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ABSTRACT

Energy-Efficient Computing for Mobile Signal Processing

by

Sangwon Seo

Chair: Trevor N. Mudge

Mobile devices have rapidly proliferated, and deployment of handheld devices contin-

ues to increase at a spectacular rate. As today’s devices not only support advanced

signal processing of wireless communication data but also provide rich sets of appli-

cations, contemporary mobile computing requires both demanding computation and

efficiency. Most mobile processors combine general-purpose processors, digital sig-

nal processors, and hardwired application-specific integrated circuits to satisfy their

high-performance and low-power requirements. However, such a heterogeneous plat-

form is inefficient in area, power and programmability. Improving the efficiency of

programmable mobile systems is a critical challenge and an active area of computer

systems research.

SIMD (single instruction multiple data) architectures are very effective for data-

xiii



level-parallelism intense algorithms in mobile signal processing. However, new charac-

teristics of advanced wireless/multimedia algorithms require architectural re-evaluation

to achieve better energy efficiency. Therefore, fourth generation wireless protocol and

high definition mobile video algorithms are analyzed to enhance a wide-SIMD archi-

tecture. The key enhancements include 1) programmable crossbar to support complex

data alignment, 2) SIMD partitioning to support fine-grain SIMD computation, and

3) fused operation to support accelerating frequently used instruction pairs.

Near-threshold computation has been attractive in low-power architecture re-

search because it balances performance and power. To further improve energy ef-

ficiency in mobile computing, near-threshold computation is applied to a wide SIMD

architecture. This proposed near-threshold wide SIMD architecture—Diet SODA—

presents interesting architectural design decisions such as 1) very wide SIMD datapath

to compensate for degraded performance induced by near-threshold computation and

2) scatter-gather data prefetcher to exploit large latency gap between memory and

the SIMD datapath. Although near-threshold computation provides excellent energy

efficiency, it suffers from increased delay variations. A systematic study of delay vari-

ations in near-threshold computing is performed and simple techniques—structural

duplication and voltage/frequency margining—are explored to tolerate and mitigate

the delay variations in near-threshold wide SIMD architectures.

This dissertation analyzes representative wireless/multimedia mobile signal pro-

cessing algorithms, proposes an energy-efficient programmable platform, and evalu-

ates performance and power. A main theme of this dissertation is that the perfor-

xiv



mance and efficiency of programmable embedded systems can be significantly im-

proved with a combination of parallel SIMD and near-threshold computations.
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CHAPTER 1

Introduction

1.1 Background

Mobile computing has become ubiquitous. As the proliferation of mobile devices

has increased at a spectacular rate, mobile devices have become one of the dominant

computing platforms. This trend will continue as mobile devices cover broader ap-

plication areas such as high-bandwidth internet access, high-quality video, biometric

computations (voice and fingerprint recognition), and interactive conferencing. The

advanced functionalities for next generation mobile computing require higher data

rates, more sophisticated algorithms, and greater computational diversity with strin-

gent power requirements.

The current mobile platforms are designed as heterogeneous system-on-a-chip

(SoC) that employs a combination of general-purpose processors (GPPs), digital sig-

nal processors (DSPs), application-specific integrated circuits (ASICs), and hardwired

accelerators to provide giga-operations-per-second on sub-watt power budget. How-
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ever, such heterogeneous organizations are inefficient to build and maintain, and

waste silicon area and power. As state-of-the-art applications are adopted, these

mobile platforms need to be redesigned with additional ASICs and specialized func-

tional accelerators because current ones are designed only for outdated specifications.

Therefore, as more applications and features are introduced to the devices, develop-

ment and material costs become more expensive.

To solve these problems, programmable mobile platforms that can support mul-

tiple standards and applications are being actively investigated. Software Defined

Radio (SDR) is one of these mobile platforms that promises to deliver a cost effective

and flexible solution by implementing various wireless applications in software. The

key advantages of SDR are 1) Multi-mode operation—running multiple protocols,

2) Fast time-to-market—reusing the same hardware for new applications, 3) Easy

prototyping and bug fixes—changing software without redesign, and 4) High chip

volume.

Many baseband processing architectures for SDR have been proposed in the last

few years. They can be broadly categorized into two classes: single instruction mul-

tiple data (SIMD)-based and reconfigurable architectures. SIMD-based architectures

usually consist of several high performance SIMD processing elements (PEs) that are

typically connected together through a shared bus, a shared global memory connected

to the bus, and a general purpose control processor that manages these SIMD PEs.

Many of SIMD-based architectures support VLIW execution by allowing concurrent

memory and SIMD arithmetic operations. SODA [1], Ardbeg [2], EVP [8], Tiger-
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SHARC [7], MuSIC-1 [9], Sandblaster [6], and SIMT [5] fall under the SIMD-based

architecture category. Reconfigurable architectures, on the other hand, usually con-

sist of many simpler PEs. Depending on the particular design, these PEs range from

fine-grain LUTs (lookup tables) to coarse-grain ALUs (arithmetic logic units) or even

ASICs. The PEs are usually connected through a reconfigurable fabric. Compared

with SIMD-based designs, reconfigurable architectures are more flexible at the cost

of higher power. ADRES [10], Montium [11], and XiRisc [13] are categorized in the

reconfigurable architecture group.

1.2 Motivation

This dissertation takes a SIMD-based architecture, SODA, to explore the archi-

tectural impacts of emerging wireless protocols and advanced signal processing. As

wireless signal processing contains vast amounts of vector parallelism, SIMD hard-

ware is recognized as an effective strategy to achieve high efficiency in performance

and energy due to its regular structure, ability to scale SIMD lanes, and low control

cost. However, the next generation of mobile computing requires higher performance

and/or lower power as shown in Figure 1.1.

Figure 1.1 presents the demands of the third generation (3G) and the fourth gener-

ation (4G) wireless technology protocols in terms of peak processing throughput and

power budget. Conventional processors cannot meet the power-throughput require-

ments of these protocols. 3G protocols, such as W-CDMA, require approximately 100

Mops/mW. Desktop processors, such as the Pentium M, operate below 1 Mop/mW,
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Figure 1.1: Throughput and power requirements for various mobile computing ap-
plications [18].

while digital signal processors, such as the TI C6x, operate around 10 Mops/mW.

High performance systems such as the IBM Cell can provide excellent throughput, but

its power consumption makes it infeasible for mobile devices [14]. Research solutions,

such as VIRAM [16] and Imagine [50], can achieve the performance requirements

for 3G, but exceed the power budgets of mobile terminals. SODA improved upon

these solutions and was able to meet both the power and throughput requirements

for 3G wireless [1]. Companies such as Phillips [8], Infineon [9], ARM [2], and Sand-

bridge [6] have also proposed domain-specific systems that meet the requirements for

3G wireless.

However, 4G increases the bandwidth to maximum data rates of 100 Mbps for

high mobility and 1 Gbps for low mobility. This translates to an increase in the com-

putational requirements of 10-1000x over previous 3G with a power envelope that

can only increase by 2-5x [15]. Mobile computing systems are not limited to wire-

4



less signal processing. High-definition video, audio, 3-D graphics, and other forms of

media processing are high value applications for mobile devices. Media applications

in mobile devices offer a number of challenges different from those in wireless signal

processing. First, the complexity of media processing algorithms is typically higher

than that of signal processing algorithms. Computation is no longer dominated by

simple vectorizable loops. Instead, significant amounts of control flow exist to handle

different operating modes and the inherent complexity of media coding. As a result,

SIMD parallelism becomes less efficient in media algorithms. Second, the data access

complexity in media processing is higher. Wireless signal processing algorithms typi-

cally operate on single dimension vectors, whereas video algorithms operate on two or

three dimensional vectors. Thus, media processing push designs to have higher band-

width and more flexible memory systems. In addition, the power budget is generally

more constrained for media processing than for wireless signal processing because of

higher usage times. As shown in Figure 1.1, high-definition video is 10-100x more

compute intensive than 3G protocols.

Therefore, the design of the next generation of mobile platforms must address

three critical issues: efficiency, programmability, and adaptivity. The existing com-

putational efficiency of 3G solutions is inadequate and must be increased by at least

an order of magnitude for 4G. As a result, straightforward scaling of 3G solutions by

increasing the number of cores or the amount of data-level parallelism is not enough.

Programmability provides the opportunity for a single platform to support multiple

applications and even multiple standards within each application domain. It also
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provides faster time to market and higher chip volumes, thereby reducing manufac-

turing cost. Lastly, hardware adaptivity is necessary to maintain efficiency as the core

computational characteristics of the applications change. 3G solutions rely heavily on

the widespread amounts of vector parallelism in wireless signal processing algorithms,

but lose most of their efficiency when vector parallelism is unavailable or constrained

as in other application domains like high-definition video.

This dissertation focuses mostly on techniques for improving efficiency. The effi-

cient mobile computing in Diet SODA exploits massively parallel systems and near-

threshold voltage operations to provide efficiency and programmability as well.

1.3 Contributions

This dissertation presents a set of design proposals for an energy-efficient pro-

grammable wireless protocol implementation. In order to satisfy demanding perfor-

mance and power requirements of next generation mobile computing, this dissertation

takes a hardware-software co-design approach that optimizes and evaluates a mobile

computing platform based on the characteristics of wireless signal processing algo-

rithms. This dissertation makes the following contributions.

Design and Analysis of advanced signal processing algorithms This dis-

sertation presents algorithmic characterization of two major mobile signal process-

ing algorithms: a representative 4G protocol algorithm (Low Density Parity Check

(LDPC)) and high definition mobile video (H.264). Based on insights from their char-

acteristics, a wide-SIMD architecture for SDR, SODA, is revisited and optimized to
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meet performance and power requirements. The key enhancements on SODA are 1)

use of programmable crossbar to support complex shuffle operations, 2) SIMD parti-

tioning to support fine-grain SIMD computation, 3) Bypass and temporary buffer to

support efficient access for short-lived intermediate data, and 4) fused operation to

support accelerating frequently used instruction pairs.

Design, implementation, and evaluation of an energy efficient signal

processing architecture, Diet SODA This dissertation presents an energy ef-

ficient signal processing architecture, Diet SODA. The key design idea is to apply

near-threshold operation on a wide-SIMD architecture to achieve both high energy

efficiency and high throughput performance in a synergistic manner. A combination

of near-threshold circuit techniques and parallel SIMD computations offer several

new promising architectural design options: 1) very wide SIMD datapath to com-

pensate for degraded throughput performance induced by near-threshold operations,

2) scatter-gather data prefetcher to exploit the large latency gap between memory

operating at full voltage and the SIMD datapath operating at near-threshold voltage,

and 3) dual operating mode to support both less stringent realtime-constrained tasks

and high-throughput demanding tasks.

In-depth study of variations in near-threshold operations This dissertation

presents a systematic study of delay variations induced by near-threshold operations

at both circuit- and architecture-levels. The variation-induced timing errors in wide

SIMD architectures are shown to be fairly small; therefore three simple techniques—

1) structural duplication, 2) voltage margining and 3) frequency margining—are ex-
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plored to tolerate and mitigate the timing variability problems. Through a case study

based on Diet SODA in 90nm technology node, the variation-induced timing errors

in wide SIMD architectures can be handled by the structural duplication scheme by

increasing the number of SIMD functional units to replace underperforming ones and

exploiting XRAM crossbars to build a new error-free datapath. However, for lower

technology nodes, use of only structural duplication is not as efficient; rather a com-

bination of structural duplication and voltage margining leads to a solution with the

lowest power overhead.

1.4 Organization

The remainder of this dissertation is organized as follows. Chapter 2 introduces

two types of contemporary baseband processing architectures—SIMD-based and Re-

configurable for SDR and presents a SIMD-based architecture, SODA, in detail.

Chapter 3 and Chapter 4 present case studies of the implementation of LDPC decoders

and H.264 codecs on wide-SIMD architectures. Chapter 5 proposes an energy-efficient

signal processing architecture, Diet SODA, and presents the central themes and ideas

of the dissertation. Chapter 6 addresses increased process variation issues in Diet

SODA. Finally Chapter 7 concludes the dissertation, summarizing contributions and

suggesting future research directions.
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CHAPTER 2

Background

2.1 SDR solutions

There has been tremendous industrial interest in SDR from universities and many

leading semiconductor companies. The proposed SDR solutions can be categorized

into two types: SIMD-based architectures and reconfigurable architectures.

SIMD-based architectures usually consist of several high performance SIMD PEs

and a shared global memory; these components are connected through a shared bus

and managed by a general purpose control processor. Many SIMD-based architec-

tures support VLIW execution by allowing concurrent memory and SIMD arithmetic

operations. Reconfigurable architectures, on the other hand, usually consist of many

simple PEs that are connected through a interconnection fabric. These PEs range

from fine-grain LUTs to coarse-grain ALUs or even ASICs. Appendix A and B in-

troduces existing SIMD-based and reconfigurable architectures for SDR baseband

processing. In this chapter, we present a SIMD-based architecture, SODA, which
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serves as a baseline architecture throughout this dissertation.

2.1.1 SIMD-based Architectures

SIMD-based architectures usually consist of one or more high-performance SIMD

DSP processors that are connected through a shared bus and managed by a gen-

eral purpose control processor. These types of architectures usually use software-

managed scratchpad data memories to meet real-time constraints. Most SIMD-based

SDR processors support VLIW execution by allowing concurrent memory and SIMD

arithmetic operations. Some commercial solutions choose to incorporate accelerators

for error correction algorithms, including Viterbi and Turbo decoders.

2.1.1.1 University of Michigan, SODA

SODA (Signal Processing On Demand) is an academic research prototype for

mobile SDR [1]. It is a SIMD-based DSP architecture designed to meet both perfor-

mance and power requirements for two representative protocols, WCDMA and IEEE

802.11a.

The SODA multiprocessor architecture is shown in Fig. 2.1. It consists of mul-

tiple data processing elements (PEs), one control processor and a global scratchpad

memory, all of which are connected through a shared bus. Each SODA PE consists

of five major components: 1) a 32-way, 16-bit datapath SIMD pipeline for support-

ing vector operations. Each datapath includes one 16-bit ALU with multiplier and

a 2 read-port, 1 write-port 16 entry register file. Intra-processor data movements
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Figure 2.1: A SDR architecture: SODA [1]

are supported through a SIMD Shuffle Network (SSN); 2) a 16-bit datapath scalar

pipeline for sequential operations. The scalar pipeline executes in lock-step with

SIMD pipeline; SIMD-to-scalar and scalar-to-SIMD operations exchange data be-

tween two pipelines through the STV (Scalar-To-Vector) and VTS (Vector-To-Scalar)

registers; 3) two local scratchpad memories for the SIMD pipeline and the scalar

pipeline; 4) an AGU (Address-Generation-Unit) pipeline for providing the addresses

for local memory accesses; and 5) a programmable DMA (Direct-Memory-Access)

unit for transferring data between scratchpad memories and interface with the out-

side system (inter-processor data transfer). The SIMD pipeline, the scalar pipeline

11



and the AGU pipeline execute in VLIW-styled lock-step manner, controlled with one

program counter (PC) [1].

Arithmetic Data Precision. SODA PE only provides support for 8- and 16-bit

fixed-point operations because many DSP algorithms in both WCDMA and 802.11a

wireless protocols operate on 8- or 16-bit fixed point data. Each lane in the SIMD

pipeline and the scalar pipeline support 16-bit fixed-point arithmetic operations. The

AGU pipeline supports 8-bit addition and subtraction because 8 bits are sufficient for

software-managed data buffers.

Vector Permutation Operations. SODA’s SSN consists of a shuffle exchange

(SE) and an inverse shuffle exchange (ISE) networks to support any 32-wide vector

permutation. By including both the SE and ISE networks, the number of iterations

can be reduced to a maximum of 9 clock cycles and a straight-through connection

is also provided. Combining with predicated move operations, the SSN can support

any vector length permutation.

Performance. For W-CDMA and 802.11a, the SODA architecture achieves large

speed ups over a general purpose Alpha processor. For example, W-CDMA’s searcher

algorithm requires 26.5Gops on the general purpose processor; however the algorithm

requires only 200Mops on SODA. The performance improvements are mainly due to

SODA’s wide SIMD execution.

The RTL Verilog model of SODA was synthesized in TSMC 180nm technology.

The results show for a clock frequency of 400MHz, SODA consumes 2.95W for W-

CDMA 2Mbps system and 3.2W for 802.11a 24Mbps system. However, with technol-
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ogy scaling, the power numbers are expected to reduce to acceptable levels such as

450mW for 90nm technology and 250mW for 65nm technology.

2.1.1.2 ARM, Ardbeg

The Ardbeg system architecture consists of two PEs, an ARM general purpose

controller, and a turbo coprocessor, all of which are connected through a 64-bit AMBA

3 AXI interconnect bus. The overall architecture of the Ardbeg PE is very similar to

the SODA PE, with a 512-bit SIMD pipeline, a scalar pipeline, an AGU pipeline, and

local memory. In addition to SODA’s 16-fixed point operations, Ardbeg also supports

8-bit and 32-bit fixed operation as well as 16-bit block floating point operations. To

implement SIMD shuffle network, Ardbeg adopts a 7-stage single-cycle Banyon net-

work, which allows faster data alignment operations that are more important tasks

in upcoming wireless algorithms. Ardbeg PE uses one unified scratchpad memory

because DLP-dominant DSP algorithms make it more efficient to share the memory

space between the SIMD datapath and the scalar datapath. Turbo decoding, one of

the widely used error correction algorithms in wireless communications, is very com-

putationally intensive and hard to vectorize. Therefore, Ardbeg offloads the task to a

turbo coprocessor to increase performance and power-efficiency. Ardbeg is designed

using the OptimoDE framework [3], which allows the generation of custom VLIW-

style architecture and faster evaluation of the architecture. The instruction set for

Ardbeg is derived from the ARM NEON extensions [17].
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2.1.1.3 Icera, DXP

The Icera’s Deep eXecution Processor (DXP) [4] is a 2-LIW 4-way SIMD archi-

tecture. Its key features are deeply pipelined execution units and a programmable

configuration map which holds pseudo-static configurations and constants for the ex-

ecution units. In the SIMD execution datapath, SIMD ALUs are chained to exploit

the characteristics of streaming data. The chained operation saves register file access

power at the cost of less flexible SIMD datapath. Icera’s processors do not use any

hardware accelerators.

2.1.1.4 Linkoping University, SIMT

SIMT [5] architecture consists of Complex MAC (CMAC) SIMD units, Complex

ALU (CALU) SIMD units, memory banks, on-chip network, accelerators, and a con-

troller unit. The controller core efficiently manages the two SIMD units and the

matching memory bank system so that several threads can be run simultaneously.

The CMAC unit consists of four complex MAC lanes each of which uses 14x14 bit

complex multipliers and has eight 2x40 bit accumulator registers. The CALU unit

is similar to the CMAC unit except with simplified complex multiplier supporting

only 0,+/− 1,+/− i multiplications. To provide required memory bandwidth to the

SIMD units and accelerators, SIMT architecture uses a number of memory banks.

Each memory bank contains its own address generation unit to minimize memory

access conflicts. The programmable reconfigurable crossbar switch is used as the

on-chip network.
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2.1.1.5 Sandbridge Technology, Sandblaster

Sandblaster [6] is an example of a multi-threaded SIMD vector architecture. It

consists of a RISC-based integer execution unit and multiple SIMD vector units. In

addition, multiple copies of I-cache and data memory are available for each thread.

