference here includes the estimation

of the covariate effect β(t), t = 1, . . . , T . Without confusion, later denote β as {β(t),

t = 1, . . . , T}, a T × d matrix. Therefore,

Zc
n ∼ MVN T (x′nβ,ΣZ). (4.8)

The direct likelihood estimation can be done as before. For yn, its covariance

matrix still ΣY , but the mean is now µn with µn(t) =
∑t

k=1 x
′
nβ(k). As for the EM

algorithm, the E-step is mostly unchanged; however, the expectations Sn,1(t) and

Sn,2(t) are calculated under (4.8). The M-step update is obtained by performing a

least square fit on Sn,1(t) over a N × d design matrix X, with xn in its n−th row.

Then, the update satisify

β(t) = (X
′
X)−1X

′
S1(t),

τ 2(t) =
1

N

Nt∑
n=1

K∑
i=1

{
Sn,2(t)− [x′nβ(t)]2

}
,

where S1(t) = {S1,1(t), . . . , SN,1(t)} .

The ANOVA problem is a special case here. Assume we have K samples with

Zc
n,i(t) = θ(t) + ηi(t) + εn(t), i = 1, . . . , K, n = 1, . . . , Ni

where i indicates the ith subgroup, Ni the number of observations present in the

group, εn(t) ∼ N(0, τ 2(t)) and we impose the constraint that
∑K

i=1 ηi(t) = 0, ∀t.

Hence, ηK(t) is determined by η1(t), . . . , ηK−1(t) at each t = 1, . . . , T .

Now denote ηi = (ηi(1), . . . , ηi(T )) and β = (θ,η1, . . . ,ηK−1). Then, the EM

algorithm proposed for the regression problem can be readily applied. In the M-

step, the design matrix X used in the least square fit is changed: at time t, pool

the observations from the K samples together, abuse the notation a bit and write
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them as Sn,1(t). If Sn,1(t) is from the i−th sample, with i < K, the n−th row of

X is (1, 0, . . . , 1, . . . , 0). If Sn,1(t) is from the K−th sample, the n−th row of X is

(1,−1,−1, . . . ,−1).

For the ANOVA problem, the MLE of β̂ satisfies

θ̂ = (
K∑
i=1

Ai)
−1

N∑
i=1

bi,

η̂i = A−1
i bi − θ̂, i = 1, . . . , K − 1,

where Ai and bi are the coefficient matrix and vector defined in Section 4.2, for

the i−th sub-sample (iid’s within). Besides, the observed information (KT ×KT )

associate with β̂ is D−1
∑K

i=1D
−1Ai D−1AK · · · D−1AK

D−1AK D−1(A1 +AK) · · · D−1AK
· · ·

D−1AK D−1AK · · · D−1(AK−1 +AK)


With the estimation procedure proposed, we can test the hypothesis

H0 : η1(t) = η2(t) = · · · = ηK(t), t = 1, . . . , T

by using the variance estimate of η̂i, i.e., if the constructed confidence band of η̂i

includes 0 at all time, H0 cannot be rejected.

The one-way ANOVA is performed on the pavement distress indices data. The

estimate η̂i, i = 1, . . . , 4 and their confidence bands are plotted in Figure 4.2. Note

that they are on the increment scale instead of the original distress index scale.

The 4 subgroups represent 4 different materials used to construct the pavement, i.e.

Sand and Gravel, Quarry, Crushed Concrete and Blast Furnace Slag. We see the

pavement group constructed by Quarry degrades significantly faster than the grand

mean around year 10, while pavements constructed with Crushed Concrete behave

significantly better around then. Besides, pavements constructed with Sand and
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Gravel degrades significantly faster than the grand mean θ after year 20. For the

other 3 groups, the variation is too large to judge whether the trends are real at the

end.
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Figure 4.2: Estimate of the Design Effect on Pavement and 90% Confidence Band

4.5 Imputation of the Missing Degradation Data

We have discussed inference for µ(t) and σ2(t) based on incomplete degradation

data under various settings. Now, we are interested in imputing the missing Yc
n

based on the estimates from the proposed procedures. This can be done by using
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the calculation of Sn,1(t) in the E-step of the proposed EM algorithm to fill in the

missing.

Consider the simple case, i.e., independent increments with constant variance.

Suppose we obtain the MLE of the mean θ̂n and the variance τ̂ 2 of Zc
n (no matter

from an iid sample or regression) and their variance estimates V̂ (θ̂n) = Σ̂−1
Z Â and

V̂ (τ̂ 2). If yn is missing in between ` and u, we have, for t = `+ 1, . . . , u,

Ŝn,1(t) = θ̂(t) +
1

u− `

[
yn(u)− yn(`)−

u∑
k=`+1

θ̂(k)

]
.

