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CHAPTER I

Introduction: Integer Points of Polytopes

A polytope, here used interchangeably with bounded convex polytope, may

be variously defined as

(i) the convex hull of finitely many points in Rn,

(ii) a bounded region formed by the intersection of half-spaces in Rn, or

(iii) a bounded region formed as the locus of solutions x ∈ Rn to a system of linear

inequalities Ax ≤ b, where A is a real m× n matrix, b is a real m-vector, and

the inequality is understood componentwise.

Definitions (ii) and (iii) are easily seen to be equivalent. Their equivalence to (i)

is only slightly more difficult (a proof is given in [37]), but it can be quite hard to

recover a description of a specific polytope in form (i) from a description in form (ii)

or (iii), or vice versa. This problem lies beyond the scope of our efforts, and we will

assume that the polytopes we work with are given in a form similar to (iii):

Definition I.1. A polytope in standard form is a bounded region of the form

{x ∈ Rn : x ≥ 0, Ax = b},

where A is a real m × n matrix, b is a real m-vector, and (in)equality of vectors is

understood componentwise.

1
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Clearly, a polytope in standard from is a polytope as defined in (iii), but the

converse is true only in a special sense, which we now explain. A polytope is called

rational if it can be written in form (iii) with all entries of A and b integers. (This

turns out to be equivalent to having a description of type (i) in which all points have

rational coordinates. A polytope whose vertices are integer points is called a lattice

polytope.) We borrow a definition from [23]:

Definition I.2. Let P ⊂ Rp, Q ⊂ Rq be polytopes, where p ≤ q. We say that

Q represents P if there is an injection σ : {1, . . . , p} → {1, . . . , q} such that the

coordinate-erasing projection π : Rq → Rp taking (x1, . . . , xq) to (xσ(1), . . . , xσ(p))

induces a bijection of Q onto P . If, moreover, π induces a bijection between the

integer points of Q and the integer points of P , then we say that Q represents P

with respect to integer points.

For every rational polytope P , there is a polytope Q in standard form which

represents P with respect to integer points. We may obtain Q by translating P

by an integer vector so that it lies in the principal orthant, and by introducing

“slack variables” which turn inequalities into equations. For instance, the inequality

a1x1 + · · · + anxn ≤ b may be rewritten as a1x1 + · · · + anxn + y = b, where y ≥ 0.

When our purpose is to count the integer points of P , its representation Q will do

just as well.

1.1 Why count integer points of polytopes?

Many objects of combinatorial interest can be expressed as the integer points of

some polytope. We give a tour of a few well-known examples, with applications of

counting interspersed throughout.
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1.1.1 Feasible flows

A network is a triple (G, b, k), where G = (V,E) is a finite directed graph,

b : V → R is a function on the vertices (called the excess or demand), and

k : E → R≥0 ∪ {∞} is a function on the edges (called the capacity).1 A feasi-

ble flow on this network is a function x : E → R≥0 such that

(i) For every v ∈ V , we have
∑
e∈E:

v=head(e)

x(e)−
∑
e∈E:

v=tail(e)

x(e) = b(v).

(ii) For every e ∈ E, we have x(e) ≤ k(e).

Note that for condition (i) to be satisfiable, the total excess on all vertices must equal

zero.

Conditions (i) and (ii) are linear. If G is acyclic, then these conditions define a

bounded region (hence a polytope) called the flow polytope of the network; it may

be concisely described as

{x ∈ RE : Ax = b, 0 ≤ x ≤ k},

where A is the signed vertex-edge incidence matrix of G. The integer points of this

polytope are (sensibly enough) called integer feasible flows. Exact counting of

integer feasible flows is a #P -complete problem in terms of the length of the input

A, b(, k).2 An algorithm is given in [2], where applications of counting flows are also

discussed. Several of the objects to follow in this list are instances of feasible flows.

1.1.2 Contingency tables

A contingency table is defined as a nonnegative integer matrix with specified row

and column sums, called the margins. Given vectors

R = (r1, r2, . . . , rm) ∈ Zm≥0 and C = (c1, c2, . . . , cn) ∈ Zn≥0

1The capacity is conventionally denoted by the letter c, but we wish to reserve this letter for other purposes later.
2The class #P consists of counting problems for which the corresponding decision problems are NP . A #P

problem is #P -complete if every #P problem can be reduced to it.
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such that

r1 + r2 + · · ·+ rm = c1 + c2 + · · ·+ cn = N,

we denote by Π(R,C) the set of all X =
(
xij
)
∈ Rm×n

≥0 such that

n∑
j=1

xij = ri (1 ≤ i ≤ m) and
m∑
i=1

xij = cj (1 ≤ j ≤ n).

Then Π(R,C) is a polytope, called the transportation polytope associated to R

and C, and its integer points are the contingency tables with margins R and C. (We

may call N the 0-margin.)

The name of the transportation polytope comes from its interpretation as the

flow polytope of a complete bipartite graph Km,n with all edges directed from the

vertices of the first component (“sources”) to the vertices of the second component

(“sinks”). Source i is assigned negative excess −ri, sink j is assigned positive excess

cj, and xij is understood as the flow from source i to sink j, so that a feasible flow

across the network represents a schedule for transporting goods from sites of supply

to sites of demand.3 Because the underlying graph of the network is bipartite, we

may eliminate all signs from A and b in the standard form of the transportation

polytope. The matrix A then has the characteristic form

(1.1)



1 1 · · · 1
1 1 · · · 1

. . .

1 1 · · · 1
1 1 1

1 1 · · · 1
. . .

. . .
. . .

1 1 1


.

3As an aside, given a cost function w : E → R≥0 on the edges of G, and defining the cost of a flow x as∑
e∈E w(e)x(e), we may ask what is the cheapest feasible flow satisfying the excess constraints; this is the trans-

portation problem. In this context, the integer feasible flows are the natural candidates in case the goods in question
can only be transported in discrete units. But even if the goods are arbitrarily divisible, it turns out [34] that the
optimal flow is integer-valued whenever the same is true of the excess and capacity functions.
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As with networks in general, we may consider a capacity-constrained version of

the problem. Given K ∈ (R≥0 ∪ {∞})m×n, let

ΠK(R,C) := {X ∈ Π(R,C) : X ≤ K entrywise}.

We call the integer points of ΠK(R,C) K-bounded contingency tables. By set-

ting some entries of K equal to zero, we obtain tables representing feasible flows on

an arbitrary subgraph of Km,n, hence on an arbitrary bipartite (source-sink) graph.

In fact, given any acyclic (not necessarily bipartite) network on n vertices, there is

a bijective encoding of integer feasible flows on that network as contingency tables

(see [6]); thus these two objects are essentially equivalent.

Contingency tables arise in the empirical sciences, where they represent the joint

distribution of categorical variables (e.g., hair color and eye color) in a sample. The

problems of counting and sampling contingency tables are intimately related to sta-

tistical significance testing. We will say more about this connection in Section 3.1.

Enumeration of bounded contingency tables is the main “case study” in the

present dissertation. For previous work on this subject, see [21], where the com-

plexity of the problem is addressed.

1.1.3 Multi-way tables and flows on hypergraphs

As we have seen, contingency tables can represent the joint distribution of two

categorical variables. We can extend this idea to more than two variables. Let

X =
(
xj1j2···jr

)
be an order-r tensor of dimensions n1 × n2 × · · · × nr. By a partial

index specification (or p.i.s.), we mean an element of the set

{·, 1, 2, . . . , n1} × {·, 1, 2, . . . , n2} × · · · × {·, 1, 2, . . . , nr},

where the symbol ‘·’ is understood as an unspecified index. The number of specified

indices is called the order of the p.i.s. We say that a p.i.s. masks all entries xj1j2···jr
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of X whose indices agree with those specified by the p.i.s. The sum of all entries

of X masked by a given order-k p.i.s. is called a k-margin of X, and a k-margin

r-way contingency table is defined as a nonnegative integer order-r tensor whose

k-margins are equal to some specified values. (Thus an ordinary contingency table

is a 1-margin 2-way table.) Dropping the integrality condition, the set of r-way

tables with given margins is a polytope, called the multi-index transportation

polytope [54].

Multi-way tables are poorly behaved; for example, the set of integers obtainable

in a given position of a 3-way table with given 2-margins is not necessarily an interval

of Z [24], and the existence of a 3 × m × n table with given 2-margins is an NP-

complete problem. De Loera and Onn [23] put this fact into context by showing that

every rational polytope is represented with respect to integer points by a multi-index

transportation polytope whose points are 3×m× n tables with specified 2-margins.

Therefore, the problem of counting integer points of polytopes reduces to counting

such tables.

A hypergraph is a pair (V,E), where V is a set whose elements are called vertices

and E is a set of subsets of V having arbitrary size, which are known as edges. There

are multiple notions of directed hypergraphs in the literature. Cambini, Gallo, and

Scutellà [19] consider flows on hypergraphs in which each edge has a single “head”

but (possibly) several “tails.” These flows are again the points of a polytope, but

they do not correspond to multi-way tables and we will not consider them further.

1.1.4 Knapsack packings

Even the integer points of a right-angled simplex are of interest, as the following

problem shows. Suppose we are going camping with a knapsack which will bear

weight b ∈ R≥0. Subject to this limitation, we wish to pack the most useful set of
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supplies from a store of n distinct items with weights a1, a2, . . . , an > 0. If these

items are available in unlimited quantity, then the feasible packings are the integer

points of the simplex

{x = (x1, x2, . . . , xn) ∈ Rn
≥0 : 〈a,x〉 ≤ b}.

We may introduce additional constraints 0 ≤ xi ≤ ki to represent finite availability

of the items; in this case, the underlying polytope is not a simplex, but a cuboid (i.e.,

a right-angled parallelepiped) truncated by a hyperplane.4 Integer points of these

polytopes have other interpretations as well, for instance in homology theory [55]

and number theory [70]. (Notably, the integer points of the simplex

{x = (x1, x2, . . . , xd) ∈ Rd
≥0 : x1 + 2x2 + · · ·+ dxd = n}

correspond to partitions of the integer n into parts not greater than d.)

The problem of counting knapsack packings is #P -complete in terms of the dimen-

sion n or the full input length [68, 35]. Polynomial-time randomized approximation

schemes exist [53, 28], whereas the fastest known algorithms which give an exact

answer require time exponential in n [56]. Some recent bounds are given in [70].

1.1.5 Perfect matchings of graphs

Given a graph G = (V,E), a perfect matching of G is a subset M ⊆ E of the

edges such that each vertex v ∈ V belongs to exactly one edge in M . The indicator

functions of perfect matchings of G are the integer points of the polytope

(1.2) {x ∈ RE
≥0 : Ax = 1V },

where A is the (unsigned) vertex-edge incidence matrix of G, and 1V denotes the

vector of length |V | with all entries equal to 1. (This polytope should not be confused
4To complete the specification of the programming problem we have alluded to, we should assign each item a

value as well; the objective is to maximize total value over the set of feasible packings. However, we will restrict our
attention here to the packings themselves.
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with the smaller perfect matching polytope, defined as the convex hull of the

indicator functions of perfect matchings. A presentation of that polytope is given in

a well-known paper of Edmonds [29].)

Given the similarity of polytope (1.2) to the other polytopes we have described,

it comes as no surprise that counting perfect matchings is, again, #P -complete [67].

(However, a polynomial-time randomized approximation scheme is given in [44].

Also, the special case of G planar and bipartite is more tractable [46, 65].) This

counting problem is of major importance in statistical physics (we cannot hope to

encompass the literature here, but see e.g. [58], [51], [50]). Counting also has an

application to computing matrix permanents. The permanent of an n × n matrix

X =
(
xij
)

is defined as

perX :=
∑
σ∈Sn

n∏
i=1

xi,σ(i),

where Sn is the symmetric group. If X is a 0-1 matrix, then there is a bipartite graph

on n+ n vertices whose biadjacency matrix is X; the permanent of X is then equal

to the number of perfect matchings of that graph. As we will see in Section 3.2,

matrix permanents play a role in the enumeration of contingency tables.

Like network flows, perfect matchings may be generalized to hypergraphs, see

e.g. [1].

1.1.6 Magic squares, Latin squares, etc.

Among contingency tables, some special margins have attracted interest. Most

fundamental are the 2-way tables with margins R = C = (1, 1, . . . , 1)—otherwise

known as permutation matrices. The corresponding polytope, Π(1,1), is known

as the Birkhoff polytope; that the permutation matrices are its vertices is the

statement of the Birkhoff–von Neumann theorem.
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Although the problem of enumerating permutation matrices may be considered

safely dead, it has some simple generalizations which, though old, are very much

alive. Of the various classes of objects known as magic squares, the most basic

are n × n tables with constant margins, R = C = (t, t, . . . , t).5 These are discussed

in [14], where a quasi-polynomial-time randomized approximation algorithm for the

number of magic squares is given. An asymptotic formula appeared in [20].

More general than magic squares are contingency tables with “smooth” margins,

a class defined in [13] which includes tables with sufficiently near-constant margins.

An algorithm approximately counting such tables is given in [13], and an asymptotic

enumeration appears in [11].

A Latin square of order n is an n × n matrix with entries in {1, 2, . . . , n},

arranged so that each row and each column contains each of 1, 2, . . . , n exactly once.

Latin squares are a basic object in the theory of experimental design; the essential

treatise on the subject is [25]. A Latin square of order n contains the same informa-

tion as an n×n×n 3-way table with all 2-margins equal to unity; thus Latin squares

are a natural analogue of permutation matrices. However, the obvious analogue of

the Birkhoff–von Neumann theorem for these n × n × n tables does not hold, since

there are non-integer tables with all 2-margins equal to 1 which do not lie in the

convex hull of the integer tables with 2-margins equal to 1.

Euler appears to have been the first to investigate the number of Latin squares

of order n. The best known upper and lower bounds on this number appear in [69],

where they are shown to differ by an eO(n2) factor. The analysis is improved in [66],

where it is shown that the bounds of [69] actually differ by a factor of eO(n log2 n).

(This same paper proposes a number of conjectures which would improve the error to

5These are sometimes called semi-magic squares by authors who reserve the term magic squares for those whose
diagonal sums are equal to their row and column sums.
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simply exponential or better, but we are not aware of any strong evidence supporting

these claims.)

1.2 The challenge of counting: a brief (and partial) history

One of the oldest results concerning integer points of polytopes is

Theorem I.3 (Pick [57]). If P is a convex polygon with vertices in Z2, then

Area(P ) = I +
1

2
B − 1,

where I is the number of interior integer points of P and B is the number of integer

points on the boundary of P .

It follows from Pick’s theorem that the number of integer points in tP (the di-

latation of P by a factor of t) is a polynomial in t. Much of the modern theory of

integer points of polytopes stems from the following generalization:

Theorem I.4 (Ehrhart [30]). Given a lattice polytope P ⊂ Rn, let

`P (t) := |tP ∩ Zn|, t ∈ Z≥0.

Then `P (t) is a polynomial in t (now called the Ehrhart polynomial).

The Ehrhart polynomial encodes a wealth of combinatorial information about P .

Its degree is the intrinsic dimension of P ; its leading coefficient is the volume of P ,

up to a trivial normalization. As shown by Macdonald [52], for t ∈ Z>0, the value

|`P (−t)| gives the number of integer points in the relative interior of tP . For a good

introduction to “Ehrhart theory,” the reader is referred to [71].

Using complex analysis, Beck and Pixton [15] computed the Ehrhart polynomial of

the Birkhoff polytope, which counts magic squares (see Section 1.1.6). Generalizing
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their approach, Baldoni-Silva et al. computed the Ehrhart polynomials of transporta-

tion and flow polytopes in [2]. Their algorithms are tractable (i.e., polynomial-time)

in fixed dimension, but when the dimension n is allowed to vary, they run aground on

the fundamental hardness (specifically #P -completeness) of the counting problems

which they solve. The same is true of an algorithm of Barvinok [5], which uses a

decomposition of P into cones to compute a short rational function representation

for a generating function encoding the integer points of P .

Because of this obstacle, there is a need for approximations and bounds on |P∩Zn|

which can be computed quickly when n is large. One approach is Monte Carlo

simulation, which in its most basic form consists of “throwing darts” at the integer

points of a low-complexity region Q (such as a box) containing P and observing how

often the darts hit integer points of P . Thanks to the law of large numbers, the

frequency of “hits” almost surely converges to the ratio |P ∩ Zn|/|Q ∩ Zn|.

The problem with this method is that, when n is large, this ratio may be so mi-

nuscule that the time until the first “hit” is impractically large, to say nothing of the

convergence rate! For example, the smallest coordinate-axis-aligned box containing

the standard unit simplex

{x = (x1, x2, . . . , xn) ∈ Rn
≥0 : x1 + x2 + · · ·+ xn = 1}

is [0, 1]n, which has 2n integer points; the simplex, by comparison, has n+ 1 integer

points. Clearly, a more refined approach is needed.

We have already mentioned the paper of Dyer [28], which combines dynamic

programming with “dart-throwing” to approximately count knapsack packings and

contingency tables with a fixed number of rows. The idea may be glossed as follows:

For a polytope

P = {x ∈ Rn : x ≥ 0, Ax = b}
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with A,b integral, we substitute

P ′ = {x ∈ Rn : x ≥ 0, A′x = b′}

where A′,b′ are integral, of fixed magnitude (relative to n), and as close to a propor-

tional scaling of A,b as the preceding conditions will allow. Thus P ′ may be thought

of as a “low-resolution” simulacrum of P whose integer points may be counted via

dynamic programming6 in time depending only on n. Dyer shows that (in the cases

he discusses) P and P ′ have the same number of integer points up to a small factor

(e.g., this factor is bounded by n+1 in the case of knapsack packings). The tabulated

data may then be used to throw darts uniformly at the integer points of P ′ (which

contains P ), improving the estimate of the relative error. In the case of knapsack

packings and contingency tables with a fixed number of rows, this algorithm is a

fully-polynomial randomized approximation scheme (or FPRAS), meaning

that for any fixed p ∈ (0, 1), it estimates |P ∩ Zn| to within a factor of 1 ± ε with

probability p in time polynomial in both n and ε−1. Dyer’s method is apparently

too weak to produce an FPRAS for contingency tables of arbitrary dimension.

Another randomized approach to integer point enumeration is Markov chain

Monte Carlo (MCMC) simulation, which aims to sample the integer points of P

(almost) uniformly by means of a random walk. Such walks have been constructed,

e.g., for Latin squares [41] and for perfect matchings of a bipartite graph [44]; the

latter construction proved sufficient for an FPRAS which computes the permanent of

a 0-1 matrix. Jerrum, Valiant, and Vazirani showed [45] that approximate counting

of the integer points of a polytope is of equivalent complexity to “almost uniform

sampling” from that set. The main difficulty of MCMC typically lies not in the

6That is, by iteratively solving subproblems—in this case, tabulating a function which counts solutions to trun-
cations of the system A′x = b′′, for b′′ ≤ b′.
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construction of a random walk, but in establishing a good mixing rate [22]. For a

more detailed introduction to MCMC simulation, the reader is directed to [26].

Recently, following up a series of papers [7], [8], [9] suggesting a role for entropy

in the enumeration of contingency tables, Barvinok and Hartigan [12] proposed a

general approach to integer point counting (and sampling) based on the maximum

entropy principle. This approach forms the background for the present work, and we

discuss it further in Section 2.2.

