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Chapter 1                                                                                         
Understanding Ribosomal Maturation with Electron Microscopy 

 

1.1  Abstract  

The biogenesis of eukaryotic ribosomes is a highly regulated process and 

requires approximately 200 assembly factors (AFs).  The process begins with 

transcription of ribosomal RNA (rRNA) in the nucleolus followed by maturation 

events in both the nucleolus and the cytoplasm. Although many assembly factors 

have been identified, detailed knowledge of their specific functions and binding 

locations on ribosomal precursor subunits is lacking. To understand the 

maturation of the 40S subunit (40S) and specific AF functions in more detail, 

structural characterization of a precursor 40S subunit is necessary. Cryo-EM is 

an invaluable tool for studying the 3D structures of these precursor complexes, 

as they are large, flexible and heterogeneous, characteristics making 

macromolecular crystallization difficult. Despite current limits on resolution levels 

attainable with cryo-EM, detailed structural models are possible by combining 

cryo-EM 3D maps with with X-ray crystallographic and molecular dynamics data. 
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1.2  Eukaryotic ribosome function 

The ribosome is a large macromolecular complex comprised of a small (SSU) 

and large (LSU) subunit. The SSU and LSU are 40S and 60S in eukaryotic cells, 

and 30S and 50S in prokaryotic cells, respectively.  The ribosome, 80S in 

eukaryotes and 70S in prokaryotes, catalyzes protein synthesis by translation of 

messenger RNA (mRNA) into polypeptides.  Peptide bond formation occurs by 

messenger (mRNA) codon and amino-acylated transfer RNA (tRNA) anticodon 

recognition on the decoding site on 40S, comprised of rRNA nucleotides highly 

conserved in all living cells1,2.  The 80S holoenzyme contains four rRNA 

transcripts and approximately 80 ribosomal proteins (rps). After transcription from 

a polycistronic gene, a 35S rRNA transcript undergoes multiple cleavage steps to 

generate all four rRNA transcripts found in the mature ribosome. Rps begin 

binding the rRNA in the nucleolus, facilitating rRNA folding events and stabilizing 

its structure3.  Precursors to the mature 40S and 60S subunits are exported from 

the nucleolus and maturation is completed in the cytoplasm4.  With the help of 

initiation factors, mature subunits join to form the 80S ribosome (the process of 

translation initation is reviewed by Kapp5 and Sonnenburg6). 

 

1.3  High-resolution structures of the eukaryotic ribosome  

Recently, several groups have calculated the structure of the eukaryotic ribosome 

using X-ray crystallography and electron cryomicroscopy (cryo-EM).  Although 
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the crystal structure of the prokaryotic 70S ribosome had been solved to atomic 

resolution in 20007,8,910, knowledge of the eukaryotic ribosome structure had 

relied on 3D maps calculated from cryo-EM studies until late 2010.  The first 80S 

ribosome cryo-EM 3D reconstructions with moderate resolutions (below 30 

Angstroms (Å)) were determined using Saccharomyces cerevisiae (S. 

cerevisiae)11 and Tetrahymena thermophila (thermophilic yeast)12 ribosomes, 

which were solved to 17.5 Å and 8.9 Å, respectively.  The resolution of these 3D 

reconstructions prevented localization and modeling of all ribosomal proteins and 

RNA. More detailed structural information was facilitated with a cryo-EM 3D map 

of a yeast 80S solved to 5.5 Å by the Beckmann group13 (Protein Databank 

(PDB) identification codes (IDs): 3O2Z and 3O58).  The crystal structure of the 

macromolecular machine from S. cerevisiae was solved in November 2010 to a 

resolution of 4.15 Angstroms (Å)14.  Shortly after, the 40S subunit from T. 

thermophila with eukaryotic initiation factor (eIF) 1 bound (PDB ID: 2XZM) was 

solved to 3.9 Å15. These crystal structures allowed nearly all the rps to be 

identified and structurally characterized in the 80S ribosome.   
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Figure 1.1: High resolution structure of the eukaryotic ribosome. Ribbon 
representation of the 4.15 Å S. cerevisiae 80S ribosome. Rps are shown in magenta and 
yellow, and rRNA is shown in cyan and navy blue, for 40S and 60S, respectively (PDB 
IDs: 3O2Z (40S) and 3O58 (60S)). 

1.4  The structure of the 40S subunit 

Investigation of the eukaryotic 40S ribosomal subunit (40S) shows a ʻstructural 

coreʼ formed by the rRNA with the rps binding peripherally on the rRNA.  Rps 

play roles in structural maintenance and rRNA processing of the small subunit 

during assembly3.  The 40S subunit possesses four distinct structural regions: 

the head, the beak, the platform and the foot (Figure 1.2). The solvent exposed 

side of pre-40S is shown in the left panel of Figure 1.2 and the 60S-binding side 

of the complex is shown in the right panel of Figure 1.2. The binding interface 

contains a large network of secondary structure elements responsible for the 

bridging of the SSU and LSU16. The mRNA channel extends perpendicular to the 

long-axis of the particle and is located on the platform, the area below the head 

on the binding interface. The binding sites for multiple eukaryotic initiation factors 
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(eIFs), as well as the tRNA amino-acyl, peptidyl and exit sites (A-site, P-site, E-

site; respectively), are also on the platform14,17,18,19,20,21.  The foot is made from 

the bottom of helix 44 (numbered helices refer to secondary structure elements of 

the 18S rRNA).  Helix 44 contains the active site nucleotides of the decoding 

site22,23.  

 

Figure 1.2: 40S subunit structure. Ribbon representation of the 40S subunit alone 
from the 4.15 Å S. cerevisiae 80S ribosome crystal structure (shown in Figure 1.1)14. 
Rps are magenta and rRNA shown in cyan. The four characteristic structural features of 
40S (head, platform, beak and foot) are labeled. The view in the left panel shows the 
solvent-exposed side and the view in the right panel shows the subunit-binding interface. 

 

1.5  Initiation of protein translation 

Translation initiation is a multiple step process that requires the binding of many 

factors, including 12 identified eukaryotic initiation factors (eIFs) (reviewed by 

Kapp5). First, the ternary complex (TC) of GTP bound eIF2 and amino-acylated 

initiator tRNA (tRNAi) is delivered to the P-site of the mature 40S subunit, making 
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pre-43S initiation complex (PIC)24. eIF1, eIF1A, eIF3 and the poly(A)-binding 

protein all assist in the binding of the 5ʼ-end of the mRNA to the PIC. The small 

subunit scans the mRNA for the start codon followed by the eIF5-catalyzed 

conversion of guanine triphosphate (GTP) to guanine diphosphate (GDP) on 

eIF2, releasing eIF2-GDP25,26.  At this stage, the tRNAi is bound to the mRNA 

start codon and, with the help of eIF5B, the 40S can join the 60S, forming the 

translation elongation competent 80S complex25,27,28.  

 

An understanding of the process of translation initiation was aided by cryo-EM 

and X-ray crystallographic structures of the 40S complex with various initiation 

factors bound14,17,18,19,20,21. A series of low-resolution maps show that the 

cooperative binding of eIF1 and eIF1A is required for the opening of the mRNA 

channel. In addition to the mRNA channel being opened, a connection is formed 

between the head and body on the solvent interface of 40S, stabilizing the open 

conformation of the channel18 (Figure 1.3A).  The binding of the factors and 

channel opening allows the complex to scan the mRNA29-32 (Figure 1.3A).  

Additional cryo-EM 3D maps show eIF1 binds 40S on the platform near the 

beak15 (Figure 1.4A), and eIF3 binds on the back of the platform, opposite the 

beak17 (Figure 1.4B)  Despite substantial structural knowledge of the mature 

ribosome and 40S translation initiation intermediates, the assembly of the 40S 

subunit is not well understood. 
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Figure 1.3: Cooperative binding of eIF1/1A opens the 40S mRNA channel. The 
subunit binding side of mature 40S contains a 'latch' keeping the mRNA channel closed 
(left panel, EMDB ID: 1346).  Cooperative bind of eIF1 and eIF1A bind to 40S opens the 
mRNA channel by releasing the latch (right panel, EMDB ID: 1347). (B) The opening of 
the latch is stabilized by a new connection between the beak and platform on the solvent 
side (arrow in right panel) in 40S-eIF1-eIF1A18. 

 

 

Figure 1.4: Binding of eIF1, tRNA and eIF3 on mature 40S. (A) Mature 40S (gray) 
with eIF115 (yellow) and P/E-tRNA12 (royal blue) bound, both bind the 40S near the 
mRNA channel on the platform. (B) eIF3 (purple) binds at the back of the platform on 
40S (gray)17. 
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1.6  Ribosome biogenesis 

Ribosome biogenesis is a highly regulated process, which begins with 

transcription of the 35S rRNA from a polycistronic gene in the nucleolus and 

continues through export of precursor subunits to the cytoplasm4 (Figure 1.5).  

The 35S precursor rRNA contains 5ʼ and 3ʼ external transcribed spacers (ETS) 

and two internal transcribed spacers (ITS), ITS-1 and ITS-2.  Multiple cleavage 

events yield the 18S rRNA found in the mature 40S subunit, and the 5S, 5.8S 

and 25S rRNAs associated with the mature 60S33-35.  rRNA cleavage steps are 

facilitated by ribosomal proteins and trans-acting non-ribosomal assembly factors 

(AFs), which are also required for the proper formation of mature subunits36,37.  

Approximately 200 AFs have been identified in biogenesis of the subunits38.  The 

AFs transiently associate with the maturation intermediates at various stages in 

the pathway, with binding observed in both the nucleolus and cytoplasm39,40. AFs 

are rarely found in polysomes41, indicating their dissociation is required for the 

binding of eIFs, tRNAi and the mRNA to 40S, as well as joining of the small and 

large subunits.  In addition to potentially serving as quality control measures by 

inhibiting the binding of translation initiation factors to immature subunits, AFs 

have a wide variety of functions in the maturation process, including RNA 

methylation and cleavage, protein phosphorylation, and precursor subunit 

nuclear export (reviewed by Strunk et al.42). 
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Figure 1.5: 40S biogenesis occurs in multiple steps and subcellular locations.  
Ribosome biogenesis begins in the nucleolus with the transcription of the 35S rRNA 
(green boxes with ITS and ETS shown as pink lines), most rps (represented by purple 
ovals) and some AFs (yellow stars) bind the rRNA in the nucleolus. After cleavage at 
sites A0, A1 and A2 the premature 40S is exported to the cytoplasm containing the 
premature 20S rRNA precursor. Additional AFs, including Nob1 which cleaves the 20S 
rRNA at site D to yield the mature 18S rRNA, associate in the cytoplasm.  AFs dissociate 
prior to incorporation of subunits into 80S complexes. 

 

1.7  40S assembly 

Cleavage of the 35S rRNA transcript at sites, A0 and A1 in ETS-1, and A2 in ITS-

143,44 yields the 20S rRNA precursor found in the pre-mature 40S.  The 40S 

precursor intermediate containing the 20S rRNA is exported to the cytoplasm 
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with most of the mature rps, and the AFs that bind the complex in the 

nucleolus41,45,46.  After export, additional AFs bind the premature 40S subunit 

(pre-40S) in the cytoplasm41,44,47-49.  The final cleavage step to generate the 

mature 18S from the 20S rRNA occurs at site D, located at the 3ʼ end of the 18S 

rRNA, by the endonuclease AF, Nob144,50,51.  Additional AFs are required for site 

D and earlier cleavage events, as shown by the accumulation of multiple 

precursor rRNAs in yeast cells with the factors depleted41.  The functional roles in 

maturation and their binding sites, effectors and substrates of AFs on the 

premature subunits is poorly understood.  Aberrations in the production of human 

ribosomes can lead to countless pathologies including Diamond-Blackfan 

anemia4,52, myelodysplastic syndromes53, dyskeratosis congenita, cartilage hair 

hypoplasia and Treacher Collins syndrome54.  To better understand the process 

and regulation of ribosome biogenesis, a structural understanding of the 40S 

premature subunit intermediates is required.  The localization of the AFs on 40S 

precursors is an important step in delineating their interactions with rRNA and 

other proteins, potentially narrowing down their functions, mechanisms, 

regulators and downstream targets.   

 

1.8  40S assembly factors in yeast pre-40S 

Protein families of AFs responsible for ribosome biogenesis include, but are not 

limited to, GTPases, ATPases, helicases, kinases, export adaptors and RNA-
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modifying enzymes, such as methylases (reviewed by Strunk et al.42).  Similar to 

their binding on 40S, dissociation of AFs occurs at different stages and 

subcellular locations41, contributing to different populations of 40S maturation 

intermediates in cells.  To isolate a late cytoplasmic premature 40S (pre-40S) 

from yeast cells, Schaefer and colleagues added a tandem affinity purification 

(TAP) tag to the C-terminal end of the kinase, Rio2, which preferentially 

associates with the cytoplasmic precursor 40S subunits over those in the 

nucleolus41,46.  Seven AFs are associated with this particle:  Rio2, a serine kinase 

with an unknown substrate; Ltv1, which is expected to be nuclear export factor; 

Tsr1 and Enp1, proteins with unknown functions; Nob1, the endonuclease 

responsible for cleavage of the 20S rRNA at site D; Dim1, an RNA methylase 

which modifies two adenosine residues near site D; and Pno1, a protein 

containing three K homology (KH) domains, that are implicated in nucleotide-

binding.  Northern blot analysis confirmed the isolated late-cytoplasmic complex 

contains the 20S precursor rRNA. Biochemical data has provided a rough 

estimate of the interactions of the AFs2,51,55,56 on pre-40S, but determination of 

their specific binding sites will provide a better understanding of the overall 

assembly of 40S. 
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Nob1 

Nob1 produces the mature 18S rRNA by endonucleolytic cleavage of the 20S 

rRNA at site D44,50,51.  Nob1 binds pre-40S in the cytoplasm and contains a N-

terminal PIN domain (amino acids 1-130), which is homologous to members of 

the RNAse H superfamily41,57-59.  This domain is required for cleavage at site D74. 

The crystal structure of an archaeal PIN domain has been solved58, and was 

crystallized as a tetramer44. The center of the ring formed by PIN domains is 

lined by four conserved metal-chelating acidic residues (D15/E43/D92/D110) 

required for site D cleavage, and it is hypothesized that the single-stranded ITS1 

passes through the channel (Figure 1.6).    

 

Figure 1.6: PIN domain of Nob1 is predicted to form a homotetramer. Crystal 
structure of homotetramer formed by an archaea PIN domain57 (PDB: 1V8P). Active site 
residues are differentially colored and shown in as sticks. 

 

On the pre-40S complex, RNA footprinting data shows Nob1 binds at cleavage 

site D and to nucleotides in ITS-151.  Both regions are located on the back of the 

platform in the mature 40S subunit.  This location is near Rps5 and Rps14, 

ribosomal proteins that are required for site D cleavage60 and interact with 
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Nob155. However, cross-linking analysis indicates Nob1 also binds helix 40, 

located in the head domain, approximately 33 Å away from site D56.  These 

conflicting localization data might indicate a shift in the positioning of Nob1 on 

pre-40S closer to site D immediately prior to cleavage.  Furthermore, Nob1 can 

be found on pre-40S complexes containing the precursor 20S rRNA41 indicating 

that an activation event or conformational change is required for cleavage.  

Further understanding of specific binding site of Nob1 on pre-40S and its 

distance from site D may elude the signals responsible for activation or 

movement of Nob1 on pre-40S. 

 

Rio2 

Rio2 is a serine kinase and a member of the Right Open (RiO) reading frame 

family of atypical protein kinases61. The crystal structure of archaeal Rio2 reveals 

a RiO kinase domain and an N-terminal domain with a winged-helix fold62 (PDB 

ID: 1ZAO) (Figure 1.7).  Although Rio2 possesses a canonical RiO kinase fold, 

phosphorylation targets have not been identified on pre-40S. In human cells, the 

kinase activity of Rio2 is required for the release of Pno1, Ltv1 and Nob1 from 

pre-40S particles63, indicating Rio2 activity may signal for an event, such as a 

conformational change, that releases the AFs by altering the conformation of pre-

40S at their binding sites.  Rio2 is conserved in eukaryotic cells and its depletion 

causes the accumulation of the 20S rRNA in both yeast64-66 and human67 cells. 
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Rio2 interacts with Rps14 and Rps555, located on the platform and the head, 

respectively.  Rio2 crosslinks to helix 3156, located in the head near the mRNA 

channel, specifically at the P-site.  Binding of Rio2 to this region would block the 

binding sites on mature 40S for several factors required for initiation of protein 

translation, including the mRNA, tRNA and elF1. Determining the location of Rio2 

on the pre-40S complex will confirm whether its association with the premature 

complex blocks binding sites for initiation factors.  Its localization will also allow a 

more thorough understanding of the upstream signal(s) required for activation of 

the kinase and the downstream target(s) it modifies to regulate site D cleavage 

and recycle AFs on pre-40S.  