Each instruction has four fields: load/store, ALU, integer multiplier, and vector mul-

tiplier. Therefore, the architecture can issue up to four simultaneous instructions

where one may be a data parallel vector operation. This architecture also uses To-

ken Triggered Threading (T3) which consumes much less power than simultaneous

multithreading (SMT), because T3 issues instructions in round-robin fashion. The

Sandblaster architecture supports up to eight threads.

2.1.1.6 Analog Devices, TigerSHARC

The TigerSHARC [7] implementation, ADSP-TS001, adopts several mechanisms

that are found in general-purpose processors such as 1) a register-based load-store

architecture with a static super-scalar dispatch mechanism, 2) highly parallel short-

vector-oriented memory architecture, 3) support for multiple data types including

32-bit single-precision floating point and 8-bit/16-bit fixed point, 4) parallel arith-

metic instructions for two floating-point multiply-accumulate (MAC) operation or

eight 16-bit MACs, 5) 128-entry four-way set associative branch target buffer (BTB),

and 6) 128 architecturally visible, fully interlocked registers in four orthogonal register

files. TigerSHARC architecture provides concurrent SIMD arithmetic operations by

having two 4-lane SIMD computation blocks controlled with two instructions. This
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VLIW/superscalar architecture fetches four instructions and issues one to four in-

structions per clock cycle. The 128 32-bit registers are memory mapped and divided

into four separate register files of size 32x32 bit. The multiple data type supports

subword parallelism in addition to inherent SIMD data parallelism.

2.1.1.7 NXP, EVP

The Embedded Vector Processor, EVP [8], consists of 16-wide 16-bit SIMD data-

path, one scalar datapath, programmable memory, and VLIW controller. The SIMD

datapath comprises of vector memory, 16 vector registers, load/store unit, ALU,

MAC/shift unit, intravector unit, and code generation unit. The 16-bit datapath sup-

ports 8-bit and 32-bit data to allow word-level parallelism. The EVP also supports

multiple data types such as complex numbers. This architecture allows maximum par-

allelism using VLIW execution: five vector operations, four scalar operations, three

address operations and one loop control can be executed at once. In the SIMD datap-

ath, the shuffle unit rearrange the elements of a single vector according to any pattern;

intravector unit supports summation, maximum, and split operations, and the code

generation unit supports various CDMA-code generations for different systems and

Cyclic Redundancy Checks (CRC) as well.

2.1.1.8 Infineon Technologies, MuSIC-1

Infineon baseband processor, MuSIC-1[9], consists of four SIMD core clusters, a

general-purpose processor, shared memory, and dedicated programmable processors

for FIR filter and Turbo/Viterbi decoder. Each SIMD core contains four processing
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elements (PEs) and supports special instructions and LIW features for arithmetic

operations, local memory accesses, and inter-PE communications in parallel. The

general-purpose processor runs control programs to provide the PE controller with

instruction addresses. The code and data are stored in an external memory; therefore,

all of the baseband processor’s components are shared through on-chip memory, which

consists of multiple banks to support simultaneous accesses.

2.1.2 Reconfigurable Architectures

Reconfigurable architectures usually consist of many small PEs which are con-

nected through a interconnection fabric. These architectures can be categorized as

either homogeneous or heterogeneous based on the type of PE. In addition, these PEs

range from fine-grain LUTs to coarse-grain ALU units and even ASICs.

2.1.2.1 IMEC, ADRES

ADRES [10], Architecture for Dynamically Reconfigurable Embedded System, is

an example of a coarse-grain reconfigurable tile architecture that tightly couples a

VLIW processor and a coarse-grain reconfigurable matrix. This tightly coupled sys-

tem has advantages such as shared resources, reduced communication costs, improved

performance, and simplified programming model. The VLIW processor and the re-

configurable matrix share Functional Units (FUs) and Register Files (RFs). For the

reconfigurable matrix part, there are many reconfigurable cells (RCs) which comprise

FUs, RFs, and configuration RAM. These RCs are connected to nearest neighbor RCs
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and RCs within the same row or column in the tile. Therefore, kernels with a high

level of DLP are assigned to the ADRES tiles whereas sequential codes are run on

the VLIW processor. In ADRES architecture, the data communication is performed

through the shared RF and memory; this approach is more compiler-friendly than

the message-passing method. In addition, ADRES relies on modulo scheduling and

traditional VLIW compiler support to exploit both DLP and ILP to maximize PE

utilization.

2.1.2.2 Delft, Montium

Montium [11] is a coarse-grained reconfigurable processor targeting 16-bit algo-

rithms. Montium consists of two parts: 1) Communication and Configuration Unit

(CCU) and 2) Montium Tile Processor (TP). The CCU configures the Montium TP

and parts of the CCU itself for either block-based communication mode or stream-

ing communication mode based on a particular algorithm. The TP consists of five

Montium ALUs and ten local memories that are vertically segmented into a five pro-

cessing part array (PPA). A relatively simple sequencer controls the entire PPA and

selects configurable PPA instructions that are stored in the decoders. Montium ALU

consists of four functional units in level 1 followed by multiplier and adder in level 2.

Neighboring ALUs can also communicate directly on level 2 in the tile processor. In

the Montium implementation, each local SRAM is 16-bit wide and accompanies each

address generation unit (AGU), and the memory can be used for both integer and

fixed point lookup tables.
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2.1.2.3 QuickSilver Technology, Adapt2400 ACM

Adapt2400 ACM (Adaptive Computing Machine) [12] consists of the two basic

components: Nodes and Matrix Interconnection Network (MIN). Nodes are the com-

puting resources in the ACM architecture that perform actual work. Each node

consists of its own controller, memory, and computational resources so that it inde-

pendently executes algorithms that are downloaded in the form of SilverWare binary

files. A node is capable of implementing a first come, first served, non preemptive

multitasking system with the support of hardware task manager. The MIN ties

the heterogeneous nodes together carrying data, SilverWare, and control information

between nodes as well as outside the system. This network is hierarchically struc-

tured, and data within the MIN is transported in single 32-bit word packets to any

other node or external interface. This heterogeneous coarse-grain reconfigurable ar-

chitecture cooperates with InSpire SDK Tool Set to provide an integrated scalable

hardware/software platform.

2.1.2.4 XiSystem, XiRisc

XiRisc [13] is an example of a fine-grain reconfigurable architecture. This VLIW

RISC processor features two concurrent execution datapaths and a set of DSP-like

functional units that are shared between two datapaths. The concurrent execution

path represented by a Pipelined Configurable Gate Array (PiCoGA) provides a run-

time extension of the processor ISA for application-specific functions. The PiCoGA is

a programmable pipelined datapath composed of an array of rows that can function
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as customized pipeline stages. Each row is composed of 16 Reconfigurable Logic Cells

(RLCs) containing two 4-input 2-output LUTs, four registers, and dedicated logic for

a fast carry chain. Each RLC is connected to the others through a programmable

interconnection matrix with 2-bit granularity switches. XiRisc exploits the synergy of

the different execution units, ranging from a 32-bit dedicated MAC unit to bit-level

processing blocks on PiGoGA., which increases execution efficiency and saves energy.

2.2 Near-threshold computing

Near-threshold computation has been attractive in low-power architecture re-

search due to its characteristics of balancing energy savings and performance loss.

Near-threshold operation, as described by Zhai et al. [54], defines three regions of

operation, pictured in Figure 2.2. In the superthreshold regime (Vdd >Vth), en-

ergy is highly sensitive to Vdd due to the quadratic scaling of switching energy with

Vdd. Hence, voltage scaling down to the near-threshold regime (Vdd ∼ Vth) yields

an 10x energy reduction at the expense of approximately 10x performance degrada-

tion. However, the dependence of energy on Vdd becomes more complex as voltage

is scaled below Vth. In subthreshold regime (Vdd <Vth), circuit delay increases expo-

nentially with Vdd, causing leakage energy (the product of leakage current, Vdd, and

delay) to increase in a near-exponential fashion. This rise in leakage energy eventually

dominates any reduction in switching energy, creating an energy minimum.

The identification of an energy minimum led to interest in processors that operate

at this energy optimal supply voltage [58]. However, the energy minimum is relatively
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Figure 2.2: Supply voltage operating regions and the energy and delay associated
at each point. The near-threshold region provides considerable energy
savings for non-timing critical low power applications such as DSCs.

shallow. Energy typically reduces by only ∼2x when Vdd is scaled from the near-

threshold regime to the subthreshold regime, though delay rises by 50-100x over the

same region. While acceptable in ultra-low energy sensor-based systems, this delay

penalty is not tolerable for a broader set of applications.

The identification of an energy minimum led to interest in processors that operate

at this energy optimal supply voltage [58]. However, the energy minimum is relatively

shallow. Energy typically reduces by only ∼2x when Vdd is scaled from the near-

threshold regime to the subthreshold regime, though delay rises by 50-100x over the

same region. While acceptable in ultra-low energy sensor-based systems, this delay

penalty is not tolerable for a broader set of applications.
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The near-threshold region offers an opportunity for many applications to reduce

energy further. In order to do so, the design must overcome one hurdle, the 10x

increase in delay. This delay impacts the ability of designs to meet more stringent

real time constraints without scaling the voltage higher and losing energy efficiency.

However, in cases where the application can be parallelized, simply using more near-

threshold processing elements can meet the timing constraint with greater efficiency.

Near-threshold operation, therefore, has a natural synergy with data parallel envi-

ronments like SIMD. In a SIMD architecture, the number of functional units can be

increased to help meet a timing critical code, provided the application has sufficient

DLP.

However, Near-threshold designs are impacted greater by process variations than

traditional designs, because the on-current (Ion) in the near-threshold voltage region

is highly sensitive to variations in Vth. Increased process variations in advanced tech-

nology nodes further exacerbates the problem, providing many challenges for process

engineers and circuit designers [62]. These variation-induced timing errors are much

more critical in wide SIMD architectures for two reasons. First, the probability that

all SIMD datapaths are error-free decreases when variations are severe, because the

number of critical paths are multiplied by the SIMD width. Recent work also shows

that there is a significant performance drop in SIMD architectures as single-stage-error

probabilities increase [63]. Second, commonly used error-tolerating methods such as

pipeline stalling or re-execution result in greater performance and power penalties due

to problems in one lane impacting all other lanes. To tolerate variation-induced timing
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errors in near-threshold operations, complex architectural enhancements have been

considered. For example, Synctium [63] proposed decoupled parallel SIMD pipelines

and pipeline weaving using decoupling queues and micro-barriers.

The details about how near-threshold computing affects wide SIMD architectures

and how the increased delay variation affects the architectures will be discussed in

Chapter 5 and Chapter 6 respectively.
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CHAPTER 3

Design and Analysis of LDPC Decoders for

Software Defined Radio

Wireless communication has grown at a spectacular rate. As the number of users

and the demand for high quality contents increase, the current bandwidth that 3G

wireless technology provides becomes insufficient. To address these issues, Interna-

tional Telecommunications Union (ITU) proposes 4G wireless technology that in-

creases the bandwidth to maximum data rates of 100Mbps for high mobility and

1Gbps for stationary/low mobility. This increase in bandwidth requires significant

computations to process 4G wireless standard.

Low Density Parity Check (LDPC) codes are one of the most promising error cor-

rection codes that are being adopted by many 4G wireless standards. This chapter

presents a case study for a scalable LDPC decoder supporting multiple code rates and

multiple block sizes on a software defined radio (SDR) platform. Since technology

scaling alone is not sufficient for current SDR architectures to meet the requirements
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of the next generation wireless standards, this chapter presents three techniques to

improve the throughput performance. The techniques are use of data path acceler-

ators, addition of a few assembly instructions and addition of a memory interface.

The proposed LDPC decoder implementation on an SDR platform achieves 30.01

Mbps decoding throughput for n=2304 and R=5/6 LDPC code outlined in the IEEE

802.16e standard.

3.1 Introduction

Low density parity check (LPDC) codes have excellent error correction perfor-

mance that approaches the Shannon capacity limit [20], [21]. As a result, they have

been adopted in many current and next generation wireless protocols such as DVB-

S2 and the IEEE 802.16e standard (WiMAX). Decoders used for LDPC codes have

high throughput requirements and have been successfully implemented using ASICs

and FPGAs [22]. However, the emergence of a wide variety of wireless protocols

that are rapidly changing makes custom hardware for these decoders relatively time

consuming and expensive to develop.

This chapter presents a case study for a LDPC decoder implementation that sup-

ports multiple code rates and multiple block sizes on a SDR platform, SODA. When

the LDPC matrix is represented by structured submatrices, the data-level parallelism

can be efficiently handled by the SIMD pipeline. However the current SODA archi-

tecture is unable to meet the high decoding throughput and the scalability require-

ments (multiple block sizes and multiple code rates) of the IEEE 802.16e standard.
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Figure 3.1: LDPC matrix H and the corresponding bipartite graph

In this chapter we present use of data path accelerators, addition of memory units

and addition of a few assembly instructions to address the throughput and scalabil-

ity requirements. The proposed LDPC decoder implementation achieves 30.4 Mbps

decoding throughput for the n=2304 and R=5/6 LDPC code outlined in the IEEE

802.16e standard.

The rest of the chapter is organized as follows. Section 3.2 gives a brief overview of

LDPC codes. Section 3.3 introduces the mapping of the LDPC decoder onto SODA.

Section 3.4 describes LDPC accelerators, memory controller/buffer organization and

assembly support required for the high throughput scalable LDPC decoder imple-

mentation. Section 3.5 presents memory and throughput analysis of the augmented

architecture. Section 3.6 concludes the chapter.
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3.2 LDPC Basics

3.2.1 Introduction

A LDPC code is a class of linear block codes whose codewords satisfy a set of linear

parity-check constraints [20]. These constraints are typically defined by an m-by-n

parity-check matrix H, whose m rows specify each of the m constraints (the number of

parity checks), and n represents the length of a codeword. H is also characterized by

Wr and Wc, which represent the number of 1’s in the rows and columns, respectively.

A LDPC code can be represented by a bipartite graph, which consists of two types

of nodes, Variable Nodes (VN) and Check Nodes (CN). Check node i is connected to

variable node j whenever hij of H is non-zero. Fig. 3.1 describes the matrix H and

the corresponding bipartite graph of a simple LDPC code.

3.2.2 LDPC Decoding Process

LDPC codes are decoded iteratively using a message passing algorithm [20]. This

algorithm involves exchanging the belief information among the variable nodes and

check nodes that are connected by edges in the bipartite graph. Let In be the intrinsic

information from the received signal, Ln be the reliable information for variable node

n, Ln,m be the information conveyed from variable node n to check node m, and En,m

be the extrinsic information generated in check node m that is passed to variable

node n. The belief information is updated in an iterative manner and implemented

in two phases. In the first phase, the variable nodes send their belief information,
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Ln,m, to check nodes connected to them; in the second phase, the check nodes send

the updated belief information (new En,m) to the variable nodes connected to them

for updating Ln (See Fig. 3.1). The iteration steps are summarized in Algorithm 1.

Algorithm 1: Min-sum LDPC Decoding Algorithm

1. Initialization: En,m = 0, Ln = In

2. VN to CN: Ln,m = Ln - En,m

3. Update En,m: Enew
n,m = f(Ln′,m|n′ ∈ S ⊂ N(m))

4. Update Ln: Lnewn = Ln,m + Enew
n,m

5. Repeat the steps 2,3,4 for NUM iteration times

6. Make a decision of bit n based on the corresponding Ln value

Here, N(m) is the set of variable nodes which are connected with check node m

in the bipartite graph. Similarly, M(n) is the set of check nodes which are connected

with variable node n. The decoding algorithms differ in how the function f in Step

3 of Algorithm 1 is evaluated.

There are three options for the LDPC iterative decoding algorithm: Belief Propa-

gation (BP), λ-min and min-sum algorithms [23]. Although BP and λ-min algorithms

show better error correction performance compared to min-sum algorithm, these al-

gorithms require a look-up table for hyperbolic function values, which requires addi-

tional memory space. The min-sum algorithm is selected here because of the limited
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memory size and easy computation patterns. The min-sum algorithm f is shown as

follows. Here, n′ ∈ N(m), n′ 6= n.

Enew
n,m = - (

∏
n′ sign(Ln,m))×minn′ |Ln,m|

As can be seen, the operations in the min-sum LDPC decoding algorithm are

limited to addition, subtraction and finding a minimum value, all of which can be

supported by our SDR architecture described in Section 3.3.

Theoretically, the LDPC decoding process finishes when all parity-check equations

are satisfied. In reality, a predefined number of iterations (NUM) based on SNR is

generally used.

3.2.3 LDPC Matrix Partition

Figure 3.2: Partitioning of H into z-by-z cyclic identity matrices

A LDPC matrix H has randomly distributed 1’s which results in complex data

routing and is a major challenge for building a high-performance and low-power LDPC

decoder. [22] and [24] show that introduction of some structural regularity in the
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matrix does not degrade its error correction performance. Moreover the regularity

enables partially parallel implementation of LDPC decoders and has been utilized in

the IEEE 802.16e standard. Fig. 3.2 shows the partitioning of H into z-by-z cyclic

identity submatrices. Here, Ix represents a cyclic identity matrix with rows shifted

cyclically to the right by x positions. This characteristic reduces the routing overhead

and has been exploited efficiently in our architecture. Fig. 3.2 also shows how the

n
z

of the identity matrices along a row can be grouped to form a block row. So, in

essence, the H matrix can also be partitioned into m
z

block rows each of size z-by-n.

3.3 LDPC on SODA

The min-sum LDPC decoding algorithm (Algorithm 1) is mapped onto SODA

(See Figure 2.1) in the following way. Step 2 of Algorithm 1 is applied to non-zero

z-by-z submatrices. However, because Step 3 uses the Ln,m values related with check

node m, the SIMD pipeline loads z values of type Ln and aligns the data in check node

order by using SSN before executing Step 2. The shuffled Ln,m values for all non-zero

z-by-z submatrices in one z-by-n block row are calculated in the SIMD datapath.

After that, the SIMD-to-Scalar unit is used for finding the minimum Enew
n,m among Wr

of Ln,m values for the same check node m. Next, Enew
n,m and the corresponding sign

indicator are used to update a Ln value (Step 4). This procedure implies that some

SIMD slices execute additions and others execute subtractions based on sign values

– a feature that is supported by predicated instructions in SODA. After updating

the Ln values, the data is inversely shuffled and stored in variable node order. This
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process is repeated for every z-by-n block row in every iteration.

3.4 Scalable LDPC Implementation

In this section, we study a scalable LDPC decoder implementation for block size

n, code rate R=k/n, and (Wc, Wr)-LDPC code as specified by the IEEE 802.16e

standard on a SODA PE. We describe the enhancements that had to be made in terms

of accelerators, memory units, and new assembly instructions to support multiple

code rates and multiple block sizes. Fig. 3.3 shows the modified SIMD pipeline – the

additional units have been shown using shaded blocks.

Figure 3.3: Modified SIMD pipeline in a SODA PE

3.4.1 LDPC Accelerator

In order to meet the high decoding throughput requirements, we introduce a LDPC

accelerator in every SIMD slice as shown in the Fig. 3.3. There are only two possible

Enew
n,m values for check node m in Step 3 of Algorithm 1 (which are selected from Wr
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values of type Ln,m): the minimum Em1 and the second minimum Em2. Each LDPC

accelerator expedites finding the minimum values using two compare/store units with

two Wr-bit special registers, a selection register Pm and a sign register Sm, as can be

seen in Fig. 3.4. The operation of the LDPC accelerator is summarized below.