1.2.1 Objectives and organization of this thesis

One of the principal advantages of Barvinok and Hartigan’s maximum-entropy

method is its generality. Random walks on integer points (and similar stratagems)

are often highly dependent on the special properties of the class of polytopes under

observation; although very effective in individual cases, these methods give little

idea of how to tackle arbitrary P . Designing and analyzing a random walk on

P ∩Zn seems to grow in difficulty as the complexity of P increases. In contrast, the

Barvinok–Hartigan approach actually produces better estimates for the number of

r-way contingency tables as r increases, thanks to central limit-like behavior in the

geometry of high-dimensional convex bodies [12].

Our objective in Chapter II is to derive efficiently computable upper bounds on

|P ∩ Zn| using maximum-entropy methods, under very weak assumptions regarding

P . We show that if P is presented in standard form with matrix A being m × n

(i.e., P is defined by n linear inequalities and m linear equations), then for m fixed

and under mild conditions ensuring that A is “essentially full-rank” and P does not

shrink toward the origin, we can bound |P ∩Zn| by a computable Gaussian heuristic.

In Chapter III, we refine these methods for application to K-bounded contingency

tables (see Section 1.1.2). We show that the logarithm of the number of such tables is
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approximated by a concave function of the row and column sums. We give efficiently

computable estimators for this function, which we show are asymptotically exact as

the dimension of the tables goes to ∞. As an application, we show that for fixed

κ ≥ 2 and for sufficiently small row and column margins R and C, the number

of contingency tables with these margins and with entries ≤ κ is greater by an

exponential factor than predicted by a heuristic of independence; in other words,

the margins are strongly positively correlated. We present numerical evidence that

the opposite correlation occurs when R and C are not “sufficiently small.” Such

correlations contribute to the doubts raised by Diaconis and Efron [27] regarding

standard χ2 significance testing for contingency tables; this is discussed further in

Section 3.1.



CHAPTER II

Maximum-Entropy Methods

2.1 Independence models

What is the easiest class of polytopes from which to (uniformly) sample integer

points? We think the reader will not object if we claim this honor for the axis-aligned

cuboids, that is to say, the right-angled parallelepipeds formed as the Cartesian prod-

uct of intervals on the line1. Of course, the convenient feature of the integer points of

a cuboid is that their coordinates vary independently: ifX = (X1, X2, . . . , Xn) is such

a point drawn at random, then for 1 ≤ j1 < j2 < · · · < jr ≤ n and a1, a2, . . . , ar ∈ Z,

we have

(2.1) Pr

[
r∧
i=1

Xji = ai

]
=

r∏
i=1

Pr [Xji = ai] .

Any convex polytope for which this property holds is necessarily a cuboid. Yet

for X drawn uniformly from the integer points of an arbitrary polytope P ⊂ Zn, we

may reasonably ask whether (2.1) holds approximately. It is intuitively appealing to

guess that this does occur when dimP is large, r � dimP , and the projection of P

on coordinates X1, . . . , Xr is of full dimension r. For example, given a sufficiently

large random contingency table with known margins, one might surmise that there

is very little dependence between a small number of entries. Some vague support for

1Or in common parlance, boxes.

15
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this idea comes from high-dimensional convex geometry. One theme of that subject,

emphasized in [3], is that “all convex bodies behave a bit like Euclidean balls,” for

instance, in that they have either ball-like sections or ball-like projections in low

dimension.2 High-dimensional Euclidean balls do approximately satisfy a version

of (2.1): for fixed r, the projection of the uniform measure on the n-dimensional ball

to a dimension-r subspace is asymptotic (when appropriately scaled) to the Gaussian

measure on Rr, which is the r-fold product of measures on R (see [4]).

Thus inspired, we propose

Definition II.1. An independence model is a random vectorX=(X1, X2, . . . , Xn),

supported on Zn, which satisfies (2.1) for all 1 ≤ j1 < j2 < · · · < jr ≤ n and

a1, a2, . . . , ar ∈ Z.

The term model may strike the reader as premature. We offer the preceding

definition with a view toward “fitting” the best independence model to the uniform

distribution on the integer points of a polytope P . However, we do not want to build

a particular philosophy of “best fit” into the definition at this point.

Nevertheless, in examples with a lot of symmetry, the best independence model

may be self-evident. Consider the simplicially truncated cuboid

TC(n, r) := {x = (x1, x2, . . . , xn) ∈ [0, 1]n : x1 + x2 + · · ·+ xn = r},

whose integer points are all 0-1 vectors with r entries equal to 1 and n−r 0’s. If Y is a

random point drawn uniformly from that TC(n, r)∩Zn, then Y1, Y2, . . . , Yn are each

Bernoulli with support {0, 1} and expectation r/n. They are not independent, but

it is natural to consider an independence model X for Y such that X1, X2, . . . , Xn

are also Bernoulli with expectation r/n, but are independent. By means of such a

2This claim can be made precise for sections or projections of dimension at most log dimP . However, at the cost
of some generality, we will find support for approximate versions of (2.1) when r is not nearly so small as that.
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model, we can explicate an estimate for |TC(n, r)∩Zn| which is usually derived from

Stirling’s formula:

Proposition II.2. Let n, r be integers (n > 0, 0 ≤ r ≤ n), and let s vary in Z>0.

Then

(2.2) ln

(
sn

sr

)
= sn · h

( r
n

)
−Θ(ln s), 3

where h : [0, 1]→ R is the binary entropy function4

h(x) := x ln

(
1

x

)
+ (1− x) ln

(
1

1− x

)
.

In order to interpret (and prove) this proposition, we must first acquaint the

reader with some concepts from information theory.

2.1.1 Entropy and counting

Entropy is a statistic associated to a random variable and commonly identified

with its information content (an interpretation which we will not formalize, but which

will give some intuitive feel for results to be stated later). Apart from variation in

the choice of logarithm base, the definition of entropy is essentially unchanged since

its introduction by Claude Shannon in the famous papers [61], [62].

Definition II.3. Let X be a random variable and x a value in the support of X.

The Shannon self-information of the pair (X, x) is

I(X, x) := ln
1

Pr[X = x]
.

3We adhere to conventional Landau notation. The statement g(n) = O(f(n)) means that there exists a constant
c such that |g(n)/f(n)| < c for all sufficiently large n. The statement g(n) = Θ(f(n)) means that g(n) = O(f(n))
and f(n) = O(g(n)). We will also write g(n) = o(f(n)) to indicate that g(n)/f(n) → 0, and g(n) = Ω(f(n)) to
indicate that f(n) = O(g(n)).

4A graph is provided in Figure 2.1.
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The entropy of X is

H[X] := Ex[I(X, x)]

=
∑

x∈suppX

Pr[X = x] ln
1

Pr[X = x]
.

If Y is another random variable and y a value in its support, then we define the

conditional entropies

H[X|Y = y] :=
∑

x∈suppX

Pr[X = x|Y = y] ln
1

Pr[X = x|Y = y]

and

H[X|Y ] := Ey

[
H[X|Y = y]

]
=

∑
y∈suppY

Pr[Y = y]H[X|Y = y].

We also define the joint entropy H[X, Y ] as the entropy of the vector (X, Y ).

(We will only be concerned with random variables having discrete support; there

are other definitions of entropy for continuous distributions. Note that when X has

countably infinite support, the value of H[X] may be finite or infinite.)

The following properties of entropy are fundamental:

• H[X] is a concave function of the probability mass function associated to X. In

particular, among all distributions on n-point support, the maximum entropy

is achieved by the uniform distribution (and is equal to lnn).

• For random variables X and Y , we have H[X|Y ] = H[X, Y ] −H[Y ] ≤ H[X],

with equality if and only if X and Y are independent.

For proofs and discussion, see Khinchin’s excellent introduction to information the-

ory [47].
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Thanks to the first property, if we know the entropy of the uniform distribution

on a finite set, then we have as good as counted that set. Now let us return to

Proposition II.2 and see how this equivalence helps us estimate
(
n
r

)
.

The left-hand side of (2.2) is the entropy of a random integer point of TC(sn, sr),

drawn uniformly. The dominant term on the right-hand side is the entropy of the cor-

responding independence model which we discussed earlier.5 The proposition asserts

that the difference between these quantities is small. Although
(
sn
sr

)
grows exponen-

tially with s, the proposition can be used to estimate
(
sn
sr

)
to within polynomial error.

The proof, although simple, will serve as a useful prototype when we evaluate other

independence models.

Proof of Proposition II.2. Let X1, X2, . . . be independent 0-1 Bernoulli random vari-

ables, each with expectation r/n. Let X = (X1, . . . , Xsn).

Observe that if x,x′ ∈ {0, 1}sn, then

Pr[X = x′]

Pr[X = x]
=

(
r

n− r

)|x′|−|x|
(where |x| :=

∑sn
i=1 xi). In particular, all values of X with equal sum of coordinates

are equiprobable. Let x∗ denote an arbitrary value of X satisfying |x∗| = sr. Thus

sn · h
( r
n

)
= H[X] = Ex[I(X,x)]

= I(x∗)−
(

ln
r

n− r

)
E
[
|X| − sr

]
= I(x∗)

= − ln

[(
sn

sr

)−1

·Pr
[
|X| = sr

]]

= ln

(
sn

sr

)
− ln Pr

[
|X| = sr

]
.

5As its name suggests, the binary entropy function h(x) is the entropy of a Bernoulli random variable which takes
value 1 with probability x and value 0 with probability 1− x.
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By the local limit theorem of de Moivre and Laplace,

Pr
[
|X| = sr

]
∼
[
2πsnVar[X1]

]−1/2
=

(
2πs · r(n− r)

n

)−1/2

= Θ(s−1/2),

proving the proposition. �

The proof we have just presented asserts somewhat more than the proposition:

it also tells us the asymptotic relative error of the “independence estimate” for

|TC(sn, sr) ∩ Zsn|. If we express TC(sn, sr) in standard form Ax = b (an exer-

cise), then this relative error measures the volume of the range of typical variation

of AX (where X is the independence model)—a foretaste of things to come.

Remark II.4. How good is the obvious (symmetric) independence model for permu-

tation matrices? This is not an idle question: although we know that there are

exactly n! permutation matrices of order n, we do not have a good estimate of the

number Ln of Latin squares of order n, for which the independence model (per the

cubic representation described in Section 1.1.6) is quite similar.

The model we have in mind has n2 Bernoulli coordinates with support {0, 1} and

expectation 1/n. Its entropy thus works out to

n2h

(
1

n

)
= n[n lnn− (n− 1) ln(n− 1)],

whereas the actual entropy of the uniform distribution on permutation matrices is

ln(n!). We may compare the two:
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n ln(n!) n2h(1/n) Difference

2 0.693 2.773 2.079

3 1.792 5.729 3.937

4 3.178 8.997 5.819

5 4.787 12.510 7.723

6 6.579 16.220 9.641

Evidently the predicted entropy and the actual entropy diverge linearly. A calcu-

lation with Stirling’s formula reveals the error to be equal to 2n− 1
2
− ln
√

2πn+o(1).

Can we account for this? The independence model is a random contingency table

with margins of expected value 1. In the limit as n→∞, the margins behave as Pois-

son random variables of mean 1, and thus each achieves its expected value exactly

with probability ∼ 1/e. There are 2n− 1 linearly independent margins (not 2n, be-

cause the sum of the row margins and the sum of the column margins are necessarily

equal). Thus we might expect the actual number of permutation matrices to differ

from the independence estimate roughly by a factor of e−(2n−1)—and this is in fact

what happens, up to a lower-order term in the exponent. However, it is only thanks

to Stirling’s formula that we know this for a fact. We cannot justify our estimate of

e−(2n−1), because the row margins are not independent from the column margins in

the probabilistic sense. A theory to justify such estimates is much to be desired, as it

holds the promise of estimating Ln to within a simply exponential factor or better.

2.2 The maximum-entropy independence model

In the seminal papers [42], [43], E. T. Jaynes proposed a rule for guessing the

probability distribution of a random variable about which one has only partial infor-

mation. Jaynes’ work was motivated by the problem of assigning prior distributions
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for use in Bayes’ rule, which computes updated posterior probabilities on the basis

of additional observations. Bayesian methods in statistics are controversial because

of their explicit reliance on apparently arbitrary “priors,”6 and many writers have

considered how to choose the most neutral (or “non-informative”) priors. In the most

basic case, where one wishes to assign a distribution on n mutually exclusive events

in the absence of any evidence distinguishing them, it is traditional, at least since

Laplace, to assign each event a uniform probability of 1/n. (This is the “Principle of

Indifference.”) Recall that the uniform distribution on a finite set is the distribution

which maximizes entropy. Interpreting entropy as a measure of non-informativeness,

Jaynes proposed the following generalization: given the constraints of known data,

the best prior is that which attains maximum entropy subject to those constraints.7

Naturally, this rule has come to be known as the Principle of Maximum Entropy.

There is a large literature discussing its justification, as well as extensions such as

the cross-entropy principle; we suggest the article [38] or the book [60] to the reader

interested in these issues.

Suppose P ⊂ Rn is a polytope in standard form

P := {x ∈ Rn : x ≥ 0, Ax = b}

(with A an m × n matrix). Following Barvinok and Hartigan [12], who were ap-

parently the first to do so, we study the random vector X with maximum entropy

subject to two conditions:

• X is supported on Zn≥0, and

• E[AX] = b (or, equivalently, E[X] ∈ P ).

6A controversy which we feel no need of trying to resolve here.
7This principle may be taken in the spirit of Einstein’s often-paraphrased remark that “the supreme goal of all

theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the
adequate representation of a single datum of experience.”
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The inspiration for this choice is from Jaynes, but we claim no justification for it

beyond what we are able to prove about the model.

Definition II.5. The random vector X with the above properties is called a8

maximum-entropy independence model (MEIM) associated to P .

We also wish to define a MEIM for 0-1 polytopes, and more generally for poly-

topes truncated by a cuboid (which we will consider extensively in Chapter III).

Although such polytopes can be written in standard form, doing so comes at the

cost of increasing the dimension (via slack variables), which will degrade the quality

of the model. Hence the following definitions:

Definition II.6. A polytope in standard truncated form is a bounded region

of the form

{x ∈ Rn : 0 ≤ x ≤ k, Ax = b},

where k ∈ (Z≥0 ∪ {∞})n, A ∈ Rm×n, b ∈ Rm, and (in)equality of vectors is under-

stood componentwise. Given P a polytope in standard truncated form, let X be the

random vector with maximum entropy subject to the conditions

suppX ⊆ {x ∈ Zn : 0 ≤ x ≤ k} and E[AX] = b. Then we call X a MEIM

associated to P .

Convention II.7. For the remainder of this chapter, we will assume all polytopes are

given either in standard form or standard truncated form; if we wish to distinguish

between these two cases, we will do so explicitly. We also fix the usage of m, n,

A =
(
aij
)
, b = (b1, . . . , bm), k = (k1, . . . , kn) (when mentioned in relation to a

polytope) according to their usage in Definition II.6, and assume that A always has

rank m. We denote the columns of A by a1, . . . , an.

8Actually the maximum-entropy independence model, as we shall justify shortly.
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Per the following basic proposition, every P has a unique MEIM, which is in fact

an independence model (as its name suggests):

Proposition II.8. Let P ⊂ Rn be a polytope. Then there exists a unique MEIM

X = (X1, . . . , Xn) associated to P . Moreover:

(i) X is an independence model.

(ii) X has constant mass on all integer points of P .

The existence and uniqueness of X are well-known, while the other properties

given above are proved in [12]. Nevertheless, we give our own self-contained proof of

the proposition.

Proof. Suppose Y = (Y1, . . . , Yn) is a random vector supported on Zn≥0, such that

E[Y ] ∈ P . Let

|Y | := ‖Y ‖∞ = max{Y1, . . . , Yn}.

Since P is bounded, there exists some integer N such that E
[
|Y |
]
< N . By Markov’s

inequality,

Pr
[
|Y | ≥ 2kN

]
≤ 2−k

for each k = 1, 2, . . .. Thus

H[Y ] ≤ ln
(
(2N)n

)
+

1

2
ln
(
(4N)n

)
+

1

4
ln
(
(8N)n

)
+ · · ·

≤ n ln(2N) +
n

2
ln(4N) +

n

4
ln(8N) + · · ·

= 2n lnN + 4n ln 2.

In particular, H[Y ] is finite. Entropy is therefore a well-defined function on the space

of probability mass functions associated to random variables Y as above. This space

is compact, so the entropy attains its maximum, proving the existence of a MEIM
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for P . Moreover, the entropy is a strictly concave function of the probability mass

function, so the MEIM is unique; we call it X during the remainder of this proof.

Now let Y = (Y1, . . . , Yn) be the independence model such that Yi is distributed

identically to Xi, 1 ≤ i ≤ n. Then E[AY ] = b, and

H[Y ] = H[Y1] + · · ·+ H[Yn] = H[X1] + · · ·+ H[Xn] ≥ H[X],

with equality if and only if X = Y . Since X was chosen to maximize entropy, it

follows that X = Y , hence (i).

To see (ii), let Y be a random vector distributed identically to X on points not

lying in P , but having constant mass Pr[X ∈ P ]/|P ∩ Zn| at each integer point of

P . It is clear that E[AY ] = b and that H[Y ] ≥ H[X]. Again, since X was chosen

to maximize entropy (subject to the constraint E[AX] = b), we have X = Y . �

2.2.1 The maximum-entropy distribution with a given mean

As we shall see shortly, the coordinates of X are drawn from the following class

of distributions.

Definition II.9. Let κ ∈ Z>0. A random variable X is truncated geometric with

support {0, 1, 2, . . . , κ} if there are parameters p ∈ (0, 1] and q ∈ [0,∞), such that

Pr[X = t] = pqt for t = 0, 1, . . . , κ.

For symmetry, we also say that X is truncated geometric with parameters p = 0 and

q = ∞ if Pr[X = κ] = 1; however, in what follows, explicit treatment of this case

will sometimes be left to the reader.

A random variable X on support Z≥0 is geometric if there are parameters

p ∈ (0, 1] and q ∈ [0, 1) (in this case necessarily satisfying p+ q = 1), such that

Pr[X = t] = pqt for t = 0, 1, 2, . . . .
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To avoid unnecessary duplication of results, we regard this as a special case of the

truncated geometric distribution for which κ = ∞. (When writing {0, 1, 2, . . . , κ},

we allow that κ =∞, in which case {0, 1, 2, . . . , κ} is to be interpreted as Z≥0.)

Proposition II.10. Given κ ∈ Z≥0 and x ∈ [0, κ], or given κ =∞ and x ∈ [0,∞),

there is a unique truncated geometric distribution with support {0, 1, 2, . . . , κ} and

expected value equal to x.

Proof. Let X denote the truncated geometric distribution on {0, 1, 2, . . . , κ} with

parameters p, q. These parameters satisfy

1 = p(1 + q + q2 + · · ·+ qκ)

if κ <∞, or

1 = p(1 + q + q2 + · · · )

if κ = ∞; thus p is determined by q, so the truncated geometric distributions on

{0, 1, 2, . . . , κ} form a family of one parameter (q). It is clear that E[X] is a strictly

increasing (hence one-to-one) function of q, with range [0, κ] (or [0,∞) if κ = ∞).

Thus for the given x, there is a unique choice of q so that E[X] = x. �

Definition II.11. Let κ and x be as in the previous proposition. We denote the trun-

cated geometric distribution on {0, 1, 2, . . . , κ} with expected value x by TG(x;κ),

its parameters p, q by p(x;κ) and q(x;κ), and its entropy by Hmax
κ (x).

