
A Space-Time Discontinuous Galerkin Method for
Navier-Stokes with Recovery

by

Kwok Ho Marcus Lo

A dissertation submitted in partial ful�llment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering)

in The University of Michigan
2011

Doctoral Committee:

Professor Bram van Leer, Chair
Professor Nikolaos D. Katopodes
Professor Philip L. Roe
Assistant Professor Krzysztof J. Fidkowski
Hung T. Huynh, NASA Glenn

c© Kwok Ho Marcus Lo 2011

All Rights Reserved

ACKNOWLEDGEMENTS

I appreciate my loving mother, Katherine, for teaching me to rely on myself and

to stand tall. I thank my dad, Alan, for allowing me to pursue my love for science.

Thank you my brother, Michael, for taking care of me when I was almost dead on

the hospital bed. I am thankful for my wonderful pets, Miumiu and Momo, for

accompanying me through day and night, and through ups and downs. I am grateful

for Hung Huynh's enthusiasm and advice in CFD. Cheers to my research comrade,

Loc, for enduring my eccentricity. Lastly, I am in�nitely happy for this wonderful

life-learning experience with my friendly neighborhood professor, Bram van Leer and

his wife, Lia.

ii

PREFACE

Computational �uid dynamics (CFD) is the branch of �uid mechanics that uses

numerical methods and algorithms to solve �uid problems. While there are currently

a myriad of numerical methods being used and developed, this dissertation focuses

on the Discontinuous Galerkin (DG) method because this method possesses superior

properties in regard to adapting to problem geometry, to parallelizing on today's

computer architecture, and to achieving super-convergence. Although DG works well

in hyperbolic problems where discontinuities frequently arise, the development in

parabolic problems, such as di�usion, is lagging. The purpose of this dissertation is

to present a completely new concept, interface-centered recovery-based discontinuous

Galerkin (RDG) for di�usion. Our goal is to develop a new di�usion scheme that is

a quantum level better than existing methods; this includes higher-order of accuracy,

weaker time-stepping restriction, and easier understanding and implementation. We

begin by providing a historical overview of developments in DG for time-marching and

di�usion schemes. The second chapter illustrates the generalized concept of recovery

in a mathematical framework. In next chapter, we present analysis and numerical

results in one dimension to facilitate understanding of the recovery concept. The

fourth chapter expands the recovery concept to two dimensions and unstructured

grids. We also include a new application of the recovery concept beyond di�usion.

Recovery is used for enhancing the solution polynomial to a higher order; as a result

the recovery procedure uses more isotropic information resulting in a higher order of

accuracy. The choice of information is subject to optimization. The �fth chapter pro-

vides numerical results for solving the Navier-Stokes viscous terms. The �nal chapter

is the development of a new time-marching scheme for DG, moment method, not re-

stricted to di�usion. The moment method was �rst developed by Dr. Huynh (NASA

Glenn) for piecewise-linear solution representation. We present the implementation

and numerical results of higher-order moment schemes.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

PREFACE . iii

LIST OF FIGURES . viii

LIST OF TABLES . xv

LIST OF APPENDICES . xx

CHAPTER

I. Introduction . 1

1.1 Boris Grigoryevich Galerkin 1
1.2 The discontinuous Galerkin method 2
1.3 History of advection and explicit time-marching methods for DG 6

1.3.1 The original DG: neutron transport 7
1.3.2 Van Leer's schemes III & VI 8
1.3.3 Runge-Kutta methods 8
1.3.4 ADER and STE-DG methods 9
1.3.5 Huynh's upwind moment method 10
1.3.6 Hancock discontinuous Galerkin method 11

1.4 History of di�usion methods for DG 11
1.4.1 The (σ, µ)-family 12
1.4.2 Approaches based on a system of �rst-order equa-

tions . 13
1.4.3 Recovery-based discontinuous Galerkin method . . . 15
1.4.4 Flux-based di�usion approach 15
1.4.5 Huynh's reconstruction approach 16
1.4.6 Combining DG advection with DG di�usion 17

1.5 Motivation . 18
1.6 Outline of this thesis: the River of Recovery 19

II. Interface-centered Recovery-based Method for Di�usion . . . 21

iv

2.1 The beginning of RDG . 21
2.2 Cartoon illustration of recovery in 1-D 23
2.3 Interface recovery equations 24

2.3.1 Full-rank Rj,j+1 . 26
2.3.2 Reducing the condition number of Rj,j+1 27

2.4 Smooth recovery polynomial basis 30
2.5 Interface-centered recovery-based discontinuous Galerkin (iRDG)

Method . 32
2.6 Evolution of the recovery-based discontinuous

Galerkin methods . 34
2.7 Stability proofs for interface recovery-based discontinuous Galerkin

methods . 35
2.7.1 Proof for RDG-2x 35
2.7.2 Proof for RDG-1x-Naive 38
2.7.3 Note on RDG-1x-Smart 38

2.8 Recovery concept for solution enhancement 39

III. RDG in One-Dimension for Scalar Equation 40

3.1 1-D recovery equations for binary recovery 41
3.1.1 Piecewise-constant (p = 0) recovery 41
3.1.2 Piecewise-linear (p = 1) recovery 42
3.1.3 Piecewise-quadratic (p = 2) recovery 43

3.2 RDG-2x for linear di�usion 44
3.3 Fourier analysis and eigenvectors 47

3.3.1 RDG-2x Fourier analysis: piecewise-linear (p = 1) . 48
3.3.2 RDG-2x Fourier analysis: piecewise-quadratic (p =

2) . 54
3.3.3 The venerable (σ, µ)-family Fourier analysis for p = 1 56
3.3.4 The new (σ, µ, ω)-family for p = 1 69
3.3.5 Bilinear form of RDG 70

3.4 Numerical results for the �original� RDG-2x 71
3.4.1 Recovery at the domain boundary 71
3.4.2 Linear di�usion . 74
3.4.3 Linear advection-di�usion 79

3.5 RDG schemes for variable di�usion coe�cient 85
3.5.1 RDG-1x+ with recovery concept for solution enhance-

ment . 88
3.5.2 Fourier analysis of various RDG schemes 93
3.5.3 Linear variation of di�usion coe�cient 93
3.5.4 Nonlinear variation of di�usion coe�cient 95

3.6 Chapter summary . 97

IV. RDG in Two-Dimensions for a Scalar Equation 100

v

4.1 2-D recovery equations for binary recovery 100
4.1.1 Transformation from global to local coordinate . . . 101
4.1.2 Tranformation from global to recovery coordinates . 103
4.1.3 Orthogonal basis functions 104
4.1.4 Recovery basis derived from tensor product basis . . 106

4.2 RDG Schemes for 2-D . 107
4.2.1 Recovery at the domain boundary 107
4.2.2 Linear RDG schemes 110
4.2.3 Nonlinearity and cross-derivatives in RDG schemes . 118

4.3 Chapter summary . 127

V. Navier-Stokes Equations with RDG 129

5.1 1-D Navier-Stokes Equations with RDG 129
5.1.1 Discretization of 1-D Navier-Stokes viscous terms . 131

5.2 2-D Navier-Stokes . 136
5.2.1 2-D Navier-Stokes Viscous Terms 138

5.3 Chapter summary . 141

VI. Hancock-Huynh Discontinuous Galerkin Method 142

6.1 Hancock's Observation . 144
6.2 Space-time discontinuous Galerkin discretization for advection 146

6.2.1 One-dimension linear advection 147
6.2.2 One-dimensional Euler equations 157
6.2.3 Summary of HH-DG for advection 165

6.3 Space-time discontinuous Galerkin for di�usion 166
6.3.1 Deriving space-time di�usion schemes 167
6.3.2 Hancock-Huynh interface-centered recovery-based dis-

continuous Galerkin method (HH-RDG) 185
6.4 HH-DG linear advection-di�usion in 1-D 192

6.4.1 Piecewise-linear & piecewise-quadratic HH-DG for
linear advection-di�usion equation 195

6.4.2 Numerical results for linear advection-di�usion with
HH-DG . 198

6.4.3 Fourier analysis of HH-DG for linear advection di�usion199
6.5 Chapter summary . 202

VII. Conclusions . 204

7.1 Summary . 204
7.2 Future work . 207
7.3 The e�ort: revisiting the River of Recovery 209

vi

APPENDICES . 211

BIBLIOGRAPHY . 232

vii

LIST OF FIGURES

Figure

1.1 Boris Grigoryevich Galerkin . 2

1.2 Continuous Galerkin (left) and discontinuous Galerkin (right) solu-
tion representations showing the key di�erence is the requirement of
continuity across element interface 5

1.3 Interpretation of BR1 (left) and BR2 (right) for scalar 1-D di�usion.
Two new local solutions are reconstructed on the left and right of
the indicated interface as gL and gR respectively. The large solid dot
indicates the average of the left and right values at the interface. The
schemes also adopt the average of the derivative values as the interface
value of ux. Notice BR1 utilizes a 4-cell stencil for an interface �ux,
while the newer BR2 utilizes a 2-cell stencil. 14

1.4 Interpretation of two versions of LDG for scalar 1-D di�usion. Two
new local solutions are reconstructed on the left and right of the
indicated interface as gL and gR respectively. The large solid dot
indicates the common function value. The LDG is a non-symmetric
scheme using the function value of gL for u, but the derivative value
of gR for ux, (left) or vice versa (right). 14

1.5 The outline of this thesis is represented by the River of Recovery. . 20

2.1 Finite-element analyst answering �nite-volume analyst regarding DG
for di�usion. Courtesy of Van Leer, 2005. 22

2.2 The essence of recovery. Start with the exact solution U on the left
(dashed line). The discretized solution u in the middle is piecewise
linear (thick solid line). We recover a smooth function f (right, thin
solid line). 23

viii

2.3 A little block game for determining the recovery basis in 1-D. The
blocks on the left and right of the dashed line indicate basis functions
of the solution in Ωj and Ωj+1 respectively. Now imagine gravity pulls
to the left; the blocks from Ωj+1 fall on �top� of the blocks in Ωj to
form the recovery basis. 26

2.4 A little block game for determining the recovery basis in 2-D. The
blocks on the left and right of the dashed line indicate basis function
of the solution in Ωj and Ωj+1 respectively. Now imagine gravity
pulls to the left; the blocks from Ωj+1 fall on �top� of the blocks in
Ωj to form the recovery basis. Notice there are more blocks in the
r-coordinate than in the s-coordinate. 27

2.5 In the p = 0 case, there is a total of two SRB functions. The smooth
recovery basis functions (solid lines) replacing vj = 1 (dashed lines)
in Ωj (left), and vj+1 = 1 in Ωj+1 (right). 31

2.6 In the p = 1 case, there is a total of four SRB functions. The smooth
recovery basis functions (solid lines) replacing vj = 1 and vj = 2ξ− 1
(dashed lines) in Ωj (left), and vj+1 = 1 and vj+1 = 2ξ − 1 in Ωj+1

(right). 31

3.1 The recovery coordinate system spans the union of two neighboring
cells, while each cell has a local coordinate ξ. 42

3.2 Eigenvalues of RDG-2x (p = 1) are shown on the left. The switch
functions are shown on the right demonstrating the contribution of
each eigenfunction for various β. 50

3.3 Eigenfunctions of RDG-2x (p = 1) for β between π
5
and 99π

100
. Notice

the change in scaling of both x-axis and g-axis. The dashed line
represents the analytical wave. 52

3.4 Eigenfunctions of RDG-2x (p = 1) for β for 4π
3
and 5π

3
. Notice the

change in scaling of both x-axis and g-axis. The dashed line repre-
sents the analytical wave. 53

3.5 Eigenvalues of RDG-2x (p = 2), are shown on the left. The switch
functions are shown on the right demonstrating the contribution of
each eigenfunction for various β. 55

3.6 A closer look at the good eigenvalue of RDG-2x (p = 2), for small β.
The di�erence between the good eigenvalue and the exact di�usion
operator is of order β10, implying the evolution error of the scheme
is 8th-order. 55

ix

3.7 Eigenfunctions of RDG-2x (p = 2) for β between π
5
and 5π

3
. Notice

the change in scaling of both x-axis and g-axis. The dashed line
represents the analytical wave. 57

3.8 For small β, C1 and C2 are the weighting coe�cients of the bad
eigenvectors. They scale with β8. However, no solid conclusion can
be drawn from this analysis due to the lack of analytical formulas. . 58

3.9 A intuitive map of the (σ, µ)-family. The symbols are de�ned as
follow: �S� is the symmetric scheme, �SA� is the symmetric/Arnold
scheme, �I� is the inconsistent scheme, �BR2� is Bassi-Rebay 2. The
dark region indicates instability, the light gray region represents ef-
�cient and stable schemes with the largest Von Neumann number
(VNN), and the white region designates the stable domain. 61

3.10 Stencils of full boundary-recovered function (left) and compact boundary-
recovered function (right). The thick solid line indicates the domain
boundary, and B.C. stands for boundary condition, which can be
Dirichlet or Neumann. 73

3.11 Upwind-RDG-2x (p = 1) Péclet number study. Numbers indicate the
order of accuracy in the L2-norm. The left axis indicates the value
of PeG, while the dotted lines indicate contours of constant PeL. We
observe the order of accuracy of upwind-RDG-2x decreases in the
upper right corner where the advection physics dominate, re�ecting
the order of accuracy of the DG upwind scheme only. 85

3.12 Upwind-RDG-2x (p = 2) Péclet number study. Numbers indicate the
order of accuracy in the L2-norm. Unfortunately, the rates are not
reliable because the di�usion scheme is too accurate and the errors
are at the computer-zero level. We are still able to observe that near
the top right region where the advection physics dominate, the rate
is dominated by the upwind scheme. 86

3.13 Recovery concept is used for both di�usion �ux and solution en-
hancement. BR stands for binary recovery; SE stands for solution
enhancement. The cycle of BR followed by SE can be repeated over
and over again until the desired level of enhancement is achieved. . 90

4.1 Mapping from the global coordinates to the local coordinates. The
arbitrary triangle T is transformed into a standard triangle TS. The
arbitrary quadrilateral Q is transformed into a standard square QS. 101

4.2 Mapping from global to recovery coordinates. 104

x

4.3 A little block game for determining the recovery basis in 2-D. The
blocks on the left and right of the dotted line indicate basis functions
of the solution in Ωj and Ωj+1 respectively. Now imagine gravity
pulls to the left; the blocks from Ωj+1 fall on �top� of the blocks in
Ωj to form the recovery basis. Notice there are more blocks in the
r-coordinate than in the s-coordinate. 106

4.4 Full boundary-recovered functions for 2-D Cartesian grid for p = 1
on the left and p = 2 on the right. The domain boundary provides
p+ 1 conditions based on the Dirichlet function, g. Notice the choice
of moments to satisfy in Ω2 is not arbitrary. 108

4.5 (Left) The hollow circles indicate the centroids of the triangles. It is
di�cult to obtain a full boundary-recovered function due to the align-
ment of cell centers that is more biased in the face-parallel direction.
(Right) Compact boundary-recovered function for 2-D Cartesian grid
for p = 1. The domain boundary provides p+ 1 conditions based on
the Dirichlet boundary condition, g (x, y). 109

4.6 Experiment 1, RDG-2x (p = 1) for time-accurate problem with peri-
odic boundary conditions. The order of error convergence is 4th-order
for the cell average, and 5th-order for the averaged �rst gradient. . . 113

4.7 Experiment 1, RDG-2x (p = 2) for time-accurate problem with peri-
odic boundary conditions. The order of error convergence is 8th-order
for the cell average, and 7th-order for the averaged �rst gradient. . . 113

4.8 Experiment 1, RDG-2x (p = 3) for time-accurate problem with pe-
riodic boundary conditions. The order of error convergence is 10th-
order for the cell average, and 11th-order for the averaged �rst gra-
dient. The dip for the course grid is due to the average �rst gradient
being zero on a 2 by 2 grid. 114

4.9 Experiment 2. Left: RDG-2x (p = 1) for steady-state problem using
full boundary-recovered function at the Dirichlet boundaries. Right:
Comparison of various RDG (p = 1) schemes with full boundary-
recovered function. 116

4.10 Experiment 3, RDG-2x (p = 1, 2, 3, 4) for steady-state problem using
compact boundary-recovered function at the Dirichlet boundaries. A
sample perturbed grid is shown on the left, and the graph on the
right shows the order of accuracy of the scheme to be p + 1 on the
irregular triangular grid. 117

xi

4.11 Experiment 3, RDG-2x and RDG-1x-Naive (p = 1, 2, 3) for steady-
state problem using a compact boundary-recovered function at the
Dirichlet boundaries. It appears that RDG-2x is only slightly better
than RDG-1x on a triangular grid. 117

4.12 Basis functions for û in 2-D Cartesian grid for p = 0, 1, and 2 from
left to right. 119

4.13 The recovered function is inaccurate in the face-tangential direction.
We apply binary recovery on top of û to get an enhanced recovered
function f̂ to improve on the accuracy of f in the face-tangential
directions. 121

4.14 The 2-D stencils for various RDG schemes. Stencil size has direct
in�uence on the time-step of explicit time-marching schemes, and
also on the matrix density of implicit time-marching schemes. 122

4.15 The stencils of the enhanced recovered function for RDG-1x++ and
RDG-1x++CO on the left and right, respectively. 122

4.16 Reduced-accuracy y-recovery, followed by standard x-recovery, to cre-
ate an enhanced recovered function f̂ for use at an interface along
the y-direction. 123

4.17 Experiment 5, RDG-1x++ and RDG-1x++CO (p = 1) for time-accurate
problem with periodic boundary conditions. The order of error con-
vergence is 4 for the cell average, and 5 for the averaged �rst gradient.124

4.18 Experiment 5, RDG-1x++ and RDG-1x++CO (p = 2) for time-accurate
problem with periodic boundary conditions. Notice the Cartesian op-
timized version performs extremely well. 125

4.19 Experiment 5, RDG-1x++ and RDG-1x++CO (p = 3) for time-accurate
problem with periodic boundary conditions. The order of error con-
vergence is 10 for the cell average, and 9 for the averaged �rst gradient.125

6.1 Hancock observes that the waves generated from the local evolution
of two elements, Ωj and Ωj+1, result in the correct waves arriving at
the element interface centered on xj+ 1

2
. 145

6.2 The exact shift operator occurs when ν = 1. The solution of Ωj at
t = t0 + ∆t is equal to the solution of Ωj−1 at t = t0. 149

xii

6.3 For ν < 1, the subcell shift causes the original discontinuity at the
interface to be shifted to the interior of Ωj. The new solution of Ωj

(dotted line) is now acquired by projecting the discontinuous solution
ushiftedj into the solution space. 149

6.4 HH-DG (p = 2) using local Runge-Kutta to obtain ust. Dashed
lines indicates location of stored space-time solution values. The
lightly dotted lines are characteristics from Ωj and they illustrate an
important property of �locality.� For LRK, these characteristics are
assumed to be valid outside of Ωj, hence the function values of u on
the boundaries are uniquely de�ned. 152

6.5 At the interface between two space-time expanded solutions (repre-
sented by solid dots), an approximate Riemann solver (indicated by
ellipses) is applied at the Radau points to acquire unique �ux values
at each time level. 153

6.6 Ampli�cation factor of the 4th-order di�usion scheme using central
di�erencing. A maximum of r = 0.66 is achieved with regard to
stability. 170

6.7 Ampli�cation factor of the 6th-order di�usion scheme using central
di�erencing. A maximum of r = 0.84 is achieved. 172

6.8 The two ampli�cation factors associated with a �nite-di�erence scheme
with p = 1 subgrid information. The resulting scheme is 4th-order
accurate in time. Notice for r = 1

12
, the two ampli�cation factors are

distinct, while for r = 1
6
, the two ampli�cation factors coincide with

each other. 174

6.9 The three ampli�cation factors associated with the FD scheme with
p = 2 subgrid information is shown for r = 0.0529 (left) and r = 0.124
(right). The eigenvalues are real up to r = 0.0529. The eigenvalues
become complex for r ≥ 0.0529 and the ampli�cation factors remain
under unity up till r = 0.124. 177

6.10 Polar plots in the complex plane of the two eigenvalues of the update
matrix of HH-RDG (p = 1) scheme. The dashed line indicates the
stability boundary. For r = 1

6
, the two eigenvalues coincide. For

anything larger than r = 1
6
, one eigenvalue lies outside of the stability

domain. 191

xiii

6.11 Polar plots in the complex plane of the two eigenvalues of the update
matrix of HH-RDG (p = 2) scheme. The dashed line indicates the
stability boundary. For r = 1

10
, the three eigenvalues remain bounded

by the stability circle. For r larger than 1
10
, one eigenvalue lies outside

of the stability domain. 192

6.12 HH-DG for linear advection-di�usion problem, p = 1. Dashed line
represents constant cell Péclet number. The order of accuracy grad-
ually transitions from 4 at the bottom left corner to roughly 3 at the
top right corner. 199

6.13 Polar plots in the complex plane of the two eigenvalues associated
with HH-DG (p = 1) linear advection-di�usion scheme using CAdv-Di� =
1. The unit circle is also drawn (dotted line). Notice the eigenvalues
go beyond stability domain for 1 < PeL < 1000. A safety factor of
CAdv-Di� = 0.9375 stabilizes the scheme for all Péclet numbers. . . . 200

6.14 Polar plots in the complex plane of the three eigenvalues associ-
ated with HH-DG (p = 2) linear advection-di�usion scheme using
CAdv-Di� = 1. The unit circle is also drawn (dotted line). Notice the
eigenvalues go beyond the stability domain for 10−3 < PeL < 108. A
safety factor of CAdv−Diff = 0.2 stabilizes the scheme for all Péclet
numbers. 201

6.15 After applying a safety factor of CAdv−Diff = 0.2, the three eigenval-
ues associated with HH-DG (p = 2) linear advection-di�usion scheme
lie within the stability domain for all range of Péclet number. 202

6.16 Safety factor of HH-DG (p = 1) linear advection-di�usion scheme ap-
plied to ∆t based on Eqn 6.144 . 203

6.17 Safety factor of HH-DG (p = 2) linear advection-di�usion scheme ap-
plied to ∆t based on Eqn 6.144 . 203

7.1 History of CFD Part II: Courtesy of Van Leer and Lo. 208

A.1 Three fundamental types of Gaussian quadrature. The di�erence lies
in the location of the endpoints, where enforcing the endpoints to co-
incide with the interval boundaries results in lower-order polynomial
representation. 213

xiv

LIST OF TABLES

Table

2.1 Condition number of Rj,j+1 for recovery between two right triangu-
lar elements with p = 1 solutions. Notice quadrilateral Legendre
polynomials (Q. Legendre) are no longer orthogonal on a triangle do-
main. Each face of the triangle has a di�erent condition number; the
maximum condition number of the three is reported. 30

3.1 Numerical Fourier analysis of RDG-1xf̄ show the scheme to be unsta-
ble for p ≥ 3 due to positive eigenvalues. RDG-1xf̄ is an experimental
scheme. 66

3.2 Stability range and order of error convergence of various schemes
of the (σ, µ)-family. The maximum stable Von Neumann number
(VNN) is found numerically to the nearest one-hundredths, and the
CPU time for numerical convergence is given in seconds. The * sym-
bol indicates schemes lying on the thick solid line of the (σ, µ)-map. 68

3.3 Coe�cients of the penalty-like terms in 1-D RDG-2x for p ≤ 5. . . . 70

3.4 L2-error of RDG-2x scheme for steady-state problem with periodic
boundary condition. * stands for undetermined order of accuracy.
The extremely high accuracy of the cell average of the p = 2 scheme,
and both cell average and �rst gradient of the p = 3 scheme are
referred to as �in�nite accuracy�. 76

3.5 L2-error of RDG-2x scheme for time-accurate problem with periodic
boundary condition. 78

3.6 L2-error of RDG-2x scheme for steady-state problem with mixed
boundary condition using full boundary-recovered function. 80

3.7 L2-error of RDG-2x scheme for steady-state problem with mixed
boundary condition using compact boundary-recovered function. . 81

xv

3.8 Flops comparison between RDG and cRDG for solution enhancement
on a Cartesian grid, where (NRDG, NcRDG) is (2, 3), (5, 9), and (6, 27)
for 1-D, 2-D, and 3-D, respectively. RDG in 2-D and 3-D is more than
an order of magnitude cheaper than cRDG. 89

3.9 Rate of L2-error convergence. The VNN number are given for RK3,
RK4 and RK5 for p = 1, 2, and 3, respectively. 93

3.10 Convergence rate of L2-error. The VNN number are given for RK3,
RK4 and RK5 for p = 1, 2, and 3, respectively. 95

3.11 L2-error of RDG-1x+ scheme for steady-state nonlinear di�usion
problem with periodic boundary condition. 98

4.1 Tensor-product basis for Legendre polynomials. 105

4.2 A sample orthonormal basis (p = 4) for the standard triangle. . . . 106

4.3 Experiment 4, L2-error of the cell average for the RDG-1x+ and
RDG-0x+ schemes. 120

4.4 Fourier-analysis results for α = 0 (pure Laplacian). Note that RDG-
1x+, RDG-1x++CO, and RDG-2x are identical. 126

4.5 Fourier analysis results for α = 1 (with cross-derivative). The maxi-
mum real eigenvalue of RDG-1x++CO is about half of that of RDG-
1x++. 127

5.1 p = 1 results for RDG-1x-Naive, 1xf̄ , and 1x+. RDG-1x+ is clearly
the fastest scheme, while its accuracy is on par with RDG-1xf̄ . . . 135

5.2 p = 2 results for RDG-1x-Naive, 1xf̄ , and 1x+. RDG-1x+ is clearly
the fastest and most accurate scheme. 136

5.3 L2-error of the cell average of total energy for the RDG-1x++ and
RDG-1x++CO schemes. 141

6.1 A comparison of order of accuracy between STE-DG and HH-DG for
p = 1, tfinal = 3. HH-DG is roughly 3 times faster than STE-DG,
and is one order higher in terms of accuracy of the cell average. . . 157

6.2 Order of accuracy for p = 1, 2, 3, CFL = 0.9375, tfinal = 300. 158

xvi

6.3 Entropy wave case: order of accuracy for HH-DG p = 1 and 2, CFL =
1.0, tfinal = 50. A density sine-wave is advected over 50 periods, while
velocity and total energy remain constant. 163

6.4 A single expansion fan case: order of accuracy for HH-DG (p = 1),
CFL = 1.0, tfinal = 10. 164

6.5 Double expansion fans case: order of accuracy for HH-DG p = 1 and
2, CFL = 1.0, tfinal = 2. Two expansion waves expand and interact
at the center of the domain. The error is given by the change of
entropy which is supposed to be zero. 166

6.6 Naive scheme 1 with a maximum VNN of 1
8
. 179

6.7 Naive scheme 2 with a maximum VNN of 0.03. 179

6.8 Naive scheme 3 with maximum VNN of 0.04. 180

6.9 Smart scheme IV with a maximum VNN of 1
6
. The smart scheme IV

will soon be named the HH-RDG scheme. 182

6.10 Smart scheme IV (p = 2) with a maximum VNN of 1
10
. The scheme

demonstrates 7th-order accuracy. 184

6.11 Not-so-smart scheme V with a maximum VNN of 1
30

. This hybrid
scheme (p = 2) is only 4th-order accurate. 184

6.12 HH-RDG (p = 1) allows a maximum VNN of 1
6
for the decaying

sine-wave problem with µ = 1 and tfinal = 2. A periodic boundary
condition is applied. The scheme achieves the same order of accuracy
as RK-RDG (p = 1). 187

6.13 HH-RDG (p = 2) allows a maximum VNN of 1
10

for the decaying
sine-wave problem with µ = 1 and tfinal = 2. A periodic boundary
condition is applied. 188

6.14 HH-RDG (p = 1) obtains a maximum VNN of 1
6
for the decaying

sine-wave problem with µ = 1 and tfinal = 2. Dirichlet boundary
conditions on both sides are satis�ed with full boundary-recovered
function. 189

6.15 Naive Dirichlet boundary scheme. HH-RDG (p = 1) with a maximum
VNN of 1

12
for a decaying sine-wave problem with µ = 1 and tfinal = 2.

The naive method su�ers reduction in both accuracy and VNN. . . 190

xvii

A.1 Sample classical Gaussian quadrature points and weights for the in-
terval x ∈ [0, 1]. 213

A.2 Sample Gauss-Radau quadrature points and weights for the interval
x ∈ [0, 1]. 214

A.3 Initial projection error eL2,proj of three di�erent (σ, µ)-schemes at t =
0. 216

A.4 Evolution error eL2,evol with v = 1 of three di�erent (σ, µ)-schemes at
t =∞. 216

A.5 Final projection error eL2,proj of three di�erent (σ, µ)-schemes at t =∞.217

A.6 Implicit Radau integration weights for n = 2 and 3. 219

B.1 Linear di�usion: L2-error of various σ − µ schemes (p = 1). 221

B.2 Linear di�usion: L2-error of various σ − µ schemes (p = 1). 222

B.3 L2-error of RK-Upwind-DG scheme for time-accurate problem with
periodic boundary condition. A sine wave is advected to the right for
100 cycles. 223

B.4 Linear advection-di�usion: RK-Upwind-RDG-2x, p = 1, r = 1
6
,

CFL = 0.4, µ = 0.01, tfinal = 100, periodic boundary condition. . . 224

B.5 Linear advection-di�usion: RK-Upwind-RDG-2x, p = 1, r = 1
6
,

CFL = 0.4, µ = 0.01, tfinal = 100, periodic boundary condition. . . 225

B.6 Linear advection-di�usion: RK-Upwind-RDG-2x, p = 2, r = 1
10
,

CFL = 0.27, µ = 0.01, tfinal = 100, periodic boundary condition. . 225

B.7 RDG-1x-Naive, VNN = 0.07, 0.02, and 0.01 for RK3, RK4, and
RK5, respectively: L2-error of steady linear-variation di�usion prob-
lem with two-sided Neumann boundary conditions. 226

B.8 RDG-2x, VNN = 0.15, 0.08, and 0.04 for RK3, RK4, and RK5, re-
spectively: L2-error of steady linear-variation di�usion problem with
two-sided Neumann boundary conditions. 227

B.9 RDG-1xf̄ , VNN = 0.08, 0.02, and 0.0001 for RK3, RK4, and RK5, re-
spectively: L2-error of steady linear-variation di�usion problem with
two-sided Neumann boundary conditions. 228

xviii

B.10 RDG-1x+, VNN = 0.15, 0.08, and 0.04 for RK3, RK4, and RK5, re-
spectively: L2-error of steady linear-variation di�usion problem with
two-sided Neumann boundary conditions. 229

B.11 Linear advection-di�usion: HH-DG p = 1, r = 1
6
, CFL = 1, µ = 0.01,

tfinal = 100, CAdv-Di� = 0.9375, periodic boundary condition. 230

B.12 Linear advection-di�usion: HH-DG p = 1, r = 1
6
, CFL = 1, µ = 0.01,

tfinal = 100, CAdv-Di� = 0.9375, periodic boundary condition. 231

xix

LIST OF APPENDICES

Appendix

A. Elements of Computational Fluid Dynamics 212

B. Graveyard of Numbers . 220

xx

CHAPTER I

Introduction

We introduce two new methods into the discontinuous Galerkin (DG) framework.

The �rst is the recovery-based discontinuous Galerkin (RDG) method for di�usion,

and the second is the Hancock-Huynh discontinuous Galerkin (HH-DG) method as

a space-time method. This dissertation details the progress and challenges we have

encountered, and is intended to be a guide to further research in these areas. The

methods demonstrate exceptional performance for scalar partial di�erential equations

(PDE) by outperforming existing methods. Our goal is to extend these methods to

multi-dimensional nonlinear systems of equations. A good starting point to under-

standing these new methods is to introduce the DG framework and the person who

invented it.

1.1 Boris Grigoryevich Galerkin

Who was Boris Grigoryevich Galerkin? He was a Russian/Soviet mathematician and

engineer born in Polozk, Belarus in 1871 [1]. Galerkin was heavily involved in the

Russian Social-Democratic Party in his early life and was arrested in 1906 for orga-

nizing strikes. Galerkin then abandoned his revolutionary activities and focused on

science and engineering; he designed a boiler power plant while he was in prison. After

being released in 1908, Galerkin became a teacher at the Saint Petersburg Polytech-

nical Institute and published numerous scienti�c articles on structures/frames and

pivot systems. In 1915, Galerkin penned a landmark paper on the idea of an approxi-

mate method for boundary-value problems. Galerkin developed the weak formulation

of the partial di�erential equation (PDE) completely independent of the variational

method. The variational method �nds an approximate solution to a system based on

the optimization of a specially designed function which depends on carefully chosen

1

variables; the idea to derive exact or approximate equations from the condition that

the function value must be stationary under perturbations is called the variational

principle. However, not all problems entail a variational principle, and most of the

classical problems suited for optimization have been solved already. The Galerkin

method is much more versatile in handling a broad range of problems because it is

not limited by the variational principle; although it is known that one can recover a

variation method from a Galerkin method [11]. Today Galerkin's weak formulation is

the foundation of many numerical algorithms spanning mechanics, thermodynamics,

electromagnetism, hydrodynamics and many other disciplines. In the years leading to

the end of his life in 1945, numerous types of Galerkin methods were developed; these

include the Ritz-Galerkin, Bubnov-Galerkin and Petrov-Galerkin methods. These

methods are now collectively called �nite-element methods, and are very popular

within the �eld of structural mechanics.

Perhaps the most interesting Galerkin method is the discontinuous Galerkin (DG)

method developed in the 1970's. Unlike its predecessors for physical structures, where

continuity of the solution is natural, DG allows for a discontinuous representation

of the solution. This added freedom is helpful in solving di�erential equations for

which the solution involves strongly varying gradients or even discontinuities as in

compressible-�ow. We begin by looking into the list of improvements which DG

brought into computational �uid dynamics (CFD) over traditional �nite-di�erence

and �nite-volume methods.

Figure 1.1: Boris Grigoryevich Galerkin

1.2 The discontinuous Galerkin method

The DG method is rapidly becoming the preferred method for CFD, in particular,

because of the ease of achieving a high order of accuracy on irregular, adaptively

re�ned grids. Low-order methods are still frequently employed in practical CFD ap-

plications where e�ciency, stability and robustness are priorities, but they tend to

have inadequate accuracy and fail to provide detailed information in complex CFD

2

problems. Therefore, the CFD community is now focusing on high-order methods

where very accurate results obtained at a reasonable cost yield computational e�-

ciency. DG achieves high order by increasing the number of subcell data, hence the

increase in the order of accuracy is realized within a single cell instead of by interpola-

tion between cells, as in traditional �nite-volume and �nite-di�erence methods. The

trouble with high-order �nite-volume and �nite-di�erence methods is twofold. In the

�rst place, constructing a highly accurate interpolant based on data on an unstruc-

tured, adaptively re�ned grid calls for great code complexity. In the second place, it

requires a dramatic increase in stencil size, which in turn causes complications near

the boundary of the computational domain and also at internal boundaries between

subdomains handled by di�erent processors. The problem with high-order interpola-

tion near the domain boundary is often resolved with the introduction of many layers

of ad-hoc ghost elements, or with a highly skewed stencil which may imperil stability.

With regard to domain decomposition, long-range element interconnectivity heavily

burdens the data-link communication between computer nodes in a parallelized com-

puter architecture. As a result, the traditional high-order methods based on wide

interpolation stencils are no longer desirable on highly unstructured grids. The com-

pactness of DG is arguably better suited for today's computer architectures and for

complex CFD problems.

We start with outlining the mathematical principles of the DG method; the cor-

responding numerical discretization will be discussed later. The method of primary

interest for �uid dynamics is the weighted-residual method. The general concept is to

project the entire problem from an in�nite solution space onto a �nite solution space.

The terms �solution space� and �projection� are central to understanding Galerkin

methods. Ideally, one would work with an in�nitely large solution space to obtain

the complete information about the solution, but that would take in�nite computing

time. By working with a smaller solution space, we are accepting a certain degree

of error in our solution. The mathematical notion for transforming the solution from

one solution space to a smaller one is called projection (see Appendix A for more

information). The projection operator, a result of the inner product, integrates the

product of the solution and the basis functions of the smaller solution space.

In order to facilitate our discussion, the simple 1-D linear di�usion equation is

provided as an example,

Ut − (DUx)x = 0, (1.1)

or

Ut = DUxx, (1.2)

3

where D is a constant. The weighted-residual formulation is obtained by multiplying

the PDE with a test function (or weighting function) v and integrating over the entire

physical domain D, ∫
D
vUt dx = D

∫
D
vUxx dx. (1.3)

This operation is also known as the inner product of v and Ut. The intent is to do this

with a whole space of test functions. We introduce the residual R, of the governing

equation as ∫
D
vR dx =

∫
D
vUt dx−D

∫
D
vUxx dx = 0. (1.4)

By enforcing the residual to be equal to zero, this weighted-residual formulation

provides the necessary equations to solve for the unknowns. Let us now step down

from the full solution U to an approximate solution u. First we focus on the de�nition

of the solution space of v and u. The solution space is described by the order of the

polynomial p, and a solution space capable of representing polynomials up to degree

p is mathematically denoted as Pp, where P is polynomial space. The solution space

is spanned by basis functions. One can view basis functions as building blocks of

a solution space, where any polynomial of order P can be constructed by a linear

combination of basis functions. If the test function v belongs to the same solution

space as u, then we have the Galerkin method.

The concept of test-function space and solution space may seem daunting at �rst,

but the concept is elegantly simple and powerful. Let u be a function of x. If we

integrate the product of u with a zeroth-degree test function, v (x) = 1, over the

domain D, we will extract the average of u. Similarly, if we take the inner product

of u with a �rst-degree test function, v (x) = x, we will extract the average �rst

derivative. If we repeat this process for higher and higher-order test functions, we

will be able to extract higher-degree average derivatives from u. Repeating this

process in�nitely many times will allow us to know everything about u and the PDE.

However, with limited computational resources, we are forced to work in a �nite

solution space. Thanks to Galerkin's weak formulation, we can solve the PDE within

the solution space and ignore the high-order information that lies in the complement

space. The complement space is strictly orthogonal to the solution space, and hence

conveniently it contains the error in the solution. The o�cial weak statement reads:

�Let u be a solution in W , and v be a test function in V , then u must satisfy the

partial di�erential equation tested with v.� Again, if W = V , we have the Galerkin

method. We are now ready to introduce the discontinuous Galerkin discretization.

4

Discretization in CFD means dividing up the physical domain D into smaller non-

overlapping elements Ωj, such that D =
∑

j Ωj. Each Ωj contains a solution space

valid within the element boundary only, or simply called a solution with compact

support. In this example, let uj be the discretized solution of degree p within Ωj,

and uj = 0 outside of Ωj. In the continuous Galerkin (CG) method, the solution

must be continuous across an element interface, while in DG, the solution allows for

a discontinuity across the element interface. We emphasize the solution within each

element of DG is continuous, it only jumps across the interfaces. Figure 1.2 shows

two types of piecewise-linear solution representation in 1-D.

Ωj Ωj + 1Ωj - 1 Ωj Ωj + 1Ωj - 1

xj - 1/2 xj + 1/2xj - 1/2 xj + 1/2

Figure 1.2: Continuous Galerkin (left) and discontinuous Galerkin (right) solution
representations showing the key di�erence is the requirement of continuity
across element interface

The concepts of solution space and weak formulation are now applied to each

individual element,∫
D

vut dx =
∑
j

∫
Ωj

vjuj,t dx =
∑
j

D

∫
Ωj

vjuj,xx dx. (1.5)

We obtain the global solution over D by locally solving for uj in every element. Notice

the test function, vj, can now be locally de�ned inside each cell,

vj =

{
v x ∈ Ωj

0 x /∈ Ωj

. (1.6)

We can also say vj has compact support. Note that this doesn't mean vj is unde�ned

outside the cell; it is just strictly zero beyond the cell boundary. DG is a truly com-

pact method where each element interacts only with its immediate neighbors. This

interaction occurs through the �ux, when conserved quantities �ow across the element

interface. The �ux between two elements provides the necessary element coupling,

and is central to tying the local solutions together to form one global solution. In the

PDE 1.1 the �ux equals −DUx. Let us focus on the weak equation of one cell only,

and apply integration by parts once to introduce element coupling at the element

5

interface, ∫
Ωj

vjuj,t dx = D [vjuj,x]
x
j+ 1

2
x
j− 1

2
−D

∫
Ωj

vj,xuj,x dx, (1.7)

where the notation [·]
x
j+ 1

2
x
j− 1

2
represents a di�erence across the element from xj+ 1

2
to xj− 1

2

(see Figure 1.2). However, in the DG method neither the solution nor its derivatives

are well-de�ned at the element interface. If one takes the derivative value within the

element, there will be no element coupling. Hence we need to replace the non-unique

solution at the element interface with a unique solution, û(j,j+1) = û (uj, uj+1). The

�ux value at the element interface is always a function of the two solutions sharing

that interface, hence the �nal discretized equation reads,

∫
Ωj

vuj,t dx = D
(
vj

(
xj+ 1

2

)
û(j,j+1),x − vj

(
xj− 1

2

)
û(j−1,j),x

)
−D

∫
Ωj

vj,xuj,x dx, (1.8)

where vj

(
xj± 1

2

)
is evaluated inside Ωj. Deriving a good numerical-�ux algorithm is

not an easy task, and is the subject of extensive research. In fact, the �rst major

subject of this thesis, RDG, is a very recent (2005) addition to the family of DG

di�usion �uxes. Furthermore, Eqn 1.8 is only a semi-discretization; it requires a

matching time-marching method. The second large subject of this thesis, HH-DG,

deals with this aspect of DG. We continue with a short history of DG for advection

and di�usion, highlighting both spatial discretizations and marching in time.

1.3 History of advection and explicit time-marching

methods for DG

The DG approach was originally developed for the steady neutron-transport equations

by Reed and Hill (1973) [32]; their formulation was impressively general, being based

on a structured triangular grid and going up to p = 6. Immediately, LeSaint and

Raviart [22] proved that the order of accuracy of steady 1-D DG advection solutions

is 2p + 1; this order is found even for unsteady Euler solutions (see Section 6.2.2).

Later, Johnson and Pitkaranta [21] showed the order of accuracy on general triangular

elements is p + 1
2
. Independently, Van Leer (1977) [37] introduced a time-accurate

DG method for scalar advection, replicating the exact shift operator. Since then, few

attempts were made to improve upon the time marching aspect of the DG machinery.

6

The procedure to extend the order of spatial discretization in a DG method is simple

and elegant, however, a matching temporal discretization for arbitrarily high order

proved to be far more di�cult, as evident by the lack of progress in the following

decade.

Eventually, Cockburn and Shu (1989) [7] extended the spatial DG discretization

method to �uid dynamic equations by coupling it with Runge-Kutta time-marching,

yielding the RK-DG scheme. Cockburn and Shu's paper sparked a renewed interest in

using DG for CFD. Around this time, analysis on DG stability and accuracy started

to blossom and DG quickly matured. It is not uncommon to see newer DG methods

achieve an order of accuracy beyond 2p+ 2, e.g. the RDG and cRDG methods.

While RK-DG dominated the stage regarding time-marching for 15 years, the lim-

itation of RK time marching to 5th-order of accuracy [16] was felt as the aerospace

industry expressed its desire for high-order codes. A new class of time-marching

schemes based on Taylor-expansions in time was developed; these include the �ar-

bitrary order using derivatives� DG method (ADER-DG) [10], space-time-expansion

DG (STE-DG) [15], the upwind moment scheme (UMS) [17] and the Hancock-Huynh

discontinuous Galerkin (HH-DG) method. Extension to high order for these methods

is automatic and requires less memory than traditional RK-DG methods; however,

an adverse e�ect on the CFL number for ADER-DG and STE-DG may render them

slower than RK-DG. Only UMS and HH-DG improve the CFL-number range over

RK-DG, which renders them potential candidates for replacing these popular meth-

ods. We describe the works of the authors mentioned above in chronological order.

1.3.1 The original DG: neutron transport

In 1973 Reed and Hill [32] demonstrated the �rst successful use of a DG spatial

discretization for steady-state neutron transport problems on 2-D orthogonal trian-

gular meshes. In their landmark paper they argued the superiority of discontinuous

Galerkin over the commonly used continuous Galerkin (CG) method. The di�erence

between the two methods lies in the continuity requirement across element interfaces.

The CG method enforces the C0 condition, meaning that the function value must be

continuous while the derivatives are allowed to jump across the interface.

Reed and Hill showed a p-th order DG method achieves the same error level (or

lower) than a (p + 1)-st order CG method. The p-th order DG method required

slightly more CPU time than its p-th order continuous counterpart on a 200-element

grid; however, the DG method appeared faster on the 800-element grid. The issue

7

of superiority of DG over CG was not clear until Reed and Hill tested problems

containing optically thick regions. Schemes based on continuous solutions were well

known to produce �ux oscillations, however, DG quickly damped the oscillations

toward the �nite medium solution and exhibited remarkable stability in comparison

to CG. The phenomenal spatial resolution of DG was clearly demonstrated by Reed

and Hill; however, it would be 16 years before DG was fully ready for time-accurate

problems.

1.3.2 Van Leer's schemes III & VI

Van Leer pioneered the concept of an exact shift operator in 1977 [37] for DG. He

replaced the initial-value solution per mesh with an approximate solution and con-

vected the resulting distribution exactly for the scalar advection equation (named

�convection� at that time). He constructed various schemes that allow for disconti-

nuity of the solution; in particular, his scheme III and VI are really piecewise-linear

and piecewise-quadratic DG schemes. Independent of Reed and Hill's development,

Van Leer recognized the need for separate update equations for the higher moments

at the cost of extra computational resources. The resulting advection method is fully

explicit and time-accurate. A Fourier-analysis showed the order of accuracy of scheme

III to be three. Van Leer did not analyze scheme VI due to its sheer complexity and

also thought it unattractive because of its high storage requirement, especially in

multi-dimensions, an issue that seems trivial for today's computer, but forbidding to

the computers of the 1970's. Although the paper's title mentions di�erence schemes,

schemes III and VI were the �rst time-accurate DG methods and could be easily

extended to arbitrarily high order. When trying to extend his schemes to a nonlinear

system of conservation laws, Van Leer ran into problems with the time integration

and he abandoned the project. Over the next one-and-a-half decade, various research

e�orts focused on extending RK-DG's time accuracy to orders of �ve and beyond,

and increasing the allowable CFL number. Interestingly, Van Leer's III & VI schemes

were reinvented in the atmospheric sciences and used for species transport [31, 34].

But it took 27 years before a correct extension of scheme III to the Euler equations

was presented (UMS).

1.3.3 Runge-Kutta methods

Runge-Kutta methods are an important family of explicit and implicit multi-stage

methods for approximating the solution of ordinary di�erential equations. The method

8

was developed by German mathematicians C. Runge and M.W. Kutta around 1900

[47]. Jameson, Schmidt and Turkel [20] incorporated the 4-stage Runge-Kutta (RK)

method in their �nite-volume code for the Euler equations in 1981. The method was a

huge improvement over existing multi-stage and other �nite-di�erence Euler methods

due to the sharpness of captured shocks, and the explicit convergence-acceleration

techniques included. RK is an extremely user-friendly time discretization; anybody

can pick up an ordinary-di�erential-equations textbook and implement RK methods

without the need to know the details. The same spatial operator is applied at each

stage. Stages can be added or modi�ed to increase order of accuracy in time, or to

enlarge the stability domain for achieving a higher CFL number.

The RK method was ported into the DG framework by Cockburn and Shu [7] for

advection in 1989. The RK temporal discretization and the DG spatial discretization

work very well together, since both discretization are compact and can be formally of

high order. Although it appears that an n-stage RK method only uses information

from immediate neighbors, the actual stencil is much larger since each immediate

neighbor also borrows information from neighboring elements. The end result is a

pyramid structure in space and time involving 2n+ 1 elements in 1-D. Nevertheless,

the coupling of RK and DG results in a stable and sharp shock-capturing method

called RK-DG. The authors prove RK-DG to be total-variation-bounded in the means

(TVBM), which implies the method allows new local extrema to occur within the

element, but not in the mean.

1.3.4 ADER and STE-DG methods

A group of German scientists focused exclusively on developing low-storage time-

marching schemes for DG. The storage requirement for RK-DG becomes severe as

the order of the solution polynomial increases, and as the number of stages of the RK

method increases. Besides the memory issue with RK-DG, the extension to very high

order [37] is extremely cumbersome. Followers of RK-DG must refer to lengthy tables

to implement each stage of an RK-DG method. Dumbser and Munz [10] ported the

ADER-FV (Arbitrary order using derivatives for �nite volume) method into DG and

knighted the scheme as ADER-DG. The key component of ADER is to Taylor-expand

the solution in both space and time, and then convert the time and cross-derivatives

into spatial derivatives with the Cauchy-Kovalevskaya or Lax-Wendro� procedure.

With the solution expressed in terms of both space and time variables, the governing

equation is then integrated in both space and time analytically. The Taylor expansion

9

in space and time to any order is fully automated, hence ADER-DG �ts nicely into

the DG machinery.

In 2007, Lörcher, Gassner and Munz [24, 15] introduced space-time expansion DG

(STE-DG) as a modi�cation of ADER-DG to account for grids with a large variation

in element size. The analytic integration in time is now replaced with Gaussian

quadrature to allow for �exibility in time-stepping. The �ux values are obtained

from the Taylor expansion of the solutions on both sides of the element interface,

and a Riemann solver is used at the designated temporal Gaussian points. Both

methods are suited for time-step adaptation, i.e, using multiple small time steps

in small cells to catch up with the marching in large cells. Logic gates must be

implemented to keep track of the order in which elements are updated. Despite the

slight overhead in logic, the reduction in CPU time on multi-scale grids is signi�cant.

Such adaptive time-stepping does not take away local conservation from the scheme,

while STE-DG is time-accurate to the order p+ 1. The memory requirement to store

all the �ux values at the Gaussian points in time is signi�cantly less than for RK-DG.

Despite all the improvements over RK-DG, ADER-DG and STE-DG fail to address

the fundamental issue of stability, that is, the pursuit of the maximum time step.

In fact, both ADER-DG and STE-DG have a much tighter CFL limit than RK-DG,

rendering these space-time methods highly ine�cient on structured grids.

1.3.5 Huynh's upwind moment method

In the same year STE-DG was introduced, Huynh introduced the Upwind Moment

scheme (UMS) for conservation laws [17]. Huynh's scheme is based on Van Leer's

Scheme III [37] for advection, which applies the exact shift operator to the initial val-

ues. Huynh extended Van Leer's Scheme III to the Euler equations for piecewise-linear

solutions by making Hancock's predictor-corrector method, previously used only with

interpolated subcell gradients, suited for DG; the key lies in treating the space-time

volume integral accurately. The solution is marched to the half-time level by a subcell

Taylor-series expansion, after which the time-centered �ux is calculated with upwind

data or, in general, a Riemann solver. UMS is extremely simple, 3rd-order accurate,

and realizes exact one-mesh-translation for linear advection at a CFL number of unity.

Suzuki [36] successfully adapted UMS to hyperbolic-relaxation systems in 2008.

10

1.3.6 Hancock discontinuous Galerkin method

In 2009, we extended Huynh's UMS method to arbitrary order and also incorporated

the recovery procedure (RDG) for di�usion. The method is named Hancock-Huynh

discontinuous Galerkin (HH-DG); UMS is included in it. The design of HH-DG is

guided by Hancock's observation (1980): the solution can be advanced within a cell

with any complete set of �ow equations; it is the interface �ux that must describe the

interaction of adjacent cells. This rule is also observed in ADER-DG and STE-DG.

Huynh added to this that in DG the space-time volume integral must also be a�ected

by the cell interactions. This in�uence is missing in ADER and STE-DG. HH-DG

has demonstrated remarkable reliability in dealing with the Euler equations and with

the scalar di�usion equation; the order of accuracy is 2p + 1 for time-accurate Euler

in 1-D and 2p + 2 for time-accurate 1-D di�usion. Like UMS, HH-DG reduces to

the exact shift operator for the scalar advection equation. Even in the nonlinear

advection case, HH-DG remains stable with a CFL number of unity. This is by far

the fastest explicit time-marching DG scheme in development; our current research

is focused on increasing the speed of HH-DG for di�usion.

1.4 History of di�usion methods for DG

DG combines the local discontinuous solution representation of a �nite-volume scheme

with the compactness and versatility of a �nite-element scheme. DG captures discon-

tinuous hyperbolic phenomena such as contact discontinuities, slip surfaces and shock

waves naturally with its discontinuous basis functions; however, discontinuous basis

functions are not the natural way to handle the di�usion operator. Development in

DG methods for the di�usion operator became successful starting with Arnold (1982)

[2], who introduced a penalty term to penalize discontinuities at the cell interfaces.

Much later Baumann (1998) [28] designed a stable DG method without that penalty

term, but the enthusiasm for this method died out soon. Bassi and Rebay (1997)[4]

and Cockburn and Shu (1998) [8] introduced the highly parallelizable BR2 and lo-

cal discontinuous Galerkin (LDG) methods, respectively, for the advection-di�usion

equation, and were able to reach high orders of accuracy. Arnold [3] showed that all

di�usion schemes for DG (as of 2002) could be expressed in terms of a sequence of

bilinear terms with scheme-speci�c coe�cients.

In 2005, Van Leer and Nomura [44] introduced a discontinuous Galerkin method

based on the recovery concept (RDG). RDG was completely di�erent from any pre-

11

existing methods, conceptually simpler and extremely high-order. Gassner, Lörcher

and Munz [14] (2006) developed a di�usion �ux that derives from the exact solution

of the generalized di�usive Riemann problem; this approach loses consistency when

reducing the time-step without re�ning spatially. Recently, Huynh [18, 19] developed

a family of di�usion schemes which incorporate LDG, BR2 and RDG. His technique

of using di�erent correction functions allows him to develop and experiment with new

di�usion schemes. Owing to his detailed analysis and numerical experiments, we are

able to compare di�erent di�usion methods in a head-to-head manner. The following

sections detail in chronological order the major developments in di�usion for DG.

1.4.1 The (σ, µ)-family

In the early days, DG had ridden on the success of adopting Riemann solvers for

the �ux computation from �nite-volume methods for hyperbolic equations. However,

when it came to parabolic and elliptic equations, the DG community was at a loss.

One of the �rst attempts to solve parabolic and elliptic equations with DG is credited

to a venerable class of schemes called the (σ, µ)-family:

∫
Ωj

vut dx = −D
(
< ux > [v] |j+ 1

2
+ < ux > [v] |j− 1

2

)
−D

∫
Ωj

vxux dx

+ σD
(
< vx > [u] |j+ 1

2
+ < vx > [u] |j− 1

2

)
− µD

∆x

(
[v][u] |j+ 1

2
−[v][u] |j− 1

2

)
. (1.9)

Van Leer et al. [44, 42] provided a simple interpretation of the (σ, µ)-family for

scalar di�usion; the notation is explained in Chapter 3. The �rst line of the equation

is the original DG equation for the time-accurate di�usion equation. In 1979, Delves

and Hall [9] added the σ bilinear term in the second line of the equation and set

σ = −1 (later known as the symmetric scheme). The symmetric scheme is not stable

for parabolic problems, hence it is only used to solve elliptic steady-state problems

with an implicit solver.

Arnold [2] introduced the internal-penalty method (IPM) in 1982 by adding the

bilinear µ-term in the third line of the equation. The IPM sets (σ, µ) = (−1, 1) and

successfully solves time-accurate di�usion problems. The reason for adding the µ-

term is to penalize the discontinuity of the DG solution. This is a rather ironic name

because it is the same discontinuity that brings fame and honor to DG for advection

12

problems. These bilinear terms are added to the di�usion equation to increase the

chances of coming up with a stable method, while consistency with the governing

equation seems to be secondary. Van Leer and Nomura pointed out that for p = 0

the (σ, µ)-family is only consistent with the di�usion equation owing to Arnold's

penalty term and only if µ = 1. In retrospect, Arnold did accurately determine the

need for an additional bilinear term. In 1997, Baumann and Oden [28] presented

the choice of (σ, µ) = (1, 0), representing a complete sign change from the symmetric

scheme and abandonment of Arnold's term. The freedom to switch to totally di�erent

values of (σ, µ) over the course of two decades clearly indicates there existed no good

guiding principle for choosing the right set of coe�cients. In the early stages of our

research in RDG, we were able to �nd an inkling of a relationship between RDG and

the (σ, µ)-family for p = 1; this is further extended in Section 3.3.5. The progress in

di�usion for DG was painfully slow until the beginning of the 21st century. The next

set of methods marks the �rst departure from the (σ, µ)-family.

1.4.2 Approaches based on a system of �rst-order equations

Bassi and Rebay [4] (1997) as well as Cockburn and Shu [8] (1998) introduced a

di�erent approach to di�usion for DG by writing the 2nd-order di�usion equation as

a system of 1st-order equations. For scalar di�usion, the equations are written as,

ut −Dqx = 0, (1.10)

q − ux = 0, (1.11)

where D is the di�usion coe�cient, and q is the additional variable. The DG formu-

lation is obtained by testing both of these equations and integrating over an element.

The �rst equation requires the �ux q, which is provided by the next equation. How-

ever, the �ux of the second equation is determined from the derivative of the discon-

tinuous solution u. Once again the discontinuity presents a problem of non-uniqueness

at element interfaces, and numerical techniques must be applied to approximate ux

in the 2nd equation.

The papers listed above can be described as a mathematical festival of �nite-

element terminologies and notations for multi-dimensional Navier-Stokes equations.

If you prefer to understand these schemes over a cup of tea on a good Sunday after-

noon, you will appreciate that Huynh [18, 19] analyzed and presented these schemes

in a simple unifying framework for scalar 1-D linear di�usion. In order to �t all ex-

13

isting schemes into a unifying framework, Huynh used integration by parts twice on

the scalar di�usion equation and applied di�erent correction functions to calculate

the common function value and derivative value across the element interface. His

interpretation of the Bassi-Rebay schemes for di�usion, also known as BR1 and BR2,

is shown in Figure 1.3.