 

Figure 1.7: The crystal structure of Rio2. Crystal structure from yeast Rio2ʼs archaeal 
ortholog shows an N-terminal winged helix fold domain and C-terminal RiO kinase-like 
fold61 (PDB ID: 1ZAO). 
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Dim1 

Dim1 is a S-adenosyl-L-methionine (SAM) transferase that is conserved from 

bacteria to humans2,68. Dim1 transfers  methyl groups to two adjacent adenosine 

nucleotides in the loop between helices 44 and 45 near site D69,70.  The 

modification occurs in the cytoplasm39 and is required for cleavage by Nob151.  

The crystal structure of human Dim1 has been solved71 (PDB ID: 2ZQ9) (Figure 

1.8) and contains two K homology (KH) domains.  The KH domains are highly 

conserved and found in the crystal structure of the bacterial ortholog of Dim1, 

KsgA2.  The larger N-terminal domain consists of mixed α-helical and β-sheet 

secondary structure elements, and the C-terminal domain contains only α-helical 

elements.  A flexible linker connects the domains and the C-terminal domain sits 

on top of the N-terminal domain. The active site residues are positioned in the 

interface of the domains. 

 

Figure 1.8: Crystal structure of human Dim1. The N-terminal KH domain sits on top of 
the C-terminal KH domain, the active site residues are located at the interface of the 
domains (PDB: 2ZQ9)2. 
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Footprinting experiments show KsgA interacts with premature 30S complexes at 

the top of helix 442.  Dim1ʼs adenosine substrates are in the loop between helices 

44 and 45 located on the platform of pre-40S. Dim1 cross-links to helices 2 and 

28, which make the central pseudo-knot of the small subunit56, also located on 

the platform.  Helix 28 is required for initiator methionine tRNA (tRNAiMet) 

binding72, indicating the binding site of Dim1 may overlap that of tRNAiMet. 

Localization of Dim1 on pre-40S will indicate if association of the methylase 

prevents binding of factors required for translation initiation.  Localization of Dim1 

will also provide insight into the signaling pathway activating the methylase and 

the downstream targets of this modification. 

 

Pno1 

The specific function of Pno1 in 40S maturation is unknown.  It has been shown 

that Pno1 associates with both pre-90S and pre-40S complexes73 and is required 

for rRNA cleavage at sites A1, A2
74 and site D73,75,76. Pno1 contains 3 KH 

domains, which include the highly conserved nine residue amino acid sequence 

VIGxxGxxI (V=valine, I=isoleucine, G=glycine, x=any amino acid) implicated in 

RNA-binding73.  The central KH domain binds to the PIN domain of Nob174 and is 

required for Nob1 cleavage.  It is also required for rRNA methylation by Dim173.  
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Pno1ʼs archaeal ortholog, Dim2p, forms a trimeric complex with the universally 

conserved GGAUC sequence at the 3ʼ end of the 16S rRNA and eIF2α.  This 

complex has been crystallized, revealing that Dim2p interacts directly with both 

molecules77 (Figure 1.9)(PDB ID: 2E3U).  eIF2 (comprised of α, β, and γ 

subunits) facilitates binding of initiator tRNAi to the small subunit. tRNAi binds the 

40S in the mRNA channel region, between the platform and the head.   

Localization of Pno1 on the back of the platform places it near the binding site of 

eIF2 and the 3ʼ end of the 18S rRNA.  Determining the precise location of Pno1 

on pre-40S may reveal it blocks the binding of tRNAi and/or eIF2.  It may also 

allow an understanding of its mechanism of regulating the binding and/or activity 

of Dim1 and Nob1. 

 

Figure 1.9: The archaeal ortholog of Pno1 binds eIF2A and GAAUC. The Pno1 
archaeal ortholog, Dim2p (red), was crystallized in complex with eIF2A (cyan) and the 
universally conserved sequence, GAAUC (yellow) found near the 3ʼ of the 18S rRNA.  
The crystal structure contains two of the three KH domains present in Pno1, it is lacking 
the C-terminal KH domain. 
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Tsr1 

Similar to other 40S assembly factors, Tsr1 is required for generation of the 18S 

rRNA from its 20S precursor48.  Tsr1 is found in both the nucleolus and 

cytoplasm indicating it binds pre-40S in the nucleolus41.  Tsr1 contains sequence 

homology to GTPases but its activity has not been shown.  The structure of Tsr1 

is also unknown. Tsr1 is one of the last AFs to be dissociated from the pre-40S 

but is not found polysomes41, in contrast to Nob1 and Pno141. Protein pull-down 

experiments show that Tsr1 interacts with Rio255, which crosslinking data has 

localized near the platform. RNA-protein cross-linking data reveals Tsr1 interacts 

with helix 4456, also on the subunit binding side and near the platform of pre-40S.  

By determining the specific location of Tsr1 we can determine whether it prevents 

binding of initiation factors with other AFs predicted to be found on the platform.  

Its localization may also allow the determination of its function and role in 

regulating cleavage by Nob1. 

Ltv1 

Ltv1 was initially predicted to be a nuclear export adaptor for pre-40S, due to its 

interaction with Crm1, a factor necessary for the export of both the pre-40S45,76 

and premature 60S subunits78  In yeast cells, the genetic deletion of Ltv1 (Δltv1) 

resulted in the accumulation of Rps3 in the nucleus45 which was used as a 

marker for the localization of 40S.  Additional studies attempted to confirm this 

role of Ltv1 by mutating or deleting a leucine-rich region of Ltv1, expected to 
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function as its nuclear export sequence (NES).  The NES-mutant Ltv1 proteins 

were incorporated into pre-40S complexes that were still capable of export to the 

cytoplasm but site D cleavage was blocked79.  Interestingly, this phenotype is not 

observed in Δltv1 yeast cells45.  Fassio and colleagues79 proposed two possible 

structural explanations for this observation.  First, the NES-mutant Ltv1 is 

preventing the release of one or multiple AFs from pre-40S, blocking the 

exposure of site D and sterically inhibiting cleavage. A potential candidate is Tsr1 

because it remains in the cytoplasm when the Ltv1 NES-mutant is over-

expressed in yeast cells79. The second hypothesis is that the Ltv1 NES-mutant 

prevents an overall pre-40S conformational change, preventing exposure of site 

D or the binding of a protein required for cleavage.  

 

Biochemical data exists for numerous interactions of Ltv1 on pre-40S.  Ltv1 

cross-links to nucleotides on helix 4156 located at the head. Ltv1 interacts directly 

with Enp155 and Ltv1 forms a trimeric complex with Enp1 and Rps3 that is 

released when pre-40S is exposed to high salt concentrations46.  In mature 40S, 

Rps3 is located in the head of pre-40S, near the density connecting the beak to 

the platform of the complex.  Helix 41 is also located at the bridge and Rps15 is 

located in the head near the beak.  All data are consistent with placement of Ltv1 

in the region connecting the bridge and head of pre-40S.  Determining the 
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precise location of Ltv1 will provide clues on how this AF causes a structural 

change or release of AFs to allow cleavage of site D. 

Enp1 

The assembly factor Enp1 is involved throughout the ribosomal maturation 

process, as indicated by its association with both the nucleolar premature 90S 

complex41 and the late cytoplasmic pre-40S36.  Depletion of Enp1 causes 

accumulation of 35S rRNA and Northern blot analysis confirmed it is essential for 

early rRNA processing at sites A0, A1 and A2
80.  Enp1 interacts with the small 

nucleolar RNAs (snoRNAs) U3 and U14, also implicated in pre-rRNA 

processing81,82.  Although Enp1 has roles in multiple steps of 40S biogenesis and 

possesses homologues in all eukaryotes, its function on pre-40S is not well 

understood.  Enp1ʼs role in the maintaining the structural integrity of the 

premature intermediates has been hypothesized due to its presence throughout 

assembly and its involvement in the formation of the beak structure41.  In addition 

to forming a trimeric complex with Ltv1 and Rps346, Enp1 also cross-links to helix 

33 and helix 3456, which are found in the beak and bridge, respectively.  

Placement of Enp1 in the region near the bridge connecting the beak to the body 

agrees with each of these interactions.  Structural characterization of Enp1 on 

pre-40S may provide additional evidence for its role in 40S assembly, potentially 

in formation of the beak structure. 
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1.9  Electron Microscopy 

Basic principles 

In transmission electron microscopy (TEM) the contrast of the image is primarily 

generated from the interference of scattered and unscattered electron waves68. 

Scattering is caused by deflection of electrons after interaction with the 

specimen.  In biological studies, the specimen is the biological sample itself or a 

biological sample embedded in a negative stain solution containing heavy metal 

salts.  TEM images are recorded on film or a charged-couple device (CCD) 

camera.  Negative stain EM requires samples to be embedded in heavy metal 

salts on a carbon support, and as a result, the sample is collapsed at different 

degrees and frequently assumes a preferred orientation on the grid surface.  In 

contrast, samples prepared by cryo-EM, are suspended in vitreous ice83 allowing 

structural determination of complexes in their fully hydrated, near native states.  

Single-particle analysis EM is based on averaging multiple projections of particles 

in the same orientation to increase the signal-to-noise ratio of the resulting 2D 

averages or 3D reconstructions. Cryo-EM 3D reconstructions are calculated by 

refining hundreds to hundreds of thousands of particle projections against an 

initial model created using the single-line approach or random conical tilt method 

with projection-based angular refinement matching84.  The advantages of using 

cryo-EM for structural biology investigations include the ability to study large, 

protein assemblies without the need for crystallization and observing these 
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complexes at a near native, hydrated state.  Although the application of cryo-EM 

typically results in low to intermediate resolution structures (10-30 Å), its 

combination with high-resolution data from X-ray crystallography allows modeling 

of individual components into the 3D maps of large macromolecular assemblies, 

providing greater structural detail of the complexes. 

 

Classification by reference-free alignment 

Classification of 2D EM projections allows the separation of multiple views or 

classes of a particle dataset.  The benefit of classification by reference-free 

alignment is the elimination of model bias in the resulting classes. In this process, 

all particles in a dataset are compared to randomly chosen particles from the 

dataset.  These particle projections are then used as models and remaining 

particles are grouped with the model in which they are most similar, determined 

by cross-correlation values. Particle images within each group are averaged to 

calculate new references and the process is continued iteratively.  The resulting 

classes show distinct views or subpopulations of the particle dataset.  2D 

averaging after classification results in increased signal-to-noise ratio, allowing 

for clearer visualization of the sampleʼs representative features. 

 

Contrast transfer function 

The contrast transfer theory explains that the Fourier transform of an objectʼs 
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image is related to the Fourier transform of an objectʼs Coulombic potential.  To 

correct for this the Fourier transform of the image must be multiplied by the 

contrast transfer function of the electron microscope used for imaging (reviewed 

by Wade85).  The CTF modulates the amplitude and phases in the back focal 

plane of the microscopeʼs objective lens. This modulation results in an artifact in 

the images that is dependent on the microscopeʼs objective lens spherical 

aberration coefficient, its voltage, the defocus values used and the spatial 

frequency.  CTF is a sinusoidal oscillating function that becomes attenuated with 

increasing spatial frequency.  A CTF curve is plot against the resolution in 

inverse angstroms.  The regions where the CTF passes through zero, no 

transmittance or contrast is transferred. In theory this first zero pass is the limit of 

the resolution of an EM 3D reconstruction.  This limit can be avoided because the 

defocus value affects the CTF and images can be obtained at various defocus 

values.  Acquiring micrographs for a given sample at a range of defocus values, 

shifts the resolution range where information is lost in the dataset86.  Another 

approach to regaining information lost at the zero values is by inverting the 

negative values of the micrographʼs CTF to obtain constant positive phase 

contrast.  The simplest form of computational CTF correction, ʻphase flippingʼ, is 

performed by determining the values of the parameters contributing to the shape 

of the CTF for each micrograph87.  Using these parameter values, the negative 

regions of the curve can be flipped to the positive phase.  This correction can be 
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carried out automatically in single-particle processing software such as EMAN88.   

Angular refinement using model-based projection matching 

This technique involves generating 2D projections of an initial model 

(ʻreprojectionsʼ) that evenly cover the angular space87,89.  The particle projections 

in the experimental dataset are compared with each reprojection, and are 

matched to the reprojection corresponding to the highest cross-correlation (CC) 

value.  The particles matching a given reprojection are added to a specific class, 

and this matching correlates with the shift and rotation angle of the projection.  

Using these parameters, a new reconstruction is calculated and used as an initial 

model in subsequent iterations.  Iterations are refined until the Fourier shell 

correlation (FSC) curve converges. The FSC measures the normalized cross-

correlation values between corresponding densities in two 3D volumes in Fourier 

space and at each spatial frequency. Although preferred orientation bias of 

particles is decreased in cryo-EM, relative to negative stain EM, it is still not fully 

eliminated.  2D averages from particle images with preferred orientations will 

contain a relatively higher number of particle projections, increasing the signal-to-

noise ratio for that class and potentially increasing the resolution in regions 

corresponding to preferred orientations.  To determine the overall resolution of a 

final 3D map, the projection dataset is split randomly into two subpopulations and 

two 3D reconstructions are calculated.  The value at which the FSC value for the 
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two reconstructions is equal to 0.5 (FSC=0.5)90 is typically the value that is cited 

as the reconstructionʼs resolution in the literature.  

 

Multiple-reference angular refinement 

Multiple-reference angular refinement involves the quantitative separation of 

datasets that are heterogeneous in conformation and/or composition followed by 

angular refinement of the resulting subsets91,92.  In this process, two or more 

initial models with expected similarities to the subsets are filtered to similar 

resolutions to prevent a bias toward the higher resolution model. Particle 

projections are aligned with all the angular reprojections of each initial model and 

assigned to a single modelʼs class according to highest cross-correlation value.  

The first iteration is usually sufficient to separate the particles into the correct 

subpopulations.  Subsequently, the subpopulations can be iteratively refined 

using a single model to generate final 3D maps. Differences in the 3D maps from 

each subset can be compared to determine the location of missing components 

or different conformations in the complex. 

 

Fitting of X-Ray crystal structures into EM densities 

With the majority of cryo-EM 3D maps at low to intermediate resolution, docking 

of crystal structures of individual components into the volume of macromoleculeʼs 

3D map allows a more detailed structural characterization of the complex.  Rigid 
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body docking of a crystal structure to generate a reasonable model can be used 

when the component is similar structure and conformation in both the X-ray and 

EM experiments.  If these differences are large, a reliable model may require 

optimization of the structure(s) docked into the cryo-EM density.  Solvent explicit 

molecular dynamics flexible fitting (MDFF) can be used to improve the fit of initial 

model (for example the rigid-body docked crystal structure) by applying a force 

field to the modelʼs atoms with proportional external forces corresponding to the 

mapʼs density gradient (its Coloumbic potential).  This procedure has been used 

to generate multiple models of different states of the eukaryotic ribosome from 

intermediate resolution cryo-EM 3D maps12,13,93. 

 

1.10  Discussion 

To understand the process of assembling the 40S ribosomal subunit, 

necessitates a detailed structural characterization of maturation intermediates, 

including the late-cytoplasmic precursor that will be described in this thesis.  

Similarly, localization of the specific binding sites of AFs on the complex will allow 

understanding of their upstream/downstream signals, substrates and functions.  