The parameters p = p(x;κ) and q = q(x;κ) are given implicitly by the equations

1 = p(1 + q + q2 + · · ·+ qκ),(2.3)

x = p(q + 2q2 + · · ·+ κqκ),(2.4)
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Figure 2.1: Graphs of Hmax
κ (x), κ = 1, 2, 10,∞

which, to the author’s knowledge, cannot be neatly solved in general. There are,

however, simple expressions when κ = 1 or κ =∞:

Hmax
1 (x) = −x lnx− (1− x) ln(1− x) p(x; 1) = 1− x q(x; 1) =

x

1− x

(2.5)

Hmax
∞ (x) = (x+ 1) ln(x+ 1)− x lnx p(x;∞) =

1

x+ 1
q(x;∞) =

x

x+ 1

(2.6)

(We’ve seen Hmax
1 before, under the name “binary entropy”; cf. Proposition II.2.)

Proposition II.12. Among all probability distributions supported in {0, 1, 2, . . . , κ}

and having expected value x, the greatest entropy is attained by TG(x;κ).

Proof. By Proposition II.8, there exists a maximum-entropy distribution X on

{0, 1, 2, . . . , κ} with expected value x. For t ∈ {0, 1, 2, . . . , κ}, let pt := Pr[X = t].
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We have

H[X] =
κ∑
t=0

pt ln

(
1

pt

)
.

Let us regard the expression on the right-hand side as a function of p0, p1, . . . , pκ. Its

partial derivatives are finite where all pt > 0, but its partial derivative with respect

to pt is +∞ where pt = 0. It follows that, for the maximum-entropy distribution, all

pt > 0. Introducing Lagrange multipliers for the relations (2.3), (2.4), we determine

that (ln p0, ln p1, . . . , ln pκ) is a linear combination of the vectors (1, 1, . . . , 1) and

(0, 1, 2, . . . , κ). Thus p0, p1, . . . , pκ are in geometric progression. �

Corollary II.13. Let P ⊂ Rn be a polytope in standard (truncated) form, and let

X = (X1, . . . , Xn) be its associated MEIM. Then each coordinate Xj has truncated

geometric distribution.

Proof. Immediate from Proposition II.12. �

Corollary II.13 does not fully characterize the maximum-entropy independence

model for P . There is a unique independence model X = (X1, . . . , Xn) with trun-

cated geometric coordinates for each value of E[X]. We know E[X] ∈ P , so we

can take the polytope P itself as a parameter space for the distribution of X; our

objective is to maximize H[X]. To see why this is feasible, we now study the entropy

of TG(x;κ) as a function of x.

2.2.2 The function Hmax
κ

Proposition II.14 (Properties of Hmax
κ ). Let p = p(x;κ), q = q(x;κ). Then:

(i) Hmax
κ is strictly concave on its domain.

(ii) Hmax
κ (x) = −[ln p+ x ln q].
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(iii) For 0 < x < κ, d
dx
Hmax
κ (x) = − ln q.

Proof. First we prove claim (i). Let x, y ∈ [0, κ] and α, β > 0 such that α + β = 1.

We wish to prove that

Hmax
κ (αx+ βy) > αHmax

κ (x) + βHmax
κ (y).

Let X and Y be independent random variables with distributions TG(x;κ) and

TG(y;κ), respectively. Define a random variable Z whose distribution is a mixture

of X and Y with weights α and β; that is,

Pr[Z = t] = αp(x;κ)q(x;κ)t + βp(y;κ)q(y;κ)t for t = 0, 1, . . . , κ.

Then

E[Z] = αx+ βy

and

H[Z] > αH[X] + βH[Y ]

(since entropy is well-known to be strictly concave with respect to mixture). But

Hmax
κ (αx+ βy) ≥ H[Z],

since Hmax
κ (αx + βy) is the maximum entropy achieved by any random variable

supported on {0, 1, 2, . . . , κ} with expectation αx + βy. This concludes the proof

of (i).

Claim (ii) is the result of a simple calculation:

Hmax
κ (x) = −[p ln p+ pq ln(pq) + pq2 ln(pq2) + · · ·+ pqκ ln(pqκ)]

= −[p ln p+ pq(ln p+ ln q) + pq2(ln p+ 2 ln q) + · · ·+ pqκ(ln p+ κ ln q)]

= −[(p+ pq + pq2 + · · ·+ pqκ)(ln p) + (pq + 2pq2 + · · ·+ κpqκ)(ln q)]

= −[ln p+ x ln q],
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where we have used equations (2.3), (2.4) in the last step.

Differentiating this formula with respect to x, and again applying equations (2.3)

and (2.4), we obtain

(Hmax
κ )′(x) = −p

′

p
− x · q

′

q
− ln q

= p ·
(

1

p

)′
− p(q + 2q2 + · · ·+ κqκ) · q

′

q
− ln q

= p ·
(

1

p

)′
− pq′(1 + 2q + · · ·+ κqκ−1)− ln q

= p ·
(

1

p

)′
− p ·

(
1

p

)′
− ln q

= − ln q.

This proves claim (iii). �

The entropy of an independence model (X1, . . . , Xn) with truncated geometric

coordinates is equal to
n∑
j=1

Hmax
κ (zj),

where zj := E[Xj]. The entropy is thus a strictly concave function of the parameters

z1, . . . , zn, which are located in domain P ; such a function can be maximized in

polynomial time by interior point methods, as mentioned in [12].

In Proposition II.8 (ii), we showed that the MEIM of a polytope in standard

(truncated) form has constant mass on the integer points of that polytope. Now

we determine this mass. First, however, we append the following notation to the

aforementioned Conventions II.7:

Convention II.15. Let P ∈ Rn be a polytope in standard truncated form and
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X = (X1, . . . , Xn) its associated MEIM. Then we write

zj := E[Xj],

pj := p(zj; kj), and

qj := q(zj; kj).

Then we have

Proposition II.16. Observe Conventions II.7 and II.15. Then for every

x ∈ P ∩ Zn, we have

Pr[X = x] = e−H[X].

Proof. Let x ∈ P ∩ Zn. Let z := E[X] = (z1, . . . , zn), and set u := x− z ∈ kerA.

The distribution of X depends on z. Regarding H[X] as a function of z, we have

(2.7)
∂

∂zj
H[X] = − ln qj

by Proposition II.14 (iii). Since X is the independence model of maximum entropy

subject to E[AX] = b, it follows that H[X] has zero directional derivative in any

direction belonging to kerA. Thus by (2.7), we have
∑

j uj ln qj = 0 and hence∏
j q

uj
j = 1.

It follows that

Pr[X = x] =
n∏
j=1

pjq
xj
j

=

(
n∏
j=1

pjq
zj
j

)(
n∏
j=1

q
uj
j

)

= e−H[X],

where the last equality follows from Proposition II.14 (ii). �
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2.3 Upper bounds on |P ∩ Zn|

Proposition II.16 implies that

(2.8) |P ∩ Zn| = eH[X]Pr[X ∈ P ],

where X is the MEIM associated to P . The factor eH[X] is efficiently computable,

so, for the remainder of the chapter, our objective is to estimate Pr[X ∈ P ]. In [12],

Barvinok and Hartigan consider a Gaussian heuristic for this factor, which can be

proven to give good results for certain special classes of polytopes: for example,

they use it to produce an asymptotic formula for the number of r-way contingency

tables, r ≥ 5, with given 1-margins. However, the general effectiveness of the Gaus-

sian heuristic is unclear. By contrast, we present some definite upper bounds on

Pr[X ∈ P ] which pertain to a very general range of polytopes, including all of the

standard (nontruncated) polytopes surveyed in Section 1.1.9 We make use of the

following concept:

Definition II.17. The point concentration of a discrete random variable Y is

conc(Y ) := max
y∈suppY

Pr[Y = y].

An upper bound on conc(AX) is, necessarily, also an upper bound on

Pr[AX = b] = Pr[X ∈ P ]. Therefore, we have

(2.9) |P ∩ Zn| ≤ eH[X] conc(AX).

It is convenient to use conc(AX) (i.e., concentration at the mode) as a proxy for

Pr[X ∈ P ] (concentration at the mean). A priori, there seems to be no reason to

expect a large difference between the two.
9In fairness, none of these bounds come remotely as close to the correct count as the Gaussian heuristic does in

the cases in which the latter is known to be effective; so there is an apparent trade-off, for the time being, between
generality and accuracy.
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2.3.1 Anti-concentration and the Littlewood-Offord problem

The concentration of sums of random variables is such a basic and richly studied

subject that it would be folly to attempt a history of it here. Instead, we will confine

our remarks to the particular project of obtaining upper bounds on concentration

(sometimes called “anti-concentration” results), and especially the precedents for

the upper bounds to be presented here.

First in this line is the Littlewood-Offord problem, which asked for the max-

imum point concentration of

ε1a1 + ε2a2 + · · ·+ εnan

when a1, a2, . . . , an are nonzero integers and ε1, ε2, . . . , εn are symmetric Bernoulli

random variables. (In fact, Littlewood and Offord asked, equivalently, how many

subsums of a1 + a2 + · · ·+ an may coincide.) Unsurprisingly, the maximum concen-

tration is achieved when a1 = · · · = an, in which case the concentration is of order

O(n−1/2) (of course, we may write down the exact formula as well). The proof of

this fact, using poset theory, is due to Erdős [32].

Halász [39] extended this result to random sums

ε1a1 + ε2a2 + · · ·+ εnan

of m-vectors (again with symmetric Bernoulli coefficients), obtaining a bound of

order O(n−m/2)—consistent with the behavior of a Gaussian distribution—under

conditions ensuring that the vectors a1, . . . , an are reasonably “spread out” in Rm

(i.e., not excessively close to a proper subspace). As stated in [39], Halász’s results

actually pertain to the small ball concentration of ε1a1 +ε2a2 + · · ·+εnan, but can be

specialized to point concentration by a scaling argument. These results, which Halász
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proved using a Fourier-theoretic lemma of Esséen, were subsequently reproduced by

Oskolkov [40, notes by Howard], who gave a simpler proof using rearrangement

inequalities. Here is the precise result of Halász:

Theorem II.18 (Halász [39]). Let a1, a2, . . . , an ∈ Rm. Let ε1, ε2, . . . , εn be inde-

pendent symmetric Bernoulli random variables, and let

S := ε1a1 + ε2a2 + · · ·+ εnan.

Define

conc1(S) := max
y∈Rm

Pr[|S − y| < 1].

Suppose that there exists a constant δ > 0 such that for any |e| = 1 one can select at

least δn vectors ak with |〈ak, e〉| ≥ 1. Then

conc1(S) ≤ c(δ,m)n−m/2,

where c(δ,m) depends only on δ and m.

Our stated problem of bounding Pr[AX = b] (for A,X,b in accord with Con-

ventions II.7 and II.15) is essentially the problem Halász solved, except that the

coefficients εj are replaced by geometric (or truncated geometric) random variables.

This is not a trivial distinction: symmetric Bernoulli random variables are all alike,

having concentration 1/2, whereas the concentration of our X1, . . . , Xn depends on

E[X]. We should expect a result similar to that of Halász, but with constant depend-

ing on z1, . . . , zn as well as m and δ (or an analogous parameter). This expectation

is realized in Theorem II.37 (which we call the H-bound in recognition of Halász).10

Its proof, which is the major undertaking of this chapter, owes much to the method

of Oskolkov [40].
10In fact, Halász also gave a result (Theorem 4 in [39]) which applies to random sums with coefficients of arbitrary

distribution, but in the case of X1, . . . , Xn truncated geometric, the constant in Halász’s result is generally very poor
compared to the constant we will obtain. See Remark II.49.
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Before coming to the H-bound, we propose two simpler (but somewhat more

specialized) upper bounds on conc(AX). One of these, the I-bound (Theorem II.19),

is designed to show the influence of the parameters z1, . . . , zn as plainly as possible.

This bound is easy to compute, easy to understand, and almost trivial to prove,

all at the cost of neglecting the large-n central limit phenomena captured by the

H-bound. The I-bound is obtained by discarding all columns of A except a linearly

independent set (hence the letter “I”), and is thus maximally effective when n−m is

small. Our other result, the E-bound, is an adaptation of Erdős’s Littlewood-Offord

result (and his poset-theoretic methods) to the case of geometric random variables,

or, more generally, to random variables with individually bounded concentration.

Essentially effective only in the case m = 1 (for reasons to be discussed), the E-

bound may be trivially extended to the case m > 1 when A has only m distinct

columns up to scaling, which form a basis for Rm. We state the E-bound in this form

(Theorem II.25). Although limited, it has application to counting knapsack packings

(see Section 1.1.4).

2.4 The I-bound

Theorem II.19 (I-bound). Assume Conventions II.7 and II.15, with P in stan-

dard form.11 Then

|P ∩ Zn| ≤ eH[X] min
aj1 ,...,ajm
lin.indep.

(1− qj1)(1− qj2) · · · (1− qjm)

= eH[X] min
aj1 ,...,ajm
lin.indep.

m∏
i=1

1

zji + 1
.

Remark II.20. The selection of indices j1, . . . , jm which minimize
∏m

i=1(1− qji) is an

instance of choosing a minimum-cost base of a matroid. This problem is solved by
11For the remainder of this chapter, we generally only treat polytopes in standard (nontruncated) form, although

we expect similar results can be derived for polytopes in standard truncated form. We will revisit truncated polytopes
in Chapter III.
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the greedy algorithm: for i = 1, . . . ,m in turn, we choose ji such that qji is maximal

under the constraint that aji 6∈ span{aj1 , . . . , aji−1
}. Thus the I-bound is easy to

compute.12

We prove Theorem II.19 by means of the following simple fact:

Lemma II.21. If X, Y are independent discrete random variables, then

conc(X + Y ) ≤ conc(X).

Proof. Observe that conc(X + Y ) is a weighted average of values of the probability

mass function of X, of which the largest is conc(X). �

Proof of Theorem II.19. By Lemma II.21 and the previously mentioned properties

of geometric random variables,

conc(X1a1 + · · ·+Xnan) ≤ min
aj1 ,...,ajm
lin.indep.

conc(Xj1aj1 + · · ·+Xjmajm)(2.10)

≤ min
aj1 ,...,ajm
lin.indep.

Pr[Xj1 = · · · = Xjm = 0]

= min
aj1 ,...,ajm
lin.indep.

(1− qj1)(1− qj2) · · · (1− qjm)

= min
aj1 ,...,ajm
lin.indep.

m∏
i=1

1

zji + 1
.

By (2.9), it follows that

|P ∩ Zn| ≤ eH[X] min
aj1 ,...,ajm
lin.indep.

(1− qj1)(1− qj2) · · · (1− qjm)

= eH[X] min
aj1 ,...,ajm
lin.indep.

m∏
i=1

1

zji + 1
. �

12This was pointed out by Alexander Barvinok (private communication).
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Remark II.22. Perhaps inequality (2.10) can be improved by a factor on the or-

der of n−m/2 under conditions guaranteeing that a1, a2, . . . , an are sufficiently well-

distributed in Rm. This seems to the author the most promising path toward unifi-

cation of the ideas behind the I- and H-bounds.

2.4.1 The symmetrized I-bound

We also prove a “symmetrized” version of the I-bound:

Theorem II.23. Let I1, I2 . . . , Ip be m-element subsets of {1, 2, . . . , n},

Ik = {jk1, jk2, . . . , jkm},

such that ajk1 , . . . , ajkm form a basis for Rm (1 ≤ k ≤ p), and such that

I1 ∪ I2 ∪ · · · ∪ Ip = {1, 2, . . . , n}. Then

|P ∩ Zn| ≤ eH[X]

(
1

E[X̄] + 1

)m
,

where X̄ is a geometrically distributed random variable with entropy equal to 1
pm

H[X].

(Cf. (2.6) for a formula giving H[X] in terms of E[X]. The inverse is apparently

not elementary, but is easy to compute in practice.)

Underlying Theorem II.23 is the following observation:

Lemma II.24. Among all vectors Y := (Y1, Y2, . . . , Ym) of independent, geometri-

cally distributed random variables with fixed joint entropy Ω, the highest concentration

conc(Y ) is achieved when Y1, Y2, . . . , Ym are identically distributed.

Proof. Since Yi is geometrically distributed (1 ≤ i ≤ m), there exist parameters

ri ∈ [0, 1) such that

Pr[Yi = k] = (1− ri)rki for k ∈ Z≥0.
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The concentration of Y is
∏m

i=1(1 − ri), so we must show that this expression is

maximized (for fixed Ω) when r1 = . . . = rm.

We introduce the changes of variable si := 1
1−ri , ti := ln si. (Thus 1 − ri = 1

si
,

and si = eti , where ti ∈ [0,∞).) Also, let

ω(t) := (1− et) ln(1− e−t) + t.

Now

Ω =
m∑
i=1

ri
1− ri

ln
1

ri
+ ln

1

1− ri

=
m∑
i=1

(si − 1) ln
si

si − 1
+ ln si

=
m∑
i=1

(eti − 1) ln
eti

eti − 1
+ ti

=
m∑
i=1

(1− eti) ln(1− e−ti) + ti

=
m∑
i=1

ω(ti),

and
m∏
i=1

(1− ri) = exp

(
−

m∑
i=1

ti

)
.

The following three statements are equivalent:

(i) For Ω fixed,
∏
i

(1− ri) is maximized when r1 = · · · = rm.

(ii) For Ω fixed,
∑
i

ti is minimized when t1 = . . . = tm.

(iii) If
∑
i

ti is fixed and Ω free to vary, then Ω is maximized when t1 = . . . = tm.

The equivalence of statements (i) and (ii) is clear. To see that (ii) and (iii)

are equivalent, it is enough to observe that Ω is increasing with respect to each of

t1, . . . , tm. Thus to prove (i), which is the assertion of the lemma, it will suffice for

us to prove (iii).
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Writing s := et, we obtain

dω

dt
= (1− et)

(
e−t

1− e−t

)
− et ln(1− e−t) + 1

= −et ln(1− e−t)

and

d2ω

dt2
= −et · e−t

1− e−t
− et ln(1− e−t)

= − 1

1− 1
s

− s ln

(
1− 1

s

)
= − s

s− 1
+ s ln

s

s− 1

= −s
(

1

s− 1

)
+ s ln

(
1 +

1

s− 1

)
≤ 0,

since ln(1 + x) ≤ x for x ≥ 0. This shows that ω(t) is concave for t ≥ 0, which

implies (iii) and so completes the proof of the lemma. �

Proof of Theorem II.23. For I ⊂ {1, 2, . . . , n}, let H[XI ] denote the joint entropy

of {Xj : j ∈ I}. Since X1, . . . , Xn are independent, we have H[XI ] =
∑

j∈I H[Xj].

Since the sets I1, I2, . . . , Ip cover {1, 2, . . . , n}, we have

H[X] ≤
p∑

k=1

H[XIk ],

and thus by the pigeonhole principle

H[XIk ] ≥
1

p
H[X]

for some k ∈ {1, . . . , p}. By Lemma II.24, the concentration of the vector

(Xjk1 , . . . , Xjkm) is maximized when Xjk1 , . . . , Xjkm are identically distributed. In

this case, each has entropy equal to 1
m

H[XIk ], which is greater than or equal to
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H[X̄] = 1
pm

H[X]; we pause to recall that the entropy and the expectation of a geo-

metric random variable are monotonically increasing functions of one another. Thus

(as in the proof of Theorem II.19),

conc(AX) ≤ conc(Xjk1ajk1 + · · ·+Xjkmajkm)

≤
(

1

E[X̄] + 1

)m
.