Ωj Ωj + 1 Ωj Ωj + 1

gL

gR

gL

gR

Figure 1.3: Interpretation of BR1 (left) and BR2 (right) for scalar 1-D di�usion. Two
new local solutions are reconstructed on the left and right of the indicated
interface as gL and gR respectively. The large solid dot indicates the
average of the left and right values at the interface. The schemes also
adopt the average of the derivative values as the interface value of ux.
Notice BR1 utilizes a 4-cell stencil for an interface �ux, while the newer
BR2 utilizes a 2-cell stencil.

Ωj Ωj + 1

gL

gR

Ωj Ωj + 1

gL

gR

Figure 1.4: Interpretation of two versions of LDG for scalar 1-D di�usion. Two new
local solutions are reconstructed on the left and right of the indicated
interface as gL and gR respectively. The large solid dot indicates the
common function value. The LDG is a non-symmetric scheme using the
function value of gL for u, but the derivative value of gR for ux, (left) or
vice versa (right).

For each interface, two functions gL and gR of order p + 1 are reconstructed by

sharing most moments with the original solution in their respective elements. In

BR1, the functions g in each element must satisfy Dirichlet conditions at both left

and right interfaces. The Dirichlet condition is simply to satisfy the average solution

value across the interface, which leads to a clumsy and costly 4-cell stencil. Bassi and

Rebay introduced the simpler BR2 version in which each g only needs to satisfy one

cell-coupling Dirichlet boundary condition and one local Dirichlet boundary condition.

The g functions in both BR1 and BR2 take the same function value at the interface,

14

but not the same derivative value. Bassi and Rebay then used the arithmetic mean

of ∂gL
∂x

and ∂gR
∂x

to approximate ux. Cockburn and Shu's Local DG (LDG) scheme for

scalar di�usion is shown in Figure 1.4. The pair of g functions share most moments

with the solution in their respective elements. One of the intervals provides the

solution value at the interface; the g function in the other interval then provides the

desired solution derivative. Thus, there are two variants of the 1-D LDG scheme.

As Huynh indicated, Bassi-Rebay and Cockburn-Shu have di�erent interpretations of

the �common� function value and function derivative value. Huynh studied several

other choices to be detailed later.

In 2008, Peraire and Persson [30] reduced the storage requirement and stencil size

of LDG and called their new scheme Compact DG (CDG). The paper compared BR2,

LDG and CDG and showed LDG and CDG have roughly the same spectral radius,

while BR2's spectral radius is about 1.5 times greater, meaning a narrower stability

range for the time step. Although CDG is exactly the same as LDG in 1-D, the

storage requirement is dramatically reduced for higher spatial dimensions.

1.4.3 Recovery-based discontinuous Galerkin method

RDG was introduced in 2005 by Van Leer and Nomura [44], and subsequently ex-

panded in [43, 41]. Central to RDG is the concept of recovery between two elements

where the solution is discontinuous. RDG recovers a smooth function in the union

of the two elements that is indistinguishable from the original solutions in the weak

sense. RDG demonstrated a remarkable order of accuracy for scalar di�usion equa-

tion on structured grids. Our current research e�ort focuses on adapting RDG to

nonlinear di�usion problems on unstructured grids. A full treatment to RDG begins

in Chapter 2.

1.4.4 Flux-based di�usion approach

In 2006, Gassner, Lörcher and Munz [14] introduced a numerical di�usion �ux based

on the exact solution of the di�usion equation at the discontinuity of a piecewise con-

tinuous solution. The concept is similar to that of Godunov-type �nite-volume meth-

ods for hyperbolic equations. The di�usive generalized Riemann problem (dGRP) can

be solved for any order of the solution space. The �ux is obtained from the general

bounded solution of the discontinuous initial-value problem for the di�usion equa-

tion and depends on both space and time. The resulting dGRP-DG is a space-time

method for di�usion. However, the dGRP �ux is only consistent if ∆x ∝ ∆t. The

15

scheme uses the time integral of the di�usion �ux for the update; the time average of

the �ux always contains a term proportional to 1/
√

∆t. For ∆t → 0, while keeping

∆x �xed, the �ux blows up, rendering the scheme sensitive to small time steps; the

�ux is unsuited for combination with multi-stage time integration. The dGRP-DG

scheme performs relatively fast in steady-steady problems, as the stability limit on

∆t is proportional to ∆x only instead of the usual (∆x)2 for explicit methods. In

addition, Gassner et al. were able to express the dGRP-DG scheme in bilinear terms,

and discovered dGRP-DG shared many terms with the (σ, µ)-family. The scheme

has a µ coe�cient di�erent from the one in the symmetric interior-penalty method,

and contains an additional bilinear term of the form

< vx > [ux] |j+ 1
2
− < vx > [ux] |j− 1

2
. (1.12)

Gassner et al. observed that the presence of the new higher-order bilinear term

increases the stability limit, however, the increase in stability limit decreases for higher

p. This is an important observation pertinent to the recovery-based discontinuous

Galerkin (RDG) method, as we shall show in a later chapter that the RDG method

automatically generates these higher-order bilinear terms.

1.4.5 Huynh's reconstruction approach

Huynh studied a family of di�usion schemes using his reconstruction approach [18, 19].

The concept is to reconstruct correction functions to correct for the discontinuity of

the solution across element interface. One of Huynh's primary motivations is to come

up with a scheme that replicates the success in accuracy and stability of RDG, while

reducing the computational cost. To this end, Huynh limited his correction functions

to one element only, and coupled the correction functions at the interface, whereas

in RDG, the single recovery function spans two elements and naturally couples the

elements. Huynh studied 16 di�erent ways to couple the correction functions sharing

the same interface. One of the most promising new methods is, �I-continuous - gLe/

SP - gDG�, or aptly called �Poor-man's recovery.� Instead of de�ning a common func-

tion value and common derivative, the Poor-man's method naturally obtains these

values by solving a small system that couples the left and right correction functions.

The method is computationally cheap and achieves a higher order of accuracy than

existing BR2 and LDG methods. While comparison with RDG still demonstrates

RDG's superiority in accuracy and stability, it is worthwhile to further study how

these schemes compare to each other in terms of CPU time in a real time-accurate

16

calculation.

1.4.6 Combining DG advection with DG di�usion

If one has satisfactory DG methods for discretizing the di�usion and advection oper-

ators, it is a rather trivial task to combine the two in a DG method for advection-

di�usion. Because of the fundamental di�erences between these two operators and

their discretizations, such a blended advection-di�usion method does not look at-

tractive. The advection and di�usion discretizations are not consistent in their in-

terpretation of the numerical solution. For example, combining the upwind-biased

discretization, which fully accepts the discontinuous nature of the solution, with a

(σ, µ)-type discretization of the di�usion term, which penalizes the solution for being

discontinuous, seems to reveal an inner con�ict.

A more ambitious approach would attempt to unify the solution representations

used for the di�erent operators. Traditionally, a pure di�usion operator is preferably

discretized with a continuous DG method, especially a nodal-point-based one where

it is trivial to guarantee that the solution representation is continuously di�erentiable.

However, if one insists on a C(1) representation of the solution for the sake of di�usion,

while linked to a primary discontinuous basis for advection, the relation between the

two ceases to be local. It leads to a global system of equations where the smooth

solution representation is based on the interface value and derivative of the solution;

the equation system will globally link these to the coe�cients of the interior basis

functions.

A recent example of a method that blends a C(1) interface-based solution to the

discontinuous cell-based solution is the HDG method of Cockburn et al. [6, 27].

Here the �H� stands for hybridizable, which appears to refer to the capability of the

method to be used along-side a continuous Galerkin method, used perhaps for other

equations of a system. This method combines the usual upwind DG discretization

for advection with a discretization of the di�usion equation written as a system of

�rst-order equations, similar to LDG (see Section 1.4.2). As explained before, this

method requires the solution of a global system; the authors point out, though, that

the unknowns are just the interface values, regardless of the order of the method.

In recovery-based DG, we also attempt the uni�cation of the two solution rep-

resentations; however, it is a local uni�cation. The smooth solutions recovered at

the interfaces of one cell overlap each other in the interior of the cell, but are not

equal; therefore, no global smooth recovered function exists. Given the high order of

17

accuracy achieved by RDG methods, it is doubtful that recovering a globally smooth

unique solution will bring any advantage. Moreover, it has been shown earlier by Van

Raalte and Van Leer [45] that the solution representation of the locally recovered

solution in the union of two cells is identical to the discontinuous solution once we

switch from the discontinuous basis to the smooth recovery basis; see also our paper

[41] on �Uni�cation of discontinuous Galerkin methods for advection and di�usion�.

1.5 Motivation

Our motivation directs us towards the ultimate discontinuous Galerkin scheme for

conservation laws. As of the year 2010, high-order compact methods such as DG

are poised to take over the �nite-volume method which still counts as the industrial

standard. However, several issues still prevent the industry from moving away from

its safe in-house codes; DG is relatively new and has yet to establish a good record

of reliability. DG was dogged by its high storage requirement, the lack of a good

viscous discretization, lack of error estimation, lack of an e�cient high-order time-

marching scheme, and lack of a multi-dimensional high-order-compatible limiter. We

are pleased to say that these issues are nearing resolution with a high level of con�-

dence. This thesis focuses on resolving the issues of the viscous solver and e�cient

time-marching for DG.

The design and presentation of current di�usion schemes for DG is overly com-

plex and lacks physical interpretation. Numerical schemes were designed from the

standpoint of facilitating mathematical proofs instead of observing physical clarity.

Frustration is what drove us to design a new method that is a quantum level better

than existing methods. Van Leer and Nomura �rst introduced the recovery-based DG

(RDG) method for di�usion. The recovery concept is elegantly simple and, to their

surprise, achieved an order of accuracy beyond traditional superconvergence within

a generous stability range. Our �rst goal is to further pursue the concept of recovery

and demonstrate RDG's ability to perform in multi-dimensional nonlinear di�usion

problems.

In the �eld of time-marching schemes for DG, nothing dramatic has risen above the

horizon since RK-DG. In fact, DG's high storage requirement drove researchers toward

implicit time-marching methods. Implicit time-marching methods naturally damp

eigenmodes and may not be time-accurate for all transient phenomena of interest.

Our goal is to design a fast, explicit, and high-order time marching scheme for DG. To

this end, we present the arbitrarily-high-order Hancock-Huynh discontinuous Galerkin

18

(HH-DG) method. HH-DG is a true space-time DG method in which spatial elements

are strongly coupled to temporal elements via a Cauchy-Kovalevskaya procedure. HH-

DG's true beauty comes from being the exact shift operator for linear advection, which

is a good starting point for a new scheme; it allows CFL numbers up to unity.

The �rst half of the thesis is dedicated to introducing the recovery-based dis-

continuous Galerkin (RDG) method for di�usion. In Chapter 2, we introduce the

recovery concept, and the weak formulation of the di�usion equation with recovery,

then present a stability proof. The next two chapters detail RDG for 1-D and 2-D,

respectively, along with Fourier analyses and comparisons to other existing DG dif-

fusion schemes. Chapter 5 applies RDG to the Navier-Stokes equations and provides

numerical results to popular test cases. We introduce the new space-time DG method

called Hancock-Huynh discontinuous Galerkin (HH-DG) in Chapter 6, formulated to

accommodate both advection and di�usion. In Chapter 7, we summarize our �ndings

and point to a perspective of developments to be expected in the future.

1.6 Outline of this thesis: the River of Recovery

As an outline of this thesis, we o�er Figure 1.5, the �River of Recovery.� It depicts the

main stream of our research as a river �owing from the upper left to the lower right,

while broadening and with two cascades representing major obstacles in the progress

of the research. The river starts from the humble RDG-2x method for the 1-D linear

di�usion equation and ends at the successful extension to the viscous terms of the

2-D Navier-Stokes equations. Along the way we present much Fourier analysis and

many failed schemes including those of the RDG-1x type. Numbers in parentheses

refer to thesis chapters.

Three side-streams are visible. One represents purely theoretical developments,

which do impact the main research as indicated by the merging of the side-stream

with the mainstream. Another stream represents the in�uence of our work on others,

in particular the group at Idaho National Laboratory, which developed cell-centered

RDG (cRDG). This work eventually fed back into our own research by helping us

cross the nonlinearity cascades, as well as the cascades of cross-derivatives. Finally

there is the space-time DG stream which has led to arbitrary-order space-time DG

methods for advection and di�usion separately, but not yet for advection-di�usion in

a satisfactory way.

19

Theoretic

al
 S

tr
eam

r
d

g
-2

x
 (

2
,3

,4
)

(L
in

e
a

r
D

if
fu

s
io

n
)

h
h

-d
g

 (
6

)
(S

p
a

c
e

-T
im

e
 A

d
v

e
c

ti
o

n
)

h
h

-r
d

g
 (

6
)

(S
p

a
c

e
-T

im
e

 D
if

fu
s
io

n
)

r
d

g
-1

x
+

 (
3

,4
)

(1
-D

 N
o

n
li

n
e

a
r

D
if

fu
s
io

n
)

r
d

g
-1

x
+

+
 (

4
,5

)
(2

-D
 N

o
n

li
n

e
a

r
D

if
fu

s
io

n
 w

it
h

 C
ro

s
s
 D

e
ri

v
a

ti
v

e
s
:

N
a

v
ie

r-
S

to
k

e
s
)

c
r

d
g

 (
2

,3
,4

)
(F

u
ll

 S
o

lu
ti

o
n

 E
n

h
a

n
c

e
m

e
n

t)

s
t

a
b

il
it

y
 p

r
o

o
f

s
 (

2
)

s
ig

m
a

-m
u

 f
a

m
il

y
 (

3
)

(
p

e
n

a
l

t
y

 t
e

r
m

s
)

f
o

u
r

ie
r

 a
n

a
l

y
s

is
 (

3
,4

)

b
o

u
n

d
a

r
y

 t
r

e
a

t
m

e
n

t
 (

3
,4

)

r
d

g
-1

x
 f

a
m

il
y

(
2

,3
,4

)

n
o

n
u

n
if

o
r

m
 g

r
id

 (
4

)

N
o

n
li

n
e

a
r

C
a

sc
a

d
e

s
(3

,4
)

C
ro

ss
-d

e
ri

v
a

ti
v

e
s

(4
)

C
a

sc
a

d
e

s

in
t

r
o

 (
1

)

F
ig
u
re

1.
5:

T
h
e
ou
tl
in
e
of

th
is
th
es
is
is
re
p
re
se
n
te
d
b
y
th
e
R
iv
er

of
R
ec
ov
er
y.

20

CHAPTER II

Interface-centered Recovery-based

Method for Di�usion

Recovery-based discontinuous Galerkin (RDG) is due to Van Leer and appeared on

the DG stage in 2005, marking the beginning of a new perspective on the di�usion

operator for DG. The name �recovery� is attributed to K.W. Morton [26], who used it

in the context of �shock recovery,� which is the inverse process: recovering a discon-

tinuity from a smoothed pro�le. The further development of RDG was documented

in a train of papers [43, 41, 23, 45]. Unlike previous methods based on facilitating

mathematical proofs or choosing the correct values for the stability parameters, RDG

is based on a physical-numerical interpretation of the solution. The end product is a

universal concept of �recovery� that transcends its original purpose and can be applied

to di�erent areas of DG and �nite-volume methods. For this reason we sometimes

attach the term �interface-based� in front of RDG, iRDG, to indicate we are talking

about recovery for di�usion; for most of this thesis, we will simply use RDG and

drop the �i�. This chapter �rst describes the motivation behind RDG starting with

an interesting quote. We then cover various aspects of recovery concept and present

RDG for di�usion. Next, we present stability proofs for various RDG methods for

scalar nonlinear di�usion. The chapter ends with a brief talk on other uses of the

recovery concept.

2.1 The beginning of RDG

RDG literally began with Van Leer's observation, �What's sauce to the goose is not

sauce to the gander.� The original English idiom actually implies both genders should

be held to the same standards, but the word �not� was added to emphasize the funda-

21

mental di�erence between advection and di�usion operators. What works numerically

for advection does not work for di�usion, and vice versa.

The DG community garnered much success in numerical advection by borrowing

from �nite-volume discretizations, notably, the concept of Riemann solvers; however,

there was no �Riemann solver� (now there is [14]) or equally successful �nite-volume

algorithm for di�usion. The DG community was then forced to invent its own di�usion

discretizations, resulting in the contrived, sometimes unstable or even inconsistent

schemes mentioned in the previous chapter. Van Leer summarized the situation in

the cartoon below.

Figure 2.1: Finite-element analyst answering �nite-volume analyst regarding DG for
di�usion. Courtesy of Van Leer, 2005.

Figure 2.1 alludes to the complexity of the �rst generation of DG di�usion schemes

mentioned in the previous chapter; the answer to the question was cut from the article

[5] de�ning the Baumann-Oden scheme. It became clear that DG needed a fairer way

to deal with di�usion than by penalties.

While looking at the di�usion problem for DG, Van Leer noticed that a smooth

initial solution projected on to DG basis functions becomes discontinuous. Hence

in reality the discontinuous solution is only trying to represent a smooth solution.

The solution becomes embarrassingly simple: one only needs to �recover� the smooth

solution from the discontinuous solution. In general the recovery of the original is not

exact, but makes the most out of the available data. The coming sections illustrate

the recovery concept in detail.

22

2.2 Cartoon illustration of recovery in 1-D

The concept of interface recovery will be played out by a three-member cast: U as the

continuous smooth solution, u as the discontinuous solution, and f as the recovered

solution. The stage is set in Figure 2.2. The story begins with the exact solution U

in the left picture. Smooth and untamed, the exact solution is represented by dotted

line spanning from x = −1 to 1.

−1 −0.5 0 0.5 1
0

1

2

3

4

5

6

7

8

9

10

x

U
(x

)

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

u
(x

)

−1 −0.5 0 0.5 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

f(
x

)

Figure 2.2: The essence of recovery. Start with the exact solution U on the left
(dashed line). The discretized solution u in the middle is piecewise linear
(thick solid line). We recover a smooth function f (right, thin solid line).

However, one must face the cruel reality that resources are �nite; we split the

domain at x = 0 into two elements and then approximate the original function with

u, which is a polynomial projection of U in each element, and discontinuous across

the element interface. The loss of innocence occurs when we strip away most of the

derivatives of U . The resulting piecewise-linear functions in both elements share the

cell average and (least-squares) average gradient with U (see middle �gure). We say

that u is weakly equivalent to U in both elements. The original solution, which may be

non-polynomial, is suddenly reduced to a mere four pieces of data. Furthermore, the

discontinuity becomes a source of trouble for the di�usion operator since neither the

solution nor its derivatives are uniquely de�ned at the element interface. Fortunately,

we can recover a cubic function from the preserved data; the end result is a smooth

function f represented by the thin solid line in the right �gure. The recovered solution

shares the cell average and �rst derivative of u in both elements; hence we say f is

weakly equal to u in both elements. By a transitive relationship, all three members

are indistinguishable from each other in the weak sense. The new f spans the union

of two elements and provides unique solution and derivative values at the element

interface.

23

This story has a happy ending. The recovery concept presents a fresh way to

look at discontinuous solution in the union of two elements; and the example above

makes clear why this method is called �recovery�. Anyone understanding the recovery

principle may now stop reading and develop RDG entirely by himself or herself.

Regardless, we shall lay up next the mathematical foundation of recovery.

2.3 Interface recovery equations

We consider the most general framework inside an n-dimensional euclidean space, Rn.

Let D, the physical domain of interest, be a subspace in Rn. We introduce two vector

spaces: the solution space W and the test space V in D. Let φ be a set of smooth

functions with compact support satisfying W = {φ ∈ W : φ ∈ P k (D)} where Pp (D)

is the polynomial space of D containing polynomials of at most degree p. Similarly

let V = {v ∈ V : v ∈ P k (D)}. The domain is discretized into non-overlapping

cells such that D =
∑

j Ωj. If the solution space of V is the same as W , then this

is a Galerkin method; furthermore, if the basis functions are discontinuous across

the element interface, then this is speci�cally the DG method. Let Ωj and Ωj+1 be

two elements sharing the element interface Sj,j+1, and their solutions be expressed

respectively as,

uj =

Nj∑
i=1

aj,i φi, (2.1)

uj+1 =

Nj+1∑
i=1

aj+1,i φi, (2.2)

where aj,i and aj+1,i are the degrees of freedom and the integers Nj and Nj+1 are the

number of degrees of freedom in Ωj and Ωj+1, respectively. We introduce the recovery

function, fj,j+1 centered on Sj,j+1 as,

fj,j+1 =

Nj+Nj+1∑
i=1

bi ψi, (2.3)

where bi are the unknown coe�cients and ψi are the recovery basis functions spanning

the union of elements Ωj and Ωj+1. The proper choice of ψi is essential for a well-

conditioned recovery as will become clear soon. The recovery equations are of the

24

form, ∫
Ωj

vjuj dΩ =

∫
Ωj

vjfj,j+1 dΩ,∫
Ωj+1

vj+1uj+1 dΩ =

∫
Ωj+1

vj+1fj,j+1 dΩ. (2.4)

where vj and vj+1 belong to Ωj and Ωj+1, respectively, and cycle through all φi. Notice

the recovery equations always form a pair with one equation dedicated to each side of

the interface. Inserting Eqns (2.1-2.3) enables us to put the recovery equations into

matrix-vector form,

M j,j+1~aj,j+1 = Rj,j+1
~bj,j+1, (2.5)

where M j,j+1 is the block diagonal mass matrix, ~aj,j+1 is a vector containing the
coe�cients aj,i and aj+1,i, Rj,j+1 is simply the matrix on the right hand side, and
~bj,j+1 is the vector of unknown to solve for. The detailed expressions for M j,j+1 and
Rj,j+1 are

M j,j+1 =




< v0, φ0 > < v0, φ1 > . . .

< v1, φ0 > < v1, φ1 >
...

. . .


j 

< v0, φ0 > < v0, φ1 > . . .

< v1, φ0 > < v1, φ1 >
...

. . .


j+1


,

Rj,j+1 =




< v0, ψ0 > < v0, ψ1 > < v0, ψ2 > < v0, ψ3 > < v0, ψ4 > . . .

< v1, ψ0 > < v1, ψ1 > < v1, ψ2 > < v1, ψ3 > < v1, ψ4 >
...

. . .


j

< v0, ψ0 > < v0, ψ1 > < v0, ψ2 > < v0, ψ3 > < v0, ψ4 > . . .

< v1, ψ0 > < v1, ψ1 > < v1, ψ2 > < v1, ψ3 > < v1, ψ4 >
...

. . .


j+1


,

where < ·, · >j denotes the inner product of two functions on element Ωj. Solving for
~b yields,

~bj,j+1 = Qj,j+1~aj,j+1, (2.6)

Qj,j+1 = R−1
j,j+1M j,j+1; (2.7)

25

Qj,j+1 is called the recovery matrix. The following sections detail how to choose ψi

to ensure that Rj,j+1 is fully ranked, and ways to reduce the condition number of

Rj,j+1.

2.3.1 Full-rank Rj,j+1

Choosing the correct recovery basis functions requires extra attention; perhaps it is

useful to think of this as a Tetris game. Tetris is a game where uniquely shaped blocks

fall downward due to gravity, and the blocks stack upon each other depending on

where the player chooses to drop them. Our �recovery game� follows the same rule.

The recovery function is composed of basis functions in the face-normal direction,

and in the face-parallel directions. The maximum order of basis functions in each

direction is dictated by the number of available data in each direction. Consider the

1-D examples for p = 0 and p = 1 in the �gure below.

r2 r3rxx

r

1

11 1

1 1

Figure 2.3: A little block game for determining the recovery basis in 1-D. The blocks
on the left and right of the dashed line indicate basis functions of the
solution in Ωj and Ωj+1 respectively. Now imagine gravity pulls to the
left; the blocks from Ωj+1 fall on �top� of the blocks in Ωj to form the
recovery basis.

The recovery basis functions are in the face-normal direction, or r-coordinate, and

the dashed line indicates the orientation of the element interface. For p = 0, only the

cell averages are available on each side of the interface; they are represented by the

�1� blocks. If gravity pulls leftward, the two single blocks will stack up on each other

to form a two-block as shown in the �gure to the right. The new two-block represents

two available data in the face-normal direction, hence recovery between two p = 0

elements results in a linear recovery function, indicated by the basis functions 1 , r.

Similarly, for p = 1, the two blocks with �1� and �x� represent the cell average and

gradient within each element. The recovery between two p = 1 elements results in a

four-block, or a cubic recovery function. In 2-D, the same strategy is followed, only we

now introduce the s-coordinate to account for solution variations in the face-parallel

26

direction. Consider the 2-D examples below for p = 1 and p = 2.

r2 r3r

xx r

1

11 1

1 x2x
xyy

y2

1 x2x
xyy

y2

yy
r2 r3

s
s2

sr sr2 sr3
r4 r5

s2r

s sr

Figure 2.4: A little block game for determining the recovery basis in 2-D. The blocks
on the left and right of the dashed line indicate basis function of the
solution in Ωj and Ωj+1 respectively. Now imagine gravity pulls to the
left; the blocks from Ωj+1 fall on �top� of the blocks in Ωj to form the
recovery basis. Notice there are more blocks in the r-coordinate than in
the s-coordinate.

Notice the recovery function includes twice as many basis functions in the r-

coordinate than in the s-coordinate in 2-D. This raises the question whether the

lower-order s-components of the recovery function will contaminate the high-order r-

components. The 2-D numerical results in Chapter 4 will provide a nuanced answer;

the details for triangular structured and unstructured grids will be spelled out later.

The concept of this block game may be childish, but plays an important role in

determining the rank of Rj,j+1. In the 2-D example for p = 1, if we naively attempt

to recover a complete quadratic recovery function from the six blocks in Figure 2.4,

Rj,j+1 will be rank-insu�cient, and the recovery process fails. The choice of recovery

basis is not ad-hoc, but follows an �information conservation� principle, where each

block in this game represents a piece of information the solution has in a certain

direction. If one can play with blocks, then one can perform recovery; the 3-D game

goes exactly in the same way. Achieving a full-rank matrix is the �rst step; the next

step is to reduce the condition number of Rj,j+1.

2.3.2 Reducing the condition number of Rj,j+1

The reduction of the condition number of Rj,j+1 is central to reducing the magni-

tude of error and danger of instability of RDG. The conditioning number is the ratio

between the largest and smallest eigenvalues of the system; consequently, the lowest

achievable condition number is unity. There are two major ways to reduce the con-

dition number. The �rst is the universal method of using a preconditioner to solve a

27

system of equations. Instead of solving the system in Eqn 2.5, we solve

P j,j+1M j,j+1~aj,j+1 = P j,j+1Rj,j+1
~bj,j+1, (2.8)

where P j,j+1 is the preconditioning matrix. We enforce the following condition,

Cond (Rj,j+1) ≥ Cond (P j,j+1Rj,j+1) , (2.9)

where Cond(·) stands for condition number, and invert P j,j+1Rj,j+1 instead of just

Rj,j+1. The error in largest eigenvalue will swamp the smaller eigenvalues and mar

the results. The higher the condition number, the more contamination occurs. It

is an important task for the preconditioning matrix to bring all the eigenvalues of

the system to the same relative order. A simple Jacobi-preconditioner matrix, which

normalizes the L2-norm of each column of Rj,j+1 to unity, works well for RDG:

P j,j+1 =



1
‖Rj,j+1(:,1)‖2

1
‖Rj,j+1(:,2)‖2

1
‖Rj,j+1(:,3)‖2

. . .
. . .


, (2.10)

‖Rj,j+1 (:, k)‖2 =
1

Nj +Nj+1

√√√√i≤Nj+Nj+1∑
i

(Rj,j+1 (i, k))2. (2.11)

Rj,j+1 (:, k) is the Matlab notation for the k-column of Rj,j+1. There exist other types

of preconditioners that are more e�ective; however, those are beyond the scope of this

thesis.

The second method is the use of orthogonal basis functions for both φ and ψ in

Eqns (2.1-2.4). RDG works with any kind of basis functions, however, much reduction

in the condition number comes from the smart choice of basis functions. In analytical

mathematics, all basis functions spanning the polynomial space P are equal, but in

numerical mathematics, some basis functions are more equal than the others. So

far you have seen the monomial basis functions, rk, where r is a variable and k is

an integer greater or equal to zero. The choice of monomials for recovery results in

the Vandermonde matrix which is extremely ill-conditioned. Although the monomial

basis functions are easy to program and fast to evaluate, the negative e�ect on the

condition number can be prohibitive for high-order schemes.

28

Orthogonal basis functions are a very special class of basis with unique numerical

properties. The basis functions of an orthogonal set are completely independent

of each other; therefore, the mass matrix in Eqn 2.5 can be diagonalized for fast

evaluation. Furthermore, the elements of a diagonalized matrix are the eigenvalues;

hence a correct normalization of the orthogonal basis functions easily reduces the

condition number to unity. In 2-D we use a special orthogonal basis functions called

the Legendre polynomials for quadrilateral grids (see Section 4.1.3), and our own

orthogonal basis functions for triangular grids (see Section 4.1.3). In short, if φ is a

set of orthogonal basis functions on domain D, then∫
D
φiφk dD = 0, i 6= k, (2.12)∫

D
φiφk dD 6= 0, i = k. (2.13)

Notice if we change the domain D, the relationship above no longer holds and or-

thogonality is lost. In our example below, the quadrilateral Legendre polynomials

(abbreviated as Q. Legendre) are orthogonal on the unit square domain; however, the

quadrilateral Legendre polynomials are not orthogonal on a unit triangle domain. For

recovery between two quadrilateral elements, using orthogonal Legendre basis func-

tions for the solution and monomials for the recovery basis functions generally results

in acceptable condition numbers. The best condition number achieved for quadrilat-

eral recovery is when both the solution and recovery basis functions are orthogonal

quadrilateral Legendre polynomials.

An elementary numerical study of recovery between triangular elements was per-

formed with various choices of solution basis functions, and with or without Jacobi-

preconditioner. We use the quadrilateral Legendre polynomials to illustrate the e�ect

of a poor basis for recovery between triangles, and compared that to a real orthogonal

basis for triangles. The results are detailed in the Table 2.1.

It is seen that the largest reduction in condition number is due to the correct

choice of solution basis functions and the preconditioner. We have e�ectively reduced

the conditon number by an order of magnitude when comparing the worst case to the

best case. Note that simple orthogonal recovery basis functions rarely exist in the

union of two elements except on Cartesian grids. Now that we have all the tools to

acquire and condition Rj,j+1, let us �nd out the physical meaning embedded within

Rj,j+1.

29

Max Condition # φ ψ Jacobi Preconditioner

25 Orthogonal Triangular Monomial On
40 Q. Legendre Monomial On
116 Q. Legendre Monomial O�
286 Orthogonal Triangular Monomial O�
910 Q. Legendre Q. Legendre O�

Table 2.1: Condition number of Rj,j+1 for recovery between two right triangular el-
ements with p = 1 solutions. Notice quadrilateral Legendre polynomials
(Q. Legendre) are no longer orthogonal on a triangle domain. Each face
of the triangle has a di�erent condition number; the maximum condition
number of the three is reported.

2.4 Smooth recovery polynomial basis

Van Raalte and Van Leer [45] discovered the concept of a �local smooth recovery

polynomial basis,� which we call smooth recovery basis (SRB) for short. The term

�local� refers to the union of two elements and the term �smooth� di�erentiates SRB

from the discontinuous solution basis. There exist an in�nite number of bases as

potential candidates for ψ in Eqn 2.3; however, there is only one unique basis such

that ~b = ~a in Eqn 2.5. We called this unique basis the SRB, ψ̂.

The existence of SRB allows us to interpret the discontinuous solution as a con-

tinuous solution. The two solutions are equivalent in the weak sense, but provide a

completely di�erent picture at the element interface. SRB is always de�ned in the

union of the two elements; the discontinuous solutions are expressed in Eqn 2.1, and

the smooth solution is expressed as,

uj,j+1 =

Nj+Nj+1∑
i=1

(~ai)j,j+1 ψ̂i. (2.14)

The smooth solution inherits the coe�cients from the two neighboring discontinuous

solutions; we call this the Principal Recovery Theorem. Depending on the nature of

the problem, we may choose to use the discontinuous solution or the smooth solution.

SRB provides a uni�ed treatment of the advection and di�usion operator. The quest

to �nd the members of SRB is not di�cult; in fact they are hidden in Qj,j+1.

There exists one unique SRB for each choice of φ in Eqn 2.1. Let ψ in Eqn 2.3 be

anything as long as it satis�es the Tetris game mentioned in the previous section and

solve for Qj,j+1 in Eqn 2.6. The column vectors of Qj,j+1 span the vector space of ~b

and may therefore serve as a basis, or the SRB. The SRB is now expressed in terms

30

of the elements of Qj,j+1 as,

ψ̂i =

Nj+Nj+1∑
k

(
Qk,i

)
j,j+1

ψk. (2.15)

We consider two 1-D examples, for p = 0 (Figure 2.5) and p = 1 (Figure 2.6),

using the Legendre polynomials for φ. The domain of interest runs from 0 to 2, with

Ωj spanning from 0 to 1, and Ωj+1 spanning from 1 to 2.

0.0 0.5 1.0 1.5 2.0
-0.5

0.0

0.5

1.0

1.5

x

fH
xL

0.0 0.5 1.0 1.5 2.0
-0.5

0.0

0.5

1.0

1.5

x

fH
xL

Figure 2.5: In the p = 0 case, there is a total of two SRB functions. The smooth
recovery basis functions (solid lines) replacing vj = 1 (dashed lines) in Ωj

(left), and vj+1 = 1 in Ωj+1 (right).

0.0 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

x

fH
xL

0.0 0.5 1.0 1.5 2.0

-0.5

0.0

0.5

1.0

1.5

x

fH
xL

Figure 2.6: In the p = 1 case, there is a total of four SRB functions. The smooth
recovery basis functions (solid lines) replacing vj = 1 and vj = 2ξ − 1
(dashed lines) in Ωj (left), and vj+1 = 1 and vj+1 = 2ξ−1 in Ωj+1 (right).

It is seen the SRB functions, though indistinguishable in a weak sense from the

discontinuous basis functions, provide a completely di�erent interpretation of the

solution at the interface. Take the highest line in the left plot of Figure 2.6 as an

example, this line shares the same average as vj = 1 on Ωj, but has an zero average

gradient in Ωj. In addition, this line has a zero average and zero averaged �rst

gradient in Ωj+1. The SRB version can be used to compute di�usive �uxes in a DG

scheme; the discontinuous functions are preferred for advection if combined with a

31

Riemann solver. The physical meaning of matrix Qj,j+1 has been revealed; we are

now ready to apply recovery to the di�usion equation.

2.5 Interface-centered recovery-based discontinuous

Galerkin (iRDG) Method

The previous section was dedicated to explaining the mathematical properties of

the recovery function. We now make the connection with the physical phenomenon

of di�usion and detail the interface-centered recovery-based discontinuous Galerkin

(iRDG) method for di�usion (we will drop the �i�). Di�usion is a physical process

in which certain conserved properties of the �uid are transported due to molecular

collisions. This quantities may be species concentration (mass), momentum, and

energy of the �uid. The process occurs in the presence of spatial varying gradients;

the di�usion process tends to reduce the magnitude of all derivatives. Consider the

scalar nonlinear di�usion equation,

ut = ∇ · (D (u)∇u) , (2.16)

where D (u) is the di�usion coe�cient. We test the governing equation in element Ω

and apply integration by parts once to the right hand side to arrive at the weak form,∫
Ω

v ut dΩ =

∮
∂Ω

(vD (u)∇u) · n̂ d∂Ω−
∫

Ω

∇v · (D (u)∇u) dΩ. (2.17)

For simplicity, we have dropped the cell index j from vj, uj, Ωj. In this form, we see

the original 2nd-order derivative is reduced to a 1st-order derivative. It is useful to

de�ne D as the primitive function of D (u), i.e. ∇D (u) = D (u)∇u. Eqn 2.17 thus

may be rewritten as,∫
Ω

v ut dΩ =

∮
∂Ω

(v∇D (u)) · n̂ d∂Ω−
∫

Ω

∇v · ∇D (u) dΩ. (2.18)

We can apply integration by parts once more to arrive at a form sometimes called

the strong form,∫
Ω

v ut dΩ =

∮
∂Ω

(v∇D (u)−D (u)∇v) · n̂ d∂Ω +

∫
Ω

D (u) ∇ · ∇v dΩ. (2.19)

The surface integral along ∂Ω is not well-de�ned due to the discontinuity at the el-

ement interface. The strong form brings more weight to the boundary as compared

32

to the weak form due to the extra boundary term. As argued before, the solution

discontinuities at the interfaces are numerical artifacts; the only exception is if there

actually is physical discontinuity in the initial values. In that case use of the dif-

fusive Riemann �ux discussed in Section 1.4.4 is appropriate; otherwise, recovery is

indicated.

RDG �rst appeared in 2005 based on Eqn 2.19. The strong form works extremely

well for linear di�usion because of the added coupling between elements with the extra

boundary term in the surfae integral; in addition, the volume integral in the strong

form can be evaluated exactly. The form also extends to scalar nonlinear di�usion

but does not appear to allow extension to a nonlinear system of di�usion equations.

Hence we have to seriously consider the weak form for nonlinear di�usion. We will

consider three di�erent ways to incorporate the recovered solution f into the weak

and strong forms of the linear di�usion equation. For the weak form, we have both

RDG-1x-Naive,∫
Ω

v ut dΩ =

∮
∂Ω

(v∇D (f)) · n̂ d∂Ω−
∫

Ω

∇v · ∇D (u) dΩ. (2.20)

and RDG-1x-Smart,∫
Ω

v ut dΩ =

∮
∂Ω

(v∇D (f)) · n̂ d∂Ω−
∫

Ω

∇v · ∇D (ũ) dΩ, (2.21)

where ũ is some function that shares the same original moments as u, but contains

higher order moments, inside Ω. The choice of names and various ways to construct

ũ will be explained in later chapters. For now it su�ces to know RDG-1x-Naive

performs poorly in comparison to RDG-1x-Smart. The term �1x� simply means in-

tegration by parts once, and �2x� means integration by parts twice. For the strong

form of the di�usion equation, RDG-2x reads∫
Ω

v ut dΩ =

∮
∂Ω

(v∇D (f)−D (f)∇v) · n̂ d∂Ω +

∫
Ω

D (u) ∇ · ∇v dΩ, (2.22)

The following sections and chapters are dedicated to studying the stability and accu-

racy of RDG; we begin with the scalar linear di�usion equation in 1-D and progress

towards the nonlinear Navier-Stokes equations in 2-D. The question of the stabil-

ity range relates to the e�ciency of the numerical method. Since di�usion results

from molecular collisions in small time scales, the time step of a numerical method

is severely restricted by the physical di�usion process itself. A numerical method

33

should not impose a further unnecessary penalty on the time step. The study of the

accuracy of RDG includes demonstrating the improvement over existing methods,

and capturing complicated di�usion-dominated phenomena such as those found in a

boundary layer. We begin our analysis with stability proofs of various RDG schemes.

2.6 Evolution of the recovery-based discontinuous

Galerkin methods

Since its inception in 2005, RDG has weathered numerous obstacles and grown into a

mature method. The �rst RDG method was called RDG-2x and achieved an unsur-

passed order of accuracy for the linear di�usion equation. The use of twice integrating

by parts works well on the weighted residual of the linear di�usion equation because

the resulting volume integral is evaluated exactly. However, twice integrating by parts

for nonlinear di�usion equations is usually implausible because the primitive in Eqn.

2.17 does not exist.

A small cottage industry slowly grew from the seeds of the recovery concept.

Marshall C. Galbraith applied a backward integration by parts on the volume integral

to obtain the RDG-3x form,∫
Ω
v ut dΩ =

∮
∂Ω

(v∇D (f) + D (u− f)∇v) · n̂ d∂Ω−
∫

Ω
∇v · ∇D (u) dΩ. (2.23)

French, Galbraith and Osorio [12] worked further with a modi�ed RDG method using

a symmetric recovery procedure to facilitate math proofs. RDG-3x introduces addi-

tional terms and complexity into the boundary integral; hence, RDG-3x is usually

used in proofs instead of numerical calculations. Park et al. [29] were the �rst to

apply the recovery concept as an solution-enhancement technique (see Section 2.8).

Solution enhancement increases the order of accuracy of a scheme without intro-

ducing additional solution coe�cients; this has a signi�cant positive impact on the

performance of DG schemes by reducing the memory burden.

Till the end of 2009, our research was focused on Fourier analysis, stability proofs

and extension to 2-D unstructured grids. RDG-1x was of direct interest due to its

shorter form; however, the accuracy of the volume integral has to be improved. In

this respect two new schemes in the RDG-1x-Smart family were introduced, RDG-

1xf̄ and RDG-1xf̃ . These schemes are limited in success due to instability for higher

p and added complexity on unstructured grids. In 2010 we recognized the need to

improve on the solution and the recovery function inside the volume and surface

34

integral, respectively, to accommodate the nonlinear di�usion equations. The newest

scheme, RDG-1x+ and RDG-1x++, are shown to work with Navier-Stokes viscous

terms, and numerical Fourier analysis shows the two schemes are stable and extremely

accurate. The �+� symbol indicates the number of times that the recovery information

is reused. In RDG-1x+, the recovered function is used for the the di�usion �ux, and

then it is reused to enhance the solution inside the volume integral. RDG-1x++

takes it one step further by reusing the enhanced solution to obtain a new enhanced

recovered function. An experimental RDG-0x+ scheme is also introduced brie�y

to demonstrate the ability to discretize the PDE without any integration by parts.

RDG-0x+ achieves this by absorbing the surface integral into the volume integral,

allowing us to produce very e�cient schemes. Currently the RDG-1x-Smart family

is too complicated for a general mathematical proof; as a result, we only provide

numerical evidence of stability in Chapters 3 and 4. Meanwhile, we continue with the

mathematical proofs of stability for both RDG-2x and RDG-1x-Naive.

2.7 Stability proofs for interface recovery-based dis-

continuous Galerkin methods

A popular method of studying stability of DG methods is to look at the time rate

of change of the total energy of the solution. The strategy is to show the energy is

decaying in time, or equivalently showing the RHS's of Eqns 2.20, 2.21, and 2.23 are

negative if v = u. We �rst begin with the original RDG-2x method; the proof of

RDG-1x-Naive is a simpli�ed version of RDG-2x.

2.7.1 Proof for RDG-2x

The proof �rst focuses on the p ≥ 1 case, and then deals with the case p = 0, which is

di�erent since the volume integral vanishes. In Eqn 2.23 we replace the test function

v by the numerical solution u, thus testing u with itself; then we integrate over the

complete computational domain V with boundary S,∫
V

∂

∂t

(
u2

2

)
dV =

∮
S

(u∇D (f)−D (f)∇u) · n̂ dS

+

∮
E

[u∇D (f)−D (f)∇u] · n̂ dE

+

∫
V

D (u) ∇ · ∇u dV . (2.24)

35

The LHS is the time rate of change of the energy of the solution, and the RHS consists

of a surface integral over the computational domain boundary S, a surface integral

over all element interfaces E , and a volume integral of the whole domain V . Note

that if the normal n̂ is de�ned as pointing from element Ωj to element Ωj+1, the

jump across an interface must be de�ned as, [·] = (·)j − (·)j+1. We undo the second

integration by parts by performing a backward integration by parts on the the volume

integral, ∫
V

∂

∂t

(
u2

2

)
dΩ =

∮
S

(u∇D (f)−D (f)∇u) · n̂ dS

+

∮
E

[u∇D (f) + (D (u)−D (f))∇u] · n̂ dE

−
∫
V
∇u · ∇D (u) dV . (2.25)

The di�usion coe�cient is not a function of mesh size, hence we assumeD (u) ∼ O (1).

There are three terms on the RHS with the third term being a volume integral that

is negative de�nite of O (1). The strategy is to show the �rst surface integral terms,

the domain-boundary surface integral and the element-interface surface integral, are

much smaller than the volume integral. Consider a normalized physical domain where

V and S are of O (1), then E is O (h−1) where h is a typical mesh width and much

smaller than unity. It is easy to visualize the total area of the element-interfaces is

much larger than the area of the domain boundary, therefore we conclude the element-

interface surface integral is potentially much larger than the domain-boundary surface

integral. Focusing on the element-interface surface integral, we rewrite the integrand

in terms of average < · > and jump [·] notations:

[u∇D (f) + (D (u)−D (f))∇u] · n̂ = {[u]∇D (f) + [D (u)−D (f)] < ∇u >} · n̂+

+ {< D (u)−D (f) > [∇u]} · n̂,
= {([u]∇D (f) + [D (u)] < ∇u >)} · n̂+

+ {(< D (u) > −D (f)) [∇u]} · n̂. (2.26)

Assume the initial values, of which u is the projection, are su�ciently smooth, say,

p + 1 times continuously di�erentiable, then both [u] and < D (u) > −D (f) are of

O (hp+1), while [∇u] is O (hp) for p ≥ 1 and 0 for p = 0. Hence the two terms in

parentheses on the RHS of Eqn 2.26 are of O (hp+1) and O (h2p+1) respectively for

p ≥ 1. The �rst term with O (hp+1) dominates the integrand; as a result the second

term in Eqn 2.25 is of O (hp) . For a su�ciently �ne grid, the boundary integrals

36

becomes negligibly small compared to the negative de�nite volume integral.

For p = 0, ∇u = 0, so the negative-de�nite integral reduces to zero, and the

surface integral E assumes its role. We need to compare the magnitude of the surface

integral over S to the surface integral over E . We �rst look at the magnitude of

the element-interface surface integral term. The integrand in Eqn 2.26 simpli�es to

[u]∇D (f) · n̂. In this case [u] = O (h) and the recovery procedure yields

∇D (f) · n̂ = − [D (u)]

hcn
, (2.27)

where hcn is the distance between the centroids of neighboring elements measured

along their interface-normal. The integrand becomes,

[u]∇D (f) · n̂ = −D [u]2

hcn
= −|O (h) | →

∮
E

[u]∇f · n̂ dE = − | O (1) |; (2.28)

here D = 1
[u]

∫
jump

D (u) du > 0. The boundary conditions are applied on the domain-

boundary surface integral. We show for both Dirichlet and Neumann boundary con-

ditions that the surface integral over S for p = 0 is still negligibly small. In the RDG

method, the boundary condition is applied on the recovery function f , not the interior

solution u. For a Dirichlet boundary condition with f = 0 on S, the integrand for

p ≥ 0 reduces to

u∇D (f) + (D (u)−D (f))∇u = (u− f)∇D (f) + (D (u)−D (f))∇u = O
(
hp+1

)
,

(2.29)

which again is small compared to terms of O (1). For an adiabatic Neumann boundary

condition with ∇D (f) · n̂ = 0 on S, the integral is simpli�ed to∮
S

∇(u− f)2

2
· n̂ dS = O

(
h2p+1

)
, p ≥ 0. (2.30)

Once again this term is small compared to O (1). This implies for that p ≥ 0 the

negative-de�nite element-interface surface integral dominates the domain-boundary

surface integral. This completes the stability proof for all p. The proof of RDG-1x

mimics the one for RDG-2x.

37

2.7.2 Proof for RDG-1x-Naive

We �rst replace the test functions with the numerical solution u in Eqn 2.20 and

integrate over the complete computational domain V with boundary S,

∫
V

∂

∂t

(
u2

2

)
dV =

∮
S

(u∇D (f)) · n̂ dS

+

∮
E

[u∇D (f)] · n̂ dE

−
∫
V
∇u · (D (u)∇u) dV . (2.31)

The volume integral is negative de�nite of magnitude O (1) for p > 0. Again, we

consider a normalized physical domain where V and S are of O (1), then E is O (h−1)

where h is a number much smaller than unity. Using the same argument as for RDG-

2x, we conclude the element-interface surface integral is the largest of the two surface

integrals. We may rewrite its integrand as

[u∇D (f)] · n̂ = {[u]∇D (f)} · n̂, (2.32)

here [u] is of magnitude O (hp+1), making the internal surface integral O (hp) for

p ≥ 1. For a su�ciently �ne grid, both boundary integrals become negligibly small

compared to the negative de�nite volume integral.

For p = 0, RDG-2x is identical to RDG-1x-Naive. The proof from the previous

sections applies here; we conclude RDG-1x-Naive is energy stable for all p.

2.7.3 Note on RDG-1x-Smart

RDG-1x-Smart is a family of schemes designed to improve on the surface and vol-

ume integral in the weak form of the di�usion operator. There is no stability proof

of RDG-1x-Smart due to the large number of choices for f̃ and ũ; currently the

members include RDG-1xf̄ , RDG-1xf̃ , RDG-1x+, RDG-1x++, and RDG-1x++CO

where �CO� stands for Cartesian optimization. In later chapters, we use numerical

experiment and Fourier analysis to show that certain members of the smart family are

stable for various p. We believe the proof is in the pudding; the extremely high order

of accuracy is not coincidental. Research on improving RDG-1x-Smart is ongoing; a

stability proof for RDG-1x-Smart may appear in a future publication.

38

2.8 Recovery concept for solution enhancement

In this thesis, solution enhancement is de�ned as a process to add higher order com-

ponents to the solution. A full solution enhancement adds enough components to

raise the solution polynomial by a full order. Park et al. [29] experimented with full

solution enhancement using the recovery concept over a large stencil in cell-centered

RDG (cRDG). Since the main expense of their numerical experiments comes from

solving a large implicit system, their objective is to increase the order of the scheme

without increasing the number of solution coe�cients. Full solution enhancement is

extremely costly; hence, we explore cheaper ways of enhancing the solution.

We di�erentiate ourselves by focusing on recovery between two cells only (binary

recovery). Binary recovery involves far fewer cells, which signi�cantly reduces the size

of matrix operations and allows for e�ective parallelization. Although binary recovery

does not provide a full solution enhancement, it does allow us to selectively choose

the correct components to add to the solution for a more accurate evaluation of the

di�usion operator. As we will show later, one cannot blindly pursue a full solution

enhancement due to the rising cost in higher physical dimension; one must carefully

choose the components to enhance based on the nature of the governing equations.

39

CHAPTER III

RDG in One-Dimension for Scalar

Equation

Our research principle is to design a user-friendly DG di�usion scheme which ev-

erybody can understand without a master's degree in applied mathematics. This

chapter is intended to explore and reveal the most fundamental properties of RDG

in a simple 1-D setting. Focusing on the linear di�usion equation, we analyze the

scheme for linear stability and accuracy. This simple setting also provides a common

framework to compare RDG with various members of the (σ, µ)-family. Most impor-

tantly, when we rewrite RDG schemes in terms of jumps and averages of quantities

across cell interfaces, RDG schemes contain penalty-like terms previously unseen in

the (σ, µ)-family. Finally, we couple RDG with Runge-Kutta (RK) time-marching

and solve the advection-di�usion and nonlinear di�usion equations.

Before the show begins, we provide a list of the RDG schemes in the order of

appearance. The �rst scheme is the original RDG-2x which uses twice integration by

parts on the weighted-residual formulation of the linear di�usion equation and the

recovery concept for the di�usion �ux. We then compare RDG with the (σ, µ)-family,

which usually follow from the form once integrated by parts. On this platform we

introduce RDG-1xf̄ which attempts to improve upon RDG-1x-Naive. Finally, we

present RDG-1x+ for nonlinear di�usion. Out of the many schemes introduced in

this chapter, we focus on analysis of RDG-2x only for the following reasons. First,

numerical experiment and Fourier analysis show RDG-1xf̄ is unstable for p ≥ 3.

Secondly, the RDG-1x+ scheme is equivalent to RDG-2x for 1-D linear di�usion

equation; the analysis of RDG-2x applies directly to RDG-1x+. Lastly, RDG-1x-

Naive is not of particular interest because of its lack of accuracy.

40

3.1 1-D recovery equations for binary recovery

The basic ingredient of any RDG scheme is the recovered function based on binary re-

covery (BR). The recovered function provides an unique solution value and derivatives

at a cell interface where the solution was originally unde�ned due to the discontinu-

ity. As the name of BR implies, only the two cells sharing one common interface are

involved. Consider the solutions in two adjacent cells of the form presented in Eqn

2.1, we look for a recovered function centered on the shared interface in the form of

Eqn 2.3. The 1-D recovery equations are∫
Ωj

vjuj dx =

∫
Ωj

vjfj,j+1 dx,∫
Ωj+1

vj+1uj+1 dx =

∫
Ωj+1

vj+1fj,j+1 dx. (3.1)

The recovered function is in a coordinate system di�erent from that of the solutions

of each cell. We introduce the r-coordinate for the recovered function and the ξ-

coordinate for the local solution. The transformation between r and ξ coordinates

is strictly geometry-dependent; the details are explained below. We consider three

examples with Legendre polynomials for piecewise-constant (p = 0), piecewise-linear

(p = 1) and piecewise-quadratic (p = 2) solutions on an uniform grid.

3.1.1 Piecewise-constant (p = 0) recovery

A DG scheme with p = 0 is equivalent to a �nite-volume scheme. Let the test space

V be equal to the solution space U , and be spanned by the following basis function,

v0 = 1, ξ ∈ [0, 1] , (3.2)

where ξ is the local coordinate, and the solution in Ωj be expressed as

uj = a0,jv0,j = a0,j. (3.3)

Here, a0 can be viewed as the cell average. We look for a recovered function between

Ωj and Ωj+1 of the form,

fj,j+1 (r) = b0 + b1r, r ∈ [−1, 1], (3.4)

41

such that Ωj belongs to r ∈ [−1, 0] and Ωj+1 belongs to r ∈ [0, 1] (see Figure 3.1).

The transformation of variable is given by

r = ξ − 1, for Ωj, (3.5)

r = ξ − 0, for Ωj+1. (3.6)

r

ξ ξ0 1 0 1

0 1-1

Ω Ωj j+1

Figure 3.1: The recovery coordinate system spans the union of two neighboring cells,
while each cell has a local coordinate ξ.

Note that r = 0 is centered on the interface shared by Ωj and Ωj+1. Eqn 3.1 is

rewritten into matrix-vector form after performing the necessary integrations,(
1 0

0 1

)(
a0,j

a0,j+1

)
=

(
1 −1

2

1 1
2

)(
b0

b1

)
j,j+1

. (3.7)

Solving for bi gives, (
b0

b1

)
j,j+1

=

(
a0,j+a0,j+1

2

−a0,j + a0,j+1

)
. (3.8)

3.1.2 Piecewise-linear (p = 1) recovery

Let the test space V be equal to the solution space U , and be spanned by the following

basis functions,

v0 = 1, v1 = 2ξ − 1, ξ ∈ [0, 1] , (3.9)

where ξ is the local coordinate, and the solution in Ωj be expressed as,

uj = a0,jv0,j + a1,jv1,j. (3.10)

We look for a recovered function between Ωj and Ωj+1 of the form,

fj,j+1 (r) = b0 + b1r + b2r
2 + b3r

3, r ∈ [−1, 1], (3.11)

42

such that Ωj belongs to r ∈ [−1, 0] and Ωj+1 belongs to r ∈ [0, 1]. Using the same

variable transformation as the previous section, Eqn 3.1 is rewritten into matrix-

vector form after performing the necessary integrations,
1 0 0 0

0 1
3

0 0

0 0 1 0

0 0 0 1
3




a0,j

a1,j

a0,j+1

a1,j+1

 =


1 −1

2
1
3
−1

4

0 1
6
−1

6
3
20

1 1
2

1
3

1
4

0 1
6

1
6

3
20




b0

b1

b2

b3


j,j+1

. (3.12)

Solving for bi gives,
b0

b1

b2

b3


j,j+1

=


a0,j+a0,j+1

2
+

a1,j−a1,j+1

3
9(a0,j+1−a0,j)

4
− 5(a1,j+a1,j+1)

4

a1,j+1 − a1,j

5(a0,j+1−a0,j)

2
+

5(a1,j+a1,j+1)

2

 . (3.13)

3.1.3 Piecewise-quadratic (p = 2) recovery

Let the test space V be equal to the solution space U , and be spanned by the following

basis functions,

v0 = 1, v1 = 2ξ − 1, v2 = 6ξ2 − 6ξ + 1, ξ ∈ [0, 1] , (3.14)

where ξ is the local coordinate, and the solution in Ωj be expressed as,

uj = a0,jv0,j + a1,jv1,j + a2,jv2,j. (3.15)

We look for a recovered function between Ωj and Ωj+1 of the form,

fj,j+1 (r) = b0 + b1r + b2r
2 + b3r

3 + b4r
4 + b5r

5, r ∈ [−1, 1]. (3.16)

43

The resulting system in matrix-vector form looks like

1 0 0 0 0 0

0 1
3

0 0 0 0

0 0 1
5

0 0 0

0 0 0 1 0 0

0 0 0 0 1
3

0

0 0 0 0 0 1
5





a0,j

a1,j

a2,j

a0,j+1

a1,j+1

a2,j+1


=



1 −1
2

1
3
−1

4
1
5

−1
6

0 1
6
−1

6
3
20

− 2
15

5
42

0 0 1
30
− 1

20
2
35

− 5
84

1 1
2

1
3

1
4

1
5

1
6

0 1
6

1
6

3
20

2
15

5
42

0 0 1
30

1
20

2
35

5
84





b0

b1

b2

b3

b4

b5


j,j+1

,

(3.17)

with solution

b0

b1

b2

b3

b4

b5


j,j+1

=



a0,j+a0,j+1

2
+

13(a1,j−a1,j+1)

32
+

7(a2,j+a2,j+1)

32
15(−a0,j+a0,j+1)

4
− 11(a1,j+a1,j+1)

4
+

6(−a2,j+a2,j+1)

32
15(−a1,j+a1,j+1)

8
− 21(a2,j+a2,j+1)

8
25(a0,j−a0,j+1)

2
+

25(a1,j+a1,j+1)

2
+ 8 (a2,j − a2,j+1)

35(a1,j−a1,j+1)

32
+

105(a2,j+a2,j+1)

32
21(−a0,j+a0,j+1)

2
+

21(a1,j+a1,j+1)

2
+

42(−a2,j+a2,j+1)

5


. (3.18)

3.2 RDG-2x for linear di�usion

The original RDG-2x is applied to the spatial derivatives on the RHS of the linear dif-

fusion equation, while the temporal derivative is handled by an explicit time-marching

Runge-Kutta (RK) scheme. This section demonstrates the discretization of the RHS

of the linear di�usion equation with RDG-2x for p = 0, 1 and 2. The recovered

function is used as the �ux component in the RDG-2x scheme,∫
Ωj

vut dx = D [vfx − vxf]
j+ 1

2

j− 1
2

+D

∫
Ωj

vxxu dx, (3.19)

where the solution u is replaced with the smooth recovered function f in the surface

integral. In 1-D the surface integrals reduce to point values of f and fx at the interface.