Cryo-EM investigation of the precursor yeast 40S subunit structures is invaluable  

understanding the structural biology of these large, heterogeneous and flexible 

complexes that are difficult or impossible to study by X-ray crystallography 

techniques.  Docking of available atomic resolution crystal structures of the 
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complexes individual components (rRNA, rps and AFs) allows more detailed 

information about their interactions and conformations on premature 40S 

subunits.  The fit of the model can be increased with MDFF to fit the crystal 

structures into the 3D map, which can lead to an increase in the level of 

understanding of the pre-40S 3D structure. The pre-40S model will also reveal 

differences in the premature and mature 40S, providing clues to how precursor 

40S are prevented from incorporation into 80S complexes.  In this body of work I 

will show the cryo-EM 3D structure of a late-cytoplasmic pre-40S complex, as 

well as the structure of four pre-40S complexes lacking one or more AFs.  These 

data, combined with immuno-labeling experiments and published biochemical 

and interaction data, allowed the localization all seven AFs associated at this 

stage.  To generate a model of the overall pre-40S complex, the crystal structure 

of the mature 40S subunit was docked into our pre-40S map density and the fit 

was optimized with MDFF.  AFs with available full or partial crystal structures 

were docked into the 3D map as rigid bodies according to localization results.  

The findings highlight structural differences between the premature and mature 

40S, reveal the specific interactions of AFs with 40S components, and ultimately 

shed more light to the function AFs during pre-40S maturation.  This data 

presented in this thesis provides an overall model of a late-stage cytoplasmic 

40S precursor, as well as reveals a novel function for assembly factors in the 

process of 40S maturation. 
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Chapter 2                                                                                              
Localization of Assembly Factors on 40S Subunit Precursor 

 

2.1 Abstract 

Premature 40S subunits that are erroneously incorporated into 80S complexes 

are rapidly degraded.  The ways by which these premature 40S are normally 

prevented from joining with 60S is not well understood. The biochemical and 

structural characterization of pre-40S will elucidate the specific mechanisms 

preventing subunit fusion.  To this end, we have employed cryo-EM to obtain the 

3D reconstruction of a yeast late cytoplasmic premature 40S subunit (pre-40S) to 

a resolution of 18 Å.  Substantial differences between premature and mature 40S 

are present throughout the 60S-binding interface, as well as at the beak and 

head regions.  To further characterize the pre-40S structure, we employed 

molecular dynamics flexible fitting (MDFF) to model the atomic resolution mature 

40S structure into our 3D map.  The pre-40S model shows an altered 

conformation of helix 44 that disrupts the decoding site, and a beak more 

retracted toward the body of the complex, as compared to the conformation of 

helix 44 in mature 40S subunits (40S).  The cryo-EM 3D map of pre-40S contains 
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several regions of density not present in mature 40S, attributed to the seven 

assembly factors associated with this precursor.  

 

2.2 Results 

Isolation of wild-type Rio2-TAP pre-40S 

Late cytoplasmic 40S subunit precursor particles (pre-40S) were isolated from 

Saccharomyces cerevisiae using a tandem affinity purification (TAP) tag on the 

assembly factor Rio2, which associates with the premature 40S late in the 

assembly process1,2.  Purification was carried out essentially as described1,3 and 

details are present in Section 2.3. Sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) analysis confirms the association of seven AFs on 

the isolated pre-40S; Pno1 (30.3 kilodaltons-kDa), Dim1 (36.0 kDa), Rio2 (49.1 

kDa), Nob1 (51.7 kDa), Ltv1 (53.4 kDa), Enp1 (55.1 kDa) and Tsr1 (90.1 kDa) 

(Figure 2.1).  Mass spectrometry (MS) results reveal that 30 of the 32 mature 40S 

rps are present in our preparation of pre-40S particles (Table 2.1). The two rps 

absent were Rps10 and Rps26. Lastly, Northern blot analysis using a probe 

against this 20S rRNA transcript, confirmed the presence of the 20S precursor in 

pre-40S (Figure 2.1). 
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Figure 2.1: SDS-PAGE analysis of AFs in pre-40S. Seven assembly factors are 
identified in the SDS-PAGE analysis of isolated yeast pre-40S; Tsr1, Ltv1, Rio2 with a C-
terminal calmodulin binding peptide (CBP) tag, Enp1, Nob1, Dim1 and Pno1. The 
molecular weights of each AF are listed to the right. 
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Table 2.1: Mass spectrometry analysis of rps in pre-40S. The amount of peptides 
corresponding to each of the mature rps contained in the pre-40S preparation.  

 

Negative stain EM of pre-40S complexes 

Isolated pre-40S were examined initially by negative stain EM (Figure 2.2A) and 

particles imaged were subjected to reference-free classification and alignment 

(Error! Reference source not found.2B).  The resulting class averages revealed a 

complex with overall similarity to mature 40S, and the four characteristic 

ribosomal 40S sub-structures; the head, platform, beak and foot, were present 

(Figure 2.2C). 
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Figure 2.2: Negative stain EM analysis of pre-40S. (A) Raw EM image of pre-40S 
embedded in negative stain. (B) Class averages of pre-40S particles projections. (C) 
Zoomed in view of a class average.  The characteristic ribosomal substructures are 
identified. 

 

 

Cryo-EM 3D structure of pre-40S complexes 

To further understand the 3D architecture of the mega-dalton complex in a 

hydrated, near-native state, as opposed to embedded in negative stain, we 

employed cryo-EM.  Single particle cryo-EM 3D reconstruction generated from 

WT pre-40S particle projections yielded a final map at a resolution of 18 Å 

(Figure 2.3, Figure 2.4).  Again, all four characteristic regions of the mature 40S 

were present, including the beak structure, which was not observed in a previous 

cryo-EM 3D reconstruction of a similar pre-40S complex1.  Differences in the 
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structure of pre-40S and mature 40S are revealed in our 3D reconstruction.  First, 

the beak in pre-40S is retracted closer to the platform, relative to the mature 40S, 

by a bridge of density connecting the beak to the body.  The 3D reconstruction 

also reveals a kink in helix 44. This kink, not present in the mature 40S, causes 

the region of the helix near the platform to move away from the complex.  

Densities not attributed to rRNA or rps are found at the platform, 60S binding 

interface, head, and the bridge of density connecting the beak to the platform. 

 

Figure 2.3: Pre-40S cryo-EM 3D reconstruction. 6 views of the yeast pre-40S cryo-
EM 3D map calculated to a resolution of 18.2 Å (see Figure 2.3D), similar to negative 
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stain EM class averages, the four characteristic 40S ribosomal subregions are seen and 
labeled in the first view. 

 

Figure 2.4: Data and analysis of the pre-40S cryo-EM 3D reconstruction. (A) A raw 
cryo-EM image of yeast pre-40S particles. (B) Cross-section of the final 3D map of pre-
40S. (C) Angular distribution profile for particle projections used in the pre-40S angular 
refinement. The angular distribution profile allows visualization of the amount of particle 
projections in each class used for the 3D reconstruction; each dot corresponds to a class 
and the brightness of each dot is proportional to the number of particles in that class that 
were used for the final 3D reconstruction. (D) Fourier Shell Correlation (FSC) curve for 
the Rio2-TAP pre-40S, indicated a final resolution of our 3D map at 18.2Å (FSC=0.5). 

 

Modeling of ribosomal proteins and RNA in pre-40S  

To obtain more detailed structural information and compare our pre-40S 3D 

structure with that of the mature 40S, the 4.15 Å crystal structure from T. 

thermophila4 was docked into the pre-40S 3D map as a rigid body (Figure 2.5A).  
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Most regions of the mature structure fit well in the pre-40S volume with two major 

exceptions, the beak and helix 44 (Figure 2.5).  The shift of the beak in pre-40S 

causes the rRNA comprising the beak, helix 34, to be outside the mapʼs density.  

The top of helix 44 also extends away from its density in mature 40S, due to the 

kink present in middle of the premature helix. To improve the fit of the model into 

our pre-40S 3D map, solvent explicit molecular dynamics flexible fitting (MDFF) 

was applied (for detailed explanation of this procedure, see Section 2.3).  The 

MDFF protocol, which was extensively tested (testing is explained in Section 

2.3), significantly improved the fit of the rRNA and rps, as indicated by the 

increase in the cross-correlation values before and after MDFF, and after fitting, 

the modelʼs atoms were completely enveloped by the density (Figure 2.5A).  The 

pre-40S model shows the rRNA adjacent to the decoding site, located at the top 

of helix 44, and the rRNA loop between helix 44 and helix 45, becomes single-

stranded.  The distance between the active site nucleotides in the decoding site 

is increased, potentially preventing the formation of an active decoding site 

(Figure 2.5B).  Rps and rRNA in the head also undergo shifts after MDFF, but the 

majority of conformational changes in the remainder of the complex are subtle, 

as expected by the good overall fit in the initial rigid body docked model (left 

panel Figure 2.5A).  In addition to localization of the rps and rRNA in pre-40S and 

the identification of differences in premature versus mature 40S, the pre-40S 
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model also revealed the areas of density attributed to the bound assembly 

factors. 

 

Figure 2.5: Fitting of rps and rRNA into our pre-40S 3D map. (A) Docking of the 
mature 40S model as a rigid body (left, green) and optimization of the fit using MDFF 
(right, magenta) into our pre-40S 3D map. The top view shows the solvent side and the 
movement of helix 44 into the map.  The bottom view shows the improvement of the 
rRNAʼs fit into the beak region after MDFF.  (B) View of the fit helix 44 fit into the map 
density before (left, cyan) and after MDFF (right, magenta) of the model. The lower panel 
shows an overlay of pre-MDFF (cyan) and post-MDFF (magenta) models zoomed in at 
the decoding site, located on the top helix 44. The active site residues of the decoding 
site are shown in stick representation, showing the increase in distance between the 
residues in the premature versus mature 40S subunits. 
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Determination of densities unique to precursor 40S subunits 

To determine the protein density on pre-40S (rps and AFs), we subtracted the 

MDFF model of the rRNA low-pass filtered5 to 18 Å from our pre-40S 3D map 

(Figure 2.6). Using the data presented by Rabl et al.4, we localized the density of 

the rps present in pre-40S and leaving only the densities of AFs associated with 

the complex (orange in Figure 2.7).  The AFs were localized to specific areas, 

which included: two adjacent regions on the back of the platform near site D; two 

inter-connected perpendicular regions on the platform; a region to the left of helix 

44, from the 60S perspective; and densities on the head, and in the bridge 

connecting the beak to the platform.  These densities overlap binding sites on the 

mature 40S for multiple factors required for initiation of translation, the eukaryotic 

initation factors: eIF1, eIF1A, and eIF3; the channel in which the mRNA binds; 

the three tRNA binding sites and the decoding site.  The platform densities also 

overlap regions involved in the bridging of subunits.  These data suggests that in 

addition to their functions in proper 40S maturation, AFs also act to block binding 

of initiation factors required for 80S complex formation, indicating a mechanism 

to inhibit the incorporation of premature 40S into 80S complexes. 
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Figure 2.6: Subtraction of the rRNA from the pre-40S density. Subtraction of the 
MDFF 18S rRNA (orange) filtered to 18 Å from the pre-40S 3D volume reveals the 
densities attributed to proteins (AFs and rps). The rps present in the model are shown as 
black ribbons and are contained within the volume density. The remaining densities are 
attributed to AFs and known rps that were not included in our initial model but are 
present in the premature particle. 
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Figure 2.7: Molecular architecture of pre-40S. The rps and rRNA modeled using 
MDFF of the mature 40S structure are shown in dark gray and white, respectively. The 
rps are labeled according to the data presented by Rabl et al.4. Helices 44 and 45 are 
colored magenta. The remaining densities are attributed to the associated AFs (orange) 
and are localized primarily to the density bridging the beak to the platform, the head, 
platform, the back of the platform and to the left of helix 44 (from the perspective of the 
60S subunit). 

 

2.1 Experimental procedures 

Purification of pre-40S complexes 

Pre-40S complexes were isolated from a S. cerevisiae strain containing a tandem 

affinity purification (TAP) tag on the C-terminus of Rio2, Rio2-TAP (Rio2-TAP 

strain from Open biosystems).  Cells were grown in a 10 L fermenter at 30° C in 

YP media with 3% dextrose to an optical density at 600 nanometers (OD600) of 
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1.5.  Yeast cells grown in flasks were also grown at 30° C in YP media but with 

2% dextrose to an OD600 between 0.6 and 0.8. Tandem affinity purifications of 

pre-40S complexes using TAP-tagged Rio2 as bait were performed essentially as 

previously described1,3 (Figure 2.8).  Briefly, 20-40 g of yeast cells, grown in the 

conditions described above, were resuspended in the standard TAP buffer, 100 

millimolar (mM) sodium chloride (NaCl), 50 mM 

tris(hydroxymethyl)aminomethane hydrochloride (TRIS-HCl), 10 mM magnesium 

chloride (MgCl2) and 0.075% nonyl phenoxypolyethoxylethanol 40 (NP-40) at pH 

7.5) and supplemented with DNAse and protease inhibitors.  A CryoMill (Retsch) 

was used to lyse resuspended cells by cryogenic grinding and the lysates were 

incubated with Immunoglobulin G (IgG) beads to bind the Protein A component of 

the TAP tag. The unbound impurities were washed from the beads with buffer 

and the beads were incubated with tobacco etch virus (TEV) protease to remove 

Protein A by cleaving at the TEV cleavage site, located between Protein A and 

the calmodulin binding peptide (CBP) in the TAP tag. The eluent was incubated 

with calmodulin beads to bind the CBP component, and after several washes, 

complexes were eluted with buffer containing ethylene glycol tetraacetic acid 

(EGTA) and collected.  The eluent was concentrated to a final volume of 20-40 

μL using a Millipore Biomax-100K NMWL filter device for analysis by EM, SDS-

PAGE or MS. 
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Figure 2.8: Tandem affinity purification of pre-40S. Cell lysates of yeast strains 
expressing Rio2-TAP are incubated with IgG beads to isolate pre-40S particles 
containing Rio2-TAP. The Protein A component of the TAP tag is cleaved using TEV 
protease and the eluent is incubated with calmodulin beads to bind the CBP for a second 
purification step. Pre-40S are eluted from the beads by washing with buffer containing 
EGTA.  

 

Mass spectrometry 

The proteins associated with the pre-40S complexes were separated using SDS-

PAGE, and areas corresponding to proteins of interest were excised from the gel. 

Gel samples were subjected to proteolytic digestion with trypsin and analyzed 
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using liquid chromatography (LC) tandem MS (LC/MS/MS). Product ion data 

were searched against the SwissProt database6 using the Mascot search engine7. 

Mascot output files were parsed into the Scaffold program for filtering to assess 

false discovery rates and allow for correct protein identifications.  The relative 

amounts of rps peptides identified in the pre-40S complexes are listed in (Table 

2.1). 

 

Specimen preparation and EM imaging of pre-40S complexes 

3.5 μl of Rio2-TAP isolated pre-40S was applied to glow-discharged continuous 

carbon grids (Electron Microscopy Sciences).  Excess sample was blotted with 

filter paper and grids were stained with uranyl formate (1%).  The samples were 

imaged at room temperature with a Tecnai T12 electron microscope (FEI) 

operated at 120 kV using low-dose procedures. Images were recorded at a 

magnification of 71,138x and a defocus value of approximately -1.5 μm on a 

Gatan US4000 CCD camera. All images were binned (2 x 2 pixels) to obtain a 

pixel size of 4.16 Å on the specimen level. A total of 3417 pre-40S particle 

images were manually excised from the micrographs using the Boxer program 

(EMAN 1.9 software suite8).  The selected particles were subjected to reference-

free alignment and classification into 50 classes using the software SPIDER9. 
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Cryo-EM sample preparation and imaging of pre-40S complexes 

2 μl of pre-40S sample at an OD600 of 10-20 were adsorbed on glow-discharged 

mesh grid (Quantifoil R2/2 200).  The grids were blotted once for 1-2 seconds 

and plunge frozen in liquid ethane at a temperature lower than -170° C with a 

Vitrobot (FEI Mark IV) with its temperature maintained at 22° C and humidity 

greater 85%.    Grids were transferred using a Gatan 626 single tilt cryo-transfer 

system for imagining on a Tecnai F20 transmission electron microscope (FEI) 

equipped with a field emission electron source operated at 200 kilovolts (kV).  

The temperature of the grid was maintained throughout transfer and imaging at 

less than -160° C. Images were recorded at a magnification of 66,964x on a 

Gatan US4000 CCD camera at defocus values ranging from -1.5 to -4.0 μm. 

Particles were preferentially located in relatively thick ice and each micrograph 

contained on average 50-100 particles. The pixel size under these conditions is 

2.24 Å at the specimen level. 