The theorem follows by (2.9). �

2.5 Sperner theory and the E-bound

We now turn to the following Erdős-inspired bound:

Theorem II.25 (E-bound). Assume Conventions II.7 and II.15, with P in stan-

dard form. Let N be an integer such that 2 ≤ E[Xj] < N for j = 1, 2, . . . , n. Addi-

tionally, suppose that n = pm for some integer p and that, for each i = 1, 2, . . . ,m,

we have ai
‖ai‖ = am+i

‖am+i‖ = a2m+i

‖a2m+i‖ = · · · = a(p−1)m+i

‖a(p−1)m+i‖
, where {a1, a2, . . . , am} is a basis

for Rm. (That is to say, the columns of A cycle through a basis of Rm periodically,

up to scaling.)

Then for fixed m and N , we have

|P ∩ Zn| ≤ (1 + o(1))eH[X]

m∏
i=1

(
π

6

p∑
t=1

(
bE[X(t−1)m+i] + 1c2 − 1

))−1/2

as p→∞.

The E-bound is actually just the application to polytopes of a more general con-

centration result, Theorem II.27. To state this result, we must introduce some notions

from the branch of poset theory known as Sperner theory.13

Definitions II.26. Let S be a finite poset (partially ordered set) and x, y ∈ S. We

say that x covers y if x > y and if x ≥ z ≥ y ⇒ z ∈ {x, y}.
13To our knowledge, the most complete handbook on this still-evolving subject is Engel [31].
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A rank function on S is a function rk : S → Z≥0, such that for all x, y ∈ S, if

x covers y, then rk(x) = rk(y) + 1. A ranked poset is a pair (S, rk) where S is a

poset and rk is a rank function on S. (By abuse of notation, we also call S a ranked

poset when there is no ambiguity about the rank function.) We say that rk(x) is the

rank of element x. A layer of a ranked poset is a level set of the rank function.

We denote by [N ] the chain (i.e., totally ordered set) of cardinality N together

with the unique rank function which assigns its least element rank 0. If (S, rk) and

(S ′, rk′) are ranked posets, then S×S ′ is a ranked poset with rank function rk + rk′.

An antichain in a poset is a collection of pairwise incomparable elements. The

width of a poset S, denoted by w(S), is the cardinality of its largest antichain(s).

The ith Whitney number Wi of a ranked poset is the cardinality of its layer of

rank i. If the width of a ranked poset is equal to its largest Whitney number, then

we say that the poset has the Sperner property.

For instance, the “Boolean cube”14 [2] × [2] × [2] has Whitney numbers

W0 = 1, W1 = 3, W2 = 3, W3 = 1 and width 3, so it has the Sperner property.

Note that the width of any poset is greater than or equal to its largest Whitney

number, because all layers are necessarily antichains.

Now we are ready to state

Theorem II.27. Let X1, X2, . . . , Xp be independent, integer-valued random variables

such that

conc(Xj) ≤
1

Nj

for 1 ≤ j ≤ p,

where N1, N2, . . . , Np are positive integers. Then

conc(X1 + · · ·+Xp) ≤
w
(
[N1]× · · · × [Np]

)
N1N2 · · ·Np

.

14A stock example.
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Moreover, given any fixed N such that 2 ≤ N1, N2, . . . , Np < N , we have

w
(
[N1]× · · · × [Np]

)
N1N2 · · ·Np

∼
(π

6

p∑
j=1

(N2
j − 1)

)−1/2

as p→∞.

This theorem will be easiest to prove under the assumption that each Xj is uni-

formly supported on Nj points (with mass 1/Nj at each). To justify passing to this

case, we will use the following definition and the two lemmas after it:

Definition II.28. A discrete random variable is a mixture of random variables

Y1, Y2, . . . if its probability mass function lies in the convex hull of the probability

mass functions of Y1, Y2, . . ..

Lemma II.29. Let Y be a random variable, supported on Z≥0, such that

conc(Y ) ≤ 1
N

. Then Y can be written as a mixture of random variables Y1, Y2, . . .,

such that each Yk is uniformly supported on N points, i.e., has an N-point support

with probability mass 1
N

at each point in its support.

Proof. Let M be the space of probability measures on Z≥0. Let

M(N) :=

{
µ ∈M : max

k
µ({k}) ≤ 1

N

}
and

Mu(N) := {µ ∈M : µ is uniformly supported on N points}.

By the Krein-Milman theorem [59], M(N) is the convex hull of its extreme points.

We claim that the extreme points are precisely the points of Mu(N). It is imme-

diately evident that each point of Mu(N) is an extreme point of M(n). To check

the converse inclusion, we suppose µ ∈M(N)\Mu(N). Thus there is some k ∈ Z≥0

such that 0 < µ({k}) < 1
N

, but in fact, there must be at least two distinct such
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k, since the total mass of µ is 1 (an integer multiple of 1
N

). Therefore, µ is not an

extreme point of M(N).

This proves our claim. Hence the probability measure associated to Y can be

written as a countable convex combination of points ofMu(N), each of which defines

the distribution of a random variable Yk (proving the lemma). �

Lemma II.30 (Properties of mixtures). If Y is a mixture of random variables

Y1, Y2, . . ., then:

(i) There is some k ≥ 1 for which conc(Y ) ≤ conc(Yk).

(ii) If Z is a random variable and f is a function such that Z = f(Y ), then Z is a

mixture of random variables Z1, Z2, . . ., where Zk = f(Yk).

Proof. By the definition of mixture, there exist nonnegative α1, α2, . . . such that

α1 + α2 + · · · = 1 and such that

Pr[Y = y] =
∞∑
k=1

αkPr[Yk = y].

Thus by the pigeonhole principle, for arbitrary y, there exists k = k(y) such that

Pr[Y = y] ≤ Pr[Yk = y].

Choosing y such that conc(Y ) = Pr[Y = y], we conclude that conc(Y ) ≤ conc(Yk)

for this k. This proves claim (i) in the lemma. Claim (ii) is self-evident. �

The last ingredient we need to prove Theorem II.27 is a borrowed local limit

theorem for log-concave sequences.

Definition II.31. A sequence (. . . , b−1, b0, b1, b2, . . .) of nonnegative real numbers is

properly log-concave if it is log-concave (i.e., bt−1bt+1 ≤ b2
t for all t) and has no

internal zeroes (i.e., if bt > 0 and bt+k > 0, then bt+1, bt+2, . . . , bt+k−1 > 0).
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Theorem II.32 (Bender [16]). 15 Suppose that
(
ζn : n ∈ Z>0

)
is a sequence of

integer-valued random variables and
(
σn
)

and
(
µn
)

are sequences of real numbers,

such that

lim
n→∞

Pr [ζn < σnx+ µn] =
1√
2π

∫ x

−∞
e−t

2/2dt

for all x ∈ R. Also suppose that σn → ∞ as n → ∞. Further, suppose that, for

every n, the sequence bn(t) := Pr(ζn = t) is properly log-concave with respect to t.

Then

lim
n→∞

σnPr [ζn = bσnx+ µnc] =
1√
2π
e−x

2/2

uniformly for all x ∈ R.

To satisfy the hypotheses of Bender’s local limit theorem, one must generally first

apply a central limit theorem. We will use the following standard one (see, e.g., [17]

or [63] for a proof):

Theorem II.33 (Lyapunov). Suppose that
(
Xn : n ∈ Z>0

)
is a sequence of inde-

pendent random variables, such that µn := E[Xn] and σ2
n := Var[Xn] are finite. Let

ζn = X1 + · · ·+Xn, and define

mn := E[ζn] = µ1 + · · ·+ µn,

s2
n := Var[ζn] = σ2

1 + · · ·+ σ2
n.

If

lim
n→∞

1

s2+δ
n

n∑
k=1

E
[
|Xk − µk|2+δ

]
= 0

for some δ > 0, then

lim
n→∞

Pr [ζn < snx+mn] =
1√
2π

∫ x

−∞
e−t

2/2dt

for all x ∈ R.
15Our statement of this result is based on the treatment in [31], where a proof also appears.
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Proof of Theorem II.27. For j = 1, 2, . . . , p, we are given to assume that

conc(Xj) ≤ 1
Nj

. By Lemma II.29, each Xj is a mixture of some random variables

which are each uniformly supported on some Nj points. Thus the random vector X =

(X1, . . . , Xp) is a mixture of random vectors each of the form

X(k) := (X
(k)
1 , . . . , X

(k)
p ), where the coordinates are independent and each X

(k)
j is

uniformly supported on Nj points. The sum X1 + · · ·+Xp is a function of X, so by

using both parts of Lemma II.30, we see that

conc(X1 + · · ·+Xp) ≤ conc(X
(k)
1 + · · ·+X(k)

p )

for some k. Since we are seeking an upper bound on conc(X1 + · · ·+Xp), we assume

with no loss of generality that X = X(k), or, more to the point, that each coordinate

Xj is uniformly supported on Nj points (with mass 1
Nj

on each).

Denote the support of Xj by {aj1, aj2, . . . , ajNj}, where aj1 < aj2 < · · · < ajNj .

Then

a1i1 + a2i2 + · · ·+ apip = a1i′1
+ a2i′2

+ · · ·+ api′p

implies that the p-tuples (i1, i2, . . . , ip) and (i′1, i
′
2, . . . , i

′
p) are identical or incompara-

ble in [N1]× · · · × [Np]. It follows that

conc(X1 + · · ·+Xp) ≤
w
(
[N1]× · · · × [Np]

)
N1N2 · · ·Np

.

This proves the first claim of Theorem II.27.

For the remainder of the proof, assume that 2 ≤ N1, N2, . . . , Np < N for some

integer N . We are going to apply Bender’s local limit theorem (Theorem II.32). Let

ζp denote the rank of a uniformly distributed random element of [N1]×[N2]×· · ·×[Np].

Set µp := N1+···+Np
2

and σ2
p =

∑p
j=1

N2
j−1

12
. It is easily verified that µp and σ2

p are

respectively the mean and the variance of ζp. By Lyapunov’s central limit theorem
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(Theorem II.33), the hypothesis

lim
p→∞

Pr [ζp < σpx+ µp] =
1√
2π

∫ x

−∞
e−t

2/2dt

in Bender’s local limit theorem is satisfied. The hypothesis σp → ∞ is plainly also

satisfied.

To see that the sequence bp(t) := Pr(ζp = t) is properly log-concave, we note

that this sequence is proportional to the Whitney numbers of the chain product

[N1]× [N2]× · · · × [Np], which is the convolution of the sequences of Whitney num-

bers for the factor chains. Each factor chain has Whitney numbers 1, 1, . . . , 1, 0, 0, . . .

(a properly log-concave sequence). Furthermore, the convolution of properly log-

concave sequences is again properly log-concave, see e.g. [48]. Thus,
(
bp(t)

)
is prop-

erly log-concave.

All antecedents of Bender’s theorem have been verified, so the conclusion holds:

lim
p→∞

σpPr
(
ζp = bσpx+ µpc

)
=

1√
2π
e−x

2/2

uniformly for all x ∈ R. Setting x = 0, we obtain

Pr
(
ζp = bµpc

)
∼ 1√

2πσp

=
(π

6

p∑
j=1

(N2
j − 1)

)−1/2

.

Finally, we observe that chain products have the Sperner property [31].16 In

particular, the width in the above formula is equal to the Whitney number Wbµpc,

so that

w
(
[N1]× · · · × [Np]

)
N1N2 · · ·Np

= Pr
(
ζp = bµpc

)
.

This completes the proof of the proposition. �
16There is a pretty proof of this fact using symmetric chain decompositions.
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We obtain the E-bound as an instance of Theorem II.27:

Proof of Theorem II.25. As noted in the proof of Theorem II.19, we have

conc(Xjaj) =
1

E(Xj) + 1
≤ 1

bE(Xj) + 1c

for 1 ≤ j ≤ n. Since a1, a2, . . . , am are linearly independent, we have

conc(AX) =
m∏
i=1

conc(Xiai +Xm+iam+i +X2m+ia2m+i + · · ·+X(p−1)m+ia(p−1)m+i)

= (1 + o(1))
m∏
i=1

(
π

6

p∑
t=1

(
bE[X(t−1)m+i] + 1c2 − 1

))−1/2

,

where the last claim follows by Theorem II.27. Finally, by (2.9), we infer Theo-

rem II.25. �

Remark II.34. As previously noted, the E-bound is essentially a dimension-1 result.

One obstacle to a full generalization is the lack of a well-developed Sperner theory

for posets with multi-dimensional rank functions.

It is plausible to guess that something of the following sort might be true:

Hypothesis II.35. Let n = pm. Let X1, X2, . . . , Xn be geometric random variables

with E[X(k−1)m+1] ≥ E[X(k−1)m+2] ≥ · · · ≥ E[Xkm] for every k = 1, . . . , p. Then

among all sequences of vectors a1, a2, . . . , an ∈ Rm such that a(k−1)m+1, . . . , akm are

linearly independent for every k = 1, . . . , p, the maximum value of conc(AX) is

achieved when ai = am+i = a2m+i = · · · = a(p−1)m+i for every i = 1, . . . ,m.

Were this the case, the rather restrictive hypotheses of the E-bound would repre-

sent the worst case and so become universal. We would also thus obtain the n−m/2

factor wished for in Remark II.22. Unfortunately, we have discovered a counterex-

ample17 to Hypothesis II.35 in dimension 2, but the validity of a weakened form of
17Such counterexamples do not appear to be rare, but for the record, here is ours: Let m = 2, p = 4.

Given X1, . . . , X8 geometric with E[X] = (8, 7, 6, 5, 4, 3, 2, 1), we have conc(AX) = 1.940 × 10−3 when

A =

(
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

)
, but conc(AX) = 2.046× 10−3 when A =

(
1 1 1 0 1 0 1 1
1 0 1 1 1 1 1 0

)
.
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Hypothesis II.35 (perhaps with an approximation factor) remains plausible. The idea

of “aligning” or “co-rectifying” the columns of A will reappear in the next section.

2.6 The H-bound

The statement of the H-bound with explicit constants is complicated enough that

we are driven to invert usual protocol and state the corollary first:

Corollary II.36. Fix an integer m ≥ 1, and fix ε > 0. Then there exists a positive

constant δ = δ(m, ε), such that the following is true:

Assume Conventions II.7 and II.15, with P in standard form. If A has integer

entries, and a subset of its columns can be partitioned into p bases for Rm, and if

minj qj ≥ ε, then

|P ∩ Zn| ≤ eH[X](δp−m/2).

In informal terms, Pr[AX = b] (or actually the point concentration of AX) is

bounded by a Gaussian estimate as p→∞, so long as minj qj is uniformly bounded

away from zero.

Note that, apart from the integrality of A, the hypotheses of Corollary II.36 are

not restrictive; we do not insist that p ≈ n/m, though the conclusion is strongest in

that case.18 The role of the parameter p here is “honest,” analogous to the role of δ

in the theorem of Halász (Theorem II.18).

Here is the full result:

Theorem II.37 (H-bound). Assume Conventions II.7 and II.15, with P in stan-

dard form. Assume that A has integer entries, and that qj > 0 for 1 ≤ j ≤ n. 19

18In the full result to follow, we do assume n = pm, but this can be achieved by ignoring extra columns of A,
in effect projecting P to dimension pm. Per (2.10), the concentration of AX may go up but not down under this
operation, so the resulting bounds are valid for the original P .

19Instead of assuming qj > 0 for all j, we may assume that 〈aj ,b〉 > 0 for 1 ≤ j ≤ n. To see why these assumptions
are equivalent, refer to the proof of Proposition II.12. Note that these assumptions are not restrictive: if 〈aj ,b〉 = 0
for any j, then P represents with respect to integer points (see Definition I.2) a lower-dimensional polytope for which
this is not the case.
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Suppose that n = pm for some integer p, and that a(k−1)m+1, a(k−1)m+2, . . . , akm

are linearly independent for 1 ≤ k ≤ p. Let γ > 0. 20 Define constants

αj :=
2qj

(1− qj)2
(1 ≤ j ≤ n),

α∨i := min{α(k−1)m+i : 1 ≤ k ≤ p} (1 ≤ i ≤ m),

q∨i := min{q(k−1)m+i : 1 ≤ k ≤ p} (1 ≤ i ≤ m),

ci := max

{
1

γ2
ln

[
1 + α∨i

(
1− cos

γ√
α∨i

)]
,

1

α∨i π
2

ln [1 + 2α∨i ]

}
(1 ≤ i ≤ m),

C :=
m∏
i=1

(2πciα
∨
i )−1/2,

C ′ := max
1≤i≤m

e−γ
2ci/2.

Then

|P ∩ Zn| ≤ eH[X]
(
Cp−m/2 + (C ′)p

)
.

All notation introduced in the statement of Theorem II.37 is used throughout

this section, and all its hypotheses (importantly, the integrality of A) are assumed

to hold.

2.6.1 Lemmas supporting the proof of the H-bound

In the lemmas stated in this section, the proof of Theorem II.37 can be seen in

outline; it will be made explicit in the following section. These lemmas are proved

in Section 2.6.3.

Definition II.38. For 1 ≤ k ≤ p, define the function Πk : Rm → R by

Πk(t) :=


∏km

j=(k−1)m+1
1√

1+αj(1−cos〈t,aj〉)
for t ∈ (−π, π]m

0 for t 6∈ (−π, π]m
.

20The parameter γ is “at the discretion of the user.” See Remark II.49.
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Lemma II.39.

Pr[AX = b] ≤ 1

(2π)m

∫
(−π,π]m

Π1Π2 · · ·Πp dt.

Definition II.40. Given a measurable function Φ : R → R≥0, we define its upper

level sets

Γ≥τ (Φ) := {t ∈ Rm : Φ(t) ≥ τ}

for all τ > 0.

Suppose that Φ vanishes at infinity, meaning that Γ≥τ (Φ) has finite volume for

every τ > 0. Then we define its symmetrically decreasing arrangement as the

function Φ∗ : Rm → R≥0 given by

Φ∗(t) := max
{
τ : vol

(
Γ≥τ (Φ)

)
≥ ‖t‖mvm

}
,

where vm denotes the volume of the unit ball in Rm.

The theory of symmetrically decreasing rearrangements is treated in [18] (also [49]),

and we do not develop it fully here. The important properties of Φ∗ are that

• Φ∗ is symmetrically decreasing, i.e., ‖t‖ ≥ ‖s‖ ⇒ Φ∗(t) ≤ Φ∗(s); and

• Φ∗ is equimeasurable with Φ, i.e., vol(Γ≥τ (Φ
∗)) = vol(Γ≥τ (Φ)) for all τ > 0.

(In fact, Φ∗ is the unique function with these properties, up to difference on a set of

measure zero.)

Lemma II.41 (Hardy-Littlewood). If Φ1, . . . ,Φn : Rm → R≥0 are measurable func-

tions vanishing at infinity, then∫
Rm

Φ1(t) · · ·Φn(t) dt ≤
∫
Rm

Φ∗1(t) · · ·Φ∗n(t) dt,

provided that the integral on the right-hand side converges.
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Definition II.42. For 1 ≤ k ≤ p, define the function Πrect
k : Rm → R by

Πrect
k (t) :=


∏m

i=1
1√

1+α(k−1)m+i(1−cos ti)
for t ∈ (−π, π]m,

0 for t 6∈ (−π, π]m.