The Algorithm of LDPC Accelerator

if (Ln,m <= Em1) \\ operations in Cmp&Store 1

{

Em1 <= Ln,m; Em2 <= Em1;

if (Ln,m < Em1) Pm = 1 << i; else Pm = 0;

}

else if (Ln,m < Em2) \\ operations in Cmp&Store 2

{

Em2 <= Ln,m;

}

Sm = (Sm | sign(Ln,m)) << 1;

Em1, Em2, Pm and Sm are extracted using a flush signal and these values are used

to compute Em,n using the following operation (Step 7 and 14 of Algorithm 2).

if (Pm[i] == 1) Em,n[i] = (Sm[i]) Em1, else Em,n[i] = (Sm[i]) Em2

3.4.2 Memory Units

A major challenge in decoding LDPC codes is the large number of data alignment

operations required for every z-by-z permutation matrix. z values of type Ln need to
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Figure 3.4: LDPC accelerator

be shuffled so that they can be correctly aligned for check node processing. If z is less

than the SIMD width (Wsimd), the data alignment can be executed in one clock cycle

using SSN. However, the IEEE 802.16e standard uses different z values (24, 28, 32,

..., 96) for different block sizes [25]. If z is larger than Wsimd, many clock cycles are

required for data alignment operation when SSN is used. This causes a degradation

in the LDPC decoding throughput performance.

To solve the alignment issue, we propose a memory controller and buffer organi-

zation (instead of using the shuffle network) as shown in Fig. 3.3. BUF1 and BUF2

contain aligned Ln and Lupdaten (to be described in Section. 3.4.3) respectively; BUF3

contains Em1 and Em2; and BUF4 contains Pm and Sm.

The memory controller handles movement of Ln data between the SIMD memory

and BUF1. Since the z-by-z permutation matrices in the LDPC codes used in the

IEEE 802.16e standard are circular right-shifted identity matrices, each permutation

matrix can be defined by a single right-shifted amount s. The alignment operation

can now be achieved by two memory copy operations described below. If the shifted
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Figure 3.5: Data alignment in buffers

amount is s and the start memory address is mstart, the memory controller first

copies MEM[mstart + s ... mstart + z − 1] to BUF1, and then copies MEM[mstart

... mstart + s− 1] to BUF1. This is shown in Fig. 3.5 for an example where s=5,

mstart=0. This is done for all non-zero Wr submatrices in a z-by-n block row. At the

end of this process, BUF1 contains Wr groups of aligned Ln data (see Fig. 3.5). In

a similar way, the memory controller fills BUF2 for Lupdaten data with another shift

amount ((s− supdate) mod Wsimd) (to be described in Section. 3.4.3). Note that the

width of BUF1 and BUF2 is Wsimd.

3.4.3 Modified Decoding Algorithm

Algorithm 2 shows the LDPC decoding algorithm on the modified SODA archi-

tecture. The Ln and Lupdaten values are aligned and stored in BUF1 and BUF2 (Steps

1 and 2 of Algorithm 2). The aligned values of Ln and Lupdaten (Step 5) along with
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Em1, Em2 (Step 4), Pm and Sm (Step 6) of the first row of the first group (see for

example Group 1 in Fig. 3.5) are fed to the ALU unit and LDPC accelerator in each

SIMD slice. These values are updated in Steps 7, 8, 9 of Algorithm 2. The process

is repeated for the first row of the next group (see for example Group 2 in Fig.6),

and so on. After completing processing of all the first rows of all the Wr groups

(Step 10), the updated values of Em1, Em2, Pm and Sm are stored in their respective

buffers (Steps 11, 12). The updated values are used to compute Enew
m,n and Lupdaten

(Step 15, 16) of the first row of each Wr group (Step 17). The process is repeated for

the second row of each Wr group, and so on (Step 18). The above schedule results in

high decoding throughput performance; it reduces the number of data switches and

also speeds up the operation of finding the minimum values in the min-sum decoding

algorithm. After processing all the data for one z-by-n block row, the data for the

next z-by-n block row is loaded into BUF1 and BUF2, and the process repeats the

number of z-by-n block rows(=n(1−R)
z

) times.

Algorithm 2: LDPC decoding algorithm in the modified SODA PE

1. load aligned Ln to BUF1

2. load aligned Lupdaten to BUF2

3. load Wr for the current z-by-n block row

4. load Em1, Em2 from BUF3

5. load Ln, Lupdaten from BUF1, BUF2

6. load Pm, Sm from BUF4
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7. compute Ecurrm,n using Em1, Em2, Pm, and Sm.

8. update Ln,m = Ln + Lupdaten - Ecurrm,n

9. update Em1, Em2, Pm, and Sm using Ln,m

10. repeat step 5 to step 9 Wr times

11. store updated Em1, Em2 (Enewm1 ,Enewm2 ) in BUF3

12. store updated Pm, Sm (Pnewm , Snewm ) in BUF4

13. load Lupdaten from BUF2 again

14. compute Enewm,n using Enewm1 , Enewm2 , Pnewm , and Snewm

15. update Lupdaten += Enewm,n

16. store updated Lupdaten in MEM

17. repeat step 12 to step 16 Wr times

18. repeat step 4 to step 17 d z
Wsimd

e times

19. repeat step 1 to step 18 n(1−R)
z times.

20. repeat step 1 to step 19 NUM times.

In order to reduce the memory for storing Ln,m, we introduce the parameter

Lupdaten , which is (-En,m + Enew
n,m ). In fact, the memory space is reduced by a factor

of m by keeping one Lupdaten value for each check node n instead of storing all Ln,m

values for every n and m combination.
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Since updated Lupdaten values are processed in check node order, inverse alignment

operation is required to store the data in variable node order in memory. After Lupdaten

is stored back in memory, for the next z-by-n block row computation, the data is

realigned with a different shift amount. However, these two alignment operations can

be reduced to one alignment operation using another shift amount supdate; instead of

inverse alignment operation, Lupdaten is stored with the current shifted amount supdate

and then, in the next iteration, the memory controller use ((s− supdate) mod Wsimd)

as a shift amount to align Lupdaten .

3.4.4 Assembly Support

New assembly instructions are required for the proposed architecture to improve

the decoding throughput performance. Steps 1 and 2 of Algorithm 2 are inde-

pendent and can be executed in parallel. These are combined to form instruction

ldpc mem2buf . Similarly steps 5 and 6 of Algorithm 2 can be executed in paral-

lel and combined to form instruction ldbufs. Steps 8 and 9 of Algorithm 2 can be

executed in a pipelined manner through the ALU unit and the LDPC accelerator

unit. We combine these two instructions and introduce a macro-operation instruc-

tion, ldpc in. To implement steps 11 and 12 of Algorithm 2, the new instruction,

ldpc out.(vp), is introduced to flush Em1, Em2, Pm, and Sm from LDPC accelerators

and store them in BUF3 and BUF4. The additional new assembly instructions are

listed below.

The New Assembly Instructions
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1. ldpc mem2buf Addr[Mem],Addr[BUF1],Addr[BUF2],S1,S2

: send a control signal to the memory controller

: the controller loads Ln,Lupdaten from a memory and aligns the data with shift amounts

(S1, S2) in BUF1 and BUF2

2. ldbuf3 V3,V4,Addr[BUF3]

: load V3=Em1, V4=Em2 from BUF3

3. ldbufs V1,V2,P1,P2,Addr[BUF1],Addr[BUF2],Addr[BUF4]

: load V1=Ln, V2=Lupdaten , P1=Pm, P2=Sm from BUF1, BUF2, BUF4

4. ldpc in V1,V6

: 1) calculate Ln,m with V1=Ln and V6=Lupdaten − Ecurrm,n

: 2) update Em1,Em2,Pm,Sm in LDPC accelerators with Ln,m.

5. ldpc out.v V7,V8,Addr[BUF3]

: extract V7=Em1, V8=Em2 from LDPC accelerators and store them in BUF3

6. ldpc out.p P3,P4,Addr[BUF4]

: extract P3=Pm, P4=Sm from LDPC accelerators and store them in BUF4

The overhead of adding these new instructions is the increased instruction bit

width and the instruction decoder complexity.

3.4.5 Scalability Issues

The proposed architecture supports different values of z and Wr corresponding

to the different code sizes and code rates mandated by the IEEE 802.16e standard.
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The memory configuration described in Section 4.2 handles the more difficult case of

when z > Wsimd. Larger z results in more computations and so a larger Wsimd would

help in achieving higher decoding throughput. The penalty is the larger area, both

is terms of datapath and memory, and larger power. The parameter Wr affects the

decoding throughput (number of iterations in Algorithm 2). Since it also affects the

buffer size and Pm, Sm registers in the LDPC accelerators, the architecture has to be

designed for the largest value of Wr.

3.5 Analysis

In this section, we study the required memory and buffer size, and also analyze the

improvement in the decoding throughput due to the memory organization, datapath

accelerators and assembly instruction support.

3.5.1 Memory Size Analysis

LDPC decoding process consists of computationally simple operations and multi-

ple memory operations. As a result, if the memory is not organized properly, then it

is highly likely that the SIMD pipeline would have to wait for the data to arrive. In

a typical implementation, there are four main values that are to be stored: Ln, Ln,m,

En,m, and shuffle information. For n=2304 and R=5/6 LDPC codes outlined in the

IEEE 802.16e standard, a brute-force decoding method needs 3.456GB for storing

the Ln,m and En,m values. Even if we consider only non-zero elements, the storage

still requires 30KB (15KB+15KB), which is a still large memory space for an SDR
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platform. Therefore, a new scheme to reduce memory space should be considered.

There is no way to reduce the storage of Ln because the data is used to decide the

final decoded bit value. However, the storage for Ln,m and En,m can be significantly

reduced.

To reduce En,m storage size, we exploited the fact that there are only two possible

Enew
n,m values for check node m: Em1 and Em2. This two-minimum method reduces

the required memory space by a factor of Wr/2. For the case mentioned above, the

storage requirement for En,m values is reduced to 1.5KB. Also, instead of storing all

Ln,m values, we store Lupdaten values, thereby reducing the storage by a factor of m(=4)

to 3.75KB.

Storage Size(B) Ex.(KB)
MEM: Ln, L

update
n 4n 9

BUF1: Ln 2WsimdWrd z
Wsimd

e 3.75

BUF2: Lupdaten 2WsimdWrd z
Wsimd

e 3.75

BUF3: Em1, Em2 4Wsimdd z
Wsimd

en(1−R)
z

1.5

BUF4: Pm, Sm 2Wrd z
Wsimd

en(1−R)
z

0.94

Table 3.1: Memory/Buffer requirements for n=2304 and R=5/6 LDPC code in the
IEEE 802.16e standard

Table 3.1 summarizes the memory and buffer requirements for a block size n, code

rate R=k/n, and (Wc,Wr)-LDPC code. We list the memory requirements for n=2304

and R=5/6 LDPC code (the IEEE 802.16e standard) when Wsimd = 32, Wr = 20,

and z = 96 under the column ’Ex.’ in the table.
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3.5.2 Throughput Analysis

The data path accelerators, the memory units, and the new instructions all help

in increasing the decoding throughput. For the n=2304 and R=5/6 LDPC code in

the IEEE 802.16e standard and for NUM=10, the achievable clock cycle reductions

for each of the enhancements are shown in Table 3.2. Here 40000 is the number of

cycles in the original SODA implementation.

Reduction in Cycles Reduction Percentage
LDPC Accelerators 5760(40000) 14.4 %
Memory Units 6912(40000) 17.3 %
New Instructions 4608(40000) 11.5 %

Table 3.2: Cycle reductions due to enhancements

The proposed SODA PE is implemented in 0.18um technology and is clocked at

400MHz. The LDPC decoding throughput for n=2304 and R=5/6 LDPC code can

be boosted from 18.3 Mbps to 30.4 Mbps using the proposed enhancements. With

technology scaling, the decoding throughput is expected to increase to around 62.2

Mbps in 90nm technology.

The area and power overhead in the datapath and memory is quite small. For in-

stance the area of the memory controller and LDPC accelerators is negligible (5.37%)

compared to the original design. However the complexity of adding CISC-type in-

structions requires careful evaluation.
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3.6 Summary

In this chapter, we presented a software-hardware co-design case study of LDPC

decoder for SDR. We first provided an overview of LDPC codes and then showed

how LDPC decoding can be done by the SDR architecture. Next we showed how use

of datapath accelerators, memory buffers and additional instructions can be used to

improve the decoding throughput performance. We implemented a scalable LDPC

decoder for the IEEE 802.16e standard. Our results show that we can achieve 30.4

Mbps decoding throughput for n=2304 and R=5/6 LDPC code.
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CHAPTER 4

Customizing Wide-SIMD Architectures for H.264

In recent years, the mobile phone industry has become one of the most dynamic

technology sectors. Mobile computing systems are not limited only to wireless signal

processing. The increasing demands of multimedia services such as high-definition

video, audio, and 3-D graphics on the cellular networks have accelerated this trend.

This chapter presents a low power SIMD architecture that has been tailored for

efficient implementation of H.264 encoder/decoder kernel algorithms. Several cus-

tomized features have been added to improve the processing performance and lower

the power consumption. These include support for different SIMD widths to increase

the SIMD utilization efficiency, diagonal memory organization to support both col-

umn and row access, temporary buffer and bypass support to reduce the register file

power consumption, fused operation support to increase the processing performance,

and a fast programmable crossbar to support complex data permutation patterns.

The proposed architecture increases the throughput of H.264 encoder/decoder kernel

algorithms by a factor of 2.13 while achieving 29% of energy-delay improvement on
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average compared to our previous SIMD architecture, SODA.

4.1 Introduction

In the past decade, mobile devices have rapidly proliferated. Today’s devices not

only support advanced signal processing of wireless communication data, but also

multimedia services such as video encoding/decoding, interactive video conferencing

and image manipulation. All of this requires a powerful processor which has to be

very power-efficient.

H.264 is a state-of-the art video compression standard of ITU-T Video Coding

Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG).

This standard provides higher quality video with lower bit rates than earlier standards

and has been adopted in many of current and next generation video applications. For

instance, both the Bluray Disc and HD-DVD format ratified H.264 as one of three

mandatory video compression codecs for High Definition DVD, and the Digital Video

Broadcast (DVB) also selected the use of H.264 for broadcast television.

In this chapter, we present a programmable wide SIMD architecture that has

been optimized for H.264. The wide-SIMD architecture like SODA [1] is customized

to exploit the characteristics of the H.264 kernel algorithms with following features:

1) support of multiple SIMD widths to increase the SIMD utilization efficiency, 2)

diagonal memory organization to avoid memory access conflict, 3) bypass and buffer

support to reduce the register file (RF) power consumption, 4) fused operation sup-

port to speed up the processing, and 5) a fast programmable crossbar to support
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complex data shuffle operations. The proposed architecture is similar to AnySP [18],

but customized more for video codecs.

The rest of the chapter is organized as follows. Section 4.2 gives a brief overview of

H.264 encoder/decoder. Section 4.3 introduces the new architectural features incurred

by H.264 algorithms and Section 4.4 describes the modified processing element (PE)

architecture in SODA architecture. Section 4.5 shows how H.264 kernel algorithms

are mapped on the modified SIMD architecture. Section 4.6 presents the throughput

and power analysis of the augmented architecture. Section 4.7 introduces the related

work and Section 4.8 concludes the chapter.

4.2 H.264 CODEC

Video compression is being actively considered for mobile communication systems

because of the increasing demand of multimedia services on mobile devices. In this

chapter, we focus on H.264 because it is representative of contemporary video coding

standards and achieves better performance than earlier standards such as MPEG-1,

MPEG-2, MPEG-4, and H.263.

Fig. 4.1 shows the block diagram of H.264 encoder and decoder. The encoder

includes two dataflow paths: a forward path (left to right) and a reconstruction path

(right to left) [26]. The dataflow of the decoder contains the reconstruction path

(shown in shaded blocks).

The H.264 encoder processes an input frame or field Fn in macroblock units.

Each macroblock is encoded using inter-prediction or intra-prediction. In the inter-
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Figure 4.1: H.264 encoder/decoder reference design. ME: Motion Estimation, MC:
Motion Compensation, T: Transformation, Q: Quantization, NAL: Net-
work Abstract Layer. Grey area represents functional blocks of the
H.264 decoder, which is the subset of the H.264 encoder [26].

prediction mode, the predicted P macroblock is formed by motion-compensated pre-

diction from previously encoded frames, and in the intra-prediction mode, P is pre-

dicted by the current frame. The P macroblock is subtracted from the current mac-

roblock to produce a residual block Dn that is transformed, quantized, reordered,

and entropy encoded. The entropy-encoded coefficients with header information that

includes prediction modes, quantizer parameter, motion vector information, etc. form

the network abstract layer (NAL) bitstream.

The H.264 decoder receives the compressed bitstream from the NAL. The entropy

decoder decodes the bitstream, and after reordering it, the quantized coefficients

are scaled and inverse transformed to generate residual block data Dn. Using the

header information in NAL, the decoder selects prediction values using either motion

compensation or intra-prediction. The predicted block is added to the residual block

to generate unfiltered block data uFn which is filtered by a deblocking filter and

stored as reconstructed frame or field.
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The computational requirements of H.264 video codec depends on video resolution,

frame rate, and compression level. For mobile phone applications, the videos are

encoded in the QCIF format (176 x 144) at 15 frames per second (fps). On the

other hand, Bluray videos are encoded in 1080p (1920 x 1080) at 60 fps interlaced.

The H.264 standard also defines several profiles, which use different compression

algorithms. In this chapter, we focus on the baseline profile. We study the following

algorithms: intra-prediction, deblocking filter, motion compensation - interpolation,

and motion estimation because these algorithms contribute the most to the processing

time and power consumption.

4.3 H.264 Algorithm Analysis and Design Deci-

sions

In this section, we analyze key algorithms in H.264 and propose several architec-

tural design decisions to improve the processing performance and power efficiency.

This analysis led to the introduction of the following customizing features: 1) multi-

ple SIMD widths 2) diagonal memory organization, 3) bypass and temporary buffer

support (partitioned RF), 4) fused operation, and 5) programmable crossbar.

4.3.1 Multiple SIMD Widths

Table 4.1 shows the workload profiling for the key H.264 kernel algorithms. The

other important computational kernels such as transform, quantization, and entropy
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Algorithm Kernel SIMD SIMD TLP
Operation Workload Width Level

Intra-pred (dec.) 13-tap filter 75.48 % 16 Med.
Intra-pred (enc.) 13-tap filter 91.06 % 16 High
Deblocking Filter 3,4,5-tap filter 86.61 % 8 Med.
Interpolation (MC) 2,4,6-tap filter 81.59 % 8 High
Motion Estimation SAD (16) 62.46 % 16 High

Table 4.1: Kernel operations, SIMD workload, required SIMD width, and the
amount of thread level parallelism (TLP) for H.264 encoder/decoder al-
gorithms

coding are not included in this study because the transform/quantization kernel is

easily parallelizable and is not the performance bottleneck, and the entropy coding

is completely sequential and can be mapped only to a scalar processing unit. The

available data level parallelism (DLP) expressed in terms of SIMD workload, natural

SIMD width, and the thread level parallelism (TLP) for the key parallel H.264 algo-

rithms are presented in Table 4.1. The SIMD workload consists of the arithmetic and

logical computations that can be mapped to the SIMD pipeline. The scalar workload

represents the instructions that are not parallelizable such as loop control and ad-

dress generation, which run on the scalar pipeline and the AGU pipeline respectively.