 

Single-particle reconstruction of pre-40S complexes 

Pre-40S particles from cryo-EM images were manually excised from micrographs 

using Boxer with a box size of 160 pixels. The CTF parameters were determined 

for each micrograph using the ctfit software and CTF phase correction was 

applied to each micrograph in the dataset using Applyctf (ctfit and Applyctf are 
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contained in the EMAN 1.9 package8). An ab initio model was generated by 

randomly selecting 100 pre-40S particles from the total dataset, and randomly 

assigning an orientation value for each projection resulting in a noisy, sphere-like 

initial reference volume for refinement without introducing model bias (data not 

shown). The 3D reconstruction of pre-40S was produced using model-based 

projection matching and iterative refinement (ʻrefineʼ command in EMAN 1.9) until 

the FSC curves of successive 3D maps converge.  The approximate refinement 

parameters used for the pre-40S 3D were as follows: an angular spacing 

between reprojections of 5-7o, a mask with a radius 80 pixels, a maximum phase 

error for class averages permitted to be incorporated into the reconstruction of 

60, symmetry of c1 (no symmetry), and a maximum value of 0.5σ (0.5 times the 

value of the standard deviation) for individual particles in a given class to be used 

in the generation of the final 3D reconstruction. 11,604 pre-40S projections were 

refined to obtain a 3D reconstruction at a resolution of 18 Å. To determination the 

value of the resolution of the final 3D map, particles were randomly split into two 

datasets and 3D reconstructions were generated for each subset (ʻeotestʼ 

command in EMAN 1.9) and the value when their FSC = 0.5 is the resolution 

stated.  Prior to visualization, the 3D map was low pass filtered at a resolution of 

18 Å with a Gaussian filter using the software EM-Bfactor10. 
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MDFF: Initial structure preparation 

MDFF simulations were used to improve the fit of mature 40S docked as a rigid 

body into the pre-40S 3D map. The recently published crystal structure of the 

4.15 Å S. cerevisiae 80S ribosome from Yusupov and colleagues11 (PDB ID: 

3O2Z) was used to generate the initial model. This crystal structure contains the 

18S rRNA nucleotides numbered 1 to 1800 with the exception of 668 to 678 and 

most ribosomal proteins present in the 80S complex except Rps6, Rps7, Rps8, 

Rps10, Rps12, Rps21 and Rps26.  The coordinates of the following proteins in 

this crystal structure were used to generate our initial model: Rps0, Rps2, Rps4, 

Rps5, Rps9, Rps11, Rps13, Rps14, Rps15, Rps16, Rps18, Rps19, Rps22, 

Rps23, Rps24, Rps25, Rps27, and Rps28. Alternatively, coordinates for Rps5, 

Rps18, and Rps19 were obtained from the recently published model from a 5.5 Å 

cryo-EM structure of the yeast 80S ribosome from Beckman and colleagues12 

(PDB ID: 31ZB), and Rps1 and Rps14 were used from the crystallographic 

coordinates from Banʼs group Tetrahymena thermophila (thermophilic yeast) 

mature 40S structure4 (PDB ID: 2XZM) (Table 2.2). The basis for using the 

coordinates for Rps5, Rps14, Rps18, and Rps19 from these structures, as 

opposed to those from the structure deposited by Yusupov and colleagues11, is 

that each of these rps structures contain a more complete amino acid sequence 

than those solved by the Yusupov group11.  This approach is justifiable as  the 
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rps from the Rabl et al.4 and Armache et al.12,13 maintain similar secondary 

structure elements and three-dimensional folds to those present in the 4.15 Å 

crystal structure4.  The coordinates for Rps1 were obtained from the 3.9 Å 40S 

crystal structure4 because this protein is not identified in the Rabl et al. structure. 

Rps3, Rps9 (residues 6-21), Rps20, Rps29, RACK1, and P/E-tRNA were omitted 

from this initial structure on the basis of having zero (Rps20, RACK, P/E-tRNA) or 

decreased (Rps3 and Rps2) occupancies or no corresponding density in our pre-

40S 3D map, presumably due to a shift (Rps9) of the protein in the premature 

versus mature 40S complexes.  The missing rRNA nucleotides from 668 to 678 

were added to the model, as well as all hydrogens and other missing atoms. The 

initial model was solvated, contained in a simulation box, neutralized and ionic 

concentration was maintained using the Visual Molecular Dynamics (VMD) 

program14.  
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Table 2.2: Rps structures used in our pre-40S model.  As described in the text, rps 
coordinates were used from structures deposited by Rabl et al.4 (PDB ID: 3O2Z0, Ben-
Shem et al.11 (PDB ID: 2XZM) and Armache et. al12,13 (PDB ID: 31ZB).  The origin of the 
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PDB file for each rps in the model is listed, as well as denoting those omitted.  The 
remaining rps were not identified in the Rabl et al. structure4. 

 

Prior to publication of the 5.5 Å 80S cryo-EM model12,13, the 4.15 Å 80S11 and the 

3.9 Å 40S4 crystal structures, the highest resolution model for the structure of the 

eukaryotic ribosome 40S subunit was from the 8.9 Å cryo-EM 3D reconstruction 

of the 80S ribosome bound to RACK1 and the P/E-tRNA from the thermophilic 

yeast Thermomyces lanuginosus15,16 (PDB IDs: 3JYV and 3JYW, 40S and 60S 

coordinates, respectively).  The sequence of the T. lanuginosus ribosomal 

components shares greater than 85% identity with S. cerevisiae17. All the initial 

validations of the MDFF protocol were carried out with the coordinates for the 

40S subunit from this model. It contains the mature 18S rRNA and 17 of the 32 

SSU rps.  The Rps included in 3JYV are: Rps0, Rps2, Rps3, Rps5, Rps9, Rps11, 

Rps13, Rps14, Rps15, Rps16, Rps18, Rps19, Rps20, Rps22, Rps23 and Rps29. 

On the basis described for the 3O2Z initial model, Rps3, Rps9 (residues 6-21), 

Rps20, and Rps29, as well as the mature 40S protein RACK1, and P/E-tRNA, 

were excluded from this model.  The complete sequence of the S. cerevisiae 18S 

rRNA (containing 1800 residues) was obtained from Gen Bank (Z75578.1) and 

aligned to the T. Thermophila 18S rRNA sequence with ClustalW18.  Based on 

the alignment, the following changes were made to rRNA sequence of the model 

(chain A in 3JYV): the nucleotides previously at positions 898, 1041, 1042, 1182, 
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1287, and 1444, are now at 899, 1042, 1043, 1183, 1286, and 1443, respectively 

(the shift in position of these residues is concurrent with remaining nucleotides), 

and the sequence GUGUC (884, 1001, 1003, 1284 and 1285) was substituted to 

AAACU. The Cartesian coordinates were adjusted accordingly, and, in the case 

of substitutions, the nucleotide type was corrected. The system was then 

solvated and ionized using the same protocol described above. 

 

MDFF: Initial equilibration phase 

The initial equilibration phase for both models of the 40S subunit (3O2Z and 

3JYV) included an energy-minimization of the final systems for 5,000-10,000 

cycles of conjugate-gradient optimization followed by a short 200 ps molecular 

dynamics (MD) simulation in the NVT (moles, volume, temperature) ensemble. 

The temperature was held constant at 310 K using the Langevin thermostat with 

a damping coefficient of 5 ps-1, and pressure was held constant using the Nose-

Hoover barostat. A 2 fs time-step with bonds held rigid was used in the initial run. 

Non-bonded interactions were cut-off beyond 12 Å with smooth switching taking 

effect at 10 Å. Long-range electrostatic interactions were handled using the 

particle mesh Ewald (PME) method19.  All MD trajectories were generated with 

NAMDv2.720 and the CHARMM force field21,22. The system was created and 
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visualized using VMDv1.8.714, and VMDv1.8.8.a17 was used to generate the 

input files used in MDFF simulations (see below).  

 

MDFF simulation details 

The protocol of Trabuco et al. was followed for MDFF simulations23-25. The 

increase in the cross-correlation value before and after flexible fitting reveals that 

MDFF significantly improves the fit of the model, and multiple repeats of the 

same simulation give the same result (Figure 2.10), this consistency allows 

confidence in the MDFF protocol used. To further validate the MDFF results, a 

procedure was repeated with different initial structures (PDB ID: 3O2Z and 3JYV) 

fit into the pre-40S 3D map (Figure 2.9, Figure 2.10). The MDFF protocol is as 

follows: first, the initial atomic-model is docked as a rigid body into the pre-40S 

3D map using the software SITUS26. Next, the rRNA undergoes MDFF using a 

scaling factor of 0.5 kilocalorie (kcal)/mol (a value of 0.3 kcal/mol results in forces 

on the order of 10-15 pN per atom for a carbon atom), a tolerated value as the 

MDFF experiments were carried out in explicit solvent25,27. The angles or 

distances in the rRNA secondary structure were restrained with force constant 

values of 400 kcal mol-1 rad-2 or 400 kcal mol-1 Å-2. In this step, the molecular 

bonds in the protein structures were restrained with a force constant of 400 kcal 

mol-1 rad-2 (secondary-structure elements) and 200 kcal mol-1 rad-2 (non-
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secondary-structure elements), with these values for the secondary structure 

elements of rRNA and rps maintained during fitting. This step was carried out for 

approximately 3 nanoseconds repeatedly until the root mean squares deviation 

(RMSD) converged. Finally, the structures of the rps were refined in the pre-40S 

3D map by reducing the restraints of the bonds to a force constant of 200 kcal 

mol-1 rad-2, allowing flexibility of secondary structures. Three separate runs were 

carried out for the pre-40S 3D map using 3JYV as an initial atomic model (Figure 

2.10), and once using 3O2Z as an initial atomic model (Figure 2.9). The CC 

values at each step of MDFF are listed in Table 2.3. 
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Figure 2.9: MDFF results for the fitting of 3O2Z into the pre-40S 3D map. (A) The 
RMSD value compared to the rigid body docked model is plot as a function of simulation 
time (ns). The three stages of the plot correspond to the fitting of the rRNA alone, the 
fitting of rRNA and rps before and after relaxing constraints on the secondary structure 
elements. 
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Figure 2.10: MDFF results for the fitting of 3JYV into the pre-40S 3D map.  (A) The 
RMSD value (Å) of the overall model compared to the rigid body docked model is plot as 
a function of simulation time (ns). The three stages of the plot correspond to the fitting of 
the rRNA alone, the fitting of rRNA and rps before and after relaxing constraints on the 
secondary structure elements. (B) Pre- and post-MDFF side-view snapshots of initial 
atomic model (PDB code 3JYV) positioned into the pre-40S 3D map, rRNA is silver and 
rps in dark gray. (C) RMSD value (Å) vs. simulation time (ns) of rRNA fit into the pre-40S 
3D map in three independent MDFF runs. (D) Overlay of rRNA structures at the end of 
three independent MDFF runs. RNA backbones are in the same color as RMSD traces 
in panel C.  
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Table 2.3: Cross-correlation (CCC) values for MDFF runs. CCC values for the fitting 
of 3O2Z and 3JYV into the pre-40S 3D map for each step of MDFF.  

 

Difference mapping 

The flexibly fitted rRNA was simulated to a density map, filtered to resolution of 

18 Å, and subtracted from the pre-40S 3D volume using the SITUS software26. 

The resulting densities are those attributed to only proteins (rps and AFs) in the 

pre-40S complex. 

 

2.2 Discussion 

Investigation of the 18 Å pre-40S 3D structure reveals conformational differences 

and additional density in the premature 40S relative to the mature.  The 

differences in their conformations are more apparent in the pre-40S model 

generated by fitting the mature 40S structure into the pre-40S 3D map using 

MDFF. The structure of helix 44, which contains the nucleotides of the decoding 

site, is disrupted in pre-40S, resulting in a greater distance between the active 

site nucleotides (Figure 2.5C).  Helix 44 is located at the region in which the small 



 
 

  

 

63 

subunit binds the large, near structural elements necessary for bridging the two 

subunits. The other prominent difference in the premature 40S is its beak 

structure.  The beak is retracted toward the platform in pre-40S, altering the 

surface of the subunit binding interface and potentially the structure of the mRNA 

channel.   

 

To determine which densities are attributed to AFs, difference mapping allowed 

the removal of components present in the mature 40S from the pre-40S 3D map.  

The densities unique to the premature complex correspond to the seven 

associated assembly factors, which are located on the platform, at the back of 

the platform, the bridge and the head regions (Figure 2.6).  These densities 

overlap the binding sites for the initiation factors eIF1, eIF1A, eIF2 and eIF3.  The 

mRNA channel and locations of subunit bridging are also blocked.  These 

structural observations reveal that multiple mechanisms are present to prevent 

the joining of precursor 40S subunits with 60S. To determine which AFs are 

responsible for blocking the binding of the various factors required for translation 

initiation and to allow a greater understanding of the AFʼs functions in 40S 

biogenesis, each were localized as described in the following chapter.  
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2.3 Concluding remarks 

Cryo-EM is a powerful technique to study ribosomal precursor particles, as they 

are relatively large, flexible and preparations of these complexes can be 

heterogeneous in composition.  Determining the structure of this late cytoplasmic 

40S precursor to a moderate resolution and using MDFF to fit the atomic-

resolution mature 40S crystal structure into the 3D map allows characterization of 

the structural features of pre-40S.  This analysis of the pre-40S structure reveals 

prominent structural differences relative to mature 40S and areas of unique 

density.  These data will contribute significant knowledge to understanding 

ribosome biogenesis and the mechanism by which pre-40S subunits are 

prevented from incorporation into 80S complexes.   
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Chapter 3                                                                                                 

Localization of Assembly Factors on 40S Subunit Precursor 

 

3.1  Abstract 

Eukaryotic ribosome assembly is a step-wise process requiring the coordinated 

actions of approximately 200 assembly factors.  In the previous chapter, I have 

shown the structure of a precursor 40S subunit and the densities in this 3D map 

unique to the premature versus mature particles.  In this chapter, each of the 

seven assembly factors are localized on pre-40S complexes by obtaining cryo-

EM 3D maps of pre-40S with depleted assembly factor(s), immuno-labeling of 

AFs on pre-40S, and previously published AF interaction and functional data.  

The locations of Tsr1 and Enp1 indicate their roles in the maintenance of helix 44 

and the beak, respectively, in their premature conformations. The localization of 

Rio2, Dim1, Pno1 and Nob1 indicate a network of interactions between the AFs, 

as well as rps, predicted by each of their requirement for cleavage by Nob1 and 

site D.  Localization results for all seven assembly factors also reveal their role in 

preventing pre-40S from joining 60S by blocking the binding sites of one or 

multiple factors required for the formation of the 80S complex. 
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3.2  Results 

To localize binding sites of AFs on pre-40S, particles were isolated from yeast 

strains with specific AFs genetically deleted or depleted under the control of a 

galactose-inducible promoter, resulting in the loss of one or more AFs on these 

particles.  The loss of additional AFs may be attributed to cooperative binding of 

the AFs.  Cryo-EM 3D maps were generated for each of these particles and 

compared to WT pre-40S 3D maps to reveal the density attributed to the missing 

factor(s). 

The 3D structure of recombinant Tsr1  

Crystal structures of partial or full-length proteins homologous to yeast Rio2, 

Nob1, Dim1 and Pno1 are available, but structural information is lacking for Tsr1, 

Ltv1 and Enp1. These three factors were expressed recombinantly in E. coli, 

purified and analyzed by negative stain EM.  Characterization of Ltv1 and Enp1 

was unsuccessful due to flexibility and aggregation issues, respectively.  

Preparations of the recombinant S. cerevisiae Tsr1 (rTsr1) were amenable to 

analysis by single particle negative stain EM.  2D projection averages of the 91 

kDa protein revealed a preferred orientation of an elongated particle with a hook-

like appearance, displaying a handle that is formed by a globular domain (Figure 

3.1).  To locate the proteinʼs N-terminus, rTSr1 with a maltose binding protein 

(MBP) fused at its N-terminal end (MBP-Tsr1) were isolated and examined by 
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EM.  2D class averages of MBP-Tsr1 reveal an increase in density at the end of 

the protruding globular domain, indicating that the proteinʼs N-terminus is located 

in this region (Figure 3.2).  Next, to understand the 3D structure of rTsr1, the 

random conical tilt method (Radermacher, 1987) was used on negative stain EM 

images. Tilt-pair particles from rTSr1 were used to calculate a 3D reconstruction 

of rTsr1 to a resolution of ~30 Å (FSC=0.5) (Figure 3.3). The 3D reconstruction 

reveals a smaller globular domain located at the proteinʼs N-terminus and larger 

more extended domain at its C-terminus. 