The formula for Πrect
k differs from that for Πk in that the linear form 〈t, a(k−1)m+i〉

in the denominator of Πk is replaced by ti. Effectively, each basis

a(k−1)m+1, a(k−1)m+2, . . . , akm of Rm is replaced by a standard basis21. This will make

Πrect
k easier to work with than Πk.

Lemma II.43. Let 1 ≤ k ≤ p. Then

vol
(
Γ≥τ (Π

rect
k )

)
= vol

(
Γ≥τ (Πk)

)
for all τ > 0, and (Πrect

k )∗ ≡ Π∗k.

Lemma II.44 (Isotonicity of rearrangement). Suppose Φ,Ψ : Rm → R≥0 are mea-

surable functions vanishing at infinity. Let τ denote a constant. Then:

(i) If Φ(t) ≥ Ψ(t) for all t, then Φ∗(t) ≥ Ψ∗(t) for all t.

(ii) If Φ(t) ≥ max{Ψ(t), τ} for all t ∈ supp Φ, then Φ∗(t) ≥ max{Ψ∗(t), τ} for all

t ∈ supp Φ∗.

Lemma II.45. 22 For 0 ≤ t ≤ min

{
γ√
α∨i
, π

}
, we have

1 + α∨i (1− cos t) ≥ eciα
∨
i t

2

.

Lemma II.46. For each k = 1, 2, . . . , p, and for all t ∈ Rm, we have

Πrect
k (t) ≤ max

{
m∏
i=1

e−ciα
∨
i t

2
i /2, C ′

}
.

21As prefigured in Remark II.34.
22Recall the definitions of α∨i and ci from the statement of Theorem II.37.
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2.6.2 Proof of the H-bound

Using Lemmas II.39, II.41, and II.43, we have

Pr[AX = b] ≤ 1

(2π)m

∫
(−π,π]m

Π1Π2 · · ·Πp dt

≤ 1

(2π)m

∫
Rm

Π∗1Π∗2 · · ·Π∗p dt

=
1

(2π)m

∫
Rm

(Πrect
1 )∗(Πrect

2 )∗ · · · (Πrect
p )∗ dt.

We may instead take either of the last two integrals over B, the closed ball of volume

(2π)m centered at the origin in Rm, since the integrands are zero outside this ball.

By Lemmas II.44 and II.46, we have

1

(2π)m

∫
B

(Πrect
1 )∗(Πrect

2 )∗ · · · (Πrect
p )∗ dt

≤ 1

(2π)m

∫
B

p∏
k=1

(
max

{(
m∏
i=1

e−ciα
∨
i t

2
i /2

)∗
, C ′

})
dt

=
1

(2π)m

∫
B

(
max

{(
m∏
i=1

e−ciα
∨
i t

2
i /2

)∗
, C ′

})p

dt

=
1

(2π)m

∫
(−π,π]m

(
max

{
m∏
i=1

e−ciα
∨
i t

2
i /2, C ′

})p

dt.

This last integral is bounded above by

1

(2π)m

[∫
Rm

(
m∏
i=1

e−ciα
∨
i t

2
i /2

)p

dt +

∫
(−π,π]m

(C ′)p dt

]

=
1

(2π)m

[∫
Rm

exp

(
−p

m∑
i=1

−ciα∨i t2
i /2

)
dt + (2π)m(C ′)p

]

=
1

(2π)m
· (2π)m/2p−m/2

m∏
i=1

(ciα
∨
i )−1/2 + (C ′)p

= Cp−m/2 + (C ′)p.

(Note that in integrating the Gaussian term, we used the assumption that qj > 0 for

all 1 ≤ j ≤ n, which implies that ciα
∨
i > 0 for 1 ≤ i ≤ m.)
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Theorem II.37 (the H-bound) now follows by (2.8). �

Proof of Corollary II.36. Fix arbitrary γ > 0. Let m, ε be fixed. Continuing the

notation of Theorem II.37, we have C ′ < 1, so (C ′)p = o(Cp−m/2) as p → ∞. Both

C and C ′ were defined in such a way that they depend only on ε. The corollary

follows straightforwardly. �

Remark II.47. Our strategy for bounding Pr[AX = b], carried out above, may

be summarized/motivated as follows. First, we obtain an integral formula for the

probability mass function of AX, derived from its Fourier transform (Lemma II.39).

The integrand splits into n factors, which we then group into maximal subproducts

such that the factors in each subproduct behave like independent random variables on

the domain of integration. The worst case is now that these subproducts themselves

are “completely non-independent,” that is, that they decay identically; this is the

significance of Lemmas II.41 and II.43, and of the definitions of q∨i and α∨i . We bound

the decay of the integrand near the origin by a Gaussian (Lemma II.46), explaining

the appearance of the Cp−m/2 term in the conclusion of Theorem II.37. Away from

the origin, we simply bound each subproduct by the constant C ′, producing the

(C ′)p term. The parameter γ controls the boundary between the two approximation

regimes.

This two-regime bound (with arbitrary parameter γ) is strong enough to imply

Corollary II.36, but for non-asymptotic computations, the crudity of the approxi-

mation away from the origin is quite noticeable. The (C ′)p term can be replaced

by a more sensitive approximation, at the cost of simplicity: for example, one could

carve the domain of integration into 2n regions (treating each variable separately),

or (as a compromise) into n+ 1 regions according to the number of variables which
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are removed from the origin. These considerations are important if one wishes to

compute good “H-bounds” for individual specimens, but they are mostly irrelevant

if one only wants to confirm the asymptotic Gaussian behavior of the H-bound in

families of polytopes with dimension approaching ∞.

2.6.3 Proofs of the supporting lemmas

Proof of Lemma II.39. In [12], Lemma 8.1, the following integral representation is

proved:

Pr[AX = b] =
1

(2π)m

∫
(−π,π]m

e−i〈t,b〉
n∏
j=1

1− qj
1− qjei〈t,aj〉

dt,

where b is an arbitrary Z≥0-vector. It follows that

Pr[AX = b] ≤ 1

(2π)m

∫
(−π,π]m

∣∣∣∣∣e−i〈t,b〉
n∏
j=1

1− qj
1− qjei〈t,aj〉

∣∣∣∣∣ dt
=

1

(2π)m

∫
(−π,π]m

n∏
j=1

1− qj√
1 + q2

j − 2qj cos〈t, aj〉
dt

=
1

(2π)m

∫
(−π,π]m

Π1Π2 · · ·Πp dt,

where the last two steps are straightforward simplification. �

Proof of Lemma II.41. See Theorem 3.8 in [49]. �

Proof of Lemma II.43. Let A∗ be the m × m matrix whose rows are

aT(k−1)m+1, a
T
(k−1)m+2, . . . , a

T
km, and define A∗ : Rm → Rm as the linear map t 7→ A∗t.

Thus,

A∗(t)i = 〈t, a(k−1)m+i〉 (1 ≤ i ≤ m).

This map A∗ scales the volume of measurable sets uniformly by a factor of

d := | det(A∗)|, and takes the lattice Λ := (2πZ)m to the lattice

Λ′ := 2πZ[col1(A∗), col2(A∗), . . . , colm(A∗)].
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Let K := (−π, π]m and let K ′ := A∗(K). Since K is a fundamental region of Λ,

it follows that K ′ is a fundamental region of Λ′. Moreover, we assumed A to have

integer entries, so Λ′ is a sublattice of index d in Λ, and the induced map of tori

φ : Rm/Λ′ → Rm/Λ is an even covering of order d.

Identifying K with Rm/Λ and K ′ with Rm/Λ′, we may regard φ is a map from

K ′ to K, and φ ◦ A∗ as a self-map of K. If U ⊆ K is a measurable set, then

(φ ◦ A∗)−1(U) is the union of d disjoint preimages each of volume vol(U)
d

. Thus,

vol((φ ◦ A∗)−1(U)) = vol(U).

Observe that cos ti = cos(φ(t)i) for all t. Therefore

Γ≥τ (Πk) = A∗−1(Γ≥τ (Π
rect
k ))

= (φ ◦ A∗)−1(Γ≥τ (Π
rect
k ))

from which it follows that

vol
(
Γ≥τ (Π

rect
k )

)
= vol

(
Γ≥τ (Πk)

)
.

This conclusion holds for all τ > 0, so it follows from the definition of the symmet-

rically decreasing rearrangement that (Πrect
k )∗ ≡ Π∗k. �

Proof of Lemma II.44. We prove (i) by contradiction. Suppose that Φ(t) ≥ Ψ(t)

for all t, but suppose Φ∗(t0) < Ψ∗(t0) for some t0. Let τ0 := Ψ∗(t0). Then

vol
(
Γ≥τ0(Φ)

)
< ‖t0‖mvm ≤ vol

(
Γ≥τ0(Ψ)

)
,

where vm is the volume of the unit ball in Rm. It follows that Γ≥τ0(Ψ)\Γ≥τ0(Φ) has

positive measure, contradicting our assumption that Φ(t) ≥ Ψ(t) for all t.

To see that Statement (ii) holds, define Ψτ (t) as the function equal to max{Ψ(t), τ}

on supp Ψ, and to zero elsewhere; also define (Ψ∗)τ (t) as the function equal to
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max{Ψ∗(t), τ} on supp Ψ∗ and to zero elsewhere. Then it is easily verified that

(Ψ∗)τ = (Ψτ )
∗, so (ii) follows from (i). �

Proof of Lemma II.45. One may check that

(2.11) ci :=


1
γ2

ln

[
1 + α∨i

(
1− cos γ√

α∨i

)]
if α∨i ≥

γ2

π2

1
α∨i π

2 ln [1 + 2α∨i ] if α∨i ≤
γ2

π2

.

Define t0 := min

{
γ√
α∨i
, π

}
, and define f(t) := 1 + α∨i (1 − cos t) − eciα

∨
i t

2
for

−t0 ≤ t ≤ t0.

Note that f(0) = 0. Also, we claim that f(t0) = 0. This must be verified in two

cases, according to whether α∨i ≥
γ2

π2 or α∨i ≤
γ2

π2 .

If α∨i ≥
γ2

π2 , then t0 = γ√
α∨i

, so

f(t0) = 1 + α∨i

(
1− cos

γ√
α∨i

)
− exp

(
α∨i
γ2
· ln

[
1 + α∨i

(
1− cos

γ√
α∨i

)]
· γ

2

α∨i

)

= 0.

If α∨i ≤
γ2

π2 , then t0 = π, and

f(t0) = 1 + 2α∨i − exp

(
1

α∨i π
2
· ln [1 + 2α∨i ] · α∨i π2

)
= 0.

This proves the claim that f(t0) = 0. It follows that the average value of f ′(t) on

[0, t0] is zero.

Finally, we observe that f ′(0) = 0, and that f(t) has nonpositive third derivative

on [0, t0] (indeed, on [0, π]). The verification of these claims is routine and is omitted.

We infer that either f ′(t) ≡ 0 on [0, t0], or f ′′(t) has exactly one sign change on [0, t0],

from positive to negative. In the latter case, f ′(t) must also have exactly one sign

change on [0, t0] (also from positive to negative), since its average value on the interval
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is zero. It follows in either case that f(t) ≥ 0 on [0, t0], and thus on [−t0, t0] (since

f(t) is an even function). This proves the lemma. �

Proof of Lemma II.46. Let

K :=

{
t ∈ Rm : |ti| ≤ min

{
γ√
α∨i
, π

}
for i = 1, 2, . . . ,m

}
.

If t ∈ K, then by Lemma II.45,

Πrect
k (t) =

m∏
i=1

1√
1 + α(k−1)m+i(1− cos ti)

≤
m∏
i=1

1√
1 + α∨i (1− cos ti)

≤
m∏
i=1

e−ciα
∨
i t

2
i /2.

Now suppose t 6∈ K. Thus, there exists some i such that ti > min

{
γ√
α∨i
, π

}
.

If ti > π, then we trivially have Πrect
k (t) = 0 ≤ C ′.

Otherwise, we have ti >
γ√
α∨i

, and therefore

Πrect
k (t) ≤ 1√

1 + α∨i (1− cos ti)

≤ 1√
1 + α∨i

(
1− cos

(
γ/
√
α∨i
))

= e−γ
2ci/2

≤ C ′.

Thus whether t ∈ K or t 6∈ K, we have

Πrect
k (t) ≤ max

{
m∏
i=1

e−ciα
∨
i t

2
i /2, C ′

}
,

proving the lemma. �
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2.6.4 Analysis of the constants

The constants C,C ′ in the statement of the H-bound are awkward. Although

we have given “explicit” formulas for both, these formulas are too complicated to

understand at a glance, and their behavior relative to γ is unclear. In this section,

we give upper bounds on both constants, then discuss optimization of the H-bound.

Theorem II.48. Defining all notation as in the statement of Theorem II.37, we

have

C ≤

 γ

2

√
π ln

(
1 + 2γ2

π2

)

m

m∏
i=1

1− q∨i√
q∨i

and

C ′ ≤ 1√
1 + 2γ2

π2

.

Proof. We may understand equation (2.11) as expressing ci as a function of α∨i .

We claim that this function is minimized at α∨i = γ2

π2 . To demonstrate this claim, it

suffices to check that:

1. The function f(x) := ln(1+2x)
x

is decreasing for 0 < x ≤ γ2

π2 .

2. The function g(x) := x(1− cos γ√
x
) is increasing for γ2

π2 ≤ x <∞.

Proof of (1): Differentiating, we obtain f ′(x) = 1
x2

[
2x

1+2x
− ln(1 + 2x)]. In general,

ln(1 + u) > u
1+u

for u > 0, so we have f ′(x) < 0 for all x > 0. In particular, f(x) is

decreasing for 0 < x ≤ γ2

π2 .

Proof of (2): Differentiating, we obtain g′(x) = 1 − cos γ√
x
− γ

2
√
x

sin γ√
x
. It will be

convenient to define y := y(x) = γ√
x
. This change of variable bijectively transforms

the interval γ2

π2 ≤ x < ∞ into the interval 0 < y ≤ π. We may hence write g′(x) =

h(y), where

h(y) := 1− cos y − y

2
sin y.
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Differentiating twice with respect to y, we obtain

dh

dy
=

1

2
sin y − y

2
cos y and

d2h

dy2
=
y

2
sin y.

In particular, note that h(0) = 0, h′(0) = 0, and h′′(y) > 0 for 0 < y < π. It follows

that h(y) > 0 for 0 < y ≤ π. Equivalently, g′(x) > 0 (and g(x) is increasing) for

γ2

π2 ≤ x <∞.

We have thus proved that ci is minimized when α∨i = γ2

π2 , in which case

ci = 1
γ2

ln
(
1 + 2γ2

π2

)
. That is to say,

ci ≥
1

γ2
ln
(
1 +

2γ2

π2

)
for all values of α∨i . It follows that

C =
m∏
i=1

(2πciα
∨
i )−1/2 ≤

m∏
i=1

(
2π

γ2
ln

(
1 +

2γ2

π2

)
· 2q∨i

(1− q∨i )2

)−1/2

=

 γ

2

√
π ln

(
1 + 2γ2

π2

)

m

m∏
i=1

1− q∨i√
q∨i

and

C ′ = max
1≤i≤m

e−γ
2ci/2 ≤ exp

− ln
(

1 + 2γ2

π2

)
2


=

1√
1 + 2γ2

π2

,

proving Theorem II.48. �

Remark II.49. For fixed γ and for values of q∨i bounded away from zero, the constant

C is essentially a constant multiple of the I-bound for conc(AX). For example, fixing

γ = 1, we have

C ≤ (.657)m
m∏
i=1

1− q∨i√
q∨i

,
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suggesting that the H-bound outperforms the I-bound when q∨i is not very small and

p is large enough for the Gaussian term of the H-bound to dominate the exponential

term. We note in passing that Theorem 4 in [39] gives an asymptotic result similar

to the H-bound, but with the constant C replaced by a much worse constant, which

(up to a factor depending only on m) is at least as large as conc(X1)+ · · ·+conc(Xn).

The H-bound can be improved further by letting γ vary and optimizing the result.

As γ → ∞, all other inputs being fixed, we have C = O
((

γ
ln γ

)m)
and C ′ = O

(
1
γ

)
.

There is thus a trade-off between optimizing the Cp−m/2 term in Theorem II.37

and optimizing the (C ′)p term. Exact optimization of the H-bound is perhaps best

performed by a computer, but we can use some simple heuristics to estimate the

optimal choice of γ. Let

Γ := Q

 γ

2

√
π ln

(
1 + 2γ2

π2

)

m

and ∆ :=
1√

1 + 2γ2

π2

denote the bounds on C and C ′ from Theorem II.48, where

Q :=
m∏
i=1

1− q∨i√
q∨i

.

The global minimum of Γp−m/2 + ∆p occurs at the unique γ > 0 satisfying

Qmγm−2

(
1 +

2γ2

π2

)p/2 [
(π2 + 2γ2) ln

(
1 +

2γ2

π2

)
− 2γ2

]
(2.12)

= 4p1+m/2 ln

(
1 +

2γ2

π2

)√
π ln

(
1 +

2γ2

π2

)
By inspection, we see that this γ must approach 0 as p → ∞, given that m and Q

are fixed. Thus we may plausibly substitute 2γ2

π2 for ln
(

1 + 2γ2

π2

)
in equation (2.12).

After simplifying the resulting equation, we obtain

γm−1(π2 + 2γ2)p/2 =
πp

Qm
· 2
√

2√
π
p1+m/2.

The solution γ to this equation is Ω(p−1/2), but o(pδ) for δ > −1/2.
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2.6.5 Numerical examples

We are compelled to give some examples of computed I-, H-, and E-bounds,

knowing that they do not impress when juxtaposed with actual enumerations of

integer points; for the value of these bounds is not that they are especially sharp,

but precisely that they are applicable in settings (such as very high dimension) in

which exact computation is not feasible.23 All of the dimensions and estimates in

the examples which follow, except for the last, we regard as “small.” (The reader

may find this label jarring when applied to numbers on the order of 1044, but for

perspective, in Chapter III we will consider families of polytopes whose integer points

grow at the rate eΩ(n2).)

A standard benchmark among transportation polytopes is that corresponding to

the margins R = (220, 215, 93, 64), C = (108, 286, 71, 127); cf. Table 3.1 (p. 65). The

actual number of contingency tables with these margins is 1.23× 1015. Let X be the

corresponding MEIM. Optimization yields

E[X] =



36.4 36.0 20.6 14.9

117.2 113.3 34.3 21.2

22.2 22.0 15.1 11.7

44.2 43.6 23.0 16.2


and H[X] = 2.96× 1030. The I-bound then yields

|P ∩ Zn| ≤ 2.96× 1030

(1 + 36.4)(1 + 117.2)(1 + 113.4)(1 + 34.3)(1 + 21.2)(1 + 22.2)(1 + 44.2)

= 7.14× 1018,

off by between three and four orders of magnitude. This level of relative error seems

to be typical for the I-bound applied to 4 × 4 tables, regardless of the magnitude
23The H-bound in particular was designed with an eye toward asymptotic behavior as the dimension goes to ∞.



62

of the margins. The transportation polytope studied here is defined by 7 equations

in 16 variables; accordingly, the best we can do in the H-bound is p = 2 (after a

suitable reordering of the variables so that the columns of matrix A begin with two

bases of R7). This yields |P ∩ Zn| ≤ 8.01× 1026.