The overhead workload includes all the instructions that support SIMD computations

such as SIMD memory operations and memory alignment operations.

As can be seen in Table 4.1, most of the H.264 kernel algorithms can exploit the

SIMD datapath, but the required SIMD width varies. While the deblocking filter

and interpolation have SIMD width of 8, intra-prediction and motion estimation

have a SIMD width of 16. Kernels such as intra-prediction mode decision and motion
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estimation have high TLP, which means that independent threads corresponding to

different macroblocks can be mapped onto the SIMD datapath. For these kernels, the

wide-SIMD pipeline helps to increase the processing performance. Kernels such as

intra-prediction and deblocking filter are not easily parallelizable, and a wide SIMD

width does not guarantee higher performance. Therefore, even though it is easier to

design SIMD architectures with a fixed SIMD width, we propose to support multiple

SIMD widths to maximize the SIMD utilization.

4.3.2 Diagonal Memory Organization

Figure 4.2: Diagonal memory organization and shuffle network, which allows the
horizontal and vertical memory access without conflict. The 64x64 shuf-
fle network realigns 64 16-bit data.

Multimedia algorithms use two or three dimensional data unlike wireless signal

processing algorithms that typically operate on single dimensional data. For example,

the deblocking filter algorithm operates on horizontal edges followed by vertical edges.

Row or column order memory access works well for one set of edges, but not for the

other. A diagonal memory organization is more suitable here since blocks of pixels
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along a row or column can be accessed with equal ease.

Fig. 4.2 shows how a 16x16 macroblock is stored in the proposed diagonal memory

organization. The 16x16 macroblock is broken into 4x4 sub blocks (a, b, ... p)

each containing 16 pixels. Groups of sub blocks (a, h, k, n), (b, e, i, o), (c, f, i, p), and

(d, g, j,m) are stored in separate memory banks. This allows neighboring blocks

which share horizontal and vertical edges to be accessed at the same time.

4.3.3 Bypass and Temporary Buffer Support

Figure 4.3: Subgraphs for the inner loops for two H.264 kernels; The bypass path is
not shown for simplicity.

Fig. 4.3 shows the subgraphs for inner loops of two H.264 kernel algorithms. We

see that there exists large amount of data locality. Moreover, intermediate data do not

need to be stored in the register file (RF) because the values are usually consumed by

the very next instruction and all not used anymore. Thus, it is sufficient to store these

values in a temporary buffer or bypass them. These features have been inspired by

recent works in [27] and [28], which show that storing short-lived data and bypassing
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RF reduce the power consumption and increase the performance.

4.3.4 Fused Operation

Algorithm Shuffle-ALU Add-Shift Sub-Abs Neg-Add
Intra-Pred.(Enc) 21.43 % 7.14 % 28.57 % -
Intra-Pred.(Dec) 30.77 % 30.77 % - -
Deblocking Filter 49.48 % 16.49 % - -
Interpolation(MC) 30.09 % 3.76 % - 15.05 %
Motion Estimation 24.04 % - 48.08 % -

Table 4.2: Instruction pair frequency for H.264 kernel algorithms

Many operations in DSP algorithms occur in pairs or tuples. The most common

example is the multiply followed by accumulate, which has been exploited by many

architectures. Table 4.2 shows the breakdown of the most frequent instruction pairs

of H.264 kernel algorithms. Among all pairs, the shuffle-ALU pair is heavily used

because most of the time, data must be aligned before being processed by the SIMD

datapath. The frequencies of add-shift and sub-abs pairs are also very high. The

sub-abs instruction pair is used in the SAD (Sum of Absolute Differences) operations

in motion estimation. The add-shift instruction pair represents the round operation,

which is one of the most used operations in H.264 algorithms.

Based on this analysis, we propose to fuse the frequently used instruction pairs.

This would increase performance and lower power consumption because unnecessary

RF access can be significantly reduced.
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4.3.5 Programmable Crossbar

Figure 4.4: Permutation Patterns for H.264 Intra-prediction Modes

Fig. 4.4 shows some examples of the SIMD permutation patterns that are found

in H.264 intra-prediction algorithm. Even though the permutation patterns look very

random, each H.264 algorithm - intra-prediction, deblocking filter, interpolation, and

motion estimation - has a predefined set of shuffle patterns, and the number of distinct

sets is typically less than 16.

Most commercial DSP processors and GPP multimedia extensions support some

types of data permutations. These features are even more important in SIMD ar-

chitectures for aligning data before the SIMD computation units. For instance, the

perfect shuffle network in SODA [1] supports a few sets of permutations in one clock

cycle. But, if complex permutation patterns are required, multiple instructions need

to be executed. These additional clock cycles degrade the timing and power perfor-

mance. To support complex data access patterns in H.264 algorithms, we propose

small low-power programmable fixed pattern crossbars. We place one of these be-

tween memory and register file to align data before loading and storing, and another
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between the register file and SIMD functional units to shuffle data before processing.

4.4 Proposed Architecture

In this section, we describe the customized wide-SIMD architecture which includes

the features proposed in Section 4.3. Features such as configurable SIMD datapath,

temporary buffer, bypass network and SRAM-based crossbar have also been incorpo-

rated in our recent architecture, AnySP [18]. The design of the functional unit and

the multibank memory structure is, however, special to the proposed architecture.

4.4.1 PE Architecture

Figure 4.5: PE architecture consists of multi-bank local SIMD memory, SIMD RFs,
multi-SIMD datapath, scalar pipeline, four AGU pipelines dedicated to
four 16-wide SIMD partitions, and DMA (not shown here)
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Fig. 4.5 shows the proposed PE architecture. It is similar to SODA shown in

Figure 2.1 in that it consists of a SIMD pipeline, a scalar pipeline, and an AGU

pipeline. The SIMD datapath consists of four groups of 16-wide SIMD units that can

be functioned as eight groups of 8-wide, two groups of 32-wide or one 64-wide SIMD

datapath. Each 16-wide 16-bit SIMD datapath consists of 16-wide 16-entry RF, 16

functional units (FUs) supporting fused instructions, partitioned 16-wide 4-entry RF

(temporary buffer) and an adder tree that supports the summation of 2,4,8, and 16

elements. The 16-wide SIMD partitions are glued by multi-SIMD partition shuffle

network and data within each 16-wide SIMD units can be shuffled using predefined

shuffle patterns by a programmable crossbar. Also, multi-SIMD partition adder tree

supports the function of the summation of 32 and 64 elements.

The local memory consists of four memory banks; each bank is 16-wide 16-bit 256-

entries (8KB). The four AGU pipelines work for four local memory banks. The scalar

and AGU pipeline share the same SIMD local memory using a scalar memory buffer

which can be accessed sequentially. AGU pipeline also functions as scalar pipeline

for each SIMD datapath. Details of these architectural features are described in the

rest of this section.

4.4.2 SIMD Partitioning

As described in Section 4.3.1, H.264 kernel algorithms have different natural vector

widths. When the processor’s SIMD width is smaller than the natural vector width,

the performance drops because the natural vector has to be split into many small
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vectors and handling these vectors requires additional work. On the other hand,

if the processor’s SIMD width is larger than the natural vector width, some of the

SIMD lanes are idle, thereby wasting power. Therefore, multiple SIMD partitioning

is chosen to support both small SIMD-width algorithms having a large amount of

TLP and large SIMD-width algorithms having little TLP.

As can be seen in Fig. 4.5, a 64-wide SIMD datapath is broken into four groups of

16-wide SIMD datapath units. This can be further broken into eight groups of 8-wide

SIMD units. Each 16-wide SIMD datapath can be combined to exploit more data

parallelism such as 32-wide and 64-wide with the support of the multi-lane shuffle

network.

4.4.3 SIMD Functional Units

Figure 4.6: 16-wide SIMD Functional Unit

Fig. 4.6 shows the 16-wide SIMD functional unit, which consists of a 32x32 shuffle

network, a functional unit (multiplier, ALU, simple adder/subtractor) and a 16-wide
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adder tree. The shuffle network supports any permutation pattern using two 16-wide

vectors. This shuffle network also stores a small number of shuffle patterns in the

module to support fast permutation between 16 functional units. The functional

units support instruction pairs such as multiplier-add and add-shift described in Sec-

tion 4.3.4. A 16-wide adder supports the sum of 2, 4, 8, and 16 elements. The

other characteristic of the functional unit is support of saturation arithmetic. For

2’s complement signed 8-bit data, the results of the arithmetic units are saturated to

+127 and -128, and for unsigned data, to 255 and 0. This saturation feature is very

important for operations in the deblocking filter kernel.

4.4.4 Temporary Buffer and Bypass Support

To alleviate the problem of high power consumption of register files (RFs), two

techniques are applied: temporary buffer (partitioned RF) and data bypass network

support. Each SIMD lane has a 4-entry temporary buffer that stores intermediate

data (short-lived values) to decrease the amount of main RF accesses. This small RF

consumes less power than the main RF and also helps to reduce register pressure of

the main RF. Typical writeback stage is modified to support data forwarding bypass

by explicitly directed instructions. Instructions dictate functional units where to fetch

data (from main RFs, from temporary buffers or from bypassed data).
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4.4.5 Multi SIMD Partition Shuffle Network

Due to data access complexity in H.264 algorithms and proposed memory system,

data needs to be shuffled within a SIMD partition or between SIMD partitions. The

multi-SIMD partition shuffle network is placed next to four groups of 16-wide SIMD

functional units to support data transfer between SIMD partitions. This large shuffle

network also allows the processor to function as four SIMD pipelines connected in

serial. This feature is useful when a signal processing algorithm have little TLP.

4.4.6 Multiple Output Adder Tree Support

In some H.264 algorithms, the operation of wide vector inner sum (s = v[0] +

v[1] + ... + v[N − 1]) occurs frequently. Examples of this operation are matrix mul-

tiplication operation of DCT and SAD calculation for motion estimation. Though

H.264 algorithms usually require the sum of 2, 4, 8, and 16 pixel values, the 64-wide

multiple SIMD partition adder tree supports other output possibilities such as 32 and

64. The multiple outputs are stored back into temporary buffers and written back to

the main RFs if necessary.

4.5 Mapping of H.264 Kernels

In this section, we describe how the main H.264 kernels are mapped onto the

proposed architecture.
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4.5.1 Intra Prediction

Figure 4.7: Mapping a 16x16 luma macroblock intra-prediction process on the
proposed architecture. Example of the Diagonal Down Right intra-
prediction for a 4x4 sub block (grey block) is presented with fused op-
erations.

In H.264 intra-prediction, there are nine prediction modes - Vertical, Horizontal,

DC, Diagonal Down Left, Diagonal Down Right, Vertical Right, Horizontal Down,

Vertical Left, and Horizontal Up. A 16x16 luma macroblock is broken into sixteen

4x4 sub blocks. The 16 prediction values (a, b, ..., p) for each 4x4 sub block is cal-

culated with neighboring pixels (A,B,C,D, I, J,K, L,X) using 16 SIMD lanes. At

the encoder, all the prediction modes are calculated and the best predicted one is

chosen. At the decoder, the sub block is generated based on the prediction mode in

the header information sent by the encoder.

There is significant overlap in the computations of six of the modes. The other

three modes, namely, Horizontal, Vertical, and DC mode, are computed using only a

crossbar and an adder tree. Fig. 4.7 shows how to compute the partial intermediate

values that are reused for the six prediction modes. 16 SIMD lanes are used to

generate two sets of partial sums for a 4x4 sub block with fused operations such
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Prediction Mode Shuffle Pattern
Diagonal Down Left 7,8,9,10,8,9,10,11,9,10,11,12,10,11,12,13
Diagonal Down Right 5,6,7,8,4,5,6,7,3,4,5,6,2,3,4,5
Vertical Right 18,19,20,21,5,6,7,8,4,18,19,20,3,5,6,7
Vertical Left 19,20,21,22,7,8,9,10,20,21,22,23,8,9,10,11
Horizontal Down 17,5,6,7,16,4,17,5,15,3,16,4,14,2,15,3
Horizontal Up 16,3,15,2,15,2,14,1,14,1,0,0,0,0,0,0

Table 4.3: Shuffle patterns for six intra prediction modes for 4x4 luma

as shuffle-add and add-shift. After generating R0 to R23, these intermediate values

are distributed to the 16 SIMD lanes by a shuffle network. Table 4.3 shows how to

shuffle the partial sums for each prediction mode. The use of partial sums results

in significant reduction in the number of instruction cycles in the encoder. The

intra-prediction calculations in the encoder are very parallel and four groups of 16-

wide SIMD datapath can be utilized in parallel. However, in the decoder, there are

dependencies in the processing order. For example, in Fig. 4.8, the A6 macroblock

requires A1, A2, A3, and A5 macroblocks to be predicted first. Fig. 4.8 shows a

processing order in which four macroblocks are processed at the same time, thereby

utilizing all SIMD lanes.

4.5.2 Deblocking Filter

H.264 deblocking filter smoothes the block edges to reduce blocking distortion

without affecting the real edges. Based on block strength, the function of this filter

varies dynamically (three-tap, four-tap, or five-tap filter). Furthermore, there is an

order in which the edges have to be filtered. Fig. 4.9 shows how deblocking filter
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Figure 4.8: Mapping macroblocks into SIMD partitions such that all SIMD lanes
are utilized

process is mapped on the SIMD pipeline. To utilize all SIMD lanes, edges A-B, E-F,

I-J, M-N are filtered in parallel. To avoid memory access conflict, sub blocks A,B,I,J

(which belong to four different sub banks) are loaded first, followed by E,F,M,N, etc.

The four groups of 16 pixel values are permuted by a shuffle network in the memory

system to generates eight groups of horizontally aligned eight pixel values. Each

SIMD partition exploits fused shuffle-add operations followed by round operations to

produce filtered pixel values.

4.5.3 Motion Compensation

In H.264, the size of the motion compensation block can be 16x16, 16x8, 8x16,

8x8, 4x8, and 4x4, and the resolution can be integer-pixel, half-pixel, quarter-pixel, or

eighth-pixel. Because sub-sample positions do not exist in the reference frames, the

fractional pixel data are created by interpolation. Half-pixel interpolations are derived

by a six tap filter as shown in Eq.1 in Fig. 4.10. The equation is modified to reduce
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Figure 4.9: Mapping a deblocking filter process when BS (Block Strength)=4.

multiplications and to express the six tap filter in terms of partial sums and differences

of the original pixel values. This helps in exploiting the re-usability of computations

for subsequent half pixel interpolations (Eq.2) in Fig. 4.10. As can be seen in Fig. 4.10,

the first row of a 16x16 block is loaded to SIMD RFs by using a shuffle network, and

the partial sums and differences are stored in temporary registers. A subset of these

values are shuffled and summed with an adder tree to obtain the half-pixel estimate.

Eight groups of 8-wide SIMD datapath handle the interpolation process for each row.

Once the half pixel estimates have been calculated for a particular row, we can use

them to compute the quarter pixel values.
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Figure 4.10: Example of interpolation of motion compensation (half-pel).

4.5.4 Motion Estimation

Motion estimation of an MxN block involves finding an MxN sample region in a

reference frame that closely matches the current block. An area in the reference frame

of size 2Mx2N centered on the current block position is searched, and the minimum

SAD value is needed to determine the best match. Fig. 4.11 shows the mapping

method for a 4x4 block (current frame) in an 8x8 search area in the reference frame.

The pixels of the current 4x4 block (a, b, c, ..., p) are loaded from the memory to a

SIMD register, and the pixels in the shaded 4x4 block (f1, g1, h1, e2, j1, ..., a4) in

the search area are obtained using memory loads and shuffles. The SAD value is
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Figure 4.11: Mapping a motion estimation process for a 4x4 block on the proposed
architecture; The search area is 8x8.

calculated by a fused operation (sub-abs) and summation using the adder tree. The

first SAD value is stored as the minimum SAD and is updated during subsequent

computations. This process repeats for 25 possible positions in the 8x8 search area.

The motion estimation process is highly parallel and four groups of 16 SIMD lanes

are utilized to generate four SAD values at a time.
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4.6 Results and Analysis

4.6.1 Methodology

Table 4.4: Summary of Area and Power Running H.264 CIF video at 30fps

The RTL Verilog model of SODA processor [1] was synthesized in TSMC 180nm

technology, and the power and area results for 90nm technology were estimated using

a quadratic scaling factor based on Predictive Technology Model [49]. The proposed

architecture was implemented in the RTL Verilog model and synthesized in TSMC

90nm using Synopsys physical compiler. The PE area is 25% larger than SODA’s

estimated 90nm PE area. The clock frequency is targeted for 300MHz, while SODA

was targeted for 400MHz. The area and power breakdown of this architecture running

H.264 CIF video at 30fps are presented in Table 4.4. This video encoder consumes

about 81mW at 90nm, which is within the requirements for mobile video.
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4.6.2 Results

Fig. 4.12 shows the speedup of proposed architecture over SODA for the H.264 ker-

nel algorithms. The improvement is broken into several architectural enhancements:

wider SIMD width (from 32 to 64), fused operation, buffer+bypass support, and sin-

gle cycle programmable crossbar. The wider SIMD width allows H.264 algorithms

to operate on twice as many pixels and results in 72% of performance improvement

over SODA. The fast programmable crossbars expedites the data alignment process,

and accounts for another 25% improvement. The fused operations and buffer+bypass

support also helps to boost the speed by about 16%. The energy-delay product for

the H.264 kernel algorithms are presented in Fig. 4.13. On average, there is a 29% of

energy-delay improvement due to lower clock frequency, reduced memory and register

file access supported by crossbar, fused operation, and buffer+bypass support.

Figure 4.12: Speedup over SODA for the key H.264 algorithms. The improvements
are broken down into several architectural enhancements - wider SIMD
width, fused operation, buffer+bypass support and fast programmable
crossbar.

Table 4.5 compares the power performance of our architecture with state-of-the-
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Figure 4.13: Normalized Energy-Delay Product for H.264 kernel algorithms com-
pared to SODA.

art designs for H.264 baseline encoding. We use power consumption per pixel/sec

(mW/(Mpix/s)) as the metric. Although the ASIC solution [40] outperforms the

programmable solutions, our proposed architecture has programmable flexibility and

consumes significantly less power compared to TI’s DSP solution.

ISSCC2007 TMS320DM6446 This work
[40] C64x+ DSP [41] 2 PEs

Resolution 720x480 720x480 352x288
Technology 130nm 90nm 90nm
Supply Voltage 0.9V 1.2V 1.0V
Clock Freq. 30MHz 594MHz 300MHz
Power consumption 27mW 415mW 68mW
Power efficiency 2.6 40 22
(mW/(Mpixel/sec))

Table 4.5: Comparison with state-of-the art H.264 encoders.
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4.7 Related Work

There have been several architectural solutions for H.264/AVC. Many of them are

specialized architectures for key kernels such as motion estimation, motion compensa-

tion [30], [32], interpolation [31] and deblocking [33], [34]. An important consideration

in all these architectures is efficient memory access. For instance the deblocking filter

architectures reduce the number of memory accesses by manipulating data stored in

shift registers in [33] and using vector registers and VLIW processing in [34]. Reduc-

ing the overhead in memory accesses and data alignment in multimedia processing

has been addressed in systems such as MediaBreeze [29] by adding hardware support

for address generation, looping etc.