 

Figure 3.1: Negative stain EM analysis of purified recombinant Tsr1. (A) Raw EM 
image of rTsr1 embedded in negative stain. (B) Class averages of rTsr1 show a hook-
like appearance and globular domain. Particles belonging to the class averages outlined 
in red boxes were used for 3D reconstruction rTsr1 shown in Figure 3.3. 
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Figure 3.2: An MBP-tag on rTsr1 allows for the localization of its N-terminus. (A) 
Raw EM image of rTsr1-MBP embedded in negative stain. (B) Class averages of rTsr1-
MBP. An increase in density is seen relative to the rTsr1 alone. (C) Zoomed in view of a 
rTsr1-MBP class average.  The MBP tag density is labeled and is opposite the hook-like 
region of the protein. 
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Figure 3.3: 3D reconstruction of Tsr1. (A) 3D volume of rTsr1 was obtained using 
RCT on the particles belonging to the classes outlined in red in Figure 3.1. The 3D 
reconstruction of Tsr1 shows a smaller N-terminal globular domain, the N-terminal end 
was identified as shown in Figure 3.2. (B) FSC curve of the Tsr1 3D reconstruction 
shows a resolution of approximately 30Å at FSC=0.5. (C) Angular distribution of the 
angles of the particle projections used in the final 3D reconstruction of Tsr1. 

 

Localization of Nob1 on pre-40S 

Nob1 expression was put under the control of a galactose-inducible promoter in 

the Rio2-TAP yeast strain. After galactose-starvation, these pre-40S particles 

(Nob1-depl) were isolated via a TAP-tag on Rio2.  SDS-PAGE analysis (Figure 

3.4A) shows that Nob1 is the only AF factor depleted in these particles.  Nob1-

depl particles were examined with cryo-EM and a 3D reconstruction was 

calculated to a resolution of 20 Å (at FSC=0.5) (Figure 3.4B).  Subtraction of the 
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Nob1-depl 3D map from the pre-40S 3D map, reveals a density located on the 

back of the platform near site D (Figure 3.4C). This placement of Nob1 allows its 

interaction with Rps5 and Rps14, which are required for site D cleavage1,2, 

consistent with direct protein-protein interactions between Nob1 and these 

proteins3. 

 

Figure 3.4: Localization of Nob1 on pre-40S. (A) SDS-PAGE results from Nob1-depl 
particles reveals only Nob1 is has decreased occupancy in the Nob1-depl particles as 
compared to WT. (B) 20 Å cryo-EM 3D structure of the Nob1-depl. The cryo-EM 3D map 
of Nob1-depl is compared with the WT pre-40S 3D map, the density decreased in the 
depletion particles at the back of the platform, revealing Nob1 binds to pre-40S in that 
region. (C) Visualization of the WT pre-40S particle at lower resolution threshold shows a 
cloud of density extending from the region corresponding to Nob1 which may be the 
flexible nucleotides making up ITS1.  

 

Localization of Rio2 and Dim1 on pre-40S 

To localize Rio2 on the pre-40S subunit, Rio2 expression was put under the 

control of a galactose inducible promoter in the Ltv1-TAP yeast strain.  Particles 
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from this strain were isolated using a TAP tag on Ltv1 as bait.  Comparison of 

particles isolated via Rio2-TAP and Ltv1-TAP is possible because native 

preparations using either AF as bait are essentially identical in composition4, a 

result we confirmed by purification of these particles and analysis with SDS-

PAGE (Figure 3.5A). Isolated Rio2-depletion pre-40S particles (Rio2-depl) were 

analyzed with SDS-PAGE and MS, and in addition to Rio2; Nob1 and Dim1 levels 

were also decreased significantly.  The loss of both Dim1 and Nob1, in the 

absence of Rio2, is consistent with direct protein-protein interactions between 

these AFs and Rio23.  A cryo-EM 3D reconstruction of Rio2-depl was calculated 

to a resolution of 22 Å (Figure 3.5B). Comparison of the Rio2-depl and WT pre-

40S 3D map reveals missing densities at the previously identified position of 

Nob1, and two interconnected perpendicular regions on the platform, at the 

subunit interface.   

 

Data from rRNA footprinting experiments with the conserved bacterial ortholog of 

Dim1, KsgA5,6, shows it interacts with helix 44 and helix 27 in premature 30S 

ribosomal subunits7. Docking the crystal structure of hDim1 in the lower density, 

with its N-terminal domain closer to the beak (PDB ID: 1ZQ9)8 (green in Figure 

3.5C), satisfies these biochemical constraints.  The docking of the crystal 

structure results in a very good fit with a cross-correlation (CC) value of 0.854. In 
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this position, the active site of hDim1 is adjacent to its tandem adenosine 

substrates, A1781/A1782 (yellow space-fill in Figure 3.5), near the 3ʼ-end of 18S 

rRNA. 

 

Rio2 interacts directly with Dim1 (located on the platform), Rps15 (located in the 

head region), and Rps5 and Rps143 (found on the platform near the mRNA 

channel). Attributing the last unidentified density in Rio2-depl to Rio2 allows the 

kinase to interact with each of these proteins. We docked the crystal structure of 

aRio29 (PDB ID: 1ZAO), which contains approximately 80% of the amino acids 

present in the yeast protein sequence, into our pre-40S 3D map with the N-

terminus of Rio2 downward, contacting the density of Dim1 (Figure 3.5B).  At this 

position, the N-terminus of Rio2 is buried behind the top of helix 44 and the C-

terminus is exposed to solvent, consistent with our ability to isolate pre-40S 

particles via a TAP-tag on the C-terminus of Rio2. The CC value for the docking 

of the Rio2 crystal structure into the 3D map is 0.904. 
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Figure 3.5: Localization of Rio2 and Dim1 on pre-40S. (A) SDS-PAGE of Rio2-depl 
shows decreased occupancy of both Rio2 and Dim1 in Rio2-depl particles compared 
with WT pre-40S,. (B) 22 Å 3D map of Rio2-depl compared to the WT pre-40S 3D map, 
the densities lost in the depletion 3D map (in addition to that already assigned to Nob1) 
are two interconnected regions located on the platform. (C) Docking of the crystal 
structures of archaeal Rio2 (PDB ID: 1ZAO) and human Dim1 (PDB ID: 1ZQ9) into their 
respective densities following constraints explained in the text. Helix 44 is colored 
magenta and the adenosine nucleotide substrates of Dim1 are in yellow space-fill.  

 

Localization of Tsr1 and Pno1 

To localize Tsr1, Rio2-TAP pre-40S particles were isolated from a yeast strain 

with Tsr1 expression under control of a galactose inducible promoter. These 

particles were analyzed for quality with negative stain EM and the images 

indicated the particles were not intact (as compared to the previous pre-40S 

particles appearance).  Rio2 incorporation into pre-40S may require the presence 

of Tsr1, preventing isolation of this particle by using Rio2-TAP as bait.  

Alternatively, Tsr1 was put under the control of a galactose inducible promoter in 

the Ltv1-TAP strain. These particles appeared to be intact when visualized by 
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negative stain EM. As expected by the inability to isolate the particles with a Rio2 

TAP-tag, SDS-PAGE reveals that in addition to Tsr1, the Ltv1-TAP Tsr1-depleted 

complexes (Tsr1-depl) have less occupancy of Rio2, as well as Dim1, Pno1 and 

Nob1 as compared to the WT pre-40S (Fig. 2.17). A 3D cryo-EM map was 

calculated with these particles to a resolution of 26 Å (Figure 3.6A).  Decreased 

densities are those previously assigned to Rio2, Dim1, and Nob1, and two 

additional unassigned densities. The first is a fairly large density located to the 

left of H44, on the binding interface from the perspective of 60S, and the second 

is a smaller density located on the back of the platform near the binding site of 

Nob1. Another surprising feature of the Tsr1-depl, but not the WT, Rio2-depl or 

Nob1-depl pre-40S 3D maps, is the lack of the pronounced kink in helix 44 

(Figure 3.6B), characteristic of the premature subunit.  This observation unique to 

this 3D map indicates that one of the AFs depleted uniquely in the Tsr1-depl 

particles may stabilize the kinked conformation of helix 44. 



 
 

  

 

79 

 

Figure 3.6: The conformation of helix 44 is altered in Tsr1-depl pre-40S. (A) SDS-
PAGE of Tsr1-depl particles compared to WT pre-40S showing decreased occupancy of 
Rio2, Dim1, Pno1 and Tsr1. (B) The 26 Å 3D map of Tsr1-depl, compared to the WT 
pre-40S 3D map, shows a distorted conformation of helix 44. 

 

The 3D reconstruction of recombinant Tsr1 possesses a overall shape and size 

similar to the region of density lost in Tsr1-depl adjacent to helix 44 on the 

subunit interface of pre-40S.  The Tsr1 volume from our 3D reconstruction fits 

well within the pre-40S 3D map in the region to the left of helix 44, docked with 

the N-terminus toward the beak (Figure 3.7).  At this position, the N-terminus of 

Tsr1 can interact with Rio2ʼs N-terminus, consistent with direct binding between 

the proteins that is sensitive to a N-terminal tag on Rio23. 
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Figure 3.7: Localization of Tsr1 on pre-40S. The 3D reconstruction of rTsr1 (left panel, 
pink) possesses a similar structure to the larger density adjacent to helix 44 lost in the 
Tsr1-depl 3D reconstruction (middle panel) compared to WT pre-40S (right panel). The 
density lost is outlined in pink  

 

Helix 44 in all pre-40S complexes presented in this thesis possess a kink in the 

center of the helix, with the exception of the Tsr1-depl pre-40s. Out of the five 

AFs depleted in Tsr1-depl, Tsr1 and Pno1 are the only factors not depleted in 

any of the previous pre-40S 3D reconstructions investigated, indicating that either 

one or both of these factors is responsible for stabilizing the helix in its premature 

conformation.  The location of Tsr1 to the region near helix 44 allows interaction 

between the protein and helix.  Tsr1 may function to maintain helix 44 in its 

premature state and keeping the decoding site disrupted as well as preventing 

pre-40S from joining the 60S subunit. 
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The second unidentified density lost in the Tsr1-depl 3D map is located on the 

back of the platform, between Nob1 and Rps14.  This position is near the 3ʼ-end 

of the 18S rRNA. The highly conserved C-terminal KH domain of the archaeal 

Pno1 binds directly the universally conserved GGAUC sequence at the 3ʼ end of 

the bacterial 16S rRNA, as well as eIF2α, forming a trimeric complex, which has 

been crystallized10.  This indicates that Pno1 binds the rRNA near site D.  In 

addition, Pno1ʼs central KH domain binds and regulates Nob111. Docking of the 

archaeal Pyrococcus horikoshii Pno1 crystal structure (PDB ID: 2E3U), 

containing the two C-terminal KH domains but lacking the N-terminal KH domain, 

on the back of the platform allows it to bind both Nob1 and the GGAUC sequence 

(Figure 3.8).  Pno1ʼs binding to the 3ʼ-end of 18S rRNA and localization near 

Nob1, may indicate its function to stabilize and/or pass the 3ʼ-end rRNA to Nob1, 

thereby regulating site D cleavage. 
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Figure 3.8: Localization of Pno1 on pre-40S. (A) Side views of Tsr1-depl and WT pre-
40S 3D maps. The density attributed to Pno1 is on the back of the platform (outlined in 
red) next to Nob1 and near the end of the 18S rRNA. (B) Docking of the crystal structure 
of the archaeal Pno1 ortholog12 (red ribbon) (PDB ID: 2E3U) into this density allows its 
interaction with Nob1 (orange) and the universally conserved GGAUC sequence of 
nucleotides (yellow) that it binds with high affinity10. 

 

Localization of Ltv1 and Enp1 

To localize Ltv1, the only non-essential AF13, Ltv1 was genetically deleted in the 

Rio2-TAP strain. SDS-PAGE and MS show particles purified from this strain 

(ΔLtv1) also lack Rps3 and have reduced levels of Enp1, relative to the WT pre-

40S (Figure 3.9A, Table 3.1). This finding is consistent with previous data 

indicating Ltv1, Enp1 and Rps3 form trimeric subcomplex4. Furthermore, Enp1 

and Ltv1 also interact directly according to protein-protein interaction studies3. 

The cryo-EM 3D reconstruction of ΔLtv1 particles was calculated at a resolution 

of 20 Å (Figure 3.9A).  The position of the beak in this 3D reconstruction is more 

similar to the mature than premature 40S beak. Investigation of the ΔLtv1 3D 
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map reveals that the density connecting the beak and helix 16 (in the body of the 

particle) is lost.  This density appears to holds the bridge in its retracted, 

premature conformation in pre-40S.  In addition to the loss of the bridge density, 

ΔLtv1 also have decreased density at the top of the beak, and on the head 

region near the beak. 
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Figure 3.9: Localization of Ltv1 and Enp1 on pre-40S. (A) SDS-PAGE of ΔLtv1, 
comparison with the WT pre-40S gel shows that Ltv1 is absent from the particles and 
Enp1 is at decreased occupancy, compared to WT. (B) Side-view of ΔLtv1 (left) and WT 
(right) pre-40S 3D maps shows the bridge of density connecting the beak to the platform 
is lost, as well as density in the head. (C) Top view of ΔLtv1 (left) and WT (center) pre-
40S show the beak is shifted 18° away from the body in the ΔLtv1 3D reconstruction 
compared to WT. Far right panel shows an overlay of the rRNA fit into the ΔLtv1 (gold) 
and WT pre-40S (silver), showing the rRNA in the beak is shifted in the ΔLtv1 particles. 

 

 

The structural differences observed in the ΔLtv1 map are attributed to the loss or 

reduction in occupancy of all three proteins. The observation that the deletion of 

Ltv1 results in the absence of Rps3, and heavy reduction in Enp1 levels, indicate 
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that a small portion of the ΔLtv1 particle projections dataset will contain Enp1.  

This density corresponding to Enp1 should be present in the ΔLtv1 3D 

reconstruction. To quantitatively separate and examine the 3D structure of this 

subpopulation of particles, we employed multiple reference-supervised 

alignment14,15 on our original ΔLtv1 cryo-EM dataset, with the WT pre-40S and 

ΔLtv1 pre-40S 3D maps as initial volume references. After a single iteration, 

approximately 80% of particles were assigned (based on CC values) to the ΔLtv1 

reference subset, and these particles were refined with the ΔLtv1 3D map as the 

initial model.  The 3D reconstruction of this subset shows the same features 

(shifted beak, lack of connection to the beak, loss of density at head and beak 

regions) as the initially calculated ΔLtv1 3D map (Figure 3.10). The remaining 

particle projections were assigned to the WT pre-40S reference and refined using 

WT pre-40S as an initial model.  This 3D reconstruction shows a loss of density 

in the head, consistent with the single-reference 3D reconstruction,  a retracted 

beak structure, and contains the connection between the beak and helix 16, but 

the bridge is much smaller relative to the one in WT pre-40S. These results 

suggest that a subset of particles in the ΔLtv1 dataset contain the protein 

responsible for the bridge density.  The protein responsible for part of the bridge 

must be Enp1, as it present at low levels on ΔLtv1, but not completely absent, as 

the case for Ltv1 and Rps3. The observation that the retracted beak is present in 
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the subset of particles assigned to the pre-40S reference, indicates that Enp1 is 

sufficient for maintaining the retracted beak.  In contrast, density differences on 

the top of the head and beak, are attributed to Ltv1, due to the consistent loss of 

these densities in the 3D reconstructions from both particle subsets. In mature 

40S, Rps3 is located where the bridge meets the body of the complex, leading to 

the hypothesis that Rps3 is responsible for the portion of the bridge not occupied 

by Enp1.   



 
 

  

 

87 

 

Figure 3.10:  Multi-reference alignment of the ΔLtv1 projection dataset.  Front and 
side views of 3D reconstructions from the particle projections assigned to the ΔLtv1 
reference (gray, center) and the particle projections aligned to the WT pre-40S reference 
(gold, right), the 18 Å WT pre-40S 3D map is shown on the right in cyan for comparison.  
The 3D reconstruction of the particle projections assigned to the WT pre-40S reference 
contain the bridge density, similar to WT pre-40S. 