However, the update equation is given in terms the global spatial coordinate x; it is

necessary to convert the global coordinate into local coordinate for a DG scheme.

The transformation between ξ and x is given by dξ
dx

= 1
∆x

; the update equation in

terms of ξ is then

∆x

∫
Ωj

vut dξ =
D

∆x
[vfξ − vξf]

j+ 1
2

j− 1
2

+
D

∆x

∫
Ωj

vξξu dξ. (3.20)

44

Recall that f uses a di�erent coordinate system, where the transformation from r

to ξ is conveniently given by dr
dξ

= 1, hence fξ = fr. Upon inserting the recovered

functions from the previous section, we obtain the update matrix for each cell Ωj.

Update scheme for RDG-2x (p = 0)

With only one basis function, v0 = 1, the update equation reduces to

d

dt

(
a0j

)
∆x =

D

∆x
[fξ]

j+ 1
2

j− 1
2

=
D

∆x

[
(fξ)j,j+1 − (fξ)j−1,j

]
, (3.21)

where the �rst derivative of recovered function evaluates to

(fr (0))j,j+1 = (b1)j,j+1 = −a0,j + a0,j+1, (3.22)

(fr (0))j−1,j = (b1)j,j+1 = −a0,j−1 + a0,j. (3.23)

The �nal update scheme becomes,

d

dt

(
a0j

)
=

D

∆x2
(a0,j+1 − 2a0,j + a0,j−1) .

=
D

∆x2
([1] [−2] [1])

 a0,j−1

a0,j

a0,j+1

 . (3.24)

Indeed the RDG-2x scheme for p = 0 reduces to the central di�erence scheme which

is 2nd-order accurate in space, and the only consistent scheme for p = 0. Although

the p = 0 case is not of interest in the DG framework, it is still satisfying to show the

RDG-2x scheme comes from a very good pedigree. Note that the update equation is

rewritten into matrix-vector form which will come in handy in a later section.

Update scheme for RDG-2x (p = 1)

Using the linear basis functions v0 = 1 and v1 = 2ξ−1, the update equations become

d

dt

(
a0j
a1j

3

)
=

D

∆x2

(
(fξ)j,j+1 − (fξ)j−1,j(

(fξ)j,j+1 + (fξ)j−1,j

)
− 2 (fj,j+1 − fj−1,j)

)
. (3.25)

45

Here f (0) = b0 and fr (0) = b1 from Eqn 3.13; the �nal update scheme becomes

d

dt

(
a0j
a1j

3

)
=

D

∆x2

([
9
4

5
4

−5
4
− 7

12

][
−9

2
0

0 −23
6

][
9
4
−5

4
5
4
− 7

12

])


(
a0,j−1

a1,j−1

)
(
a0,j

a1,j

)
(
a0,j+1

a1,j+1

)


.

(3.26)

Update scheme for RDG-2x (p = 2)

Using the quadratic basis functions v0 = 1, v1 = 2ξ − 1, and v2 = 6ξ2 − 6ξ + 1, the

update equations become

d

dt

 a0,j

a1,j

3
a2,j

5

 =
D

∆x2


(fξ)j,j+1 − (fξ)j−1,j(

(fξ)j,j+1 + (fξ)j−1,j

)
− 2 (fj,j+1 − fj−1,j)(

(fξ)j,j+1 − (fξ)j−1,j

)
− 6 (fj,j+1 + fj−1,j) + 12

∫
Ωj
u dξ

 .

(3.27)

Here f (0) = b0 and fr (0) = b1 from Eqn 3.13; the �nal update scheme becomes,

d

dt

 a0,j

a1,j

3
a2,j

5

 =

D

∆x2




15
4

11
4

6
5

− 11
4 − 31

16 − 61
80

3
4

5
16 − 9

80


 −

15
2 0 − 12

5

0 − 57
8 0

− 3
2 0 − 201

40




15
4 − 11

4
6
5

11
4 − 31

16
61
80

3
4 − 5

16 − 9
80






 a0,j−1

a1,j−1

a2,j−1


 a0,j

a1,j

a2,j


 a0,j+1

a1,j+1

a2,j+1




.

(3.28)

46

3.3 Fourier analysis and eigenvectors

As Professor David Gottlieb famously noted, �we can always analyze a 1-D system to

death,� which in scienti�c language means a very complete analysis can be performed

on a simple system of equations. We use Fourier analysis to reveal the order of

accuracy and stability limit of RDG schemes for the linear di�usion equation. The

key components in our Fourier analysis is to identify the eigenvalues and eigenvectors.

We begin by giving an overview of the steps involved in the Fourier analysis, and

explaining the physical meaning behind the eigenvalues and eigenvectors.

Our Fourier analysis is based on the scalar linear di�usion equation,

ut = Duxx, (3.29)

where D is a positive constant. The weighted-residual formulation after once integra-

tion by parts becomes,∫
Ω

vut dx = D

∮
∂Ω

vux d∂Ω−D
∫

Ω

vxux dx, (3.30)

or twice integrated by parts,∫
Ω

vut dx = D

∮
∂Ω

(vux − vxu) d∂Ω +D

∫
Ω

vxxu dx. (3.31)

Note we dropped the cell index from v and u for simplicity. We obtain RDG-2x by

replacing the solution u in the surface integral with the recovered function f ,∫
Ω

vut dx = D

∮
∂Ω

(vfx − vxf) d∂Ω +D

∫
Ω

vxxu dx. (3.32)

Our next step is to rewrite the RHS of Eqn 3.32 as a discrete Fourier operator and

compare the result with the exact Fourier operator. Fourier operators are expressed

in terms of the Fourier mode, β. The solution in cells adjacent to Ωj is related through

the Fourier mode,

ûj+k = eiβkûj = T kûj, (3.33)

where T k is the translation operator and ûj is a vector of solution coe�cients. The

RHS of Eqn 3.32 is simply expressed as,

1

D

∂

∂t
ûj = M (β) ûj, (3.34)

47

whereM (β) is a matrix representing the discrete Fourier operator. The exact Fourier

symbols for 1st and 2nd-order spatial di�erentiations are

∂̂

∂x
=

iβ

∆x
, (3.35)

∂̂2

∂x2
= − β2

∆x2
, (3.36)

respectively; hence, the exact Fourier operator for the 2nd-order di�usion equation is

M̂ (β) = −Dβ2I, (3.37)

where I is the identity matrix. A comparison of the eigenvalues of the discrete Fourier

operator with the exact Fourier operator reveals the level of accuracy at which the

numerical scheme approximates the di�usion operator. The signs of the eigenvalues

also dictate the stability of a scheme; in this case, a positive eigenvalue indicates

instability. However, the eigenvalues only allow us to determine the stability range

and the evolution error. The other issue of crucial concern is the initial projection

error, which is a measure of the scheme's ability to preserve a smooth solution. The

projection error is determined from the eigenvectors of M (β). We are now ready for

some Fourier analysis.

3.3.1 RDG-2x Fourier analysis: piecewise-linear (p = 1)

Consider a numerical solution expanded in terms of a solution vector ~uj and the

piecewise-linear Legendre basis functions in the local spatial coordinate,

~uj =

(
uj

∆uj

)
, (3.38)

uj = ūj + ∆uj (2ξ − 1) , ξ ∈ [0, 1] , (3.39)

The complete update scheme with RDG for solving Eqn 3.32 is given by,

∂

∂t

(
uj

∆uj

)
=

D

∆x2

([
9
4

5
4

−15
4
−7

4

] [
−9

2
0

0 −23
2

] [
9
4
−5

4
15
4
−7

4

]) T−1 (~uj)

I (~uj)

T+1 (~uj)

 .

(3.40)

48

Note this is very similar to Eqn. 3.26, except T k is the translation operator such that

T+1 (~uj) = ~uj+1, (3.41)

I (~uj) = ~uj, (3.42)

T−1 (~uj) = ~uj−1, (3.43)

where j is a spatial index, and I is the identity operator. We convert the translation

operators into Fourier modes via

T±j = e±i β j = cos (jβ)± i sin (jβ) , (3.44)

and arrive at the following form,

∂

∂x

(
uj

∆uj

)
=

D

∆x2

(
−9

2
(1− cosβ) −5

2
i sinβ

15
2
i sinβ −1

2
(23 + 7cosβ)

)(
uj

∆uj

)
(3.45)

= MRDG-2x,p1 (β)

(
uj

∆uj

)
. (3.46)

The two eigenvalues of MRDG-2x,p1 are given by,

λ1,2 = −8 +
cosβ

2
±
√

118 + 112cosβ + (cosβ)2 − 6cos2β, (3.47)

and then Taylor-expanding the eigenvalues for small β reveals,

λ1 = −β2 +
β6

360
+O

(
β8
)
, (3.48)

λ2 = −15 +
β2

2
+
β4

24
− β6

240
+O

(
β8
)
. (3.49)

The left side of Figure 3.2 shows the two eigenvalues attempting to represent the

di�usion operator with the curve λ = −β2. By convention, the order of accuracy of

a scheme usually refers to the eigenvalues for small β, or low frequency data. The

contribution of high frequency data to the di�usion operator is less signi�cant (they

are also known as �noise�). The evolution error is determined from the good eigenvalue

λ1, such that λerror = |λ1 + β2|. We de�ne the order of accuracy of a scheme to be,

O.O.A. = λerror
β2 . In this case, the order of accuracy RDG-2x (p = 1) is four. Notice

the �rst eigenvalue approximates the curve λ = −β2 until β = π, and then the second

eigenvalue takes over. This observation leads to the discovery of important passive

49

elements of DG schemes. DG schemes inherently contain �switches� which turn on and

o� eigenvalues to maximize the accuracy in representing the solution. The switches

are not engineered, but possibly nature's way of dealing with sub-grid information in

an element. The study of these switches is done by analyzing the contribution from

each of the eigenvectors.

0 Π

2
Π

3 Π

2

2 Π

-14

-12

-10

-8

-6

-4

-2

0

Β

Λ
1,

2

0 Π

2
Π

3 Π

2

2 Π

0.0

0.5

1.0

Β

C
1
,C

2

C1

C2

Λ1

Λ2

Figure 3.2: Eigenvalues of RDG-2x (p = 1) are shown on the left. The switch func-
tions are shown on the right demonstrating the contribution of each eigen-
function for various β.

Consider the initial value of the solution to be consisted of Fourier modes,

U (x) = U0e
iβx
∆x , (3.50)

then the initial discretization in each element Ωj is given by

uj =

∫
Ωj
v0U dx∫

Ωj
v2

0 dx
=

2sin
(
β
2

)
β

U0, (3.51)

∆uj =

∫
Ωj
v1U dx∫

Ωj
v2

1 dx
= −6i

(
βcos

(
β
2

)
− 2sin

(
β
2

))
β2

U0. (3.52)

The general strategy of this analysis is to feed waves of di�erent Fourier modes β into

the RDG di�usion operator, and observe how well the RDG operator preserves the

50

initial waves. We conveniently normalized the eigenvectors by ūj,

r1 =

 2 sin(β2)
β

30i sin(β2) sin(β)

β
(

8 cos(β)−
√

cos2(β)+112 cos(β)−6 cos(2β)+118+7
)
 , (3.53)

r2 =

 2 sin(β2)
β

30i sin(β2) sin(β)

β
(

8 cos(β)+
√

cos2(β)+112 cos(β)−6 cos(2β)+118+7
)
 . (3.54)

We de�ne the corresponding local eigenfunctions of the eigenvectors as,

g1(ξ) = r1 (1) + r1 (2) (2ξ − 1)∆x

g2(ξ) = r2 (1) + r2 (2) (2ξ − 1)∆x
ξ ∈ Ωj, (3.55)

where the initial solution is composed of a linear combination of the eigenfunctions,

U (x) = C1g1 + C2g2. (3.56)

here the coe�cients C1,2 are the switches, or weighting coe�cients. If the weighting

coe�cient is zero, it acts like a switch turning o� the eigenvector, whereas if the

weighting coe�cient is unity, the switch turns on the eigenvector. Expanding the

initial solution in terms of Eqns 3.51 and 3.52,

U (x) = U0

(
2sin

(
β
2

)
β

(1)− 6i
(
βcos

(
β
2

)
− 2sin

(
β
2

))
β2

(2ξ − 1)

)
, (3.57)

we solve for C1,2 numerically for a wide range of β. The solutions of C1,2 are plotted

on the right side of Figure 3.2. The switches clearly show the �rst eigenvector is the

key player for low frequency waves (β < π) , while the second eigenvector takes care of

the higher frequency waves. This is also observed by focusing on speci�c wavelengths

of the eigenfunctions as shown in Figure 3.3-3.4 .

In order to correctly determine the magnitude of the initial projection error, we

focus on the switches for small β. The �gures show g1 to be the good eigenvector and

g2 to be the bad eigenvector; hence the contribution from g2 should be minimized.

Taylor expanding the switch coe�cients for small β reveals,

C1 = 1− β6

9450
+O

(
β8
)
, (3.58)

C2 =
β6

9450
+O

(
β8
)
. (3.59)

51

Β=
Π

5

0 2 4 6 8 10
-1.0

-0.5

0.0

0.5

1.0

x

Dx

g 1

0 2 4 6 8 10

-5

0

5

x

Dx

g 2

Β=
2 Π

3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.0

-0.5

0.0

0.5

1.0

x

Dx

g 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

x

Dx

g 2

Β=
99 Π

100

0.0 0.5 1.0 1.5 2.0

-5

0

5

x

Dx

g 1

0.0 0.5 1.0 1.5 2.0
-1.0

-0.5

0.0

0.5

1.0

x

Dx

g 2

Figure 3.3: Eigenfunctions of RDG-2x (p = 1) for β between π
5
and 99π

100
. Notice the

change in scaling of both x-axis and g-axis. The dashed line represents
the analytical wave.

52

Β=
4 Π

3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.0

-0.5

0.0

0.5

1.0

x

Dx

g 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.0

-0.5

0.0

0.5

1.0

x

Dx

g 2

Β=
5 Π

3

0 1 2 3 4 5 6
-1.0

-0.5

0.0

0.5

1.0

x

Dx

g 1

0 1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0

x

Dx

g 2

Figure 3.4: Eigenfunctions of RDG-2x (p = 1) for β for 4π
3
and 5π

3
. Notice the change

in scaling of both x-axis and g-axis. The dashed line represents the ana-
lytical wave.

53

Due to the way the eigenvectors are normalized, g2 contains the exact cell average,

but an incorrect gradient. The incorrect gradient of order 1
β
is then multiplied with

C2 of order β6, resulting in a initial error of β5. For RDG-2x (p = 1), the evolution

error of O (β4) dominates the initial projection error; the end result is a 4th-order

scheme.

3.3.2 RDG-2x Fourier analysis: piecewise-quadratic (p = 2)

Consider a numerical solution expanded in terms of a solution vector ~uj and the

piecewise-quadratic Legendre basis functions in local spatial coordinate,

~uj =

 uj

∆uj

∆2uj

 , (3.60)

uj = ūj + ∆uj (2ξ − 1) + ∆2uj
(
6ξ2 − 6ξ + 1

)
, ξ ∈ [0, 1] , (3.61)

Without repeating the details, the complete update scheme for solving Eqn. 3.32 is
given by,

∂

∂t
(~uj) =

D

∆x2
MRDG-2x,p2

 T−1 (~uj)
I (~uj)
T+1 (~uj)

 ,

MRDG-2x,p2 =


15
4

11
4

6
5

− 33
4 − 93

16 − 183
80

15
4

25
16 − 9

16

 ,
 −

15
2 0 − 12

5

0 − 171
8 0

− 15
2 0 − 201

8




15
4 − 11

4
6
5

33
4 − 93

16
183
80

15
4 − 25

16 − 9
16

 ,(3.62)
or in Fourier mode,

∂

∂t
(~uj) =

D

∆x2


15 cos(β)

2
− 15

2
−11

2
i sin(β) 12 cos(β)

5
− 12

5
33
2
i sin(β) −93 cos(β)

8
− 171

8
183
40
i sin(β)

15 cos(β)
2
− 15

2
−25

8
i sin(β) −9 cos(β)

8
− 201

8

 (~uj) . (3.63)

The three eigenvalues of MRDG-2x,p2 are shown on the left plot of Figure 3.5. Notice

λ1 and λ2 do not cross each other, but instead act in a manner of a relay race. λ1

represents the di�usion operator until β = π and passes it onto λ2.

A closer look at the good eigenvalue λ1 for small β in Figure 3.6 reveals that the

order of the scheme is eight. Again, the eigenvalue only tells us the evolution error,

we now look into the projection error.

Consider the same initial value distribution as p = 1 case with the addition of a

54

0 Π

2
Π

3 Π

2

2 Π

-30

-25

-20

-15

-10

-5

0

Β

Λ
1,

2,
3

0 Π

2
Π

3 Π

2

2 Π

0.0

0.2

0.4

0.6

0.8

1.0

Β

C
1
,C

2
,C

3

Λ3

Λ2

Λ1

C3

C2

C1

Figure 3.5: Eigenvalues of RDG-2x (p = 2), are shown on the left. The switch func-
tions are shown on the right demonstrating the contribution of each eigen-
function for various β.

π

8

π

4

3 π

8

π

2

5.46 x 10
-7

5.48 x 10
-7

5.5 x 10
-7

5.52 x 10
-7

5.54 x 10
-7

5.56 x 10
-7

β

β
2

+
λ
1

β
1
0

Figure 3.6: A closer look at the good eigenvalue of RDG-2x (p = 2), for small β. The
di�erence between the good eigenvalue and the exact di�usion operator
is of order β10, implying the evolution error of the scheme is 8th-order.

second gradient,

∆2uj =

∫
Ωj
v2U dx∫

Ωj
v2

2 dx
=

10
(
(β2 − 12) sin

(
β
2

)
+ 6β cos

(
β
2

))
β3

U0. (3.64)

The eigenvectors r1, r2, r3 are too complicated to be presented in analytic form. We

de�ne the corresponding local eigenfunctions of the eigenvectors as

g1(ξ) = r1 (1) v0 + r1 (2) v1∆x+ +r1 (2) v2∆x2

g2(ξ) = r2 (1) v0 + r2 (2) v1∆x+ +r2 (2) v2∆x2

g2(ξ) = r3 (1) v0 + r3 (2) v1∆x+ +r3 (2) v2∆x2

ξ ∈ Ωj, (3.65)

55

where the initial solution is composed of a linear combination of the eigenfunctions,

U (x) = C1g1 + C2g2 + C3g3. (3.66)

We �rst acquire r1, r2, r3 numerically for �xed β, and then solve for the switches

C1,2,3. The right plot of Figure 3.5 shows the switches in action for various values

of β. Figure 3.7 shows the structure of the three eigenfunctions for di�erent Fourier

modes.

The �gures show that g1 is the good eigenvector for small β. We look for the

contribution of the bad eigenvectors by determining the magnitude of C2 and C3.

Figure 3.8 shows that both C2 and C3 are of order β8. This is already puzzling: we

would not expect the scheme to be 8th-order accurate with such projection errors,

but numerical results suggest it is. In order to determine the full magnitude of the

projection error, we also need to know the error in the average �rst and second

gradients of g1 as a function of β. We have not pursued this; the question of the

projection error of RDG-2x for p ≥ 2 is a subject for furture research.

Fourier analysis paints an interesting picture of the inner workings of RDG-2x.

As we can observe already, the complexity of the analysis for piecewise-quadratic is

quite cumbersome; therefore, we proceed no further with higher p. Next, we perform

Fourier analysis for various penalty methods and compare them with the results for

the RDG-2x scheme.

3.3.3 The venerable (σ, µ)-family Fourier analysis for p = 1

This section takes us all the way back to 1982 when Arnold introduced the �rst

successful discretization of the DG di�usion operator with the interior penalty method

(IPM). Van Raalte (2005) put the penalty schemes into a two-parameter family, called

the (σ, µ)-family, but did not go beyond the traditional pairs of values. Van Leer [42]

was the �rst to explore the entire family for p = 1. Our immediate goal is to highlight

the di�erence between RDG-2x and the (σ, µ)-family through Fourier analysis. We

then explore the (σ, µ)-plane for worthy schemes which were previously undiscovered.

56

Β=
Π

5

0 2 4 6 8 10
-1.0

-0.5

0.0

0.5

1.0

x

Dx

g 1

0 2 4 6 8 10

-20

-10

0

10

20

x

Dx

g 2

0 2 4 6 8 10

-5

0

5

10

x

Dx

g 3

Β=
2 Π

3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.0

-0.5

0.0

0.5

1.0

x

Dx

g 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-2

-1

0

1

x

Dx

g 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-3

-2

-1

0

1

2

3

x

Dx

g 3

Β=
99 Π

100

0.0 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

x

Dx

g 1

0.0 0.5 1.0 1.5 2.0
-1.0

-0.5

0.0

0.5

1.0

x

Dx

g 2

0.0 0.5 1.0 1.5 2.0
-1.0

-0.5

0.0

0.5

1.0

x

Dx

g 3
Β=

4 Π

3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.0

-0.5

0.0

0.5

1.0

x

Dx

g 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.0

-0.5

0.0

0.5

1.0

x

Dx

g 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.0

-0.5

0.0

0.5

1.0

x

Dx

g 3

Β=
5 Π

3

0 1 2 3 4 5 6
-1.0

-0.5

0.0

0.5

1.0

x

Dx

g 1

0 1 2 3 4 5 6
-1.0

-0.5

0.0

0.5

1.0

x

Dx

g 2

0 1 2 3 4 5 6
-1.0

-0.5

0.0

0.5

1.0

x

Dx

g 3

Figure 3.7: Eigenfunctions of RDG-2x (p = 2) for β between π
5
and 5π

3
. Notice the

change in scaling of both x-axis and g-axis. The dashed line represents
the analytical wave.

57

0 0.1 0.2 0.3
-3. ´ 10-6

-2. ´ 10-6

-1. ´ 10-6

0

1. ´ 10-6

2. ´ 10-6

3. ´ 10-6

Β

C
1

Β
8

,C
2

Β
8

Figure 3.8: For small β, C1 and C2 are the weighting coe�cients of the bad eigen-
vectors. They scale with β8. However, no solid conclusion can be drawn
from this analysis due to the lack of analytical formulas.

The (σ, µ)-family for the linear di�usion equation is given by,∫
Ωj

vut dx = −D
(
〈ux〉 [v] |j+ 1

2
+ 〈ux〉 [v] |j− 1

2

)
−D

∫
Ωj

vxux dx

+ σD
(
〈vx〉 [u] |j+ 1

2
+ 〈vx〉 [u] |j− 1

2

)
− µD

∆x

(
[v][u] |j+ 1

2
−[v][u] |j− 1

2

)
, (3.67)

where < . > is the average operator across an interface, and [.] is the di�erence

operator across an interface from the right to the left. There is a distinct di�erence

between applying these operators to u and v. When applied to the solution, u is taken

globally such that the value on each side of the interface comes from the two cells

sharing the interface, providing the necessary coupling between cells. When applied

to the test function, v is taken locally such that the value outside the cell is always

zero. Term 1 on the RHS is needed to achieve consistency for p > 0. For example, if

p = 1, term 1 becomes,

D
(
< ux >|j+ 1

2
− < ux >|j− 1

2

)
. (3.68)

For smooth problems, this may appear to be a good approximation for the di�usion

�ux, but it ignores the jump in the solution. Picture two abutting elements with

di�erent piecewise-constant solution; term 1 always evaluate to zero because the av-

erage gradient is zero. But the physics of di�usion should induce a �ux from high to

low! Term 1 and term 2 together yield an inconsistent scheme. Term 3 is a penalty

term with coe�cient σ. With the choice of σ = −1, terms 1 to 3 form a symmetric

operator; however, stability is not guaranteed. Term 4 is the interior penalty term

58

introduced by Arnold, which seems necessary for both stability, and for p = 0 even

for consistency. In terms of (σ, µ), the four venerable members are the inconsistent

(0, 0), symmetric (−1, 0), stabilized symmetric/Arnold (−1, 1), and Baumman (1, 0)

schemes.

Consider a numerical solution expanded in terms of a solution vector ~uj and the

piecewise-linear Legendre basis functions in global spatial coordinate,

~uj =

(
uj

∆uj

)
, (3.69)

uj = ūj + ∆uj
(x− xj)

∆x
, x ∈

[
xj− 1

2
, xj+ 1

2

]
, (3.70)

The update equation for (σ, µ)-family (p = 1) in matrix form is

∂

∂t
(~uj) =

D

∆x2

(
[ML,σ−µ] [MC,σ−µ] [MR,σ−µ]

) T−1 (~uj)

I (~uj)

T+1 (~uj)

 ,

ML,σ−µ =

(
µ − (1−µ)

2

−6 (σ + µ) 3− 3 (σ + µ)

)
,

MC,σ−µ =

(
−2µ 0

0 −6− 6 (σ + µ)

)
,

MR,σ−µ =

(
µ (1−µ)

2

6 (σ + µ) 3− 3 (σ + µ)

)
. (3.71)

which is written into Fourier mode,

∂

∂t
(~uj) =

D

∆x2

(
−2µ (1− cosβ) i (1− µ) sinβ

12i (σ + µ) sinβ −6 (1 + σ + µ) + 6 (1− σ − µ) cosβ

)
(~uj)

=
D

∆x2
M(σ−µ) (β) (~uj) . (3.72)

Again we want the eigenvalues of M(σ−µ) to approximate the exact di�usion operator

59

in Eqn 3.37. The eigenvalues are found in the following form,

λ1 = Cλ1
0 + Cλ1

2 β2 + Cλ1
4 β4 + Cλ1

6 β6 +O
(
β8
)
, (3.73)

λ2 = Cλ2
0 + Cλ2

2 β2 + Cλ2
4 β4 + Cλ2

6 β6 +O
(
β8
)
. (3.74)

where all the coe�cients, Cλ
j = Cλ

j (σ, µ), are dependent on σ and µ. Notice there

are no odd-order exponents in the coe�cients of the eigenvalues. The coe�cients Cλ
j

are found with Mathematica, and they are too complicated to be revealed. Table 3.2

provides the order of accuracy of various (σ, µ)-schemes based on the �rst eigenvalue.

Recall from the previous section that the two eigenvalues play di�erent roles depend-

ing on the frequency; λ1 approximates the exact spatial operator in the low frequency

range, while λ2 approximates of the spatial operator in the high frequency range.

The (σ, µ) playing �eld

Our analysis of the (σ, µ)-family is summarized on the map of the σ − µ plane in

Figure 3.9. Six lines of importance are drawn, their equations are:

σ + µ = 0, (3.75)

σ + µ =
5

2
, (3.76)

σ − µ = −2, (3.77)

σ + µ = 1, (3.78)

µ = 1, (3.79)

µ = 0. (3.80)

The �rst line, σ + µ = 0, is the line of separation between stable and unstable

domains. The domain above the line is stable, while the region below is unstable. On

the line speci�cally, µ ≥ 0 is stable and µ < 0 is unstable. Stability comes from both

eigenvalues in Eqn 3.74 being negative, e.g. C
λ1,2

0 ≤ 0 only, and the other coe�cients

are ignored because they are multiplied with higher even powers of small β. Assuming

σ + µ 6= 0, the eigenvalues of M(σ−µ) are

λ1 = −β2 +O
(
β4
)
, (3.81)

λ2 = −12 (σ + µ) +O
(
β2
)
. (3.82)

λ1 is always negative; on the other hand, we must enforce the following condition to

60

σ+μ=0
inconsistent

σ+μ=5/2

gradient consistent

μ-σ
=2

λ1 4
th

-o
rd

erStable Domain

Unstable
Domain

E�cient
Domain

μ=1

gradient decoupling

undamped mode

μ=0

σ+μ=1

optimal e�ciency

BR2 (-1,3)

I (0,0) Baumann (1,0)S (-1,0)

RDG-1x (¼ , 9⁄4)

(-½ , 3⁄2)

SA (-1,1)

Figure 3.9: A intuitive map of the (σ, µ)-family. The symbols are de�ned as follow:
�S� is the symmetric scheme, �SA� is the symmetric/Arnold scheme, �I�
is the inconsistent scheme, �BR2� is Bassi-Rebay 2. The dark region
indicates instability, the light gray region represents e�cient and stable
schemes with the largest Von Neumann number (VNN), and the white
region designates the stable domain.

61

ensure λ2 is negative,

σ + µ > 0. (3.83)

In the case where σ + µ = 0, the eigenvalues of M(σ−µ) become

λ1 = −2µ (1− cosβ) , (3.84)

λ2 = −6 (1− cosβ) . (3.85)

It is clear from λ1 that the scheme will be stable if µ ≥ 0, and this is the reason why

schemes below µ = 0 on the line σ + µ = 0 are unstable.

The second line, σ − µ = −2, is locus of 4th-order schemes determined from

looking at the error of λ1, λerror = |λ1 + β2|. We de�ne the order of accuracy of a

scheme to be O.O.A. = λerror
β2 . First, we look for 2nd-order schemes on the σ − µ

plane by enforcing the following conditions,

Cλ1
0 = 0, Cλ1

2 = 1. (O.O.A.=2) (3.86)

The solution turns out to be the entire σ − µ plane. Next, we look for 4th-order

schemes by imposing one additional condition,

Cλ1
0 = 0, Cλ1

2 = 1, Cλ1
4 = 0, (O.O.A.=4) (3.87)

The solution is the locus of points along the line, µ−σ = 2 . If we delve even further

and look for a 6th-order scheme with an additional condition,

Cλ1
0 = 0, Cλ1

2 = 1, Cλ1
4 = 0, Cλ1

6 = 0, (O.O.A.=6) (3.88)

we obtain a unique solution, (σ, µ) =
(

1
9
, 19

9

)
. Imposing any further conditions on

Cλ1
j beyond 6th-order will generate an ill-conditioned system of equations. Although

it seems fantastic to have an in�nite number of potential 4th-order schemes (with one

being 6th-order), looking at just one eigenvalue does not paint the whole picture. The

conditions listed here are merely necessary but not su�cient conditions for 4th-order

or higher schemes. Very often the second eigenvalue introduces an initial projection

error of the solution that cannot be immediately damped, hence contaminating the

high-order evolution owing to the �rst eigenvalue. We perform a numerical study of

the projection error in a later section.

The third line, σ + µ = 5
2
, is the gradient-consistent line. We have shown that

62

all schemes on the (σ, µ)-plane are at least 2nd-order accurate in the cell average;

however, that does not guarantee the accuracy of the �rst gradient. One would expect

the gradient update to approximate the third-order di�usion equation,

∂

∂t

(
∂u

∂x

)
= D

∂3u

∂x3
; (3.89)

therefore, if ∆u is to remain an accurate approximation of the gradient of the solution,

it must satisfy
1

∆x

∂∆uj
∂t

= D

(
∂3u

∂x3

)
j

+O
(
∆x2

)
. (3.90)

The actual update equation, as seen from Eqn 3.71, is

1

∆x

∂∆uj
∂t

= D
{

6 (σ + µ)
(
T 1 − T−1

)
ūj
}

+ D
{

3
(
T 1 − 2I + T−1

)
− 3 (σ + µ)

(
T 1 + 2I + T−1

)}
∆uj (3.91)

Using the following identities,

T 1 − T−1 =
(
T 1 − I

)
+
(
I − T−1

)
, (3.92)

T 1 + 2I + T−1 =
(
T 1 + I

)
+
(
I + T−1

)
, (3.93)

and together with

[u]j+ 1
2

=
(
T 1 − I

)
ūj +

1

2

(
T 1 + I

)
∆uj, (3.94)

[u]j− 1
2

=
(
I − T−1

)
ūj +

1

2

(
I + T−1

)
∆uj. (3.95)

The gradient update equation simpli�es to

1

∆x

∂∆uj
∂t

= D
[
6 (σ + µ)

(
[u]j− 1

2
+ [u]j+ 1

2

)
+ 3

(
T 1 − 2I + T−1

)
∆uj

]
. (3.96)

Here we borrow from the theory of recovery to approximate the jump terms. From the

results of recovery in the piecewise-linear section in Eqn 3.8, we know the interface

jump of the solution scales with the third derivative. Let b3 ≈ ∂3u
∂x3 , a0 = ū, and

a1 = ∆u
2
, then the fourth component in Eqn 3.8 becomes,

1

∆x3
[u] = − 1

15

∂3u

∂x3
+O

(
∆x2

)
. (3.97)

63

The central-di�erence operator applied to the �rst gradient is also an approximation

to the third derivative,

1

∆x3

(
T 1 − 2I + T−1

)
∆uj =

∂3u

∂x3
+O

(
∆x2

)
. (3.98)

Inserting the two results above into the update equation yields

1

∆x

∂∆uj
∂t

= D

[
−4

5
(σ + µ) + 3

](
∂3u

∂x3

)
j

+O
(
∆x2

)
. (3.99)

Upon comparing this with Eqn 3.90 we conclude that gradient consistency requires

σ + µ = 5
2
.

The fourth line, σ + µ = 1, along with σ + µ = 0, bounds the region of maximum

speed. This region is stable and the maximum eigenvalue is always equal to -12. We

show this numerically later.

The �fth line, µ = 1, is the gradient-decoupling line. Inserting µ = 1 into Eqn 3.71

causes the upper right element of M(σ−µ) to become zero, which implies the update

of the cell average does not involve the �rst gradient (hence the name of this line).

Although the update of the gradient involves the cell average, eigenvector analysis

reveals a complete decoupling in the update of the two solution coe�cients.

The sixth line, µ = 0, is the line of undamped mode for β = π. Speci�cally, for

this mode, the update matrix in Eqn. 3.71 becomes

M(σ−µ) =

(
−4µ 0

0 −12

)
, (3.100)

where the �rst eigenvalue becomes zero for µ = 0. In the numerical-experiment

section later, we show this undamped mode causes convergence to a steady state to

slow down dramatically.

This completes our analysis of the �rst eigenvalue. Next, we look at the initial

projection error based on the analysis of eigenvectors. The eigenvector analysis is

similar to that of the previous section; the magnitude of the C2-switch is presented

in Table 3.2 in conjunction with the numerical results. We defer the discussion of the

results to a later section. Before we dive into the numerical details, let us �rst put

existing schemes and new schemes into perspective.

64

Interesting points on the (σ, µ)-map

We are now in a position to identify characteristics of some of the existing DG di�usion

schemes based on their position on the (σ, µ)-map in Figure 3.9. First, the inconsis-

tent (I) scheme, with coordinates (0, 0), is stable but inconsistent. The symmetric (S)

scheme at (−1, 0) is unstable without Arnold's penalty term. The symmetric/Arnold

(SA) scheme at (−1, 1) is stabilized by the penalty term. Although SA lies on the

4th-order evolution line, it is only a 2nd-order scheme. The newer Baumann scheme

at (1, 0) is stable without a penalty term and lies on the undamped-mode line. Notice

all four schemes are only 2nd-order accurate. These are the results of the �rst two

decades of research into di�usion for DG; at this point, it is not even clear when the

inclusion of the penalty term is necessary for stability.

We look at two other schemes that are derived from Eqn 3.30, and then cast

into penalty form as in Eqn 3.71. First, the modi�ed Bassi-Rebay 2 scheme based on

Legendre polynomials (see Chapter 1) is the point (−1, 3), which is 2nd-order accurate

and stable. In this version of BR2, the correction function shares the average value

at the interface, and both moments of the corresponding cell. Next, we introduce a

new recovery method, RDG-1xf̄ . In Eqn 3.30, the solution in the surface integral

is replaced with the recovered function f , and the solution in the volume integral is

replaced with an average recovered function f̄ ,∫
Ω

vut dx = D

∮
∂Ω

vfx d∂Ω−D
∫

Ω

vxf̄x dx. (3.101)

At the left and right interfaces of Ωj lie the recovered functions fj−1,j and fj,j+1,

respectively. The average recovered function is de�ned as,

f̄j =
fj−1,j + fj,j+1

2
. (3.102)

RDG-1xf̄ is identi�ed by the coordinates
(

1
4
, 9

4

)
in the(σ, µ)-family, which lies on

both the 4th-order accurate and gradient-consistent lines. Table 3.1 shows the results

of the numerical Fourier analysis of RDG-1xf̄ based on the linear di�usion equation.

Unfortunately the scheme is unstable for p ≥ 3. As the order of the recovered function

increases, the oscillation far away from the center of the interface also increases. This

leads to undesirable swings in the derivative. RDG-1xf̄ remains an experimental

scheme intended for comparison with existing penalty methods.

65

p Min (Re (λ)) Max (Re (λ)) Max (Im (λ)) O.O.A.

1 −30.0 0.0 0.0 4
2 −125.2 0.0 0.0 6
3 −423.4 26.1 0.1 N/A
4 −1280.2 404.8 0.0 N/A

Table 3.1: Numerical Fourier analysis of RDG-1xf̄ show the scheme to be unstable
for p ≥ 3 due to positive eigenvalues. RDG-1xf̄ is an experimental scheme.

Numerical results for various members of the (σ, µ)-family

This section introduce our famous guinea pig test case for determining the order of

accuracy of the di�usion operator, and this test case is used frequently throughout

this thesis. We introduce the linear di�usion equation with a source term,

ut = uxx + 4π2sin (2πx) , (3.103)

with the following boundary conditions on the domain x ∈ [0, 1],

u (0) = 1, (3.104)

u (1) = 0. (3.105)

The steady state solution is

u (x,∞) = 1− x+ sin (2πx) . (3.106)

We coupled the (σ, µ)-spatial discretization with a Runge-Kutta (RK) time-marching

scheme. Note the order of the RK scheme is irrelevant in this steady-state problem.

The maximum allowable time-step for RK schemes is determined by the Von Neumann

number D∆t
∆x2 (VNN). The initial solution is the same as the exact solution. We let

the scheme march and slowly deviate from the exact solution; the resulting di�erence

between the initial and �nal solutions is considered the error. The complete numerical

results for all the test cases are found in Appendix B. Table 3.2 provides a summary

of the order of accuracy of each scheme and the total CPU time required for the

numerical solution to converge with convergence criterion of ε < 1e − 16 on the

320-cell grid. We de�ne ε in the L∞-norm,

ε = Max
∣∣un+1
j − unj

∣∣ . (3.107)

66

Numerical results show that only the recovery scheme on the 4th-order-evolution

line is indeed 4th-order accurate in the L2-error norm. The rest of the schemes on

the line are only 3rd-order accurate. Another exception on the 4th-order line is the

symmetric/Arnold scheme which is only 2nd-order. Other schemes lying elsewhere

are 2nd-order. The schemes
(
− 99

100
, 101

100

)
and

(
−1

2
, 3

2

)
are on the thick-solid line on

the (σ, µ)-map, indicating the highest possible VNN number. Numerical experiment

con�rms these schemes are of 3rd-order and exhibit good convergence speed. They are

able to utilize the maximum VNN of 0.20, making them among the fastest schemes

for time-accurate problems. This maximum VNN is determined by �tting the largest

eigenvalue of −12 into the stability domain of a 3rd-order Runge-Kutta method. The

recovery method converges at least twice as fast in comparison to other members of the

(σ, µ)-family. We conclude that the Fourier analysis of just one eigenvalue provides

limited insight to the overall order of accuracy of a scheme. We also determine the

initial projection error by looking at the magnitude of C2 (the weighting coe�cient

of the bad eigenvector).

The initial projection error really comes from both the good and bad eigenvectors.

The cell average of the good eigenvector is exact due to our choice of normalization;

however, the average �rst gradient contains an error. We discovered the error in the

gradient of the good eigenvector matches the error in the bad eigenvector as regards

to magnitude. Hence it su�ces to just show the magnitude of contribution C2 of the

bad eigenvector in Table 3.2. It turns out the gradient in the bad eigenvector of all

(σ, µ)-schemes contains an O
(

1
β

)
error; this means the order of the projection error

is really equal to the order of C2 subtracted by one (since C2 is multiplied by the bad

gradient). The numerical experiments con�rm that the order of accuracy of a scheme

is determined by the minimal of the order of λ1 and order of C2 minus one.

67

Type (σ, µ, VNN) Minimum λ1 C2 u ∆u Time

λ Order Order Rate Rate (s)
RDG-1xf̄ 1

4 ,
9
4 , 0.08 −30.0 4 6 4 5 40.4

λ1 6th-order 1
9 ,

19
9 , 0.09 −26.6 6 4 3 3 105.9

BR2 −1, 3, 0.10 −24.0 2 4 2 3 213.0
Baumann 1, 0, 0.20 −12.0 2 4 2 3 1659.2

λ1 4th-order * − 1
2 ,

3
2 , 0.19 −12.6 4 4 3 3 73.0

λ1 4th-order * − 99
100 ,

101
100 , 0.20 −12.0 4 4 3 3 89.9

λ1 4th-order 0, 2, 0.10 −24.0 4 4 3 3 107.5
λ1 4th-order 1

6 ,
13
6 , 0.08 −28.0 4 4 3 3 108.4

λ1 4th-order 1, 3, 0.05 −48.0 4 4 3 3 213.1
Symmetric/Arnold −1, 1, 0.20 −12.0 2 N/A 2 1 106.8

µ = 1 0, 1, 0.20 −12.0 2 N/A 2 3 108.8
µ = 1 1, 1, 0.10 −24.0 2 N/A 2 3 207.3
µ = 1 2, 1, 0.06 −36.0 2 N/A 2 3 338.8

Gradient consistent − 3
7 ,

41
14 , 0.09 −30.0 2 8 2 3 249.3

Gradient consistent − 1
2 , 3, 0.08 −30.0 2 6 2 3 253.9

Gradient consistent 1, 3
2 , 0.08 −30.0 2 6 2 3 250.0

Random 1, 2, 0.06 −36.0 2 4 2 3 310.2
Random 0, 3, 0.06 −36.0 2 4 2 3 310.9
Random 3

2 , 1, 0.08 −30.0 2 4 2 3 270.2
Random −1, 2, 0.18 −13.3 2 4 2 3 125.7

Table 3.2: Stability range and order of error convergence of various schemes of the
(σ, µ)-family. The maximum stable Von Neumann number (VNN) is found
numerically to the nearest one-hundredths, and the CPU time for numeri-
cal convergence is given in seconds. The * symbol indicates schemes lying
on the thick solid line of the (σ, µ)-map.

68

3.3.4 The new (σ, µ, ω)-family for p = 1

In the previous section, we tacitly showed that any DG di�usion scheme can be

written in terms of jumps and averages at the interface. For the penalty method in

Eqn 3.71, the terms in the RHS only involve the jump in the solution [u], and the

average of the solution derivative < ux >. It turns out RDG-2x contains terms not

found in the traditional (σ, µ)-family; for p = 1 we see a new term involving [ux]. In

order to accommodate the new term, we introduce a new three-parameter family of

DG di�usion schemes called the (σ, µ, ω)-family. We add a new term with coe�cient

ω to the (σ, µ)-family,∫
Ωj

vut dx = −D
(
< ux > [v] |j+ 1

2
+ < ux > [v] |j− 1

2

)
−D

∫
Ωj

vxux dx

+ σD
(
< vx > [u] |j+ 1

2
+ < vx > [u] |j− 1

2

)
− µD

∆x

(
[v][u] |j+ 1

2
−[v][u] |j− 1

2

)
,

+ ωD∆x
(

[vx] [ux] |j+ 1
2

+ [vx] [ux] |j− 1
2

)
. (3.108)

The update scheme in matrix form is given by,

∂

∂t

(
ūj

∆uj

)
=

D

∆x2
M (T, σ, µ, ω)

(
ūj

∆uj

)
, (3.109)

M (T, σ, µ, ω) =(
µ (T 1 − 2T 0 + T−1) 1−µ

2
(T 1 − T−1)

6 (σ + µ) (T 1 − T−1) (3− 12ω) (T 1 − 2T 0 + T−1)− 3 (σ + µ) (T 1 + 2T 0 + T−1)

)
.

The choice of (σ, µ, ω) =
(
−1, 9

4
, 1

12

)
reproduces the RDG-2x, p = 1 scheme

which is 4th-order accurate. Clearly RDG-2x is a new scheme that is very di�erent

from the venerable (σ, µ)-family. One may play with the idea of exploring the whole

(σ, µ, ω)-space for interesting schemes, but it is clear from the previous section that

all but one scheme is of higher order. The beauty of RDG-2x is that it automatically

generates the correct coe�cients and bilinear terms for the best accuracy. In the next

section, we show RDG-2x introduces more and more bilinear terms as p increases.

69

3.3.5 Bilinear form of RDG

We have succeeded in writing the 1-D form of the RDG-2x scheme of arbitrary order

as an expansion in penalty-like terms. On a uniform grid it reads,

1

D

∫
Ωj

vut dx = −
(
< ux > [v] |j+ 1

2
+ < ux > [v] |j− 1

2

)
−
(
< u > [vx] |j+ 1

2
+ < u > [vx] |j− 1

2

)
−
∫

Ωj

vxux dx

+
R0

∆x

(
[u] [v] |j+ 1

2
+ [u] [v] |j− 1

2

)
+R1∆x

(
[ux] [vx] |j+ 1

2
+ [ux] [vx] |j− 1

2

)
+R2∆x

(
[uxx] [v] |j+ 1

2
+ [uxx] [v] |j− 1

2

)
+R3∆x3

(
[uxxx] [vx] |j+ 1

2
+ [uxxx] [vx] |j− 1

2

)
+R4∆x3

(
[uxxxx] [v] |j+ 1

2
+ [uxxxx] [v] |j− 1

2

)
+R5∆x5

(
[uxxxxx] [vx] |j+ 1

2
+ [uxxxxx] [vx] |j− 1

2

)
+R6∆x5

(
[uxxxxxx] [v] |j+ 1

2
+ [uxxxxxx] [v] |j− 1

2

)
+ ... (3.110)

It is seen that the i-th bilinear �penalty� term, with coe�cient Ri, contains the jump

in the i-th derivative of u and the jump in either v or vx, depending on whether the

index i is even or odd, respectively. For an RDG scheme based on a polynomial space

of degree p, the index running from 0 to p, the coe�cients Ri are given in Table 3.3

for schemes up to p = 5.

p µ = −R0 R1 R2 R3 R4 R5

0 1

1 9
4

1
12

2 15
4

3
64

− 3
80

3 175
32

1
32

− 5
192

− 1
6720

4 945
128

35
1536

− 5
256

− 5
86016

5
129024

5 4851
512

9
512

− 63
4096

− 1
36864

7
369640

1
9461760

Table 3.3: Coe�cients of the penalty-like terms in 1-D RDG-2x for p ≤ 5.

70

3.4 Numerical results for the �original� RDG-2x

This section is intended to be a guide to implementing RDG-2x with explicit time-

marching; one can jump over the implementation details and jump directly to the

numerical results section without loss of continuity. The implementation describes

everything from the interior scheme to recovery at the domain boundary. Next, we

show numerical results for linear advection, linear di�usion, and linear advection-

di�usion test cases. The advection operator is the simple upwind scheme, while the

di�usion operator is where RDG-2x is applied. The numerical tests are designed to

show the di�erence in order of accuracy between the advection and di�usion operators,

and �nally show how the two work together. For the linear di�usion test case, we

run both time-accurate and steady-state problems to reveal an interesting �in�nite-

accuracy� property of the RDG-2x scheme.

3.4.1 Recovery at the domain boundary

The concepts described here apply strictly to structured grids only. This section is

meant to illustrate the basic principle of enforcing the boundary-recovered function to

satisfy the given boundary conditions. Recovery at the boundary is slightly di�erent

from interior recovery; however, the concept remains the same in which the boundary-

recovered function must satisfy certain moments of the solution near the boundary.

For 1-D problems the boundary-recovered function must satisfy a function value or

a derivative at the boundary. We introduce two types of boundary-recovered func-

tions: the full boundary-recovered function fF , and the compact boundary-recovered

function fC .

Full boundary-recovered function

The full boundary-recovered function covers a larger domain, which includes the

domain boundary and the �rst two cells adjacent to the boundary (see left diagram

of Figure 3.10). The polynomial order of fF and interior recovered function are the

same. We enforce fF to satisfy the p + 1 moments of the �rst adjacent cell, and the

p moments of the next adjacent cell. The last condition is the Dirichlet or Neumann

condition. Let Ω1 be the �rst cell adjacent to the domain boundary, and Ω2 be the

71

next adjacent cell. The recovery equations for fF are∫
Ω1

vi fF dx =

∫
Ω1

vi u1 dx for i = 0, .., p, (3.111)∫
Ω2

vi fF dx =

∫
Ω2

vi u2 dx for i = 0, .., p− 1, (3.112)

fF = CDir or
dfF
dx

= CNeu, (3.113)

where CDir and CNeu are prescribed values. fF is expanded in terms of r-monomials

fF (r) =

2p+1∑
i=0

bir
i, (3.114)

where the bi coe�cients are the unknown, and r = 0 is the location of the domain

boundary. For the left boundary domain, we seek a fF that spans the union of Ω1

and Ω2 such that Ω1 belongs to r ∈ [0, 1] and Ω2 belongs to r ∈ [1, 2]. For the right

boundary domain, we seek a fF that spans the union of Ω1 and Ω2 such that Ω1

belongs to r ∈ [−1, 0] and Ω2 belongs to r ∈ [−2, −1]. With this speci�c coordinate

system, d
dξ

is equal to d
dr
.

The solution gradients based on the full boundary-recovered functions with Dirich-

let condition on the left domain boundary are given by

dfF
dr

(0) =
99

14
a0,Ω1 −

40

7
a1,Ω1 +

3

14
a0,Ω2 −

51

7
CDir, p = 1, (3.115)

dfF
dr

(0) =
951

58
a0,Ω1 −

363

29
a1,Ω1 +

336

29
a2,Ω1 −

45

58
a0,Ω2 +

13

29
a1,Ω2 −

453

29
CDir, p = 2,

(3.116)

dfF
dr

(0) =
10237

412
a0,Ω1 −

22735

824
a1,Ω1 +

14197

824
a2,Ω1 −

2112

103
a3,Ω1

+
875

412
a0,Ω2 −

1341

824
a1,Ω2 +

629

824
a2,Ω2 −

2778

103
CDir, p = 3. (3.117)

The function values based on the full boundary-recovered functions with Neumann

condition on the right domain boundary are given by,

fF (0) =
33

34
a0,Ω1 +

40

51
a1,Ω1 +

1

34
a0,Ω2 +

7

51
CNeu, p = 1, (3.118)

72

fF (0) =
317

302
a0,Ω1 +

121

151
a1,Ω1 +

112

151
a2,Ω1 −

15

302
a0,Ω2 −

13

453
a1,Ω2 +

29

453
CNeu, p = 2,

(3.119)

fF (0) =
10237

11112
a0,Ω1 +

22735

22224
a1,Ω1 +

14197

22224
a2,Ω1 +

352

463
a3,Ω1

+
875

1112
a0,Ω2 +

447

7408
a1,Ω2 +

629

22224
a2,Ω2 +

103

2778
CNeu, p = 3. (3.120)

Ω1 Ω2

u1

Ω1

u2 u1B.C.B.C.

fF fC

Figure 3.10: Stencils of full boundary-recovered function (left) and compact
boundary-recovered function (right). The thick solid line indicates the
domain boundary, and B.C. stands for boundary condition, which can
be Dirichlet or Neumann.

Compact boundary-recovered function

As the name implies the compact boundary-recovered function has a smaller domain

than its cousin. fC only involves the domain boundary and the �rst cell adjacent

to the boundary (see right diagram of Figure 3.10). The polynomial order of fC is

always p lower than the interior recovered function f ,

fC (r) =

p+1∑
i=0

bir
i, (3.121)

where the bi coe�cients are the unknown, and r = 0 is the location of the domain

boundary. We use the same coordinate system as above. Let Ω1 be the �rst cell

adjacent to the domain; the recovery equations for fC are∫
Ω1

vi fF dx =

∫
Ω1

vi u1 dx for i = 0, .., p, (3.122)

73

fC = CDir or
dfC
dx

= CNeu, (3.123)

The solution derivatives based on the compact boundary-recovered functions with

Dirichlet condition on the left domain boundary are given by

dfC
dr

(0) = 6a0,Ω1 − 4a1,Ω1 − 6CDir, p = 1, (3.124)

dfC
dr

(0) = 12a0,Ω1 − 10a1,Ω1 + 6a2,Ω1 − 12CDir, p = 2, (3.125)

dfC
dr

(0) = 20a0,Ω1 − 18a1,Ω1 + 14a2,Ω1 − 8a3,Ω1 − 20CDir, p = 3. (3.126)

The function values based on the compact boundary-recovered functions with

Neumann condition on the right domain boundary are given by

fC (0) = a0,Ω1 +
2

3
a1,Ω1 +

1

6
CNeu, p = 1, (3.127)

fC (0) = a0,Ω1 +
5

6
a1,Ω1 +

1

2
a2,Ω1 +

1

12
CNeu, p = 2, (3.128)

fC (0) = a0,Ω1 +
9

10
a1,Ω1 +

7

10
a2,Ω1 +

2

5
a3,Ω1 +

1

20
CNeu, p = 3. (3.129)

Although we demonstrate later that the compact version is vastly inferior on a

Cartesian grid, the compact version is de�nitely more practical on an unstructured

grid; this is left as a future research topic.

3.4.2 Linear di�usion

The numerical results for linear di�usion equation is divided into three sections:

steady-state problem with periodic boundary condition, time-accurate problem with

periodic boundary condition, and steady-state problem with mixed boundary con-

ditions. The steady-state problem with periodic boundary condition is designed to

illustrate the spatial accuracy of the RDG-2x interior scheme. The time-accurate

problem with periodic boundary condition reveals the combined accuracy of RDG-

2x with Runge-Kutta time-marching. Finally, the steady-state problem with mixed

74

boundary conditions shows the results of the implementation of boundary-recovered

functions. We like to make a note that the total CPU time for each scheme is not

released because the time scale is too short for any meaningful comparison.

Steady-state problem with periodic boundary condition

We solve the linear di�usion equation with a source term,

ut = uxx + 4π2sin (2πx) , (3.130)

on the domain x ∈ [0, 1]. The initial solution and �nal solution are given by

u (x, t) = sin (2πx) . (3.131)

The solution is marched forward with a Runge-Kutta scheme until the change in the

solution, measured in the L∞-norm, is less than ε ≤ 1e− 15. Note that the order of

the Runge-Kutta scheme is irrelevant in a steady-state problem. Table 3.4 provides

the results for p = 1, 2 and 3. The results for p = 1 con�rm the �ndings from our

earlier Fourier analysis. RDG-2x (p = 1) is 4th-order accurate; however, the gradient

is 5th-order accurate! For p ≥ 2, we observe a trend in which the lower p−1 moments

are of in�nite accuracy. We reserve this terminology to describe solution coe�cients

that are solved with near computer-zero error. During our earliest investigations

we repeated the calculations with a quadruple-precision code with computer zero

of 1 × 10−32, and the results con�rm the in�nite-accuracy behavior of the RDG-2x

scheme for p ≥ 2. This special property, encountered only for steady 1-D solutions

of the linear di�usion equation, is explained in [43]. The order of accuracy is better

revealed in the following time-accurate test case.

Time-accurate problem with periodic boundary conditions

We solve the linear di�usion equation,

ut = uxx, (3.132)

on the domain x ∈ [0, 1]. The solution for any t ≥ 0 is given by

u (x, t) = sin (2πx) e−4π2t. (3.133)

75

p
N
el
e

L
2
ū
er
r
o
r

L
2
4
u
er
r
o
r

L
2
4

2
u
er
r
o
r

L
2
4

3
u
er
r
o
r

R
at
e

1
10

2.
88
×

10
−

4
1.

35
×

10
−

4

20
1.

88
×

10
−

5
4.

37
×

10
−

6
3.

9
4.

9
40

1.
19
×

10
−

6
1.

38
×

10
−

7
3.

9
4.

9
80

7.
47
×

10
−

8
4.

31
×

10
−

9
3.

9
5.

0
16

0
4.

64
×

10
−

9
1.

34
×

10
−

1
0

4.
0

5.
0

32
0

1.
70
×

10
−

1
0

3.
01
×

10
−

1
2

4.
7

5.
4

2
4

9.
28
×

10
−

1
0

1.
13
×

10
−

4
3.

21
×

10
−

4

8
7.

32
×

10
−

1
3

9.
12
×

10
−

7
5.

97
×

10
−

6
*

6.
9

5.
7

16
5.

16
×

10
−

1
3

7.
16
×

10
−

9
9.

69
×

10
−

8
*

6.
9

5.
9

32
6.

09
×

10
−

1
3

5.
60
×

10
−

1
1

1.
53
×

10
−

9
*

7.
0

5.
9

64
6.

06
×

10
−

1
5

4.
37
×

10
−

1
3

2.
39
×

10
−

1
1

*
7.

0
6.

0
12

8
2.

69
×

10
−

1
5

3.
43
×

10
−

1
5

3.
74
×

10
−

1
3

*
6.

9
6.

0

3
4

8.
58
×

10
−

1
5

7.
11
×

10
−

1
5

1.
37
×

10
−

6
3.

17
×

10
−

6

8
2.

86
×

10
−

1
4

1.
13
×

10
−

1
4

7.
36
×

10
−

9
7.

42
×

10
−

9
*

*
7.

5
8.

7
12

6.
51
×

10
−

1
4

1.
71
×

10
−

1
4

3.
05
×

10
−

1
0

2.
00
×

10
−

1
0

*
*

7.
8

8.
9

16
4.

25
×

10
−

1
4

8.
34
×

10
−

1
5

3.
12
×

10
−

1
1

1.
52
×

10
−

1
1

*
*

7.
9

8.
9

20
6.

11
×

10
−

1
5

9.
83
×

10
−

1
6

5.
28
×

10
−

1
2

2.
06
×

10
−

1
2

*
*

7.
9

8.
9

24
1.