Efficient techniques for mapping H.264 onto multiprocessor platforms have been

proposed in [35], [36], [37], [38]. While [35] focused on efficient partitioning of data,

[36] proposed a high speed multithreading implementation of the H.264 video encoder.

The implementation in [37] focused on efficient scheduling and memory hierarchy for

the H.264 video encoder for HDTV applications. A hybrid task pipelining scheme

which greatly reduced the internal memory size and bandwidth was presented in [38].

Recently a FGPA based architecture, Video Specific Instruction Set Processor,

has been proposed in [39]. The architecture consists of hardware accelerators for

inter prediction and entropy coding, and specialized instructions for a programmable

processor for the rest of the kernels.
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4.8 Summary

The mobile multimedia processor requires high-performance low-power solutions

for high quality video and wireless protocols. General purpose processors, digital

signal processors and ASICs are typically combined to meet this requirement. Such

a heterogeneous solution is inefficient in terms of area, power, and flexibility. In this

chapter, we presented a software-hardware co-design case study of H.264 codec for

a wide-SIMD architecture. Based on the characteristics of H.264 kernel algorithms,

we proposed several key architectural enhancements including SIMD partitioning,

diagonal memory organization system, bypass and temporary buffer support, fused

operation support, and area and energy efficient programmable crossbar use. Our

results show that we can achieve 2.13x speedup and 29% energy-delay improvement

for the H.264 codec over a wide-SIMD architecture, SODA.
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CHAPTER 5

Diet SODA: A Power-Efficient Processor for

Digital Cameras

Power has become the most critical design constraint for embedded handheld

devices. This chapter proposes a power-efficient SIMD architecture, referred to as Diet

SODA, for DSP applications. The key design idea is to apply near-threshold operation

on a single instruction and multiple data (SIMD) architecture to significantly lower

the power consumption. The major features of Diet SODA are very wide SIMD width,

scatter/gather data prefetcher, and dual mode operation. A case study was performed

on digital still camera (DSC) applications; the results show that Diet SODA achieves

∼130x better performance and ∼340x better energy efficiency than a DSP solution.

5.1 Introduction

As today’s devices not only support advanced signal processing of wireless commu-

nication data but also provide for richer sets of various applications, power dissipation
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has become a more important design constraint. Increasing power consumption leads

to increasing energy costs as well as impacts chip reliabilities. Therefore, more power-

efficient processors for embedded DSP applications are highly required. Among many

DSP applications, high resolution cameras have become an integral part of most cell

phone designs. As a result, the market for these cameras has mirrored the spectacu-

lar growth in mobile phones [44]. Furthermore, the expectation is that these mobile

cameras produce an image whose quality should approach that of high quality digital

still cameras (DSCs). Therefore, a DSC processor needs to be of high-performance to

support a large amount of image data and perform the DSC image processing tasks

in a highly energy-efficient manner in order to conserve critical battery life for other

phone applications.

Traditionally, the DSC image signal processing pipeline is implemented in digital

signal processors (DSPs) or application specific integrated circuits (ASICs). DSP-

based solutions [43] support high flexibility and handle various DSC algorithms, but

they suffer from lower performance and higher energy consumption than ASIC so-

lutions. ASIC-based solutions [45, 46] are highly specialized and optimized for the

DSC image signal processing pipeline, but such designs lack flexibility and require

longer design time. Therefore, to achieve high processing performance efficiency at

low cost while maintaining programmability, hybrid architectures [47] are employed.

In these designs, ASICs are typically used for a preview mode, where high processing

capabilities are desired, and DSPs are adopted for picture-taking and post-processing

modes, where flexibility is more important. However, such a heterogeneous solution
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is inefficient to build and maintain.

To address these challenges, this chapter presents a power-efficient programmable

architecture, Diet SODA, that has been optimized for DSC image signal processing.

Diet SODA exploits near-threshold operation [54] on a wide-SIMD architecture —

SODA [1]. Near-threshold operation offers a new opportunity for mobile applications

such as DSCs to reduce power consumption. However, the reduction in power con-

sumption comes at a cost of a ∼10x performance degradation. Diet SODA overcomes

these hurdles by exploiting architectural features specific to near threshold operation.

The key features of Diet SODA are 1) very wide SIMD width to exploit the signif-

icant amount of data level parallelism (DLP) inherent in DSC applications, which

helps overcome the frequency loss from operating in the near-threshold region; 2)

scatter-gather data prefetcher to support 2D memory access enabled by the latency

difference between the full voltage SIMD memory and SIMD data engine operating

at near-threshold voltage; and 3) dual voltage modes where the SIMD data engine

operates at either full or near-threshold voltage based on processing demands.

The rest of the chapter is organized as follows. Section 5.2 gives a brief overview

of near-threshold operation. Section 5.3 analyzes the computational characteristics of

DSC signal processing algorithms for preview mode, picture-taking mode and post-

processing mode. Section 5.4 introduces Diet SODA, the low-power DSP processor

for DSCs with an analysis of design choices created by using near-threshold operation.

Section 5.5 presents the performance, power, and comparison analysis of Diet SODA.

Section 5.6 discusses the related work and Section 5.7 concludes the chapter.
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5.2 Near Threshold Operation

The original SODA architecture was targeted for applications that require sub-

stantial processing to meet time-critical tasks in software defined radio applications

on a limited energy budget. There are a considerable number of applications, such

as DSC, that operate on an even tighter energy budget, but where timing is less

critical. A paradigm shift is necessary for these applications to further reduce energy

consumption.

The near-threshold computing offers an opportunity for applications, such as DSC,

to reduce energy further. In order to do so, the design must overcome one hurdle,

the 10x increase in delay. This delay impacts the ability of designs to meet more

stringent real time constraints without scaling the voltage higher and losing energy

efficiency. However, in cases where the application can be parallelized, simply using

more near-threshold processing elements can meet the timing constraint with greater

efficiency. Near-threshold operation, therefore, has a natural synergy with data par-

allel environments like SIMD. In a SIMD architecture, the number of functional units

can be increased to help meet a timing critical code, provided the application has

sufficient DLP.

In addition, the fact that near-threshold operation decreases frequency offers sev-

eral new and interesting design choices related to the memory system. First, memory

devices that are slower and more energy efficient can be used to replace previously

timing critical memories. This will help to reduce the overall energy consumption

of the chip. Second, multiple accesses to memory can be performed in one near-
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threshold clock cycle. This means that data patterns that were impossible at full

speed could be achieved using new hardware that scatter-gathers memory requests.

And, third, the slower memory allows for elements originally designed to hide long

memory latency, i.e. caches and register files, to be turned off or eliminated.

5.3 DSC Algorithm Analysis

5.3.1 DSC Signal Processing Pipeline

R G R G

R G R G

B G BG

B G BG

Bayer CFA pattern

Sensor

Analog 
processing

A/D converter
Black Clamp Lens Distortion 

Compensation
Fault Pixel 
Correction
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White Balance
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Gamma 
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CFA color 
interpolation

Color
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RGB to YCrCb

Edge detection

Edge 
Enhancement

False Color 
Suppression

DeNoise
Scaling

Auto
Focus

JPEG 
Compresison

LCD Screen

Flash Memory
(Storage)

Figure 5.1: A typical DSC image signal processing pipeline [42], [43]

Figure 5.1 shows a typical DSC image signal processing pipeline [43], which per-

forms multiple processing steps to generate a high-quality image. The image is first

captured by a CCD or CMOS sensor using a Bayer-pattern [55] color filter array

(CFA). Then, the image is digitized with a 10- or 12-bit A/D converter. The Black
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Clamp adjusts the pixel values by subtracting a black offset value from all pixel val-

ues. The Lens Distortion Compensation adjusts the brightness of pixels depending

on the spatial locations and the Fault Pixel Correction interpolates defective pixels

with neighboring pixels. After all these pre-processing steps, Auto White Balance

computes the average brightness of each color component and balances the energy

of the colors. Based on the brightness information, Auto Exposure appropriately

adjusts the CCD or CMOS exposure time and gain. After the white balanced im-

age pixels are compensated by Gamma Correction, CFA color interpolation uses the

one-color-per-pixel Bayer-pattern image to interpolate and generate the full color (R,

G, and B) resolution for each pixel. The RGB color pixels are filtered by De-Noise

and scaled down and sent to the LCD screen in preview mode. In picture-taking

mode, the noise-filtered images are transformed to the YCrCb color domain. Edge

Detection detects edges to help Auto Focus, and Edge Enhancement is performed.

Next, False Color Suppression occurs, and finally the image is compressed by using

JPEG Compression and stored in flash memory. Later, post-processing tasks such as

Histogram Calculation, Histogram Equalization, and Spatial Frequency Filtering are

used to enhance the quality of the stored images.

5.3.2 Characteristics of DSC Algorithms

In this section, we analyze the key algorithms in the two modes (preview and

picture-taking) of DSC signal processing pipeline and post-processing tasks to find

opportunities for improving the processing performance and energy efficiency.
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5.3.2.1 Data Level Parallelism

Mode Task SIMD Scalar Overhead
Black Clamp 100% 0% 0%
White Balance 100% 0% 0%

Preview Auto Focus 71% 14% 14%
Gamma Correction 0% 100% 0%

Picture- CFA Interpolation 84% 3% 13%
Taking Auto Exposure 74% 11% 15%

Color Conversion 100% 0% 0%
Edge Detect/Enhance 81% 2% 17%

Post- Histogram Equalize 37% 44% 19%
Processing Spatial Freq. Filter 77% 3% 20%

Table 5.1: Data level parallelism analysis for DSC image signal processing algo-
rithms. Instructions are categorized into three groups: SIMD, scalar,
and overhead instructions.

Table 5.1 presents the data level parallelism (DLP) analysis of the DSC signal

processing algorithms. Instructions are broken down into three categories: SIMD,

scalar, and overhead workloads. The SIMD workload consists of traditional arith-

metic/logical functional operations and load/store operations that can be executed

in SIMD-fashion. The scalar workload consists of instructions running only on the

scalar datapath such as control instructions and address generations for local SIMD

and scalar memories. The overhead workload consists of instructions to assist SIMD

computations and scalar computations such as shuffle operations, predication oper-

ations, and data movements between the SIMD datapath and scalar datapath. The

workloads of each category are calculated based on hand-written assembly codes and

are weighted by dynamic execution frequency.

As can be seen in Table 5.1, most of the DSC signal processing algorithms have sig-

nificant DLP. Exceptions are Gamma Correction and Histogram Equalization, where
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memory access patterns inhibit parallelization. The remaining DSC signal processing

algorithms can be grouped into three categories.

(1) Pixel Independent Kernels: In this set of kernels, some basic arith-

metic/logical and multiply-and-accumulate (MAC) operations are applied on every

pixel independently. Therefore, these kernels can easily be mapped onto a SIMD

architecture. Black Clamp, Color Space Conversion, Brightness/Contrast Enhance-

ment, and Hue/Saturation Enhancements fall into this category. Although Gamma

Correction is also a pixel-independent operation, this kernel cannot be easily paral-

lelized on a SIMD architecture because each SIMD lane has to access different memory

locations at the same time.

(2) Pixel Dependent Kernels : This set of kernels includes CFA Interpolation,

Edge Detection/Enhancement, and Spatial Frequency Filtering that operate on pixels

in a 2D neighborhood. The size of the 2D neighborhood is typically 3x3, though 5x5

or 7x7 sizes are also used. Traditional processor architectures spend more than half

of the total instructions aligning the 2D data [42]. Therefore, for these kernels, 2D

data access must be supported. This is done by a combination of multi-bank memory

organization and a SIMD shuffle network.

(3) Statistics Gathering Kernels: The statistical information of the whole or

partial frame is gathered for White Balance, Auto Exposure, Histogram Calculation

and Histogram Equalization. Some of these kernels can be supported by a SIMD

adder tree. Histogram Calculation is another kernel where memory access patterns

inhibit parallelization for a SIMD architecture.
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5.3.2.2 Instruction Pairs

Next, we study pairs of instructions that could possibly be combined to reduce

the number of register file accesses. Many current DSP processors exploit this feature

to increase performance while decreasing energy.

Black Clamp / Color Conv. / CFA Edge Detect /
White Balance Color Correct Interpolation Edge Enhance

*LD-OP-ST 100 % - 10 % -
MULT-ALU - 57 % - 50 %
ALU-ALU - 10 % 17 % 15 %
SHFL-ALU - - 6 % -
**Others - 33 % 67 % 35 %

Table 5.2: Instruction pairs for some DSC image processing algorithms. *LD-OP-ST
represents an operation chain — LOAD-ALU/MULT-STORE. **Others
represents instructions that cannot be paired.

Table 5.2 shows the frequently used instruction pairs of key DSC image process-

ing algorithms. The multiply-and-accumulate (MAC) instruction is most frequently

used because many of these algorithms are based on 2D convolution and 2D matrix

multiplication, all of which involve vector inner-product calculations. The ALU-ALU

instruction pair is also commonly used in some of the kernels. In particular, Black

Clamp and White Balance algorithms have a very simple operation flow, which is to

load pixel values, add/subtract or multiply them with predefined values, and then

store them back to memory. This simple operation flow opens a possibility of not

using a SIMD register file (RF) thus reducing energy consumption.
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5.4 Diet SODA Architecture

In this section, we propose a power-efficient architecture, referred to as Diet SODA,

for DSC processors. Diet SODA exploits key characteristics of the DSC image pro-

cessing algorithms described in Section 5.3. This architecture operates in two modes:

1) dual voltage (DV) mode to handle low power applications such as the DSC image

processing pipeline, and 2) the full voltage (FV) mode to handle advanced wireless

communications. In DV mode, the memory operates at full voltage but the SIMD

pipelines operate at near-threshold voltage. In FV mode, the SIMD data engines

operate at full voltage as well.

5.4.1 Diet SODA PE Design

Figure 5.2 shows the architectural details of a single processing element (PE) of

Diet SODA. The PE contains two different voltage domains: full voltage (FV) and

dual voltage (DV). DV domain operates at either full or near-threshold supply voltage.

The PE consists of: 1) multi-bank SIMD memory; 2) scalar memory; 3) SIMD data

prefetcher; 4) SIMD pipeline; 5) scalar pipeline; and 6) 4-wide address generation

unit (AGU) pipeline.

The SIMD pipeline consists of a 128-wide 16-bit datapath with a SIMD register

file (RF), 128 functional units, 128 4-entry buffers used for intermediate data, a SIMD

shuffle network (SSN), and a multi-output adder tree. The SIMD datapath consists

of four groups of 32-wide SIMD units. With the support of a multi-banked SIMD

memory and an 4-wide AGU pipeline, these groups of SIMD partitions can work on
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Figure 5.2: Diet SODA processing element (PE) for DSCs. The PE contains two
different voltage domains: full voltage (FV) and dual voltage (DV).
DV domain operates at either full or near-threshold supply voltage.
The PE consists of: 1) multi-banked SIMD memory; 2) scalar memory;
3) SIMD data prefetcher; 4) SIMD pipeline; 5a) scalar pipeline in full
voltage domain; 5b) scalar pipeline in dual voltage domain; and 6) 4-
wide address generation unit (AGU) pipeline.

four different memory sections concurrently. There are two scalar pipelines, one in

each voltage domain; both pipelines consist of one 16-bit datapath and are used to

perform sequential algorithms in addition to coordinating the SIMD units. The 4-

wide AGU pipeline handles memory address calculation for the 4-bank SIMD memory

and the data prefetcher.

5.4.2 SIMD Pipeline Width

Although near-threshold operation allows circuits to consume significantly less

power, the processing performance also degrades. To compensate for the degraded
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performance, the number of SIMD lanes is increased.
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Figure 5.3: Minimum clock frequencies based on different SIMD width configura-
tions to run the preview mode of DSC signal processing pipeline shown
in Figure 5.1.

The DSC signal processing pipeline for a VGA-size (640x480) image and a full-HD

(1920x1080) image at 30 fps is used as the evaluation point to decide the number of

SIMD lanes. Figure 5.3 shows the minimum clock frequency required for VGA and

full-HD for different SIMD width configurations — 32, 64, 128, and 256. Thus, to

process full-HD images at 30 fps, a 32-wide SIMD pipeline needs to operate at more

than 270MHz, while a 256-wide SIMD pipeline needs to operate at around 30 MHz.

To investigate how much voltage/frequency scaling can be achieved while still

meeting the performance requirements, the power consumption for each SIMD width

configuration was measured. First, a representative test circuit was laid out in IBM

90nm technology, parasitic extraction was performed and annotated. Then, SPICE

simulations were done to determine the voltage, frequency, and power characteris-
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Figure 5.4: Near-threshold operation is applied to four different SIMD width con-
figurations: 32, 64, 128, and 256. Solid vertical lines provide guidelines
for the minimum supply voltage necessary to meet VGA and full-HD
processing demands. Gray boxes represent the near-threshold regions.

tics at different supply voltages. To obtain power numbers, the SIMD pipeline logic

was then synthesized with Synopsys Physical Compiler and scaled to match the rep-

resentative test circuit. Figure 5.4 shows power consumption and achievable clock

frequencies depending on the corresponding supply voltage for each candidate SIMD

width. The solid vertical lines provide guidelines on what the minimum supply volt-

age is required to process VGA and full-HD images at 30 fps. The results show that

although a 32-wide SIMD data engine is capable of handling VGA processing require-

ments, to support full-HD images, a SIMD width of greater than 32 is required. On

the other hand, wider SIMD widths do not always guarantee better energy efficiency
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due to the additional hardware and critical path delay increases, resulting in a higher

minimum clock frequency. In this chapter, a 128-wide SIMD configuration is chosen

to maximize the benefit of using near-threshold operation while maintaining the real

time processing constraints of both VGA and full-HD. With this configuration, the

supply voltage needs to be 600mV using a clock frequency of 50MHz.

5.4.3 Scatter-Gather Data Prefetcher
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i1 j1 k1 l1
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Data Prefetcher Pointer
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Data Prefetcher Pointer

Load Addr #2, Bank4 i1 j1 k1 l1 a3 b3 c3 d3 e3 f3 k3 l3 e4 f4 g4 h4

Data Prefetcher Pointer

Figure 5.5: Example of complex data shuffling with 4-bank 4-wide SIMD memory,
SIMD data prefetcher, and 16-wide buffer.

While operating in the DV mode, the SIMD memory operates significantly faster

than the SIMD pipeline. Therefore, two-dimensional (2D) data accesses can be
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achieved by performing multiple memory accesses to the same memory banks in

a single cycle of the SIMD pipeline. There is also sufficient time to perform compli-

cated shuffling operations before delivering the data. Because of these non-traditional

memory access patterns and additional shuffling capabilities, a significant reduction

in the required number of SIMD instructions can be obtained.

Figure 5.5 shows the process of data alignment using the SIMD data prefetcher.

First, the required data is read from a multi-bank memory. Then the data prefetcher

stacks the data in the location indicated by the data prefetcher pointer. The pointer

then advances to the next data section and repeats the process for the next load

operation. In addition, with the support of SSN, more complex shuffle operations can

be implemented.