We also computed the H- and I-bounds for the number of 5×5 tables with margins

R = C = (60, 20, 20, 20, 20). The actual number of tables is 2.46×1015. These tables

are defined by 9 equations in 25 variables, so we still have p = 2 in the H-bound,

and performance is only slightly improved (relative to the previous example) due to

the greater uniformity in the margins: here the H-bound is 1.26 × 1025, while the

I-bound is 1.04× 1020.

Our third example is the 3-way 1-margin transportation polytope whose integer

points are 3× 3× 3 cubic arrays with all layer sums (1-margins) equal to 20. These

arrays are defined by 7 equations in 27 variables, so p = 3 in the H-bound, which

already yields noticeable improvement: the H-bound is 3.66× 1020, almost catching

up to the I-bound, here 7.00× 1019. (The actual number of arrays is 6.43× 1014.) In

the three examples considered so far, we note that the H-bound is optimized when

the parameter γ goes to ∞.

Now we consider some simplices. Our first simplex comes from [22]: Let

A = (2, 11, 18, 4, 17, 19, 6, 9, 2, 10, 16, 4, 18, 1, 15, 6, 17, 2, 8, 10, 7, 19, 7, 10, 14). Then

the simplex

{x = (x1, x2, . . . , x25) ∈ R25
≥0 : 〈A,x〉 ≤ 5000}

has 8.57× 1042 integer points; the H-, I-, and E-bounds are respectively 2.00× 1044,

1.07× 1044, and 1.04× 1044. (The H-bound is optimized at γ = 1.40.)

Finally, consider the simplex

Σn(r) := {(x1, . . . , xn) ∈ Rn
≥0 : x1 + · · ·+ xn = r},
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which has
(
n+r−1

r

)
integer points. For r = 10 and n = 1000, the optimal H-bound

(achieved at γ = 0.172) is |Σn(r)∩Zn| ≤ 3.14×1023, whereas actually |Σn(r)∩Zn| =

2.88 × 1023. By comparison, when r = 100 and n = 10000, the optimal H-bound

(at γ = 0.0645) is 1.774× 10242 integer points, while the actual number of points is

1.755× 10242; the relative error is about 1.1%.24 It can be shown that |Σn(r)∩Zn| is

asymptotically computed by the H-bound at γ = πrδ√
n

given that 0 < δ < 1
2
, n→∞,

and r = Θ(nε) for some ε ∈ (0, 1).

24The E-bound is not applicable to these simplices, since the coordinates of the typical integer point are too close
to 0. The I-bound is generally not recommended for simplices; for Σn(r), the I-bound is (n+ r)n+r−1n−(n−1)r−r,

which exceeds the actual value of |Σn(r) ∩ Zn| by a factor of approximately
√

2π(n− 1)r/(n+ r − 1).



CHAPTER III

Bounded Contingency Tables

Contingency tables and K-bounded contingency tables were introduced in Sec-

tion 1.1.2. As in that section, let

ΠK(R,C) :=

{
X ∈ Rm×n

≥0 :
n∑
j=1

xij = ri (i = 1, . . . ,m),

m∑
i=1

xij = cj (j = 1, . . . , n),

and xij ≤ kij for all i, j

}

where

R = (r1, . . . , rm) ∈ Zm≥0, C = (c1, . . . , cn) ∈ Zn≥0,

N = r1 + · · ·+ rm = c1 + · · ·+ cn, and K =
(
kij
)
∈ (Z≥0 ∪ {∞})m×n.

Let TK(R,C) := |ΠK(R,C)∩Zm×n| denote the number of K-bounded contingency

tables with margins R,C. We abuse the notation slightly, writing Πκ(R,C) and

Tκ(R,C) with κ ∈ Z>0 in case K is the matrix with all entries equal to κ. We write

T (R,C) for the number of unbounded tables with the given margins (i.e., the case of

kij = ∞ for all i, j). As in Definition II.9, we will avoid writing many results twice

simply by letting the notation {0, 1, 2, . . . , κ} refer to Z≥0 when κ =∞.

64
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3.1 Significance testing and the independence heuristic

The following table has become a standard example in the literature on con-

tingency tables since its first appearance in a paper of Snee [64], whose students

collected the data:

Black Brown Red Blond Total
Brown 68 119 26 7 220

Blue 20 84 17 94 215
Hazel 15 54 14 10 93
Green 5 29 14 16 64
Total 108 286 71 127 592

Table 3.1: Cross-tabulation of eye and hair color in a population

A geneticist wishing to decide whether there is a correlation between eye and

hair color would traditionally compute the Pearson X2 statistic for this table (with

9 degrees of freedom) and check the p-value of the corresponding χ2 value under a

hypothesis of independence. In this case, X2 ≈ 138.29 and p < .01—a conventional

benchmark for strong rejection of the independence hypothesis.

It would seem, therefore, that eye color and hair color are strongly related. How-

ever, Diaconis and Efron [27] noticed that approximately 10% of all distinct 4 × 4

tables with N = 592 have X2 smaller than that achieved by the above table. Thus

(at a significance level of, say, p = .05) we cannot reject the hypothesis that this

table was generated at random from a uniform distribution on the set of tables with

N = 592. Diaconis and Efron discuss this and a spectrum of other hypotheses which,

taking the Jaynesian view (cf. Section 2.2), may be plausibly regarded as unbiased

(or “non-informative”).

As suggested by the preceding example, the independence hypothesis and the

uniformity hypothesis may be largely (and surprisingly) incompatible. Following a



66

heuristic of Good [36], let us consider the set of m× n nonnegative integer matrices

with sum of entries equal to N ; there are
(
N+mn−1
mn−1

)
such tables. Equip this set with

the uniform probability measure. Then the probability that a random sample from

this set has row margin R is(
N +mn− 1

mn− 1

)−1 m∏
i=1

(
ri + n− 1

n− 1

)
,

while the probability that a random sample has column margin C is(
N +mn− 1

mn− 1

)−1 n∏
j=1

(
cj +m− 1

m− 1

)
.

If these two events were independent, then the number of tables satisfying both

constraints would be

I(R,C) :=

(
N +mn− 1

mn− 1

)−1 m∏
i=1

(
ri + n− 1

n− 1

) n∏
j=1

(
cj +m− 1

m− 1

)
.

However, as observed by Barvinok [8], the actual number T (R,C) of tables is larger

than this for most choices of R and C, even by an Ω(γmn) factor (γ > 1) when

the margins grow with m and n in a natural way (see Section 3.4 for the precise

statement). This result may be interpreted as showing that most row and column

margins are strongly positively correlated.

Moreover, as shown in [10], the tables with given margins R,C are in a certain

sense concentrated around a (not necessarily integral) table which, in our vocabulary

from Chapter II, is the expected value of the MEIM for Π(R,C).1 The one table

with margins R,C which satisfies the independence hypothesis is the rank 1 table

(3.1) X ind = X ind
R,C :=

(ricj
N

)
i,j
,

but according to the concentration result from [10], the rank 1 table may be wildly

atypical: for example, as n → ∞, the top-left entry of the typical n × n table with
1The “independence” (of coordinates) in the maximum-entropy independence model is not to be confused with

the “independence” in the independence hypothesis for the margins!
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margins R = C = (3n, n, n, . . . , n) is known to grow linearly with n, while the

corresponding entry of the rank 1 table with those margins is O(1) [10].

Good’s heuristic can be adapted to 0-1 contingency tables (i.e., tables with a

bound of kij = 1 on each entry). In this case, there are
(
mn
N

)
tables with the given

0-margin N . If the appearance of row margin R and column margin C were inde-

pendent events, then the number of tables would be

I1(R,C) :=

(
mn

N

)−1 m∏
i=1

(
n

ri

) n∏
j=1

(
m

cj

)
.

Barvinok [9] showed that the actual value of T (R,C) is typically smaller than this

prediction, again by a factor exponential in mn: most row and column margins are

strongly negatively correlated.

This raises a question. Unbounded contingency tables and 0-1 tables are extreme

cases of uniformly bounded tables (i.e., those tables counted by Tκ(R,C)). What is

the cause of the opposite correlation effects when κ =∞ and when κ = 1, and how

does the transition occur? In this chapter, we use maximum-entropy independence

models to interpret, re-prove, and extend Barvinok’s results; we show, in particular,

that there exist families of (R,C) which are asymptotically strongly positively cor-

related in the presence of any entry bound κ ≥ 2, though not for κ = 1. The precise

statement of this result is Theorem III.21.

We also present evidence that asymptotic negative correlation can be extended

to some families of margins (R,C) in the presence of any entry bound κ ≤ ∞. This

claim, paradoxically, is (seemingly) harder to prove because, in the presence of entry

bounds, there is no analogue of the independence hypothesis to which we might

compare the uniformity hypothesis. Even under the assumption TK(R,C) > 0, the

rank 1 table with margins R and C (3.1) does not necessarily lie in ΠK(R,C).2

2For example, although there is a 0-1 table
(
1 1
1 0

)
with margins R = C = (2, 1), there is no rank 1 table with
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3.1.1 The independence heuristic for K-bounded tables

Inspired by Good’s estimate I(R,C), we consider the following estimate IK(R,C)

for the number of contingency tables in ΠK(R,C).

Notation III.1. Let f(x1, x2, . . .) be a polynomial or formal power series, and xα a

monomial. Then we denote the coefficient of xα in f(x1, x2, . . .) by

[xα] f(x1, x2, . . .).

The number of K-bounded tables with given 0-margin N is

TK(N) := [xN ]
m∏
i=1

n∏
j=1

(1 + x+ x2 + · · ·+ xkij).

The proportion of these having row margins R is

TK(N)−1

m∏
i=1

{
[xri ]

n∏
j=1

(1 + x+ x2 + · · ·+ xkij)

}
.

The proportion having column margins C is

TK(N)−1

n∏
j=1

{
[xcj ]

m∏
i=1

(1 + x+ x2 + · · ·+ xkij)

}
.

If these two events were independent, then the number of K-bounded tables with

margins R and C would be

IK(R,C) :=

∏
i

{
[xri ]

∏
j

(1 + x+ · · ·+ xkij)
} ∏

j

{
[xcj ]

∏
i

(1 + x+ · · ·+ xkij)
}

[xN ]
∏
i

∏
j

(1 + x+ · · ·+ xkij)
.

In case the matrix K is constant (kij = κ for all i, j), we can write the above

estimate in a nicer form by means of the following notation:

Definition III.2 (“(κ + 1)-nomial coefficients” [33]). Let κ be a positive integer.

For integers n ≥ 0 and 0 ≤ r ≤ nκ, we denote by
(
n
r

)
κ

the coefficient of xr in the

polynomial expansion of (1 + x+ x2 + · · ·+ xκ)n.

those margins and with entries ≤ 1. The rank 1 table with those margins is
(

4/3 2/3
2/3 1/3

)
. The absence of a viable

independence hypothesis for K-bounded contingency tables makes the uniformity hypothesis all the more attractive.
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For integers n ≥ 0, r ≥ 0, we define
(
n
r

)
∞ to be the coefficient of xr in the power

series expansion of (1 + x+ x2 + · · · )n.

Given this definition, we have

(3.2) Iκ := Iκ·1 =

(
mn

N

)−1

κ

m∏
i=1

(
n

ri

)
κ

n∏
j=1

(
m

cj

)
κ

.

Note that
(
n
r

)
1

=
(
n
r

)
and

(
n
r

)
∞ =

(
r+n−1

r

)
=
(
r+n−1
n−1

)
. For κ 6= 1,∞, there is (to

the author’s knowledge) no comparably neat exact formula for
(
n
r

)
κ
. The problem

seems to be related to the difficulty of expressing Hmax
κ (x), p(x;κ), and q(x;κ) in

terms of x, which in general requires solving a degree-κ equation. The connection to

entropy appears in a logarithmically asymptotic formula for
(
n
r

)
κ
, analogous in both

statement and proof to Proposition II.2:

Proposition III.3. Let κ ∈ Z>0 ∪ {∞}. Let n, r be integers (n > 0, 0 ≤ r ≤ nκ).

Then

ln

(
sn

sr

)
= snHmax

κ

( r
n

)
−Θ(ln s).

Proof. Let X1, X2, . . . be independent random variables, each with distribution

TG
(
r
n
;κ
)
. Let X = (X1, . . . , Xsn).

Observe that if x,x′ ∈ {0, 1, 2, . . . , κ}sn, then

Pr[X = x′]

Pr[X = x]
= q

( r
n

;κ
)|x′|−|x|

(where |x| :=
∑sn

i=1 xi). In particular, all values of X with equal sum of coordinates
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are equiprobable. Let x∗ denote an arbitrary value of X satisfying |x∗| = sr. Thus

snHmax
κ

( r
n

)
= H[X] = Ex[I(X,x)]

= I(x∗)−
(

ln
( r
n

;κ
))

E
[
|X| − sr

]
= I(x∗)

= − ln

[(
sn

sr

)−1

κ

·Pr
[
|X| = sr

]]

= ln

(
sn

sr

)
κ

− ln Pr
[
|X| = sr

]
.(3.3)

Note that the probability mass function for each Xi is log-concave on Z. We apply

Theorem II.32 (Bender’s local limit theorem) using

ζp = X1 + · · ·+Xp, σ2
p = p ·Var(X1), µp = p · r

n
, and x = 0,

with the normality hypothesis secured via Theorem II.33, to infer

lim
p→∞

σpPr
[
ζp =

⌊
p · r

n

⌋]
=

1√
2π
,

and thence

Pr
[
|X| = sr

]
∼ (2πsnVar(X1))−1/2 = Θ(s−1/2).

Substituting into (3.3), we conclude that

snHmax
κ

( r
n

)
= ln

(
sn

sr

)
κ

+ Θ(ln s),

proving the proposition. �

3.2 Counting contingency tables via permanents

The following result is due to Barvinok:

Theorem III.4 ([7], paraphrased). Take m,n,R,C,N as heretofore, and let W =(
wij
)
∈ Rm×n. Let Γ =

(
γij
)

be a random m×n matrix whose entries are independent

exponential random variables of mean 1.3 Let A = A(Γ) be the N×N matrix formed
3The distribution function of an exponential random variable of mean t is F (x) = 1− e−x/t (x ≥ 0).



71

by replacing each entry (i, j) of Γ by an ri × cj block with all entries equal to wijγij.

Let each contingency table X with margins R and C be counted with the weight

w(X) =
m∏
i=1

n∏
j=1

w
xij
ij .

Then the total weight of all such tables is

T (R,C;W ) =
E[perA]

r1! · · · rm!c1! · · · cn!
.

Exact computation of the factor E[perA] is intractable, but estimation is possible.

The following strategy is again due to Barvinok (ibid.): For A with all entries positive

(which occurs with probability 1), there exist “scaling factors” ξ1, . . . , ξN , η1, . . . , ηN

such that the matrix Ascaled :=
(
ξ−1
i η−1

j aij
)

is doubly stochastic, that is, has all row

and column margins equal to 1. Letting σ(A) :=
∏N

i=1 ξi
∏N

j=1 ηj, we have

perA = σ(A) perAscaled

(by row- and column-linearity of the permanent). It turns out that σ(A) is log-

concave and efficiently computable (and integrable), while perAscaled can be bounded

to within a relative error of NO(m+n) by means of van der Waerden-Falikman-

Egorychev’s and Minc-Brégman’s permanent inequalities (see [8]). The number of

contingency tables with margins at least linear in m and n is exponential in mn, so

the above strategy succeeds in estimating this number asymptotically in the loga-

rithm.

3.2.1 Counting K-bounded tables

Barvinok pointed out4 that, for K ∈ Zm×n≥0 , the number TK(R,C) of bounded

tables can also be expressed as the expectation of a random permanent. Let us

4Private communication, October 2008.
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define

(3.4) c̃j =

(
m∑
i=1

kij

)
− cj

for 1 ≤ j ≤ n. Then

TK(R,C) = [xr11 · · · xrmm yc̃11 · · · yc̃nn ] E

[
m∏
i=1

n∏
j=1

(ξijxi + ηijyj)
kij

kij!

]
,

where ξij, ηij (1 ≤ i ≤ m, 1 ≤ j ≤ n) are independent exponential random variables

of mean 1. The coefficient of a monomial in a product of |K| linear forms can be

expressed as the permanent of a |K| × |K| matrix whose entries are the coefficients

of the forms.

However, we do not take this approach, instead preferring to represent a K-

bounded contingency table by an enlarged ((m + n) × (mn)) table with enforced

zeroes, in the following fashion:

Define vectors R ∈ Zm+n
≥0 , C ∈ Zmn≥0 by

R = (r1, . . . , rm, c̃1, . . . , c̃n),

C = (k11, . . . , k1n, k21, . . . , k2n, . . . , km1, . . . , kmn).

Observe that R and C have equal sum of entries.

Let W = (w·,·) be the (m+ n)× (mn) matrix with

wi,(i−1)n+j = 1 for all i = 1, . . . ,m and j = 1, . . . , n,

wm+j,(i−1)n+j = 1 for all i = 1, . . . ,m and j = 1, . . . , n,

and zeroes in all other positions (which we’ve seen before: cf. (1.1)).

Given a contingency table X =
(
xij
)
∈ ΠK(R,C), we may construct a table

X =
(
x′·,·
)
∈ Π(R, C) by assigning

x′i,(i−1)n+j = xij for all i = 1, . . . ,m and j = 1, . . . , n,

x′m+j,(i−1)n+j = kij − xij for all i = 1, . . . ,m and j = 1, . . . , n,
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and zeroes in all other positions. This conversion is easily reversed, and thus gives a

bijection between tables X ∈ ΠK(R,C) and tables X ∈ Π(R, C) which have enforced

zeroes in all zero positions of W . That is,

(3.5) TK(R,C) = T (R, C;W ).

Therefore, we can count K-bounded tables using Theorem III.4. A priori, we might

expect the quality of the estimate to be degraded by the enlargement of the dimen-

sions. However, we will show that the estimates produced by this approach are still

asymptotic in the logarithm when the margins grow linearly with m and n, and are

still accurate enough to detect a correlation phenomenon as announced earlier.

3.2.2 Approximate log-concavity of TK(R,C)

In fact, we do not use Theorem III.4 directly, but one of its consequences:

Notation III.5. For a vector or matrix V , let |V | denote the sum of the entries

of V . For an integer n ≥ 0, let ω(n) := nn

n!
(agreeing that 00 = 1). For a vector or

matrix V with nonnegative integer entries, let Ω(V ) denote the sum of ω(v) over all

entries v of V .

Theorem III.6 (Barvinok [6]). Define T (R,C;W ) as in Theorem III.4.

Let R1, . . . , Rp ∈ Zm≥0 and C1, . . . , Cp ∈ Zn≥0, such that

|R1| = · · · = |Rp| = |C1| = · · · = |Cp| = N.

Let

R := α1R
1 + α2R

2 + · · ·+ αpR
p and C := α1C

1 + α2C
2 + · · ·+ αpC

p,

where α1, α2, . . . , αp ≥ 0 satisfy α1 + α2 + · · ·+ αp = 1. Then

ω(N)T (R,C;W )

Ω(R)Ω(C)
≥

p∏
t=1

[
T (Rt, Ct;W )

min{Ω(Rt),Ω(Ct)}

]αt
.
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By means of the “enlargement” discussed in the prior section, we derive as a

corollary of this theorem the following version for TK(R,C):

Theorem III.7. 5 Take Rt, Ct, αt (1 ≤ t ≤ p) and R,C as in the hypotheses of

Theorem III.6. Define

C̃ = (c̃1, c̃2, . . . , c̃n)

as in (3.4), and similarly define C̃1 = (c̃1
1, . . . , c̃

1
n), . . . , C̃p = (c̃p1, . . . , c̃

p
n) ∈ Zn≥0 by

c̃tj =

(
m∑
i=1

kij

)
− ctj (1 ≤ t ≤ p, 1 ≤ j ≤ n).