15
×

10
−

1
5

2.
28
×

10
−

1
6

1.
24
×

10
−

1
2

4.
00
×

10
−

1
3

*
*

7.
9

8.
9

T
ab
le
3.
4:
L

2
-e
rr
or

of
R
D
G
-2
x
sc
h
em

e
fo
r
st
ea
d
y
-s
ta
te

p
ro
b
le
m

w
it
h
p
er
io
d
ic
b
ou
n
d
ar
y
co
n
d
it
io
n
.
*
st
an
d
s
fo
r
u
n
d
et
er
m
in
ed

or
d
er

of
ac
cu
ra
cy
.
T
h
e
ex
tr
em

el
y
h
ig
h
ac
cu
ra
cy

of
th
e
ce
ll
av
er
ag
e
of

th
e
p

=
2
sc
h
em

e,
an
d
b
ot
h
ce
ll
av
er
ag
e
an
d

�
rs
t
gr
ad
ie
n
t
of

th
e
p

=
3
sc
h
em

e
ar
e
re
fe
rr
ed

to
as

�i
n
�
n
it
e
ac
cu
ra
cy
�.

76

The �nal time of the simulation is t = 0.011. The solution is marched forward in time

with a 3rd, 4th and 5th-order Runge-Kutta method (in simple notation: RK3, RK4,

and RK5) for RDG-2x schemes with p = 1, 2, and 3, respectively. The numerical

time step is determined from linear stability, or the Von Neumann number (VNN),

VNN =
∆t

∆x2
. (3.134)

Since ∆t scales with ∆x2, an n-th order of accuracy in time scheme will achieve 2n-

th order of accuracy in space. For example, if we naively use a 3rd-order RK with

RDG-2x (p = 2), the combined scheme only achieves the 6th-order of accuracy. A

4th-order RK must be used to unleash the full potential of RDG-2x (p = 2). The

VNN used for RK3, RK4, and RK5 are 0.15, 0.08, and 0.04, respectively. Table 3.5

provides the results for the time-accurate problem. Again, RDG-2x (p = 1) obtains

the 4th-order of accuracy; however this time around, RDG-2x (p = 2) and (p = 3)

achieve the 8th and 10th-order of accuracy, respectively. For odd p we observe that

the �rst gradient is of higher order of accuracy than the cell average. Now that the

interior RDG-2x scheme is validated; we look at the boundary schemes next.

Steady-state problem with mixed boundary condition

We solve the same problem as in the σ − µ section. Consider the linear di�usion

equation with a source term,

ut = uxx + 4π2sin (2πx) , (3.135)

on the domain x ∈ [0, 1]. The initial solution and �nal solution are given by

u (x, t) = sin (2πx)− x+ 1. (3.136)

We enforce a Dirichlet boundary condition on the left, and a Neumann boundary

condition on the right,

u(0) = 1, (3.137)

ux (1) = 2π − 1. (3.138)

1For accurate numerical results, the �nal simulation time must end exactly at t = 0.01. Even if
the �nal time is o� by 1e− 8, the order of accuracy of the scheme reduces to 2nd-order.

77

p
N
el
e

L
2
ū
er
r
o
r

L
2
4
u
er
r
o
r

L
2
4

2
u
er
r
o
r

L
2
4

3
u
er
r
o
r

R
at
e

1
10

7.
32
×

10
−

5
5.

40
×

10
−

5

20
4.

96
×

10
−

6
1.

73
×

10
−

6
3.

8
4.

9
40

3.
16
×

10
−

7
5.

46
×

10
−

8
3.

9
4.

9
80

1.
98
×

10
−

8
1.

71
×

10
−

9
4.

0
5.

0
16

0
1.

24
×

10
−

9
5.

34
×

10
−

1
1

4.
0

5.
0

32
0

7.
75
×

10
−

1
1

1.
67
×

10
−

1
2

4.
0

5.
0

2
4

1.
70
×

10
−

5
1.

18
×

10
−

4
1.

79
×

10
−

4

8
4.

05
×

10
−

8
8.

19
×

10
−

7
4.

05
×

10
−

6
8.

7
7.

1
5.

4
16

5.
44
×

10
−

1
1

4.
87
×

10
−

9
6.

57
×

10
−

8
9.

5
7.

3
5.

9
32

2.
09
×

10
−

1
3

3.
78
×

10
−

1
1

1.
03
×

10
−

9
8.

0
7.

0
6.

0
64

1.
49
×

10
−

1
4

2.
94
×

10
−

1
3

1.
61
×

10
−

1
1

3.
8

7.
0

6.
0

12
8

5.
61
×

10
−

1
4

9.
87
×

10
−

1
6

2.
52
×

10
−

1
3

−
1.

9
8.

2
6.

0

3
4

2.
91
×

10
−

8
1.

94
×

10
−

8
9.

68
×

10
−

7
2.

25
×

10
−

6

8
3.

30
×

10
−

1
1

1.
13
×

10
−

1
1

5.
04
×

10
−

9
5.

07
×

10
−

9
9.

7
10
.7

7.
5

8.
7

12
5.

90
×

10
−

1
3

1.
38
×

10
−

1
3

2.
07
×

10
−

1
0

1.
36
×

10
−

1
0

9.
9

10
.8

7.
8

8.
9

16
3.

35
×

10
−

1
4

5.
89
×

10
−

1
5

2.
11
×

10
−

1
1

1.
03
×

10
−

1
1

9.
9

10
.9

7.
9

8.
9

20
3.

74
×

10
−

1
5

5.
85
×

10
−

1
6

3.
57
×

10
−

1
2

1.
39
×

10
−

1
2

9.
8

10
.3

7.
9

8.
9

24
8.

10
×

10
−

1
6

1.
84
×

10
−

1
6

8.
34
×

10
−

1
3

2.
70
×

10
−

1
3

8.
3

6.
3

7.
9

8.
9

T
ab
le
3.
5:
L

2
-e
rr
or

of
R
D
G
-2
x
sc
h
em

e
fo
r
ti
m
e-
ac
cu
ra
te

p
ro
b
le
m

w
it
h
p
er
io
d
ic
b
ou
n
d
ar
y
co
n
d
it
io
n
.

78

Table 3.6 and 3.7 show the results for RDG-2x with full and compact boundary-

recovered function, respectively. The �rst major di�erence between the two is the

VNN. We use RK3, RK4, and RK5 for p = 1, 2, and 3, respectively. RDG-2x using

full boundary-recovered function is stable using the maximum VNN of 0.08, 0.02,

and 0.01 for p = 1, 2, and 3, respectively, while the compact boundary version uses a

VNN of 0.12, 0.04, and 0.015 for p = 1, 2, and 3, respectively. Although the VNN is

not important in a steady-state problem, the results imply that the compact version

is faster than the full version for time-accurate problems, albeit at a signi�cant loss

in accuracy of half an order or more. Using the full boundary-recovered function

brings back the high order of accuracy as found in the previous experiments. It is

interesting to see that both compact and full boundary-recovered schemes display the

in�nite-accuracy phenomenon for both p = 2 and 3.

Important observations from numerical experiments

We summarize the important �ndings from the numerical experiments on the linear

di�usion equation. RDG-2x is an extremely accurate spatial discretization of the

di�usion operator; the order of accuracy (at least in the cell average) is 3p+1 for odd

p and 3p+2 for even p. A matching high-order time marching scheme must be used to

employ the full potential of RDG-2x. For recovery next to the domain boundary, we

demonstrated two methods, full boundary-recovered function and compact boundary-

recovered function. The full version is more expensive, but compatible with the

interior scheme. The compact version is cheaper, but fairly inaccurate. High-order

schemes are extremely delicate; every component from the interior scheme, boundary

scheme, to the time-marching scheme must be working at the same level of precision

to achieve high order of accuracy.

3.4.3 Linear advection-di�usion

The linear advection-di�usion equation contains two types of physics which require

completely di�erent numerical approaches. Our main goal is to use RDG-2x for the

di�usion component and see how well it works with the advection counterpart in

terms of accuracy and stability. The linear advection component is discretized with

an upwind scheme; hence, we call this scheme upwind-RDG-2x. We solve the linear

advection of the form

ut + aux = µuxx, (3.139)

79

p
N
el
e

L
2
ū
er
r
o
r

L
2
4
u
er
r
o
r

L
2
4

2
u
er
r
o
r

L
2
4

3
u
er
r
o
r

R
at
e

1
10

2.
83
×

10
−

4
1.

67
×

10
−

4

20
1.

88
×

10
−

5
4.

93
×

10
−

6
3.

9
5.

0
40

1.
19
×

10
−

6
1.

47
×

10
−

7
3.

9
5.

0
80

7.
46
×

10
−

8
4.

46
×

10
−

9
4.

0
5.

0
16

0
4.

45
×

10
−

9
1.

37
×

10
−

1
0

4.
0

5.
0

32
0

6.
42
×

10
−

1
1

2.
43
×

10
−

1
2

6.
1

5.
8

2
4

9.
97
×

10
−

1
0

9.
09
×

10
−

5
3.

71
×

10
−

4

8
8.

82
×

10
−

1
2

7.
87
×

10
−

7
6.

10
×

10
−

6
6.

9
6.

8
5.

9
16

7.
76
×

10
−

1
2

6.
65
×

10
−

9
9.

71
×

10
−

8
0.

5
6.

8
5.

9
32

8.
22
×

10
−

1
3

5.
39
×

10
−

1
1

1.
53
×

10
−

9
2.

9
6.

9
5.

9
64

4.
39
×

10
−

1
5

4.
29
×

10
−

1
3

2.
39
×

10
−

1
1

7.
6

6.
9

6.
0

12
8

1.
25
×

10
−

1
6

3.
46
×

10
−

1
5

3.
74
×

10
−

1
3

6.
0

6.
9

6.
0

3
4

5.
01
×

10
−

1
4

9.
87
×

10
−

1
5

1.
09
×

10
−

6
3.

93
×

10
−

6

8
1.

50
×

10
−

1
3

1.
50
×

10
−

1
4

7.
20
×

10
−

9
8.

45
×

10
−

9
*

*
7.

2
8.

8
12

4.
87
×

10
−

1
4

9.
66
×

10
−

1
5

3.
03
×

10
−

1
0

2.
19
×

10
−

1
0

*
*

7.
8

9.
0

16
4.

64
×

10
−

1
4

8.
04
×

10
−

1
5

3.
11
×

10
−

1
1

1.
63
×

10
−

1
1

*
*

7.
9

9.
0

20
8.

21
×

10
−

1
5

1.
53
×

10
−

1
5

5.
28
×

10
−

1
2

2.
18
×

10
−

1
2

*
*

7.
9

9.
0

24
1.

20
×

10
−

1
5

3.
22
×

10
−

1
6

1.
23
×

10
−

1
2

4.
20
×

10
−

1
3

*
*

7.
9

9.
0

T
ab
le
3.
6:
L

2
-e
rr
or

of
R
D
G
-2
x
sc
h
em

e
fo
r
st
ea
d
y
-s
ta
te

p
ro
b
le
m

w
it
h
m
ix
ed

b
ou
n
d
ar
y
co
n
d
it
io
n
u
si
n
g
fu
ll
b
ou
n
d
ar
y
-r
ec
ov
er
ed

fu
n
ct
io
n
.

80

p
N
el
e

L
2
ū
er
r
o
r

L
2
4
u
er
r
o
r

L
2
4

2
u
er
r
o
r

L
2
4

3
u
er
r
o
r

R
at
e

1
10

4.
62
×

10
−

4
7.

98
×

10
−

4

20
4.

17
×

10
−

5
6.

58
×

10
−

5
3.

4
3.

6
40

3.
61
×

10
−

6
5.

71
×

10
−

6
3.

5
3.

5
80

3.
13
×

10
−

7
5.

02
×

10
−

7
3.

5
3.

5
16

0
2.

73
×

10
−

8
4.

43
×

10
−

8
3.

5
3.

5
32

0
2.

39
×

10
−

9
3.

92
×

10
−

9
3.

5
3.

5

2
4

9.
98
×

10
−

1
0

6.
06
×

10
−

4
8.

88
×

10
−

4

8
9.

72
×

10
−

1
3

1.
24
×

10
−

5
2.

37
×

10
−

5
*

5.
6

5.
2

16
2.

88
×

10
−

1
3

2.
67
×

10
−

7
5.

44
×

10
−

7
*

5.
5

5.
4

32
1.

26
×

10
−

1
2

5.
85
×

10
−

9
1.

21
×

10
−

8
*

5.
5

5.
4

64
2.

63
×

10
−

1
3

1.
29
×

10
−

1
0

2.
67
×

10
−

1
0

*
5.

5
5.

5
12

8
1.

53
×

10
−

1
4

2.
85
×

10
−

1
2

5.
88
×

10
−

1
2

*
5.

5
5.

5

3
4

4.
12
×

10
−

1
4

8.
02
×

10
−

1
5

5.
39
×

10
−

5
1.

26
×

10
−

4

8
1.

30
×

10
−

1
3

1.
29
×

10
−

1
4

1.
40
×

10
−

6
3.

39
×

10
−

6
*

*
5.

2
5.

2
12

2.
92
×

10
−

1
3

1.
93
×

10
−

1
4

1.
55
×

10
−

7
3.

77
×

10
−

7
*

*
5.

4
5.

4
16

4.
98
×

10
−

1
3

2.
44
×

10
−

1
4

3.
23
×

10
−

8
7.

83
×

10
−

8
*

*
5.

4
5.

4
20

1.
44
×

10
−

1
3

1.
17
×

10
−

1
4

9.
50
×

10
−

9
2.

31
×

10
−

8
*

*
5.

4
5.

4
24

1.
13
×

10
−

1
3

1.
08
×

10
−

1
4

3.
49
×

10
−

9
8.

49
×

10
−

9
*

*
5.

4
5.

4

T
ab
le
3.
7:
L

2
-e
rr
or

of
R
D
G
-2
x
sc
h
em

e
fo
r
st
ea
d
y
-s
ta
te

p
ro
b
le
m

w
it
h
m
ix
ed

b
ou
n
d
ar
y
co
n
d
it
io
n
u
si
n
g
co
m
p
ac
t
b
ou
n
d
ar
y
-

re
co
ve
re
d
fu
n
ct
io
n
.

81

where a is the constant advection speed and µ is the constant di�usion coe�cient.

The update equation is obtained by testing the equation in both space and time, after

suitable integration by parts,

∫∫
vut dxdt = −a

∫∫
vux dxdt+ µ

∫∫
vuxx dxdt

= −a
∫ (∮

vu dx−
∫
vxu dx

)
dt

+µ

∫ (∮
(vux − vxu) dx+

∫
vxxu dx

)
dt. (3.140)

We discretize by applying the equation to each element Ωj and replace the global

coordinate with a local coordinate,

∆x

∫
Ωj

vutdξdt = −a∆t

∫ (
[vu] |10 −

∫
Ωj

vξu dξ

)
dτ︸ ︷︷ ︸

advection

+
µ∆t

∆x

∫ (
[vuξ − vξu] |10 +

∫
Ωj

vξξu dξ

)
dτ︸ ︷︷ ︸

di�usion

. (3.141)

For the advection component, the solution in the surface integral is replaced with the

upwind �ux û. The upwind �ux for a > 0 is given by

[vu] |10≈ v (1) ûj+ 1
2
− v (0) ûj− 1

2
, (3.142)

ûj+ 1
2

= uj (ξ = 1) , (3.143)

ûj− 1
2

= uj−1 (ξ = 1) . (3.144)

Without going through the details, the �nal update matrices for p = 1 is given by,

(~uj)t =

(
uj

∆uj

)
t

=
(

ML,p1 MC,p1 MR,p1

) ~uj−1

~uj

~uj+1

 , (3.145)

ML,p1 =

[
9r
4

+ ν 5r
4

+ ν

−15r
4
− 3ν −7r

4
− 3ν

]
, (3.146)

82

MC,p1 =

[
−9r

2
− ν −ν

3ν −23r
2
− 3ν

]
, (3.147)

MR,p1 =

[
9r
4
−5r

4
15r
4
−7r

4

]
, (3.148)

and for p = 2,

(~uj)t =

 uj

∆uj

∆2uj


t

=
(

ML,p2 MC,p2 MR,p2

) ~uj−1

~uj

~uj+1

 , (3.149)

ML,p2 =


15r
4

+ ν 11r
4

+ ν 6r
5

+ ν

3
(
−11r

4
− ν
)

3
(
−31r

16
− ν
)

3
(
−61r

80
− ν
)

5
(

3r
4

+ ν
)

5
(

5r
16

+ ν
)

5
(
− 9r

80
+ ν
)
 , (3.150)

MC,p2 =

 −15r
2
− ν −ν −12r

5
− ν

3ν 3
(
−57r

8
− ν
)

−3ν

5
(
−3r

2
− ν
)

5ν 5
(
−201r

40
− ν
)
 , (3.151)

MR,p2 =


15r
4
−11r

4
6r
5

33r
4
−93r

16
183r
80

15r
4
−25r

16
− 9r

16

 , (3.152)

where r = µ∆t
∆x2 , and ν = a∆t

∆x
. Here we use r as a short hand notation for VNN, and

ν for CFL. The stability condition is given by

∆t ≤ 1
1

νmax
a

∆x
+ 1

rmax

µ
∆x2

, (3.153)

where the maximum VNN and maximum CFL for p = 1 using 3rd-order Runge-Kutta

are

νmax = 0.4, rmax = 1/6, (3.154)

83

and for p = 2 using 4th-order Runge-Kutta are

νmax = 0.27, rmax = 1/10. (3.155)

These maximum values are obtained numerically via Fourier analysis of the update

matrices presented above.

Numerical results for linear advection

Before we delve into the results of the combine advection and di�usion operators, we

quickly review the numerical results of the DG upwind operator. We simply obtain

the DG upwind scheme by setting µ = 0. Consider the following equation to be

solved,

ut = −aux, (3.156)

where a = 1 on the domain x ∈ [0, 1]. We use a periodic boundary condition and the

following solution,

u (x, t) = sin (2π (x− at)) . (3.157)

The �nal time2 of the simulation is t = 100. The CFL numbers for p = 1 and 2 follow

from the previous section, while the CFL number for p = 3 is 0.16 with RK5. The

results are presented in Appendix B. The order of error convergence in the L2-norm is

(3, 2) for
(
ū, ∆u

)
with p = 1, (5, 4, 3) for

(
ū, ∆u, ∆2u

)
with p = 2, and (7, 8, 5, 4)

for
(
ū, ∆u, ∆2u, ∆3u

)
with p = 3.

Numerical results for linear advection-di�usion

We solve a simple time-dependent linear advection-di�usion problem with the follow-

ing solution,

u (t) = e−k
2µtsin k (x− at) ; x ∈ [0, 2π] . (3.158)

Observe the solution becomes zero as t → ∞. Let t = 0 and k = 1 be the initial

condition, and let t = 100 be the �nal time. For a �xed µ = 0.01, we varied the global

Péclet number,

PeG =
al

µ
, (3.159)

2The time must be large enough for the error to develop fully; this is essential to determine the
correct order of accuracy of the scheme.

84

where l is the length of the domain. The numerical results for p = 1 and p = 2 are

given in the two info-graphics below. The numbers represent the order of accuracy

of the scheme based on cell re�nement measured in the horizontal direction. The

diagonal lines represent lines of constant local Péclet number,

PeL =
a∆x

µ
. (3.160)

The info-graphic for p = 1 (see Figure 3.11) shows that the order of accuracy scales

with the local Péclet number instead of the global Péclet number. For di�usion-

dominated problems, the order of accuracy approaches 4, while for advection-dominated

problems, the order of accuracy approaches 3. A similar pattern is not observed for

p = 2 (see Figure 3.12) since the error levels on the �ner grids have reached computer

zero.

0.02 0.04 0.08 0.16 0.32
10

−5

10
0

10
5

∆x

P
e G

3.94444

3.94444

3.94444

3.94444

3.93.9444

3.73.83.944

3.33.53.63.83.9

2.733.23.33.4

0.82.5333

Figure 3.11: Upwind-RDG-2x (p = 1) Péclet number study. Numbers indicate the
order of accuracy in the L2-norm. The left axis indicates the value
of PeG, while the dotted lines indicate contours of constant PeL. We
observe the order of accuracy of upwind-RDG-2x decreases in the upper
right corner where the advection physics dominate, re�ecting the order
of accuracy of the DG upwind scheme only.

3.5 RDG schemes for variable di�usion coe�cient

We move away from the simple constant di�usion coe�cient to study a more complex

di�usion phenomenon simulated with a variable di�usion coe�cient. The variable

85

0.02 0.04 0.08 0.16 0.32
10

−5

10
0

10
5

∆x

P
e G

7.880.43-7

7.78.34-6.9-2

7.67.9-0.3-13.4

6.57.57.6-7.83.5

773.8-1.2-3

776.50.7-3

5.66.16.56.61.4

4.94.94.95.15.6

4.84.74.44.24.3

Figure 3.12: Upwind-RDG-2x (p = 2) Péclet number study. Numbers indicate the or-
der of accuracy in the L2-norm. Unfortunately, the rates are not reliable
because the di�usion scheme is too accurate and the errors are at the
computer-zero level. We are still able to observe that near the top right
region where the advection physics dominate, the rate is dominated by
the upwind scheme.

di�usion coe�cient introduces new complexity which requires a change of game play.

This complexity is split into two classes: linear variable and nonlinear variable dif-

fusion coe�cients. The di�erence in the two classes is meant to show that while

some simple schemes may work for a linearly varying coe�cient (the simpler case),

they may not work for a nonlinearly varying coe�cient. For readers interested in

the ultimate 1-D di�usion scheme that works for both linear and nonlinear di�usion

coe�cients, please jump directly to the RDG-1x+ section.

The invention of RDG-2x by Van Leer in 2005 came as a blessing in which a

simple and elegant DG di�usion method �nally became available. As we have shown

already, RDG-2x performance in the linear di�usion equation is unparalleled; how-

ever, as we deal with more complicated di�usion coe�cients (as found in Navier-Stokes

equations), the method must also evolve to handle the increasing complexity of the

physical system. In 2008, we departed from the twice-integrated-by-parts formula-

tion and focused on the once-integrated form. We already knew that RDG-1x-Naive

performs horribly and hence must be improved. In this regard, a new class of schemes

called RDG-1x-Smart arrived at the scene. The smart family recreates a more ac-

curate solution within the cell. One of the �rst members was the RDG-1xf̄ , which

86

worked well for p = 1 and 2; unfortunately, the scheme becomes unstable for p ≥ 3.

RDG-1xf̄ su�ers from high-order oscillations at points far away from the center of

the Taylor expansion. As a result the interior solution derivative is completely ruined

by the oscillations. From the ashes of RDG-1xf̄ , RDG-1x+ is born in which a new

solution enhancement technique is used to minimize oscillations within the cell.

The following section presents the schemes RDG-2x, RDG-1x-Naive, and RDG-

1xf̄ for a general variable di�usion equation. The concept of applying integration

by parts twice to the di�usion operator is not commonly used by the rest of the

industry. Admittedly, integration by part twice cannot be applied if the primitive of

the di�usion coe�cient (see Section 2.5) does not exist in terms of elementry functions

(see Section 3.5.4), or not at all (see Section 5.4) as in the system case. The variable

scalar di�usion equation is given as,

ut = (µ (u)ux)x , (3.161)

where µ = µ(u) is the variable di�usion coe�cient given as a function of the solution

u. We get the weak formulation by testing the equation with a test function v in

element Ωj, ∫
Ωj

vut dt =

∫
Ωj

v (µ (u)ux)x dx =

∫
Ωj

v (Mx)x dx, (3.162)

where Mx = Mx (u) may or may not be an analytically integrable function of x. The

integrability of Mx dictates the number of times integration by parts can be taken.

Applying integration by parts once,∫
Ωj

vut dt = [vMx]−
∫

Ωj

vxMx dx, (3.163)

and ifMx is integrable (i.e.
∫
Mx dx = M), integration by parts one more time results

in ∫
Ωj

vut dt = [vMx]− [vxM] +

∫
Ωj

vxxM dx. (3.164)

Eqn 3.163 and 3.164 are discretized by various RDG contenders. Two schemes in the

once-integrated by parts form are called

∫
Ωj

vut dt =
[
vM̃x

]
−
∫

Ωj

vxMx dx [RDG-1x-Naive] , (3.165)∫
Ωj

vut dt =
[
vM̃x

]
−
∫

Ωj

vxM̂x dx [RDG-1x-Smart] , (3.166)

87

where the surface integral terms are now replaced with the recovered function,

Mx (u) ≈ M̃x (f) , (3.167)

and M̂x is a special function designed to give the volume integral a better accuracy.

The juxtaposition of the terms �naive� and �smart� is meant to emphasize the im-

provement that the family of RDG-1x-Smart schemes brings. The di�erence between

members of the RDG-1x-Smart family lies in the construction of M̂x; currently there

are two ways to construct M̂x: the aforementioned RDG-1xf̄ and the new RDG-1x+.

RDG-1x+ uses the recovery concept for both di�usion �ux and solution enhancement

(see section below). As for now we brie�y review the RDG-1xf̄ scheme. The special

term M̂x appearing in the volume integral of RDG-1xf̄ is de�ned to be the average

of the recovered functions on the left and right interfaces of Ωj,

M̂x,j =
1

2

(
M̃x (fj,j+1) + M̃x (fj−1,j)

)
. (3.168)

Notice fj,j+1 and fj−1,j have di�erent coordinate system; hence, once must be careful

when converting the recovery coordinates into the local coordinate of Ωj.

The classic twice integrated by parts scheme from the previous sections is given

by ∫
Ωj

vut dt =
[
vM̃x

]
−
[
vxM̃

]
+

∫
Ωj

vxxM dx [RDG-2x] , (3.169)

and we apply a backward integration by parts on the integral in the RHS of RDG-2x

to arrive at the RDG-3x form,∫
Ωj

vut dt =
[
vM̃x

]
−
[
vxM̃ − vxM

]
−
∫

Ωj

vxMx dx [RDG-3x] . (3.170)

Notice RDG-2x and RDG-3x are mathematically equivalent; however, RDG-3x pro-

vides more creative space to deal with a non-integrable Mx that will be explained

later.

3.5.1 RDG-1x+ with recovery concept for solution enhance-

ment

Recovery was �rst conceptualized for DG di�usion; however, there is a much broader

application of the recovered function. Solution enhancement is the operation to in-

crease the polynomial order of a solution based on information from the surrounding

88

cells. Very often we need to enhance the polynomial order of the solution to compen-

sate for the reduction in polynomial order when a derivative of the solution is taken.

The reduction in polynomial order has a negative e�ect on accuracy and stability as

seen in RDG-1x-Naive. Another reason for solution enhancement is the presence of

nonlinearity in the equations.

Park at el. [29] �rst experimented with solution enhancement over a large stencil

in the cell-centered RDG (cRDG) scheme. When dealing with a large multi-scale

system, the most resource-consuming part of the scheme is the implicit time-marching

algorithm. The number of equations to solve is directly proportional to the polynomial

order of the scheme; for this reason, cRDG seeks to increase the order of the scheme

without increasing the number of solution coe�cients. cRDG recovers a new interior

solution that satis�es all moments of neighboring cells. This is very similar to the

reconstruction process in a �nite-volume code, except cRDG works for p ≥ 0.

The new RDG schemes make use of binary recovery for solution enhancement.

Our approach results in a smaller system of equations and e�ciently recycles the

recovered function: the recovered function is used for both di�usion �ux and solu-

tion enhancement. Consider a rough comparison of the numerical work required for

solution enhancement between RDG and cRDG on a Cartesian grid with a tensor-

product basis. cRDG solves a system of NcRDG,d (p+ 1)d equations, where NcRDG is

the number of cells in the cRDG stencil and d is the physical dimension. RDG solves

2 (p+ 1)d equations per binary recovery for NRDG,d interfaces per cell, followed by a

solution enhancement step with (p+ 1)2 + NRDG,d(p + 1) equations. Assuming n+n2

2

�oating point operations (�ops) to invert an (n × n) matrix via LU-decomposition,

Table 1 shows the approximate amount of computational work required for solution

enhancement by RDG and cRDG. Clearly, cRDG becomes prohibitively expensive

for higher polynomial order and physical dimension.

1-D 2-D 3-D
p RDG cRDG p RDG cRDG p RDG cRDG
1 30 21 1 72 666 1 800 23436
2 57 45 2 231 3321 2 6291 266085
3 93 78 3 528 10440 3 29392 1.49× 106

4 138 120 4 1584 25425 4 100700 5.69× 106

Table 3.8: Flops comparison between RDG and cRDG for solution enhancement on a
Cartesian grid, where (NRDG, NcRDG) is (2, 3), (5, 9), and (6, 27) for 1-D,
2-D, and 3-D, respectively. RDG in 2-D and 3-D is more than an order of
magnitude cheaper than cRDG.

89

Although the di�erence in computational work required between RDG and cRDG

is signi�cant, cRDG's enhanced solution contains the complete set of cross-derivatives

which are useful if the PDE requires them. RDG's enhanced solution does not span

a complete higher-order polynomial space (see Figure 3.13); however, the Navier-

Stokes equations after integration by parts once no longer require the knowledge of the

cross-derivatives in the discretized solution. Ideally, the level of solution enhancement

should be optimized for the PDE being solved.

The recovery function proves to be a valuable tool; it is used for both di�usion

�ux and solution enhancement. Interestingly, the recovery concept represents a new

green movement in CFD, in which both subroutines and results are reused to obtain

a high order of accuracy. Starting o� with the discretized solution u in each cell, a

binary recovery code is �rst applied to produce all recovered functions f along the

cell interfaces. A unifying code is then applied to acquire an enhanced solution û in

each cell (see Figure 3.13). We can apply the same binary recovery code again to get

an enhanced recovery function f̂ , and follow it up with the same solution enhance-

ment code to get a doubly enhanced solution, ˆ̂u. Furthermore, f̂ can be used as an

enhanced di�usion �ux. Solution enhancement comes at the expense of a growing

stencil in which each binary interaction brings in information from cells further away;

therefore, the optimal level of enhancement must be chosen for each PDE to ensure

the allowable time step is maximized. The process can be repeated until the desired

level of enhancement dictated by the PDE's is achieved. The following sections de-

tail two types of solution enhancement necessary for approximating the Navier-Stokes

viscous terms: the enhancement of the discretized solution and then the enhancement

of the recovered function.

u u

uu

u u

uu

^ ^

^ ^

f f f

f f f

f f

f f

f f

f = BR(u) u = SE(u,f)
^

Figure 3.13: Recovery concept is used for both di�usion �ux and solution enhance-
ment. BR stands for binary recovery; SE stands for solution enhance-
ment. The cycle of BR followed by SE can be repeated over and over
again until the desired level of enhancement is achieved.

90

Interior-solution enhancement

We will not repeat the procedure to acquire f via binary recovery and focus on the

solution-enhancement step. The enhanced solution û replaces the original solution u

in the volume integral,∫
Ωi

(vk)i ui,t dΩ =

∮
∂Ωi

(vk)i F (fj,∇fj) · n̂ d∂Ω

−
∫

Ωi

∇ (vk)i · F (ûi,∇ûi) dΩ, (3.171)

where F is a vector representing the nonlinear di�usion terms. We require û to share

all original moments with u, and in addition, to share all moments with f along the

cell boundaries. The equations for solution enhancement in a general case are as

follow: ∫
Ωi

(vk)i ui dΩ =

∫
Ωi

(vk)i ûi dΩ, (3.172)

∮
∂Ωi

(vm)i ûi,t d∂Ω =

∮
∂Ωi

(vm)i fj d∂Ω, m = 1, .., (p+ 1)d−1, (3.173)

where m is the index to the (d− 1)-dimensional tensor-product test functions. The

second equation uses the test functions from a reduced space because certain coordi-

nate variables are �xed at the cell boundary. The only task left is to de�ne the basis

functions of û, which lies in a larger function space V̂ . The following sections show

1-D examples on a Cartesian grid.

1-D solution-enhancement basis functions

In 1-D, Eqn 3.173 becomes a strong interpretation; û is required to be equal to f

at the two points to the left and right of the cell. Let P (p) be the function space

with polynomials of degree of at most p ≥ 0. If u ∈ P (K), then û ∈ P (p+ 2).

Take p = 1 for example, if u is spanned by {1, 2ξ − 1}, then û of Ωj is spanned

by {1, 2ξ − 1, 6ξ2 − 6ξ + 1, 20ξ3 − 30ξ2 + 12ξ − 1}. The resulting system in matrix-

vector form is given by
1 0 0 0

0 1 0 0

1 −1 1 −1

1 1 1 1




â0

â1

â2

â3

 =


a0

a1

fj−1,j (0)

fj,j+1 (0)

 , (3.174)

91

where the top two rows come from satisfying the moments of the original solution,

and the last two rows arrive from satisfying the recovered functions on the two cell

interfaces (r = 0). Here âi are the solution coe�cients to û. In fact SE is so easy

with our choice of basis functions for u and û, we provide the system for p = 2 free

of charge, 
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 −1 1 −1 1

1 1 1 1 1




â0

â1

â2

â3

â4

 =


a0

a1

a2

fj−1,j (0)

fj,j+1 (0)

 , (3.175)

where â4 is the solution coe�cient to the 4th-order Legendre polynomial. The inver-

sion of the matrix on the LHS is trivial, making solution enhancement for 1-D RDG

fast and cost e�cient.

RDG-0x+

We brie�y introduce an experimental scheme called RDG-0x+. As the name implies,

the scheme acts upon the original weak form of the PDE's without any integration

by parts, and replaces u with a special enhanced solution, ũ,∫
Ωi

(vk)i ui,t dΩ =

∫
Ωi

(vk)i∇ · F (ũi,∇ũi) dΩ. (3.176)

The construction of ũ is similar to that of û; however, ũ also shares the normal

derivative, fn, of f ,

∫
∂Ωi

(vm)i ũn,i d∂Ω =

∫
∂Ωi

(vm)i fn,j d∂Ω, m = 1, .., (p+ 1)d−1. (3.177)

A comparison between RDG-1x+ and RDG-0x+ reveals many interesting di�erences.

The number of terms RDG-0x+ deals with is signi�cantly less in 2-D and 3-D, which

translates to greater computational speed. However, this is o�set by a more com-

plicated solution-enhancement procedure. Users of RDG may choose between deal-

ing with complicated terms in the 1x form, or spend more computational work to

acquire ũ. Currently, this experimental scheme only works with PDE without cross-

derivatives.

An interesting note: Huynh [19] analyzed various DG schemes for scalar di�usion

92

and found RDG-2x to be the most accurate while having the smallest spectral radius

(albeit expensive). Smaller eigenvalues in the spatial discretization allow an explicit

time-marching scheme to take larger time steps. For the scalar di�usion operator,

both RDG-0x+ and RDG-1x+ expand into the original RDG-2x scheme; thus, both

RDG-0x+ and RDG-1x+ come from the same �ne pedigree, with the additional

ability to solve nonlinear equations.

3.5.2 Fourier analysis of various RDG schemes

The behavior of all these new RDG schemes is best predicted with Fourier analysis.

Unlike the previous section where we scrutinized the eigensystem, we only look at

the order of accuracy and the largest eigenvalue. Unfortunately, Fourier analysis can

only be performed on linear systems, hence we quickly return to the linear di�usion

equation. The analysis is done numerically and the results are presented in Table

3.9. The mysterious RDG-1x++ is really a 2-D scheme whose secret pro�le will be

revealed in Chapter 4; obviously it is not the best 1-D scheme. The closer the largest

eigenvalue is to zero, the faster the scheme is. RDG-1x+ is equivalent to RDG-2x for

the linear di�usion equation, which is a good property to have. RDG-1xf̄ is unstable

for p ≥ 3. RDG-1x-Naive is the worst scheme with an order of accuracy of at best,

p+ 1, and also with the largest eigenvalue.

(max (Re (|λ|)) , max (Im (λ)) , O.O.A.)
p RDG-1x-Naive RDG-2x RDG-1xf̄ RDG-1x+ RDG-1x++

0 (4/0/2) (4/0/2) (4/0/2) (4/0/2) (10/0/2)
1 (27/0/2) (15/0/4) (30/0/4) (15/0/4) (41/0/4)
2 (89/0/2) (33/0/8) (125/0/6) (33/0/8) (92/0/6)
3 (221/0/4) (67/5.5/10) N/A (67/5.5/10) (159/0/10)
4 (465/0/4) (109/9.2/14) N/A (109/9.2/14) (239/0/10)
5 (870/0/6) (152/10.7/16) N/A (152/10.7/16) (325/10.7/14)

Table 3.9: Rate of L2-error convergence. The VNN number are given for RK3, RK4
and RK5 for p = 1, 2, and 3, respectively.

3.5.3 Linear variation of di�usion coe�cient

We �rst develop a test case where Mx is integrable. This case is considerably easier

than the nonlinear version because the resulting volume integral is still evaluated

93

exactly. Consider a linear variation in µ,

µ (u) = µ0 +
u

µ1

, (3.178)

where µ0,1 are constants. The integral of Mx reads,∫ (
µ0ux +

uux
µ1

)
dx = µ0u+

u2

2µ1

. (3.179)

We subject RDG-1x-Smart, RDG-1x-Naive and RDG-2x (RDG-3x is equivalent to

RDG-2x in this linear case) to compute the steady-state solution of the following

manufactured problem with a source term, S (x),

ut = (µ (u)ux)x + S (x) , (3.180)

S (x) = −π2cos (2πx) , (3.181)

µ (u) = u. (3.182)

Together with the initial and �nal solution of

u (x) = sin (πx) , (3.183)

the di�usion coe�cient will always be positive. We use Neumann boundary conditions

on the left and right of the physical domain x ∈ [0, 1]:

ux (0) = π, (3.184)

ux (1) = −π. (3.185)

The solution starts with the exact solution, and then marches forward in time with

a RK3, RK4, and RK5 scheme for p = 1, 2, and 3, respectively. The order of the

RK schemes is not of importance in this steady-state problem; however, high-order

RK does provide faster convergence rates. The simulation ends when the change in

solution between each time step is less than ε < 1× 10−15. A summary of the results

is presented in Table 3.10, while the full results is found in Appendix B. The VNN

number shows the potential di�erence in speed between the schemes for time-accurate

problems. Clearly, RDG-2x and RDG-1x+ are the fastest schemes while RDG-1x-

Naive is the slowest. In terms of order of accuracy, RDG-1x-Naive lives up to its

name. RDG-1xf̄ su�ers from instability for p ≥ 3 (as shown by Fourier analysis)

94

even with VNN as low as 0.0001. Although the full results in the Appendix B show

that RDG-1xf̄ (p = 3) is potentially 10th-order for certain grids, we can no longer use

this scheme due to the lack of robustness. Our classic RDG-2x scheme performs fairly

well, but not as its former glory. RDG-2x seems to su�er at the boundary (hence the

n-th and a half order results)3. Our winner for this test case is RDG-1x+ with both

the highest VNN and rate of convergence in L2-error.

Scheme p VNN Rate ū Rate ∆u Rate ∆2u Rate ∆3u

1 0.07 2 3
RDG-1x-Naive 2 0.02 2 3 4

3 0.01 4 5.5 4 5

1 0.15 4 5
RDG-2x 2 0.08 5.5 5.5 5.5

3 0.04 7.5 7.2 7.4 7

1 0.08 4 5
RDG-1xf̄ 2 0.02 6 7 6

3 N/A N/A N/A N/A N/A

1 0.15 4 5
RDG-1x+ 2 0.08 8 7 6

3 0.04 10 9 8 9

Table 3.10: Convergence rate of L2-error. The VNN number are given for RK3, RK4
and RK5 for p = 1, 2, and 3, respectively.

3.5.4 Nonlinear variation of di�usion coe�cient

The nonlinear variation in the di�usion coe�cient will very likely generate non-

integrable di�usion �ux terms, especially in a system of equations. A non-integrable

di�usion �ux makes implementation of RDG-2x impossible. Consider the following

nonlinear di�usion coe�cient,

µ (u) = e−u
2

, (3.186)

then the di�usion �ux,

3An issue with the boundary scheme is usually revealed by looking at the rate of L1, L2 and
L∞-error together. If the problem occurs only at the domain boundary, the rate of L1-error will
be half-an-order larger than the rate of L2-error, and the rate of L2-error will also be half-an-order
larger than the rate of the L∞- error.

95

Mx = uxe
−u2

, (3.187)

is not integrable. We brie�y sidetrack and talk about an attempt to implement

recovery for RDG-2x with an additional correction term in the next section.

RDG-3x

The key experimental concept within the RDG-3x scheme is to approximateMx with

a monomial which is integrable and to estimate the magnitude of the correction term.

We have demonstrated the di�erence in the treatment of the volume integral between

RDG-1x-Naive and RDG-1x+ results in orders of di�erence in solution accuracy. Let

us de�ne the di�erence in the volume integrals of the two classes of RDG-1x as the

correction term. If we rewrite the RDG-2x in RDG-3x form, we observe that RDG-

1x-Naive is very similar to RDG-3x, except for the component [vxM̃ − vxM], which

is called the correction term,[
vxM̃ − vxM

]
≈
∫
vx

ˆ̃Mx dx−
∫
vxMx dx. (3.188)

Our numerical results for RDG-1x shows the correction term changes the scheme from

2nd-order to 4th-order for p = 1, and from 2nd-order to 6th-order for p = 2, clearly

revealing the correction term is O (∆x2). With the magnitude of the correction term

in mind, we proceed to approximate localMx and recovered M̃x(j,j+1) with monomials,

Mx
∼= Nx = Σp

i=1aix
i−1, (3.189)

M̃x(j,j+1)
∼= Ñx(j,j+1) = Σ2p+1

i=1 bix
i−1, (3.190)

where ai and bi are unknown coe�cients to solve for via the following projections,∫
Ωj∪Ωj+1

xiM̃x dx =

∫
Ωj∪Ωj+1

xiÑx dx, (3.191)∫
Ωj

xiMx dx =

∫
Ωj

xiNx dx. (3.192)

The monomials are easily integrable,∫
Nx dx = Σp

i=1ai

∫
xi−1 dx+ c, (3.193)∫

Ñx dx = Σ2p+1
i=1 bi

∫
xi−1 dx+ c̃. (3.194)

96

with unknown constants, c and c̃. The constants are calibrated with the knowledge

that [vxM̃−vxM] ≈ O (∆x2). In order to make the correction term small, we enforced

the following in the weak sense,∫
Ωj

Nx dx =

∫
Ωj

Ñx dx. (3.195)

Note these constants are not unique, there exist di�erent constants for each interface

and element. This scheme ultimately proved to be unstable, and the complexity makes

it di�cult to implement in multi-dimensional cases. This concludes our attempt to

use RDG-2x for nonlinear �uxes.

Numerical results for nonlinear di�usion coe�cient

We present the following manufactured solution for the nonlinear di�usion equation,

ut =
(
uxe

−u2
)
x

+ S (x, t) , (3.196)

with a source term as a function of both space and time,

S (x) = sin (πx) e−3t−e−2tsin(πx)2
(
−e2t+e−2tsin(πx)2

+ π2
(
e2t + 1 + cos (2πx)

))
.

(3.197)

The initial and �nal solutions are given by

u (x, t) = sin (πx) e−t, (3.198)

on the domain x ∈ [0, 1]. We advance in time with RK3, RK4, and RK5 for p = 1, 2,

and 3, respectively, until t = 1 is reached. The numerical results for RDG-1x+ are

included in Table 3.11. We do not include RDG-1x-Naive because it is of extremely

low accuracy and RDG-1xf̄ because it is not stable for all p. The results are very

similar to the linear-variation-di�usion-coe�cient case. In the case of p = 3 with a

coarse grid of two cells only, the odd derivatives are zero, hence they exhibit computer-

zero error.

3.6 Chapter summary

We hope we have convinced you that RDG is a very simple di�usion method for DG.

The recovered function, obtained by the binary recovery operation, is used for the dif-

97

p
N
el
e

L
2
ū
er
r
o
r

L
2
4
u
er
r
o
r

L
2
4

2
u
er
r
o
r

L
2
4

3
u
er
r
o
r

R
at
e

1
10

1.
60
×

10
−

5
2.

03
×

10
−

4

15
3.

26
×

10
−

6
7.

21
×

10
−

6
3.

9
4.

9
20

1.
04
×

10
−

6
9.

72
×

10
−

7
3.

9
4.

9
30

2.
08
×

10
−

7
2.

32
×

10
−

7
3.

9
4.

9
40

6.
60
×

10
−

8
3.

08
×

10
−

8
3.

9
4.

9
60

1.
31
×

10
−

8
7.

32
×

10
−

9
3.

9
4.

9

2
4

6.
54
×

10
−

8
5.

78
×

10
−

6
1.

61
×

10
−

5

5
1.

15
×

10
−

8
1.

22
×

10
−

6
4.

61
×

10
−

6
7.

7
6.

9
5.

6
8

2.
99
×

10
−

1
0

4.
57
×

10
−

8
2.

98
×

10
−

7
7.

7
6.

9
5.

8
10

5.
14
×

10
−

1
1

9.
59
×

10
−

9
7.

95
×

10
−

8
7.

8
7.

0
5.

9
12

1.
12
×

10
−

1
1

2.
68
×

10
−

9
2.

69
×

10
−

8
7.

9
6.

9
5.

9
16

1.
22
×

10
−

1
2

3.
57
×

10
−

1
0

4.
83
×

10
−

9
7.

9
7.

0
5.

9

3
2

8.
55
×

10
−

8
7.

45
×

10
−

1
8

4.
42
×

10
−

6
2.

80
×

10
−

1
7

3
4.

06
×

10
−

9
5.

28
×

10
−

9
4.

89
×

10
−

7
1.

80
×

10
−

6
7.

5
N
/A

5.
4

N
/A

4
2.

98
×

10
−

1
0

2.
07
×

10
−

1
0

6.
85
×

10
−

8
1.

58
×

10
−

7
9.

0
11
.2

6.
8

8.
4

5
3.

73
×

10
−

1
1

1.
88
×

10
−

1
1

1.
34
×

10
−

8
2.

31
×

10
−

8
9.

3
10
.7

7.
3

8.
6

8
3.

51
×

10
−

1
3

9.
93
×

10
−

1
4

3.
67
×

10
−

1
0

3.
69
×

10
−

1
0

9.
9

11
.1

7.
6

8.
8

10
2.

72
×

10
−

1
4

1.
60
×

10
−

1
4

6.
40
×

10
−

1
1

5.
08
×

10
−

1
1

11
.4

8.
1

7.
8

8.
8

T
ab
le
3.
11
:
L

2
-e
rr
or

of
R
D
G
-1
x
+

sc
h
em

e
fo
r
st
ea
d
y
-s
ta
te

n
on
li
n
ea
r
d
i�
u
si
on

p
ro
b
le
m

w
it
h
p
er
io
d
ic
b
ou
n
d
ar
y
co
n
d
it
io
n
.

98

fusion �ux at the cell interface. Both Fourier analysis and numerical experiment show

the good stability and accuracy of RDG schemes. When compared to existing meth-

ods such as the (σ, µ)- family, RDG contains new bilinear terms unseen before. The

original RDG-2x is an excellent choice for linear problems. For nonlinear problems we

must extend the recovery concept to include solution enhancement. The RDG-1x+

uses enhanced solution in the volume integral to achieve high order of accuracy for

nonlinear di�usion problems. We next extend these 1-D concepts to 2-D.

99

CHAPTER IV

RDG in Two-Dimensions for a Scalar

Equation

The extension of any numerical method from 1-D to multiple dimensions is not a

simple task, especially when going from 1-D to 2-D. Once the framework is �nalized

from 1-D to 2-D, going to 3-D is just a matter of exercising existing concepts. One

major drawback of RDG is that the accuracy of the recovered function is dependent

on the direction; RDG only improves the accuracy in the face-normal direction, while

the accuracy in the face-parallel direction is left unchanged. This initial drawback

makes RDG-2x unsuited to deal with equations with cross-derivatives; however, this

issue is alleviated with the arrival of RDG-1x++. We �rst introduce the recovery

concept, then the various variable transformations involved, and �nally the concept of

solution enhancement to overcome di�culty with approximating the cross-derivatives

in nonlinear di�usion equations.

4.1 2-D recovery equations for binary recovery

The 2-D recovery equations for binary recovery (BR) are almost the same as the 1-D

version, with the addition of the y-coordinate. Consider the solutions in two adjacent

cells of the form presented in Eqn 2.1, where the basis functions are expressed in

terms of local coordinates (ξ, η). We look for a recovered function centered on the

100

shared interface in the form of Eqn 2.3. The 2-D recovery equations are∫∫
Ωj

vjuj dxdy =

∫∫
Ωj

vjfj,j+1 dxdy,∫∫
Ωj+1

vj+1uj+1 dxdy =

∫∫
Ωj+1

vj+1fj,j+1 dxdy. (4.1)

As we have indicated in Chapter 2, this set of equations applies to all v ∈ V , unless
stated otherwise. The face-normal direction is by default the r-coordinate, while

the face-parallel direction is the s-coordinate. Since Eqn 4.1 contains variables from

three di�erent coordinate systems, we choose to express everything in terms of the

local variables for simplicity. Our �rst step is to convert the integrals over the global

variables into integrals over the local variables. Secondly, we express the recovered

function in terms of local variables, i.e. f (r, s)→ f (ξ, η).

4.1.1 Transformation from global to local coordinate

Consider the mapping from an unstructured triangle T to a standard triangle TS, and

the mapping from an unstructured quadrilateral Q to a standard square QS in Figure

4.1 on the left and right, respectively. The mapping from local to global coordinates

for a triangle is,

x = (xB − xA) ξ + (xC − xA) η + xA, (4.2)

y = (yB − yA) ξ + (yC − yA) η + yA, (4.3)

and for a quadrilateral is,

x = (1− ξ) (1− η)xA + (ξ) (1− η)xB + (ξη)xC + (1− ξ) (η)xD, (4.4)

y = (1− ξ) (1− η) yA + (ξ) (1− η) yB + (ξη) yC + (1− ξ) (η) yD. (4.5)

ξ

η

1

1

0
ξ

η

1

1

0A

B

C

A B

C

A

B

C

D

A B

CD

T
TS

Q QS

Figure 4.1: Mapping from the global coordinates to the local coordinates. The arbi-
trary triangle T is transformed into a standard triangle TS. The arbitrary
quadrilateral Q is transformed into a standard square QS.

101

If the quadrilateral is a square with xA = xD, xB = xC , yA = yB, and yC = yD,

then the bilinear expression becomes linear. Linear mapping is preferable because

the inverse mapping is easily obtained; however, that is not true for the bilinear case.

We are also interested in the the transformation of derivatives between coordinate

systems. Applying the chain rule, the local derivatives are expressed in terms of

global derivatives,

∂

∂ξ
=

∂

∂x
· ∂x
∂ξ

+
∂

∂y
· ∂y
∂ξ
, (4.6)

∂

∂η
=

∂

∂x
· ∂x
∂η

+
∂

∂y
· ∂y
∂η
, (4.7)

or in matrix form, [
∂
∂ξ
∂
∂η

]
=

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

][
∂
∂x
∂
∂y

]
= J

[
∂
∂x
∂
∂y

]
, (4.8)

where J is the Jacobian matrix. The integration domain over global coordinates is

now transformed into local coordinates via

dxdy = |J | dξdη, (4.9)

where |J | is the determinant of J ,

|J | = ∂x

∂ξ
· ∂y
∂η
− ∂y

∂ξ

∂x

∂η
. (4.10)

In our case where the mapping is one-to-one, |J | is strictly non-zero within the domain

of the element. For a triangle, |J | is a constant that is equal to twice the area of the

triangle. Notice all vertices are labeled in a counter-clockwise manner; this is to

ensure |J | remains positive. The inverse transformation of the derivatives is given by,[
∂
∂x
∂
∂y

]
=

[
∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

][
∂
∂ξ
∂
∂η

]
= J−1

[
∂
∂ξ
∂
∂η

]
. (4.11)

Note that J−1 must be calculated numerically for quadrilaterals because the analytical

expression for the inverse transformation does not exist. The real gain from converting

an integration over the global coordinates into local coordinates is the simpli�cation

of the integration limits. For example, the integration of any function g over an

102

arbitrary triangle T becomes,∫∫
T

g dxdy =

∫ 1

0

∫ 1−η

0

g dξdη, (4.12)

and for an arbitrary quadrilateral Q,∫∫
Q

g dxdy =

∫ 1

0

∫ 1

0

g dξdη. (4.13)

With these convenient integration limits, one can quickly apply one's favorite Gaus-

sian integration techniques. We conclude our review of �nite-element coordinate

systems and look at the recovery coordinate system.

4.1.2 Tranformation from global to recovery coordinates

The recovery coordinate system, (r, s), is a bit more complicated and requires a

closer look. There are two major issues at hand, the con�guration of the coordinate

system and the domain of integration. The con�guration of (r, s) is based on three

simple steps: translation, rotation, scaling. We �rst translate the coordinate system

to the midpoint, (xm, ym), of the interface as shown in Figure 4.2. Next, we rotate

the frame by α degrees to align the r-coordinate to the face-normal direction, and

the s-direction to the face-parallel direction. Finally, we scale the s-coordinate axis

down to unity with the r−coordinate conforming to the same scaling factor, C. The

unity-scaling provides a better condition number for solving the recovery equations.

The combined collection of linear transformations results in the following expression

in matrix form, [
r

s

]
= C

[
cos (α) −sin (α)

sin (α) cos (α)

][
x− xM
y − yM

]
, (4.14)

where the scaling constant is determined from the length of the shared interface e,

C =
2

‖e‖ . (4.15)

This mapping from (x, y) to (r, s), along with the mapping from the previous

section from (ξ, η) to (x, y), allows us to relate the three coordinate systems and

ultimately express everything in terms of the local coordinates. Our next step is to

de�ne the basis functions of the solution u and the recovery function f .

103

x

y

0

r

s

1

0

-1

(x m, y)m

e

α

Figure 4.2: Mapping from global to recovery coordinates.

4.1.3 Orthogonal basis functions

All basis functions are mathematically equivalent as long as they span the same func-

tion space; however, they are not numerically equivalent in regard to the condition

number of an invertible system of equations, the simpli�cation of the update equa-

tions, and the ease of Gaussian integration. Basis functions are generally split into

the two classes, nodal and modal bases. A nodal basis is characterized by the phys-

ical shape of the function. The �rst to come to mind is the famous hat-function of

the �nite-element community. For an arbitrarily high-order basis, the �nite-element

community uses Lagrangian interpolation functions. On the other hand, modal basis

functions are simply mathematical functions. We have previously introduced mono-

mials and Legendre polynomials

The di�erence between modal and nodal bases lies in their ability to adapt to

multiple dimensions and to the computational grid. The nodal basis functions are

commonly used due to their ease to adapt to computational grids of any dimension

and shape. In addition, the nodal basis functions can be chosen to coincide with the

Gaussian points to speed up numerical runs. A modal basis is harder to generate

in higher dimensions, but possesses mathematical elegance. As seen from the pre-

vious chapters, each component of a modal basis represents a physically meaningful

quantity: the cell average, the �rst gradient, etc. In particular, the orthogonal ba-

sis functions exhibit excellent numerical properties in which the condition number of

an invertible system is signi�cantly reduced, minimizing numerical error. The update

equations become decoupled on the LHS. We will see this orthogonal property playing

an important role in Chapter 6 for the Hancock-Huynh DG scheme.

We focus our attention on the orthogonal basis functions for quadrilaterals and

triangles. We �rst cover the quadrilateral because the 1-D basis function is easily

104

extended to 2-D via tensor product. Imagine a multiplication table with the Legendre

basis functions expanded in terms of ξ on the horizontal axis, and the Legendre basis

functions expanded in terms of η on the vertical axis as shown in Table 4.1. The tensor

product automatically guarantees the resulting cross-multiplied basis functions of ξ

and η to be orthogonal on the standard square.

1 2ξ − 1 6ξ2 − 6ξ + 1 . . .

2η − 1 (2ξ − 1) (2η − 1)
(
6ξ2 − 6ξ + 1

)
(2η − 1) . . .

6η2 − 6η + 1 (2ξ − 1)
(
6η2 − 6η + 1

) (
6ξ2 − 6ξ + 1

) (
6η2 − 6η + 1

)
. . .

20η3 − 30η2 + 12η − 1 (2ξ − 1)
(
20η3 − 30η2 + 12η − 1

) (
6ξ2 − 6ξ + 1

) (
20η3 − 30η2 + 12η − 1

)
. . .

.

.

.
.
.
.

.

.

.
. . .

Table 4.1: Tensor-product basis for Legendre polynomials.

Unfortunately there exist no standard orthogonal basis for the standard triangle;

hence, we provide our own homebrewed method (a.k.a trial and error) for your viewing

pleasure. Based on our hard-earned experience, it is best to start with very simple

functions. Our goal is to create an orthonormal basis whose mass matrix M ,

M =


< v0, φ0 > < v0, φ1 > . . .

< v1, φ0 > < v1, φ1 >
...

. . .

 , (4.16)

is the identity matrix. We begin by assuming our �rst basis function is of the form,

φ0 = C0,0, where C is used to indicate an unknown constant. With one equation and

one unknown constant, this equation is easily solved with φ0 =
√

2. We then include

the next basis function which will contain two unknown constants. We assume a

basis function of the form, φ1 = C1,0ξ + C1,1η. The mass matrix becomes a two by

two matrix providing two conditions for the two unknown coe�cients. The result is

φ1 = 2
√

3 (ξ − η). Our next basis function contains three unknowns, φ2 = C2,0 +

C2,1ξ + C2,2η. The pattern is to add one additional unknown constant to every

higher-order basis, together with a corresponding function in terms of ξ and η. The

methodology is not unique; we provide our sample orthogonal basis on the standard

triangle in Table 4.2.

The number of moments per cell, Nmom, is used frequently in expresssions. This

constant is dependent on the p-th order of the scheme and is di�erent for standard

triangle and square. The Nmom for a standard triangle is given by

Nmom,T =
(p

2
+ 1
)

(p+ 1) , (4.17)

105

√
2

2
√

3 (ξ − η)
6ξ + 6η − 4√

14
(

12
7

(ξ + η)− 60
7
ξη − 3

7

)
√

70
(

24
7

(ξ + η) + 6
7

(ξη − 1)− 3 (ξ + η)2)
Table 4.2: A sample orthonormal basis (p = 4) for the standard triangle.

and for a standard square,

Nmom,S = (p+ 1)2 . (4.18)

4.1.4 Recovery basis derived from tensor product basis

The Tetris game idea from Chapter 2 also applies to the 2-D tensor-product basis.