5.4.4 Operating Modes

In this section, dual voltage (DV) and full voltage (FV) modes in Diet SODA are

described. Table 5.3 provides the configuration of each component of Diet SODA PE

for each mode.

5.4.4.1 DV Mode

In the DSC signal processing pipeline, preview and picture-taking tasks are per-

formed in DV mode because these tasks do not require very high data processing

rates. Consequently, the supply voltage of the SIMD data engine is operated at

near-threshold voltage to significantly lower energy consumption. More specifically,
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 Components DV Mode FV Mode

 1. Multi-Bank SIMD Memory on on

 2. Scalar Memory on on

 3. Data Prefetcher - Buffer/Buffer Handler on off

 3. Data Prefetcher - SSN on on

 4. SIMD pipeline - SIMD RF off on

 4. SIMD pipeline - Other modules except SIMD RF on@NTV on

 5a. Scalar pipeline on off

 5b. Scalar pipeline on@NTV on

 6. 4-wide AGU pipeline on on

PE

Table 5.3: Architectural modules that are turned on and off for dual voltage (DV)
and full voltage (FV) modes.

the SIMD pipeline and scalar pipeline (5b in Figure 5.2) in the DV domain oper-

ate at near-threshold voltage, while the SIMD memory, scalar memory, SIMD data

prefetcher, and 4-wide AGU pipeline operate at full voltage. As can be seen in Ta-

ble 5.3, the SIMD RF is switched off because the latency of the SIMD memory is

much lower than that of SIMD data engine so the SIMD pipeline is capable of di-

rectly handling data from the SIMD memory. This results in a reduction of energy

consumption by eliminating SIMD RF accesses. The 4-entry buffer in each SIMD

lane operates as a small RF to hold recently produced values for consumption by

subsequent instructions.

5.4.4.2 FV Mode

Recent DSCs support video recording at full-HD (1920x1080) resolution. This

necessitates additional processing capability, and therefore requires Diet SODA to

operate in FV mode. In this mode, the SIMD pipeline operates at full voltage along

with the SIMD memory and 4-wide AGU pipeline. On the other hand, the SIMD
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data prefetcher is turned off because there is no time slack between the SIMD memory

and the SIMD data engine to prefetch data in advance. Also, the scalar pipeline (5a

in Figure 5.2) in the FV domain is turned off and another scalar pipeline (5b in

Figure 5.2) in the DV domain works for the overall system. In this mode, the SIMD

RF is switched on so that faster operations are supported.

5.4.5 Buffer and Bypass Network

To reduce the power consumption of register files (RFs), two techniques are ap-

plied: short-live value buffering, and data bypass network support. Each SIMD lane

has a 4-entry temporary buffer that stores intermediate data (short-lived values) to

decrease the amount of SIMD memory accesses and RF accesses. This small buffer

consumes less power than the SIMD memory and the main RF and also helps to

reduce register pressure in the main RF. The writeback stage is modified to support

data bypass by explicitly encoding forwarding information into the instructions.

5.4.6 Mapping Examples

5.4.6.1 CFA Interpolation

This section describes how one of the key DSC algorithms, CFA interpolation, is

mapped onto Diet SODA. The edge-directed CFA interpolation compares horizontal

gradients and vertical gradients, and the interpolation method is chosen as described

in Figure 5.6-(a). In Diet SODA, the data prefetcher loads Addr#1 and Addr#3

from SIMD memory, and shuffles them to obtain v0 by using the data prefetcher and
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SSN, Figure 5.6-(b). The aligned v0 is then used to calculate the vertical gradients

(v2), Figure 5.6-(c). Similarly, Addr#2 is loaded and shuffled to obtain v1 which is

used to calculate the horizontal gradients (v3). With these SIMD registers (v2 and

v3), the edge-directed interpolation is easily implemented. For example, based on the

comparison of the first elements of the two vectors (b1− j1=∆H and e1− g1=∆V),

the second elements of the vectors are select-shifted ( (b1+j1) >> 1, (e1+g1) >> 1)

or add-shifted ( (b1 + j1 + e1 + g1) >> 2 ). This series of operations rely upon the

data prefetcher and SSN in FV domain and the SIMD pipeline in DV domain.

5.4.6.2 3x3 Convolution

A 3x3 convolution ( 5.1) is one of the commonly used algorithm in DSC signal

processing pipeline such as edge detection and edge enhancement. There are many

ways to program this algorithm on Diet SODA and here, Figure 5.7 shows one of the

methods how to map 3x3 convolution on Diet SODA.



a1 a4 a7

a2 a5 a8

a3 a6 a9


∗



b1 b4 b7

b2 b5 b8

b3 b6 b9


=

9∑
k=1

ak ∗ bk (5.1)

The three pixel rows are loaded into three SIMD registers: v1, v2, and v3. The

3x3 mask values are loaded into nine scalar registers. The v1 is multiplied by c11,

and then v1 is shuffle down by 1 and multiplied by c12, and v1 is shuffled down by 1

again and multiplied by c13. These three multiplied SIMD registers are added, then

v4 contains inner-product of the first rows. The v2 and v3 are process in the same
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1. Horizontal Gradient : ∆H = |e1 – g1|
2. Vertical Gradient     : ∆V = |b1 – j1|
3. if ∆H > ∆V f1 = (b1 + j1) / 2

if ∆H < ∆V f1 = (e1 + g1) / 2
if ∆H = ∆V f1 = (b1 + j2 + e1 + g1) / 4

(a) Edge-directed interpolation for the G channel is illustrated. 
The value of f1 is estimated from b1, e1, g1, j1 [30]

a1 b1 c1 d1

e1 f1 g1 h1

i1 j1 k1 l1

Bank 1 Bank 2 Bank 3 Bank 4

a2 b2 c2 d2

e2 f2 g2 h2

i2 j2 k2 l2

a3 b3 c3 d3

e3 f3 g3 h3

i3 j3 k3 l3

a4 b4 c4 d4

e4 f4 g4 h4

i4 j4 k4 l4

Addr #1

Addr #2

Addr #3

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

a4

b4

c4

d4

i1

j1

k1

l1

i2

j2

k2

l2

i3

j3

k3

l3

i4

j4

k4

l4

b1

j1

d1

l1

b2

j2

d2

l2

b3

j3

d3

l3

b4

j4

d4

l4

e1

f1

g1

h1

e2

f2

g2

h2

e3

f3

g3

h3

e4

f4

g4

h4

e1

g1

g1

e2

e2

g2

g2

e3

e3

g3

g3

e4

e4

g4

g4

e5

(b) Data alignment by data prefetcher and SSN
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Figure 5.6: An Edge-directed CFA interpolation mapped on Diet SODA.
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way to generate v5 and v6. The SIMD addition of v4, v5, and v6 generate the final

convolution values per each lane. For example, the first element is
∑9
k=1 ak∗bk, and the

second element is
∑12
k=4 ak ∗ bk. In this way, 3x3 convolution process is parallelizable.

Figure 5.7: A 3x3 Convolution operation mapped on Diet SODA. A 3x3 convolution
mask is applied to 3x3 pixels.
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5.5 Results and Analysis

5.5.1 Methodology

The DSC image signal processing pipeline algorithms are implemented in C to

evaluate system performance, memory requirements, and non-parallelizable bottle-

necks. Next, the C benchmark codes [56] are transformed to assembly codes for Diet

SODA. The Diet SODA processor is implemented as an RTL Verilog model and syn-

thesized for IBM’s 90nm technology using the Synopsys Physical Compiler. The clock

frequency is targeted for 400MHz @ 1V, and the power numbers for the SIMD data

engine are scaled down for 50MHz @ 600mV by the process shown in Section 5.4.2.

5.5.2 Area and Power

The area and power breakdown of this processor are presented in Table 5.4. The

preview mode of full-HD images at 30 fps consumes about 122mW and 1228mW in

DV mode and FV mode, respectively. Therefore, the DV mode offers about sim10x

better power efficiency.

About 68% of the total power dissipation in DV mode is consumed by SIMD

memory, the scalar/AGU pipeline, and data prefetcher operating at full voltage. In

particular, the SIMD memory and data prefetcher consume a large part of the power

because the number of SIMD memory accesses and shuffle operations is increased

due to the SIMD RF being switched off. However, the SIMD data engine operating

in DV mode consumes sim21x less power than the SIMD datapath operating in FV
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Components
Area 

(mm2)

Area 

(%)

Power 

(mW)

Power 

(%)

Power 

(mW)

Power 

(%)

SIMD banked-memory (64KB) 3.41 33% 28 23% 36 3%

SIMD Register Files (4KB) 1.58 15% 0 0% 310 25%

SIMD Buffer (1KB) 0.41 4% 3 2% 65 5%

SIMD ALU/Multiplier, SSN 2.26 22% 23 19% 519 42%

SIMD Adder Tree 0.12 1% 1 1% 28 2%

SIMD pipeline+Clock+Routing 0.68 7% 12 10% 213 17%

Data Prefetcher 1.63 16% 33 27% 27 2%

Scalar/AGU Pipelines & Misc. 0.18 2% 22 18% 30 2%

Total 90nm(1V@400MHz, 600mV@500MHz) 10.27 100% 122 100% 1228 100%

DV mode FV mode

PE

Table 5.4: Area and Power Summary of Diet SODA for Preview Mode of Full-HD
Images at 30 fps. For comparison, the results of both DV mode and FV
mode are presented.

mode, which offsets the increased SIMD memory power and highlights the advantage

of using near-threshold operation.

5.5.3 Performance

Table 5.5 presents the latencies of DSC processing algorithms - preprocessing

(Black Clamping, Lens Distortion Compensation, Fault Pixel Correction, White Bal-

ance, Gamma Correction), CFA Interpolation, Color Space Conversion, Edge Detec-

tion/Enhancement, Scaling, and JPEG Compression. As can be seen in Table 5.5,

the preview modes of both VGA and Full-HD images are processed within a time

constraint of 33 ms thus meeting the 30 fps requirement.

CFA Interpolation and Edge Detection/Enhancement are the most demanding

workloads taking about 60% of the processing time. While most algorithms deals

with only one color component (R, G, or B) per each pixel location, CFA inter-

polation generates all of three components for each pixel locations. Therefore, the
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Task Latency (VGA) Latency (Full-HD)
Black Clamp,
Distortion Compensation,
Fault Pixel Correction, 0.57 ms 3.89 ms
White Balance,
Gamma Correction
CFA Interpolation 1.02 ms 6.67 ms
Color Conversion 0.36 ms 2.43 ms
Edge Detection 0.82 ms 5.29 ms
Edge Enhancement
False Color Suppression 0.31 ms 2.11 ms
Scaling
Total 3.08 ms 20.38 ms

Table 5.5: The Latencies of DSC signal processing pipeline algorithms for the pre-
view mode of a VGA image and a Full-HD image.

memory size and workload for this interpolation algorithm are increased. Edge De-

tection/Enhancement works with only one component per each pixel location, but

3x3 matrix convolutions in this task require significant processing time and shuffling

for MAC calculations and realignments.

5.5.4 Comparison with SODA

In this section, we present the performance and energy analysis of key algorithms

in DSC signal processing pipeline, namely CFA Color Interpolation, Color Conver-

sion, Edge Detection/Enhancement, and JPEG Compression. Figure 5.8 shows the

normalized throughput (higher is better) and Figure 5.9 shows the normalized en-

ergy (lower is better) for running these kernel algorithms on Diet SODA FV and

DV modes over SODA [1]. In Figure 5.8, each improvement is categorized by sev-

eral architectural enhancements: wider SIMD width (from 32 to 128), XRAM shuffle
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network, buffer+bypass support, fused instruction, and data-prefetcher. All enhance-

ments except data-prefetcher boost the processing throughput by ∼3x for Diet SODA

FV mode. However, when we run the Diet SODA in DV mode, the throughput is de-

creased by∼10x because of reduced clock frequency and increased hardware overhead.

In Diet SODA DV mode, data-prefetcher performs alignment operations on behalf of

SIMD datapath, which result in ∼10x speedup again. On average, Diet SODA DV

mode decreases the processing throughput by a factor of 2.5. However, Figure 5.9

show that Diet SODA DV mode achieves ∼50% and ∼65% energy improvement over

SODA and SODA FV mode respectively. A detailed analysis is presented next.

!"

!#$"

%"

%#$"

&"

&#$"

'"

'#$"

()*+" *,-."

()*+/00"

12"345-"

*,-."

()*+/00"

*2"345-"

()*+" *,-."

()*+/00"

12"345-"

*,-."

()*+/00"

*2"345-"

()*+" *,-."

()*+/00"

12"345-"

*,-."

()*+/00"

*2"345-"

()*+" *,-."

()*+/00"

12"345-"

*,-."

()*+/00"

*2"345-"

!
"
#$

%
&'
()
*
+,
-
#"
.
/
-
0
.
1+

56.6"78-9-.:;-8"

9<=-5",>=.8<:?4>"

@<A-8B@C76=="

DE+F"

%&G/H,5-"

@6=-"

CFA Color Interpolation Color Conversion Edge Detection/
Enhancement JPEG Compression

SODA          SODA          SODA          SODA          SODA          SODA          SODA          SODA          

Figure 5.8: Normalized throughput of Diet SODA FV and DV modes over SODA for
kernel DSC algorithms. Speedups are broken into five categories: wider
SIMD width (128), XRAM crossbar, buffer+bypass, fused instruction,
and data prefetcher. Data-prefetcher runs only in DV mode.

CFA color interpolation: While preprocessing algorithms deal with only one

color component (R, G, or B) per each pixel location, CFA color interpolation gen-

erates all three components for each pixel location. Therefore, the efficient shuffle

operation within neighboring pixels is crucial in this kernel algorithm. A wider SIMD
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Figure 5.9: Normalized energy for the DSC kernel algorithms over SODA.

width and XRAM crossbar are the main contributors (2.2x) of the speedup. In addi-

tion, fused-operation such as shuffle/add and shuffle/subtract helps reducing latency.

In DV mode, the SIMD data-prefetcher offloads the shuffling operations from the

SIMD pipeline, which achieves an additional 23% of speedup from reduced perfor-

mance due to near-threshold operations.

Color conversion: As shown in Table 1, Color Conversion contains large amounts

of DLP because the main operation of the kernel algorithm is the vector-multiplication.

Therefore, the wider SIMD width contributes a large speedup (2x). In Diet SODA

DV mode, 2D memory access for vector multiplication is enabled by using SIMD data

prefetcher, which makes the algorithm run more efficiently because the SIMD pipeline

do not need to take unnecessary clock cycles for alignment operations.

Edge detection/enhancement: Because human eyes are more sensitive to the

luminance component (Y) compared to color components (Cr and Cb), Edge De-

tection/Enhancement works with only the Y component. Although this edge detec-

tion/enhancement algorithm deals with only one component per each pixel location,

a 3x3 matrix convolution is performed requiring significant processing time and shuf-
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fling for MAC calculations and alignment respectively. Figure 5.8 shows 1.8x speedup

from the wider SIMD width and 0.7x speedup from XRAMs and fused-instructions.

JPEG compression: Discrete cosign transform (DCT), quantization, and en-

tropy decoding are main algorithms for JPEG compression. Although DCT and quan-

tization are well suitable for SIMD datapath, entropy decoding is the representative

sequential process including run-length encoding and Huffman coding. Therefore, the

speedup using the wider SIMD width is limited by the portion of DCT and quanti-

zation execution time as shown in Figure 5.8. The reduced performance induces the

worst energy efficiency among other kernel algorithms shown in Figure 5.9.

5.5.5 Comparison With Other Solutions

The DSC image signal processing pipeline in Figure 5.10 [42] is used to compare the

performance of Diet SODA with one high-end commercial DSP and one coarse-grained

reconfigurable image stream processor — TI TMS320C64x [48] and CRISP [42]. The

pipeline is divided into three task groups: 1) color gain adjustment, gamma correction

and CFA interpolation; 2) noise reduction and smooth filter; and 3) color space

conversion and edge enhancement.

White 
Balance

Gamma
Correction

CFA 
Interpolation

Noise
Reduction

(Media Filter)

Smooth Filter
(3x3 LPF)

Color Space 
Conversion

Edge 
Enhancement

Task Group 1 Task Group 2 Task Group 3

Figure 5.10: A Test DSC image signal pipeline [42]

Table 5.6 shows the execution time comparison with TMS320C64x, CRISP, and

Diet SODA for a 4072x2720 image. Results show that Diet SODA is approximately
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140x and 1.6x faster than TMS320C64x and CRISP, respectively. The wide SIMD

datapath allows the DSC image signal processing algorithms to operate on many pix-

els at the same time. In addition, scatter-gather data prefetcher helps data alignment

issues.

TMS320C64x [48] CRISP [42] *Diet SODA PE
Task Group 1 6440 ms 220 ms 110 ms
Task Group 2 20550 ms 110 ms 80 ms
Task Group 3 9690 ms 110 ms 80 ms
Total 36680 ms 440 ms 270 ms

Table 5.6: Execution Time Comparison with TI TMS320C64x, CRISP, and Diet
SODA. Task Group 1 - White Balance, Gamma Correction, CFA Inter-
polation; Task Group 2 - Noise Reduction, Smooth Filter; Task Group 3
- Color Space Conversion, Edge Enhancement. *Diet SODA operates in
DV mode.

Table 5.7 shows comparisons of technology, area, power consumption, and normal-

ized energy with TMS320C64x and CRISP. Normalized power and area results for

90nm technology are estimated using a quadratic scaling factor based on Predictive

Technology Model [49]. The results show that the energy efficiency of Diet SODA is

more than 340x better than that of TMS320C64x and also comparable to that of the

reconfigurable image stream processor, CRISP [42]. Even though we show comparable

energy and only slightly improved performance numbers over the CRISP design, our

design is more flexible and maintainable because the reconfigurable interconnection

and heterogeneous processing elements of CRISP must be manually designed before

fabrication.
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TMS320C64x [48] CRISP [42] Diet SODA PE
Tech. 0.13um 0.18um 90nm
Freq. 600MHz 115MHz 400MHz,50MHz
Power 718mW@1.2V 218mW@1.8V 122mW@DV**
Area* 34.5mm2 1.9mm2 10.3mm2

Energy* 11k 9.3 32.4

Table 5.7: Chip Statistics and Energy Comparison with TI TMS320C64x, CRISP
and Diet SODA. *Area and energy are normalized to 90nm technology.
**Diet SODA operates in DV mode - 1V and 600mV.

5.6 Related Work

The real-time constraints of media (image/video) applications require high-performance

but low-power processors for portable devices. In addition, as pre-/post-processing to

improve image/video quality are becoming more important, flexibility is another im-

portant decision factor. To satisfy real-time constraints and programmability, three

types of image/video processors have been used: SIMD, stream processors and recon-

figurable processors.

SIMD-based processors such as SODA [1], NXP’s EVP [8], Sandbridge’s Sand-

blaster [6] and Icera’s DXP [4], use multiple processing elements working in SIMD

fashion to exploit high data level parallelism. These types of architectures usually

support VLIW execution and use software-managed scratchpad memories to meet the

real time constraints. Each SIMD processor includes special characteristics such as

very wide SIMD width in SODA [1], deeply pipelined execution for chained operations

in DXP [4], and multi-threading in Sandblaster [6]. Although many DLP-intensive

DSC algorithms are efficiently implemented in SIMD manner [52, 53], SIMD-based

processors usually suffer from large power consumption and hardware cost because of
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high bandwidth requirements. Diet SODA uses near-threshold operation to reduce

energy consumption.