If yn is missing to the right with the right-most observation at `, it is easy to see

Ŝn,1(t) = θ̂(t), t = ` + 1, . . . , T . Once we fill in the missing of Zc
n with Ŝn,1(t),

the imputed values of Yc
n is easy to get. The missing to the left case is a special

case of missing in the interval by letting yn(`) = 0. Besides, the confidence band

can be obtained exactly here, since the expectation of Ŝn,1(t) is linear in θ̂, i.e.,

Ŝn,1(t) = c′nθ̂. Thus, V̂ (Ŝn,1(t)) = c′nV̂ (θ̂)cn = c′nΣ̂−1
Z Âcn, and consequently the

confidence band obtained by imputing Y c
n (t) for t /∈ Tn. Notice that here V̂ (τ 2) is

not needed for the computation.

Under other settings, the imputation of the missing Yc
n can be similarly done

but with different expectation forms for the missing Zc
n. For instance, 1) if Zc

n(t) ∼

N (θ(t), τ 2θα(t)). Given (θ̂, τ̂ 2, α̂). the interval missing observations with its left-most

observation yn(`) and right-most observation yn(u) has

Ŝn,1(t) = θ̂(t) +
θ̂α̂(t)

θ̂α̂(`+ 1) + · · ·+ θ̂α̂(u)

(
yn(u)− yn(`)−

u∑
k=`+1

θ̂(k)

)
,

for t = ` + 1, . . . , u. The left missing is a special case of the interval missing with

` = 0. When there is missing to the right, we have Ŝn,1(t) = θ̂(t). 2) For the gamma

model, i.e., Zc
n(t) ∼ G(κ(t), θ). Given (κ̂, θ̂) and Gn(i : j), for interval/left missing

Zc
n(t)

Gn(i : j)
∼ B(κ̂(t), κ̂i:j − κ̂(t)), for t = i+ 1, . . . , j.
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Therefore, Ŝn,1(t) = Gn(i : j) × κ̂(t)/κ̂i:j. If there is right missing, Ŝn,1(t) = κ̂(t)θ̂.

Besides, the confidence band can be approximated by delta method.

Figure 4.3 gives two imputed degradation paths from the pavement data. We

estimate the parameters by assuming the increments are independent over time. The

black points are the censored yn, joined if consecutive data are available. The missing

is quite severe for these pavement data. The red dash line gives the imputation, along

with its 95% confidence band in black dash lines. The observation in the left panel

suffers from left, interval and also right missing. The one in the right panel has right

missing early on. Comparatively, the missing is more severe in the left panel, the

variation accumulates and results in the wide confidence band associated with the

imputation after year 20.
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Figure 4.3: Imputed Degradation Path Along with 95% Confidence Band

The imputation of the right missing observations (as in the right panel) can be

viewed as the prediction of the degradation in the future. This helps to predict

how the unit will degrade in the future, and whether the failure may occur in a

certain time period; however, note that the prediction can only be done for time

smaller than T , since we estimate µ(t) nonparametrically. For these two projects in
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particular, either of them reaches 50 at the end of inspection. In order to do a long

term prediction, parametric form should be imposed on µ(t).



CHAPTER V

Future Work

This chapter describes some areas and ideas of future work in each of the three topics

discussed in the previous three chapters.

I. Inference for Multi-State Models with Censored Data

1. A major disadvantage of the algorithms developed in Chapter II is that they

are computationally intensive and work only for moderate number of states.

They do not scale up to situations with a large number of states. So, further re-

search is needed in several directions: a) speeding up the algorithms, by writing

more efficient code, parallelizing the code, or possibly using approximations; b)

develop other estimating equations that are easier to handle computationally

and led to reasonably efficient etimators.

2. Initial examination of non-parametric maximum likelihood estimation methods

indicated that there were severe non-uniqueness problems. Additional work is

needed to understand and develop appropriate constraints to resolve the non-

uniqueness problems or characterize all possible solutions.

3. Once a non-parametric approach is available, it will be of interest to develop

107
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graphical and goodness-of-fit methods for selecting appropriate parametric fam-

ilies and doing parametric inference.

4. The consumer credit loan application that motivated our research does not fit

into the formulation in this research. The time-to-move to another state is not

random but fixed by the definition of the state: one-month delinquent, two-

month delinquent, etc. Further, cycling back from being n−month delinquent

to being current is allowed, so it is not strictly progressive. One way to address

the non-progressive nature of the problem is to add additional states, such as

current but previously nmonth delinquent once, or more than once, etc. While

this will increase the number of states, the problem is still manageable because

customers are allowed only at most 6 months of delinquency before defaulting.

There is an extensive amount of data available, including socio-demographic

characteristics, to model these multi-state data and address specific questions

of practical interest.