 

 

To provide additional evidence for the localization of Enp1 and Ltv1 at the bridge 

and head, respectively, we examined pre-40S particles separately labeled with 
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an antibody binding a Hemaggluttin (HA) tag fused to Enp1 or a CBP tag fused to 

Ltv1 by negative stain EM. 2D class averages of pre-40S with HA 1°-antibody 

bound to HA-Enp1 reveal the additional antibody density is at the beak structure 

(Figure 3.11A,B), further confirming that Enp1 is located in the bridge.  2D class 

averages of pre-40S with CBP 1°-antibody bound to CBP-Ltv1 reveal the 

additional density attributed to the antibody extend from the top of the particleʼs 

head, confirming Ltv1ʼs location on the head (Figure 3.11C,D). Together, these 

data indicate that Enp1 and Rps3 make the connection between the beak and 

helix 16, while Ltv1 binds at the top of the head and extends toward the beak. 

 

Figure 3.11: Antibody-labeling of Enp1 and Ltv1 on pre-40S complexes. Raw EM 
images of negative stained pre-40S complexes with HA 1o-antibody bound to Enp1-HA 
(A) and CBP 1o-antibody bound to Ltv1-CBP (C). (B) Comparison of the class average of 
Rio2-TAP pre-40S particles (left) and Enp1-HA pre-40S with HA 1o-antibody to Enp1 
(right) showing increased density directly on the beak. (D) Comparison of the class 
average of Rio2-TAP pre-40S particles (left) and Ltv1-CBP pre-40S with CBP 1o-

antibody to Ltv1 (right) showing increased density on the head. 
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3.3  Materials and methods 

Isolation of Nob1-depl, Rio2-depl, Tsr1-depl and ΔLtv1  

The assembly factor targeted for depletion was put under the control of a 

galactose inducible promoter in the background of Rio2-TAP or Ltv1-TAP yeast 

strains (Open Biosystems).  In the case of ΔLtv1, the protein was genetically 

deleted in the Rio2-TAP strain (obtained from Open Biosystems).  Initial growth 

conditions were essentially the same for these strains as Rio2-TAP WT cells.  At 

mid log phase, depletion strains were switched from YP galactose to YP glucose 

for 12 h of growth (or 20h for the GAL1::Tsr1 strain) to deplete the specific 

assembly factors.  Particles were isolated using TAP purifications as described 

for WT pre-40S and were concentrated to a final volume of 20-40 μL using a 

Millipore Biomax-100K NMWL filter device. 

Yeast strains  

Galactose-inducible strains were created by polymerase chain reaction (PCR) 

based recombination16 into the Rio2-TAP or Ltv1-TAP strains from Open 

Biosystems. Similarly, the entire TAP-tagged Ltv1 open reading frame and 

approximately 450 nucleotide flanking sequence was amplified by PCR from 

genomic DNA in the Ltv1-TAP strain from Open Biosystems.  This DNA was 

used to genomically integrate Ltv1-TAP into the Rio2 depletion strain generously 

provided by J.P. Gélugne17. 
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Mass spectrometry 

Mass spectrometry was carried out similar to WT pre-40S.  The relative peptide 

amounts for each rps in the different preparations are listed in below.  

 

Table 3.1: Mass spectrometry analysis of rps in pre-40S particles. Peptide numbers 
for the rps in Nob1-depl, Rio2-depl, Tsr1-depl and delta-Ltv1. 
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Immuno-labeling of pre-40S particles 

For negative stain EM imaging of immuno-labeled HA-Enp1 or Ltv1-CBP pre-40S, 

particles were incubated with the corresponding primary antibody targeting the C-

terminal tag on the AF (1o-CBP or 1o-HA (Covance)).  Incubations were carried 

out on ice for 15-30 minutes at a molar ratio of approximately 1:1 of pre-

40S:antibody (as assessed by EM images of antibodies or particles alone). The 

mix was diluted in standard TAP buffer and applied to glow-discharged 

continuous carbon grids for negative stain embedding. 

 

Purification of rTsr1 and MBP-rTsr1 

Recombinant Tsr1 and MBP-Tsr1 (rTsr1 and MBP-rTsr1, respectively) were 

purified according to Campbell and Karbstein3.  In this protocol, the two yeast 

proteins were overexpressed in Rosetta (Novagen) E. coli cells.  Overnight 

cultures of the cells were grown in Luria Broth (LB) Miller medium supplemented 

0.05 mM kanamycin and 0.05 mM chloramphenicol at 37°C to an OD600 of 

approximately 0.5, at this density protein expression was induced with 1 mM 

isopropyl β-D-1-thiogalactopyranoside (IPTG).  Proteins were expressed for 5 h 

at 30° C followed by centrifugation of cells to remove excess media.  Cell pellets 

were resuspended in standard TAP buffer supplemented with 0.1 mM of the 

protease inhibitor phenylmethanesulfonylfluoride (PMSF) and 5 mM of the 
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DNAse inhibitor benzamidine, according to the Qiagen protein-purification 

handbook.  The resuspended cells were lysed by sonication and the first step of 

purification was passing the lysate over nickel nitrilotriacetic acid (Ni-NTA) resin 

(Qiagen) to bind the 6X histinde tag on the N-terminus.  Proteins were eluted with 

100 mM imidazole, imidazole was removed by over-night dialysis in standard 

buffer and cleavage of the tag was carried out by incubation with TEV protease 

(omitted for MBP-Tsr1) in a buffer containing 50 mM TRS, pH 8, 100 mM 

potassium chloride (KCl), and 1 mM dithiothreitol (DTT).  The sample was 

purified further by passing the eluate over a MonoQ ion-exchange and gel-

filtration columns.   

 

Specimen preparation and negative stain EM imaging 

3.5 μl of antibody-labeled pre-40S complexes, rTsr1 and MBP-rTsr1 samples 

were applied to glow-discharged continuous carbon grids (Electron Microscopy 

Sciences).  Excess sample was blotted from the grid with filter paper and coated 

with 1% weight-to-volume (w/v) uranyl formate, excess stain was also blotted 

with filter paper.  Grids were imaged at room temperature with a Tecnai T12 

electron microscope (FEI) operated at 120 kV using low-dose procedures. 

Images were recorded at a magnification of 71,138x and a defocus value of 

approximately -1.5 μm on a Gatan US4000 charge-coupled device (CCD) 
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camera. All images were binned (2 x 2 pixels) to obtain a pixel size of 4.16 Å on 

the specimen level.  250 Enp1-HA/1o-HA, 503 Ltv1-CBP/1o-CBP and 759 MBP-

rTsr1 particle images were excised manually and subjected to reference-free 

alignment and classification using the SPIDER software18 into 10-30 classes.  For 

2D analysis and 3D reconstructions of rTsr1, 4927 particle pairs were 

interactively selected from 106 60°/0° image pairs for random conical tilt analysis 

(described in the next section). 

 

3D reconstruction of rTsr1 

The particles excised from untilted rTsr1 images were subjected to reference-free 

alignment and classification into 25 classes.  Based on the results of the 

classification, seven independent 3D reconstructions were derived from particles 

belonging to similar classes: 2, 6, 12, 14, 22 and 25 (red boxes in Figure 3.1). 

The random conical tilt technique19 was used to calculate a first back projection 

3D map using the images of the tilted specimen followed by angular refinement.  

Next, the corresponding particles from the untilted images were added to the 

dataset, and the new dataset was subjected to iterative refinement. The resulting 

3D maps were used as 3D reference models, and final 3D reconstructions were 

calculated using the program FREALIGN20. FREALIGN was again used for 

further refinement of the orientation parameters and CTF correction. 
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Reconstructions revealed volumes with similar features, therefore 3450 60°/0° 

projections were merged from all seven classes and used to calculate a final 

density map.  The resolution of the final 3D map was approximately 30 Å 

according to Fourier shell correlation (FSC) using the FSC = 0.5 criterion (Figure 

3.3B). 

  

Cryo-EM sample preparation and imaging of depletion/deletion pre-40S 

2 μl of Nob1-depl, Rio2-depl, Tsr1-depl or ΔLtv1 pre-40S samples, at OD600 of 

10-20, were adsorbed on glow-discharged Quantifoil R2/2 200 mesh grid.  The 

grids were blotted once for 1-2 seconds and plunge frozen in liquid ethane using 

a Vitrobot (FEI Mark IV) with the temperature maintained at 22° C and humidity 

greater than 85%.    Using a Gatan 626 single tilt cryotransfer system, specimens 

were imaged on a Tecnai F20 transmission electron microscope (FEI) equipped 

with a field emission electron source operated at 200 kV.  Images were recorded 

at a magnification of 66,964x on a Gatan US4000 CCD camera at defocus values 

ranging from -1.5 to -4.0 μm. Particles were preferentially found in relatively thick 

ice, lowering the signal-to-noise ratio of the particle projections.  The micrographs 

were not binned and pixel size under these conditions is 2.24 Å on the specimen 

level.  
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Single-particle reconstruction of depletion/deletion pre-40S 

The particles were excised from cryo-EM images, CTF parameters were 

determined, CTF phases were flipped, the 3D reconstructions were calculated, 

and analyzed as described for WT pre-40S in Chapter 2. The WT Pre-40S 3D 

reconstruction was used as an initial reference to refine 9132 Nob1-depletion 

projections to a resolution of 20 Å and 7069 Rio2-depletion projections to a 

resolution 22 Å (Figure 3.12). 

 

After separation of 80S-like particles from the Tsr1-depl dataset (for an 

explanation and justification of this procedure, see Chapter 4), the resulting 9176 

particle projections were manually screened for quality to a final dataset of 5127 

projections.  The WT pre-40S density was used as the initial model to calculate a 

3D reconstruction with a resolution of 26 Å (FSC=0.5) (Figure 3.12).  The lowered 

resolution relative to the other 3D maps described may be explained by particle 

heterogeneity, due to the multiple combinations of the five AFs at decreased 

occupancy in these particles, or flexibility of the particles, due to a less stabilized 

state of helix 44. 

 

A total of 10,235 ΔLtv1 projections were refined using the pre-40S map as the 

initial model to calculate a 3D reconstruction at a resolution of 20 Å (FSC=0.5) 
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(Figure 3.12).  To examine the presence of Enp1 in a subpopulation of the 

particle projections, as observed in SDS-PAGE data, we employed multi-

reference supervised alignment14,15 using our WT pre-40S and ΔLtv1 3D maps 

as initial reference volumes. After the first iteration of refinement, 1641 

projections were assigned to the WT pre-40S subset, and 7507 projections were 

assigned to the ΔLtv1 subset.   3D reconstructions of the two resulting 

subpopulations were iteratively refined against the initial model to which they 

were assigned, using refinement parameters previously described for WT pre-

40S. 

 

Figure 3.12: FSC curves for depletion and deletion pre-40S 3D maps. According to 
the FSC at 0.5 criterion, the FSC curves for the pre-40S 3D map indicate a resolution of 
~20Å for Nob1-depletion (blue), ~22Å for Rio2-depletion (orange), ~26Å for Tsr1-
depletion (green), and ~20Å for Ltv1-deletion (red). 
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Docking of assembly factors 

Crystal structures of human Dim1 (hDim1; PDB ID: 2E3U), archaeal Rio2 (aRio2; 

PDB ID: 1ZAO), and archaeal Pno1 (aDim2, PDB ID: 1ZQ9) were docked into 

the pre-40S density corresponding to the locations and following specifications 

described in Section 2.2.  Crystal structures were fit as rigid bodies using 

SITUS21. The final cross-correlation values for docking were 0.854 for aDim1 and 

0.904 for aRio2, 

3.4  Discussion 

The results presented in this chapter and in Chapter 2, as well as previously 

published biochemical data, allowed us to generate a model of the overall 

molecular architecture of a late cytoplasmic 40S ribosomal subunit maturation 

intermediate (Figure 3.13).  Localization of the seven associated AFs agrees with 

RNA-protein cross-linking22 and protein pull-down3,11,23 experiments.  I have also 

presented a novel observation that the binding of assembly factors on the pre-

40S complex blocks the binding sites of factors required for the initiation of 

protein translation by the ribosome. 
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Figure 3.13: Structural model of a 40S subunit precursor. The pre-40S model of rps 
and rRNA, generated by MDFF, are shown in silver, densities corresponding to rps not in 
our model are royal blue and helix 44 in magenta.  Using the data presented, we have 
localized the seven AFs on pre-40S. Rio2 (gold) and Dim1 (green) are located on the 
platform, Tsr1 (light pink) is adjacent to helix 44, Pno1 (red) and Nob1 (orange) are 
interacing on the back of the platform, and the Ltv1-Rps1-Enp1 sub-complex (yellow) 
forms the density connecting the beak to the platform, as well as density on the head. 

 

Localization of AFs agrees with their interaction data 

Confidence in our localization of the AFs on pre-40S is increased by its 

agreement with a large body of published data.  Cross-linking experiments were 

performed with each of the AFs localized in this thesis (with the exception of 

Pno1)22 and the results agree with our placement of Dim1, Rio2 and Enp1 

(Figure 3.14).  However, only a subset of the cross-linking hits for Nob1, Tsr1, 

and Ltv1 agree with our localization of the proteins on pre-40S.  The sites of RNA 

interaction for these three proteins are dispersed on the premature 40S subunit.  

The discrepancy of our localization data and the results from the cross-linking 
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experiments may be attributed to the use of whole cell lysates in the crosslinking 

experiments, contrary to the use of isolated complexes that were used for our 

structural characterization of pre-40S.  The lysates presumably contain multiple 

premature 40S species at different stages of maturation with various AF 

populations and/or altered locations/conformations of the AFs on pre-40S. 

 

Data from AF protein-protein interaction experiments by Campbell and Karbstein3 

were consistent with our localization of the seven pre-40S AFs (Figure 3.15A).  

The work of Campbell and Karbstein revealed Nob1 interacts with Pno1, Rps5 

and Rps14 and our localization of Nob1 on the back of the platform allows its 

direct interaction with each of these proteins.  Placement of Rio2 in the center of 

the pre-40S platform permits its binding to both Dim1 and Tsr1, interactions also 

observed in the protein-pulldowns3.  This thesis has localized Ltv1 to the head 

and top of the beak on pre-40S, which allows contact between Ltv1 and Rps5, 

Rps14, Rps15, and Enp1, consistent with results in Campbell and Karbstein 

study3. 
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Figure 3.14: Comparing AF locations with RNA interaction data. (A) Sites of 
crosslinks22 to specific AFs are shown in space-fill: Dim1(green); Enp1(yellow); 
Rio2(blue); Nob1(orange;) Tsr1(pink) and Ltv1(yellow). B-G. Comparison of sites of 
individual crosslinks with the density we localized each protein to in our pre-40S 3D map, 
(B) Dim1 (C) Enp1 (D) Rio2 (E) Nob1 (F) Tsr1 (G) Ltv1. 
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Figure 3.15: Comparing AF locations with protein interaction data. (A) Summary of 
previously published protein-protein interactions (arrows between proteins) from in vitro 
protein pulldowns3,11,24, and yeast 2-hybrid interactions25. (B) Interactions of those 
described that are consistent with the placement of the AFs in our pre-40S 3D map.  
Ribosomal proteins are shown as blue ribbons. 

 

AFs located on the platform of pre-40S form a network of interactions 

Nob1, the endonuclease responsible for site D cleavage, is found in premature 

40S complexes containing the 20S precursor to the mature 18S rRNA.  The 

presence of Nob1 and its substrate on pre-40S complexes indicates an external 

signal may be required for activation of Nob1.  Dim1, Pno111 and Rio24, as well 

as Rps5 and Rps14, are all required for site D cleavage by Nob1. Our pre-40S 

model does not indicate a direct interaction of Rio2 and Nob1, however the 

kinase activity of Rio2 is required for site D cleavage in human cells26, indicating 
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that the phosphorylation signal is passed to Nob1 through other AFs and/or rps 

on pre-40S. Candidate proteins, based on their location, include Pno1, Rps5 and 

Rps14.  Potential experiments designed to test the roles these proteins play in 

Nob1 activation are described in Chapter 5.   