Then

ω(|K|)TK(R,C)

Ω(R)Ω(C̃)Ω(K)
≥

p∏
t=1

[
TK(Rt, Ct)

min{Ω(Rt)Ω(C̃t), Ω(K)}

]αt
.

This theorem is somewhat opaque in itself, due to the confounding factors Ω(Rt),

Ω(C̃t), etc. However, some analysis in Section 3.3 will reveal that these factors

typically grow more slowly than the numbers TK(R,C) themselves.

Proof of Theorem III.7. Define vectors R ∈ Zm+n
≥0 and C ∈ Zmn≥0 as in Sec-

tion 3.2.1, and define R1,R2, . . . ,Rp ∈ Zm+n
≥0 analogously:

Rt = (rt1, . . . , r
t
m, c̃

t
1, . . . , c̃

t
n).

Observe that

|R1| = |R2| = · · · = |Rp| = |C| = |K|

and that

R = α1R1 + α2R2 + · · ·+ αpRp.

Take W as in Section 3.2.1, so that (as discussed there)

(3.6) TK(R,C) = T (R, C;W )
5The theorem can be stated in slightly greater generality with only trivial modifications to the proof. Specifically,

TK(R,C) can be replaced by a weighted function TK(R,C;W ), analogous to the function T (R,C;W ) in the statement
of Theorem III.6; also, given

K = α1K
1 + α2K

2 + · · ·+ αpK
p,

Theorem III.7 remains true when each instance of K on the right-hand side is replaced by Kt.
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and

(3.7) TK(Rt, Ct) = T (Rt, C;W )

for 1 ≤ t ≤ p.

Substituting R1, . . . ,Rp,R for R1, . . . , Rp, R in the statement of Theorem III.6,

as well as C for each of C1, . . . , Cp, C and |K| for N , we obtain the conclusion

ω(|K|)T (R, C;W )

Ω(R)Ω(C)
≥

p∏
t=1

[
T (Rt, C;W )

min{Ω(Rt),Ω(C)}

]αt
.

Using equations (3.6) and (3.7), we rewrite the above result as

ω(|K|)TK(R,C)

Ω(R)Ω(C̃)Ω(K)
≥

p∏
t=1

[
TK(Rt, Ct)

min{Ω(Rt)Ω(C̃t), Ω(K)}

]αt
,

proving Theorem III.7. �

Remark III.8. It is no exaggeration to state that all of our results about TK(R,C),

including Theorems III.16, III.19, and III.21, flow from the above theorem. Log-

concavity turns out to be a powerful property. Although Barvinok derived the ap-

proximate log-concavity of T (R,C) from the permanental bounds, our arguments

work in the opposite direction, showing that these results are essentially equivalent.

Thus if Theorem III.7 could be proved by purely combinatorial means, as seems

not implausible, then the other results about TK(R,C) would also be placed on a

combinatorial foundation.

It may be possible to strengthen Theorem III.7 considerably. We are not aware

of any counterexamples to the hypothesis that TK(R,C) is actually (rather than

approximately) log-concave as a function of R,C.

3.2.3 An honestly concave proxy for lnTK(R,C)

We define a function which “smooths over” lnTK(R,C):
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Definition III.9. For R ∈ Rm
≥0, C ∈ Rn

≥0, and K ∈ Zm×n>0 , let

f(R,C) = fK(R,C) := max
α1,...,αp≥0
α1+···+αp=1

α1R1+···+αpRp=R
α1C1+···+αpCp=C

p∑
t=1

αt lnTK(Rt, Ct).

(To be clear, the maximum is taken over choices of p ≥ 1, α1, . . . , αp, R
1, . . . , Rp,

and C1, . . . , Cp which satisfy the indicated constraints, and for which the summation

on the right is defined. If the maximum is taken over an empty set, then we regard

it as −∞.)

Note that the maximum in Definition III.9 is well-defined (allowing −∞ as “well-

defined”), because there are finitely many pairs (R,C) for which TK(R,C) > 0. It is

redundant to allow any repetition among R1, . . . , Rp or C1, . . . , Cp, so the summation

on the right takes on finitely many values.

Lemma III.10. (i) f(R,C) ≥ lnTK(R,C).

(ii) f is concave.

(iii) The domain of f (i.e., where f > −∞) is a subset of ΠK(R,C).

Proof.6 Claim (i) is trivial, since we can set p = 1, α1 = 1, R1 = R, C1 = C in

Definition III.9.

For claim (ii), it suffices to show that if α + β = 1, then

(3.8) αf(R1, C1) + βf(R2, C2) ≤ f(αR1 + βR2, αC1 + βC2).

By Definition III.9, there exist γ1, . . . , γp ≥ 0; R11, . . . , R1p; and C11, . . . , C1p such

6The unavoidably cumbersome notation used in this proof may distract the reader from the fact that the proof is
utterly conventional.
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that

p∑
t=1

γt = 1,

p∑
t=1

γtR
1t = R,

p∑
t=1

γtC
1t = C,

and f(R1, C1) =

p∑
t=1

γt lnTK(R1t, C1t).

Likewise, there exist δ1, . . . , δq ≥ 0; R21, . . . , R2q; and C21, . . . , C2q such that

q∑
t=1

δt = 1,

q∑
t=1

δtR
2t = R,

q∑
t=1

δtC
2t = C,

and f(R2, C2) =

q∑
t=1

δt lnTK(R2t, C2t).

Note that

p∑
t=1

αγt +

q∑
t=1

βδt = 1,

p∑
t=1

αγtR
1t +

q∑
t=1

βδtR
2t = αR1 + βR2,

and

p∑
t=1

αγtC
1t +

q∑
t=1

βδtC
2t = αC1 + βC2;

applying Definition III.9 to f(αR1 + βR2, αC1 + βC2), we obtain equation (3.8) and

thus claim (ii).

It is clear that f is defined only on the convex hull of all (R,C) for which

TK(R,C) > 0; this region is a subset of ΠK(R,C), proving claim (iii). �

Lemma III.11 (Quality of approximation). Suppose R ∈ Zm>0, C ∈ Zn≥0, and

K ∈ Zm×n>0 . Define C̃ = (c̃1, . . . , c̃n) as in (3.4), and suppose that C̃ ∈ Zn>0. Then

fK(R,C)− lnTK(R,C) ≤ − ln
√

2π|K|+
m∑
i=1

ln
√

2πri +
n∑
j=1

ln
√

2πc̃j

+ (m+ n) ln

(
e√
2π

)
.

Proof. By Stirling’s formula,

(3.9) n− ln
√

2πn− ln

(
e√
2π

)
≤ lnω(n) ≤ n− ln

√
2πn
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for n ≥ 1.

Choose α1, . . . , αp, R
1, . . . , Rp, C1, . . . , Cp which achieve the maximum in Defini-

tion III.9. Now apply Theorem III.7 and (3.9):

fK(R,C)− lnTK(R,C) ≤ ln

[
ω(|K|)

Ω(R)Ω(C̃)Ω(K)
·

p∏
t=1

(
min{Ω(Rt)Ω(C̃t), Ω(K)}

)αt]

≤ ln

[
ω(|K|)

Ω(R)Ω(C̃)Ω(K)
·

p∏
t=1

Ω(K)αt

]

= ln
ω(|K|)

Ω(R)Ω(C̃)

= lnω(|K|)−
m∑
i=1

lnω(ri)−
n∑
j=1

lnω(c̃j)

≤ |K| − ln
√

2π|K| −
∑
i

(
ri − ln

√
2πri − ln

(
e√
2π

))
−
∑
j

(
c̃j − ln

√
2πc̃j − ln

(
e√
2π

))

≤ − ln
√

2π|K|+
m∑
i=1

ln
√

2πri +
n∑
j=1

ln
√

2πc̃j + (m+ n) ln

(
e√
2π

)
. �

3.3 Asymptotic formulas for lnTK(R,C)

In this section, we present two approximate formulas for TK(R,C) (Theorems

III.16, III.19), analogous to results for unbounded tables appearing in [8]. Both

formulas are logarithmically asymptotic to the actual count in an asymptotic regime

which we now define:

Definition III.12 (Cloning). Let

R = (r1, . . . , rm) ∈ Zm≥0 and C = (c1, . . . , cm) ∈ Zn≥0.

Then we define

R(s) = (sr1, . . . , srm, sr1, . . . , srm, . . . , sr1, . . . , srm)
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and

C(s) = (sc1, . . . , scn, sc1, . . . , scn, . . . , sc1, . . . , scn),

where the number of repetitions is s (thus R(s) ∈ Zsm≥0 and C(s) ∈ Zsn≥0). We refer to

these vectors as the s-fold clonings of R and C.

If K ∈ Zm×n≥0 , then we define K(s) as the sm× sn matrix of form

K K · · · K

K K · · · K

...
...

. . .
...

K K · · · K


(with s blocks in either direction). We call this the s-fold cloning of K.

Note that the clonings are defined so that, if X is a contingency table with margins

R and C, then the sm× sn matrix

X X · · · X

X X · · · X

...
...

. . .
...

X X · · · X


has margins R(s) and C(s).

3.3.1 Exact and approximate generating functions for tables

Definition III.13. Given K =
(
kij
)
∈ Zm×n≥0 , define the polynomial

G(x,y) = GK(x,y) :=
m∏
i=1

n∏
j=1

[1 + xiyj + (xiyj)
2 + · · ·+ (xiyj)

kij ]

(where x = (x1, . . . , xm), y = (y1, . . . , yn)).

Trivially, G is a generating function for K-bounded contingency tables; that is,

(3.10) G(x,y) =
∑
R

∑
C

TK(R,C)xRyC ,
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where the sum is taken over all margins (R,C) of lengths m and n (of which finitely

many contribute a nonzero coefficient).7 In principle, we can “compute” TK(R,C)

by expanding G(x,y) and extracting the coefficient of xRyC . This is of course not

practical, but we might estimate this coefficient by

inf
xi,yj>0

G(x,y)

xRyC
;

indeed, this is an upper bound on TK(R,C), as may be readily seen by dividing both

sides of (3.10) by xRyC . To bound TK(R,C) from the other side, we replace G(x,y)

by an approximate version with smoother coefficients:

Definition III.14. Let

G̃(x,y) :=
∑
R

∑
C

ef(R,C)xRyC ,

where the sum is taken over all integer margins (R,C) such that f(R,C) > −∞.

(See Definition III.9 for the meaning of f(R,C).)

We will find the following lemma useful, as it will allow us to pick out any nonzero

term of G̃(x,y) as the largest:

Lemma III.15. 8 For any (R∗, C∗) in the relative interior of the domain of f , there

exist x∗,y∗ > 0 such that the function

Φ(R,C) := ef(R,C)xR∗ yC∗

attains its maximum at R = R∗, C = C∗.

Proof. Recall that f is concave; therefore, its graph has a supporting hyperplane

over (R∗, C∗). Let such a hyperplane have outward-pointing normal vector

7We use xR and yC as shorthand for xr11 xr22 · · ·x
rm
m and yc11 yc22 · · · y

cn
n , respectively.

8We call this the tilting lemma, as it merely reflects the fact that a convex body can be tilted so as to designate
any arbitrary point as the summit.
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(u1, . . . , um, v1, . . . , vn, 1). Set

x∗ = (x1, . . . , xm) = (e−u1 , . . . , e−um) and y∗ = (y1, . . . , yn) = (e−v1 , . . . , e−vn).

Then

φ(R,C) := f(R,C) +
m∑
i=1

ri lnxi +
n∑
j=1

cj ln yj

is concave with respect to R and C, and attains a critical point (hence its unique

global maximum) at (R∗, C∗). Therefore, so does Φ(R,C) = eφ(R,C). �

3.3.2 A generating-function-based formula for lnTK(R,C)

We now give the first of our two estimates:

Theorem III.16. Let R ∈ Zm>0, C ∈ Zn>0, and K ∈ Zm×n>0 .

Assume that TK(R,C) > 0, that is, there is at least one contingency table with

margins R and C, bounded entrywise by K. Then

lim
s→∞

1

s2
lnTK(s)(R(s), C(s)) = ln

 inf
x1,...,xm>0
y1,...,yn>0

G(x,y)

xRyC

 ,

where G(x,y) is as in Definition III.13 and R(s), C(s), K(s) are as in Definition III.12.

Proof. Using Lemma III.15, choose x∗,y∗ so that ef(R,C)xRyC is the largest term

in the expansion of G̃(x,y), evaluated at x = x∗ and y = y∗. Thus

G̃(x∗,y∗)

xR∗ yC∗
≤ [# of terms of G̃ with nonzero coeffs.] · ef(R,C).

The number of terms of G̃ is at most

N :=
m∏
i=1

(
1 +

n∑
j=1

kij

)
·
n∏
j=1

(
1 +

m∑
i=1

kij

)
,

since TK(R,C) > 0 implies that R and C do not exceed the margins of K.

Let the symbol ♥ denote the quantity

− ln
√

2π|K|+
m∑
i=1

ln
√

2πri +
n∑
j=1

ln
√

2πc̃j + (m+ n) ln

(
e√
2π

)
,
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last seen in Lemma III.11.

We deduce the following chain of inequalities:

ln

(
inf

xi,yj>0

G(x,y)

xRyC

)
≥ lnTK(R,C)

≥ f(R,C)−♥

≥ ln

(
G̃(x∗,y∗)

xR∗ yC∗ · N

)
−♥

≥ ln

(
inf

xi,yj>0

G̃(x,y)

xRyC · N

)
−♥

≥ ln

(
inf

xi,yj>0

G(x,y)

xRyC

)
− lnN −♥.(3.11)

Now we consider the cloning of the margins. Let G(s) denote the generating

function for K(s)-bounded contingency tables. Letting

x(s) := (x1,x2, . . . ,xs)

= (x1
1, . . . , x

1
m, x

2
1, . . . , x

2
m, . . . , x

s
1, . . . , x

s
m),

and defining y(s) similarly, we note that

G(s)(x(s),y(s))

[x(s)]R(s) [y(s)]C(s)
=

s∏
k=1

s∏
`=1

G(xk,y`)

(xk)R(y`)C
.

From this it follows that

1

s2
ln

(
inf

xki ,y
`
j>0

G(s)(x(s),y(s))

[x(s)]R(s) [y(s)]C(s)

)
= ln

(
inf

xi,yj>0

G(x,y)

xRyC

)
for all s ≥ 1.

Inspection of the formulas for lnN and ♥ shows that both of these terms from

(3.11) have growth of order O(s ln s) as s→∞. Therefore, by (3.11),

1

s2
lnTK(s)(R(s), C(s)) = ln

(
inf

xi,yj>0

G(x,y)

xRyC

)
+O

(
ln s

s

)
,

from which Theorem III.16 follows. �
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Remark III.17. The “cloning” limit, which will also appear in the statement of our

second estimate (Theorem III.19), is an artifice designed to enforce the linear growth

of the margins as m,n → ∞, so that we can state our estimates for lnTK(R,C)

as asymptotic formulas. One may wonder if there is a less rigid limit in which the

estimate

lnTK(R,C) ∼ ln

(
inf

xi,yj>0

G(x,y)

xRyC

)
(or

lnTK(R,C) ∼ max
Z∈ΠK(R,C)

∑
i

∑
j

Hmax
kij

(zij),

anticipating Theorem III.19) holds.

We offer the following answer. Suppose d|n. Given a vector v = (v1, v2, . . . , vn)

satisfying

(3.12) max{v1, v2, . . . , vn} ≤
d

n
(v1 + v2 + · · ·+ vn),

Lemma II.29 (which we previously used for a totally different purpose) implies that

we can obtain v as a convex combination of (n/d)-fold clonings of d-vectors.9 It thus

follows from Theorems III.7 and III.16 that

(3.13) lnTK(R,C) = ln

(
inf

xi,yj>0

G(x,y)

xRyC

)
+O(max{m,n} ln max{m,n})

uniformly for kij varying between fixed positive bounds and R,C satisfying

max{r1, . . . , rm} ≤
d

m
(r1 + · · ·+ rm), max{c1, . . . , cn} ≤

d

n
(c1 + · · ·+ cn)

with d fixed. This condition also ensures (barring the degenerate case of R = C = 0)

that TK(R,C) = eΩ(mn), so that the “main term” on the right-hand side of (3.13) is

in fact dominant as m,n→∞ simultaneously.

9We can obtain v as a combination of at most n such vectors, since polytopes are triangulable. Moreover, efficient
algorithms for this decomposition exist.
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3.3.3 A maximum-entropy formula for lnTK(R,C)

Per Proposition II.13, the MEIM10 associated to ΠK(R,C) is a matrix X =
(
xij
)

whose entries are independent TG(zij; kij) random variables, where Z =
(
zij
)

is

whichever point of ΠK(R,C) maximizes the entropy

(3.14) H[X] =
m∑
i=1

n∑
j=1

Hmax
kij

(zij).

We know that the MEIM assigns equal mass to all bona fide integer points of

ΠK(R,C), while also awarding some mass to impostors outside this polytope. Thus

formula (3.14) must overestimate the entropy of the uniform distribution on

ΠK(R,C) ∩ Zm×n, and so provides an upper bound on lnTK(R,C). However, this

upper bound turns out to be asymptotically accurate in the cloning limit, as the

following result implies:

Lemma III.18. Extending the notation of Theorem III.16, we have

(3.15) ln

 inf
x1,...,xm>0
y1,...,yn>0

G(x,y)

xRyC

 = max
Z∈ΠK(R,C)

m∑
i=1

n∑
j=1

Hmax
kij

(zij).

Proof. By Proposition II.14, Hmax
kij

(x) is strictly concave for all i, j. Also,

(Hmax
kij

)′(x) = − ln q(x; kij) approaches ∞ as x → 0 and −∞ as x → kij. It follows

that the maximum on the right-hand side of (3.15) is well-defined and is attained

in the relative interior of ΠK(R,C). For the remainder of this proof, let Z denote

the (unique) point at which the maximum is attained, and let pij := p(zij; kij),

qij := q(zij; kij).

Since Z is in the interior of ΠK(R,C), the local defining equations for ΠK(R,C)

at Z are just

n∑
j=1

aij = ri (1 ≤ i ≤ m) and
m∑
i=1

aij = cj (1 ≤ j ≤ n).

10See Definition II.6.
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Introducing Lagrange multipliers for these constraints, we infer that ln qij = λi + µj

for some constants λ1, . . . , λm, µ1, . . . , µn. Define ξi := eλi , ηj = eµj ; thus qij = ξiηj.

Dividing equation (2.4) by equation (2.3), we obtain

zij =
ξiηj + 2(ξiηj)

2 + · · ·+ kij(ξiηj)
kij

1 + ξiηj + (ξiηj)2 + · · ·+ (ξiηj)kij
.

For real-valued t = (t1, . . . , tm) and s = (s1, . . . , sn), let

ψ(t, s) := ln
G(x,y)

xRyC

∣∣∣∣xi=eti
yj=e

sj

= −
m∑
i=1

riti −
n∑
j=1

cjsj +
m∑
i=1

n∑
j=1

ln
(
1 + eti+sj + e2(ti+sj) + · · ·+ ekij(ti+sj)

)
.