Stream processors such as Imagine [50] and SPI [51] have proved to be efficient

solutions for media processing applications. Stream processors organize an applica-

tion explicitly into streams of data and compute-intensive kernels. A host processor

sends stream instructions to the processors and the arithmetic clusters in the proces-

sors operate in SIMD fashion. In addition, stream processors employ data locality

and concurrency by compounding complex SIMD kernel computations to reduce the

number of vector register read/write operations and power dissipation. Although

existing stream processors achieve high performance for media applications, complex

architectural components are an overkill for DSC applications.

Reconfigurable architectures can be classified into two types: coarse-grain and fine-

grain. Coarse-grained reconfigurable architecture such as REMARC [19] have been

used for media processing. In addition, ADRES [10] automatically maps applications

onto coarse-grained reconfigurable arrays that are tightly coupled to VLIW processors

and exploits loop-level and instruction-level parallelism to maximize functional units.

XiSystem’s XiRisc [13] is an example of a fine-grain reconfigurable architecture.

Diet SODA differs from all these architectures in that it operates in the near-

threshold voltage region. This enables new memory system designs and radically

reduced power consumption.
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5.7 Summary

In this chapter, we have proposed a programmable substrate for an ultra-low power

signal processor using near-threshold operation. Near-threshold operation reduces

energy but suffers from degraded performance, but this can be overcome by using

parallelism. DSC algorithms on SIMD architectures offer an abundant amount of

data level parallelism, forming a natural synergy with near-threshold operation. In

addition, because memory systems operate at faster rates than SIMD data engines in

near-threshold operation mode, scatter-gather prefetcher was introduced to exploit

latency difference and lower instruction counts. Diet SODA also uses a dual voltage

mode to increase performance for kernels that requires high processing power. Our

results show that Diet SODA with a 128-lane SIMD unit operating at 600mV and

50MHz in an IBM 90nm technology can meet the processing requirements of full-HD

resolution at 30 fps while consuming only 122mW. This is on the order of 130x better

performance and approximately 340x better energy efficiency over a DSP solution,

and provides a more flexible solution than equivalently powered ASIC designs.

Although the near-threshold techniques brings a large opportunity to energy-

efficient and high-performance architecture designs like Diet SODA, they suffer from

large delay variations due to increased process variability. Therefore, our next re-

search steps are to assess the effects of variations in near-threshold operations on a

SIMD architecture, and to explore architectural design spaces to tolerate the process

variability.
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CHAPTER 6

Managing Process Variation in Near-Threshold

Wide SIMD Architectures

Near-threshold operation has emerged as a competitive approach for energy-

efficient architecture designs. In particular, a combination of near-threshold cir-

cuit techniques and parallel SIMD computations achieves excellent energy efficiency

for easy-to-parallelize applications. However, near-threshold operations suffer from

delay variations due to increased process variability. This is exacerbated in wide

SIMD architectures where the number of critical paths are multiplied by the SIMD

width. This chapter provides a systematic in-depth study of delay variations in near-

threshold operations and shows that delay variations are not that large. As a re-

sult simple techniques such as structural duplication, supply voltage margining, and

frequency margining are sufficient to mitigate the timing variation problems even

in wide SIMD architectures. By employing these simple techniques without com-

plex micro-architectural modification, we show that variation-induced timing errors
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in wide SIMD architectures can be effectively reduced at the cost of marginal area

and power overhead. As a case study in 90nm technology, a variation-aware near-

threshold wide SIMD architecture is presented with the following key enhancements:

1) replication of SIMD functional units to replace underperforming ones and 2) use

of an XRAM crossbar to efficiently set up the new error-free SIMD datapath.

6.1 Introduction

A near-threshold wide SIMD architecture for DSC signal processing algorithms,

Diet SODA [60], has demonstrated that a combination of near-threshold circuit tech-

niques and wide SIMD platforms achieves significant energy savings while meeting

real-time processing constraints. However, such near-threshold designs are impacted

greater by process variations than traditional designs, because the on-current (Ion)

in the near-threshold voltage region is highly sensitive to variations in Vth. Increased

process variations in advanced technology nodes further exacerbates the problem,

providing many challenges for process engineers and circuit designers [62]. These

variation-induced timing errors are much more critical in wide SIMD architectures

for two reasons. First, the probability that all SIMD datapaths are error-free decreases

when variations are severe, because the number of critical paths are multiplied by the

SIMD width. Recent work also shows that there is a significant performance drop

in SIMD architectures as single-stage-error probabilities increase [63]. Second, com-

monly used error-tolerating methods such as pipeline stalling or re-execution result

in greater performance and power penalties due to problems in one lane impacting
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all other lanes. To tolerate variation-induced timing errors in near-threshold op-

erations, complex architectural enhancements have been considered. For example,

Synctium [63] proposed decoupled parallel SIMD pipelines and pipeline weaving us-

ing decoupling queues and micro-barriers.

In this chapter, we investigate the effect of process variations in wide SIMD archi-

tectures operating at near-threshold voltages. Delay variations in the near-threshold

regime are first analyzed for present and future technology nodes (90nm, 45nm, 32nm,

and 22nm). Our study shows that delay variations in near-threshold operations have

been over-estimated in the past. In 90nm technology, although delay variation (3σ
µ

)

at 0.5V in a single gate increases by ∼2.5x compared to that at 1V, the variation

decreases in a chain of gates. For instance, the variation is only ∼1.5x for a chain

of 50 gates. This is an example of mean-value theorem where the uncorrelated vari-

ations are averaged out over the chain. Working against this effect is the fact that

the datapath is a wide SIMD machine, thus increasing the number of these critical

paths. Nevertheless, the corresponding performance degradation for such wide sys-

tems in 90nm technology is less than 5%. Therefore, simple techniques are sufficient

to tolerate and mitigate the timing variation problems. Three techniques are ex-

plored in this work: 1) structural duplication to replace underperforming modules, 2)

voltage margining to reduce both average delay and its variation, and 3) frequency

margining to increase delay margins. The analysis shows a combination of these sim-

ple techniques can effectively reduce variation-induced timing errors in wide SIMD

architectures with marginal area and power overhead.
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We present a case study of an energy-efficient variation-aware wide SIMD archi-

tecture in 90nm technology. The architecture is based on Diet SODA [60] and has

enhanced features such as 1) simple duplication of SIMD functional units and 2) use

of XRAM [66] crossbars. The duplicated SIMD modules serve as spares to replace

slow (or faulty) ones. The XRAM crossbars set up correct (error-free) SIMD data-

path connections as well as support global sparing scheme to minimize the required

duplication. The customized architecture is implemented in Verilog and synthesized

in IBM 90nm technology using Synopsys physical compiler to obtain power and per-

formance numbers.

The rest of the chapter is organized as follows. Section 6.2 discusses variation

issues of near-threshold operations at circuit- and architecture-levels. Section 6.3

explores techniques to tolerate and mitigate the variation-induced timing errors. Sec-

tion 6.4 introduces a case study on variation-aware wide SIMD architectures. Sec-

tion 6.5 discusses the related work and Section 6.6 concludes the chapter.

6.2 Variations in Near-threshold Operation

As described in Section 5.2, near-threshold designs significantly reduce energy

consumption. However, Ion is highly sensitive to variations in Vth, resulting in de-

lay variations which diminish the advantage of near-threshold operations. RDFs

(Random Dopant Fluctuations) are known to be the dominant factor of Ion varia-

tions in near-threshold operations [61]. In addition, LER (Line Edge Roughness) is

a significant factor for advanced technology nodes. To evaluate the effect of cross
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chip variations in the near-threshold voltage regime, Monte Carlo simulations with

Hspice are performed for 90nm/45nm commercially used GP (General Purpose) mod-

els and 32nm/22nm PTM (Predictive Technology Model [49]) HP (High Performance)

models. Normal distributions for two dominant variation sources, Vth and LER, are

inserted into the 32nm/22nm PTM HP models.

In this section, we examine how much delay variations occur in the near-threshold

voltage region at two levels: (A) circuit-level variations and (B) architecture-level

variations.

6.2.1 Circuit-level Variations

0 2 4 6 8
x 10−10

0

100

200

300

400

3σ/µ = 22.25%@0.6V
3σ/µ = 17.74%@0.7V

3σ/µ = 16.29%@0.8V
3σ/µ = 15.70%@0.9V

3σ/µ = 15.58%@1.0V

Delay (s)

Occurences

0 0.5 1 1.5 2 2.5
x 10−8

0

100

200

300

400

500

Delay (s)

Occurences

3σ/µ = 9.43%@0.5V
3σ/µ = 6.81%@0.6V

3σ/µ = 6.17%@0.7V
3σ/µ = 5.96%@0.8V

3σ/µ = 5.84%@0.9V

3σ/µ = 5.76%@1.0V

(a) a single inverter (b) a chain of 50 FO4 inverters
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Figure 6.1: Delay distributions of (a) a single inverter and (b) a chain of 50 FO4
inverters with different supply voltages (0.5V, 0.6V, 0.7V, 0.8V, 0.9V
and 1.0V) using 90nm GP technology. A thousand samples for each
supply voltage are simulated.

Figure 6.1 shows that the delay distributions of a single inverter and a chain

of 50 FO4 (Fan-out of 4) inverters using 90nm GP models. The delay variation

(3σ/µ) of a single inverter significantly increases as Vdd reduces; for example, 3σ/µ
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is increased from 15.58%@1.0V to 35.49%@0.5V. Although the delay variations in

near-threshold voltage region cause large performance degradation on a single gate,

the uncorrelated random within-die variations average out over a long chain of gates

as shown in Figure 6.1(b). The delay variation (3σ/µ) of a chain of 50 FO4 inverters

is only 9.43%@0.5V compared to that of a single inverter (35.49%@0.5V). Thus the

delay variation is not significant for medium to long chains and is expected to not be

significant for datapath components. A similar observation was made in [65] which

showed only 8.4%@0.5V delay variation for a 64-bit Kogge-Stone adder. Therefore,

part of the delay variation problem can be alleviated by implementing longer logic

chains [61].
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Figure 6.2: Delay variations (3σ/µ) (%) at 0.55V of a chain of FO4 inverters vs.
chain length (N) using four technology models (90nm GP, 45nm GP,
32nm PTM HP, and 22nm PTM HP). A thousand samples for each data
point are simulated.

Figure 6.2 shows delay variation (3σ/µ) at 0.55V as a function of a chain length

(N) of FO4 inverters using four different technology models. Although delay vari-

ations reduce as N increases, the amount of reduction (∆3σ/µ
∆N

) decreases with N .
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Therefore, implementing the logic with a long chain of gates will not solve all the

timing variation problems. In addition, technology scaling exacerbates the delay

variations [62]. As can be seen in Figure 6.2, technology scaling from 90nm to 22nm

increases delay variation (3σ/µ) at 0.55V by ∼2.5x for a chain of 50 FO4 inverters.
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Figure 6.3: Delay variations (3σ/µ) (%) of a chain of 50 FO4 inverters vs. supply
voltage (Vdd) using four technology models (90nm GP, 45nm GP, 32nm
PTM HP, and 22nm PTM HP). A thousand samples for each data point
are simulated.

Figure 6.3 shows the delay variations of a chain of 50 FO4 inverters as a func-

tion of Vdd. The 22nm PTM HP and 32nm PTM HP models are simulated up to

their nominal voltages—800mV and 900mV respectively. As Vdd decreases, the delay

variations exponentially increases. This trend exacerbates with technology scaling;

for example, the increase in delay variation (3σ/µ) from 1V to 0.5V is only ∼4% in

90nm technology, which is very small compared to ∼14% increase in 22nm technology

(from 11%@0.8V to 25%@0.5V). This is because LER causes relatively high varia-

tions on devices in advanced technology nodes [74]. However, strict design rules and

new manufacturing processes such as the use of metal-gates with high-k material or
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silicon-on-insulator (SOI) [73] can help limit the variability. In addition, advances

in lithography like double patterning [75] and immersion [76] are likely to reduce the

effect of LER as well.

6.2.2 Architecture-level Variations

To examine the variation effects in a wide SIMD architecture, the following two

assumptions (A1 and A2) and two properties (P1 and P2) are used.

(A1) A critical path of a SIMD architecture is emulated with a chain of 50 FO4

inverters.

(A2) A hundred critical paths exist in one SIMD lane.

(P1) The delay of one SIMD lane (1-wide) is determined by the slowest critical path

in the lane.

(P2) The delay of an N -wide SIMD datapath is determined by the slowest of the N

SIMD lanes.

A chain of 50 FO4 inverters is used to emulate a critical path of a wide SIMD

architecture because they are similar in terms of average delay and variation at all

voltages, not just at near-threshold voltages. We chose a chain configuration because

it is a standard practice in circuit-level analysis (A1). Although a generated synthesis

report shows ∼50 critical paths in each SIMD lane, another 50 near-critical paths are

also considered because they could become critical due to increased variations in the
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near-threshold regime (A2). Properties, P1 and P2, are the standard simulation steps

based on these assumptions.
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Figure 6.4: Delay distributions for a critical path (a chain of 50 FO4 inverters) at
Vdd=1V, one SIMD lane at Vdd=1V, and 128-wide SIMD datapath at
near-threshold supply voltages from 0.5V to 1V. 90nm GP model is used
and a 10,000 samples are simulated.

Figure 6.4 shows the delay distributions for a critical path (a chain of 50 FO4

inverters), one SIMD lane (1-wide system) operating at 1V, and 128-wide systems

operating at near-threshold supply voltages. The delay unit on the x-axis is FO4

inverter delay which is different from absolute delay (in ns) used in Figure 6.1. For

example, the delay of a chain of 50 FO4 inverters operating at 0.5V is 22.05ns (= 50

FO4 delay@0.5V); on the other hand, that at 0.6V is 8.99ns (= 50 FO4 delay@0.6V).

In this chapter, FO4 delay is used to measure variation effects in the near-threshold

voltage region.

As can be seen in Figure 6.4, the delay distribution of a 1-wide SIMD datapath@1V

is shifted to the right compared to that of one critical path@1V because the delay

of a 1-wide system is determined by the maximum delay of a hundred critical paths.

The same reasoning can be made to explain the shift in the delay distribution from
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1-wide@1V to 128-wide@1V. The 128-wide SIMD datapath is slower than the 1-

wide SIMD datapath because the possibility of having slow critical paths increases.

Another characteristic is that the delay distributions of 128-wide systems operating

at low supply voltages drift to the right. This shift is because the delay distribution

of a critical path at near-threshold voltages has a wider spread than that at nominal

voltage.
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Figure 6.5: Performance drop (%) in the near-threshold voltage region for a 128-
wide SIMD architecture. 90nm/45nm GP and 32nm/22nm PTM HP
models are used.

In order to evaluate performance degradation due to near-threshold voltage op-

erations, we compare the 99% point of FO4 chip delay (fo4chipD) distributions.

The performance degradation of a 128-wide SIMD architecture operating at near-

threshold voltage (NTV) region compared with the performance at nominal voltage

(or full voltage, FV) is given by fo4chipD@NTV−fo4chipD@FV
fo4chipD@FV

. Figure 6.5 shows the per-

formance drop as a function of supply voltage in four technology nodes. As expected,

the performance drop increases as the supply voltage decreases. For example, in
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90nm GP model, the performance drop at 0.5V, 0.55V, and 0.6V is ∼5%, ∼2.5%,

and ∼1.5% respectively compared to 1V operation. In addition, the increase in per-

formance degradation of lower technology nodes is a lot higher. For example, the

performance drop at 0.5V climbs to ∼18% in 22nm PTM HP model.

This analysis shows that delay variations in wide-SIMD architectures is not that

large. It is only ∼5%@0.5V in 90nm GP and increases to ∼20% for 22nm PTM HP

model. It is very likely that the variations will be lower in 22nm real silicon. Thus

complex architectural enhancements are not needed to handle these delay variations.

In fact, simple techniques are sufficient to handle./pact2011/figures/ the variation-

induced delay variations in wide SIMD architectures, as will be described in the

following Section.

6.3 Techniques to Control Effect of Variations

There are two mechanisms to tolerate variation-induced timing errors in a scalar

pipeline: 1) flushing the pipeline and re-executing a instruction with relaxed timing or

2) waiting one more cycle for the pipeline to generate the correct output. However,

applying these approaches to wide SIMD architectures is problematic because the

power penalty of the flush-rollback process in the SIMD pipeline is much larger than

that of a scalar pipeline. For example, an error encountered in one SIMD lane would

cause the other SIMD lanes to stall, flush, and execute the same operations again.

Recent work also shows that there is a significant performance drop in SIMD archi-

tectures as single-stage-error probabilities increase [63]. To prevent variation-induced
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timing errors in near-threshold operation, we analyzed the effect of three techniques:

1) structural duplication, 2) voltage margining, and 3) frequency margining.

6.3.1 Structural Duplication

Structural duplication is a well-known technique for extending reliability. Re-

dundant micro-architectural structures are added to the processor and designated as

spares [72]. When some architectural modules fail in time, the spare structures re-

place the failed ones to extend lifetime reliability. This structural duplication idea can

be used to handle slow SIMD lanes that fail to operate within a given clock period.

If the faulty SIMD lanes can be identified at test time, the spare SIMD lanes can be

used to replace them.

We studied a 128-wide SIMD architecture and analyzed how many SIMD func-

tional unit duplications (α spares) are required to tolerate variation-induced timing

errors while running in the near-threshold voltage regime. Monte Carlo simulations

were performed to generate FO4 delay distribution curves for the duplicated systems

as shown in Figure 6.6.

The delay distribution of a 128-wide machine@1V is used as the baseline and the

delay distribution of 128-wide+α-spares system@0.55V is used to demonstrate the

effect of SIMD functional unit duplications. For example, the distribution curve of

128-wide+6-spares@0.55V is essentially the distribution of 128 good SIMD datapaths

out of 134 (128+6) SIMD datapaths; i.e. six slowest SIMD datapaths are dropped

to generate this delay distribution. As can be seen, extra SIMD datapaths help shift
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Figure 6.6: Delay distributions for SIMD duplicated systems (128-wide + α-spares)
using 90nm GP model. A 10,000 samples for each curve are simulated.

delay distributions to the left and make the spread smaller.

90nm 45nm 32nm 22nm

Vdd spares area ovhd. power ovhd. spares area ovhd. power ovhd. spares area ovhd. power ovhd. spares area ovhd. power ovhd.

0.50V 28 12.1% 4.6% >128 > 57.8% > 25.0% >128 > 57.8% > 25.0% >128 > 57.8% > 25.0%

0.55V 6 2.6% 1.0% 84 37.2% 15.3% >128 > 57.8% > 25.0% 80 35.3% 14.5%

0.60V 2 0.9% 0.3% 26 11.2% 4.3% 48 20.9% 8.2% 22 9.5% 3.6%

0.65V 1 0.4% 0.2% 10 4.3% 1.6% 12 5.1% 1.9% 7 3.0% 1.1%

0.70V 1 0.4% 0.2% 4 1.7% 0.6% 6 2.6% 1.0% 3 1.3% 0.5%

Table 6.1: The required number of spares and corresponding area and power over-
head of structural duplication scheme for four technology nodes. The
area and power numbers are based on Diet SODA [60].