5. Another area includes inference with time-varying covariates.

II. Comparing Two Methods for Analyzing Time-to-Failure

The main goal of this research was to quantify and document the gains to be made

from using the multi-state process data to analyze time-to-failure. A much more ex-

tensive documentation of the results for other distributions is probably not of much

value, as this research already makes a compelling case. One interesting area for fu-

ture research is comparison of the estimators in non-parametric and semi-parametric

situations.
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III. Analysis of Degradation Data with Missing Patterns

This work is in its early stages and there are many avenues for future research.

1. There is extensive work in modeling and analysis of growth curves and lon-

gitudinal data, including a discussion of the use of marginal and conditional

approaches as well as random effect models. There is also extensive use of gen-

eralized estimating equations (GEE). We propose to examine the connections

to these areas, especially on the use of estimating equations, development of

robust methods and comparisons to the normal-theory based methods.

2. Even within the context of normal-theory models and a general variance-

covariance matrix Σ, the dimension of the matrix grows with the number of

observations T . It would be interesting to examine the use of sparse methods

of inference for Σ, with some structure since the data are ordered over time.
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0.1 Panel Data: Extension to Right Censoring and Exact
Failure

Since the sampling procedure of the complete history Z depends on the censoring

pattern of the observed y, we illustrate how to sample for right-censored/exact fail-

ured y along with interval censoring. First suppose that exact failure is also observed

in y. Consider a 3-state progressive model with 2 possible paths: (1, 2, 3) and (1, 3).

Now the exact failure time is observed along with panel data and sample Z based on

y = (t1, 1, t2, 3)∪{T = t2}. We need to augment δ here. Let δ = 1 when i = (1, 2, 3),

δ = 2 when i = (1, 3), and τ
(ij)
s as the s−th transition made from state i to state j.

The distribution of z = (δ, τδ) given θ and y follows (2.12) with

g(y|δ = 1, τδ)f(δ = 1, τδ|θ) =

1{τ1 ∈ (t1, t2) ∪ τ2 = t2 − τ1} × p12f12(τ1)p23f23(t2 − τ1), (0.1)

g(y|δ = 2, τδ)f(δ = 2, τδ|θ) = 1{τ1 = t2} × p13. (0.2)

To propose new jump from path 2 to path 1, the following dimension transfor-

mation transform is used, i.e., (τ
(12)
1 , τ

(23)
2 ) = TExact2→1 (τ

(13)
1 ):

τ
(12)
1 = t1 + u(τ

(13)
1 − t1), τ

(23)
2 = τ

(13)
1 − τ (12)

1 ,

where u ∼ U(0, 1). If the current iterate takes path 1, the following transformation

is used, i.e., τ
(13)
1 = TExact1→2 (τ

(12)
1 , τ

(23)
2 ): τ

(13)
1 = τ

(12)
1 + τ

(23)
2 . As for the update within

each path, since we observe the exact absorbing time of the system, there is no need

to sample for path 2. To sample for path 1, Metropolis-Hastings sampling is used.

With the 3-state model, τ
(23)
2 is determined by τ

(12)
1 , so no Gibbs sampling is needed.

Based on (0.1), we sample τ
(12)
1 from density pE12(·):

pE12(τ
(12)
1 ) ∝ 1{τ (12)

1 ∈ (t1, t2)} × f12(τ
(12)
1 )f23(t4 − τ (12)

1 ).
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For general distribution families, we cannot sample exactly from pE12(·) (even without

truncation). Random walk Metropolis-Hasting is used to do the update. Here,

because of the truncation, the new draw is rejected if outside of (t1, t2). The transition

kernel used for this case, is a one-dimension normal distribution N (τ
(12)
n−1,1, (

c
2
(t2 −

t1))2), where c is a scaling parameter. Note that, if the path involves more than 2

transitions, Metropolis-within-Gibbs is needed.

When right censoring is present, the complete history z = (δ, τδ) denotes the SMP

observed till the last observation point and il(i) < p. Now consider a 4-state model,

with possible paths (1, 2, 3, 4), (1, 2, 4), (1, 3, 4) and (1, 4). Given y = (t1, 1, t2, 3),

the distribution of z given θ and y follows (2.12) with

g(y|δ = 1, τδ)f(δ = 1, τδ|θ) ∝

1{τ1, τ1 + τ2 ∈ (t1, t2)} × p12f12(τ1)p23f23(τ2)S3(t2 − τ1 − τ2),

g(y|δ = 2, τδ)f(δ = 2, τδ|θ) ∝ 1{τ1 ∈ (t1, t2)} × p13f13(τ1)S3(t2 − τ2),

where δ = 1 if i = (1, 2, 3), δ = 2 if i = (1, 3). Here we denote Si(t) =
∑

j Qij(t)

the survival function for the sojourn time in state i. In this case, we have S3(t) =

1−F34(t) since the system can only go to state 4 afterwards. The dimension matching

transformation T2→1 defined in (2.16) can be used with the new p(τδ|θ,y, δ) plugged

into α2→1. As for the update within each path, Metropolis-Hastings algorithm is

needed as the exact failuare case.
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