 

As with Rio2, activity of Dim1 is required for site D cleavage but the methylase 

does not interact directly with Nob1.  Specifically, the methylation of adenosines 

1780 and 1781 by Dim1 is required for generation of the 18S rRNA.  The addition 

of two methyl groups on the rRNA nucleotides may cause a conformational 

change in the rRNA, altering its interaction with Pno1 and/or Nob1.  

Approximately 20 nucleotides downstream of the adenosine substrates, the 

universally conserved 3ʼ GGAUC sequence is found, which the bacterial 

homology of Pno1 binds10 (Figure 3.8). The alteration of the rRNA path and 

subsequent interaction with Pno1 and Nob1, found at the back of the platform, 

may be the mechanism that Dim1 activates Nob1, without direct physical 

interaction of the two proteins. 

 

The presence of Tsr1 holds Helix 44 in its premature conformation 

Of the five pre-40S 3D reconstructions calculated in this thesis, only the Tsr1-

depl pre-40S 3D map shows an altered conformation of helix 44.  The pre-40S 
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complexes from the yeast strain with Tsr1 depleted also have a lowered 

occupancy of additional AFs, but Tsr1 and Pno1 are the only AFs depleted 

exclusively in the Tsr1-depl and not in the additional particles investigated. I have 

localized Tsr1 to the density adjacent to helix 44 and under the beak, and Pno1 

to the density near Nob1 on the back of the platform.  The location of Tsr1 on 

pre-40S allows for the direction interaction of the protein with helix 44. This 

observation and the previously published data showing that Tsr1 is not found in 

polysomes17, while Pno1 is found in small amounts, indicates the presence of 

Tsr1 prevents the joining of pre-mature 40S subunits with 60S subunits.  This 

regulation presumably occurs by maintaining pre-40S complexes in a premature 

state when Tsr1 is bound.  This hypothesis is further investigated in Chapter 4. 

 

Assembly factors block binding sites of translation initiation factors 

The results in this chapter show Rio2, Tsr1 and Dim1 are located on the 60S 

subunit-binding interface and line the mRNA channel.  The sites of Rio2 and 

Dim1 overlap those of translation initiation factor eIF1, responsible for mRNA 

recruitment27, and the P and E-sites of tRNA (Figure 3.16). Similarly, the binding 

of the bacterial homology of Dim1 overlaps the binding of the bacterial initiation 

factor IF37, and Nob1 and Pno1 overlap the binding site of eIF328 on the back of 

the platform. 
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In addition to recruiting the mRNA 5ʼ-end to mature 40S, cooperative binding of 

eIF1 and eIF1A also opens the mRNA channel27.  Opening of the mRNA channel 

requires stabilization by a connection formed between the shoulder and head 

(the ʻlatchʼ) on the solvent side of 40S.  The density for the Ltv1-Enp1-Rps3 

subcomplex on pre-40S overlaps the location of the latch formation, indicating 

Ltv1 and/or Enp1 prevent the opening of the mRNA channel (Figure 3.17).  

 

The decoding site nucleotides, A1755, A1756 and G577, are on the top of helix 

44, near the platform, in 40S subunits.  The generation of the pre-40S 3D model 

with MDFF reveals the kink characteristic of premature subunits may disrupt the 

formation of the decoding site by increasing the distance between the decoding 

site nucleotides.  During translation initiation, all three nucleotides interrogate the 

mRNA/tRNA duplex, which may be prevented by the pulling of the nucleotides 

away from one another in premature 40S subunits.  In precursor 40S, Tsr1 

stabilizes the premature, kinked state of helix 44, potentially preventing the 

formation of an active decoding site in premature 40S subunits. 

 

In this thesis I have shown that, in addition to their functions in proper assembly 

of mature 40S subunits, AFs also prevent the incorporation of precursor 40S 
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subunits into 80S complexes.  I have also shown that the binding of Dim1, Rio2, 

Tsr1, and Nob1 prevent the binding of initiation factors: eIF1, eIF1A and eIF3.  

Dim1, Rio2 and Tsr1 block residues responsible for bridging interactions with 60S 

and the mRNA channel. Additionally, I have revealed the presence of the Ltv1-

Rps3-Enp1sub-complex prevents the opening of the mRNA channel. Lastly, we 

hypothesized that the stabilization of helix 44 by Tsr1 prevents the inappropriate 

incorporation of pre-40S into 80S complexes, which results in rapid degradation 

of the aberrant 80S ribosomes. 

 

Figure 3.16: AFs obstruct binding sites for factors required for translation. (A) 
Rio2 (blue) and Dim1 (green) block binding of eIF1 (red ribbon) and P/E tRNA (dark blue 
ribbon) on pre-40S. (B) Nob1 (red) and Pno1 (orange) block the binding of eIF3 (purple) 
on pre-40S).  
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Figure 3.17: The binding of AFs inhibits the opening of the mRNA channel. (A) The 
latch between helix 18 and helix 34 closes the mRNA channel in mature apo-40S (right) 
until eIF1 and eIF1A bind cooperatively and open the latch (center). In pre-40S the latch 
is present, obstructing the mRNA channel (right). (B) On the solvent interface, a bridge 
of density not present in the apo-40S (left) is formed upon opening of the mRNA channel 
by eIF1 and eIF1A binding (center), docking of Ltv1-Rps3-Enp1 density onto the 40S-
eIF1-eIF1A map shows the sub-complex blocks the formation of this density (right).  
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3.5  Concluding remarks 

Although a vast increase in data will be required to fully understand the process 

of 40S biogenesis, the results and conclusions of this chapter provide a good 

starting point for future investigations.  Prior to this study, AF protein interaction 

data was limited to data from investigations using isolated recombinant proteins.  

The binding observed in purified proteins may lack significance in the context of 

the pre-40S due to changes in conformation, binding surfaces and solvent 

exposed regions that occur when the proteins are associated with pre-40S.  By 

understanding their 3D interactions with cryo-EM 3D studies, we can focus on 

interactions between proteins or specific regions of proteins relevant on pre-40S.  

This data show a network of spatial AF interactions, in the area extending from 

the center to the back of the platform.  The study shows interactions of Rio2 with 

Dim1, and Pno1 with Nob1, and indicates the potential domains of these AFs 

responsible for interactions by docking of their crystal structures into our pre-40S 

3D map. This information can be used to design biochemical experiments to 

further understand how the activities of Rio2 and Dim1, required for site D 

cleavage, are transmitted as signals to activate Nob1.  The determination of the 

function of Tsr1 to stabilize helix 44 in its premature state requires further studies 

of the specific sites of interactions between the AF and rRNA.  Also, further 
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understanding of the events leading to Tsr1 dissociation from pre-40S will 

provide clues about the terminating step(s) of 40S maturation. Investigation of the 

role of Tsr1 in preventing the joining of premature 40S with 60S will be discussed 

more thoroughly in Chapter 4. 

 

 

3.6 Acknowledgements 

Data from this chapter is contained in the manuscript "Ribosome Assembly 

Factors Prevent Premature Translation Initiation by 40S Assembly Intermediates" 

which, as of 5/13/2011, is in review in for publication in Science.  Nob1-depl, 

Rio2-depl, Tsr1-depl and ΔLtv1 pre-40S particles were isolated by Bethany 

Strunk (Karbstein Lab) who also carried out SDS-PAGE analysis of the particles.  

Justin Schilling carried out the antibody labeling experiments and data analysis of 

pre-40S labeled complexes.  Melody Campbell (Karbstein lab) provided the 

purified rTsr1 and MBP-rTsr1 and Justin Schilling performed negative stain EM 

analysis on these proteins. Sample preparation, image acquisition and data 

analysis for cryo-EM structures of depletion/deletion particles were carried out 

primarily by Cherisse Loucks with technical assistance from Min Su.  Mass 

spectrometry analysis for Nob1-depl and delta-Ltv1 was carried out by Dr. 

Henriette Remmer and Amber Peariso at the Protein Structure Facility at the 



 
 

  

 

109 

University of Michigan.  MS analysis of Rio2-depl and Tsr1-depl was done by Dr. 

Michael Chalmers and Caitlin Steckler at the Proteomics Core at Scripps Florida.  

 

 

 

 

 

 

  



 
 

  

 

110 

3.7 References 

1 Jakovljevic, J. et al. The carboxy-terminal extension of yeast ribosomal 
protein S14 is necessary for maturation of 43S preribosomes. Molecular 
cell 14, 331-342 (2004). 

2 Mulder, A. M. et al. Visualizing ribosome biogenesis: parallel assembly 
pathways for the 30S subunit. Science 330, 673-677, 
doi:10.1126/science.1193220 (2010). 

3 Campbell, M. G. & Karbstein, K. Protein-Protein Interactions within Late 
Pre-40S Ribosomes. PLoS One 6, e16194, 
doi:10.1371/journal.pone.0016194. 

4 Schafer, T. et al. Hrr25-dependent phosphorylation state regulates 
organization of the pre-40S subunit. Nature 441, 651-655, 
doi:nature04840, 10.1038/nature04840 (2006). 

5 Pulicherla, N. et al. Structural and functional divergence within the 
Dim1/KsgA family of rRNA methyltransferases. Journal of molecular 
biology 391, 884-893, doi:10.1016/j.jmb.2009.06.015 (2009). 

6 Connolly, K., Rife, J. P. & Culver, G. Mechanistic insight into the ribosome 
biogenesis functions of the ancient protein KsgA. Molecular microbiology 
70, 1062-1075, doi:10.1111/j.1365-2958.2008.06485.x (2008). 

7 Xu, Z., O'Farrell, H. C., Rife, J. P. & Culver, G. M. A conserved rRNA 
methyltransferase regulates ribosome biogenesis. Nat Struct Mol Biol 15, 
534-536, doi:nsmb.1408, 10.1038/nsmb.1408 (2008). 

8 Wu, H., Dong, A.,   Zeng, H.,   Loppnau, P.,   Sundstrom, M.,   Arrowsmith, 
C.,   Edwards, A.,   Bochkarev, A.,   Plotnikov, A. unpublished data. 

9 LaRonde-LeBlanc, N. & Wlodawer, A. Crystal structure of A. fulgidus Rio2 
defines a new family of serine protein kinases. Structure 12, 1585-1594, 
doi:10.1016/j.str.2004.06.016, S0969212604002539  (2004). 

10 Jia, M. Z., Horita, S., Nagata, K. & Tanokura, M. An archaeal Dim2-like 
protein, aDim2p, forms a ternary complex with a/eIF2 alpha and the 3' end 
fragment of 16S rRNA. J Mol Biol 398, 774-785, doi:S0022-
2836(10)00330-X, 10.1016/j.jmb.2010.03.055. 

11 Woolls, H. A., Lamanna, A. C. & Karbstein, K. Roles of Dim2 in ribosome 
assembly. J Biol Chem 286, 2578-2586, doi:M110.191494, 
10.1074/jbc.M110.191494. 

12 Jia, M. Z., Ohtsuka, J., Lee, W. C., Nagata, K. & Tanokura, M. Crystal 
structure of Dim2p: a preribosomal RNA processing factor, from 
Pyrococcus horikoshii OT3 at 2.30 A. Proteins 69, 428-432, 
doi:10.1002/prot.21381 (2007). 



 
 

  

 

111 

13 Seiser, R. M. et al. Ltv1 is required for efficient nuclear export of the 
ribosomal small subunit in Saccharomyces cerevisiae. Genetics 174, 679-
691, doi:genetics.106.062117, 10.1534/genetics.106.062117 (2006). 

14 Brink, J. et al. Experimental verification of conformational variation of 
human fatty acid synthase as predicted by normal mode analysis. 
Structure 12, 185-191, doi:10.1016/j.str.2004.01.015 (2004). 

15 Menetret, J. F. et al. Architecture of the ribosome-channel complex 
derived from native membranes. Journal of molecular biology 348, 445-
457, doi:10.1016/j.jmb.2005.02.053 (2005). 

16 Longtine, M. S. et al. Additional modules for versatile and economical 
PCR-based gene deletion and modification in Saccharomyces cerevisiae. 
Yeast 14, 953-961, doi:10.1002, (1998). 

17 Schafer, T., Strauss, D., Petfalski, E., Tollervey, D. & Hurt, E. The path 
from nucleolar 90S to cytoplasmic 40S pre-ribosomes. EMBO J 22, 1370-
1380, doi:10.1093/emboj/cdg121 (2003). 

18 Frank, J. et al. SPIDER and WEB: processing and visualization of images 
in 3D electron microscopy and related fields. J Struct Biol 116, 190-199, 
doi:S1047-8477(96)90030-1, 10.1006/jsbi.1996.0030 (1996). 

19 Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. Three-
dimensional reconstruction from a single-exposure, random conical tilt 
series applied to the 50S ribosomal subunit of Escherichia coli. J Microsc 
146, 113-136 (1987). 

20 Grigorieff, N. FREALIGN: high-resolution refinement of single particle 
structures. J Struct Biol 157, 117-125, doi:S1047-8477(06)00169-9, 
10.1016/j.jsb.2006.05.004 (2007). 

21 Wriggers, W. Using Situs for the integration of multi-resolution structures. 
Biophys Rev 2, 21-27, doi:10.1007/s12551-009-0026-3. 

22 Granneman, S., Petfalski, E., Swiatkowska, A. & Tollervey, D. Cracking 
pre-40S ribosomal subunit structure by systematic analyses of RNA-
protein cross-linking. EMBO J 29, 2026-2036, doi:emboj201086, 
10.1038/emboj.2010.86. 

23 Venema, J. & Tollervey, D. Ribosome synthesis in Saccharomyces 
cerevisiae. Annual review of genetics 33, 261-311, 
doi:10.1146/annurev.genet.33.1.261 (1999). 

24 Lamanna, A. C. & Karbstein, K. Nob1 binds the single-stranded cleavage 
site D at the 3'-end of 18S rRNA with its PIN domain. Proc Natl Acad Sci U 
S A 106, 14259-14264, doi:0905403106, 10.1073/pnas.0905403106 
(2009). 

25 Loar, J. W. et al. Genetic and biochemical interactions among Yar1, Ltv1 
and Rps3 define novel links between environmental stress and ribosome 



 
 

  

 

112 

biogenesis in Saccharomyces cerevisiae. Genetics 168, 1877-1889, 
doi:10.1534/genetics.104.032656 (2004). 

26 Geerlings, T. H., Faber, A. W., Bister, M. D., Vos, J. C. & Raue, H. A. 
Rio2p, an evolutionarily conserved, low abundant protein kinase essential 
for processing of 20 S Pre-rRNA in Saccharomyces cerevisiae. J Biol 
Chem 278, 22537-22545, doi:10.1074/jbc.M300759200, M300759200  
(2003). 

27 Passmore, L. A. et al. The eukaryotic translation initiation factors eIF1 and 
eIF1A induce an open conformation of the 40S ribosome. Molecular cell 
26, 41-50, doi:10.1016/j.molcel.2007.03.018 (2007). 

28 Siridechadilok, B., Fraser, C. S., Hall, R. J., Doudna, J. A. & Nogales, E. 
Structural roles for human translation factor eIF3 in initiation of protein 
synthesis. Science 310, 1513-1515, doi:10.1126/science.1118977 (2005). 

29 Ogle, J. M. et al. Recognition of cognate transfer RNA by the 30S 
ribosomal subunit. Science 292, 897-902, doi:10.1126/science.1060612 
(2001). 

 
 



 
 

  

 

113 

Chapter 4                                                                                                           
Tsr1 Prevents Precursor 40S Subunits from binding 60S Subunits 

 

4.1 Abstract 

Tsr1 is a 91-kilodalton protein with a hypothesized GTPase function, based on a 

weak sequence homology to the bacterial GTPase elongation factor Tu (EF-Tu).  

Tsr1 associates with pre-40S and is required for generation of the mature 18S 

rRNA found in 40S subunits.   In Chapter 3, we investigated the location of Tsr1 

on pre-40S by determining the 3D structure of Tsr1-depl pre-40S particles using 

cryo-EM.  Interestingly, the 3D map of these particles was the only, of the five 

presented in this work, with a conformation of helix 44 different than the other 3D 

maps.  The second interesting observation concerning Tsr1-depl is the presence 

of 60S rps and rRNA in the preparation at levels much greater than the other four 

pre-40S preparations described in this thesis.  The detection of 60S peptides and 

rRNA indicates that Tsr1-depl are capable of joining with 60S subunits.  Particles 

similar in size and shape to 80S complexes in the Tsr-depl preparation were 

observed in negative stain and cryo-EM images.  To further characterize these 

80S-like particles, we calculated a 3D reconstruction of these particles.  Although 

the low resolution of this 3D map limits detailed structural analysis of these 

aberrant 80S holoenzymes, the confirmation of their presence has allowed the 
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proposal of a novel function of Tsr1 on pre-40S, to inhibit the binding of precursor 

40S subunits with 60S. 