Figure 4.3 shows examples for p = 1 and 2 where the recovery basis is more accurate

in the face-normal direction (r-coordinate). For a p-th order scheme with Nmom,S

moments per cell, the recovered function f is de�ned to be,

f =

2p+1∑
i=0

p∑
j=0

bi,j r
isj, (4.19)

where bi,j are the unknown coe�cients to solve for.

r2 r3r

x r

1

11

1 x2x

xyy

y2

y

r2 r3

s

s2

sr sr2 sr3

r4 r5

s2r

s srxy sr2 sr3

xy2

x2y2xy2

sr4 sr5

s2r2 s2r3 s2r4 s2r5

1 x2x

xyy

y2

xy2

x2y2xy2

x1

y xy

Figure 4.3: A little block game for determining the recovery basis in 2-D. The blocks
on the left and right of the dotted line indicate basis functions of the
solution in Ωj and Ωj+1 respectively. Now imagine gravity pulls to the
left; the blocks from Ωj+1 fall on �top� of the blocks in Ωj to form the
recovery basis. Notice there are more blocks in the r-coordinate than in
the s-coordinate.

106

4.2 RDG Schemes for 2-D

This section on RDG schemes is loosely split into structured/unstructured and lin-

ear/nonlinear numerical experiments. The combination of a linear problem with an

unstructured grid allows us to focus primarily on recovery at the domain-boundary,

while the combination of a nonlinear problem with a structured grid allow us to focus

on dealing with cross-derivative terms. Common to all cases is the need to recover at

the domain boundary. Fortunately, recovery at the domain boundary is very similar

to the material presented in the previous chapter; hence, we will not go into such

detail again. For linear equations we introduce the RDG-2x, RDG-1xf̄ , RDG-1xf̃ ,

and RDG-1x-Naive. As for nonlinear equations, we present RDG-1x+, RDG-1x++,

and RDG-1x++CO (�CO� stands for Cartesian optimization).

4.2.1 Recovery at the domain boundary

Recovery at the domain boundary is a tricky business on 2-D grids; it's hard to obtain

a high-order recovered function on unstructured grids. Recall the full boundary-

recovered function, fF , requires two cells adjacent to the domain boundary. This

procedure is straightforward for structured Cartesian grid, but is complicated for

triangular grids. The compact boundary-recovered function fC , which only requires

one cell adjacent to the domain boundary, is prefered for unstructured grids.

Full boundary-recovered function for structured Cartesian grid

The full boundary-recovered function is recommended for structured Cartesian grids

due to the convenient alignment of cell centers. Figure 4.4 shows the stencil for the

full boundary-recovered function for p = 1 on the left and p = 1 on the right. Note

that we are using tensor-product basis in this example. This is very similar to the

1-D case, with the exception that the domain boundary provides p + 1 pieces of

information instead of one. Our goal is to ensure the polynomial orders of fF and the

interior recovered function are the same. We force fF to have the (p+ 1)2 moments

of the �rst adjacent cell, and the (p+ 1)2− (p+ 1) moments of the next adjacent cell.

The last set of conditions come from the Dirichlet boundary condition, g (x, y), on

the domain boundary, ∂Ωe. Let Ω1 be the �rst cell adjacent to the domain boundary,

107

and Ω2 be the next adjacent cell. The recovery equations for fF are∫∫
Ω1

vi fF dxdy =

∫∫
Ω1

vi u1 dxdy for i = 0, .., (Nmom,S − 1) , (4.20)∫∫
Ω2

vi fF dxdy =

∫∫
Ω2

vi u2 dxdy for i = 0, .., (Nmom,S − p− 2) , (4.21)∫
∂Ωe

vi fF d∂Ωe =

∫
∂Ωe

vi g (x, y) d∂Ωe for i = 0, .., p. (4.22)

The choice of moments to be used from Ω2 is not arbitrary. Figure 4.4 shows if the

Tetris-game idea is applied again, we do not need the higher order information in the

r-coordinate in Ω2. The form of the boundary fF is identical to that of the interior

f ,

fF (r) =

2p+1∑
i=0

p∑
j=0

bi,j r
isj, (4.23)

where bi,j coe�cients are the unknowns, and r = 0 is the location of the domain

boundary. For the left boundary domain, we seek a fF that spans the union of Ω1

and Ω2 such that Ω1 belongs to (r, s) ∈ [0, 2] × [−1, 1] and Ω2 belongs to (r, s) ∈
[2, 4]× [−1, 1].

Ω1 Ω2

1

Ω1 Ω2

x

y xy

1

y

1

y

y²

x

xy

xy²

x²

x²y²

x²y

1

y

y²

x

xy

xy²

<v ,g>

<v ,g>

0

1

<v ,g>

<v ,g>

0

1

<v ,g>2

fF fF

Figure 4.4: Full boundary-recovered functions for 2-D Cartesian grid for p = 1 on
the left and p = 2 on the right. The domain boundary provides p +
1 conditions based on the Dirichlet function, g. Notice the choice of
moments to satisfy in Ω2 is not arbitrary.

Compact boundary-recovered function for unstructured triangular grid

The compact boundary-recovered function is recommended for unstructured triangu-

lar grid due to the inconvenient alignment of cell centers (see left frame of Figure 4.5).

In a full boundary-recovery procedure, we use information from a faraway cell in the

face-normal direction. In this example, the immediate adjacent cell of Ω1 is either

Ω2 or Ω3. Their cell centers show that they do not provide strong enough additional

108

information in the face-normal direction. If we forcefully attempt a full boundary-

recovery based on Ω2 or Ω3, the resulting system of equation will be ill-conditioned.

The right of Figure 4.5 shows the stencil for a compact boundary-recovered function

for p = 1. We enforce fC to satisfy the Nmom,T moments of the �rst adjacent cell,

and the (p+ 1) moments from the Dirichlet boundary condition, g (x, y), on the do-

main boundary, ∂Ωe. Let Ω1 be the �rst cell adjacent to the domain boundary. The

recovery equations for fC are∫∫
Ω1

vi fC dxdy =

∫∫
Ω1

vi u1 dxdy for i = 0, .., (Nmom,S − 1) , (4.24)∫
∂Ωe

vi fC d∂Ωe =

∫
∂Ωe

vi g (x, y) d∂Ωe for i = 0, .., p. (4.25)

Regrettably, the function space of fC is much smaller than the function space of the

interior recovered function f . This will su�ce if we are only expecting the scheme to

be of the (p+ 1)-th order. We express fC in terms of monomials,

fC (r) =

p∑
i=0

p−i∑
j=0

bi,j r
isj +

p∑
i=0

bi+1,p−i r
i+1sp−i. (4.26)

Ω1

1 x

y

<v ,g>

<v ,g>

0

1

Ω1

Ω2

Ω3 fC

Figure 4.5: (Left) The hollow circles indicate the centroids of the triangles. It is
di�cult to obtain a full boundary-recovered function due to the alignment
of cell centers that is more biased in the face-parallel direction. (Right)
Compact boundary-recovered function for 2-D Cartesian grid for p = 1.
The domain boundary provides p + 1 conditions based on the Dirichlet
boundary condition, g (x, y).

109

4.2.2 Linear RDG schemes

We approach the linear di�usion equation again as our �rst test case in 2-D. This

section is divided into parts regarding structured and unstructured grids. The linear

di�usion equation is given by,

ut = ∇ · ∇u = uxx + uyy. (4.27)

The weighted-residual form for Ωj is given by,∫∫
Ωj

vut dt =

∫∫
Ωj

v∇ · ∇u dxdy, (4.28)

The once and twice partly integrated forms are given by∫∫
Ωj

vut dt =

∮
∂Ωj

(v∇u) · n̂ d∂Ω−
∫∫

Ωj

∇v · ∇u dxdy, (4.29)

=

∮
∂Ωj

(v∇u− u∇v) · n̂ d∂Ω +

∫∫
Ωj

u∇ · ∇v dxdy. (4.30)

RDG-2x

The �rst scheme to be introduced is the original RDG-2x scheme based on twice

integrating by parts. We replace the solution in the surface integral with the recovered

function f ,∫∫
Ωj

vut dt =

∮
∂Ωj

(v∇f − f∇v) · n̂ d∂Ω +

∫∫
Ωj

u∇ · ∇v dxdy. (4.31)

The equation decouples nicely into x- and y-components on a Cartesian grid, resulting

in two 1-D RDG-2x schemes being applied in each direction.

RDG-1x-Naive

The underdog from the previous chapter is presented again with the sole purpose

of illustrating what not to do. RDG-1x-Naive replaces the solution in the surface

integral of the once partly integrated formulation with the recovered function,∫∫
Ωj

vut dt =

∮
∂Ωj

(v∇f) · n̂ d∂Ω−
∫∫

Ωj

∇v · ∇u dxdy. (4.32)

110

Since the 2-D linear di�usion problem decouples nicely into two 1-D problems in the

x- and y-directions, we expect the same poor results as in one dimension.

RDG-1xf̄

This scheme (see previous chapter) is one of the �rst members of the RDG-1x-Smart

family. RDG-1xf̄ replaces the solution in the volume integral with the average of all

recovered functions f̄ available in Ωj,∫∫
Ωj

vut dt =

∮
∂Ωj

(v∇f) · n̂ d∂Ω−
∫∫

Ωj

∇v · ∇f̄ dxdy. (4.33)

Fourier analyses in both 1-D and in 2-D (end of this chapter) reveal the scheme is

unstable for p ≥ 3. Though the scheme had some success in 1-D, its performance

in 2-D is abysmal. The averaging of recovered functions, which mixes the accurate

information in the face-normal direction with the less accurate information in the

face-parallel direction, causes the scheme to perform poorly (on the same level as

RDG-1x-Naive). This observation leads us to our next generation scheme, RDG-1xf̃ .

RDG-1xf̃

We design a scheme to take full advantage of the highly accurate information in the

face-normal direction while omitting the inaccurate face-parallel information. Our

design goal is to obtain a better ∇u for the volume integral. Since we have many

∇f candidates from each cell interface, recovery of the solution gradient involves a

least-squares procedure. Let Nj be the matrix whose rows are the vectors n̂j,l, where

index l cycles through the neighbors Ωl of Ωj, l = l1, . . . , lL, and let gj (~x) be the

vector of recovered normal derivatives ∂fj,l (~x) /∂nj,l, evaluated in a point ~x ∈ Ωj;

that is

Nj =


(nl1)x (nl1)y (nl1)z
...

...
...

(nlL)x (nlL)y (nlL)z

 , gj (~x) =


∂fj,l1 (~x)

∂nj,l1
...

∂fj,lL (~x)

∂nj,lL

 . (4.34)

The recovered gradient ∇f̃j (~x) then follows from

NT
j Nj∇f̃j (~x) = NT

j gj (~x) . (4.35)

111

The resulting RDG-1xf̃ scheme reads∫∫
Ωj

vut dt =

∮
∂Ωj

(v∇f) · n̂ d∂Ω−
∫∫

Ωj

∇v · ∇f̃ dxdy. (4.36)

This system will have to be solved in all quadrature points used in evaluating the

volume integral. In 1-D the RDG-1xf̃ scheme reduces to the RDG-1xf̄ scheme,

meaning they share the same stability issue.

In the next section we show a series of numerical experiements to demonstrate

the performance of RDG schemes for linear problems on structured and unstructured

grids. Experiment 1 demonstrates the accuracy of the RDG-2x interior scheme. Ex-

periment 2 shows the performance of RDG schemes with the full boundary-recovered

function. Experiment 3 shows the degenerate performance of RDG schemes on un-

structured grid with the compact boundary-recovered function.

Experiment 1: Linear di�usion (unsteady, periodic BC, Cartesian grid)

Our �rst numerical experiment shows the performance of the interior RDG-2x scheme

on a uniform 2-D Cartesian grid. This simple problem eliminates any possible com-

plication coming from irregular grids, nonlinear di�usion �uxes, and boundary treat-

ment. The solution is a time-accurate decaying wave,

u (x, y, t) = sin (2πx) sin (2πy) e−t, (4.37)

where (x, y) ∈ [0, 1] × [0, 1] and the �nal time is t = 0.5. The RDG-2x spatial

discretization is coupled with a Runge-Kutta temporal discretization. Figure 4.6, 4.7

and 4.8 shows the L2-error for p = 1, 2, and 3, respectively, for the cell average and

the average �rst gradient. Since the problem is symmetric, the average �rst gradients

in x and y directions are equal: ∆xu = ∆yu. The results are exactly the same as the

1-D case due to the nice decoupling of the di�usion �uxes in the x and y direction.

The rate of error convergence for RDG-2x (p = 1) is 4th-order for the cell average

and 5th-order for the average �rst gradient, for RDG-2x (p = 2) is 8th-order for the

cell average and 7th-order for the �rst gradient, and for RDG-2x (p = 3) is 10th-

order for the cell average and 11th-order for the �rst gradient. Note the weird dip

in the error for the average �rst gradient for p = 3; this is the result of averaging

the �rst gradient of a sine wave on a 2-by-2 grid which results in a zero averaged

gradient. It is interesting to observe that odd-order RDG schemes have gradients

that are outperforming the cell average as found in one dimension; see Section 3.4.2.

112

0.025 0.05 0.1 0.2
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

∆h

L
2

E
rr

or

← Slope=5

Slope=4 →

ū
∆u

Figure 4.6: Experiment 1, RDG-2x (p = 1) for time-accurate problem with periodic
boundary conditions. The order of error convergence is 4th-order for the
cell average, and 5th-order for the averaged �rst gradient.

0.025 0.05 0.1 0.2

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

∆h

L
2

E
rr

or

← Slope=8

Slope=7 →

ū
∆u

Figure 4.7: Experiment 1, RDG-2x (p = 2) for time-accurate problem with periodic
boundary conditions. The order of error convergence is 8th-order for the
cell average, and 7th-order for the averaged �rst gradient.

113

0.1 0.2 0.4
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

∆h

L
2

E
rr

or

← Slope=11

Slope=10 →

ū
∆u

Figure 4.8: Experiment 1, RDG-2x (p = 3) for time-accurate problem with periodic
boundary conditions. The order of error convergence is 10th-order for the
cell average, and 11th-order for the averaged �rst gradient. The dip for
the course grid is due to the average �rst gradient being zero on a 2 by 2
grid.

114

Experiment 2: Poisson problem (steady-state, full Dirchlet b.c, Cartesian

grid, p = 1)

Figure 4.9 shows properties of the solution to the following 2-D Poisson problem on

[0, 1]× [0, 1]:

u (x, 0) = 0.5 cos (2πx) , (4.38)

u (x, 1) = 0.5 cos (2πx) , (4.39)

u (0, y) = 0.5 cos (2πy) , (4.40)

u (1, y) = 0.5 cos (2πy) , (4.41)

S (x, y) = 2π2 {cos (2πx) + cos (2πx)} , (4.42)

where S is the source term. These Dirchlet boundary conditions are satis�ed with

the full boundary-recovered functions. The exact solution of the problem is

U (x, y) = 0.5 {cos (2πx) + cos (2πy)− 1} . (4.43)

The left graph in Figure 4.9 shows an intriguing aspect of RDG-2x in which the

solution gradient is calculated with higher precision than the solution average. The

results clearly show the full boundary-recovered function achieving the same level of

accuracy as the interior RDG-2x scheme from the previous experiment. The right

graph in Figure 4.9 shows a comparison of the L2-error of the cell average for various

RDG schemes with p = 1. RDG-1x-Naive and RDG-1xf̄ are the under-performing

schemes. The better schemes are classic RDG-2x and RDG-1xf̃ , where 4th-order of

accuracy is obtained. In terms of absolute error, RDG-2x is still the king of the RDG

family for linear di�usion problems.

Experiment 3: Poisson problem (steady-state, compact Dirchlet b.c, struc-

tured/unstructured triangular grid)

We consider an almost structured irregular triangular grid and a structured orthogonal

grid. Unfortunately, we must use the compact recovered function at the domain

boundary for triangular grid. We solve a Dirichlet problem on the square [0, 1]× [0, 1]

where the domain is discretized by randomly perturbing the nodes of a regular grid

by 30% (see left frame of Figure 4.10). The careful choice of an exact steady state

solution,

u (x, y) = x4 + x3y − 6x2y2 − xy3 + y4, (4.44)

115

results in a zero source term. The right of Figure 4.10 shows the order of RDG-

2x reduces to p + 1 for unstructured grid. The result is expected due to the use of

compact boundary-recovered functions; however, the L1-error indicates that the same

order of error is also committed by the interior scheme too.

Next, we solve a di�erent Dirichlet problem taken from [30] on the same unit

square with the following steady-state solution,

u (x, y) = e−0.1sin(−5.1x+6.2y)+0.3cos(4.3x+3.4y). (4.45)

The orthogonal triangular grid and the results are shown in Figure 4.11. The results

clearly show the order of accuracy of both RDG-1x-Naive and RDG-2x to be p + 1.

When compared to LDG, CDG, and BR2 in [30], RDG schemes typically perform

better in terms of accuracy for higher p. For example, RDG is a factor four more

accurate than CDG on the �nest grid for p = 2, and a factor of seven more accurate

than CDG on the �nest grid for p = 3.

0.025 0.05 0.1 0.2 0.4

10
−6

10
−5

10
−4

10
−3

10
−2

� h

L
2
E
rr
o
r

Slope=5

Slope=4

u

� u

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

h

L
2
E
rr
o
r
in

u

Slope=4

Slope=2

RDG-1x-Naive

RDG-1xf

RDG-1xf

RDG-2x

-

~

Figure 4.9: Experiment 2. Left: RDG-2x (p = 1) for steady-state problem using full
boundary-recovered function at the Dirichlet boundaries. Right: Com-
parison of various RDG (p = 1) schemes with full boundary-recovered
function.

116

0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1
0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

0. 8

0. 9

1

x

y

10
−1

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

∆h

L
2

E
rr

or

p1
p2
p3
p4

Figure 4.10: Experiment 3, RDG-2x (p = 1, 2, 3, 4) for steady-state problem using
compact boundary-recovered function at the Dirichlet boundaries. A
sample perturbed grid is shown on the left, and the graph on the right
shows the order of accuracy of the scheme to be p + 1 on the irregular
triangular grid.

0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1
0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

0. 8

0. 9

1

x

y

10
−1

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

∆h

L
2

E
rr

or

p1 RDG-2x
p1 RDG-1x-Naive
p2 RDG-2x
p2 RDG-1x-Naive
p3 RDG-2x
p3 RDG-1x-Naive

Figure 4.11: Experiment 3, RDG-2x and RDG-1x-Naive (p = 1, 2, 3) for steady-state
problem using a compact boundary-recovered function at the Dirichlet
boundaries. It appears that RDG-2x is only slightly better than RDG-1x
on a triangular grid.

117

4.2.3 Nonlinearity and cross-derivatives in RDG schemes

In addition to nonlinearity, 2-D RDG schemes require new techniques to handle cross-

derivatives properly. More precisely, the recovered function in the surface integral

needs to be more accurate in the face-parallel direction; the steps to handle the

volume integral remains the same. We present RDG-1x++ and RDG-1x++CO as

improvement over RDG-1x+. Note that RDG-1x++CO is just an optimized version

of RDG-1x++ for Cartesian grids.

RDG-1x+

We reconstruct a higher-order solution, û, to replace the interior solution in the

volume integral in the once partly integrated form of the PDE. We require û to share

all original moments with u, and, in addition, to share all moments with f along the

cell boundaries. The equations for solution enhancement in 2-D are as follows:∫
Ωi

(vk)i ui dΩ =

∫
Ωi

(vk)i ûi dΩ, (4.46)

∮
∂Ωi

(vm)i ûi,t d∂Ω =

∮
∂Ωi

(vm)i fj d∂Ω, m = 1, .., (p+ 1), (4.47)

In 2-D, û is required to satisfy p + 1 moments of f along a line. The choice of

basis functions for û is best illustrated by Figure 4.12. The positive x-axis repre-

sents increasing polynomial order in x, and the negative y-axis represents increasing

polynomial order in y. Consider the solid-line square to represent the original basis

functions of u. The data on the left and right boundaries of a cell add two (p + 1)-

element columns to the right of the square, while the top and bottom boundaries add

two (p+ 1)-element rows to the bottom of the square. While v and u belong to the

solution space V , û belongs to a larger solution space V̂ such that V ⊂ V̂ .

RDG-0x+

This experimental scheme acts upon the original weak form of the PDE's without

any integration by parts, and replaces u with a special enhanced solution, ũ,∫
Ωi

(vk)i ui,t dΩ =

∫
Ωi

(vk)i∇ · F (ũi,∇ũi) dΩ. (4.48)

The construction of ũ is similar to that of û; however, ũ also shares the normal

derivative, fn, of f ,

118

1 x

y

x2

y2

1 x

y xy

x2 x3

x2y x3y

y2 xy2

y3 xy3

1 x

y xy

x2 x3

x2y x3y

y2 xy2

y3 xy3

x4

y4

x4y2x3y2

x4y

xy4

x2y2

x2y3

x2y4

p = 0

p = 1

p = 2

Figure 4.12: Basis functions for û in 2-D Cartesian grid for p = 0, 1, and 2 from left
to right.

∫
∂Ωi

(vm)i ũn,i d∂Ω =

∫
∂Ωi

(vm)i fn,j d∂Ω, m = 1, .., (p+ 1). (4.49)

The main purpose of this scheme is to show that further enhancing of the solution in

the face-normal direction does not help approximating a PDE with cross-derivatives.

It is the solution in the surface integral that must be improved. In addition, the

appearance of a method not requiring integration by parts is new in �nite-element

practice.

Experiment 4: nonlinear di�usion without cross-derivative (time-accurate,

periodic b.c, Cartesian grid)

The following numerical experiment is designed to isolate the need for recovery-

function enhancement, and focuses on solution enhancement only. We consider the

scalar 2-D nonlinear di�usion equation with a source term,

ut = e−u
2

(uxx + uyy) + S (t) , (4.50)

on the domain x ∈ [0, 1], where S (t) is a time-dependent source term determined by

Mathematica software for the manufactured solution

u (x, t) = sin (2πx) sin (2πy) e−t. (4.51)

Table 4.3 shows the L2-error of the cell average at t = 1 for RDG-1x+ and RDG-

0x+. The RDG spatial discretizations are coupled with the 3rd, 4th, and 5th-order

explicit Runge-Kutta temporal schemes for p = 1, 2, and 3, respectively. RDG-0x+ is

slightly more accurate for p = 2 and 3, while both schemes obtain the same order of

119

accuracy as the original RDG-2x scheme for scalar di�usion. In this problem where

the nonlinear di�usion equation does not contain any cross-derivatives, both schemes

performed superbly; we next develop new techniques to handle cross-derivatives.

RDG-1x+ RDG-0x+
p Cells L2-error O.O.A. p Cells L2-error O.O.A.
1 18× 18 1.24e− 05 1 18× 18 1.23e− 05

24× 24 3.96e− 06 4.0 24× 24 3.96e− 06 4.0
30× 30 1.63e− 06 4.0 30× 30 1.63e− 06 4.0
36× 36 7.89e− 07 4.0 36× 36 7.91e− 07 4.0

2 18× 18 1.50e− 10 2 6× 6 5.01e− 11
24× 24 1.65e− 11 7.7 12× 12 5.16e− 12 7.9
30× 30 2.87e− 12 7.8 18× 18 9.00e− 13 7.8
36× 36 6.70e− 13 8.0 24× 24 2.60e− 13 6.8

3 6× 6 8.66e− 08 3 6× 6 2.46e− 09
8× 8 6.35e− 09 9.1 8× 8 7.07e− 11 12.3

10× 10 7.14e− 10 9.8 10× 10 6.02e− 12 11.0
12× 12 1.08e− 10 10.3 12× 12 9.27e− 13 10.3

Table 4.3: Experiment 4, L2-error of the cell average for the RDG-1x+ and RDG-0x+
schemes.

RDG-1x++ (Recovered-function enhancement)

Using the recovered function for the viscous �uxes in 1-D problems is su�cient; how-

ever, in multi-dimensional problems, the recovered function is not accurate in the

face-tangential direction of the cell boundary. The need for an accurate representa-

tion of the solution's face-tangential derivatives, such as the ones appearing in the

Navier-Stokes shear terms, is imperative for achieving overall high-order accuracy.

Our newest scheme performs binary recovery on top of the new enhanced solution û

from the previous section to obtain an enhanced recovered function f̂ as shown in

Figure 4.13.

As mentioned before, the subroutine for recovery is the same for any level of

enhancement, with the equations for the enhanced recovered equation similiar to

those of f :

120

u u

uu

^ ^

^ ^

f f f

f f f

f f

f f

f f
^ ^ ^

^ ^ ^

^ ^

^ ^

^ ^

f = BR(u)
^^

Figure 4.13: The recovered function is inaccurate in the face-tangential direction. We
apply binary recovery on top of û to get an enhanced recovered function
f̂ to improve on the accuracy of f in the face-tangential directions.

∫
ΩL

(v̂k)L ûLdΩ =

∫
ΩL

(v̂k)L f̂(L,R)dΩ, ∀k s.t. v̂k ∈ V̂ ,

∫
ΩR

(v̂k)R ûRdΩ =

∫
ΩR

(v̂k)R f̂(L,R)dΩ, ∀k s.t. v̂k ∈ V̂ . (4.52)

Here, v̂ is a basis function of V̂ (see Figure 4.12) and f̂ belongs to a di�erent function

space Ŵ ,

f̂(L,R) =
∑
k

b̂kω̂k, , ω̂ ∈ Ŵ , (4.53)

where ω̂ denotes the basis function for f̂ (see [45] and Chapter 2 for more information

about recovery bases). In Chapter 3, we have shown the Fourier-analysis results in

Chapter 3 for the 1-D linear-di�usion schemes. At the end of this chapter, we show

the 2-D Fourier-analysis results along for the other RDG schemes.

This extra layer of binary recovery comes at a hefty cost due to the increased

stencil size, which e�ectively decreases the maximum allowable time-step in an explicit

scheme, or increases connectivity cost in an implicit scheme. Figure 4.14 compares

the stencil size of various RDG schemes. It is worth noting that both Compact DG

(CDG) [30] and BR2 share the compact stencil of RDG-1x, but these schemes cannot

handle PDE's with cross-derivatives at the p = 0 level. Clearly, cRDG is the most

expensive of all the schemes present, while RDG-1x++CO is the optimal scheme to

handle PDE's with cross-derivatives for all p ≥ 0, if the grid is Cartesian.

121

RDG-1x RDG-1x++CO RDG-1x++ CRDG

Figure 4.14: The 2-D stencils for various RDG schemes. Stencil size has direct in-
�uence on the time-step of explicit time-marching schemes, and also on
the matrix density of implicit time-marching schemes.

RDG-1x++CO (Cartesian Optimization)

We draw our inspiration to optimize the RDG-1x++ scheme from dimension-splitting

techniques found in [40, 39]. We recognize the solution-enhancement step for 2-D

Cartesian grids can be factorized into 1-D steps. The convenience of such a factor-

ization is twofold. Firstly, the same operator developed for 1-D is reusable for 2-D

case; secondly, multi-dimensional codes reduce to a sequence of 1-D sweeps.

On a Cartesian grid the enhanced recovered function is too accurate in face-

normal direction; hence we eliminate the extraneous information in the face-normal

direction by using fewer moments in Eqn 4.52. Consider the stencils in Figure 4.15

used to obtain the enhanced recovered function for RDG-1x++ and RDG-1x++CO.

The thick solid line indicates the interface of interest. Since we do not need more

information in the face-normal direction, we can optimize RDG-1x++ by taking away

the two cells furthest away from the interface in the face-normal direction. This

optimization techniques require di�erent sets of enhanced solutions ûx and ûy, which

are solution-enhanced in the x-direction and y-direction, respectively.

f of RDG-1x++CO
^

f of RDG-1x++
^

Figure 4.15: The stencils of the enhanced recovered function for RDG-1x++ and
RDG-1x++CO on the left and right, respectively.

This section describes the steps to acquire an enhanced recovered function on a

vertical interface from ûy, and because this is a factorization technique, the same steps

122

can be applied to get an enhanced recovered function on a horizontal interface from

ûx. We �rst cycle through all cells to get a new enhanced solution ûy. Figure 4.2.3

shows a p = 1 example beginning from the left. The subscripts M , L, and R, stand

for middle, left and right, respectively. We require ûyM to share all moments of uM ,

and in addition, share the moments (without the y basis) of the recovered functions

on the top and bottom faces of the cell. The resulting ûyM will be enhanced in the

y-direction only, as shown in the middle of Figure 4.2.3, where the solution within the

cell now contains quadratic and cubic information in the y-direction. Our next step is

to recover the enhanced recovered function, f̂ , from the vertically enhanced solutions

on the left and right of an interface. Using the standard binary recovery technique

with ûyL and ûyR as inputs, the resulting f̂ is more accurate in both r and s directions

(see right-most frame of Figure 4.2.3). For higher p, recovery in the face-normal

direction will still be more accurate than in the face-parallel direction; nevertheless,

the slight improvement in the s-direction is su�cient for high-order accuracy.

1 x

y xy
uM

1 x

y xy

y xy

y xy

2 2

3 3

1 x

y xy

y xy

y xy

2 2

3 3

u L

y
^ u R

y
^

1 r

s rs

s rs

rs

2 2

3

r

r s

r s

r s

2

3

2

2

2

2

s3

r

r s

r s

r s

2

3

3

3

3

3

f ^

1 x

1 x

u = SE(u) M T,M,B

y
^ f = BR(,) ^ u L

y
^ u R

y
^

Figure 4.16: Reduced-accuracy y-recovery, followed by standard x-recovery, to create
an enhanced recovered function f̂ for use at an interface along the y-
direction.

Experiment 5: di�usion-shear equation (time-accurate, periodic b.c, Carte-

sian grid)

This simple experiment adds a cross-derivative term to the linear di�usion equation1,

ut = uxx + uyy + uxy. (4.54)

Despite the simplicity of this equation, RDG-2x, RDG-1x-Naive, RDG-1x+, and

RDG-0x+ completely fail to handle the cross-derivative term, resulting in an incon-

sistent (but stable) scheme. We consider the following time-accurate problem on the

unit square with periodic boundary condition and the exact solution of

1When a shear term appears, one can always �nd a rotated frame in which the shear term vanishes.
This theoretical insight does not help to solve the numerical problem of including in�uence of corner
elements into the DG formulation.

123

u (x, y, t) = e−t (sin (2π (x− y)) + sin (2πx) sin (2πy)) , (4.55)

where the appropriate source term must be added to the RHS of Eqn 4.54, obtained

with Mathematica. The L2-error in the �rst two moments of p = 1, 2, and 3 are

presented in Figure 4.17-4.19, respectively. The order of accuracy of RDG-1x++CO

mimics the results of RDG-2x for the linear di�usion equation. RDG-1x++ under-

performs in comparison to RDG-1x++CO for p = 2. This strange behavior is further

explored in the following Fourier analysis.

0.025 0.05 0.1 0.2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

∆h

L
2

E
rr

or

← Slope=5Slope=4 →

RDG-1x++ u
RDG-1x++ ∆u
RDG-1x++CO u
RDG-1x++CO ∆u

Figure 4.17: Experiment 5, RDG-1x++ and RDG-1x++CO (p = 1) for time-accurate
problem with periodic boundary conditions. The order of error conver-
gence is 4 for the cell average, and 5 for the averaged �rst gradient.

124

0.025 0.05 0.1 0.2
10

−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

∆h

L
2

E
rr

or

← Slope=8
Slope=5 →

RDG-1x++ u
RDG-1x++ ∆u
RDG-1x++CO u
RDG-1x++CO ∆u

Figure 4.18: Experiment 5, RDG-1x++ and RDG-1x++CO (p = 2) for time-accurate
problem with periodic boundary conditions. Notice the Cartesian opti-
mized version performs extremely well.

0.05 0.1 0.2 0.4 0.8

10
−12

10
−10

10
−8

10
−6

10
−4

∆h

L
2

E
rr

or

← Slope=10

Slope=9 →

RDG-1x++ u
RDG-1x++ ∆u
RDG-1x++CO u
RDG-1x++CO ∆u

Figure 4.19: Experiment 5, RDG-1x++ and RDG-1x++CO (p = 3) for time-accurate
problem with periodic boundary conditions. The order of error conver-
gence is 10 for the cell average, and 9 for the averaged �rst gradient.

125

(max (Re (λ)) , max (Im (λ)) , O.O.A.)
p RDG-2x RDG-1x+, RDG-1x++CO RDG-1x++

0 (7.9/0/2) (7.9/0/2) (20.2/0/2)
1 (30.0/0/4) (30.0/0/4) (82.5/0/4)
2 (66.0/0/8) (66.0/0/8) (183.3/0/6)
3 (134.9/11.1/10) (134.9/11.1/10) (318.8/0/10)
4 (217.2/18.4/14) (217.2/18.4/14) (477.1/0/14)
5 (302.3/21.4/16) (302.3/21.4/16) (649.9/20.5/16)

Table 4.4: Fourier-analysis results for α = 0 (pure Laplacian). Note that RDG-1x+,
RDG-1x++CO, and RDG-2x are identical.

Numerical Fourier Analysis of 2-D RDG Schemes

Now that all the new RDG schemes have been revealed, we present Fourier-analysis

results for all RDG schemes on the 2-D Cartesian grid. The scalar equation of interest

is the Laplacian with a cross-derivative term,

ut = uxx + uyy + αuxy, (4.56)

where α is a constant, with the requirement −2 ≤ α ≤ 2 for the PDE to be stable.

The cross-derivative term is included to mimic the behavior of certain Navier-Stokes

viscous terms. The numerical schemes should approximate the Fourier operator,

uxx + uyy + αuxy '
2β2

h2
+
αβ2

h2
, (4.57)

where β is the frequency of the Fourier mode assumed equal in the x- and y-directions,

and h is the cell width. Table 4.4 shows the results for α = 0 (pure Laplacian), and

Table 4.5 shows the results for α = 1. The three numbers shown are the largest

real part of an eigenvalue max (Re (λ)), the largest imaginary part of an eigenvalue

max (Im (λ)), and the order of accuracy. In designing di�usion schemes, we want the

maximum real eigenvalue to be as small as possible to allow for a larger time-step

and the imaginary component to be as close to zero as possible.

RDG-2x was �rst presented in 2005 and represents our best scheme for the scalar

Laplacian (α = 0), with the smallest real eigenvalue parts and the highest order of

accuracy. For the scalar Laplacian, both RDG-1x+ and RDG-1x++CO reduce to the

RDG-2x scheme. RDG-1x++ has higher real eigenvalues due to its larger stencil.

In the case with cross-derivative (α = 1), the older generation RDG schemes,

RDG-2x, RDG-1x, and RDG-1x+, fail to approximate the cross-derivative term for

126

(max (Re (λ)) , max (Im (λ)) , O.O.A.)
p RDG-1x++ RDG-1x++CO

0 (20.2/0/2) (7.9/0/2)
1 (82.5/0/4) (33.7/0.4/4)
2 (183.6/0.76/6) (87.1/3.0/8)
3 (319.2/7.59/10) (169.6/10.7/10)
4 (495.3/30.43/10) (278.6/23.8/14)
5 (803.6/105.5/14) (412.8/43.4/16)

Table 4.5: Fourier analysis results for α = 1 (with cross-derivative). The maximum
real eigenvalue of RDG-1x++CO is about half of that of RDG-1x++.

all p; they result in zeroth-order schemes. The only exception is for RDG-1x+ with

p = 1, which achieves 4th-order of accuracy. Of the two remaining schemes, RDG-

1x++CO allows for twice as large a time-step and obtains a higher order of accuracy

for certain p.

4.3 Chapter summary

The appearance of cross derivatives in 2-D gives rise to new numerical challenges. In

order to overcome this new problem, we present RDG-1x++ and RDG-1x++CO as

candidates. The order of accuracy achieved by these schemes is equal to or higher

than 2p + 2. In particular, the RDG-1x++CO version achieves the same order of

accuracy on a fully nonlinear problem with cross derivatives as the classic RDG-2x

on a linear di�usion problem! Although the accuracy of RDG schemes is extremely

high, the true beauty of RDG, as we stress once again, is in the simplicity of concept

and implementation. Unlike other numerical methods with cookbook instructions,

we have clearly identi�ed the obstacles stemming from a nonlinear multidimensional

problem: the nonlinear volume integral and the cross derivative in the �ux integral. In

this regard, we presented solution enhancement and recovery-function enhancement

to remedy the respective issues.

We have independently studied the e�ect of irregular grids on RDG, and also the

performance of RDG schemes for nonlinear di�usion problems. Superconvergence is

extremely di�cult to achieve on an irregular grid, and currently we have yet to devise

a high-order boundary scheme for triangular grids. Our next step is to study the

performance of these new schemes on irregular grids for nonlinear di�usion problems.

The 2p + 2 order of accuracy is expected to reduce to p + 1 on unstructured grids;

therefore, the future RDG schemes for unstructured grids will likely utilize a more

127

compact stencil that sacri�ces accuracy for e�ciency.

128

CHAPTER V

Navier-Stokes Equations with RDG

The original equations for viscous �ow were developed more than a century ago, how-

ever, these equations are too complicated to solve even with the most advanced com-

puters today. There are actually many �ow equations to decribe a viscous �ow; the

three main equations are the conservation of mass, momentum and energy. The other

equations decribe physical phenomena such as chemical reactions and electromagnetic

e�ects. These equations go through a rigorous and scienti�c process of simpli�cation

that results in the Navier-Stokes equations. The Navier-Stokes equations are only

valid for a Newtonian viscous �uid in therodynamic equibrium; nevertheless, these

equations are very practical and describes a wide range of �ow phenonomon. For a

detailed discussion of the Navier-Stokes equations we refer to White [46] .

5.1 1-D Navier-Stokes Equations with RDG

We present the Navier-Stokes equations in one dimension with advection component

F, and di�usion component G,

Ut + F (U)x = G (U)x , (5.1)

where the conserved quantities, advection �ux, and di�usion �ux are,

U =

 ρ

ρu

ρE

 , (5.2)

129

F =

 ρu

p+ ρu2

ρuH

 , (5.3)

G =

 0

τxx

uτxx − qx

 . (5.4)

The advection component simply consists of the �ux terms from the Euler equations,

while the di�usion component includes both the viscous stress and the heat �ux. Our

numerical strategy is to apply an upwind �ux to the advection component, and RDG

to the di�usion component. It is easier to work with conserved variables for the sake

of conservation; however, the quantities appearing in the di�usion �ux are frequently

given in terms of primitive variables. For the shear stress component, τxx, we assume

a Newtonian �uid and apply Stokes' hypothesis (λ = −2
3
µ) to get an approximation,

τxx = (2µ+ λ)ux =
4

3
µux. (5.5)

The heat �ux qx is given by Fourier's law,

qx = −κµ ∂

∂x

(
p

ρ

)
, (5.6)

κ =
γ

Pr (γ − 1)
, (5.7)

Pr =
4γ

9γ − 5
, (5.8)

where Pr is the approximate Prandtl number for a general case. Both shear-stress

and heat-�ux terms are functions of the viscosity coe�cient µ (T). There are many

available viscous models for Prandtl number and viscosity coe�cient valid for di�erent

�uids and temperature ranges. For example, Sutherland's law is valid for atmospheric

air with temperatures between 200K and 1000K,

µ (T) = µ0
T0 + C

T + C

(
T

T0

) 3
2

, (5.9)

130

with the following physical constants,

γ = 1.4, (5.10)

µ0 = 1.716× 10−5[Pa · s], (5.11)

C = 110.5[K], (5.12)

T0 = 273.1[K], (5.13)

R = 287[N ·m/kg]. (5.14)

The other thermodynamic quantities of importance are given by,

p = (γ − 1)

(
ρE − 1

2
ρu2

)
, (5.15)

H = E +
p

ρ
, (5.16)

a = γ
p

ρ
= γRT, (5.17)

T =
1

R

p

ρ
, (5.18)

where p is the pressure, H is the total enthalpy, a is the speed of sound, and T is the

temperature.

5.1.1 Discretization of 1-D Navier-Stokes viscous terms

We proceed to obtain the weak formulation of the 1-D Navier-Stokes equations by

testing Eqn 5.1 with a test function v in space, apply integration by parts once on

131

both the advection �ux and the di�usion �ux,∫
vUt dx = −

∫
vFxdx+

∫
vGx dx, (5.19)

∫
vFx dx =

v
 ρu

p+ ρu2

ρuH


−

 0∫
vx (p+ ρu2) dx∫
vx (ρuH) dx

 ,

∫
vGx dx =

v


0
4
3
µux

4
3
µuux + κµ ∂

∂x

(
p
ρ

)

−


0∫

4
3
vxµux dx∫ (

4
3
vxµuux + vxκµ

(
p
ρ

)
x

)
dx

 .

We use the following shorthand notation for the conservative variables U0 = ρ, U1 =

ρu, U2 = ρE, and express quantities in the RHS of the weak formulation in terms of

the conservative variables,

u =
U1

U0

, (5.20)

p = (γ − 1)

(
U2 −

U2
1

2U0

)
, (5.21)

H =
U2 + p

U0

. (5.22)

Fortunately, these are the only terms we need to express in terms of the conservative

variables since all other thermodynamic variables are related back to p and ρ. We

now discretize the weak equations on a local element Ωj with x ∈
[
xj− 1

2
, xj+ 1

2

]
; the

transformation to local coordinates in space reads,

ξ =
x− xj− 1

2

∆x
,
∂ξ

∂x
=

1

∆x
≡ 1

h
.

132

The goal is to transform all global derivatives into local derivatives, then the governing

equations reads,

∆x

∫
Ωj

vUt dξ = −
∫

Ωj

vFξdξ +

∫
Ωj

vGξ dξ, (5.23)

∫
Ωj

vFξ dξ =

v
 ρu

p+ ρu2

ρuH



ξ=1

ξ=0

−
∫

Ωj

vξ

 ρu

p+ ρu2

ρuH

 dξ, (5.24)

∫
Ωj

vGξ dξ =
1

h

v


0
4
3
µuξ

4
3
µuuξ + κµ ∂

∂ξ

(
p
ρ

)


ξ=1

ξ=0

−1

h


0∫

Ωj

4
3
vξµuξ dξ∫

Ωj

4
3
vξµuuξ + κ (vξµ)ξ

p
ρ
dξ

 , (5.25)

We may handle the computation of the F �ux with an approximate Riemann solver;

here, we focus our attention on the G �ux. The recovery procedure generates three

smooth functions, one for each conservative variable across the interface. However,

acquiring the exact derivatives for terms like uξ, µξ and
(
p
ρ

)
ξ
is rather complicated,

hence a numerical approach is preferred. We refer to Appendix A for a discussion on

derivatives.

Numerical results for 1-D Navier-Stokes viscous terms

In order to bring to light the quality of RDG, this section focuses on just the di�usion

terms in the Navier-Stokes equations. All of the numerical test cases are manufactured

solutions with no physical meaning, but are intended to capture the mathematical

properties of the Navier-Stokes equations and exemplify the ability of the numerical

di�usion operators to solve the system.

This test case throws out the advection terms in the Navier-Stokes equation in

order to focus on the di�usion terms. We keep the density variable constant since the

133

di�usion �ux for density is zero. Our time-accurate solution is given by,

ρ (t) = 2, (5.26)

u (t) = sin (πx) e−t, (5.27)

P (t) = 101000 + 10000 sin (πx) e−t, (5.28)

with Sutherland's law as the viscosity model with the following physical constants,

γ = 1.4, (5.29)

µ0 = 1[Pa · s], (5.30)

C = 110.5[K], (5.31)

T0 = 273.1[K], (5.32)

R = 287[N ·m/kg]. (5.33)

Notice these constants are the same as those for atmospheric air with the exception

of µ0. The real value of µ0 is too low; a higher value guarantees a larger change in

the solution in a shorter amount of time. We solve the following system, ρ

ρu

ρE


t

=


0

4
3
µux

4
3
µuux + κµ ∂

∂x

(
p
ρ

)
+

 0

S1 (t)

S2 (t)

 , (5.34)

where S1 and S2 are source terms determined by inserting the time-accurate solution

into the system of equations above, using Mathematica. In order the ascertain the

quality of the manufactured solution, we numerically compared the values of the

�ux terms with the values of the source terms to ensure the source terms are not

dominating the RHS. The conserved variables are recovered across the interface and

then used to determine the nonlinear �ux at the interface. The solution is marched

forward in time using a 3rd-order Runge-Kutta scheme until t = 3. The numerical

results for RDG-1x-Naive, RDG-1xf̄ , and RDG-1x+ for p = 1 and p = 2 are presented

in Table 5.1 and 5.2. Note that only the L2 error of the total-energy variable is shown;

134

the momentum variable behaves similarly.

For both p = 1, RDG-1x+ is clearly the fastest scheme; however, it is slightly

less accurate than RDG-1xf̄ in terms of absolute error. This may be due to the fact

that RDG-1xf̄ is taking much smaller time steps. The story is drastically di�erent

for p = 2, the order of accuracy of RDG-1x+ is two higher than that of RDG-1xf̄ . A

numerical run time is not available because the experiments were done on a di�erent

set of grids.

Name/VNN Nele L2 Ū2error L24U2error Rate Time(s)

RDG-1x-Naive 10 3.57 1.98 4.3
VNN = 0.08 20 0.936 0.25 1.9 3.0 33.0

40 0.237 3.13× 10−2 2.0 3.0 259.6
80 5.94× 10−2 3.91× 10−3 2.0 3.0 2073.4

RDG-1xf̄ 10 0.104 9.91× 10−2 5.3
VNN = 0.08 20 6.24× 10−3 3.13× 10−3 3.9 5.0 41.2

40 4.38× 10−4 9.79× 10−5 4.0 5.0 324.0
80 2.75× 10−5 3.06× 10−6 4.0 5.0 2591.0

RDG-1x+ 10 0.425 0.188 2.8
VNN = 0.20 20 2.77× 10−2 6.07× 10−3 3.9 4.9 22.2

40 1.75× 10−3 1.91× 10−4 3.8 4.9 173.0
80 1.10× 10−4 5.98× 10−6 3.9 5.0 1332.2

Table 5.1: p = 1 results for RDG-1x-Naive, 1xf̄ , and 1x+. RDG-1x+ is clearly the
fastest scheme, while its accuracy is on par with RDG-1xf̄ .

135

Name/VNN Nele L2 Ū2error L24U2error L242U2error Rate

RDG-1x-Naive 10 4.82 2.04 0.106
VNN = 0.02 20 1.24 0.257 6.67× 10−3 1.9 2.9 3.9

40 0.313 3.22× 10−2 4.18× 10−4 1.9 3.0 4.0
80 7.84× 10−2 4.03× 10−3 2.16× 10−5 2.0 3.0 4.0

RDG-1xf̄ 10 7.13× 10−3 2.61× 10−3 2.63× 10−3

VNN = 0.02 20 1.22× 10−4 2.20× 10−5 4.38× 10−5 5.9 6.9 5.9
40 2.15× 10−6 1.76× 10−7 6.96× 10−7 5.8 7.0 6.0
80 3.54× 10−6 2.02× 10−9 1.09× 10−8 -0.7 6.5 6.0

RDG-1x+ 4 2.73× 10−3 1.47× 10−1 4.05× 10−1

VNN = 0.12 8 1.32× 10−5 1.15× 10−3 7.46× 10−3 7.7 7.0 5.7
12 5.33× 10−7 6.70× 10−5 6.72× 10−4 7.9 7.0 5.9
16 5.88× 10−8 8.94× 10−6 1.21× 10−4 7.6 7.0 5.9

Table 5.2: p = 2 results for RDG-1x-Naive, 1xf̄ , and 1x+. RDG-1x+ is clearly the
fastest and most accurate scheme.

We remind the reader that RDG-1xf̄ is no longer stable for p ≥ 3. RDG-1x-Naive

remains a �at second-order scheme for both p = 1 and 2, making it no better or even

worse than existing methods such as LDG and BR2. RDG-1x+ is superior in terms

of accuracy and speed for nonlinear di�usion.

5.2 2-D Navier-Stokes

In this section we lay out the 2-D Navier-Stokes equations and the set of approxima-

tions of the shear and viscous stresses. The Navier-Stokes equations in 2-D require an

additional momentum equation in the y-direction. The two di�erent discretizations

of advection and di�usion terms are su�ciently described in the 1-D Navier-Stokes

section, hence we will not split them in this section; instead we will split the �uxes

according to the x and y directions, denoting them by F and G, respectively. The

2-D Navier-Stokes equations in conservative form are

Ut + Fx + Gy = 0, (5.35)

where

136

U =


ρ

ρu

ρv

ρE

 , (5.36)

F =


ρu

ρu2 + p− τxx
ρuv − τxy

ρuH − uτxx − vτxy + qx

 , (5.37)

G =


ρv

ρuv − τyx
ρv2 + p− τyy

ρuvH − uτyx − vτyy + qy

 . (5.38)

The viscous stresses in 2-D for a Newtonian �uid are given by,

τxx = 2µ
∂u

∂x
+ λ

(
∂u

∂x
+
∂v

∂y

)
, (5.39)

τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)
, (5.40)

τyy = 2µ
∂v

∂y
+ λ

(
∂u

∂x
+
∂v

∂y

)
. (5.41)

Applying Stokes's hypothesis (λ = −2
3
µ), the viscous stresses simplify to

τxx =
2

3
µ

(
2
∂u

∂x
− ∂v

∂y

)
, (5.42)

τyy =
2

3
µ

(
2
∂v

∂y
− ∂u

∂x

)
. (5.43)

The heat �uxes are given by

qx = − γµ

Pr (γ − 1)

∂

∂x

(
p

ρ

)
, (5.44)

qy = − γµ

Pr (γ − 1)

∂

∂y

(
p

ρ

)
. (5.45)

The viscousity coe�cient µ is determined from Sutherland's Law given in the previous

sections. The primitive variable p, pressure, is given by,

137

p = (γ − 1)

(
ρE − ρu2 + ρv2

2

)
. (5.46)

Next we test the accuracy of RDG schemes by ignoring the advection terms and only

discretizing the viscous terms of the 2-D Navier-Stokes equations. In the last section

we solve the complete 2-D Navier-Stokes equations.

5.2.1 2-D Navier-Stokes Viscous Terms

This section follows the same strategy as before where we use manufactured solutions

to determine the order of accuracy of RDG schemes. We �rst cast the 2-D Navier-

Stokes equations with an arbitrary source term into the weak formulation, and then

discretize the system with RDG. We begin by testing the system with a test function

v,

∫∫
Ωj

v


ρ

ρu

ρv

ρE


t

dxdy =

∫∫
Ωj

v




0

τxx

τxy

uτxx + vτxy − qx


x

+


0

τyx

τyy

uτyx + vτyy − qy


y

+ S

 dxdy; (5.47)

after switching to local coordinates for Cartesian grids with h = ∆x = ∆y,

h2

∫∫
Ωj

v


ρ

ρu

ρv

ρE


t

dξdη = h

∫∫
Ωj

v


0

τxx

τxy

uτxx + vτxy − qx


ξ

dξdη

+ h

∫∫
Ωj

v


0

τxx

τxy

uτxx + vτxy − qx


ξ

dξdη

138

+ h2

∫∫
Ωj

vS dξdη. (5.48)

The equations above are ready for the RDG-0x+ discretization. The quantities

inside the volume integral on the RHS are calculated from Ũ as described in Section

4.2.3. To obtain the form for RDG-1x(+), we apply integration by parts once and

arrive at

h2

∫∫
Ωj

v


ρ

ρu

ρv

ρE


t

dξdη = h

∮
∂Ωj

v



0(
τxx

τxy

)
· n̂(

τyx

τyy

)
· n̂(

uτxx + vτxy − qx
uτyx + vτyy − qy

)
· n̂


ξ

d∂Ωj

− h

∫∫
Ωj



0(
vξ

vη

)
·
(
τxx

τxy

)
(
vξ

vη

)
·
(
τyx

τyy

)
(
vξ

vη

)
·
(
uτxx + vτxy − qx
uτyx + vτyy − qy

)


η

dηdξ

+ h2

∫∫
Ωj

vS dξdη. (5.49)

where n̂ =

(
ξn

ηn

)
. The equations above are ready for RDG-1x+ discretization. The

quantities inside the volume integral on the RHS are calculated from Û as described in

Section 4.2.3, and the quantities inside the surface integral on the RHS are calculated

from the interface recovery solution, Uf .

Numerical Results for 2-D Navier-Stokes Viscous Terms

In order to isolate the numerical scheme for di�usion, we remove the Euler terms

from the Navier-Stokes equations and use RDG for the viscous �uxes. As a result the

139

density equation drops out resulting in the following system: ρu

ρv

ρE


t

=

 τxx

τyx

uτxx + vτxy − qx


x

+

 τxy

τyy

uτyx + vτyy − qy


y

, (5.50)

Our numerical test case is for a manufactured solution with approximate physics;

therefore, the values of the physical constants (such as Prandtl number, gas constant,

and speci�c-heat ratio) are �xed. The simpli�ed equations are as follows. The shear

stresses with Stokes' hypothesis are

τxx =
2

3
µ (2ux − vy) , (5.51)

τyy =
2

3
µ (2vy − vx) , (5.52)

τxy = τyx = µ (uy + vx) , (5.53)

and the heat �uxes are,

qx =
19

4
µ

(
P

ρ

)
x

, (5.54)

qy =
19

4
µ

(
P

ρ

)
y

. (5.55)

We use a viscousity coe�cient similar to that of Sutherland's law,

µ =

(
2

T + 1

)
T

3
2 , (5.56)

where T is the temperature from the ideal gas law, p = ρRT , with R = 1. We

consider the following manufactured solutions,

ρ = U0 (x, y, t) = 2, (5.57)

ρu = U1 (x, y, t) = sin (2πx) sin (2πy) e−t, (5.58)

ρv = U2 (x, y, t) = sin (2πx) sin (2πy) e−t, (5.59)

ρE = U3 (x, y, t) = 5+sin (2πx) sin (2πy) e−t, (5.60)

and generate the appropriate source terms with Mathematica. We consider a periodic-

boundary unit-square domain with x ∈ [0, 1] and y ∈ [0, 1]. The RDG spatial dis-

cretizations are coupled with the 3rd-, 4th-, and 5th-order explicit Runge-Kutta tem-

140

poral schemes for p = 1, 2, and 3, respectively. Table 5.3 shows the L2-error of the

cell average of total energy for both RDG-1x++ and RDG-1x++CO at t = 1. These

discretizations both achieve the same high orders of accuracy as RDG-2x for linear

scalar di�usion, just as we wished to achieve. It is worth noting that RDG-1x++CO

is roughly three to four times faster than RDG-1x++. In addition, RDG-1x++CO

is of much higher order than RDG-1x++ for p = 2; the results for RDG-1x++CO is

showing signs of saturation on the �ner grids.

RDG-1x++ RDG-1x++CO
p Cells L2-error O.O.A. p Cells L2-error O.O.A.
1 6× 6 0.000544 1 6× 6 0.000487

12× 12 3.79e− 05 3.8 12× 12 3.66e− 05 3.7
18× 18 7.61e− 06 4.0 18× 18 7.49e− 06 3.9
24× 24 2.42e− 06 4.0 24× 24 2.40e− 06 4.0

2 12× 12 1.91e− 08 2 12× 12 1.17e− 09
16× 16 3.89e− 09 5.5 16× 16 7.52e− 11 9.5
20× 20 1.08e− 09 5.7 20× 20 1.27e− 11 8.0
24× 24 3.76e− 10 5.8 24× 24 4.68e− 12 5.5

3 6× 6 1.32e− 09 3 6× 6 3.27e− 10
8× 8 8.61e− 11 9.5 8× 8 2.39e− 11 9.1

10× 10 9.80e− 12 9.7 10× 10 2.92e− 12 9.4
12× 12 1.62e− 12 9.9 12× 12 4.93e− 13 9.8

Table 5.3: L2-error of the cell average of total energy for the RDG-1x++ and RDG-
1x++CO schemes.

5.3 Chapter summary

We extended the concepts from the chapter on two-dimensional scalar equations to a

system of equations. Our newest schemes, RDG-1x++ and RDG-1x++CO, were able

to maintain the same high level of performance for the viscous terms of the Navier-

Stokes equations. We recommend the use of RDG-1x++CO on a Cartesian grid due

to its high order of accuracy and weaker time-step restriction. Our future research

includes adding the advection terms to see the combined e�ect of the advection and

di�usion operators.

141

CHAPTER VI

Hancock-Huynh Discontinuous

Galerkin Method

The discontinuous Galerkin method (DG) is well known for its ability to handle com-

plicated geometries, to achieve high e�ciency on parallel machines, and to obtain an

arbitrarily high order of accuracy. The method was introduced as a spatial discretiza-

tion that increases the order of spatial accuracy by adding more information per cell.

In 1973 Reed and Hill [32] demonstrated the spatial accuracy of DG schemes for

steady-state problems; however, the way to implement an equally high-order tempo-

ral discretization for time-accurate problems remained an enigma until much later. In

1989 Shu and Cockburn[7] successfully coupled the then popular Runge-Kutta method

with DG, thus introducing the �rst successful high-order time-accurate DG scheme,

the Runge-Kutta discontinus Galerkin method (RK-DG). RK-DG is a semi-discrete

method where the temporal and spatial discretizations are completely decoupled,

therefore allowing the coding process to be modularized and CFD-algorithm devel-

opers to focus on just the spatial discretization. In simple language, RK advances in

time by making a number of estimates of the solution (or stages) in the course of one

time step, and then combining all of the estimates to take one full time step forward.

Despite the elegance of the seperation of spatial and temporal discretization, RK-DG

is not e�cient due to the rapidly increasing number of stages needed for orders greater

than 4, and the reduction in stability domain caused by the hidden increase in stencil

size for one stage within the method.