This function is strictly convex, and has a critical point (hence a global minimum)

at (t, s) if and only if the gradient is zero, that is, if

ri =
n∑
j=1

eti+sj + 2e2(ti+sj) + · · ·+ kije
kij(ti+sj)

1 + eti+sj + e2(ti+sj) + · · ·+ ekij(ti+sj)
, 1 ≤ i ≤ m

and cj =
m∑
i=1

eti+sj + 2e2(ti+sj) + · · ·+ kije
kij(ti+sj)

1 + eti+sj + e2(ti+sj) + · · ·+ ekij(ti+sj)
, 1 ≤ j ≤ n.

These conditions are satisfied at t = (λ1, . . . , λm) and s = (µ1, . . . , µn). The mini-

mum value of ψ is thus

ψ(t, s) = −
m∑
i=1

riλi −
n∑
j=1

cjµj +
m∑
i=1

n∑
j=1

ln
(
1 + ξiηj + (ξiηj)

2 + · · ·+ (ξiηj)
kij
)

=
m∑
i=1

n∑
j=1

[
−zij(λi + µj) + ln(1 + qij + q2

ij + · · ·+ q
kij
ij )
]

=
m∑
i=1

n∑
j=1

[
−zij ln qij + ln

(
1

pij

)]

=
m∑
i=1

n∑
j=1

Hmax
kij

(zij).

This proves the lemma. �

Combining Lemma III.18 with Theorem III.16, we have the following second

asymptotic estimate for lnTK(R,C):
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Theorem III.19. Let R ∈ Zm>0, C ∈ Zn>0, and K ∈ Zm×n≥0 .

Assume that TK(R,C) > 0, that is, there is at least one contingency table with

margins R and C, bounded entrywise by K. Then

lim
s→∞

1

s2
lnTK(s)(R(s), C(s)) = max

Z∈ΠK(R,C)

m∑
i=1

n∑
j=1

Hmax
kij

(zij).

Proof. Immediate corollary of the results just mentioned. �

Notice that this estimate is efficiently computable, as it is the maximum of a

strictly concave function over a convex polytope. See Remark III.17 for a more

general setting in which this estimate holds asymptotically.

3.4 Correlation phenomena

In the language we have developed so far, Barvinok’s correlation results for row

and column margins may be stated as follows:

Theorem III.20 ([8], [9]). Let R ∈ Zm>0 and C ∈ Zn>0.

If T (R,C) > 0, then

lim
s→∞

1

s2
lnT (R(s), C(s)) ≥ lim

s→∞

1

s2
ln I(R(s), C(s))

(where I(R,C) is Good’s independence heuristic; cf. Section 3.1).

If T1(R,C) > 0, then

lim
s→∞

1

s2
lnT1(R(s), C(s)) ≤ lim

s→∞

1

s2
ln I1(R(s), C(s)).

Both inequalities are strict if neither R nor C is a constant vector (i.e., if it is

not the case that r1 = · · · = rm or c1 = · · · = cn).

We will use the entropy-based estimate for lnTK(R,C) (Theorem III.19) to prove

the following extension:
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Theorem III.21. Let R ∈ Zm>0, C ∈ Zn>0, and κ ∈ {2, 3, 4, . . .}. Then there exists

δ = δ(κ) ∈ (0, 1), such that if (R,C) satisfy(
max

1≤i≤m
ri

)(
max
1≤j≤n

cj

)
< δκN

then

lim
s→∞

1

s2
lnTκ(R

(s), C(s)) ≥ lim
s→∞

1

s2
ln Iκ(R

(s), C(s)),

with strict inequality if neither R nor C is a constant vector.

3.4.1 Estimate for the independence heuristic

The following result is the counterpart of Theorem III.19 for the independence

heuristic Iκ(R,C).

Lemma III.22. Let R ∈ Zm>0, C ∈ Zn>0, N = |R| = |C|, and κ ∈ Z>0 ∪ {∞}. Then

lim
s→∞

1

s2
ln Iκ(R

(s), C(s)) =

−mnHmax
κ

(
N

mn

)
+ n

m∑
i=1

Hmax
κ

(ri
n

)
+ m

n∑
j=1

Hmax
κ

( cj
m

)
.

Proof. By (3.2), we have

Iκ(R
(s), C(s)) =

(
s2mn

s2N

)−1

κ

(
m∏
i=1

(
sn

sri

)
κ

)s ( n∏
j=1

(
sm

scj

)
κ

)s

.

Applying Lemma III.3, we obtain

ln Iκ(R
(s),C(s)) = −

[
s2mnHmax

κ

(
N

mn

)
+ o(s2)

]
+ s

m∑
i=1

[
snHmax

κ

(ri
n

)
+ o(s)

]
+ s

n∑
j=1

[
smHmax

κ

( cj
m

)
+ o(s)

]
= s2

[
−mnHmax

κ

(
N

mn

)
+ n

m∑
i=1

Hmax
κ

(ri
n

)
+m

n∑
j=1

Hmax
κ

( cj
m

)
+ o(1)

]
,

proving the lemma. �
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3.4.2 A measure of surprise

The following function plays a key role in the proof of Theorem III.21:

Definition III.23. Fix κ ∈ Z>0 ∪ {∞}. Given nonnegative α1, α2, . . . , αn such that

α1 + α2 + · · ·+ αn = 1, let

J(r) = Jα,κ(r) := nHmax
κ

( r
n

)
−

n∑
j=1

Hmax
κ (rαj)

for all r ≥ 0 such that rα1, rα2, . . . , rαn ≤ κ.

To interpret this function, we consider four independence models for a random

contingency table. Let X =
(
xij
)
, XR =

(
xRij
)
, XC =

(
xCij
)
, and XR,C =

(
xR,Cij

)
be

the m×n random matrices with independent TG(·, κ) entries satisfying the following

expectations:

E[xij] =
N

mn
, E[xRij] =

ri
n
, E[xCij] =

cj
m
, E[xR,Cij ] =

ricj
N

.

The first three of these are MEIMs for contingency tables about which we know only

the 0-margin, the row margins, and the column margins respectively. The fourth

model is generally not the maximum-entropy model for a table with margins R and

C (discussed in Section 3.3.3). It is, rather, a näıve guess at the MEIM (in the same

sense that the rank 1 table11 is a näıve guess at the “typical” table), which we study

despite its flaws because we can actually write it down.12 Note that in order for

XR,C to be well-defined, the rank 1 table X ind
R,C must have all entries ≤ κ, which is

not guaranteed to be the case. We will essentially will this problem away by means

of the stipulation δ < 1 in the statement of Theorem III.21.

11See (3.1).
12The MEIM is efficiently computable for individual choices of R and C, but this is not in itself sufficient for the

analysis we intend to do.
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Now, letting αj := cj/N (1 ≤ j ≤ n), we have

H[XR]−H[XR,C ] =
m∑
i=1

J(ri),(3.16)

H[X]−H[XC ] = mJ

(
N

m

)
.(3.17)

Assuming that we model an unknown contingency table by the four independence

models described above, quantities (3.16) and (3.17) represent the loss of entropy (or

“surprise”) when we learn the row margins of the table, respectively with or without

prior knowledge of the column margins. If less surprise occurs under the former

circumstance, that is, if

(3.18) J(r1) + J(r2) + · · ·+ J(rm) ≤ mJ

(
N

m

)
,

then that implies (informally) that R and C are positively correlated. This is the

strategy for proving Theorem III.21, in a nutshell.

3.4.3 Proof of Theorem III.21

As in the previous section, let

αj :=
cj
N

(1 ≤ j ≤ n).

Consider the function

φ(x) := x2(Hmax
κ )′′(x) = −x2 · q

′(x;κ)

q(x;κ)

(all derivatives being with respect to x). The second equality here follows from

Lemma II.14(iii).

The above formula defines φ(x) only for 0 ≤ x ≤ κ, but we claim that φ(x) can

be extended analytically to a neighborhood of x = 0.

Proof of claim: Equations (2.3) and (2.4) yield

x =
q + 2q2 + · · ·+ κqκ

1 + q + q2 + · · ·+ qκ
,
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where q = q(x;κ). Although this formula has only been assigned meaning for q ≥ 0,

it shows that x (as a function of q) can be extended analytically to a neighborhood

of q = 0; the Maclaurin series is x = q+ q2 +O(q3). Since dx
dq
6= 0 at q = 0, it follows

that the inverse function q(x;κ) is also defined and analytic in a neighborhood of

x = 0, with Maclaurin series q = x − x2 + O(x3). Applying l’Hôpital’s rule, we see

that the singularity of φ at x = 0 is removable, so φ(x) is locally analytic there,

proving the claim. �

We compute the Maclaurin series of φ(x):

φ(x) = −x · 1− 2x+O(x2)

1− x+O(x2)
= −x+ x2 +O(x3).

Since the coefficient of x2 is positive, φ(x) is strictly convex in a neighborhood

of x = 0. Choose δ ∈ (0, 1) such that φ(x) is strictly convex in the interval

|x| ≤ δκ.

Because δ < 1, J(r) is defined and differentiable at r = r1, . . . , rm. Differentiating,

we have

J ′(r) = (Hmax
κ )′

( r
n

)
−

n∑
j=1

αj(H
max
κ )′(rαj)

and

J ′′(r) =
1

n
(Hmax

κ )′′
( r
n

)
−

n∑
j=1

α2
j (H

max
κ )′′(rαj)

=
n

r2
φ
( r
n

)
−

n∑
j=1

1

r2
φ(rαj).

By the (local) convexity of φ(x), we have J ′′(r) ≤ 0 for 0 < r ≤ δκ
max{α1,...,αn} ; the

inequality is strict if α1, . . . , αn are not all equal. Therefore, J(r) is concave on (the

closure of) that interval, and strictly concave if α1, . . . , αn are not all equal. By our

assumption that ricj ≤ δκN , it follows that r1, . . . , rm are in that interval.
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Thus, inequality (3.18) holds, and holds strictly if α1, . . . , αn are not all equal

and r1, . . . , rm are also not equal. When the function J is evaluated throughout this

inequality, we obtain

n
m∑
i=1

Hmax
κ

( ri
m

)
−

m∑
i=1

n∑
j=1

Hmax
κ

(ricj
N

)
≤ mnHmax

κ

(
N

mn

)
−m

n∑
j=1

Hmax
κ

( cj
m

)
.

Combining this with Theorem III.19 and Lemma III.22, we have

lim
s→∞

1

s2
lnTκ(R

(s), C(s)) ≥ max
Z∈Πκ(R,C)

m∑
i=1

n∑
j=1

Hmax
κ (zij)

≥
m∑
i=1

n∑
j=1

Hmax
κ

(ricj
N

)
≥ lim

s→∞

1

s2
ln Iκ(R

(s), C(s)).

If α1, . . . , αn are not all equal and r1, . . . , rm are not all equal, then the last

inequality in this chain is strict. This completes the proof of Theorem III.21. �

3.4.4 Negative correlation of margins: evidence and prospects

Recall that for κ = 1, all pairs of margins (R,C) have either zero or negative

asymptotic correlation under cloning (specifically, negative correlation unless either

R or C is a constant vector). For κ = ∞, the sign of correlation is reversed. We

expect that these are the only “pure” cases: that is, when 1 < κ < ∞, there are

some positively correlated pairs of margins as well as some negatively correlated

pairs. Theorem III.21 asserts half of this conjecture: for κ ≥ 2, any sufficiently

sparse margins are asymptotically positively correlated. (By symmetry, “co-sparse

margins”—those which force most entries to be close to κ—are also positively cor-

related.)

Numerical evidence and heuristic arguments suggest that, for all κ <∞, margins

which are neither sparse nor co-sparse—or, more specifically, margins which are close
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(κ = 2) γ
0.12 0.18 0.24 0.30 0.36 0.42 0.48 · · ·

ε

0.06 + + + + − − − · · ·
0.12 + + + − − − · · ·
0.18 + + − − − · · ·
0.24 + − − − · · ·
0.30 − − − · · ·

(κ = 4) γ
0.24 0.36 0.48 0.60 · · · 1.32 1.44 1.56 1.68 1.8 · · ·

ε

0.12 + + + + · · · + − − − − · · ·
0.24 + + + · · · + − − − − · · ·
0.36 + + · · · + − − − − · · ·
0.48 + · · · + + − − − · · ·

...
. . .

...
...

...
...

1.20 + + + − − · · ·
1.32 + + − − · · ·
1.44 + − − · · ·
1.56 + − · · ·
1.68 − · · ·

Table 3.2: Sign of lims→∞
1
s2

[
lnTκ(R(s), C(s))− ln Iκ(R(s), C(s))

]
for margins of the form R = C =

(γ − ε, γ, γ + ε), where κ = 2 or 4 and γ, ε take various values. Sign corresponds to
asymptotic correlation of the (cloned) margins. All omitted entries between +’s are +’s.
Were these tables to be continued to the right or downward, all omitted entries would
be −’s except for mirror images of the +’s shown.

to R = (nκ
2
, . . . , nκ

2
) and C = (mκ

2
, . . . , mκ

2
)—are negatively correlated. For example,

we have used Theorem III.19 to compute

(3.19) lim
s→∞

1

s2

[
lnTκ(R

(s), C(s))− ln Iκ(R
(s), C(s))

]
for margins of the form R = C = (γ−ε, γ, γ+ε) and κ = 2, 4, 6, 8, 10. The results for

κ = 2, 4 are shown in Table 3.2. (Note that γ and ε are not required to be integers;

as long as they are rational, the cloned margins will be integral for some values of

s.) For every value of the increment ε we tested, we found that the values of γ for

which (3.19) is negative form an interval centered at γ = 3κ
2

. Our computations with

small ε allow us to estimate that the largest possible values of δ in Theorem III.21

are δcr ≈ 0.05, 0.11, 0.14, 0.15, 0.16 when κ = 2, 4, 6, 8, 10 respectively. Nonconstant

margins (R,C) satisfying δcrκn < ri < (1 − δcr)κn and δcrκm < cj < (1 − δcr)κm
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appear to always exhibit negative correlation.

An intuitive gloss on this phenomenon is that the distribution TG(x;κ) “looks

like” a geometric distribution when x ≈ 0 (or x ≈ κ), but looks more like a Bernoulli

distribution when x is at neither extreme. In the former case, the “lid” κ (or the

floor 0) is remote from typical values, so the behavior observed when κ = ∞ domi-

nates. In the latter case, the κ = 1 behavior seems to dominate.

The fundamental difference between these cases is hinted at by the function φ(x)

which appears in the proof of Theorem III.21. When κ =∞, this function is convex

throughout its domain; when κ = 1, it is concave; and when 1 < κ < ∞, this

function is convex near the origin, but has an inflection point.13 See Figure 3.1.

Figure 3.1: Graphs of φ(x), κ = 1, 2, 10,∞

Given κ <∞, we can show that φ(x) is concave for x ≈ κ
2
; so what are the obsta-

13The subtlety of this matter can be appreciated by recalling that φ(x) was defined in terms of the second derivative
of Hmax

κ (x); therefore the concavity of φ(x) is influenced by the fourth derivative of Hmax
κ (x).
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cles to a reversed Theorem III.21? There are two. In the proof of Theorem III.21,

we relied on the fact that

(3.20) max
Z∈Πκ(R,C)

m∑
i=1

n∑
j=1

Hmax
κ (zij) ≥

m∑
i=1

n∑
j=1

Hmax
κ

(ricj
N

)
,

a triviality whose opposite (i.e., the inequality with reversed sign) is of course false.

It is this triviality which fructified our use of the rank 1 matrix X ind =
( ricj
N

)
as a

proxy for the unknown Z which achieves the maximum. Even so, in order to give

existence to this proxy, we had to assume that X ind has entries ≤ κ; it happened

that the hypothesis of sparse margins in Theorem III.21 served a double purpose by

underwriting this assumption. Neither of these helps is available toward proving a

negative correlation result. To do that, we believe it will be necessary to understand

something about where the maximum on the left-hand side of (3.20) is achieved.
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[32] P. Erdős. On a lemma of Littlewood and Offord. Bulletin of the American Mathematical
Society, 51:898–902, 1945.

[33] L. Euler. De evolutione potestatis polynomialis cuiuscunque (1+x+x2+x3+x4+etc.)n. Nova
Acta Academiae Scientarum Imperialis Petropolitinae, 12:47–57, 1801. Translation available
at http://arxiv.org/abs/math.HO/0505425.

[34] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399–404, 1956.

[35] M. R. Garey and S. J. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco, 1979.



98

[36] I.J. Good. On the application of symmetric Dirichlet distributions and their mixtures to
contingency tables. Annals of Statistics, 4:1159–1189, 1976.
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[50] M. Loebl and L. Zdeborová. The 3d dimer and Ising problems revisited. European Journal of
Combinatorics, 29:966–978, 2008.

[51] L. Lovász and M. D. Plummer. Matching Theory. AMS Chelsea, Providence, 2009.

[52] I. G. Macdonald. Polynomials associated with finite cell-complexes. Journal of the London
Mathematical Society, 4:181–192, 1971.

[53] B. Morris and A. Sinclair. Random walks on truncated cubes and sampling 0-1 knapsack
solutions. In 40th Annual Symposium on Foundations of Computer Science, proceedings, pages
230–240. IEEE, 1999.

[54] T. S. Motzkin. The multi-index transportation problem. Bulletin of the American Mathemat-
ical Society, 58:494, 1952.

[55] L. Nicolaescu. Lattice points inside rational simplices and the Casson invariant of Brieskorn
spheres. Geometriae Dedicata, 88:37–53, 2001.

[56] T. E. O’Neil and S. Kerlin. Sub-exponential algorithms for 0/1 knapsack and bin packing.
Preprint available at http://people.aero.und.edu/~oneil/pubs/cocoon11-10pt.pdf.

[57] G. Pick. Geometrisches zur Zahlentheorie. Sitzungsberichte des deutschen
naturwissenschaftlich-medicinischen Vereines für Böhmen “Lotos”, 19:311–319, 1899.



99

[58] J. Propp. Enumeration of matchings: problems and progress. New Perspectives in Geometric
Combinatorics, 38:255–291, 1999.

[59] H. L. Royden. Real Analysis. Prentice-Hall, Englewood Cliffs, 1988.

[60] R. Y. Rubenstein and D. P. Kroese. The Cross-Entropy Method: A Unified Approach to
Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning. Springer, New
York, 2004.

[61] C. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379–
423, 1948.

[62] C. Shannon. A mathematical theory of communication II. Bell System Technical Journal,
27:623–656, 1948.

[63] A. V. Skorokhod. Basic Principles and Applications of Probability Theory. Springer-Verlag,
Heidelberg, 2005.

[64] R. Snee. Graphical display of two-way contingency tables. The American Statistician, 28:9–12,
1974.

[65] H. N. V. Temperley and M. E. Fisher. Dimer problem in statistical mechanics—an exact result.
Philosophical Magazine, 6:1061–1063, 1961.

[66] A. N. Timashov. On permanents of random doubly stochastic matrices and on asymptotic
estimates for the number of Latin rectangles and Latin squares. Discrete Mathematics and
Applications, 12:431–452, 2002.

[67] L. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8:189–201, 1979.

[68] L. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Com-
puting, 8:410–421, 1979.

[69] J. H. Van Lint and R. M. Wilson. A Course in Combinatorics, 2nd ed. Cambridge University
Press, 2001.

[70] X. Wang and S. Yau. On the GLY conjecture of upper estimate of positive integral points in
real right-angled simplices. Journal of Number Theory, 122:184–210, 2007.

[71] G. Ziegler. Lectures on Polytopes. Springer-Verlag, New York, 1995.