 

4.2 Results 

Northern blotting with a probe to detect the 25S rRNA transcript found in mature 

60S confirmed that Tsr1-depl preparations contain 25S rRNA (Figure 4.1).  

Additionally, MS of pre-40S and Rio2-depl preparations contain an 8-10 ratio of 

small to large ribosomal proteins, while the Tsr1-depl contains nearly equal 

amounts of the protein populations (Table 4.1).  Negative stain and cryo-EM 

micrographs of Tsr1-depl preparations show particles similar in size and shape to 

80S complexes (will refer to these particles as Tsr1-depl 80S-like) (Figure 4.2).  

Although depletion of both Pno1 and Tsr1 are exclusive to Tsr1-depl, the 

observation that Pno1, but not Tsr1, is present in polysomes, indicates Tsr1 is 

the factor responsible for inhibition of 80S formation by precursor 40S subunits. 
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Figure 4.1: Northern blot analysis of Tsr1-depl pre-40S.  The Tsr1-depl particles 
contain a much greater amount of the 25S rRNA found in mature 60S as compared to 
the WT and Rio2-depl pre-40S particles. 

 

 

Table 4.1: Tsr1-depl pre-40S contain significant amounts of 60S rps. WT and Rio2-
depl contain an 8 to 10 fold greater amount of small subunit rps compared to large 
subunit rps while Tsr1 pre-40S contain a nearly 1:1 ratio. 
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Figure 4.2: Raw cryo-EM micrograph of Tsr1-depl shows 80S-like particles. The 
raw cryo-EM image reveals particles similar to the pre-40S found in all pre-40S 
preparation investigated (red arrows) as well as larger particles similar in size and shape 
to 80S complexes (purple arrows). 

 

To further characterize Tsr1-depl 80S-like, Tsr1-depl particle projection dataset 

was quantitatively separated using multiple-reference supervised alignment1,2.  

The initial models for separation were our pre-40S 3D map and the published 8.9 

Å yeast 80S 3D map3 (EMDB: 1345).  After the first iteration, the subpopulation 

of projections assigned to the 80S reference (based on CC values) was 
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approximately 10% of the total dataset.  This was consistent with our observation 

that Tsr1-depl micrographs contained about 10% of particle projections 

appearing similar to 80S complexes, with the remainder of the particles 

containing characteristic size and features of pre-40S. The subpopulation of 

projections assigned to the 80S initial reference was refined iteratively with the 

80S 3D map as a single initial reference. Due to the small number of projections 

(less than 800), and potential flexibility and conformation heterogeneity, the 

resolution of this 3D map is low, estimated at lower than 30 Å.  Despite its low 

resolution, the Tsr1-depl 80S-like 3D map appears similar to WT 80S (Figure 

4.3). In the Tsr1-depl 80S-like 3D map the solvent side of the 40S reveals the 

characteristic 40S head, beak, and foot. 



 
 

  

 

118 

 

Figure 4.3: Cryo-EM 3D map of 80S-like particles from Tsr1-depl pre-40S. After 
multiple-reference refinement, the 3D reconstruction of the particle projections assigned 
to the 80S reference model, the portion in blue corresponds to the bound 60S and 
orange is the Tsr1-depl 40S. The Tsr1-depl 3D map is shown alone for reference. 
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4.3 Materials and Methods 

Tsr1-depl 80S 3D reconstruction 

Tsr1-depl Ltv1-TAP particles were isolated and analyzed via SDS-PAGE and MS 

as described in Section 3.3.  Multiple reference-supervised alignment1,2 

separated the particle projections in Tsr1-depl based on similarity (using CC 

values) to pre-40S or 80S, using our 18 Å pre-40S 3D map and the 8.9 Å 3D map 

of the 80S complex from Thermomyces lanuginosus3 (EMDB ID: 1346), after 

filtering the 3D map to a resolution of 18 Å, as initial volume references.  Initial 

models must be filtered to similar resolution values to prevent a bias toward the 

higher resolution model. The low-pass Gaussian filtering was carried out using 

EM-Bfactor software4.  The initial Tsr1-depl dataset contained 9484 projections, 

and 759 of these projections were assigned to the 80S reference after the first 

iteration.  To confirm that Tsr1-depl pre-40S are capable of binding 60S, and 

investigate the morphology of Tsr1-depl-80S-like particles, we calculated a 3D 

reconstruction of this projection subset using the 8.9 Å 80S 3D map3 as the initial 

model.  Parameters were similar to those used for the WT pre-40S reconstruction, 

described in Chapter 2. The final 3D reconstruction was estimated, based on 

structural features, to be lower than 30 Å in resolution, but the resolution was not 

determined quantitatively because the low number of projections from this 
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asymmetric particle prevent any confidence in 3D reconstructions from only half 

the number of particles.  

 

4.4 Discussion 

I believe that the most surprising and novel finding presented in this thesis is the 

ability of Tsr1-depl particles to join with 60S and form 80S-like complexes. This 

strongly suggests that the presence of Tsr1 on pre-40S is sufficient to prevent 

pre-40S incorporation into 80S complexes.  Tsr1 depletion in yeast cells results 

in 20S rRNA accumulation5, but additional functional information about the 

GTPase-like protein has not been obtained.  This work shows that the location of 

Tsr1 allows direct interaction between the elongated structure of the protein and 

helix 44.  The premature kinked conformation of helix 44 in pre-40S is not 

present when Tsr1 is depleted, and pre-40S without Tsr1 are able to bind 60S.  

These data, along with the observation that Tsr1 is occluded from polysomes5, 

underscores the function of Tsr1 as a key indicator for determination of the 

maturation state of pre-40S by mature 60S.  Complex formation between 60S 

and 40S requires the dissociation of Tsr1, which likely happens after full 40S 

maturation.  The formation of Tsr1-depl-80S like particles also indicates that the 

loss of Tsr1 occurs after site D cleavage, or that cleavage is not required to 

signal for the particlesʼ competence to join 60S, as Tsr1-depl contain the 20S 
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rRNA precursor.  This indicates that the dissociation of Tsr1 is one of the final 

steps in 40S biogenesis. Further understanding the signals leading to Tsr1 

dissociation on pre-40S will indicate step(s) at the termination of 40S biogenesis.  

 

The function of an AF holding helix 44 in its premature conformation in ribosomal 

small subunits may be conserved in bacteria.  A candidate protein is the E. coli 

GTPAse YjeQ, which has sequence homology to the C-terminal end of Tsr1 and 

is required for proper 30S assembly6-9.  Deletion of YjeQ in bacterial cells results 

in the accumulation of the precursor to the mature 16S rRNA7, homologous to the 

result of depleting Tsr1 in yeast cells.  YjeQ associates with premature 30S but 

studies localizing it on the premature small subunit are contradictory. However, 

two studies agree with its localization near the A-site located at the top of helix 

447,10.  These studies also show that its association with 30S disrupts the 

decoding site. A model proposed by Jomaa et al.11, using premature 30S subunit 

structural data, indicates that YjeQ is one of the final factors to dissociate from 

the complex before the 30S and 50S can join. All of these findings reveal a 

striking similarity in the functions of YjeQ and Tsr1 on the premature small 

subunit in prokaryotes and eukaryotes, respectively.  I hypothesize that YjeQ and 

Tsr1 are functional homologs and the function of an assembly factor to act as an 

indicator of the maturation status of the small subunit to the large subunit, is 
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conserved in ribosome biology from bacteria to eukaryotes.  An ortholog to Tsr1 

is likely present in human cells, as most AFs are conserved throughout 

eukaryotes.  Preventing the binding or action of YjeQ on premature 30S subunits 

with chemical inhibitors may result in aberrant ribosome formation or rapid 

breakdown of 70S complexes, due to the improper incorporation premature 30S 

complexes into bacterial ribosomes, causing a rapid decrease in growth of 

bacterial cells.  Identifying the potential Tsr1 human ortholog and understanding 

the differences between YjeQ and this human protein may provide information for 

the design of inhibitors to be specifically designed to target only the bacterial AF, 

which could lead to the development of novel antibiotic drugs. 
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Chapter 5                                                                                                          
Future Investigations into 40S Biogenesis 

 

5.1  Abstract 

In this body of work, I have presented results that will lead to both a better and 

novel understandings of eukaryotic ribosome biogenesis.  The cryo-EM 3D 

structure of the native pre-40S, the localization of each assembly factor 

associated at this stage, and the structural and functional characterization of 

Tsr1, sets the framework for understanding the late cytoplasmic stage of 40S 

biogenesis and designing the next generation of more detailed experiments to 

delineate this process.  In this chapter, future experiments designed to 

investigate various structural features of pre-40S and its components in greater 

detail, define the specific regions of AFsʼ interaction with themselves, rRNA and 

rps, and understand signal transduction of signals for site D cleavage, will be 

discussed.   
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5.2  Structural investigation of the Ltv1-Enp1-Rps3 subcomplex 

Rationale 

In this thesis I have shown the pre-40S density attributed to the Ltv1-Enp1-Rps3 

subcomplex.  Ltv1 was localized to the head and top of the beak, and Enp1 to the 

bridge of density connecting the beak to the body of the complex.  The lack of 3D 

structures for isolated Ltv1 and Enp1 has inhibited our understanding of their 

specific locations, regions of interactions and solvent-exposed interfaces of these 

proteins on pre-40S.  By docking the 3D structure(s) of Ltv1 and/or Enp1, or the 

3D structure of the entire subcomplex, the interactions of Ltv1 and Enp1 with 

other components of pre-40S can be determined.  The structural characterization 

of isolated Ltv1 or Enp1 by negative stain EM was unsuccessful in our lab due to 

flexibility and/or aggregation in preparations of the factors (data not shown).  The 

formation of a trimeric subcomplex that dissociates from pre-40S treated with 

high-salt concentrations1 indicates the subcomplex may be stable, and 

incorporation into the subcomplex may be required for stabilization of the 

structures of Ltv1 and Enp1, a phenomenon observed with the folding of p27 

upon binding to cyclin-dependent kinase/cyclin complexes2.   To this end, I 

propose studying the 3D structure of the overall subcomplex, as opposed to Ltv1 

and/or Enp1 individually. 
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Proposed investigation 

The 3D structure of the Ltv1-Enp1-Rps3 will be solved using X-ray 

crystallography on subcomplexes formed in vitro. First, yeast proteins of all three 

components will be recombinantly expressed in E. coli cells individually and 

isolated using affinity purification.  The isolated proteins will be incubated in 

conditions optimized for the formation of the trimeric complex.  The proteins will 

then be passed through a size-exclusion column to remove any unbound proteins 

or dimeric complexes. This sample will be subjected to crystallographic screens 

to determine optimal conditions for crystallization of the complex. Upon 

successful crystallization, the structure of the complex will be solved, ideally, to 

atomic resolution.  The 3D structure of the subcomplex can then be docked into 

the pre-40S 3D map density attributed to the proteins.  This docking will provide 

further evidence for the locations of the AFs in this density, and will also allow us 

to determine interactions between the factors and ribosomal proteins and/or 

RNA.  More detailed localization data will also indicated whether Enp1 alone is 

responsible for the retracted beak conformation, or if Ltv1 and/or Rps3 also play 

a role in the premature beak structure. 
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5.3       Structural investigation into Tsr1 and helix 44 interactions 

Rationale 

In this thesis I have indicated a novel function of Tsr1 in maintaining helix 44 in 

its premature conformation on pre-40S.  Without a high-resolution structure of 

isolated Tsr1 to dock into its density in the pre-40S 3D map, we are unable to 

determine the specific domain(s) and residue(s) involved in this stabilization.  

Information about these interactions may allow us to determine if the region of 

Tsr1 which binds to helix 44.  Additionally, Tsr1 contains a domain with sequence 

homology to GTPase proteins.  An atomic resolution structure of Tsr1 will also 

allow us to determine if the protein contains a contains a fold similar to known 

GTPases.  If an active GTPase domain exists, the docking of the 3D structure of 

Tsr1 into the 3D map may provide clues to the GTPase substrate of Tsr1. 

Proposed investigation 

In this thesis, I have shown that yeast Tsr1 expressed recombinantly in E. coli 

cells can be successfully isolated from cells by His-tag affinity purification.  The 

optimal conditions for the crystallization of the protein will be assayed using 

crystallographic screens.  If crystallization and high-resolution structural 

determination are successful, the 3D structure will be docked as a rigid body into 

our pre-40S 3D map.  The interaction of the docked Tsr1 and helix 44 from our 

MDFF model will reveal regions responsible for stabilization of helix 44 by Tsr1. 
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Pre-40S complexes isolated from yeast strains with specific regions of Tsr1 

expected to interact with helix 44 will be mutated or deleted. Cryo-EM 3D 

reconstructions of these pre-40S subunits will reveal whether the helix is in its 

premature conformation, indicating the specific regions on Tsr1 that stabilize 

kinked helix conformation. 

5.4     Investigating of signal transduction between Rio2 and Nob1 

Rationale 

Protein-protein interaction studies show Nob1 binds Pno1, Rps5, and Rps143 

and all three proteins are required for site D cleavage by Nob14-6. Nob1 interacts 

with each of these factors on pre-40S. The activity of Rio27 is required for 

cleavage by Nob1, but our model does not allow indicate interaction of Rio2 with 

Nob1. Determination of how the signal is passed from Rio2 to Nob1 will implicate 

proteins, such as Pno1, Rps5 and Rps14, that are responsible for the signal 

transduction.  This knowledge will also provide clues to the order of maturation 

events and the steps leading to the cleavage at site D, one of the final steps in 

the maturation of 40S subunits. 

Proposed investigations 

Determining the phosphorylation substrate of Rio2 will allow an understanding of 

the activity of Rio2 signals to Nob1. Phosphorylation states of proteins in cells 
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from yeast strains expressing WT and kinase-dead Rio2 could be compared.  

Protein bands present in the WT but not kinase-dead strain could be analyzed 

with mass spectrometry to determine potential targets of Rio2 phosphorylation. 

Rps4, Rps14 and Rps15 are likely candidates, as they are each required for 

cleavage by Nob1.  Proteins that are phosphorylated only in the presence of 

active Rio2 can be analyzed with mass spectrometry for identification and 

determination of the serine residue that is phosphorylated.  Yeast strains can be 

generated with the serine residues in the potential target(s) conservatively 

mutated to cysteines.  Western blotting can be carried out as described above 

and if the band corresponding to the protein with the mutated serine is lost in the 

WT Western blot, we can predict this is a substrate of Rio2. Northern blotting can 

then be used to determine whether the cells containing the mutated serine 

residues accumulate 20S rRNA, indicating an inhibition of cleavage by Nob1.  If 

the activity of Nob1 is decreased in these cells, it can be predicted the mutated 

protein is located in the signaling pathway upstream of Nob1 and downstream of 

Rio2. 

 

5.5 Discussion 

Determination of the 3D structure of the pre-40S and localization of each 

associated assembly factor has answered many questions that would be difficult 
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or impossible to understand without structural biology techniques.  This body of 

works has shown that merging of results from cryo-EM, X-ray crystallographic, 

MDFF and biochemical experiments allows a more complete understanding of 

the structure of these large macromolecular intermediates to mature 40S.  

Determining the 3D maps of pre-40S with one or more AFs depleted in the 

particles allowed us to determine the binding sites all seven associated AFs on 

pre-40S. 3D maps of pre-40S particles with Tsr1 depleted and Ltv1 deleted also 

revealed structural changes, indicating AFs roles in the maintenance of 

premature conformation of precursor 40S.  Conducting additional structural and 

biochemical experiments will improve our understanding of the biogenesis of 

40S, potentially elucidating the interactions, functions and substrates of AFs.  

Investigations proposed in this chapter provide a minute example of possible 

experiments that could be designed based on the findings presented in this work.  

Results of future experiment will, ideally, allow in an expansion of the knowledge 

of the overall process of ribosome assembly. 
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