Ruuth[35] introduced a special class of optimized RK schemes called Strong-

Stability-Preserving Runge-Kutta (SSP-RK), and Gottlieb[16] showcased a �fth order

SSP-RK scheme consisting of 9 stages with Courant-Frierich-Lewy number (CFL) of

2.69. Ruuth and Gottlieb showed that increasing the number of stages also increases

142

the CFL number. The extension to a high order SS-PRK is not automatic; imple-

mentation requires strict adherence to the massive tables of coe�cients provided by

the papers mentioned above. Perhaps the most disturbing aspect of this special class

of RK methods is the lack of consideration for real engineering problems; the �ux

evaluation in each stage can be so expensive that it o�sets the gain in CFL number.

We learn from this case that it is both the CFL and the number of �ux evaluations

that determine the quality of a temporal scheme.

Lörcher, Gassner, and Munz[24] introduced an arbitrary high-order space-time ex-

pansion (STE-DG) method. The process of going to a higher order is fully automatic

and the scheme allows for local time stepping. In a global time-stepping scheme like

RK-DG, the time step is restricted by the smallest cell in the computational grid. A

local time-stepping scheme allows each cell to take multiple timesteps of di�erent size,

hence signi�cantly increasing the computational e�ciency. Unlike RK-DG, STE-DG

su�ers a CFL reduction as the order of the solution polynomial increases, making it

worse than RK-DG on uniform grids. Recently Huynh[18] revisited Van Leer's[37]

scheme III and developed the �moment scheme.� The moment scheme is strictly for

p = 1 and it is for hyperbolic equations only. To avoid confusion with other uses of

the word �moment,� the name Hancock-Huynh DG (HH-DG) will be used.

A new generation of space-time methods is evolving from Hancock's observation

and will be discussed in detail in the next section. Our research goal is to apply Han-

cock's observation and extend Huynh's moment scheme beyond p = 1. In addition,

we want to extend these concepts to di�usion!

The key component of the new generation of DG schemes is to integrate the gov-

erning equation in both space and time. Since the integration is over both time and

space, the temporal and spatial discretizations are no longer seperate! In this regard,

the original solution must be modi�ed to contain the time variable. Both HH-DG and

STE-DG acquire a space-time expanded solution from the purely spatial initial dis-

cretization of the solution. The space-time expanded solution contains both temporal

and spatial derivatives, which provides a complete estimate of the solution at later

times. Traditionally, the space-time expansion is done with Cauchy-Kovalevasakya

(CK) procedure, which is used in STE-DG. CK is an exact analytical procedure for

determining temporal derivatives from the spatial derivatives based on the governing

equations. However, the overhead for determining a space-time expanded solution

might cost more than a few �ux evaluations, making it computationally expensive.

Huynh proposed a cost-e�cient way to acquire the space-time expanded solution

based on a local Runge-Kutta method (LRK), which can be viewed as a numerical

143

version of the CK procedure.

This chapter begins by reviewing Hancock's observation, which is then followed

by three main sections: HH-DG for the advection operator, HH-DG for the di�usion

operator, and HH-DG for the combined advection and di�usion operators. The ad-

vection section is presented �rst due to its simplicity; we want the HH-DG advection

operator to mimic the exact shift operator. Within this section we cover the numeri-

cal techniques for acquiring the space-time expanded solution via the LRK procedure,

and most importantly, the accurate evaluation of space-time integrals.

6.1 Hancock's Observation

In 1971 Steve Hancock1 made an important observation regarding upwind schemes

for hyperbolic equations, leading to the most e�cient implementation of the second-

order, Godunov-type MUSCL scheme[38]. The observation is illustrated in Figure

6.1, an (x, t)-diagram for the Euler equations showing cell Ωj and neighbors Ωj±1. In

an upwind �nite-volume scheme the upwind bias comes from computing the interface

�uxes with the Backward Method of Characteristics. The diagram shows the charac-

teristics drawn backward in time from each interface starting at time tn+τ . The �ow

in this region is assumed to be subsonic in the positive direction, so there are two for-

ward characteristics and a backward one. It is seen that at interface xj− 1
2
the forward

characteristics bring information from cell Ωj−1 to the interface, while the backward

characteristic brings information from cell Ωj. Similarly, at interface xj+ 1
2
the forward

characteristics bring information from Ωj, while the backward characteristic brings

information from Ωj+1.

This description stems from an interface-centered mindset. Hancock noticed that,

if we switch to a cell-centered point of view, we see that inside cell Ωj all three

characteristic equations are used to update the solution to time-level tn + τ . These

form a complete set of �ow equations; thus, we may as well use any other complete set

of �ow equations to describe the evolution within this cell, for instance, conservative

or primitive rather than characteristic variables. Staying in the cell-centered mindset,

we may update the solution inside cell Ωj to time tn + τ using information from this

cell only, as if it had no neighbors, as if the (polynomial) initial-value distributions of

�ow variables stretched beyond the cell. This is the core of Hancock's Observation.

Advancing the solution internally in all cells, in particular, in Ωj−1 and Ωj+1,

creates a discontinuity at each interface, in particular, at xj− 1
2
and xj+ 1

2
. At time

1Then at Physics International, Hayward, CA.

144

Ωj

t

Ωj - 1
x
j-½

x
j+½ Ωj + 1

τ

 −
Γ
j

 0

1−
Γ
j

 +

−
Γ

1j

 −
Γ
j+1

 0
Γ
j

 +
Γ
j

Figure 6.1: Hancock observes that the waves generated from the local evolution of
two elements, Ωj and Ωj+1, result in the correct waves arriving at the
element interface centered on xj+ 1

2
.

tn + τ a unique �ux vector may obtained at each interface by applying a Riemann

solver to each discontinuity; this makes the �ux upwind-biased. Hancock made his

observation for a scheme with linear subcell data obtained by interpolation (a �nite-

volume method with p = 1); in this case an upwind �ux computed at tn+ 1
2
∆t su�ces

to update the conserved quantities to time tn+∆t with second-order accuracy. When

applying this scheme to linear advection the upwind-biased Fromm scheme[13], the

�nite-volume version of Van Leer's Scheme III, appears.

Hancock's formulation of the p = 1 scheme was the �rst STE scheme avant la

lettre. When making Hancock's Observation for an upwind-biased scheme of a higher

order, it follows that Riemann �uxes are needed at various times with τ ≤ ∆t, in

order to compute a more accurate time-integral of the �ux; as we shall see below,

this is precisely the STE method, whether a �nite-volume or a DG discretization is

considered. It appears that Lörcher et al. were not aware of Hancock's version of

MUSCL, or did not recognize its signi�cance.

It is the merit of Huynh to have realized that for a space-time DG method to

achieve superior accuracy and stability, the space-time volume integral must also be

subjected to the in�uence of neighboring cells, rather than being computed solely

from the interior STE solution.

We are now ready to discuss in detail the discretization of the space-time weak

equations.

145

6.2 Space-time discontinuous Galerkin discretization

for advection

We begin with a hyperbolic conservation law and progress towards the space-time

weak formulation,

U t +∇ · F (U) = 0; x ∈ R, t > 0, (6.1)

where U = U (x, t) and x ∈ Rm. Since this is a Galerkin method, we let the solution

U and the test function v be in the same solution space V that spans a polynomial

space of degree p. We take the inner product of the hyperbolic conservation law with

any test function v = v (x) over both space and time, and then integrate by parts

once, ∫∫
vU t dtdx = −

∫∫
v∇ · F(U) dxdt,∫ (∮

vU dt−
∫
vtU dt

)
dx = −

∫ (∮
vF (U) · n̂ dx

)
dt.

+

∫ (∫
∇ · vF (U) dx

)
dt. (6.2)

Note that the test function is in space only (vt = 0), which means our method is not

a complete space-time DG method since the solution space does not involve time.

Nevertheless, the integration in time marks a step closer to a more coupled space-

time method. We cannot yet integrate the RHS of the equation because none of the

terms has a clearly de�ned time dependence. Two major substitutions distinguish

HH-DG from any other methods. First, we introduce the time variable into the RHS

by replacing the generic U (x, t) in the surface integral with the space-time expanded

solution, U st (x, t). Secondly, we replace U (x, t) in the volume integral with the

updated solution, Un+τ (x, t) and arrive at the �nal weak space-time formulation,∫ (∮
vU dt−

∫
vtU dt

)
dx = −

∫ ∮
vF
(
U st (x, t)

)
· n̂ dxdt

+

∫∫
∇ · vF

(
Un+τ (x, t)

)
dxdt. (6.3)

Note we have not yet begun our discretization. The discussion of the space-time

expanded solution begins in the next section, but perhaps the immediate question

on the reader's mind now is the de�nition of Un+τ (x, t). In short, if we let V be

spanned by an orthogonal basis (i.e. Legendre polynomials), the resulting volume

146

integral in the RHS of Eqn 6.3 becomes explicit. The update equation for the zeroth

moment does not contain a volume integral, hence the zeroth moment is �rst updated.

The update equation for the �rst gradient will use the newest result from the zeroth

moment. The choice of an orthogonal basis creates a hierarchical structure in which

the update equation of the n-th moment depends on the solution of the (n− 1)-th or

lower moments. This will also be explained in detail in the next section.

6.2.1 One-dimension linear advection

We begin with the simplest equation to demonstrate the discretization of the RHS of

Eqn 6.3. Consider the scalar linear advection equation,

ut + aux = 0; x ∈ R, t > 0. (6.4)

For element Ωj with x ∈
[
xj− 1

2
, xj+ 1

2

]
and at time t = tn, the transformation to local

coordinates in both space and time reads,

ξ =
x− xj− 1

2

∆x
,

τ =
t− tn

∆t
, (6.5)

with both ξ, τ ∈ [0, 1]. We acquire the space-time DG formulation by taking the inner

product of Eqn(6.4) with a test function v (ξ) and integrate by parts over element Ωj,

∆x

∫ (∮
vu dτ

)
dξ = −a∆t

∫ (∮
vu · n̂ dξ −

∫
vξu dξ

)
dτ,

∆x

∫
v
(
un+1 − un

)
dξ = −a∆t

∫ (
vu |ξ=1 −vu |ξ=0 −

∫
vξu dξ

)
dτ,

We isolate the unknown un+1 on the LHS,∫
vun+1dξ =

∫
vundξ − a∆t

∆x

∫ (
vu |ξ=1 −vu |ξ=0 −

∫
vξu dξ

)
dτ. (6.6)

In the RHS, un is simply the old solution, while the solutions in the surface and

volume integrals are yet to be de�ned. We now introduce a space-time expanded

solution ust, as a replacement for u in the surface integral and the updated solution

147

un+τ , as a replacement of u in the volume integral,∫
vun+1dξ =

∫
vundξ − a∆t

∆x

∫ (
vust |ξ=1 −vust |ξ=0 −

∫
vξu

n+τ dξ

)
dτ. (6.7)

Our goal for the advection operator is to mimic the exact shift operator, which is

a highly desirable property when solving for advection-dominated problems. This

minimizes dissipation and dispersive errors, ensuring accurate propagation of waves

over long distances. We shall discuss the exact shift operator for advection, and then

design ust and un+τ to mimic its behavior.

Exact shift operator for DG in 1-D

The term �shift� refers to the solution being advected over a �nite distance; the term

�exact� remains ambiguous at this moment. In order to clarify this ambiguity, the

section is partitioned in two: the exact shift operator and the exact projected shift

operator. The Courant number is universally de�ned as

ν = a
dt

dx
. (6.8)

The exact shift operator can only be numerically achieved with ν = 1; while for ν < 1,

an extra projection step must be applied to obtain the exact projected shift operator.

Exact shift operator

A numerical method that results in the exact shift operator when ν = 1 is certainly

desirable because such a method exhibits zero dissipation and phase error while ad-

vecting waves over long distance and time. For linear advection with a > 0, the

solution at a new time level is shifted to the right as shown in Figure 6.2. As a result,

the update equation is simply

un+1
j = unj−1, a > 0. (6.9)

Exact Projected Shift Operator

When shifting the solution with ν < 1, the discontinuity between meshes Ωj and

Ωj−1 rests inside of Ωj. As a result, an extra projection step must be taken to get

the solution back into the space V . In this piecewise-linear (p = 1) example shown

148

Ωj Ωj + 1Ωj - 1

u

Figure 6.2: The exact shift operator occurs when ν = 1. The solution of Ωj at
t = t0 + ∆t is equal to the solution of Ωj−1 at t = t0.

in Figure 6.3, the dashed line indicates the location of the shift solution, ushiftedj . We

�nd a new projected solution by enforcing for all v in V ,∫
Ωj

vun+1
j dx =

1

∆x

∫
ΩA

vushiftedj dξ +
1

∆x

∫
ΩB

vushiftedj dx, (6.10)

where the intervals are de�ned in terms of local coordinate to be ΩA = [0 ν], and

ΩB = [ν 1]. Note that the result of this type of projection is no longer exact, but

this is the best one can achieved with a shift less than one mesh.

Ωj Ωj + 1Ωj - 1

u

Figure 6.3: For ν < 1, the subcell shift causes the original discontinuity at the inter-
face to be shifted to the interior of Ωj. The new solution of Ωj (dotted

line) is now acquired by projecting the discontinuous solution ushiftedj into
the solution space.

149

Example of shift operators in matrix form

In this simple example, we show the exact projected shift operator for a > 0 up to

p = 2. The new solution of Ωj at t = t0 + ∆t is a linear combination of the old

solution of Ωj−1 and Ωj at t = t0,

ut0+∆t
j = MLu

t0
j−1 + MCut0j , (6.11)

where u is a column vector of coe�cients of u starting with the lowest moment from

top to bottom. The solution u is spanned by the orthogonal Legendre polynomials,

u = u+ ∆u (2ξ − 1) + ∆2u
(
6ξ2 − 6ξ + 1

)
. (6.12)

The exact projected-shift matrices ML and MC are expressed below. For p = 0,

ML = [ν] , MC = [1− ν] . (6.13)

For p = 1,

ML =

[
ν ν − ν2

−3ν + 3ν2 −3ν + 6ν2 − 2ν3

]
, MC =

[
1− ν −v + v2

3ν − 3ν2 1− 3ν + 2ν3

]
.

(6.14)

For p = 2,

ML =

 ν ν − ν2 ν − 3ν + 2ν3

−3ν + 3ν2 −3ν + 6ν2 − 2ν3 −3ν + 12ν2 − 12ν3 + 3ν4

5ν − 15ν2 + 10ν3 5ν − 20ν2 + 20ν3 − 5ν4 5ν − 30ν2 + 50ν3 − 30ν4 + 6ν5

 ,

MC =

 1− ν −ν + ν2 −ν + 3ν − 2ν3

3ν − 3ν2 1− 3ν + 2ν3 −3ν + 6ν2 − 3ν4

−5ν + 15ν2 − 10ν3 5ν − 10ν2 + 5ν4 1− 5ν + 10ν3 − 6ν5

 . (6.15)

Note that for ν = 1, MC becomes the zero matrix, and ML becomes the exact shift

operator. To the knowledge of the author, no time-marching method coupled with

DG spatial discretization for p ≥ 1 is stable with ν = 1, hence the exact shift operator

is rarely achieved in practice. We will soon show HH-DG is the exact projected shift

operator for ν < 1 and the exact shift operator for ν = 1. But before we get excited,

we �rst de�ne the space-time expanded solution.

150

Space-time expanded solution

HH-DG treats the surface integral on the RHS with special care; the spatial solution

uj (ξ) is replaced with a space-time expanded solution ustj (ξ, τ). For the scalar linear-

advection equation, determining ustj via the Cauchy-Kovalevskaya (CK) procedure is

straightforward. First the solution is Taylor-expanded in both space and time (to

2nd-order in this example),

u (x, t) = uj + ux,j (x− xj) + ut,j (t− tn) +
uxx,j

2
(x− xj)2

+uxt,j (x− xj) (t− tn) +
utt,j

2
(t− tn)2 , (6.16)

and then the CK prodecure automatically express all temporal derivatives in terms

of spatial derivatives based on the governing equation. The higher order derivatives

in t are determined using a hierarchical procedure starting with the lowest order

derivative,

ut = −aux,
utt = (−aux)t = a2uxx,

uxt = (ux)t = −auxx.

The CK procedure becomes extremely complicated for nonlinear systems of equa-

tions as experienced by Lörcher[24] while experimenting with STE-DG. The need

to solve for these space-time derivatives e�ciently means a numerical estimation is

preferred over an analytical one.

We introduce Huynh's approximation to ustj using a local Runge Kutta (LRK)

procedure. The term local implies Eqn (6.6) is solved by only considering the local

value of uj. Figure (6.4) reveals the de�nition of a local �ux. The solution in Ωj

is assumed to extend beyond the element boundary in both directions, hence the

characteristic lines are continuous across the element interfaces. The solution on

the interface is now uniquely de�ned; therefore there is no need for an approximate

Riemann solver. LRK advances the solution to Radau points (see Appendix A) in

a sequential manner, and the solution at these Radau points are stored. Figure(6.4)

shows the location three Radau points of a HH-DG (p = 2) scheme.

Notice we only need to know the values of ustj at the element interfaces. We brie�y

discuss the technical details of the LRK procedure.

151

Ωj

u

3
=1.00


2
=0.64


1
=0.15

1st LL-RK

2nd LL-RK

3rd LL-RK

C
h
a
ra

ct
e
ri
st
ic
 L

in
e
s

Figure 6.4: HH-DG (p = 2) using local Runge-Kutta to obtain ust. Dashed lines in-
dicates location of stored space-time solution values. The lightly dotted
lines are characteristics from Ωj and they illustrate an important property
of �locality.� For LRK, these characteristics are assumed to be valid out-
side of Ωj, hence the function values of u on the boundaries are uniquely
de�ned.

Local linear Runge-Kutta

From our numerical experiments we discovered a linear LRK (LL-RK) procedure is

su�cient for the determination of space-time derivatives for both linear and nonlinear

governing equations. A linear RK scheme is very low on storage requirement, and

the use of local �uxes makes it extremely economical. The K-th order linear RK

scheme for a system of variables comes from the nested expansion of eλt, where λ is

the eigenvalue of the spatial operator,

U (1) = Un +
∆t

K
Res (Un) ,

U (2) = Un +
∆t

K − 1
Res

(
U (1)

)
,

...

U (i) = Un +
∆t

K − i+ 1
Res

(
U (i−1)

)
,

...

U (K) = Un +
∆t

1
Res

(
U (K−1)

)
, (6.17)

152

where Res() is the residual. For the linear advection equation, the residual is

Res (uj) = − a

∆x

(
vuj |ξ=1 −vuj |ξ=0 −

∫
vξu dξ

)
. (6.18)

We emphasize here again that the residual of uj is only a function of uj itself. Referring

back to our HH-DG (p = 2) example, we use a 5th-order LL-RK to advance from

τ = 0 to τ = 0.15, then from τ = 0.15 to τ = 0.64, and �nally from τ = 0.64 to τ = 1.

This ensures the space-time solution is globally 5th-order at the three Radau points.

We repeat this procedure for all cells in the computational domain and stored their

space-time expanded solution. Now the solutions at all Radau points are known, we

proceed to evaluate the surface integral.

Surface integral of the RHS with ust

The space-time expanded solution is used exclusively to evaluate the surface inte-

gral of the �ux over time. This surface integral requires a unique function value

of ust
j+ 1

2

at the element interface; however, the value of ust
j+ 1

2

is multi-valued due to

the discontinuity of the solution. The DG community borrows the approximate Rie-

mann solver from �nite-volume methods by replacing ust
j+ 1

2

with a numerical �ux,

ûst
j+ 1

2

= ûj+ 1
2

(
ustj , u

st
j+1

)
. Returning to our p = 2 example, consider the space-time

expanded solution in elements Ωj and Ωj+1 in Figure 6.5. We use a �ux solver at

each of the Radau points to acquire an unique numerical �ux ûst
j+ 1

2

. The number of

�ux evaluations is equal to the number of Radau points in a HH-DG scheme.

Ωj + 1

u

Ωj

 ()
3

2

1
ˆ τst

j
u

+


3
=1.00


2
=0.64


1
=0.15 ()

1
2

1
ˆ τst

j
u

+

 ()
2

2

1
ˆ τst

j
u

+

Figure 6.5: At the interface between two space-time expanded solutions (represented
by solid dots), an approximate Riemann solver (indicated by ellipses) is
applied at the Radau points to acquire unique �ux values at each time
level.

153

We use the upwind �ux for linear advection with a > 0,

ûj+ 1
2

= ustj (ξ = 1, τ) . (6.19)

Applying this to Eqn.(6.6) results in

∫
vun+1dξ =

∫
vundξ − a∆t

∆x

∫ (v (1)ustj (ξ = 1, τ)− v (0)ustj−1 (ξ = 1, τ)
)
dτ︸ ︷︷ ︸

surface integral



+
a∆t

∆x

∫∫ vξu
n+τ
j dξdτ︸ ︷︷ ︸

volume integral

 . (6.20)

The last component to be discussed is the volume integral. In addition, we shall

discuss a numerical technique to integrate in time based on the Radau points.

Volume integral of RHS based on un+τ
j

The correct evaluation of the volume integral in Eqn (6.20) is essential for high-order

accuracy. In the volume integral of STE-DG, un+τ
j is simply taken as ustj ; this results

in a lower-order scheme with severely restricted CFL number. The use of ustj in the

volume integral implies no information with neighboring elements penetrates into the

interior of Ωj; the omission of wave interaction from neighboring elements results in

inaccurate physics. The HH-DG scheme takes advantage of the orthogonality of the

Legendre polynomials and incorporates wave interaction into the volume integral by

using the newest solution available. Let us illustrate this through a p = 3 example';

consider u at t = tn to be constructed out of Legendre polynomials up to the cubic

component,

v0 = 1,

v1 = 2ξ − 1,

v2 = 6ξ2 − 6ξ + 1,

154

v3 = 20ξ3 − 30ξ2 + 12ξ + 1,

unj (ξ) = u v0 + ∆u v1 + ∆2u v2 + ∆3uv3, (6.21)

where u, ∆u, ∆2u, and ∆3u are the cell average, �rst average gradient, second average

gradient and third average gradient, respectively. The �nal update equations are

un+τ = un − a∆t

∆x

∫ τ

0

(
ustj (1, τ)− ustj (0, τ)

)
dτ, (6.22)

∆u
n+τ

= ∆u
n − 3a∆t

∆x

∫ τ

0

(
ustj (1, τ) + ustj (0, τ)

)
dτ

+
3a∆t

∆x

∫ τ

0

2un+τdτ, (6.23)

∆2u
n+τ

= ∆2u
n − 5a∆t

∆x

∫ τ

0

(
ustj (1, τ)− ustj (0, τ)

)
dτ

+
5a∆t

∆x

∫ τ

0

2∆u
n+τ

dτ, (6.24)

∆3u
n+τ

= ∆3u
n − 7a∆t

∆x

∫ τ

0

(
ustj (1, τ) + ustj (0, τ)

)
dτ

+
7a∆t

∆x

∫ τ

0

(
2un+τ + 2∆2u

n+τ
)
dτ. (6.25)

Our obvious goal is to �nd the solution at τ = 1, but that is not so straightforward

for the gradients. With our speci�c choice of orthogonal basis, the update equation

for u is a stand-alone equation that can be solved �rst. Next, we consider the update

equation for ∆u where the volume integral on the RHS requires us to know un+τ

at the Radau points. In other words, we need to solve the update equation of u

at various Radau points to update ∆u. Sequentially, we need to solve the update

equation of ∆u at various Radau points to update ∆2u. This hierachical structure

for updating variables is the strategy employed in HH-DG to include wave interaction

into the volume integral. The integration of the surface and volume integrals in time

may seem expensive; in this regard, we introduce a numerical trick called implicit

155

Radau integration in Appendix A to reduce the computational cost.

The current HH-DG scheme with Legendre polynomial is explicit in time. If we

are to use a non-orthogonal basis, the volume integral will include other solution

coe�cients, turning HH-DG into an implicit scheme. This would imply an extra

nonlinear solver must be implemented; the study on the cost and accuracy of using

non-orthogonal basis is left for the future.

Numerical results for linear advection

The following numerical example takes a = 1 on the domain x ∈ [0, 1], with periodic

boundary condition. The initial values form a sine wave,

U0 = sin(2πx). (6.26)

The ending time is a positive integer, hence the exact �nal solution is the same as the

initial values. For both HH-DG and STE-DG with p-th order solution polynomial,

the code uses a (p+ 1)-point Radau-Gaussian integration in time, and a (2p+ 1)-

point Gaussian integration in space. A comparison between STE-DG and HH-DG for

p = 1 is provided in Table 6.1. HH-DG is clearly faster due to the larger time step;

in this case the CFL number achieved by HH-DG is more than 3 times larger. In

reality, HH-DG is able to achieve a CFL of unity, which results in the exact solution

due to the exact-shift property; however, we refrained from doing that in order to get

a measurement of the order of accuracy.

We then consider advecting waves over a long period of time, tmax = 300. Table

6.2 shows the order of accuracy is clearly 2p+ 1 in the cell average, whereas the order

of accuracy of the �rst average gradient is quite unpredictable. Again the CFL is set

to 0.9375 because there is no numerical error with a CFL of unity.

Brief remark on stability analysis

The Fourier analysis for stability is omitted for the HH-DG advection operator for

one good reason. It turns out the �nal update matrix for the scalar linear advec-

tion equation is simply given by the exact shift and exact projected shift operators

presented in the previous section. As long as ν ≤ 1, stability is ensured.

156

a) STE-DG p = 1, CFL = 0.3

Nele L2 ūerror Rate L24uerror Rate Time [s]

10 9.07× 10−2 2.65× 10−2 1.0
20 2.30× 10−2 1.9 3.03× 10−3 3.1 3.6
40 5.75× 10−3 2.0 3.07× 10−4 3.3 14.2
80 1.44× 10−4 2.0 2.02× 10−5 3.9 57.1
160 3.60× 10−4 2.0 2.03× 10−6 3.3 225.5
320 8.99× 10−5 2.0 1.39× 10−6 0.5 896.2

b) HH-DG p = 1, CFL = 0.9375

Nele L2 ūerror Rate L24uerror Rate Time(s)

10 3.10× 10−3 1.88× 10−2 0.4
20 4.14× 10−4 3.0 4.49× 10−3 2.0 1.1
40 5.30× 10−5 3.0 1.27× 10−3 2.0 4.4
80 6.68× 10−6 3.0 3.18× 10−4 2.0 17.9
160 8.38× 10−7 3.0 7.95× 10−5 2.0 71.4
320 1.05× 10−7 3.0 1.99× 10−5 2.0 283.2

Table 6.1: A comparison of order of accuracy between STE-DG and HH-DG for p = 1,
tfinal = 3. HH-DG is roughly 3 times faster than STE-DG, and is one order
higher in terms of accuracy of the cell average.

6.2.2 One-dimensional Euler equations

The Euler equations are our next testing ground for our HH-DG advection operator.

We demonstrate that, regardless of the nonlinearity, a LL-RK procedure and a hi-

erarchical update of the conservative variables still work �awlessly. The 1-D Euler

equations are given by,  ρ

ρu

ρE


t

+

 ρu

p+ ρu2

ρuH


x

= 0, (6.27)

where ρ is density, u is the velocity, p is the pressure, E is the total energy, and H

is the total enthalpy. Pressure and total enthalpy are expressed in terms of ρ, u, and

E,

p = (γ − 1)

(
ρE − 1

2
ρu2

)
, (6.28)

157

a) HH-DG p = 1

Nele L2 ūerror Rate L24uerror Rate

10 4.01× 10−2 1.80× 10−2

20 5.28× 10−3 2.9 1.88× 10−3 3.3
40 6.71× 10−4 3.0 6.25× 10−4 1.6
80 8.40× 10−5 3.0 2.66× 10−4 1.2
160 1.05× 10−5 3.0 2.09× 10−5 3.7
320 1.31× 10−6 3.0 1.37× 10−5 0.6

b) HH-DG p = 2

Nele L2 ūerror Rate L24uerror Rate L242uerror Rate

10 9.61× 10−4 2.96× 10−4 1.20× 10−3

20 3.08× 10−5 5.0 5.15× 10−6 5.8 1.50× 10−4 3.0
40 9.73× 10−7 5.0 3.21× 10−7 4.0 1.87× 10−5 3.0
80 3.07× 10−8 5.0 3.45× 10−8 3.2 2.34× 10−6 3.0
160 9.71× 10−10 5.0 4.03× 10−9 3.1 2.93× 10−7 3.0
320 3.12× 10−11 5.0 4.92× 10−10 3.0 3.66× 10−8 3.0

b) HH-DG p = 3

Nele L2 ūerror Rate L24uerror Rate

10 5.58× 10−6 1.75× 10−6

20 4.50× 10−8 7.0 5.86× 10−8 4.9
40 3.69× 10−10 6.9 3.64× 10−9 4.0
80 4.13× 10−12 6.5 2.27× 10−10 4.0
160 1.23× 10−13 5.1 1.42× 10−11 4.0

Nele L242uerror Rate L243uerror Rate

10 2.75× 10−6 4.92× 10−5

20 8.68× 10−8 4.9 3.08× 10−6 4.0
40 2.72× 10−9 5.0 1.92× 10−7 4.0
80 8.51× 10−11 5.0 1.20× 10−8 4.0
160 2.66× 10−12 5.0 7.51× 10−10 4.0

Table 6.2: Order of accuracy for p = 1, 2, 3, CFL = 0.9375, tfinal = 300.

158

H = E +
p

ρ
. (6.29)

The primitive variables are replaced with the conservative variables,

U t +∇ · F (U) =

 U0

U1

U2


t

+

 U1

p+
U2

1

U0

U1H


x

= 0, (6.30)

where p and H is now,

p = (γ − 1)

(
U2 −

U2
1

2U0

)
, (6.31)

H =
U1

U0

(
U2 + (γ − 1)

(
U2 −

U2
1

2U0

))
. (6.32)

We transform the conservative form of the Euler equations into weak form as with

Eqn 6.3,∫
vUn+1dξ =

∫
vUndξ +

∆t

∆x

∫
vξF

(
Un+τ
j

)
dξdτ

−∆t

∆x

(∫ (
v (1) F

(
U st
j (1, τ)

)
− v (0) F

(
U st
j−1 (1, τ)

))
dτ

)
(6.33)

We acquire U st
j−1 by using a suitable order of LL-RK, and then solve the Riemann

problem at the various Radau points using an approximate Roe solver[33]. The real

enigma arises in the the volume integral of the RHS where the volume integrals for

momentum and total energy contain highly nonlinear terms that make it impossible

to express Un+τ
j solely in terms of the updated variables. Our solution is to express

F
(
Un+τ
j

)
in terms of both updated variables Un+τ

j , and the space-time expanded

solution, U st
j−1. The following examples for p = 1 and 2 shall kindly supplement your

understanding.

159

1-D Euler HH-DG p = 1 discretization

The piecewise-linear orthogonal Legendre basis is given by

v0 = 1,

v1 = 2ξ − 1. ξ ∈ [0, 1]

The three conservative variables are expressed as

U0 = U0 + ∆U0 (2ξ − 1) ,

U1 = U1 + ∆U1 (2ξ − 1) ,

U2 = U2 + ∆U2 (2ξ − 1) ,

summing up to a total of six degrees of freedom per element. We churn out the update

equations by inserting these expressions into Eqn 6.33,

U
n+τ

= U
n − ∆t

∆x

(∫ τ

0

(
F̂j+ 1

2
− F̂j− 1

2

)
dτ

)
, (6.34)

∆U
n+τ

= ∆U
n − 3∆t

∆x

(∫ τ

0

(
F̂j+ 1

2
+ F̂j− 1

2

)
dτ

)
+

3∆t

∆x

(∫∫ τ

0

v1 (ξ) F
(
UHDG
p1

)
dτdξ

)
. (6.35)

Notice the same
∫ τ

0
F̂j+ 1

2
dτ is used in both update equations. We �rst use a LL-RK

procedure to acquire U st
j (ξ, τk) at all Radau points τk,

U st (ξ, τk) =

 U0
st,τk

+ ∆U0
st,τk

(2ξ − 1)

U1
st,τk

+ ∆U1
st,τk

(2ξ − 1)

U2
st,τk

+ ∆U2
st,τk

(2ξ − 1)

 . (6.36)

The space-time expanded solutions are then fed into a numerical �ux solver,

F̂τk
j+ 1

2

= F̂τk
j+ 1

2

(
U st
j (1, τk) ,U

st
j+1 (0, τk)

)
. (6.37)

We solve for the �ux at all Radau points to integrate
∫ τ

0
F̂j+ 1

2
dτ numerically. Eqn 6.34

is easily solved to provide the new cell averages at the Radau points. As for updating

160

the �rst average gradient, we introduce a new place-holder character UHDG
p1 , which is

a mixture of updated information and old information,

UHDG
p1 (ξ, τk) =

 U0
n+τk

+ ∆U0
st,τk

(2ξ − 1)

U1
n+τk

+ ∆U1
st,τk

(2ξ − 1)

U2
n+τk

+ ∆U2
st,τk

(2ξ − 1)

 . (6.38)

With UHDG
p1 de�ned at all Radau points, we complete the update for the �rst averaged

gradient for τ = 1.

1-D Euler HH-DG p = 2 discretization

The section brie�y goes through the discretization of p = 2; the local Legendre

polynomials are given by

v0 = 1,

v1 = 2ξ − 1,

v2 = 6ξ2 − 6ξ + 1, ξ ∈ [0, 1]

The three conservative variables are

U0 = U0 + ∆U0 (2ξ − 1) + ∆2U0

(
6ξ2 − 6ξ + 1

)
,

U1 = U1 + ∆U1 (2ξ − 1) + ∆2U0

(
6ξ2 − 6ξ + 1

)
,

U2 = U2 + ∆U2 (2ξ − 1) + ∆2U0

(
6ξ2 − 6ξ + 1

)
,

with a total of nine degrees of freedom per element. The update equations are given

by

U
n+τ

= U
n − ∆t

∆x

(∫ τ

0

(
F̂j+ 1

2
− F̂j− 1

2

)
dτ

)
, (6.39)

∆U
n+τ

= ∆U
n − 3∆t

∆x

(∫ τ

0

(
F̂j+ 1

2
+ F̂j− 1

2

)
dτ

)
+

3∆t

∆x

(∫∫ τ

0

v1 (ξ) F
(
UHDG
p1

)
dτdξ

)
, (6.40)

161

∆2U
n+τ

= ∆2U
n − 5∆t

∆x

(∫ τ

0

(
F̂j+ 1

2
− F̂j− 1

2

)
dτ

)
+

5∆t

∆x

(∫∫ τ

0

v2 (ξ) F
(
UHDG
p2

)
dτdξ

)
. (6.41)

We �rst solve Eqn 6.39 to obtain the new U
n+τ

at all Radau points, and insert them

into the place-holder variable,

UHDG
p1 (ξ, τk) =

 U0
n+τk

+ ∆U0
st,τk

(2ξ − 1) + ∆2U0
st,τk

(6ξ2 − 6ξ + 1)

U1
n+τk

+ ∆U1
st,τk

(2ξ − 1) + ∆2U1
st,τk

(6ξ2 − 6ξ + 1)

U2
n+τk

+ ∆U2
st,τk

(2ξ − 1) + ∆2U2
st,τk

(6ξ2 − 6ξ + 1)

 . (6.42)

Again, UHDG
p1 is a mixture of the newest solution and the space-time expanded solu-

tion. We then solve for ∆U
n+τ

at all Radau points, and insert them into the next

place-holder variable,

UHDG
p2 (ξ, τk) =

 U0
n+τk

+ ∆U0
n+τk

(2ξ − 1) + ∆2U0
st,τk

(6ξ2 − 6ξ + 1)

U1
n+τk

+ ∆U1
n+τk

(2ξ − 1) + ∆2U1
st,τk

(6ξ2 − 6ξ + 1)

U2
n+τk

+ ∆U2
n+τk

(2ξ − 1) + ∆2U2
st,τk

(6ξ2 − 6ξ + 1)

 . (6.43)

This allows us to update ∆2U
n+τ

and completes the update for all the degrees of

freedom.

Numerical experiment with entropy wave

We test our HH-DG p = 1 and 2 discretizations for the Euler equations on the

advection of an entropy wave[25]. The exact solution for the compressible Euler

equation is

ρ = ρ∞ + A sin [π (x− U∞t)] ,
u = U∞,

p = P∞,

where A is some constant. We solve this on domain x ∈ [−3, 3] with periodic boundary

condition. The errors of the density variable are presented in Table 6.3. For nonlinear

equations, we took CFL = 1 and achieved 3rd-order and 5th-order accuracy in the

cell average for p = 1 and p = 2, respectively. It is extremely pleasing to demonstrate

both accuracy and stability at a CFL number of unity, while RK-DG is only stable

162

with CFL = 0.4 and 0.27 for p = 1 and 2, respectively (see Section 3.4.1).

Nele DOF L2 ρ̄error Rate L24ρerror Rate

12 24 3.14× 10−1 2.57× 10−1

24 48 1.54× 10−1 1.0 6.18× 10−2 2.0
48 96 2.60× 10−2 2.6 5.41× 10−3 3.5
96 192 3.42× 10−3 3.0 5.91× 10−4 3.2
192 384 4.31× 10−4 3.0 5.05× 10−5 3.6
384 768 5.39× 10−5 3.0 2.19× 10−5 1.2

Nele DOF L2 ρ̄error Rate L24ρerror Rate L242ρerror Rate

12 24 8.53× 10−3 8.49× 10−3 3.32× 10−3

24 48 3.35× 10−4 4.7 4.79× 10−5 7.5 7.08× 10−5 5.5
48 96 1.14× 10−5 4.9 1.99× 10−5 1.3 8.56× 10−6 3.1
96 192 4.09× 10−7 4.8 2.88× 10−6 2.8 5.29× 10−7 4.0
192 384 1.60× 10−8 4.7 3.77× 10−7 3.0 1.03× 10−7 2.4
384 768 6.00× 10−10 4.7 3.58× 10−8 3.4 4.98× 10−8 1.1

Table 6.3: Entropy wave case: order of accuracy for HH-DG p = 1 and 2, CFL = 1.0,
tfinal = 50. A density sine-wave is advected over 50 periods, while velocity
and total energy remain constant.

Numerical experiment with a single expansion wave

The previous experiment is really just a single advection equation for density; in

this experiment we take on a harder problem where all the conserved variables are

coupled. Consider a single expansion wave[25] centered in x ∈ [0, 1] with the following

solutions,

V (ξ) = (0.02) tanh (10 (x− 0.5− V t)) , (6.44)

u (x, t)

a∞
= M∞ +

2

γ + 1

V (ξ)

a∞
, (6.45)

ρ (x, t)

ρ∞
=

[
1 +

γ − 1

2

(
u (ξ)

a∞
−M∞

)] 2
γ−1

, (6.46)

p (x, t)

p∞
=

[
1 +

γ − 1

2

(
u (ξ)

a∞
−M∞

)] 2γ
γ−1

, (6.47)

163

where ξ = x−V t and V = u+ a. For our speci�c problem, the freestream conditions

are as listed,

ρ∞ = γ, (6.48)

p∞ = 1, (6.49)

a∞ = 1, (6.50)

M∞ = −1. (6.51)

All characteristics are linear and entropy is constant in space and time as in the

Riemann invariant u − 2a
γ−1

. The �ow exits supersonically to the left and enters

subsonically from the right. A simple out�ow boundary condition is used on the left;

we apply the same condition on the right with caution. We extend the computational

domain to x ∈ [0, 2] and ensure the forward wave of the expansion fan has not reached

the right boundary. The numerical results are presented in Table 6.4. The scheme is

clearly 3rd-order accurate for p = 1. Let us try something harder for our next test

drive.

Nele DOF L2 ρ̄error Rate L24ρerror Rate

12 24 2.99× 10−5 8.61× 10−5

24 48 5.16× 10−6 2.5 1.94× 10−5 2.1
48 96 6.89× 10−7 2.9 4.65× 10−6 2.0
96 192 8.76× 10−8 2.9 1.15× 10−6 2.0

Table 6.4: A single expansion fan case: order of accuracy for HH-DG (p = 1), CFL =
1.0, tfinal = 10.

Numerical experiment for double expansion waves

The following description of the double expansion test case is a shortened version from

Van Leer's CFD II course. This problem is beautifully designed where the �ow exits

supersonically at the domain boundaries and it can be easily extended to two and

three dimensions. Ghost cells are used at the boundary of this 1-D problem. The two

expansion waves will eventually meet each other at time t = tm and the interaction

between them becomes nonlinear. A quick way to measure the error of the numerical

scheme is to look at the change of entropy. Entropy is initialized to be constant in

space and should remain constant through time since the entropy is constant along

characteristics of an expansion fan. This is true even in interacting expansion waves.

164

Consider the following problem initialization on the the domain x ∈ [−3, 3],

u =



u∞,L x < −1.5

a∞

(
M∞,L − u∞,L

2a∞
tanh

(
x+1

1
4
−(x+1)2 + 1

))
−1.5 ≤ x ≤ −0.5

0 −0.5 < x < 0.5

a∞

(
M∞,R +

u∞,R
2a∞

tanh
(

x−1
1
4
−(x+1)2 − 1

))
0.5 ≤ x ≤ 1.5

u∞,R x > 1.5

, (6.52)

with the following conditions in the freestreams on the left and right side,

u∞,L = 2/
√
γ, (6.53)

u∞,R = −2/
√
γ, (6.54)

M∞,L = −2, (6.55)

M∞,R = 2, (6.56)

a∞ = 1/
√
γ, (6.57)

with γ = 1.4. The equations for density and pressure come from the previous test

case. The change in entropy is also de�ned to be the error of the numerical scheme,

S = ∆s = log

((
ptfinal
ργtfinal

)
/

(
pt0
ργt0

))
, (6.58)

where t0 = 0 and tfinal = 2. The results for p = 1 and 2 are shown in Table 6.5.

It appears for this highly nonlinear problem that the results on the coarsest grids

are not �ne enough to capture the complex interaction of the two expansion waves.

The order of accuracy is better revealed on the �ner grids where the p = 1 scheme is

3rd-order accurate, and roughly 4th-order accurate for p = 2. The latter accuracy is

disappointing as we expected 5th-order acuracy (2p + 1). Moreover, we have notice

that the L∞ error norm (not shown) is one order lower than L2; this is indeed puzzling

and will be left for future investigation.

6.2.3 Summary of HH-DG for advection

HH-DG is a space-time DG scheme that mimics the exact shift operator. The scheme

is blessed with the good spatial accuracy of a typical DG scheme; it is also the �rst

scheme to achieve CFL = 1 for all p. The secret comes in the careful evaluation

of both surface and volume integrals. We demonstrated the volume integral must

165

Nele DOF L2 Serror Rate L2 ∆Serror Rate

12 24 2.41× 10−2 8.53× 10−2

24 48 4.25× 10−3 2.5 1.44× 10−2 2.5
48 96 3.02× 10−4 3.8 1.52× 10−3 3.2
96 192 3.85× 10−5 2.9 1.99× 10−4 2.9
192 384 5.00× 10−6 2.9 2.92× 10−5 2.7
384 768 6.96× 10−7 2.8 4.91× 10−6 2.5

Nele DOF L2 Serror Rate L2 ∆Serror Rate L2 ∆2Serror Rate

12 24 2.46× 10−2 3.46× 10−2 5.96× 10−2

24 48 1.61× 10−3 3.9 1.85× 10−3 4.2 5.05× 10−3 3.5
48 96 4.01× 10−4 2.0 3.14× 10−4 2.5 3.21× 10−4 3.9
96 192 3.36× 10−5 3.5 2.68× 10−5 3.5 2.07× 10−5 3.9
192 384 1.61× 10−6 4.3 1.55× 10−6 4.1 1.29× 10−6 4.0
384 768 8.36× 10−8 4.2 1.15× 10−7 3.7 8.33× 10−8 3.9

Table 6.5: Double expansion fans case: order of accuracy for HH-DG p = 1 and 2,
CFL = 1.0, tfinal = 2. Two expansion waves expand and interact at the
center of the domain. The error is given by the change of entropy which
is supposed to be zero.

include wave interaction in order to achieve good accuracy and stability. Numerical

results for linear advection con�rm the excellent stability and accuracy of HH-DG

and the use of a local linear RK procedure to replace the CK procedure. As for the

results for Euler equations, HH-DG works very well for p = 1 (which is expected since

it is identical to Huynh's moment scheme); however, much work is ahead to ensure

the p = 2 version works as well as its linear counterpart.

6.3 Space-time discontinuous Galerkin for di�usion

The HH-DG advection operator demonstrates remarkable robustness and high-order

accuracy. We wish to repeat that success in the HH-DG di�usion operator; precisely,

we want to combine HH-DG with RDG to form the Hancock-Huynh recovery-based

DG (HH-RDG) scheme. Unlike the previous section where we have an �exact� op-

erator to replicate, our design objective is to obtain a di�usion scheme with the

highest possible Von Neumann number (VNN). We establish a few high-order dif-

fusion schemes based on the classical �nite-di�erence framework, and a version of

�nite di�erence with subgrid information. These schemes will provide a basis for

comparison and insight into designing space-time di�usion schemes.

166

Consider the scalar linear di�usion equation with a source term,

ut = Duxx + S (x) , (6.59)

where D is the constant di�usion coe�cient. The governing equation is tested with

v (x) in both space and time,∫∫
vut dxdt =

∫∫
vDuxx dxdt+

∫∫
vS (x) dxdt, (6.60)

We express everything in terms of local variables,

∆x

∫∫
vuτ dξdτ =

D∆t
∫∫

vuξξ dξdτ

∆x
+

∫∫
vS (x) dxdt, (6.61)

=
D∆t

∫ (
[vuξ − vξu] |ξ=1

ξ=0 +
∫
vξξu dξ

)
dτ

∆x

+

∫∫
vS (x) dxdt. (6.62)

Note the RHS is currently expressed in spatial variables only. We implement the

following two major substitutions to incorporate HH-DG concepts into the di�usion

operator. First we introduce the time variable by replacing u (ξ) in the surface integral

with the space-time expanded solution ust (ξ, τ). Secondly, we replace u (ξ) in the

volume integral with the updated solution, un+τ :

∆x

∫∫
vuτ dξdτ =

D∆t

∆x

∫ ([
vustξ (ξ, τ)− vξust (ξ, τ)

]
|ξ=1
ξ=0

)
dτ

+
D∆t

∆x

∫∫
vξξu

n+τ dξ dτ +
∆t

∆x

∫∫
vS dξ dτ. (6.63)

The discretization of this space-time di�usion equation for DG is a completely un-

explored territory; we must look at other numerical frameworks for guidance. Our

readers can jump directly to Section 6.3.6 for the HH-RDG discretization without

loss in continuity; however, if our readers wish to follow our journey, the following

sections provide space-time discretizations based on �nite-di�erence frameworks.

6.3.1 Deriving space-time di�usion schemes

We derive di�erent space-time di�usion schemes based on the classic �nite-di�erence

framework, �nite di�erence with subgrid information, and DG. The part on DG details

our naive attempts to generate a di�usion scheme based on the advection scheme from

167

the previous section; the result is disappointing and once again shows what is good

for advection is not good for di�usion. Near the end of this section, we summarize

our �ndings and compare all the di�usion schemes.

As with all great ideas, we begin with the simplest 1-D linear di�usion equation

(no source term),

ut = Duxx. (6.64)

The classical �nite-di�erence scheme stores the function value at each point. The

�nite-di�erence scheme with subgrid information stores the solution and its deriva-

tives at each point. Finally, our DG with modal basis stores moments within each

cell. We compare these schemes based on their spatial order of accuracy and range of

Von Neumann number (VNN). Notice a space-time scheme contains errors measured

in both space and time, which are proportional to ∆x and ∆t, respectively. Depend-

ing on the nature of the PDE, we can always convert an error in ∆t into ∆x: i.e.,

∆t ∝ ∆x in an advection-dominated problem, and ∆t ∝ ∆x2 in a di�usion-dominated

problem. From here on, the term �order of accuracy� of a space-time scheme implies

an error in terms of ∆x.

Classical �nite-di�erence scheme based on Taylor expansion in

time

The �nite-di�erence (FD) method is good for a preliminary study because of the

ease in formulation. We will show later that FD schemes make excellent space-time

di�usion schemes, however, at the cost of a large stencil. We proceed to derive 4th-

and 6th-order schemes.

Fourth-order FD di�usion scheme

To acquire the approximate solution at t = to+∆t, we work with the Taylor expansion

of the solution in time,

u (t0 + ∆t) = u (to) + ut ∆t+ utt
∆t2

2
+ uttt

∆t3

6
+ utttt

∆t4

24
+ . . . (6.65)

We truncate the in�nite series and keep the 0th, 1st, and 2nd-order terms. The

truncated series is discretized in a FD framework by assuming equally spaced points

and centering on a point located at xj,

168

uj (t0 + ∆t) = uj (to) + ut,j ∆t+ utt,j
∆t2

2
. (6.66)

The two temporal derivatives are transformed into spatial derivatives via the Cauchy-

Kovalevskaya (CK) procedure and then approximated with central �nite-di�erence

operators; our �rst pass at this gives

ut,j = Duxx,j ≈ D
∆2uj
∆x2

= D
uj+1 − 2uj + uj−1

∆x2
, (6.67)

utt,j = D2uxxxx,j ≈ D2 ∆4uj
∆x4

= D2 ∆2 (∆2uj)

∆x4
= D2uj+2 − 4uj+1 + 6uj − 4uj−1 + uj−2

∆x4
.

(6.68)

Notice the approximately equal signs are used since the �nite-di�erence operators used

here contain numerical errors. The �crudeness� of the approximation is quanti�ed by

Taylor expanding the solution in space,

uj±l = u (xj ± l∆x) = uj±ux,j l∆x+uxx,j
(l∆x)2

2
±uxxx,j

(l∆x)3

6
+uxxxx,j

(l∆x)4

24
+. . . ,

(6.69)

where l is an integer. We �rst look at the error in the second derivative. Inserting

the Taylor expansion into Eqn 6.67 yields

∆2uj
∆x2

= uxx,j + uxxxx,j
∆x2

12
+ uxxxxxx,j

∆x4

360
+O

(
∆x6

)
. (6.70)

This 2nd-order di�erence operator approximates the real second derivative uxx with

an error of O (∆x2). Since this term gets multiplied by ∆t in Eqn 6.66, the �nal

error becomes O (∆x4) for a di�usion-dominated problem. We seek to improve upon

the approximation of uxx by adding a correction term to Eqn 6.70 to remove the

2nd-order error,

uxx,j ≈
∆2uj
∆x2

− uxxxx,j
∆x2

12
, (6.71)

hence our slightly re�ned approximation of uxx contains an error of O (∆x4). We look

at the error in the fourth derivative by inserting the Taylor expansion into Eqn 6.68,

∆4uj
∆x4

= uxxxx,j + u(6),j
∆x2

6
+ u(8),j

∆x4

80
+O

(
∆x6

)
, (6.72)

The O (∆x2) error is acceptable since this term is multiplied with ∆t2 ∝ ∆x4, result-

ing in a �nal error of O (∆x6). Inserting Eqns 6.68 and 6.71 into Eqn 6.90 results in

169

a scheme that is 4th-order in space,

uj (t0 + ∆t) = uj (to) +D∆t

(
∆2uj
∆x2

− 1

12

∆4uj
∆x2

)
+
D2∆t2

2∆x4
∆4uj,

= uj (to) + r∆2uj +

(
r2

2
− r

12

)
∆4uj, (6.73)

where r is the shorthand notation of the Von Neumann number,

r =
D∆t

∆x2
. (6.74)

We replace central-di�erence operators with Fourier mode

uj = eiβj, (6.75)

and acquire an ampli�cation factor of

g (r, β) = 1 + 2r (cosβ − 1) + 4

(
r2

2
− r

12

)
(cosβ − 1)2 . (6.76)

Figure 6.6 shows the ampli�cation factor for di�erent values of r. The line with r = 2
3

represents the highest possible VNN without inducing instability.

0 1 2 3 4 5 6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r = 0.10

r = 0.45

r = 0.66

β

g

Figure 6.6: Ampli�cation factor of the 4th-order di�usion scheme using central dif-
ferencing. A maximum of r = 0.66 is achieved with regard to stability.

170

6th-order FD di�usion scheme

We quickly generate a 6th-order FD di�usion scheme without detailing too much of

the mathematics. The 6th-order central-di�erence operator is

∆6uj
∆x6

=
uj+3 − 6uj+2 + 15uj+1 − 20uj + 15uj−1 − 6uj−2 + uj−3

∆x6
. (6.77)

Inserting the Taylor expansion (Eqn 6.69) results in

∆6uj
∆x6

= u(6),j + u(8),j
∆x2

8
+O

(
∆x4

)
; (6.78)

the 2nd-order error is �ne since it is multiplied by ∆t3 ∝ ∆x6, resulting in an error of

O (∆x8). We use 6th-order central-di�erence operator to improve upon the 4th-order

operator in Eqn 6.68,

uxxxx,j ≈
∆4uj
∆x4

− u(6),j
∆x2

6
. (6.79)

We then use the 6th derivative together with the improved 4th derivative to correct

the errors in the 2nd-order central di�erence operator,

uxx,j ≈
∆2uj
∆x2

− uxxxx,j
∆x2

12
+ u(6),j

∆x4

90
. (6.80)

Inserting Eqns 6.78-6.80 into Eqn 6.65 results in the following 6th-order FD scheme,

uj (t0 + ∆t) = uj (to) +D∆t

(
∆2uj
∆x2

− 1

12

∆4uj
∆x2

+
1

90

∆6uj
∆x2

)
+
D2∆t2

2

(
∆4uj
∆x4

− 1

6

∆6uj
∆x4

)
+
D3∆t3

6

(
∆6uj
∆x6

)
, (6.81)

with the following ampli�cation factor,

g (r, β) = 1 + 2r (cosβ − 1) + 4

(
r2

2
− r

12

)
(cosβ − 1)2

+8

(
r3

6
− r2

12
+

r

90

)
(cosβ − 1)3 . (6.82)

We present a plot of the ampli�cation factor in Figure 6.7. The scheme is stable for

VNN up to 0.8413.

171

r = 0.84

r = 0.66

r = 0.50

0 1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0

Β

g

Figure 6.7: Ampli�cation factor of the 6th-order di�usion scheme using central dif-
ferencing. A maximum of r = 0.84 is achieved.

Summary of FD �ndings

The classical FD framework generates space-time di�usion schemes with very high

VNN's. The 4th-order scheme with a 5-point stencil obtains a maximum VNN of

0.66, while the 6th-order scheme with a 7-point stencil obtains a maximum VNN of

0.84. Perhaps the most surprising �nding in this exercise is that a growing stencil

for di�usion increases the VNN; this is contrary to advection where a growing stencil

centered around the update point (as in RK) decreases the CFL number. We believe

a growing stencil mimics the in�nite propagation speed of the characteristics in a

di�usion equation; in contrast, a growing stencil for advection brings in additional

information from downwind, which is destabilizing. However, a growing stencil greatly

increases the complexity of the code for unstructured grids and makes boundary

treatment a nightmare. We proceed to look at FD schemes with subgrid information

to see what we can achieve with a compact stencil.

Finite-di�erence scheme with subgrid information based on Tay-

lor expansion in time

We delve into two FD schemes with subgrid information. Considering equally spaced

points, we consider a p = 1 scheme with the solution value and its �rst derivative

stored at each point, and then a p = 2 scheme with the solution value and its �rst

and second derivatives stored at each point.

172

FD with p = 1 subgrid information

We consider an FD scheme with p = 1 subgrid information; this allows us to store the

solution value u and its �rst derivative ux at each point. The manner of analysis is

the same as the previous section applied to a system instead. Consider the 2nd-order

Taylor expansion of the solution and its derivative in time,

uj (t0 + ∆t) = uj (to) + ut,j ∆t+ utt,j
∆t2

2
,

ux,j (t0 + ∆t) = ux,j (to) + uxt,j ∆t+ uxtt,j
∆t2

2
. (6.83)

Our strategy is to �t a 5th-order polynomial through the three points and obtain its

derivatives via a CK procedure,

ut = Duxx ≈
2D (uj+1 − 2uj + uj−1)

∆x2
− D (ux,j+1 − ux,j−1)

2∆x
,

uxt = Duxxx ≈
15D (uj+1 − uj−1)

2∆x3
− 3D (ux,j+1 + 8ux,j + ux,j−1)

2∆x2
,

utt = D2uxxxx ≈ −
12D2 (uj+1 − 2uj + uj−1)

∆x4
+

6D2 (ux,j+1 − ux,j−1)

∆x3
,

uxtt = D2uxxxxx ≈ −
90D2 (uj+1 − uj−1)

∆x5

−30D2 (ux,j+1 + 4ux,j + ux,j−1)

∆x4
. (6.84)

Inserting Eqn 6.69 and the Taylor expansion of ux,j below,

ux,j±1 = ux (xj ±∆x) = ux,j±uxx,j ∆x+uxxx,j
∆x2

2
±uxxxx,j

∆x3

6
+uxxxxx,j

∆x4

24
+. . . ,

(6.85)

gives us the error associated with each approximation of the derivatives,

E (uxx,j) = −∆x4

360
uxxxxxx,j +O

(
∆x6

)
,

E (uxxx,j) = −∆x4

240
uxxxxxxx,j +O

(
∆x6

)
,

E (uxxxx,j) = +
∆x2

15
uxxxxxx,j +O

(
∆x4

)
,

E (uxxxxx,j) = +
∆x4

12
uxxxxxxx,j +O

(
∆x4

)
. (6.86)

This means the RHS of Eqn 6.83 contains spatial errors of O (∆x6); however, since

Eqn 6.83 is only 2nd-order in time, the resulting scheme is 4th-order accurate for

173

time-dependent problems, and 6th-order accurate for steady-state problems. The

system can be expressed in terms of Fourier mode β,(
un+1

un+1
x

)
j

=

(
un

unx

)
j

+M (r, β)

(
un

unx

)
j

, (6.87)

where M is a 2× 2 matrix,

M =

[
−4r + 12r2 + 4r cos (β)− 12r2 cos (β) −i r∆x sin (β) + 6 i r2 ∆x sin (β)

15 i r sin(β)
∆x

− 90 i r2 sin(β)
∆x

−12r + 60r2 − 3r cos (β) + 30r2 cos (β)

]
.

(6.88)

Let λ1,2 be the two eigenvalues of M , then the ampli�cation factors are

g1,2 = 1 + λ1,2 (r, β) . (6.89)

Figure 6.8 shows the two ampli�cation factors for various values of r. Notice this

4th-order scheme using a compact stencil with subgrid information has a maximum

r of 1
6
.

0 2 4 6
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r = 1
12

β

g

0 2 4 6
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r = 1
6

β

g

Figure 6.8: The two ampli�cation factors associated with a �nite-di�erence scheme
with p = 1 subgrid information. The resulting scheme is 4th-order accu-
rate in time. Notice for r = 1

12
, the two ampli�cation factors are distinct,

while for r = 1
6
, the two ampli�cation factors coincide with each other.

FD with p = 2 subgrid information

We derive a 6th-order FD scheme for di�usion with piecewise-quadratic (p = 2)

subgrid information; the variables u, ux, and uxx stored at each point. Consider the

174

3rd-order Taylor expansion of the three variables in time,

uj (t0 + ∆t) = uj (to) + ut,j ∆t+ utt,j
∆t2

2
+ uttt,j

∆t3

6
,

ux,j (t0 + ∆t) = ux,j (to) + uxt,j ∆t+ uxtt,j
∆t2

2
+ uxttt,j

∆t3

6
,

uxx,j (t0 + ∆t) = uxx,j (to) + uxxt,j ∆t+ uxxtt,j
∆t2

2
+ uxxttt,j

∆t3

6
. (6.90)

This time we �t a 8th-order polynomial through the three points and obtain its

derivatives via a CK procedure,

u(3),j ≈ − 3

8∆x3

(
35 (uj−1 − uj+1) + 11∆x

(
ux,j+1 +

48

11
ux,j + ux,j−1

))
− 3

8∆x3

(
∆x2 (uxx,j−1 − uxx,j+1)

)
, (6.91)

u(4),j ≈ − 3

2∆x4
(48 (−uj−1 + 2uj − uj+1) + 13∆x (ux,j+1 − ux,j−1))

− 3

2∆x4

(
∆x2 (−uxx,j−1 + 24uxx,j − uxx,j+1)

)
, (6.92)

u(5),j ≈ − 15

∆x5

(
−21 (uj−1 + uj+1) + 9∆x

(
−ux,j+1 −

24

9
ux,j − ux,j−1

))
− 15

∆x5

(
∆x2 (uxx,j−1 − uxx,j+1)

)
, (6.93)

u(6),j ≈ − 90

∆x6
(32 (uj−1 − 2uj + uj+1) + 11∆x (−ux,j+1 + ux,j−1))

− 90

∆x6

(
∆x2 (uxx,j−1 − 12uxx,j + uxx,j+1)

)
, (6.94)

u(7),j ≈ − 315

∆x7
(15 (uj−1 − uj+1) + ∆x (7ux,j+1 + 16ux,j + 7ux,j−1))

− 315

∆x7

(
∆x2 (−uxx,j−1 + uxx,j+1)

)
, (6.95)

u(8),j ≈ −2520

∆x8
(24 (−uj−1 + 2uj − uj+1) + ∆x (9ux,j+1 − 9ux,j−1))

−2520

∆x8

(
∆x2 (−uxx,j−1 + 8uxx,j − uxx,j+1)

)
, (6.96)

175

Inserting the Taylor expansion of uj into Eqn 6.69, ux,j into Eqn 6.85, together with

the Taylor expansion of uxx,j below,

uxx,j±1 = uxx (xj ±∆x) = uxx,j±uxxx,j ∆x+uxxxx,j
∆x2

2
±uxxxxx,j

∆x3

6
+uxxxxxx,j

∆x4

24
+. . . ,

(6.97)

gives us the error associated with each approximation of the derivative,

E (uxxx,j) = − ∆x6

17920
ux(5),j +O

(
∆x8

)
,

E (uxxxx,j) = +
∆x6

13440
ux(6),j +O

(
∆x8

)
,

E
(
ux(5),j

)
= +

∆x4

1344
ux(7),j +O

(
∆x6

)
,

E
(
ux(6),j

)
= −∆x4

224
ux(8),j +O

(
∆x6

)
,

E
(
ux(7),j

)
= +

∆x2

64
ux(9),j +O

(
∆x4

)
,

E
(
ux(8),j

)
= +

∆x2

8
ux(10),j +O

(
∆x4

)
. (6.98)

The resulting method is 8th-order accurate in space, and 6th-order accurate in time.

We rewrite the update equations in matrix form, un+1

un+1
x

un+1
xx


j

=

 un

unx

unxx


j

+M (r, β)

 un

unx

unxx


j

, (6.99)

whereM is a 3×3 matrices. The matrix and its eigenvalues are omitted here; only the

ampli�cation factors are shown in Figure 6.9. This scheme is stable up to r = 0.124;

however, the eigenvalues only remain real up to r = 0.0529.

Summary of FD with subgrid information �ndings

FD schemes with subgrid information produce high-resolution spatial discretizations;

e.g., p = 1 is 6th-order accurate in space and p = 2 is 8th-order accurate in space.

However, these schemes are only 4th- and 6th-order accurate in time. In addition,

their VNN is much lower than that of the classical FD schemes. We clearly see

that using a compact stencil has an adverse e�ect on the VNN; the above schemes

represent the best one can do with a compact stencil using subgrid information.

176

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Β

g

0 1 2 3 4 5 6
-1.0

-0.5

0.0

0.5

1.0

Β

g

Figure 6.9: The three ampli�cation factors associated with the FD scheme with p = 2
subgrid information is shown for r = 0.0529 (left) and r = 0.124 (right).
The eigenvalues are real up to r = 0.0529. The eigenvalues become com-
plex for r ≥ 0.0529 and the ampli�cation factors remain under unity up
till r = 0.124.

DG schemes based on Hancock's observation: The rise of HH-

RDG

The concepts in the FD scheme with subgrid information can be easily ported into the

DG framework via a change of basis from nodal (strong interpolation) to modal (weak

interpolation). However, this time around we shall derive a DG di�usion scheme using

Hancock's observation instead of Taylor expansions in time.

We wish to replicate the HH-DG advection operator for di�usion; unfortunately,

what works for the gander does not work for the goose. If we naively replicate our

procedure for advection, the resulting di�usion scheme will be poor in accuracy and

low in VNN; we will show this in three of our naive attempts below. In addition,

the di�usion equation exhibits a di�erent scaling of time and space, which ultimately

a�ects the conversion of temporal to spatial derivatives.

Let us go through a little thought experiment and imagine the Cauchy-Kovalevaskaya

(CK) procedure as a black box that puts in spatial derivatives and puts out temporal

derivatives. For advection of the form ut = ux, the conversion rate is one-to-one.

In mathematical terminology, it means each spatial derivative of order k results in

a temporal derivative of the same order. Consider the piecewise-linear solution in

space with u and ux as variables. The CK procedure relates ut to ux, hence the set

of {u, ux, ut} forms a complete p = 1 space-time basis.

When dealing with di�usion, the CK procedure does not work in our favor. With

di�usion of the form, ut = uxx, the conversion rate becomes two-to-one. This means it

takes two spatial derivatives to get one temporal derivative. With the same piecewise-

177

linear solution in space with u and ux as variables, the CK procedure fails to yield

ut because uxx is not available. If one naively use the LL-RK (numerical version of

CK), the order of accuracy of the scheme is at most 2nd-order. This simple thought

experiment demonstrates that the CK procedures for advection and di�usion require

completely di�erent treatments. The �x is simple; the CK procedure for the di�usion

operator simply requires more information in the spatial direction than its advec-

tion counterpart. Next, we demonstrate numerically the three naive and one smart

attempts to incorporate Hancock's observation into DG di�usion.

Naive scheme I: LL-RK applied on p = 1 solution, RDG (p = 1) at the

Radau points

In the �rst of the series of naive attempts, we apply the LL-RK procedure on the

piecewise-linear solution, and then apply spatial RDG to recover cubic polynomials

at the two Radau time levels . We solve the steady-state linear di�usion equation

with a source term,

ut = uxx + 4π2sin (2πx) , x ∈ [0 1] . (6.100)

Though one might question the use of a steady-state problem for a space-time scheme,

it turns out this simple problem is good enough to reveal stability limit and spatial

accuracy of the scheme. If the scheme cannot even achieve a good order of accuracy

in a steady-state problem, then there is no further need to test the scheme on a

time-accurate problem. The procedure is as follows: we sweep through all cells with

LL-RK to obtain u and ux at all Radau points. We then sweep through all interfaces

with RDG to obtain the recovered function at all Radau points. The steady-state

numerical results are provided in Table 6.6. This method fails to achieve 3rd-order

accuracy and obtains a maximum VNN of 1
8
. Our �rst attempt falls short of the

desired 4th-order of accuracy, and also fails to reach a modest goal of r = 1
6
. With

a p = 1 solution, there is simply not enough spatial information per cell to obtain

a 1st-order time derivative. This observation leads us directly to our next naive

attempt.

178

Nele DOF L2 ūerror Rate L24uerror Rate

10 20 1.14× 10−2 3.82× 10−3

20 40 3.62× 10−3 1.7 5.94× 10−4 2.7
40 80 1.00× 10−3 1.9 8.04× 10−5 2.9
80 160 2.61× 10−4 1.9 1.04× 10−5 2.9

Table 6.6: Naive scheme 1 with a maximum VNN of 1
8
.

Naive scheme II: CRDG from p = 1 to p = 5, LL-RK applied on p = 5,

RDG (p = 5) at the Radau points

Our second attempt uses a technique called CRDG (see Section 3.5.1). CRDG raises

the polynomial order of the piecewise-linear (p = 1) solution to piecewise-quintic

(p = 5) using information from all neighboring cells. We then apply the LL-RK

procedure to the piecewise-quintic solution to each cell and performed RDG to recover

11th-order polynomials at the two Radau time levels at each interface. The end result

is a DG scheme with a 5-cell stencil. The steady-state numerical results are given in

Table 6.7. The �nest grid requires a numerical environment that supports more than

16 decimal places, and hence intentionally left blank. Notice this scheme achieves

5th-order (approaching 6th-order) accuracy and obtains a maximum of r = 0.03.

The order of accuracy is high but the time step is too small. Contrary to our �nding

in the FD section, a wider stencil in DG leads to a lower VNN. We believe the major

culprit to be the imbalance between the amounts of spatial and temporal information

used, leading to ine�ciency in the scheme. Our next naive attempt will decrease the

amount of spatial information.

Nele DOF L2 ūerror Rate L24uerror Rate

10 20 2.68× 10−6 1.14× 10−6

20 40 6.66× 10−8 5.3 6.04× 10−9 7.6
40 80 1.21× 10−9 5.8 4.36× 10−11 7.1
80 160 - - - -

Table 6.7: Naive scheme 2 with a maximum VNN of 0.03.

Naive scheme III: CRDG from p = 1 to p = 3, LL-RK applied on p = 3,

RDG (p = 3) at the Radau points

In an e�ort to tone down our previous attempt, the CRDG procedure raises the

piecewise-linear (p = 1) solution to piecewise-cubic (p = 3) only; instead of using all

the moments from the neighboring cells, we only use the cell averages. The LL-RK

179

procedure is applied to the piecewise-cubic solution and then RDG recovers a 7th-

order polynomials at the two Radau points. The numerical results are presented in

Table 6.8. The scheme approaches the 4th order of accuracy and the maximum VNN

is 0.04, representing a mere 30% improvement over the previous case. At this point,

it becomes apparent that we need to do something drastically di�erent to increase

the stability limit.

Nele DOF L2 ūerror Rate L24uerror Rate

10 20 2.28× 10−4 6.78× 10−5

20 40 2.74× 10−5 3.1 1.63× 10−6 5.4
40 80 2.14× 10−6 3.7 5.03× 10−8 5.0
80 160 1.47× 10−7 3.9 1.62× 10−9 5.0

Table 6.8: Naive scheme 3 with maximum VNN of 0.04.

Summary of the three naive attempts

We make two important observations from the three naive attempts. First, a CK (or

LL-RK) procedure applied to a piecewise-linear solution is insu�cient for obtaining a

�rst-order temporal derivative. Second, naive schemes II and III attempt to remedy

the �rst problem by converting the original p = 1 solution into a high-order solution,

but the result is even worse than for the �rst naive scheme in terms of VNN. It is clear

using the same approach as for the HH-DG advection operator is leading nowhere,

and a drastically new strategy is needed. The next section humbly presents a scheme

resolving these two issues.

Smart attempt IV (HH-RDG): LL-RK applied on RDG (p = 1)

We seek a completely di�erent approach by applying the CK (or LL-RK) procedure

on the recovered function. Instead of acquiring a local evolution of the solution, we

acquire the local evolution of the recovered function! This scheme only applies the

recovery procedure once at τ = 0 instead of multiple times at di�erent Radau points.

Since only the function value and the �rst derivative are required at the interface, the

CK procedure is applied on the recovered function f in the di�erential form. This is

much cheaper compared to the integral form because Gaussian integration is avoided.

The end result is a space-time recovered function, f st, that is a function of time.

Starting with a piecewise-linear solution at τ = 0 for all elements Ωj, we recover

an unique cubic recovery function fj+ 1
2
between elements Ωj and Ωj+1. Note we are

using the same Legendre polynomials from Chapter 3. The recovered function fj+ 1
2

180

contains 4 unique coe�cients bk,j+ 1
2
,

fj+ 1
2

= b0,j+ 1
2

+ b1,j+ 1
2
r + b2,j+ 1

2
r2 + b3,j+ 1

2
r3, r ∈ [−1

2

1

2
], (6.101)

where r now represents the coordinate normal to the interface; as in Section 3.1. The

interface lies on r = 0. The local coordinate r is con�ned to [−1
2

1
2
], and is related to

x ∈ [−∆x ∆x] through r = x
2∆x

, hence ∂r
∂x

= 1
2∆x

. We enforce the recovered function

fj+ 1
2
to satisfy the original PDE, and 3 derivatives of the PDE,

ft = D fxx + S (x) ,

fxt = D fxxx +
∂

∂x
S (x) ,

fxxt = D fxxxx +
∂2

∂x2
S (x) ,

fxxxt = D fxxxxx +
∂3

∂x3
S (x) . (6.102)

Notice the subscript j+ 1
2
is dropped. We obtain the residual update form by inserting

Eqn 6.101 with r = 0 into Eqn 6.102:
f

fx

fxx

fxxxx


t

=


b0

b1

(
∂r
∂x

)
2b2

(
∂r
∂x

)2

6b3

(
∂r
∂x

)3


t

=


Dfrr/ (2∆x)2 + (2π)2 sin (2πx)

Dfrrr/ (2∆x)3 + (2π)3 cos (2πx)

Dfrrrr/ (2∆x)4 − (2π)4 sin (2πx)

Dfrrrrr/ (2∆x)5 − (2π)5 cos (2πx)

 ,

=


D (2b2) / (2∆x)2 + (2π)2 sin (2πx)

D (6b3) / (2∆x)3 + (2π)3 cos (2πx)

− (2π)4 sin (2πx)

− (2π)5 cos (2πx)

 .

The RHS expressions are input as �Res� to the LL-RK update in Eqn 6.17. We

advance this system with LL-RK to the Radau points; we have obtained f st (τ) at

181

the Radau points only. We replace ust in the surface integral of Eqn 6.63 with f st,

∆x

∫∫
vuτ dξdτ =

D∆t

∆x

∫ ([
vf stξ (τ)− vξf st (τ)

]
|ξ=1
ξ=0

)
dτ

+
D∆t

∆x

∫∫
vξξu

n+τ dξ dτ + ∆x∆t

∫∫
vS dξ dτ. (6.103)

Note the volume integral for p = 1 is zero. The numerical results for smart scheme IV

are presented in Table 6.9. The scheme clearly demonstrates 4th-order of accuracy

and obtains a maximum VNN of 1
6
, representing a healthy combination of accuracy

and speed. The next logical step is to repeat the same feat for piecewise-quadratic

DG (p = 2).

Nele DOF L2 ūerror Rate L24uerror Rate

10 20 1.67× 10−4 1.11× 10−4

20 40 1.15× 10−5 3.9 3.43× 10−6 5.0
40 80 7.58× 10−7 3.9 1.04× 10−7 5.0
80 160 4.86× 10−8 4.0 3.04× 10−9 5.1
160 320 3.05× 10−9 4.0 7.49× 10−11 5.3
320 640 1.84× 10−10 4.1 1.76× 10−12 5.4

Table 6.9: Smart scheme IV with a maximum VNN of 1
6
. The smart scheme IV will

soon be named the HH-RDG scheme.

Smart attempt IV (HH-RDG): LL-RK applied on RDG (p = 2) with cor-

rect volume integral

For p ≥ 2, the volume integral enters into the update equation of the 2nd gradient

and hence must be treated carefully. We follow the same technique as applied to the

volume integral in the advection operator, which is to in�ltrate the volume integral

with information from neighboring elements. Starting with a piecewise-quadratic

solution at τ = 0 for all elements Ωj, we recover an unique quintic recovered function

fj+ 1
2
between elements Ωj and Ωj+1. The recovered function fj+ 1

2
contains 6 unique

coe�cients bk,j+ 1
2
,

fj+ 1
2

= b0,j+ 1
2
+b1,j+ 1

2
r+b2,j+ 1

2
r2+b3,j+ 1

2
r3+b4,j+ 1

2
r4+b5,j+ 1

2
r5, r ∈ [−1

2

1

2
], (6.104)

182

where the interface lies on r = 0. We enforce fj+ 1
2
to satisfy 6 derivatives (including

the zeroth derivative) of the governing equation in di�erential form,

∂l

∂xl
ft = D ∂l

∂xl
(fxx + S (x)) , l = 0, 1, 2, 3, 4, 5. (6.105)

Again the subscript j + 1
2
is dropped. The equations above are rewritten in residual

form for r = 0,

f

fx

fxx

fx(3)

fx(4)

fx(5)


t

=



0! b0

1! b1
∂r
∂x

2! b2

(
∂r
∂x

)2

3! b3

(
∂r
∂x

)3

4! b4

(
∂r
∂x

)4

5! b5

(
∂r
∂x

)5


t

=



D (2b2) / (2∆x)2 + (2π)2 sin (2πx)

D (6b3) / (2∆x)3 + (2π)3 cos (2πx)

D (24b4) / (2∆x)4 − (2π)4 sin (2πx)

D (120b5) / (2∆x)5 − (2π)5 cos (2πx)

(2π)6 sin (2πx)

(2π)7 cos (2πx)


.

We apply LL-RK procedure to this system to obtain f st (τ) at all Radau points. We

are almost done with the discretization except for the new volume integral appearing

in the update equation of ∆2u,

∆2u
n+1

= ∆2u
n − D∆t

∆x2

∫ ([
v2f

st
ξ (τ)− v2,ξf

st (τ)
]
|ξ=1
ξ=0

)
dτ

+
D∆t

∆x2

∫∫
12un+τ dξ dτ + ∆t

∫∫
vS dξ dτ. (6.106)

We simplify the interior volume integral of u to∫∫
12u dξ dτ =

∫
12u (τ) dτ, (6.107)

where u (τ) is obtained from the update equation of u. Hence this di�usion scheme

follows the same hierarchical updating structure as in the advection case. The nu-

merical results are presented in Table 6.10. This p = 2 scheme achieves the 7th order

of accuracy and obtained a maximum VNN of 1
10
.

183

Nele DOF L2 ūerror Rate L24uerror Rate L242uerror Rate

10 30 7.84× 10−8 5.67× 10−8 1.31× 10−6

20 60 6.81× 10−10 6.8 4.80× 10−10 6.9 2.06× 10−8 6.0
40 120 5.49× 10−12 6.9 3.87× 10−12 6.9 3.21× 10−10 6.0
80 240 4.40× 10−14 6.9 3.07× 10−14 7.0 5.02× 10−12 6.0

Table 6.10: Smart scheme IV (p = 2) with a maximum VNN of 1
10
. The scheme

demonstrates 7th-order accuracy.

Not-so-smart scheme V: LL-RK applied on RDG (p = 2) with incorrect

volume integral based on STE-DG

We interrupt with a brief section on the incorrect treatment of the space-time volume

integral for p = 2. Consider the STE-DG method where the space-time volume

integral only uses information from the local element. STE-DG uses ust in the volume

integral,

∆x

∫∫
vuτ dξdτ =

D∆t

∆x

∫ ([
vf stξ (τ)− vξf st (τ)

]
|ξ=1
ξ=0

)
dτ

+
D∆t

∆x

∫∫
vξξu

st dξ dτ + ∆x∆t

∫∫
vS dξ dτ. (6.108)

The numerical results are presented in Table 6.11. This hybrid scheme obtains a

maximum VNN of 1
30
, and 4th-order of accuracy. These results are consistent with

the observations made in the advection section. Clearly, we see the correct treatment

of the volume integral is essential for high-order accuracy and high VNN.

Nele DOF L2 ūerror Rate L24uerror Rate L242uerror Rate

10 30 1.97× 10−4 2.22× 10−5 7.65× 10−4

20 60 1.23× 10−5 4.0 7.69× 10−7 4.9 4.47× 10−5 4.1
40 120 7.81× 10−7 4.0 2.51× 10−8 4.9 2.75× 10−6 4.0
80 240 4.92× 10−8 4.0 7.99× 10−10 5.0 1.71× 10−7 4.0

Table 6.11: Not-so-smart scheme V with a maximum VNN of 1
30
. This hybrid scheme

(p = 2) is only 4th-order accurate.

Summary of the DG di�usion schemes

We have demonstrated one successful space-time DG di�usion scheme, the smart

scheme IV, with high-order of accuracy and a high VNN. The scheme is di�erent

from HH-DG for advection in that the recovered function locally evolves instead of

the solution. The only similarity is the hierachical update structure. This z has been

184

a long one, but the results are fruitful. We are now ready for a rigorous presentation

of HH-RDG and tackle time-accurate problems.

6.3.2 Hancock-Huynh interface-centered recovery-based dis-

continuous Galerkin method (HH-RDG)

In this section we bring together the important discoveries made in the previous

attempts to generate a fast di�usion operator based on Hancock's observation. We

present the complete Hancock-Huynh interface-centered recovery-based Galerkin Method

(HH-RDG) for di�usion that is of high order in both space and time. HH-RDG

achieves a high VNN with the minimal number of �ux evaluations. We shall detail

the discretization of the update equation, local evolution of the recovered function,

implementation of boundary conditions, and Fourier analysis of the method.

We solve the linear di�usion equation,

ut = Duxx, x ∈ [0 2π] , (6.109)

where D is the constant di�usion coe�cient. The space-time HH-RDG equation is

obtained by testing the di�usion equation with a test function v and then replacing

all interface values of u with the space-time recovered function f st, and replacing the

interior solution in the volume integral with the updated solution un+τ ,

∫
Ωj

v
(
un+1 − un

)
dξ =

D∆t

∆x2

∫ [vf stξ − vξf st] |10 +

∫
Ωj

vξξu
n+τ dξ

 dτ. (6.110)

At the interface between Ωj and Ωj+1 for τ = 0, there exists an unique recovered

function fj+ 1
2
(see Section 3.1). We now force fj+ 1

2
to satisfy the inner product of the

local governing equation with a test function ψ,∫
Ωj
⋃

Ωj+1

ψ
∂fj+ 1

2

∂t
dx = D

∫
Ωj
⋃

Ωj+1

ψ
∂2fj+ 1

2

∂x2
dx. (6.111)

Note that ψ is the basis function for the recovery function and this equation applies

to all ψ spanning the solution space of f . This is slightly di�erent from the procedure

listed for the smart scheme IV; it turns out a weak formulation is needed for time-

accurate problems. The space-time solution f st (τ) is obtained from a local evolution

of Eqn 6.111 via the LL-RK procedure. The following examples illustrate how to

185

obtain f st (τ) for p = 1 and 2.

Time-accurate linear di�usion, p = 1, periodic boundary condition

For a piecewise-linear solution, RDG recovers an unique f at τ = 0,

f = b0ψ0 + b1ψ1 + b2ψ2 + b3ψ3, (6.112)

where the recovery basis functions are the monomials

ψi = ri, r ∈
[
−1

2

1

2

]
. (6.113)

Inserting these test functions into Eqn 6.111 and rewriting in residual form yields
b0 + b2

12
b1
12

+ b3
80

b0
12

+ b2
80

b1
80

+ b3
448


t

=
D

∆x2


b2
2
b3
8
b2
24
3b3
160

 . (6.114)

We use LL-RK to solve for the coe�cients bi at the two Radau points (τ = 1
3
, 1).

With f st de�ned at the Radau points, we proceed to numerically integrate Eqn 6.110

in time.

We test HH-RDG (p = 1) with a solution depicting a decaying sine wave,

u0 = sin (x) , x ∈ [0 2π], (6.115)

u (t) = e−µtsin (x) . (6.116)

The numerical results are presented in Table 6.12. The HH-RDG (p = 1) scheme

achieves 4th-order accuracy with just one �ux solver at τ = 0 for each time step.

This is impressive since it achieves the same order of accuracy as RK-RDG (p = 1)

which requires three �ux evaluations.

186

Nele DOF L2 ūerror Rate L24uerror Rate

10 20 5.57× 10−5 2.12× 10−5

20 40 3.46× 10−6 4.0 6.60× 10−7 5.0
40 80 2.16× 10−7 4.0 2.03× 10−8 5.0
80 160 1.35× 10−8 4.0 6.38× 10−10 5.0
160 320 8.43× 10−10 4.0 2.02× 10−11 5.0
320 640 5.27× 10−11 4.0 5.60× 10−13 5.2

Table 6.12: HH-RDG (p = 1) allows a maximum VNN of 1
6
for the decaying sine-

wave problem with µ = 1 and tfinal = 2. A periodic boundary condition
is applied. The scheme achieves the same order of accuracy as RK-RDG
(p = 1).

Time-accurate linear di�usion, p = 2, periodic boundary condition

With a piecewise-quadratic solution, RDG recovers an unique f at τ = 0,

f = b0ψ0 + b1ψ1 + b2ψ2 + b3ψ3 + b4ψ4 + b5ψ5. (6.117)

This time we use an orthogonal recovery basis for fun,

ψ1 = 1

ψ2 = 2r

ψ3 = 6r2 − 1
2

ψ4 = 20r3 − 3r

ψ5 = 70r4 − 15r2 + 3
8

ψ6 = 252r5 − 70r3 + 15
4
r

, r ∈
[
−1

2

1

2

]
. (6.118)

Inserting these test functions into Eqn 6.111 results in

b0

b1
3
b2
5
b3
7
b4
9
b5
11


t

=
D

∆x2



3b2 + 10b4

5b3 + 14b5

7b4

9b5

0

0


. (6.119)

We use LL-RK to solve for the six coe�cients bi at the three Radau points (τ =

0.15, 0.64, 1.00). We solve the same periodic decaying sine-wave problem and print

the results in Table 6.13. Notice the scheme is hitting computer zero on the two �nest

187

grids. The order of accuracy appears to be 8th-order in cell average, 7th-order in 1st

averaged gradient and �nally 6th-order in 2nd-averaged gradient. HH-RDG (p = 2)

is able to achieve a maximum VNN of 1
10
, which suggests it is still faster than the

�nite-di�erence schemes with subgrid information presented in the previous section.

Nele DOF L2 ūerror Rate L24uerror Rate L242uerror Rate

10 30 2.35× 10−10 3.12× 10−9 1.06× 10−8

20 80 1.05× 10−12 7.9 2.15× 10−11 7.2 2.46× 10−10 5.4
40 120 4.22× 10−15 7.9 1.83× 10−13 6.9 4.96× 10−12 5.6
80 240 8.94× 10−16 2.2 3.14× 10−15 5.9 5.58× 10−14 6.5
160 480 8.60× 10−16 0.1 5.47× 10−17 5.8 5.04× 10−15 3.5

Table 6.13: HH-RDG (p = 2) allows a maximum VNN of 1
10

for the decaying sine-
wave problem with µ = 1 and tfinal = 2. A periodic boundary condition
is applied.

Time-accurate linear di�usion, p = 1, Dirichlet boundary condition

We implement Dirichlet boundary conditions on the left (x = 0) and on the right

(x = 2π),

u (0) = uCL = 0, (6.120)

u (2π) = uCR = 0, (6.121)

where the superscript C stands for constant. When �rst applying recovery at the

boundaries for τ = 0, we require the recovered function to satisfy the Dirchlet con-

dition (see Section 3.4.1 for the full boundary-recovered function). For HH-RDG, we

require the time-evolution of the recovered function to satisfy three of the highest

moments of the PDE, and one strong condition,∫
Ωj
⋃

Ωj+1

ψi
∂fj+ 1

2

∂t
dx =

∫
Ωj
⋃

Ωj+1

ψi
∂2fj+ 1

2

∂x2
dx. i = 1, 2, 3

∂

∂t
fj+ 1

2
(τ) |r=0 = 0.

Notice the second equation is a strong statement for the boundary, while the �rst

equation is the usual weak statement for the interior scheme. The last equation

simply states that the Dirichlet boundary condition remains steady in time. Inserting

188

f =
∑4

i=1 bir
i for the left Dirichlet boundary results in

b0

b0
2

+ b1
3

+ b2
4

+ b3
5

b0
3

+ b1
4

+ b2
5

+ b3
6

b0
4

+ b1
5

+ b2
6

+ b3
7


t

=


uCL

D
∆x2 (b2 + 2b3)
D

∆x2

(
2b2
3

+ 3b3
2

)
D

∆x2

(
b2
2

+ 6b3
5

)

 . (6.122)

Similarly, for the right Dirichlet boundary condition,
b0

− b0
2

+ b1
3
− b2

4
+ b3

5
b0
3
− b1

4
+ b2

5
− b3

6

− b0
4

+ b1
5
− b2

6
+ b3

7


t

=


uCR

D
∆x2 (−b2 + 2b3)
D

∆x2

(
2b2
3
− 3b3

2

)
D

∆x2

(
− b2

2
+ 6b3

5

)

 . (6.123)

The results of HH-RDG (p = 1) with full boundary-recovered function are presented

in Table 6.14.

Nele DOF L2 ūerror Rate L24uerror Rate

10 20 5.57× 10−5 3.37× 10−5

20 40 3.45× 10−6 4.0 1.06× 10−6 5.0
40 80 2.16× 10−7 4.0 3.53× 10−8 4.9
80 160 1.35× 10−8 4.0 1.08× 10−9 5.0
160 320 8.43× 10−10 4.0 3.18× 10−11 5.1
320 640 5.27× 10−11 4.0 1.52× 10−12 4.4

Table 6.14: HH-RDG (p = 1) obtains a maximum VNN of 1
6
for the decaying sine-

wave problem with µ = 1 and tfinal = 2. Dirichlet boundary conditions
on both sides are satis�ed with full boundary-recovered function.

We now demonstrate the downside of doing things wrongly at the boundary. Let

us naively have f evolve via LL-RK at the boundary element without satisfying the

boundary condition, hence the local evolution equation is the same as the one for the

interior scheme. For f on the left side of the numerical domain,
b0 + b1

2
+ b2

3
+ b3

4
b0
2

+ b1
3

+ b2
4

+ b3
5

b0
3

+ b1
4

+ b2
5

+ b3
6

b0
4

+ b1
5

+ b2
6

+ b3
7


t

=
D

∆x2


2b2 + 3b3

b2 + 2b3

2b2
3

+ 3b3
2

b2
2

+ 6b3
5

 , (6.124)

189

and for f on the right side of the numerical domain,
b0 − b1

2
+ b2

3
− b3

4

− b0
2

+ b1
3
− b2

4
+ b3

5
b0
3
− b1

4
+ b2

5
− b3

6

− b0
4

+ b1
5
− b2

6
+ b3

7


t

=
D

∆x2


2b2 − 3b3

−b2 + 2b3

2b2
3
− 3b3

2

− b2
2

+ 6b3
5

 . (6.125)

One might immediately question whether f will satisfy the boundary condition during

a local evolution. Table 6.15 shows this naive scheme does satisfy the boundary

condition, however the scheme su�ers a 50% time-step restriction.

Nele DOF L2 ūerror Rate L24uerror Rate

10 20 2.13× 10−5 2.09× 10−5

20 40 1.73× 10−6 3.6 5.53× 10−7 5.2
40 80 1.22× 10−7 3.8 1.69× 10−8 5.0
80 160 8.01× 10−8 3.9 5.23× 10−10 5.0
160 320 5.14× 10−10 4.0 1.63× 10−11 5.0
320 640 3.26× 10−11 4.0 5.07× 10−13 5.0

Table 6.15: Naive Dirichlet boundary scheme. HH-RDG (p = 1) with a maximum
VNN of 1

12
for a decaying sine-wave problem with µ = 1 and tfinal = 2.

The naive method su�ers reduction in both accuracy and VNN.

Fourier Analysis of HH-RDG for linear di�usion, p = 1, 2

In order to rid critics of all skeptism, we performed Fourier analysis on the the HH-

RDG (p = 1) scheme to determine the stability of the scheme. We rewrite the �nal

update equations for the two variables in matrix form,

∂

∂t
(~uj) = (MLMCMR)

 T−1 (~uj)

I (~uj)

T+1 (~uj)

 , (6.126)

ML =

(
9r
4
− 15r2

2
5r
4
− 15r2

2
45r2

2
− 15r

4
33r2

2
− 7r

4

)
, (6.127)

MC =

(
15r2 − 9r

2
+ 1 0

0 57r2 − 23r
2

+ 1

)
, (6.128)

MR =

(
9r
4
− 15r2

2
15r2

2
− 5r

4
15r
4
− 45r2

2
33r2

2
− 7r

4

)
, (6.129)

190

where r is the Von Neumann number. We translate the shift operators into Fourier

modes,

∂
∂t

(~uj) = 15r2 − 9r
2

+ 2e−iβ
(

9r
4
− 15r2

2

)
+ 1 e−iβ

(
5r
4
− 15r2

2

)
+ e−iβ

(
15r2

2
− 5r

4

)
e−iβ

(
15r
4
− 45r2

2

)
+ e−iβ

(
45r2

2
− 15r

4

)
57r2 − 23r

2
+ 2e−iβ

(
33r2

2
− 7r

4

)
+ 1

 (~uj) .

The two eigenvalues associated with the matrix above read,

λ1 =
1

2

(
−30r2e−iβ + 30r2 + 9re−iβ − 9r + 2

)
, (6.130)

λ2 =
1

2
e−iβ

(
114r2eiβ + 66r2 − 23reiβ − 7r + 2eiβ

)
. (6.131)

Stability requires the magnitude of the eigenvalues as a function of r must not exceed

unity for any β. Figure 6.10 shows the polar plot of the eigenvalues for r = 1
6
and

r = 1
5
. The two eigenvalues overlap each other for r = 1

6
, and remains bounded within

the unit circle. However, for r larger than 1
6
, one of the eigenvalue lies outside of the

unit circle implying instability. We go through the same analysis procedure for p = 2

and only present the �nal results in Figure 6.11.

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

Re Λ

Im
Λ

r=1�6

-1.0 -0.5 0.0 0.5 1.0 1.5

-1.0

-0.5

0.0

0.5

1.0

Re Λ

Im
Λ

r=1�5

Figure 6.10: Polar plots in the complex plane of the two eigenvalues of the update
matrix of HH-RDG (p = 1) scheme. The dashed line indicates the sta-
bility boundary. For r = 1

6
, the two eigenvalues coincide. For anything

larger than r = 1
6
, one eigenvalue lies outside of the stability domain.

191

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

Re Λ

Im
Λ

r=1�10

-3 -2 -1 0 1

-2

-1

0

1

2

Re Λ

Im
Λ

r=1�8

Figure 6.11: Polar plots in the complex plane of the two eigenvalues of the update
matrix of HH-RDG (p = 2) scheme. The dashed line indicates the sta-
bility boundary. For r = 1

10
, the three eigenvalues remain bounded by

the stability circle. For r larger than 1
10
, one eigenvalue lies outside of

the stability domain.

Summary of HH-RDG for di�usion

We have formulated the HH-RDG scheme for time-accurate di�usion problems. Nu-

merical experiments show that the accuracy obtained by HH-RDG is on par with

RK-RDG. Although a direct comparison in total CPU time is not available, HH-RDG

requires many fewer binary-recovery operations than RD-RDG. We also demonstrated

how to incorporate boundary conditions into the HH-RDG. Fourier analysis for p = 1

and 2 con�rms the maximum VNN found in numerical experiments. The journey to

develop the HH-RDG scheme has been a long one due to the di�ence in advection

and di�usion operators. We are now ready to observe the behavior of the combined

HH-DG advection and di�usion operators.

6.4 HH-DG linear advection-di�usion in 1-D

Most literature in CFD lumps together advection and di�usion terms and then mag-

ically approximates them di�erently (as with LDG in Section 1.4.2). Throughout

the entire span of this thesis, we emphasize advection and di�usion are completely

di�erent physical phenomena and require completely di�erent numerical approaches.

192

This section utilizes the HH-DG upwind operator for advection and the HH-RDG

operator for di�usion to solve for di�erent parts of the governing equation. We ac-

centuate the fact that our operators are completely independent of each other, and

require no ad-hoc parameters for stability or error tuning.

We solve the linear advection of the form,

ut + aux = Duxx, (6.132)

where a is the constant advection speed and D is the constant di�usion coe�cient.

The update equation is obtained by testing the equation in both space and time, after

suitable integrations by parts (once for advection term and twice for di�usion term),∫∫
vut dxdt = −a

∫∫
vux dxdt+ µ

∫∫
vuxx dxdt,

= −a
∫ (∮

vu dx−
∫
vxu dx

)
dt

+D

∫ (∮
(vux − vxu) dx+

∫
vxxu dx

)
dt. (6.133)

We discretize by applying the equation to each element Ωj and replacing global co-

ordinates with local coordinates in Eqn 6.5,

∫
Ωj

v
(
un+1 − un

)
dξ = −a∆t

∆x

∫ (
[vu] |10 −

∫
Ωj

vξu dξ

)
dτ︸ ︷︷ ︸

advection

+
D∆t

∆x2

∫ (
[vuξ − vξu] |10 +

∫
Ωj

vξξu dξ

)
dτ︸ ︷︷ ︸

di�usion

. (6.134)

Notice all the terms on the RHS appear to be only a function of space because we

have yet to implement our new ideas. For the advection terms, we apply Hancock's

observation and replace the solution in the surface integral with ust (ξ, τ); following

Huynh we compute the volume integral with un+τ . For the di�usion terms, we replace

the solution in the surface integral with f st(τ) and in the volume integral with un+τ .

The weak space-time expansion for u is obtained by using LL-RK (see Eqn 6.17) on

193

the following system,

∆x

∫
vut dξ =

(
−a
(

[vu] |10 −
∫

Ωj

vξu dξ

)
+

D

∆x

(
[vuξ − vξu] |10 +

∫
Ωj

vξξu dξ

))
.

(6.135)

In contrast, the weak space-time expansion for f is acquired by sharing moments with

the original governing equation,∫
Ωj
⋃

Ωj+1

ψ ft,j+ 1
2
dx =

∫
Ωj
⋃

Ωj+1
ψ

(
−afx,j+ 1

2
+Dfxx,j+ 1

2

)
dx. (6.136)

The space-time solutions of both u and f are advanced to the Radau points in time

and then stored. The true purpose of this short study is to analyze the relation-

ship between the advection and di�usion operators. Physically speaking, when the

advection phenomenon dominates the di�usion phenomenon, we expect the order of

accuracy and time-step restriction to approach those of the advection operator. Like-

wise, we expect the opposite when di�usion dominates the �ow. The balance between

advection and di�usion is described by the global Péclet number,

PeG =
aL

D
, (6.137)

where L is the characteristic length scale of the physical domain of interest. The

global Péclet number approaches zero (PeG → 0) for di�usion-dominated problems,

and in�nity (PeG →∞) for advection-dominated problems. We also de�ne a local

Péclet number, which is more relevant to our numerical studies,

PeL =
a∆x

D
, (6.138)

where the characteristic length scale is now the width of the element. A grid-

re�nement study is always performed with constant global Péclet number.

The local Péclet number is also the ratio between the CFL number and VNN,

PeL =

(
a∆t

∆x

)
/

(
D∆t

∆x2

)
=
a∆x

D
, (6.139)

and appears in the stability condition of explicit advection-di�usion schemes. Take,

e.g, the simplest upwind-advection/central-di�usion di�erence scheme; a Fourier anal-

194

ysis yields the stability condition

CFL + 2VNN ≤ 1, (6.140)

or
a∆t

∆x
+

2D∆t

∆x2
≤ 1. (6.141)

This can be reduced to:

∆t ≤ ∆x

a

PeL
2 + PeL

. (6.142)

Let us vary PeL by varying ∆x at constant a and D. For large PeL (large ∆x) Eqn

6.142 approaches the CFL condition, and ∆t ∼ ∆x. For small PeL (small ∆x), ∆t

becomes proportional to ∆x2 and the condition reduces to VNN < 1
2
. For the HH-DG

schemes we shall assume the following form of the stability condition:

1

VNN
· D∆t

∆x2
+

1

CFL
· a∆t

∆x
≤ 1 · CAdv-Di�, (6.143)

where CFL = 1 for all HH-DG advection operator using upwind �ux, and VNN is the

highest stable Von Neumann number for pure di�usion determined from the previous

sections. The coe�cient CAdv-Di� is a safety factor. Solving for ∆t gives

∆t ≤ CAdv-Di�

1
VNN
· D

∆x2 + 1
CFL

a
∆x

. (6.144)

In pure di�usion or advection cases, the constant coe�cient CAdv-Di� equals 1, however

it is numerically found that for this value accuracy is reduced for mixed advection-

di�usion problems. Simply setting CAdv-Di� ≤ 1 recovers the desired order of accuracy.

We will next look at detailed derivations for piecewise-linear (p = 1) and piecewise-

quadratic (p = 2).

6.4.1 Piecewise-linear & piecewise-quadratic HH-DG for lin-

ear advection-di�usion equation

Perhaps one of the greatest advantages of using orthogonal basis functions is that the

update equations of the moments become independent of each other (on the LHS).

For example, this section hits two birds with one stone by deriving the update equa-

tions for a piecewise-quadratic scheme: one easily gets the piecewise-linear scheme by

setting all appearances of ∆2u to zero. Let the P 2 polynomial space be spanned by

195

the orthogonal Legendre polynomials,

v0 = 1,

v1 = 2ξ − 1,

v2 = 6ξ2 − 6ξ + 1,

and the solution be

uj (ξ) = ujv0 + ∆ujv1 + ∆2ujv2, ξ ∈ [0 1] , (6.145)

where the variables u, ∆u, and ∆2u represents the cell average, �rst average gradi-

ent and second average gradient, respectively. We �rst write out the �nal update

equations in full by inserting the Legendre basis functions into Eqn 6.134, and then

determine the missing pieces of the puzzle,

un+τ
j = unj −

a∆t

∆x

∫ τ

0

(
ust (1, τ)− ust (0, τ)

)
dτ

+
D∆t

∆x2

∫ τ

0

(
f st
ξ,j+ 1

2
(τ)− f st

ξ,j− 1
2

(τ)
)
dτ,

∆u
n+τ

j = ∆u
n

j −
a∆t

∆x

∫ τ

0

(
ust (1, τ) + ust (0, τ)

)
dτ +

a∆t

∆x

∫ τ

0

2uj (τ) dτ

+
D∆t

∆x2

∫ τ

0

(
f st
ξ,j+ 1

2
(τ) + f st

ξ,j− 1
2

(τ)− 2f st
j+ 1

2
(τ) + 2f st

j− 1
2

(τ)
)
dτ,

∆2u
n+τ

j = ∆2u
n

j −
a∆t

∆x

∫ τ

0

(
ust (1, τ)− ust (0, τ)

)
dτ

+
a∆t

∆x

∫ τ

0

2∆uj (τ) dτ

+
D∆t

∆x2

∫ τ

0

(
f st
ξ,j+ 1

2
(τ)− f st

ξ,j− 1
2

(τ)− 6f st
j+ 1

2
(τ)− 6f st

j− 1
2

(τ)
)
dτ

+
D∆t

∆x2

∫ τ

0

12uj (τ) dτ. (6.146)

In practice, we never solve for explicit expressions for ust (τ) and f st (τ). Instead,

only their values at the Radau points in time are needed for the Gaussian integration

in time. We feed u and f at τ = 0 into LL-RK and solve for their values at the 2

Radau points for p = 1, and at the 3 Radau points for p = 2. The LL-RK equations

196

for ust are very similar to the ones above, except there is no integration in time, and

all �uxes are obtained from inner element values,

uj,t = − a

∆x
(u (1)− u (0)) +

D

∆x2
(uξ (1)− uξ (0)) ,

(
∆uj

)
t

= − a

∆x
(u (1) + u (0))

+
a

∆x
(2uj) +

D

∆x2
(uξ (1) + uξ (0)− 2u (1) + 2u (0)) ,

(
∆2uj

)
t

= − a

∆x
(u (1)− u (0))

+
a

∆x

(
2∆uj

)
+

D

∆x2
(uξ (1)− uξ (0)− 6u (1)− 6u (0))

+
D

∆x2
(12uj) . (6.147)

We get the p = 1 update equations by setting ∆2u to zeros wherever it appears.

The same procedure follows for f st. Interface recovery generates a smooth quintic

polynomial at the interface with 6 unique coe�cients,

fj+ 1
2

= b0,j+ 1
2
+b1,j+ 1

2
r+b2,j+ 1

2
r2+b3,j+ 1

2
r3+b4,j+ 1

2
r4+b5,j+ 1

2
r5, r ∈ [−1

2

1

2
], (6.148)

where r = 0 is the interface; it must satisfy 6 moments of the di�erential form of the

governing equation. The result for r = 0 reads,

ft = 0! b0,t = −a (b1) +
D

∆x
(2b2) , (6.149)

ftt = 1! b1,t = −a (2b2) +
D

∆x
(3b3) , (6.150)

ft(3) = 2! b2,t = −a (6b3) +
D

∆x
(12b4) , (6.151)

ft(4) = 3! b3,t = −a (24b4) +
D

∆x
(60b5) , (6.152)

197

ft(5) = 4! b4,t = −a (120b5) , (6.153)

ft(6) = 5! b5,t = 0. (6.154)

These equations can easily be modi�ed for p = 1 by setting b4 and b5 to zero. With

all pieces of the puzzles in hand, we proceed to test our HH-DG advection-di�usion

operators for time-dependent problems.

6.4.2 Numerical results for linear advection-di�usion with HH-

DG

We solve the simple time-dependent problem of a decaying sine wave,

u (t) = e−k
2Dtsin k (x− at) . (6.155)

Observe the solution becomes zero as t → ∞. Let t = 0 and k = 1 be the initial

condition, and let t = 1 be the �nal time. Note this is the same test case used by

Cockburn and Shu[8] to test LDG. We solve this equation for various values of the

Péclet number; the numerical results for p = 1 are presented in Figure 6.12. The

lower left corner is di�usion dominated, while the upper right corner is advection

dominated; the order of accuracy transitions from 4 to slightly below 3 between these

corners. We observe the order of accuracy is roughly constant along the dashed lines

representing constant local Péclet number.

198

0.02 0.04 0.08 0.16 0.32
10

−6

10
−4

10
−2

10
0

10
2

10
4

∆x

P
e G

44444

44444

44444

44444

3.64.43.84.23.9

3.63.83.74.13.2

3.13.13.33.63.5

2.82.72.82.93.1

2.42.52.72.72.7

2.52.62.52.52.5

Figure 6.12: HH-DG for linear advection-di�usion problem, p = 1. Dashed line rep-
resents constant cell Péclet number. The order of accuracy gradually
transitions from 4 at the bottom left corner to roughly 3 at the top right
corner.

6.4.3 Fourier analysis of HH-DG for linear advection di�usion

This section brie�y covers the Fourier analysis of HH-DG for linear advection di�usion

for p = 1 and p = 2. The exact update matrices for p = 1 based on 3-stage LL-RK

and two Radau points, and for p = 2 based on 5-stage LL-RK and three Radau

points, are too extensive to be presented because the number of terms in the matrix

elements increases with the product of the number of LL-RK stages and the number

of Radau points. The following �gures present the polar plots of the eigenvalues of the

update matrices for a range of Péclet numbers. The time step is chosen in accordance

with Eqn 6.144, with VNN = 1
6
for p = 1, VNN = 1

10
for p = 2 and (nominally)

CAdv-Di� = 1. It is seen that for Pe ≈ 1 the stability of the method is reduced,

requiring a reduction of CAdv-Di� (see Figures 6.16-6.17). For p = 1 this reduction is

mild (CAdv-Di� = 0.9375); for p = 2 it is severe (CAdv-Di� = 0.20). It is not clear what

causes this reduction in the stable time-step range when advection and di�usion are

equally important; this remains a subject of future investigation.

199

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Re Λ

Im
Λ

PeL= 1

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Re Λ
Im
Λ

PeL= 10

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Re Λ

Im
Λ

PeL= 100

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Re Λ

Im
Λ

PeL= 1000

Figure 6.13: Polar plots in the complex plane of the two eigenvalues associated with
HH-DG (p = 1) linear advection-di�usion scheme using CAdv-Di� = 1.
The unit circle is also drawn (dotted line). Notice the eigenvalues
go beyond stability domain for 1 < PeL < 1000. A safety factor of
CAdv-Di� = 0.9375 stabilizes the scheme for all Péclet numbers.

200

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Re Λ

Im
Λ

PeL= 0.001

-1.0 -0.5 0.0 0.5 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Re Λ

Im
Λ

PeL= 0.1

-15 000 -10 000 -5000 0 5000 10 000 15 000

-6000

-4000

-2000

0

2000

4000

6000

Re Λ

Im
Λ

PeL= 100

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Re Λ

Im
Λ

PeL= 1 x 109

Figure 6.14: Polar plots in the complex plane of the three eigenvalues associated with
HH-DG (p = 2) linear advection-di�usion scheme using CAdv-Di� = 1.
The unit circle is also drawn (dotted line). Notice the eigenvalues go
beyond the stability domain for 10−3 < PeL < 108. A safety factor of
CAdv−Diff = 0.2 stabilizes the scheme for all Péclet numbers.

201

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Re Λ

Im
Λ

PeL= 100

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Re Λ

Im
Λ

PeL= 1 x 105

Figure 6.15: After applying a safety factor of CAdv−Diff = 0.2, the three eigenval-
ues associated with HH-DG (p = 2) linear advection-di�usion scheme lie
within the stability domain for all range of Péclet number.

6.5 Chapter summary

We have extended Huynh's moment scheme beyond piecewise linear (HH-DG), and

developed a new space-time di�usion scheme for DG (HH-RDG). Common to both

methods is the use of a numerical LL-RK procedure to approximate the analytical CK

procedure, and the use of a hierchical procedure to include the newest information

into the volume integral. We have shown once more that what works for advection

does not work for di�usion. In HH-DG the solution evolves in time, while in HH-RDG

both the solution and the recovered function evolve in time.

The HH-DG scheme for advection is demonstrated to be the exact shift operator

with CFL = 1 for linear problems. When applied to the Euler equations, HH-DG ap-

pears to be 3rd-order accurate for p = 1 (as already demonstrated in [17]); the results

for p = 2 are currently unsatisfactory and will be the subject of future investigation.

The HH-RDG scheme for di�usion is still in its infant stage of development; we

have only demonstrated its ability for scalar linear di�usion problems. The results so

far look promising. In comparison to RK-RDG, HH-RDG achieves the same order of

accuracy with much fewer �ux evaluations and a higher VNN number. Our next goal

is to extend HH-RDG to nonlinear di�usion, incorporating the solution enhancement

techniques of Section 3.5.1.

The study on the combined HH-DG and HH-RDG schemes for advection-di�usion

202

problems reveal a stability issue for a broad range of Péclet numbers. The reason for

this remains unclear and will be a subject of primary focus in the future.

0.1 1 10 100 1000 104
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

PeL

C
A

dv
-

D
if

f

Figure 6.16: Safety factor of HH-DG (p = 1) linear advection-di�usion scheme applied
to ∆t based on Eqn 6.144

0.001 1 1000 106 109

0.2

0.4

0.6

0.8

1.0

PeL

C
A

dv
-

D
if

f

Figure 6.17: Safety factor of HH-DG (p = 2) linear advection-di�usion scheme applied
to ∆t based on Eqn 6.144

203

CHAPTER VII

Conclusions

Our research objectives have always been to design schemes that are conceptually

easy to understand, and a �quantum� level better than existing schemes. We hope

we have stayed true to our design principle and entertained our reader thus far.

This thesis details the growth of two new and exciting numerical methods: interface-

centered recovery-based DG (RDG) and Hancock-Huynh DG (HH-DG). The funda-

mental ideas behind both schemes arrive from an engineering perspective; none of

our schemes are based on facilitating or reducing the number of pages of mathemat-

ical proofs. RDG is a di�usion operator for DG where the basis idea is to recover

a smooth solution from the discontinuous ones. The order of accuracy and stability

region of RDG are unsurpassed by any current DG di�usion schemes. HH-DG is a

space-time scheme that sets itself apart from the popular Runge-Kutta DG (RK-DG)

with equal or smaller number of �ux evaluations, larger time-steps, and lower memory

requirement. In fact, HH-DG is the exact shift operator for advection problems.

7.1 Summary

This author would like to honor Van Leer & Nomura for inventing the recovery

concept[44] in 2005, and Huynh for successfully porting Hancock's version of Van

Leer's scheme III into the DG framework[17] in 2006. Their work lays the foundation

for the topics covered in this thesis. The major contributions include:

• Ways to reduce the condition number for binary recovery in a numerical scheme.

We showed the condition number for solving the recovery equations is highly

dependent on the choice of basis for the solution and the test functions. A

combination of an orthogonal basis with a preconditioner will greatly reduce

204

the condition number.

• The concept of the smooth recovery basis (Section 2.4 and [43, 45]), which

relates the discontinuous solution to the smooth solution, provides a mechanism

to unify the treatment of advection and di�usion. The smooth recovery basis is

designed to have the same solution coe�cients as the discontinuous solutions.

One can use the discontinuous basis for the advection operator, and the smooth

recovery basis for the di�usion operator.

• Stability proofs for the classic RDG-2x and the naive RDG-1x are provided in

the end of Chapter 2. We proved the stability of these schemes for nonlinear

di�usion problems with both Dirichlet and Neumann problems.

• We further investigate the stability and accuracy of various RDG schemes via

Fourier analysis. Chapter 3 provides both analytical and numerical Fourier anal-

yses. Our investigation allowed us to better understand errors in DG schemes;

there are projection and evolution errors. One must carefully design a scheme

to minimize both! We showed RDG has the smallest evolution error compared

with other schemes, i.e., the(σ, µ)-family and LDG.

• In order to see RDG's performance in relation to other di�usion schemes, we

analyzed a venerable family of di�usion schemes: the (σ, µ)-family for p = 1 (see

Section 3.3.3 and [42]). We were able to discover interesting lines and regions in

the (σ, µ)-plane, and eventually new (σ, µ)-schemes with fast convergence rates

and modest accuracy. We designed an RDG scheme, RDG-1xf̄ , to �t into the

(σ, µ)-framework, and showed this scheme to be the best in the family. This

study also shows that RDG-2x is di�erent from the (σ, µ)-family, which leads

to our next important discovery.

• We expressed RDG-2x in terms of penalty-like (or bilinear) terms in Section

3.3.5. RDG-2x automatically generates higher-order bilinear terms as p in-

creases, with corresponding coe�cients. This is completely di�erent from the

traditionally penalty method where the number of bilinear terms is �xed re-

gardless of p and the corresponding coe�cients are chosen in a rather ad-hoc

manner.

• Our initial research was mostly focused on the theoretical analysis of RDG for

the scalar linear di�usion equation. Extending RDG to nonlinear di�usion re-

quired us to refocus on algorithm development. In order to handle nonlinear

205

terms, we introduced a solution-enhancement technique in Section 3.5 that in-

creases the accuracy of the evaluation of the volume integral appearing in the

RDG-1x formulation. Solution enhancement is achieved by reusing information

from the recovered functions to increase the order of the solution space within

a cell.

• We greatly increased the scope of RDG by extending the recovery concept from

1-D to 2-D in Chapter 4. Although the recovery concept remains the same, the

recovered functions at the domain boundaries require extra attention. We intro-

duced the full boundary-recovered and compact boundary-recovered functions

for Cartesian and unstructured triangular grids, respectively. We also studied

the performance of RDG schemes on irregular triangular grids.

• In dealing with nonlinear problems for 2-D, the cross-derivative terms become

a new obstacle for RDG (see Section 4.2.3). The binary recovery procedure

creates a recovered function that is more accurate in the face-normal direc-

tion than the face-parallel direction. Having cross-derivative terms means high-

order accuracy is demanded in the face-parallel direction; in this regard we

introduce recovered-function enhancement to remedy the problem. The cur-

rent recovered-function-enhancement technique requires the enhanced solution

to create a higher-order recovered function. Unfortunately, this increases the

stencil size of RDG schemes as in RDG-1x++; RDG-1x++CO is an optimized

version for Cartesian grids with a smaller stencil. The numerical results for

RDG-1x++CO are reassuring; it achieves the same order of accuracy for non-

linear problems with cross derivatives as the classic RDG-2x for linear problems.

• We presented numerical results for the Runge-Kutta upwind-DG (RK-uDG)

for linear advection, RK-RDG for linear di�usion, and the combined RK-uDG

and RK-RDG for linear advection-di�usion equations. The study on the linear

advection-di�usion equation is based on the Péclet number. For advection-

dominated problems, the order of accuracy approaches to that of RK-uDG, and

for di�usion-dominated problems, the order of accuracy approaches that of RK-

RDG scheme. There is a smooth transition in the order of accuracy between

the two schemes when the Péclet number is of order unity.

• The extension of Huynh's moment scheme[17] to arbitrarily high order (HH-

DG in Section 6.2), while maintaining the perfect shift property. The �ux

evaluation is based on the classic Hancock observation. The incorporation of

206

wave interaction within a cell is based on Huynh's treatment of the volume

integral in the moment scheme. The HH-DG scheme is remarkably fast due

to a CFL of unity, and relatively fast compared to RK-DG due to the reduced

number of �ux evaluations per time step. We demonstrated HH-DG abilities

on both the linear advection and Euler equations; these results also con�rm the

viability of replacing the analytical Cauchy-Kovalevskaya (CK) procedure with

a numerical one, the local linear Runge-Kutta (LL-RK) technique (see Section

6.2.1).

• The highly nonlinear extension of HH-DG to recovery (HH-RDG in Section 6.3).

What works for the gander does not work for the goose; it turns out di�usion

requires a completely di�erent approach as advection. In HH-DG, we apply LL-

RK to the solution to get a space-time expanded solution, but for HH-RDG, we

apply LL-RK to the recovered function to get a space-time expanded recovered

function. This has a major bene�t because only one binary-recovery operation

is needed at the beginning of a time step. We showed HH-RDG achieves the

same order of accuracy as RK-RDG with much fewer binary-recovery operations

while having the same Von Neumann numbers.

• We analyzed and tested the combined HH-DG and HH-RDG schemes for the

linear advection-di�usion equation in Section 6.4. Unlike the combined RK-

uDG and RK-RDG schemes, the combined HH-DG/HH-RDG scheme su�ers a

time-step penalty for Péclet numbers around unity. The problem appears to be

growing worse for increasing p.

• The making of the poster �History of CFD: Part II� for Van Leer's AIAA Fluid

Dynamics Award lecture in 2010. The people and papers discussed in this award

lecture are directly related to the development of high-order advection schemes.

Van Leer's scheme III[37] is the groundwork for the current HH-DG scheme.

7.2 Future work

RDG and HH-DG are �new� schemes introduced into the world of DG. These new-

borns are still going through development and many important questions remain at

the end of this thesis. In order to address these issues, a list of future research topics

is listed below:

207

F
ig
u
re

7.
1:

H
is
to
ry

of
C
F
D
P
ar
t
II
:
C
ou
rt
es
y
of

V
an

L
ee
r
an
d
L
o.

208

• The development of a compact RDG scheme for nonlinear problems with cross-

derivatives terms. The current nonlinear RDG schemes utilize a large stencil

that is not well suited for triangular grids or implicit time-marching schemes.

The use of a compact stencil will most likely decrease the accuracy, but increases

the speed of recovery since fewer equations are involved.

• We have yet to run numerical experiements on the full Navier-Stokes equations

with the combined RDG and uDG schemes. Although the combined scheme

worked well for linear advection-di�usion, nothing is for certain in the fully

nonlinear case with shear terms.

• The results and analyses for HH-RDG are only for linear di�usion. We wish

to incorporate solution- and recovered-function enhancements into HH-RDG to

handle nonlinear di�usion problems.

• We wish to demonstrate local time-stepping with HH-DG. A major strength of

space-time DG methods is the ability to take local time steps in each cell to

reduce computational cost on grids with a large variation in cell size.

• Perhaps the most puzzling problem of HH-DG and HH-RDG is the reduction

in time step for Péclet numbers close to unity. Investigating and resolving this

issue is essential to turning these space-time DG methods into viable numerical

methods.

7.3 The e�ort: revisiting the River of Recovery

The thesis summary does not show the e�ort in achieving each of the goals listed.

Let us return to the River of Recovery in Section 1.6. The longest time and largest

e�ort was spent between the river source and the �rst cascade. Although the di�usion

equations we studied were linear, the analysis was hard enough and it simply took

time to get a feeling for DG methods for di�usion. Crossing the nonlinearity cascade,

although a harder problem, took less time owing to the insight we had gathered

upstream. Crossing the cascades of the cross-derivatives was a similar challenge and

took a comparable amount of research time. The work on space-time DG, as depicted

in the upper side stream, started as a diversion during the second half of the research

period and was carried out with interruptions.

In retrospect the hardest-won results were three in number. In the �rst place, the

use of solution enhancement, based on recycling recovery information, to overcome

209

inaccuracy of the volume integral caused by nonlinearity. Second-hardest was apply-

ing the ideas of the space-time DG method for advection to di�usion. Thirdly, the

further use of binary recovery steps on top of the earlier solution enhancement, in

order to accurately represent cross-derivatives in the PDE.

At the end of this long journey down the river we recovered the e�ort spent in

the form of the joy of seeing the original concept of RDG mature into a collection of

methods that are suited for practical nonlinear di�usion problems.

210

APPENDICES

211

APPENDIX A

Elements of Computational Fluid Dynamics

The purpose of this section is to focus on selected fundamental ideas of compu-

tational �uid dynamics (CFD). These ideas include Gaussian integration, solution

projection, derivatives of primitive variables and implicit Radau integration.

A.1 Gaussian quadrature

There is not a single bread-and-butter solution when it comes to the evaluation of

�nite integrals; the choice of an analytical or a numerical integration technique de-

pends on the situation. Analytical integration is preferred when the integrand is

simple and the code requires high precision. The integrand arising from a nonlinear

system of equations is frequently too complex for analytical integration; in this case,

a numerical technique is preferred.

The idea behind Gaussian quadrature is to express the �nite integral of a function

as a weighted sum of the function at speci�c points,∫ b

a

f (x) dx =
n∑
i=1

wif (xi) , (A.1)

where xi is the Gaussian point and wi is the corresponding weight. In general, a

classical n-points Gaussian quadrature rule evaluates a polynomial of degree 2n − 1

exactly (see left diagram of Figure A.1). Note all the Gaussian points are located in

the interior of the integration domain. One can think of the number of Gaussian points

and their corresponding weights as degrees of freedom to represent a polynomial.

If we are to force the location of one Gaussian point to the boundary (as in the

212

x

f(x)

2n-1 2n-2 2n-3

Figure A.1: Three fundamental types of Gaussian quadrature. The di�erence lies in
the location of the endpoints, where enforcing the endpoints to coincide
with the interval boundaries results in lower-order polynomial represen-
tation.

middle diagram of Figure A.1), i.e., Gauss-Radau quadrature, we will only be able to

represent a polynomial of degree 2n − 2. Finally, if we are to impose two Gaussian

points on the boundary (see right diagram of Figure A.1), called the Gauss-Lobatto

quadrature, we will only be able to represent a polynomial of degree 2n− 3. In this

thesis we frequently used the classical Gaussian quadrature for spatial integrations,

and the Gauss-Radau quadrature for temporal integrations. We provide sample list

of Gaussian points and weights in Table A.1-A.2 for the classical Gaussian quadrature

and the Gauss-Radau for x ∈ [0, 1].

Gaussian quadrature only works on a smooth function. The interval over which

Gaussian quadrature is applied must not contain a discontinuity or a jump in the any

of the derivatives. One can easily circumvent this problem by breaking up an interval

such that the jumps rest on the interval boundary.

n = 3 xi wi

0.1127016653792583115 0.2777777777777777778
0.5 0.4444444444444444444

0.8872983346207416885 0.2777777777777777778

n = 5 xi wi

0.0469100770306680036 0.1184634425280945438
0.230765344947158454 0.2393143352496832340

0.5 0.2844444444444444444
0.769234655052841546 0.2393143352496832340
0.953089922969331994 0.1184634425280945438

Table A.1: Sample classical Gaussian quadrature points and weights for the interval
x ∈ [0, 1].

213

n = 2 xi wi

1 0.25
0.6666666666666667 0.75

n = 3 xi wi

1 0.111111111111111
0.644948974278318 0.512485826188422
0.155051025721682 0.376403062700467

n = 4 xi wi

1 0.062500000000000
0.787659461760847 0.328844319980060
0.409466864440735 0.388193468843172
0.088587959512704 0.220462211176768

Table A.2: Sample Gauss-Radau quadrature points and weights for the interval x ∈
[0, 1].

A.2 Projection of a function in real space into a �nite

polynomial space

In DG the downward projection is often used for initializing the discretized solution

or �nding the exact projected solution. Let u be an in�nitely smooth function, and uh

be the discretized solution. Recall from the introduction that the discretized solution

is a linear combination of a �nite number of basis functions v with corresponding

weights w,

uh =

p∑
i=0

wivi, (A.2)

where p is the degree of the polynomial space containing the solution. To initialize

the solution, the weights are calculated based on the following equality,∫
vu dΩ =

∫
vuh dΩ. (A.3)

Applying this equation for all basis functions results in p + 1 equations for p + 1

unknowns. A special case occurs when the basis functions are orthogonal; then the

weights are determined exactly by

wi =

∫
viu dΩ∫
v2
i dΩ

. (A.4)

214

The term �error� is perhaps one of the most negligently used terminologies in DG

papers. If we compare solutions across di�erent polynomial spaces, we called that the

projection error. If we compare solutions in the same polynomial space (as in this

thesis), we call it the evolution error. We de�ne the L2-norm of the projection error

to be

eL2,proj =

(
Nele∑
j=1

∫
(uh,j − u)2 dΩj

Nele

) 1
2

, (A.5)

where Nele is the total number of cells. Here we are taking the di�erence between the

in�nitely smooth solution with the discrete solution, which always results in an error

of order p+ 1. This leads us to a major observation: all DG schemes contain at least

a (p+ 1)-order projection error. This error is committed regardless of the numerical

scheme, and hence what di�erentiates all numerical schemes from each other is the

evolution error. The L2-norm of the evolution error is de�ned to be

eL2,evol =

(
Nele∑
j=1

(∫
v (uh,j − u) dΩj

)2

Nele

) 1
2

. (A.6)

Here we are comparing the downward projection of the exact solution with the discrete

solution. With our choice of Legendre basis, we obtain the evolution error of the cell

average if v = 1. Similarily, we obtain the evolution error of the �rst average gradient

if v = 2ξ − 1. The following numerical experiment will illuminate the di�erence

between projection and evolution errors.

Evolution error vs projection error

We consider three (σ, µ)-schemes (p = 1) from Section 3.3.3 to solve a steady-state

problem with a source term,

ut = uxx + 4π2sin (2πx) , (A.7)

and with Dirichlet boundary conditions,

u (0) = 1, (A.8)

u (1) = 0. (A.9)

The steady solution is

u (x,∞) = 1− x+ sin (2πx) . (A.10)

215

on the domain x ∈ [0, 1]. The �rst scheme is the Symmetric/Arnold (−1, 1) with 2nd-

order-accurate eigenvalue. The second scheme is a new e�cient scheme (−0.99, 1.01)

with 3rd-order-accurate eigenvalue. The last scheme is the exceptional RDG-1xf̄

(0.25, 2.25) with 4th-order-accurate eigenvalue. The problem starts with the exact

solution, hence the schemes should preserve the initial solution as well as they can.

Table A.3 shows the initial projection errors of three di�erent (σ, µ)-schemes to be

equivalent and the order of convergence of eL2,proj to be 2.

Nele (σ, µ) = (−1, 1) (σ, µ) = (−0.99, 1, 01) (σ, µ) = (0.25, 2.25) Rate

10 0.0104 0.0104 0.0104
20 2.60× 10−3 2.60× 10−3 2.60× 10−3 2 2 2
40 6.50× 10−4 6.50× 10−4 6.50× 10−4 2 2 2
80 1.60× 10−4 1.60× 10−4 1.60× 10−4 2 2 2

Table A.3: Initial projection error eL2,proj of three di�erent (σ, µ)-schemes at t = 0.

We next look at the evolution error of the cell average after the solution has

converged in Table A.4. Here we are clearly able to see the di�erence between the

three schemes. The (−1, 1)-scheme has an evolution error that is of the same size as its

initial projection error. Both (−0.99, 1, 01)- and (0.25, 2.25)-schemes have evolution

errors smaller than the projection error.

Nele (σ, µ) = (−1, 1) (σ, µ) = (−0.99, 1, 01) (σ, µ) = (0.25, 2.25) Rate

10 1.86× 10−2 1.59× 10−2 3.36× 10−5

20 5.23× 10−3 3.61× 10−3 3.45× 10−6 1.8 2.1 3.3
40 1.38× 10−3 6.20× 10−4 2.58× 10−7 1.9 2.5 3.7
80 3.54× 10−4 8.37× 10−5 1.74× 10−8 1.9 2.9 3.9

Table A.4: Evolution error eL2,evol with v = 1 of three di�erent (σ, µ)-schemes at
t =∞.

Lastly, we look at the �nal projection error in Table A.5. Interesting enough, the

�nal projection error appears to be the sum of both the initial projection error and the

evolution error. The bad evolution error of the (−1, 1)-scheme caused the convergence

of the �nal projection error to degrade down to 1st-order. The (−0.99, 1.01)-scheme

has a slightly larger �nal projection error than the initial projection error, but has the

same order. The most surprising result is that of the (0.25, 2.25)-scheme; it has the

same initial projection error as the �nal projection error. This means the evolution

error is so small that it does not contribute anything towards the �nal error!

In this experiment we have shown that not all DG schemes are equal. All schemes

commit the same initial projection error, and it is the evolution error that di�erenti-

216

Nele (σ, µ) = (−1, 1) (σ, µ) = (−0.99, 1, 01) (σ, µ) = (0.25, 2.25) Rate

10 1.41× 10−1 8.68× 10−2 1.04× 10−2

20 7.32× 10−2 2.07× 10−2 2.60× 10−3 0.9 2.0 2.0
40 3.69× 10−2 4.00× 10−3 6.50× 10−4 0.9 2.3 1.9
80 1.85× 10−2 6.80× 10−4 1.60× 10−4 1.0 2.5 1.9

Table A.5: Final projection error eL2,proj of three di�erent (σ, µ)-schemes at t =∞.

ates the schemes. It is imperative to design a numerical scheme where the convergence

rate of the evolution error must be as least p+1. Yet once again we have shown RDG-

1xf̄ to be superior.

A.3 Derivatives of primitive variable

In Chapter 5 we often need to express the derivatives of primitive variables in terms

of the conservative variables. Here we consider a simple example with conservative

variables ρ and m = ρu spanned by the Legendre basis in terms of ξ up to any

polynomial order:

ρ (ξ) = ρ+ ∆ρ (2ξ + 1) + ∆2ρ
(
6ξ2 − 6ξ + 1

)
+ . . . , (A.11)

m (ξ) = m+ ∆m (2ξ + 1) + ∆2m
(
6ξ2 − 6ξ + 1

)
+ . . . , (A.12)

and there derivatives are

∂ρ

∂ξ
(ξ) = ∆ρ (2) + ∆2ρ (12ξ − 6) + . . . , (A.13)

∂m

∂ξ
(ξ) = ∆m (2) + ∆2m (12ξ − 6) + (A.14)

We wish to obtain the derivative of u in terms of ξ. We �rst express u in terms of

conservative variables,

u =
m

ρ
, (A.15)

and the derivative of u becomes

uξ = m
∂ρ−1

∂ξ
+

1

ρ

∂m

∂ξ
. (A.16)

217

The term ∂ρ−1

∂ξ
requires a substitution trick. Let q = 1

ρ
, and then we use the chain

rule to obtain
∂q

∂ξ
=
∂q

∂ρ

∂ρ

∂ξ
, (A.17)

where ∂q
∂ρ

= − 1
ρ2 . This is an e�ective technique to obtain the derivative at point values

which are needed for Gaussian integration.

A.4 Implicit Radau Integration

The Radau points listed in Appendix A.1 are for explicit Radau integration. Explicit

means we acquire the numerical integral over the whole time interval τ ∈ [0 1] by a

correct linear combination of weights and function values at selected points. However,

in HH-DG we frequently need the integrate over a di�erent interval, i.e., τ ∈ [0 τk],

where τk is any Radau point less than unity. Naively one can normalized another

set of Radau points to �t into τ ∈ [0 τk], resulting in more �ux evaluations in the

new sub-interval. This trick, donated by Dr. Huynh, circumvents this problem is to

�t a smooth function through the original Radau points over the interval τ ∈ [0 1].

We then integrate the �tted function over the sub-intervals τ ∈ [0 τk] to acquire the

proper function weights based on the function values at the original Radau points.

This is important because we reuse the information we already have and avoid extra

�ux evaluations, making this an e�cient numerical technique.

Consider an arbitrary function to be numerical evaluated,∫ τk

0

f (τ) dτ. (A.18)

If we have n Radau points, we can reconstruct a polynomial of degree n− 1, f̂ (τ) =

a0 + a1τ + a2τ
2 + · · ·+ an−1τ

n−1, on the interval τ = [0 1], by enforcing the following

conditions,

f̂ (τk) = f (τk) , k = 1, 2, . . . , n− 1. (A.19)

Solving for the equations above will express the coe�cients ak in terms of f (τk).

Consequently, the integration of Eqn A.18 for various values of τk is also expressed

in terms of the original f (τk). Table A.6 shows the Radau points on the left and the

volume integral table on the right for n = 2 and 3. Let us take n = 2 for example:

the numerical value of
∫ τ1

0
f dτ is simply 1

4
f (τ1) + 3

4
f (τ2).

218

n = 2 f (τ1) f (τ2)

τ1 1
∫ τ1

0
f dτ 1

4
3
4

τ2
1
3

∫ τ2
0
f dτ − 1

12
5
12

n = 3 f (τ1) f (τ2) f (τ3)

τ1 1
∫ τ1

0
f dτ 0.11111 0.51248 0.37640

τ2 0.64494
∫ τ2

0
f dτ −0.04154 0.29207 0.39442

τ3 0.15505
∫ τ3

0
f dτ 0.02377 −0.06553 0.19681

Table A.6: Implicit Radau integration weights for n = 2 and 3.

219

APPENDIX B

Graveyard of Numbers

The arduous computer performs an amazing deed,

churning out myriads of numbers at dazzling speed.

Here lies an endless sea of numerical table,

Pages of pages one's mind couldn't fable.

220

Nele L2 ūerror Rate L24uerror Rate Time(s) Iteration

(σ, µ,VNN) =
(

1
4 ,

9
4 , 0.08

)
10 3.36E − 05 5.72E − 05 0.02 515

20 3.45E − 06 3.28 2.09E − 06 4.77 0.11 2034

40 2.58E − 07 3.74 6.95E − 08 4.91 0.69 6924

80 1.74E − 08 3.89 2.23E − 09 4.96 3.97E+00 20800

160 1.13E − 09 3.94 7.06E − 11 4.98 1.93E+01 51700

320 6.45E − 11 4.13 2.15E − 12 5.04 55.16 74762

(σ, µ,VNN) =
(

1
9 ,

19
9 , 0.09

)
10 2.88E − 04 5.97E − 04 0.01 499

20 3.73E − 05 2.95 8.27E − 05 2.85 0.11 2030

40 4.73E − 06 2.98 1.09E − 05 2.92 0.73 7320

80 5.94E − 07 2.99 1.39E − 06 2.97 4.66 24355

160 7.45E − 08 3.00 1.76E − 07 2.98 27.9 74637

320 9.32E − 09 3.00 2.22E − 08 2.99 149.07 202466

(σ, µ,VNN) = (−1, 1, 0.20)
10 0.0186 0.242 0.01 317

20 0.00523 1.83 0.126 0.94 0.07 1245

40 0.00138 1.92 0.0639 0.98 0.46 4673

80 3.54E − 04 1.96 0.032 1.00 3.27 16951

160 8.97E − 05 1.98 1.60E − 02 1.00 22.5 59731

320 2.26E − 05 1.99 8.02E − 03 1.00 152.05 204592

(σ, µ,VNN) = (1, 0, 0.20)
10 2.47E − 01 0.0228 0.16 4894

20 6.20E − 02 1.99 2.85E − 03 3.00 1.05 19479

40 1.56E − 02 1.99 3.56E − 04 3.00 7.36 73271

80 0.0039 2.00 4.45E − 05 3.00 51.27 265085

160 0.000977 2.00 5.56E − 06 3.00 353.6 931621

320 0.000244 2.00 6.95E − 07 3.00 2372.97 3176655

(σ, µ,VNN) =
(
− 1

2 ,
3
2 , 0.19

)
10 0.00283 0.00598 0.01 277

20 0.000375 2.92 0.000932 2.68 0.07 1126

40 4.67E − 05 3.01 0.000128 2.86 0.43 4126

80 5.79E − 06 3.01 1.66E − 05 2.95 2.84 14212

160 7.19E − 07 3.01 2.11E − 06 2.98 18.07 46119

320 8.95E − 08 3.01 2.66E − 07 2.99 107.72 138965

Table B.1: Linear di�usion: L2-error of various σ − µ schemes (p = 1).

221

Nele L2 ūerror Rate L24uerror Rate Time(s) Iteration

(σ, µ,VNN) = (0, 2, 0.10)
10 0.000582 0.00113 0.02 469
20 7.52E − 05 2.95 0.000163 2.79 0.1 1904
40 9.40E − 06 3.00 2.16E − 05 2.92 0.69 6894
80 1.17E − 06 3.01 2.78E − 06 2.96 4.43 23187
160 1.46E − 07 3.00 3.52E − 07 2.98 27.03 72322
320 1.82E − 08 3.00 4.43E − 08 2.99 149.84 202302

(σ, µ,VNN) = (0.0893, 2.5392, 0.08)
10 0.00402 0.00143 0.02 606
20 0.0013 1.63 0.000218 2.71 0.15 2640
40 0.000361 1.85 2.93E − 05 2.90 1.03 10276
80 9.46E − 05 1.93 3.77E − 06 2.96 7.19 37473
160 2.42E − 05 1.97 4.78E − 07 2.98 49.14 130970
320 6.10E − 06 1.99 6.01E − 08 2.99 327.31 440358

(σ, µ,VNN) =
(

1
6 ,

13
6 , 0.08

)
10 0.000157 0.000367 0.02 540

20 2.05E − 05 2.94 4.82E − 05 2.93 0.11 2198

40 2.65E − 06 2.95 6.25E − 06 2.95 0.79 7875

80 3.38E − 07 2.97 7.97E − 07 2.97 4.98 26005

160 4.27E − 08 2.98 1.01E − 07 2.98 29.31 78417

320 5.36E − 09 2.99 1.27E − 08 2.99 151.56 205253

(σ, µ,VNN) = (−1, 3, 0.10)
10 0.0126 0.00552 0.01 475
20 0.00452 1.48 0.00092 2.58 0.12 2199
40 0.0013 1.80 0.000127 2.86 0.88 8743
80 0.000345 1.91 1.66E − 05 2.94 6.23 32344
160 8.86E − 05 1.96 2.11E − 06 2.98 43.46 115168
320 2.24E − 05 1.98 2.66E − 07 2.99 294.62 396262

(σ, µ,VNN) = (0, 3, 0.06)
10 0.00535 0.00107 0.02 795
20 0.00165 1.70 0.000161 2.73 0.19 3491
40 0.000449 1.88 2.16E − 05 2.90 1.36 13607
80 0.000117 1.94 2.78E − 06 2.96 9.52 49637
160 2.98E − 05 1.97 3.52E − 07 2.98 64.95 173359
320 7.51E − 06 1.99 4.43E − 08 2.99 431.54 582031

Table B.2: Linear di�usion: L2-error of various σ − µ schemes (p = 1).

222

p
N
el
e

L
2
ū
er
r
o
r

L
2
4
u
er
r
o
r

L
2
4

2
u
er
r
o
r

L
2
4

3
u
er
r
o
r

R
at
e

1
10

6.
43
×

10
−

1
2.

03
×

10
−

1

20
1.

93
×

10
−

1
3.

06
×

10
−

2
1.

7
2.

7
40

2.
79
×

10
−

2
2.

59
×

10
−

3
2.

8
3.

5
80

3.
55
×

10
−

3
3.

87
×

10
−

4
2.

9
2.

7
16

0
4.

45
×

10
−

4
9.

12
×

10
−

5
3.

0
2.

0
32

0
5.

57
×

10
−

5
2.

27
×

10
−

5
3.

0
2.

0

2
4

3.
38
×

10
−

1
2.

77
×

10
−

1
7.

51
×

10
−

2

8
1.

77
×

10
−

2
7.

07
×

10
−

3
3.

10
×

10
−

3
4.

7
4.

4
2.

9
16

6.
20
×

10
−

4
1.

28
×

10
−

4
3.

60
×

10
−

4
4.

9
3.

9
2.

9
32

2.
36
×

10
−

5
2.

96
×

10
−

6
4.

46
×

10
−

5
4.

8
3.

9
3.

0
64

1.
11
×

10
−

6
1.

06
×

10
−

7
5.

58
×

10
−

6
4.

4
4.

0
3.

0
12

8
6.

26
×

10
−

8
4.

91
×

10
−

9
6.

97
×

10
−

7
4.

0
4.

0
3.

0

3
4

6.
16
×

10
−

3
5.

05
×

10
−

3
1.

37
×

10
−

4
2.

50
×

10
−

3

8
5.

63
×

10
−

5
2.

24
×

10
−

5
9.

48
×

10
−

6
1.

59
×

10
−

4
6.

7
7.

8
7.

2
3.

9
12

3.
45
×

10
−

6
9.

08
×

10
−

7
1.

19
×

10
−

6
3.

16
×

10
−

5
6.

9
7.

9
5.

1
4.

0
16

4.
77
×

10
−

7
9.

44
×

10
−

8
2.

81
×

10
−

7
1.

00
×

10
−

5
6.

8
7.

8
5.

0
4.

0
20

1.
04
×

10
−

7
1.

66
×

10
−

8
9.

21
×

10
−

8
4.

10
×

10
−

6
6.

8
7.

8
5.

0
4.

0
24

3.
02
×

10
−

8
4.

06
×

10
−

9
3.

70
×

10
−

8
1.

98
×

10
−

5
6.

8
7.

7
5.

0
4.
0

T
ab
le
B
.3
:
L

2
-e
rr
or

of
R
K
-U
p
w
in
d
-D
G

sc
h
em

e
fo
r
ti
m
e-
ac
cu
ra
te

p
ro
b
le
m

w
it
h
p
er
io
d
ic

b
ou
n
d
ar
y
co
n
d
it
io
n
.
A

si
n
e
w
av
e
is

ad
ve
ct
ed

to
th
e
ri
gh
t
fo
r
10
0
cy
cl
es
.

223

Pe,G Nele DOF L2 ūerror Rate L24uerror Rate

10−4 10 20 1.03× 10−2 4.90× 10−3

20 40 6.88× 10−4 3.9 1.67× 10−4 4.9
40 80 4.37× 10−5 4.0 5.07× 10−6 5.0
80 160 2.75× 10−6 4.0 1.59× 10−7 5.0
160 320 1.72× 10−7 4.0 5.04× 10−9 5.0
320 640 1.07× 10−8 4.0 1.87× 10−10 4.8

10−3 10 20 1.03× 10−2 4.91× 10−3

20 40 6.88× 10−4 3.9 1.68× 10−4 4.9
40 80 4.37× 10−5 4.0 5.12× 10−6 5.0
80 160 2.75× 10−6 4.0 1.74× 10−7 4.9
160 320 1.72× 10−7 4.0 9.78× 10−9 4.2
320 640 1.07× 10−8 4.0 1.06× 10−9 3.2

10−2 10 20 1.03× 10−2 4.99× 10−3

20 40 6.88× 10−4 3.9 1.80× 10−4 4.8
40 80 4.37× 10−5 4.0 7.58× 10−6 4.6
80 160 2.75× 10−6 4.0 6.91× 10−7 3.5
160 320 1.72× 10−7 4.0 8.38× 10−8 3.0
320 640 1.07× 10−8 4.0 1.04× 10−8 3.0

10−1 10 20 1.02× 10−2 6.43× 10−3

20 40 6.87× 10−4 3.9 5.66× 10−4 3.5
40 80 4.37× 10−5 4.0 5.38× 10−5 3.4
80 160 2.75× 10−6 4.0 6.68× 10−6 3.0
160 320 1.72× 10−7 4.0 8.35× 10−7 3.0
320 640 1.07× 10−8 4.0 1.04× 10−7 3.0

100 10 20 1.09× 10−2 2.49× 10−2

20 40 7.40× 10−4 3.9 4.18× 10−3 2.6
40 80 4.84× 10−5 3.9 5.28× 10−4 3.0
80 160 3.09× 10−6 4.0 6.65× 10−5 3.0
160 320 1.95× 10−7 4.0 8.33× 10−6 3.0
320 640 1.22× 10−8 4.0 1.04× 10−6 3.0

101 10 20 5.52× 10−2 2.31× 10−1

20 40 4.26× 10−3 3.7 3.52× 10−2 2.7
40 80 2.97× 10−4 3.8 4.85× 10−3 2.9
80 160 1.96× 10−5 3.9 6.63× 10−4 2.9
160 320 1.26× 10−6 4.0 8.15× 10−5 3.0
320 640 8.00× 10−8 4.0 1.03× 10−5 3.0

Table B.4: Linear advection-di�usion: RK-Upwind-RDG-2x, p = 1, r = 1
6
, CFL =

0.4, µ = 0.01, tfinal = 100, periodic boundary condition.

224

Pe,G Nele DOF L2 ūerror Rate L24uerror Rate

102 10 20 1.22 0.717
20 40 0.128 3.3 0.141 2.4
40 80 1.17× 10−2 3.5 2.67× 10−2 2.4
80 160 9.53× 10−4 3.6 4.45× 10−3 2.6
160 320 7.06× 10−5 3.8 6.68× 10−4 2.7
320 640 4.88× 10−6 3.9 9.29× 10−5 2.9

103 10 20 11.9 3.75
20 40 1.9 2.7 0.351 3.4
40 80 2.31× 10−1 3.0 5.13× 10−2 2.8
80 160 2.63× 10−2 3.2 1.12× 10−2 2.2
160 320 2.74× 10−3 3.3 2.39× 10−3 2.3
320 640 2.57× 10−4 3.4 4.64× 10−4 2.4

104 10 20 25.6 8.08
20 40 14.4 0.8 2.26 1.8
40 80 2.49 2.5 0.201 3.5
80 160 0.321 3.0 0.0181 3.5
160 320 3.94× 10−2 3.0 3.30× 10−3 2.5
320 640 4.70× 10−3 3.0 7.75× 10−4 2.1

Table B.5: Linear advection-di�usion: RK-Upwind-RDG-2x, p = 1, r = 1
6
, CFL =

0.4, µ = 0.01, tfinal = 100, periodic boundary condition.

Pe,G Nele DOF L2 ūerror Rate L24uerror Rate L242uerror Rate

10−4 10 30 2.08× 10−7 7.37× 10−6 5.96× 10−5

20 60 9.69× 10−10 7.8 4.98× 10−8 7.2 9.43× 10−7 6.0
40 120 3.83× 10−12 8.0 5.86× 10−11 9.7 1.48× 10−8 6.0
80 240 2.89× 10−12 0.4 2.06× 10−11 1.5 2.32× 10−10 6.0
160 480 3.69× 10−13 3.0 1.47× 10−12 3.8 3.69× 10−12 6.0
320 960 4.59× 10−11 -7.0 5.41× 10−13 1.4 8.39× 10−14 5.5

10−3 10 30 2.07× 10−7 6.56× 10−6 6.01× 10−5

20 60 9.78× 10−10 7.7 9.25× 10−9 9.5 9.59× 10−7 6.0
40 120 3.20× 10−12 8.3 3.38× 10−9 1.5 1.53× 10−8 6.0
80 240 1.93× 10−13 4.0 2.35× 10−10 3.9 2.48× 10−10 6.0
160 480 2.28× 10−11 -6.9 1.53× 10−11 3.9 4.18× 10−12 5.9
320 960 9.09× 10−11 -2.0 1.82× 10−12 3.1 1.02× 10−13 5.4

Table B.6: Linear advection-di�usion: RK-Upwind-RDG-2x, p = 2, r = 1
10
, CFL =

0.27, µ = 0.01, tfinal = 100, periodic boundary condition.

225

p
N
el
e

L
2
ū
er
r
o
r

L
2
4
u
er
r
o
r

L
2
4

2
u
er
r
o
r

L
2
4

3
u
er
r
o
r

R
at
e

1
6

5.
51
×

10
−

3
3.

19
×

10
−

3

12
1.

35
×

10
−

3
4.

26
×

10
−

4
2.

0
2.

9
18

5.
99
×

10
−

4
1.

29
×

10
−

4
2.

0
2.

9
24

3.
37
×

10
−

4
5.

52
×

10
−

5
2.

0
2.

9
30

2.
15
×

10
−

4
2.

85
×

10
−

5
2.

0
2.

9
36

1.
50
×

10
−

4
1.

66
×

10
−

5
1.

9
2.

9

2
4

1.
45
×

10
−

3
1.

38
×

10
−

3
1.

77
×

10
−

3

8
5.

51
×

10
−

4
2.

08
×

10
−

4
1.

76
×

10
−

4
1.

4
2.

7
3.

3
12

2.
69
×

10
−

4
6.

43
×

10
−

5
4.

38
×

10
−

5
1.

7
2.

9
3.

4
16

1.
57
×

10
−

4
2.

76
×

10
−

5
1.

62
×

10
−

5
1.

8
2.

9
3.

4
20

1.
02
×

10
−

4
1.

42
×

10
−

5
7.

50
×

10
−

6
1.

9
2.

9
3.

4
24

7.
19
×

10
−

5
8.

27
×

10
−

6
3.

98
×

10
−

6
1.

9
2.

9
3.

4

3
4

5.
64
×

10
−

5
1.

53
×

10
−

5
1.

43
×

10
−

4
5.

13
×

10
−

5

6
1.

24
×

10
−

5
1.

75
×

10
−

6
3.

02
×

10
−

5
6.

17
×

10
−

6
3.

7
5.

3
3.

8
5.

2
8

4.
07
×

10
−

6
3.

68
×

10
−

7
9.

75
×

10
−

6
1.

38
×

10
−

6
3.

8
5.

4
3.

9
5.

2
10

1.
69
×

10
−

6
1.

09
×

10
−

7
4.

03
×

10
−

6
4.

31
×

10
−

7
3.

9
5.

4
3.

9
5.

2
12

8.
25
×

10
−

7
4.

02
×

10
−

8
1.

95
×

10
−

6
1.

68
×

10
−

7
3.

9
5.

4
3.

9
5.

1
14

4.
48
×

10
−

7
1.

73
×

10
−

8
1.

06
×

10
−

6
7.

56
×

10
−

8
3.

9
5.

4
3.

9
5.

1

T
ab
le
B
.7
:
R
D
G
-1
x
-N
ai
ve
,
V
N
N
=
0.
07
,
0.
02
,
an
d
0.
01

fo
r
R
K
3,
R
K
4,
an
d
R
K
5,
re
sp
ec
ti
ve
ly
:
L

2
-e
rr
or

of
st
ea
d
y
li
n
ea
r-
va
ri
at
io
n

d
i�
u
si
on

p
ro
b
le
m

w
it
h
tw
o-
si
d
ed

N
eu
m
an
n
b
ou
n
d
ar
y
co
n
d
it
io
n
s.

226

p
N
el
e

L
2
ū
er
r
o
r

L
2
4
u
er
r
o
r

L
2
4

2
u
er
r
o
r

L
2
4

3
u
er
r
o
r

R
at
e

1
6

1.
38
×

10
−

4
7.

51
×

10
−

5

12
9.

09
×

10
−

6
2.

12
×

10
−

6
3.

9
5.

1
18

1.
81
×

10
−

6
2.

66
×

10
−

7
3.

9
5.

1
24

5.
75
×

10
−

7
6.

13
×

10
−

8
3.

9
5.

1
30

2.
36
×

10
−

7
1.

97
×

10
−

8
3.

9
5.

0
36

1.
14
×

10
−

7
7.

83
×

10
−

9
3.

9
5.

0

2
4

1.
93
×

10
−

6
3.

26
×

10
−

7
5.

38
×

10
−

6

8
5.

14
×

10
−

8
1.

60
×

10
−

8
1.

12
×

10
−

7
5.

2
4.

3
5.

9
12

5.
79
×

10
−

9
1.

94
×

10
−

9
1.

18
×

10
−

8
5.

3
5.

2
5.

5
16

1.
21
×

10
−

9
4.

17
×

10
−

1
0

2.
42
×

10
−

9
5.

4
5.

3
5.

5
20

3.
59
×

10
−

1
0

1.
25
×

10
−

1
0

7.
05
×

10
−

1
0

5.
4

5.
4

5.
3

24
1.

32
×

10
−

1
0

4.
62
×

10
−

1
1

2.
58
×

10
−

1
0

5.
4

5.
4

5.
5

3
4

6.
16
×

10
−

8
1.

92
×

10
−

7
4.

23
×

10
−

8
4.

11
×

10
−

7

6
3.

24
×

10
−

9
1.

07
×

10
−

8
2.

51
×

10
−

9
2.

66
×

10
−

8
3.

7
5.

3
3.

8
5.

2
8

3.
89
×

10
−

1
0

1.
35
×

10
−

9
3.

14
×

10
−

1
0

3.
72
×

10
−

9
3.

8
5.

4
3.

9
5.

2
10

7.
42
×

10
−

1
1

2.
71
×

10
−

1
0

6.
10
×

10
−

1
1

8.
02
×

10
−

1
0

3.
9

5.
4

3.
9

5.
2

12
1.

90
×

10
−

1
1

7.
30
×

10
−

1
1

1.
58
×

10
−

1
1

2.
28
×

10
−

1
0

3.
9

5.
4

3.
9

5.
1

14
5.

98
×

10
−

1
2

2.
41
×

10
−

1
1

5.
04
×

10
−

1
2

7.
83
×

10
−

1
1

3.
9

5.
4

3.
9

5.
1

T
ab
le
B
.8
:
R
D
G
-2
x
,
V
N
N

=
0.
15
,
0.
08
,
an
d
0.
04

fo
r
R
K
3,

R
K
4,

an
d
R
K
5,

re
sp
ec
ti
ve
ly
:
L

2
-e
rr
or

of
st
ea
d
y
li
n
ea
r-
va
ri
at
io
n

d
i�
u
si
on

p
ro
b
le
m

w
it
h
tw
o-
si
d
ed

N
eu
m
an
n
b
ou
n
d
ar
y
co
n
d
it
io
n
s.

227

p
N
el
e

L
2
ū
er
r
o
r

L
2
4
u
er
r
o
r

L
2
4

2
u
er
r
o
r

L
2
4

3
u
er
r
o
r

R
at
e

1
6

7.
59
×

10
−

5
3.

26
×

10
−

5

12
6.

21
×

10
−

6
1.

10
×

10
−

6
3.

6
4.

8
18

1.
30
×

10
−

6
1.

43
×

10
−

7
3.

8
5.

0
24

4.
20
×

10
−

7
3.

35
×

10
−

8
3.

9
5.

0
30

1.
74
×

10
−

7
1.

08
×

10
−

8
3.

9
5.

0
36

8.
43
×

10
−

8
4.

32
×

10
−

9
3.

9
5.

0

2
4

3.
47
×

10
−

6
2.

14
×

10
−

6
6.

87
×

10
−

6

8
1.

08
×

10
−

7
2.

48
×

10
−

8
1.

28
×

10
−

7
5.

0
6.

4
5.

7
12

1.
10
×

10
−

8
1.

59
×

10
−

9
1.

16
×

10
−

8
5.

6
6.

7
5.

9
16

2.
07
×

10
−

9
2.

19
×

10
−

1
0

2.
10
×

10
−

9
5.

8
6.

8
5.

9
20

5.
58
×

10
−

1
0

4.
66
×

10
−

1
1

5.
54
×

10
−

1
0

5.
8

6.
9

5.
9

24
1.

88
×

10
−

1
0

1.
31
×

10
−

1
1

1.
86
×

10
−

1
0

5.
9

6.
9

5.
9

3
4

5.
32
×

10
−

8
2.

99
×

10
−

9
1.

10
×

10
−

7
1.

33
×

10
−

8

6
D
iv
er
ge
d

8
D
iv
er
ge
d

10
D
iv
er
ge
d

12
6.

05
×

10
−

1
4

4.
30
×

10
−

1
3

1.
10
×

10
−

1
1

8.
56
×

10
−

1
3

12
.4

8.
0

8.
3

8.
7

14
1.

16
×

10
−

1
4

1.
08
×

10
−

1
3

3.
22
×

10
−

1
2

2.
14
×

10
−

1
3

10
.9

8.
9

7.
9

9.
4

T
ab
le
B
.9
:
R
D
G
-1
x
f̄
,
V
N
N
=

0.
08
,
0.
02
,
an
d
0.
00
01

fo
r
R
K
3,

R
K
4,

an
d
R
K
5,

re
sp
ec
ti
ve
ly
:
L

2
-e
rr
or

of
st
ea
d
y
li
n
ea
r-
va
ri
at
io
n

d
i�
u
si
on

p
ro
b
le
m

w
it
h
tw
o-
si
d
ed

N
eu
m
an
n
b
ou
n
d
ar
y
co
n
d
it
io
n
s.

228

p
N

e
le

L
2
ū

e
r
r
o
r

L
2
4
u

e
r
r
o
r

L
2
4

2
u

e
r
r
o
r

L
2
4

3
u

e
r
r
o
r

R
a
te

1
6

1.
38
×

10
−

4
7.

51
×

10
−

5

12
9.

09
×

10
−

6
2.

12
×

10
−

6
3.

9
5.

1
18

1.
81
×

10
−

6
2.

66
×

10
−

7
3.

9
5.

1
24

5.
75
×

10
−

7
6.

13
×

10
−

8
3.

9
5.

1
30

2.
36
×

10
−

7
1.

97
×

10
−

8
3.

9
5.

0
36

1.
14
×

10
−

7
7.

83
×

10
−

9
3.

9
5.

0

2
4

1.
49
×

10
−

7
6.

97
×

10
−

7
6.

27
×

10
−

6

8
1.

11
×

10
−

9
6.

37
×

10
−

9
9.

77
×

10
−

8
7.

0
6.

7
6.

0
12

5.
72
×

10
−

1
1

3.
89
×

10
−

1
0

8.
59
×

10
−

9
7.

3
6.

9
6.

0
16

6.
83
×

10
−

1
2

5.
30
×

10
−

1
1

1.
53
×

10
−

9
7.

3
6.

9
6.

0
20

1.
27
×

10
−

1
2

1.
12
×

10
−

1
1

4.
01
×

10
−

1
0

7.
5

6.
9

6.
0

24
2.

87
×

10
−

1
3

3.
15
×

10
−

1
2

1.
34
×

10
−

1
0

8.
1

6.
9

6.
0

3
4

4.
85
×

10
−

1
0

1.
43
×

10
−

9
6.

81
×

10
−

9
1.

24
×

10
−

8

6
1.

27
×

10
−

1
1

4.
25
×

10
−

1
1

2.
95
×

10
−

1
0

3.
48
×

10
−

1
0

8.
9

8.
6

7.
4

8.
8

8
8.

70
×

10
−

1
3

3.
25
×

10
−

1
2

3.
06
×

10
−

1
1

2.
69
×

10
−

1
1

9.
3

8.
9

7.
8

8.
9

10
1.

01
×

10
−

1
3

4.
32
×

10
−

1
3

5.
21
×

10
−

1
2

3.
66
×

10
−

1
2

9.
6

9.
0

7.
9

8.
9

12
1.

66
×

10
−

1
4

8.
27
×

10
−

1
4

1.
22
×

10
−

1
2

7.
15
×

10
−

1
3

9.
9

9.
0

7.
9

8.
9

14
3.

31
×

10
−

1
5

2.
04
×

10
−

1
4

3.
58
×

10
−

1
3

1.
79
×

10
−

1
3

10
.4

9.
0

7.
9

8.
9

T
ab
le
B
.1
0:

R
D
G
-1
x
+
,
V
N
N

=
0.
15
,
0.
08
,
an
d
0.
04

fo
r
R
K
3,

R
K
4,

an
d
R
K
5,

re
sp
ec
ti
ve
ly
:
L

2
-e
rr
or

of
st
ea
d
y
li
n
ea
r-
va
ri
at
io
n

d
i�
u
si
on

p
ro
b
le
m

w
it
h
tw
o-
si
d
ed

N
eu
m
an
n
b
ou
n
d
ar
y
co
n
d
it
io
n
s.

229

Pe,G Nele DOF L2 ūerror OOA L24uerror OOA

10−5 10 20 6.59× 10−5 3.68× 10−5

20 40 4.13× 10−6 4.0 1.17× 10−6 4.9

40 80 2.59× 10−7 4.0 3.66× 10−8 5.0

80 160 1.62× 10−8 4.0 1.15× 10−9 5.0

160 320 1.01× 10−9 4.0 4.11× 10−11 4.8

320 640 6.34× 10−11 4.0 1.81× 10−12 4.5

10−4 10 20 6.59× 10−5 3.68× 10−5

20 40 4.13× 10−6 4.0 1.18× 10−6 5.0

40 80 2.59× 10−7 4.0 3.77× 10−8 5.0

80 160 1.62× 10−8 4.0 1.47× 10−9 4.7

160 320 1.01× 10−9 4.0 2.02× 10−10 2.9

320 640 6.33× 10−11 4.0 1.42× 10−11 3.8

10−3 10 20 6.58× 10−5 3.81× 10−5

20 40 4.13× 10−6 4.0 1.54× 10−6 4.6

40 80 2.59× 10−7 4.0 8.62× 10−8 4.2

80 160 1.62× 10−8 4.0 9.10× 10−9 3.2

160 320 1.01× 10−9 4.0 1.97× 10−9 2.2

320 640 6.33× 10−11 4.0 1.41× 10−10 3.8

10−2 10 20 6.53× 10−5 7.35× 10−5

20 40 4.13× 10−6 4.0 9.45× 10−6 3.0

40 80 2.59× 10−7 4.0 7.60× 10−7 3.6

80 160 1.62× 10−8 4.0 9.08× 10−8 3.0

160 320 1.01× 10−9 4.0 1.80× 10−8 2.3

320 640 6.35× 10−11 4.0 1.42× 10−9 3.7

10−1 10 20 8.43× 10−5 3.54× 10−4

20 40 6.74× 10−6 3.6 9.98× 10−5 2.4

40 80 3.24× 10−7 4.4 7.01× 10−6 3.8

80 160 2.30× 10−8 3.8 1.17× 10−6 2.6

160 320 1.29× 10−9 4.2 1.13× 10−7 3.4

320 640 8.57× 10−11 3.9 1.62× 10−8 2.8

100 10 20 2.94× 10−4 2.34× 10−3

20 40 2.53× 10−5 3.6 4.19× 10−4 2.5

40 80 1.78× 10−6 3.8 5.88× 10−5 2.8

80 160 1.42× 10−7 3.7 9.57× 10−6 2.6

160 320 8.20× 10−9 4.1 1.08× 10−6 3.2

320 640 8.72× 10−10 3.2 2.46× 10−7 2.1

Table B.11: Linear advection-di�usion: HH-DG p = 1, r = 1
6
, CFL = 1, µ = 0.01,

tfinal = 100, CAdv-Di� = 0.9375, periodic boundary condition.

230

Pe,G Nele DOF L2 ūerror OOA L24uerror OOA

10+1 10 20 1.48× 10−3 7.69× 10−3

20 40 1.70× 10−4 3.1 1.34× 10−3 2.5

40 80 1.98× 10−5 3.1 3.25× 10−4 2.0

80 160 2.01× 10−6 3.3 6.92× 10−5 2.2

160 320 1.64× 10−7 3.6 8.02× 10−6 3.1

320 640 1.40× 10−8 3.5 2.11× 10−6 1.9

10+2 10 20 6.57× 10−3 5.57× 10−3

20 40 9.77× 10−4 2.8 1.51× 10−3 1.9

40 80 1.49× 10−4 2.7 2.91× 10−4 2.4

80 160 2.21× 10−5 2.8 8.07× 10−5 1.9

160 320 3.00× 10−6 2.9 1.72× 10−5 2.2

320 640 3.60× 10−7 3.1 7.01× 10−6 1.3

10+3 10 20 2.27× 10−2 7.48× 10−3

20 40 4.35× 10−3 2.4 1.34× 10−3 2.5

40 80 7.53× 10−4 2.5 3.05× 10−4 2.1

80 160 1.19× 10−4 2.7 8.55× 10−5 1.8

160 320 1.79× 10−5 2.7 2.52× 10−5 1.8

320 640 2.71× 10−6 2.7 4.39× 10−6 2.5

10+4 10 20 8.18× 10−3 2.50× 10−2

20 40 1.48× 10−3 2.5 2.43× 10−3 3.4

40 80 2.46× 10−3 2.6 3.93× 10−4 2.6

80 160 4.29× 10−4 2.5 2.25× 10−5 4.3

160 320 7.68× 10−5 2.5 1.44× 10−5 0.6

320 640 1.34× 10−5 2.5 5.01× 10−6 1.5

10+5 10 20 2.46× 10−1 7.79× 10−2

20 40 8.89× 10−2 1.5 1.41× 10−2 2.5

40 80 1.40× 10−2 2.7 1.14× 10−3 3.6

80 160 1.95× 10−3 2.8 1.20× 10−4 3.3

160 320 2.83× 10−4 2.8 1.78× 10−5 2.8

320 640 0.00× 10−11 0.0 0.00× 10−8 0.0

Table B.12: Linear advection-di�usion: HH-DG p = 1, r = 1
6
, CFL = 1, µ = 0.01,

tfinal = 100, CAdv-Di� = 0.9375, periodic boundary condition.

231

BIBLIOGRAPHY

232

BIBLIOGRAPHY

[1] Saint Petersburg State Polytechnical University. http://smitu.cef.spbstu.

ru/galerkin.htm.

[2] D.N. Arnold. �An interior penalty �nite element method with discontinuous
elements�. SIAM Journal on Numerical Analysis, 19:742�760, 1982.

[3] D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini. �Uni�ed analysis of dis-
continuous galerkin methods for elliptic problems�. SIAM Journal on Numerical
Analysis, 39:1749�1779, 2002.

[4] F. Bassi and S. Rebay. �A high-order accurate discontinuous �nite element
method for the numerical solution of the compressible navier-stokes equations�.
Journal of Computational Physics, 131:267�279, 1997.

[5] C.E. Baumann and J.T. Oden. �A discontinuous hp �nite element method for
convection-di�usion problems�. Computer Methods in Applied Mechanics and
Engineering, 175:311�341, 1999.

[6] B. Cockburn, J. Gopalakrishnan, and R. Lazarov. �Uni�ed hybridization of dis-
continuous Galerkin, mixed, and continuous Galerkin methods for second order
elliptic problems�. Siam, Journal on Numerical Analysis, 47:1319�1365, 2009.

[7] B. Cockburn and C.W. Shu. �TVB Runge-Kutta local projection discontinuous
Galerkin �nite element method for conservation laws II: General framework�.
Mathematics of Computation, 52:411�435, 1989.

[8] B. Cockburn and C.W. Shu. �The local discontinuous Galerkin method for time-
dependent convection-di�usion systems�. Siam, Journal on Numerical Analysis,
35:2440�2463, 1998.

[9] L.M. Delves and C.A. Hall. �An implicit matching principle for global element
calculations�. Institute of Mathematics and its Applications, 23:223�234, 1979.

[10] M. Dumbser and C-D. Munz. �ADER discontinuous Galerkin schemes for aeroa-
coustics�. C.R. Mecanique 333, pages 683�687, 2005.

[11] B. Finlayson. �The method of weighted residuals and variational principle, with
application in �uid mechanics�. Academic Press, 1972.

233

[12] D. French, M.C. Galbraith, and M. Osorio. �Error analysis of a modi�ed discon-
tinuous Galerkin recovery scheme for di�usion problems�. 48th AIAA Aerospace
Siciences Meeting including the New Horizons Forum and Aerospace Exposition,
AIAA Paper 2010-1071, 2010.

[13] J.E. Fromm. �A method for reducing dispersion in convective di�erence schemes�.
Journal of Computational Physics, 3:176�189, 1968.

[14] G. Gassner, F. Lorcher, and C.D. Munz. �A contribution to the construction of
di�usion �uxes for �nite volume and discontinuous Galerkin schemes�. Journal
of Scienti�c Computational Physics, 224:1049�1063, 2007.

[15] G. Gassner, F. Lorcher, and C.D. Munz. �A discontinuous Galkerin scheme
based on a space-time expansion. II. viscous �ow equations in multi dimensions�.
Journal of Scienti�c Computing, 34:260�286, 2008.

[16] S. Gottlieb. �On high order strong stability preserving Runge-Kutta and multi
step time discretizations�. Journal of Scienti�c Computing, 25:105�128, 2005.

[17] H.T. Huynh. �An upwind moment scheme for conservation laws�. Computa-
tional Fluid Dynamics 2004, Proceedings of the Third International Conference
on Computational Fluid Dynamics, ICCFD3, Toronto, pages 761�766, 2006.

[18] H.T. Huynh. �A �ux reconstruction approach to high-order schemes including
discontinuous Galkerin methods�. 18th AIAA Computational Fluid Dynamics
Conference, 2007.

[19] H.T. Huynh. �A reconstruction approach to high-order schemes including discon-
tinuous Galerkin for di�usion�. 47th AIAA Aerospace Sciences Meeting Including
The New Horizons Forum and Aerospace Exposition, AIAA Paper 2009-0403,
2009.

[20] A. Jameson, W. Schmidt, and E. Turkel. �Numerical solution of the Euler
equations by �nite volume methods using Runge-Kutta time-stepping schemes�.
AIAA Fluid and Plasma Dynamics Conference, 14th, Palo Alto, CA, USA,
AIAA Paper 81-1259, 1981.

[21] C. Johnson and J. Pitkaranta. �An analysis of the discontinuous Galerkin method
for a scalar hyperbolic equation�. Mathematics of Computation, 46:1�26, 1986.

[22] P. LeSaint and P.A. Raviart. �On a �nite element method for solving the neu-
tron transport equation�. Mathmetical Aspects of Finite Elements in Partial
Di�erential Equations, pages 89�123, 1974.

[23] M. Lo and B. van Leer. �Analysis and implementation of Recovery-based Dis-
continuous Galerkin for di�usion�. 19th AIAA Computational Fluid Dynamics
Conference, San Antonio, Texas, USA, AIAA Paper 2009-3786, 2009.

234

[24] F. Lorcher, G. Gassner, and C.D. Munz. �A discontinuous Galkerin scheme based
on a space-time expansion. I. inviscid compressible �ow in one space dimension�.
Journal of Scienti�c Computating, 32:175�199, 2007.

[25] K. Masatsuka. �I do like CFD, Vol. 1�. Lulu.com, 2009.

[26] K.W. Morton. �Shock capturing, �tting and recovery�. Springer
Berlin/Heidelberg, 1982.

[27] N.C. Nguyen, J. Peraire, and B. Cockburn. �An implicit high-order hybridiz-
able discontinuous Galerkin method for linear convection-di�usion equations�.
Journal of Computational Physics, 228:3232�3254, 2009.

[28] J.T. Oden, I. Babuska, and C.E. Baumann. �A discontinuous hp �nite element
method for di�usion problems�. Journal of Computational Physics, 146:491�519,
1998.

[29] H. Park, R. Nourgaliev, V. Mousseau, and D. Knoll. �Recovery discontinu-
ous Galerkin - Jacobian-free Newton Krylov (rDG-JFNK) method for all-speed
Navier-Stokes equations�. International Conference on Computational Fluid Dy-
namics (ICCFD), Seoul, Korea, 2008.

[30] J. Peraire and P.O. Persson. �The compact discontinuous galerkin (CDG)
method for elliptic problems�. SIAM Journal of Scienti�c Computating, 30:1806�
1824, 2008.

[31] M. J. Prather. �Numerical advection by conservation of second-order moments�.
JGR, 91:6671�6681, 1986.

[32] W. Reed and T. Hill. �Triangular mesh methods for the neutron transport
equation�. Tech. Rep. LA-UR 73-479, Los Alamos National Laboratory, 1973.

[33] P.L. Roe. Approximate Riemann solvers, parameter vectors, and di�erence
schemes. Journal of Computational Physics, 43(2):357 � 372, 1981.

[34] G.L. Russel and J.A. Lerner. A new �nite-di�erencing scheme for the tracer
transport equation. Journal of Applied Meteorology, 20:1483�1498, 1981.

[35] S.J. Ruuth. �Global optimization of explicit strong-stability-preserving Runge-
Kutta methods�. Mathematics of Computation, 75:183�207, 1997.

[36] Y. Suzuki. �Discontinuous Galerkin Methods for Extended Hydrodynamics�.
PhD Thesis, 2008.

[37] B. van Leer. �Towards the ultimate conservative di�erence scheme. IV. A new
approach to numerical convection�. Journal of Computational Physics, 23:276�
299, 1977.

235

[38] B. van Leer. �Towards the ultimate conservative di�erence scheme. V. A second-
order sequel to Godunov's method�. Journal of Computational Physics, 32:101�
136, 1979.

[39] B. van Leer. �Computational methods for ideal compressible �ow�. In Von
Karman Inst. for Fluid Dynamics Computational Fluid Dyn., 1:45, 1984.

[40] B. van Leer. �Multidimensional explicit di�erence schemes for hyperbolic con-
servation laws�. Computational Methods in Applied Sciences and Engineering,
VI, pages 493�497, 1984.

[41] B. van Leer and M. Lo. �Uni�cation of Discontinuous Galerkin methods for
advection and di�usion�. 47th AIAA Aerospace Sciences Meeting and Exhibit,
Orlando, Florida, USA, AIAA Paper 2009-400, 2009.

[42] B. van Leer, M. Lo, R. Gitik, and S. Nomura. �A Venerable Family of Dis-
continuous Galerkin Schemes for Di�usion Revisited�. World Scienti�c Review
Volume 9, 2010.

[43] B. van Leer, M. Lo, and M. van Raalte. �A discontinuous Galerkin method
for di�usion based on recovery�. 18th AIAA Computational Fluid Dynamics
Conference, Miami, Florida, USA, AIAA Paper 2007-4083, June 2007.

[44] B. van Leer and S. Nomura. �Discontinuous Galerkin for di�usion�. 17th AIAA
Computational Fluid Dynamics Conference, Tornoto, Ontario, Canada, AIAA
Paper 2005-5108, 2005.

[45] M. van Raalte and B. van Leer. �Bilinear forms for the Recovery-based Dis-
continuous Galerkin method for di�usion�. Communications in Computational
Physics, 5:683�693, 2008.

[46] F.M. White. �Viscous Fluid Flow, Second Edition�. McGraw-Hill, 1991.

[47] Wikipedia. http://en.wikipedia.org/wiki/Runge_Kutta_methods.

236