We match the 99% FO4 delay point of the duplicated systems operating at near-

threshold voltages with that of the baseline architecture (128-wide) operating at nomi-

nal voltage to obtain the required number of additional SIMD spares. This experiment

is repeated for four technology nodes (90nm, 45nm, 32nm, and 22nm), and the num-

ber of spares and corresponding area and power overhead at each supply voltage are

presented in Table 6.1. We see that as supply voltage reduces, the number of SIMD

spares exponentially increases to tolerate effect of delay variations. For example, in
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90nm technology node, the number of spares increases from two spares for 0.6V to

six spares for 0.55V and 28 spares for 0.5V. This is because, as shown in Figure 6.6,

adding more spare units shifts the chip delay distribution to the left, but makes it

tighter. For lower technology nodes, delay variations are larger and excessive number

of spares is required to match the 99% FO4 delay point of the baseline architecture.

The additional SIMD functional unit (FU) spares are used to replace underper-

forming ones that are identified at test time. The faulty SIMD FUs can be power-

gated because they are not used at run time. Therefore, the power overhead of the

structural duplication scheme is limited only to enlarged routing, thus leading to

minimal impact on power consumption. However, the increased SIMD width also

requires a wider shuffle network operating at nominal voltage whose power consump-

tion cannot be ignored. Thus, for low voltages (∼0.50V) where the variation-induced

timing errors are severe, the structural duplication scheme has a large overhead.

6.3.2 Voltage Margining

Vdd power ovhd. power ovhd. power ovhd. power ovhd.

0.50V 1.0% 3.3% 2.0% 2.8%

0.55V 0.6% 2.8% 1.7% 2.7%

0.60V 0.4% 2.3% 1.5% 1.6%

0.65V 0.3% 1.8% 1.1% 1.5%

0.70V 0.2% 1.5% 0.9% 1.1%

90nm 45nm 32nm 22nm

7.7 mV

17.6 mV

16.4 mV

11.1 mV

11.5 mV

9.6 mV

Vdd margin Vdd margin

12.1 mV

11.1 mV

10.4 mV

8.9 mV

Vdd margin

19.6 mV

18.2 mV

16.2 mV

14.0 mV

12.8 mV

Vdd margin

5.8 mV

4.1 mV

2.9 mV

2.2 mV

1.7 mV

Table 6.2: Required voltage margin to tolerate variation-induced timing errors for
a 128-wide SIMD architecture operating at near-threshold voltages and
corresponding power overhead for four technology nodes. The final supply
voltage should be Vdd + Vdd margin (VM ). The power overhead is based
on Diet SODA [60].

As supply voltage (Vdd) decreases, the delay of a chain of 50 FO4 inverters expo-
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nentially increases. Therefore, a small increase in supply voltage in the near-threshold

voltage region can help compensate for variation-induced timing errors without in-

creasing the clock period.

To gauge how much extra supply voltage is required, we first generated the FO4

chip delays (fo4chipD) and the corresponding absolute chip delays (chipD in ns) of a

128-wide SIMD architecture operating at near-threshold voltages (NTV s). Then, the

chipD@NTV is scaled based on the ratio of fo4chipD@FV and fo4chipD@NTV .

The normalized chipD@NTV is used as the baseline target delay for the architecture

operating at near-threshold voltage to achieve the same level of variations at nominal

voltage. Next, we increase supply voltage at a fine grain to find required voltage

margin (VM) that makes chipD@NTV+VM less than the target delay. Figure 6.7

illustrates how voltage margin is obtained for a 128-wide SIMD datapath operating

at 600mV for a specific target delay. Delay distributions of a 128-wide SIMD archi-

tecture operating at 600mV, 605mV, 610mV, 615mV, and 620mV are generated. In

addition, delay distributions of 128-wide+α-spare SIMD duplicated systems operat-

ing at 600mV are also shown in the figure. As can be seen, the chipD (99% point

of delay distribution) of a 128-wide SIMD architecture operating at ∼615mV is less

than target delay. Therefore, ∼15mV is the voltage margin at design time that is

required for a 128-wide SIMD architecture operating at 600mV to tolerate its delay

variation.

Table 6.2 lists supply voltages (Vdd), voltage margins and the corresponding power

overhead for four different technology nodes. Although a very small increase in sup-
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Figure 6.7: Delay distributions of 128-wide SIMD architecture operating at 600mV,
605mV, 610mV, 615mV and 620mV. For comparison, delay distributions
of 128-wide+α-spare SIMD duplicated systems operating at 600mV are
also presented. A 10,000 samples for each curve are simulated with
45nm GP model.

ply voltage is sufficient for the 90nm technology node, lower technology nodes re-

quire much larger supply voltage margins. For example, in 90nm technology, at

Vdd=500mV, the supply voltage has to be increased to ∼506mV (500mV+5.78mV),

but this jumps to ∼520mV in 45nm technology.

This extra supply voltage margin applies to all modules operating in the near-

threshold voltage domain and thus incurs more power consumption than structural

duplication methods for low variations. However, as variation increases, the voltage

margining method offers a more power-efficient solution than the structural duplica-

tion scheme.
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Vdd Tclk(ns) Tva-clk(ns) perf. drop Tclk(ns) Tva-clk(ns) perf. drop Tclk(ns) Tva-clk(ns) perf. drop Tclk(ns) Tva-clk(ns) perf. drop

0.50V 24.0 25.3 5.2% 1.9 2.1 11.7% 5.5 6.3 14.2% 3.1 3.7 18.5%

0.55V 14.3 14.7 2.8% 1.4 1.6 8.2% 2.9 3.2 10.3% 1.8 2.0 12.8%

0.60V 9.8 9.9 1.5% 1.2 1.2 5.6% 1.8 1.9 6.9% 1.3 1.4 8.4%

0.65V 7.3 7.4 0.9% 1.0 1.0 3.9% 1.3 1.3 4.5% 0.9 0.9 5.4%

0.70V 5.8 5.8 0.6% 0.9 0.9 2.7% 1.0 1.0 3.0% 0.7 0.7 3.5%

90nm 45nm 32nm 22nm

Table 6.3: Designed clock period (Tclk), variation-aware clock period (Tva−clk), and
corresponding performance degradation at near-threshold voltages for
four technology nodes. The power overhead is based on Diet SODA [60].

6.3.3 Frequency Margining

To avoid variation-induced timing errors, the clock period can be increased when

there is very loose realtime constraint so that the increased clock period can still make

the timing requirements. Table 6.3 presents desired clock period (Tclk), variation-

aware clock period (Tva−clk), and corresponding performance degradation for several

near-threshold voltages. As we move to advanced technology nodes, required delay

margins reach almost 20%, which makes this frequency margining scheme an infeasible

method to tolerate variation-induced timing errors.

In addition, the clock frequency of near-threshold SIMD datapath is closely related

to that of a memory system; for example, the SIMD clock period (Tclk@NTV ) has to

be multiples of the memory clock period (Tclk@FV ) to avoid complex synchronization

between two sub-systems. Therefore, frequency margining has to be made with careful

consideration of the underlying architecture.

Another method of handling variation-induced timing errors is to synthesize the

design for a higher frequency. An issue with this technique is that it cannot be used

when an architecture is already at its maximum synthesizable frequency.
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6.3.4 Comparisons Between Variation-Tolerating Techniques

In this section, the power overhead of structural duplication and voltage margin-

ing is compared and summarized (see Figure 6.8). To achieve iso-throughput perfor-

mance, frequency margining is not considered here.

(a) 90nm GP (b) 45nm GP

(c) 32nm PTM HP (d) 22nm PTM HP
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Figure 6.8: Power overhead comparison between structural duplication and voltage
margining schemes for four technology nodes: (a) 90nm GP, (b) 45nm
GP, (c) 32nm PTM HP, and (d) 22nm PTM HP

Structural duplication scheme outperforms voltage margining scheme in high near-

threshold voltage regions (0.6V ∼ 0.7V) where variations are very low. However, as

technology scales and supply voltage decreases, the voltage margining scheme starts

to outperform the structural duplication scheme. This is because a slight increase in

supply voltage exponentially reduces delay. Figure 6.8 serves as a guideline in which
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variation-tolerating scheme must be selected for each supply voltage. For example,

in 45nm technology node, when Vdd=0.6V, duplication method incurs ∼4% power

overhead compared to ∼2% overhead of voltage margining scheme; therefore voltage

margining is the preferred choice.

Although voltage margining offers a better solution than structural duplication for

lower technology nodes as Vdd decreases, the structural duplication scheme still can

significantly help manage variation-induced timing errors. Figure 6.9 shows chip de-

lays for a 128-wide SIMD architecture operating at 600mV, 605mV, 610mV, 615mV,

and 620mV using 45nm GP model. Target chip delay is calculated as described in

Section 6.3.2. Based on this figure, the target chip delay can be achieved by having

two additional SIMD lanes with 10mV voltage margin or eight additional SIMD lanes

with 5mV voltage margin. Table 6.4 summarizes several design choices and the cor-

responding power overhead. As can be seen, a combination of two additional SIMD

lanes and 10mV voltage margin achieves minimal power overhead (1.72%) compared

to only structural duplication (4.28%) or only voltage margining (2.39%). Therefore,

a combination of voltage margining and structural duplication can effectively tolerate

and mitigate timing variation problems for lower technology nodes.

duplications voltage margin power overhead
26 0 mV 4.3 %
8 5 mV 2.0 %
2 10 mV 1.7 %
1 15 mV 2.3 %
0 17 mV 2.4 %

Table 6.4: Design choices for a 128-wide@600mV system in 45nm technology node.
Combinations of structural duplication and voltage margining are pre-
sented with corresponding power overhead./pact2011/figures/.
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Figure 6.9: Chip delays for a 128-wide SIMD datapath operating at from 600mV
to 620mV. Target delay is a design constraint for the 128-wide near-
threshold system operating at 600mV. 45nm GP model is used.

6.4 Variation-Aware SIMD Architecture

In this section, we propose a variation-aware version of Diet SODA [60] to tolerate

and mitigate variation-induced timing errors. The architecture is implemented in

90nm technology and the near-threshold SIMD datapath operates at 0.60V. Based

on our analysis (Section 6.3.4), we exploited structural duplication scheme (two

SIMD functional unit spares) for better power efficiency.

6.4.1 PE Design

Figure 6.10 shows the architectural details of a single processing element (PE) of a

variation-aware wide SIMD architecture. The PE consists of 1) 64 KB multi-banked

SIMD memory, 2) 4 KB scalar memory, 3) SIMD data prefetcher, 4) SIMD pipeline

for vector operations, 5) scalar pipelines for sequential operations, and 6) 4-wide

address generation unit (AGU) pipeline for providing local memory addresses for four
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memory banks. The PE operates in two different voltage domains: full voltage and

near-threshold voltage. Memory-related modules (1, 2, 3, 5a, and 6 in Figure 6.10)

operate at full voltage because of data retention issues in the near-threshold voltage

regime while SIMD datapath (4 and 5b in Figure 6.10) operates at near-threshold

voltage to lower power consumption.
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Figure 6.10: Processing element (PE) of a variation-ware SIMD architecture. The
PE contains two different voltage domains: full voltage (FV) and near-
threshold voltage (NTV). The PE consists of 1) multi-banked SIMD
memory; 2) scalar memory; 3) data prefetcher, 4) SIMD pipeline, 5a)
scalar pipeline in FV domain, 5b) scalar pipeline in NTV domain, and
6) four address generation unit (AGU) pipelines. The modified and
inserted modules have been shown using shaded blocks.

The multi-banked SIMD memory system consists of four memory banks; each

bank is 32-wide 16-bit 256-entries (16KB). The SIMD data prefetcher coordinates

with 128-wide buffer and 128 x 130 XRAM crossbar to support complex alignment

operations such as two-dimensional data access that are widely used in multimedia
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algorithms. The four AGU pipelines are dedicated to the four SIMD memory banks

and SIMD data prefetcher to handle memory address calculations. The SIMD pipeline

consists of a 128-wide 16-bit 32-entry SIMD register file (RF), 130 functional units

(FUs), a 130 x 128 XRAM crossbar (SIMD shuffle network (SSN)), and a multi-

output adder tree. There are two scalar pipelines, one in each voltage domain; both

pipelines consist of one 16-bit datapath and are used to perform sequential algorithms

in addition to coordinating the SIMD datapath.

A key process in tolerating variation-induced timing errors is to identify which

SIMD lanes fail in a given clock period. Razor techniques [67] are well known for

error detection in scalar pipelines. Although Razor techniques can also help eliminate

dynamic timing errors, this is not considered here because a failure in a single lane

requires entire SIMD datapath to rollback and re-execute. In this context, a more

appropriate use of Razor is to replace the standard pipeline registers next to SIMD

functional units with Razor flip-flops that detect errors at test time and function as

standard pipeline registers at run time.

The SIMD functional units (4-entry buffers and ALU/Multipliers) in the SIMD

pipeline are the only units that are considered for handling the increased delay vari-

ations in near-threshold operations. This is because the critical paths of the system

are in the SIMD functional units. The SIMD RF is not considered here because it is

switched off during near-threshold operations [60]. Although the XRAM crossbar is

vulnerable to variations in the near-threshold voltage regime as conventional SRAMs

are, it is not affected by increased variations because this execution unit already has
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∼15% time slack [66]. Therefore, in this work, we focus only on SIMD functional

units because they were much more sensitive to timing variations.

Based on the analysis in Table 6.1, two additional SIMD functional units are

inserted as spares. In addition, two XRAM crossbars are also expanded from 128x128

to 128x130 and 130x128 to support the spares. Although the number of additional

SIMD spares has been determined, how to place the spares is another interesting

design choice in wide SIMD architectures. This is because the placement method

significantly affects the effectiveness of managing variation-induced delays, as will be

elaborated in the following section.

6.4.2 Placement Method: Global vs. Local

We investigate two placement methods: global sparing and local sparing. The

local sparing scheme groups SIMD functional units into clusters and places a spare

for each cluster. The global sparing scheme places all the spares together.
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Figure 6.11: (a) Local sparing method. An example of 1 out of 4. (b) XRAM
shuffle configuration to bypass faulty SIMD lanes. (c) Global sparing
method. An Example of 10 functional units (8 + 2 spares) with support
of XRAM crossbar. Shaded SIMD functional units are identified as
faulty ones at test time.
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Recently proposed Synctium [63] suggests a local sparing method such as assigning

one spare per every group of four SIMD lanes. Although the local redundancy over-

comes complex re-routing problems, this local sparing method does not work when

there are more than one faulty SIMD lanes in a cluster. Figure 6.11(a) shows how

local functional unit (FU) spares work. Here, functional unit spare (FU-S-0) is used

as a spare for a cluster consisting of FU-0, FU-1, FU-2, and FU-3. If multiple timing

errors occur in this cluster, FU-S-0 cannot replace all the failing FUs. In that case,

either the entire system must slow down or waste energy by increasing the voltage to

meet timing constraints. On the other hand, a global sparing method is capable of

dealing with bursty FU failures because spares are not assigned to specific clusters.

21 21.2 21.4 21.6 21.8 22 22.2 22.4
0

1000

2000

3000

4000

5000

Delay (ns)

Occurrences

8 global spares

4 local spares

8 local spares

16 local spares

32 local spares

Figure 6.12: Delay distribution of local sparing and global sparing schemes. One
global sparing scheme (8 spares) and four local sparing schemes (4, 8,
16 and 32 spares) are considered. A 128-wide SIMD datapath is used
for the simulation.

Figure 6.12 compares the effectiveness of local sparing and global sparing schemes.

Five schemes are considered for the 128-wide SIMD datapath — 8 global spares, 4

local spares (1 out of 32), 8 local spares (1 out of 16), 16 local spares (1 out of 8)
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and 32 local spares (1 out of 4). We see that the global replication scheme with

only 8 spares has a lower average delay and smaller spread compared to all the local

replication schemes. Thus, the global sparing scheme has a lower area and power cost

compared to the local sparing schemes.

Although global sparing effectively solves timing variability issues, it requires com-

plex re-routing. Satpathy et al. recently proposed an area- and power-efficient XRAM

crossbar [66], which exploits the circuit topology of SRAM cells and stores shuffle

configurations at crossing points of the cells to improve performance while reducing

area, power and routing congestions. We make use of the XRAM crossbar to effec-

tively support bypassing underperforming SIMD lanes. Figure 6.11(c) shows how an

XRAM crossbar bypasses faulty SIMD FU-2 and FU-3, and fully utilizes the remain-

ing eight SIMD functional units based on the configuration registers stored in the

XRAM crossbar shown in Figure 6.11(b).

Two 128 x 128 XRAM crossbars already exist in Diet SODA; one in FV domain

and the other one in NTV domain. To support two additional SIMD lanes, the

sizes of the XRAM crossbars are increased to 128x130 (in FV domain) or 130x128

(in DV domain). The corresponding increase in area and power is not substantial.

Furthermore, XRAM crossbar scales well compared to other SIMD shuffle networks

due to inherent circuit topology and smaller control overhead. Thus a combination

of global spares and XRAM crossbars can effectively tolerate the timing variability

problems of wide SIMD architectures.
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6.4.3 Results and Analysis

6.4.3.1 Methodology

The variation-aware SIMD architecture is implemented as an RTL Verilog model

and synthesized in IBM’s 90nm technology. To investigate how much voltage/frequency

scaling in near-threshold operations can be achieved, different types of representative

test circuit (SRAM/RF/ALU) were laid out, and parasitic extraction was performed

and annotated. Then Hspice simulations were done to determine the voltage, fre-

quency, and power characteristics at different supply voltages for each module. To

obtain power numbers, the PE logic of Diet SODA [60] was synthesized with Synopsys

Physical Compiler and scaled to match the representative test circuit.

6.4.3.2 Area and Power

The area and power breakdown of the variation-aware SIMD architecture are

presented in Table 6.5. The preview mode of full-HD images at 30 fps is considered

for the analysis.

The increased area overhead in two additional SIMD functional units, enlarged

XRAM crossbar, and Razor flip-flops are minimal compared to overall system. Un-

derperforming SIMD functional units are power-gated at run time. In addition, Razor

is used only at test time to identify the faulty SIMD functional units; at run time,

inserted delay buffers to prevent hold/setup violations and shadow latches in Ra-

zor are power-gated, and only main flip-flops function as standard pipeline registers.

Therefore, the increased process variation issues in near-threshold operations can be
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Table 6.5: Area and power summary of the variation-aware SIMD architecture run-
ning preview mode of full-HD images at 30 fps using near-threshold op-
eration. The area and power numbers of Diet SODA are also provided
for comparison.

alleviated by simple SIMD functional unit duplications, marginally enlarged XRAM

crossbar, and Razor flip-flops without sacrificing much area and power.

6.4.3.3 Performance

The loss in performance of Diet SODA due to increased variations in near-threshold

computing is ∼2% for 90nm technology as presented in Figure 6.5. As shown in Ta-

ble 6.5, a combination of SIMD functional unit duplication and enlarged XRAM

crossbar eliminates the variation-induced timing errors with little power overhead

(0.3%) without adjusting clock frequency. The deadline timing constraints are met

and the overall application performance remains unaffected. Although it is possible

to exploit extra structural duplication to improve the overall performance, this is not

in this chapter’s scope.
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6.5 Related Work

There has been a large interest in subthreshold designs, resulting in a wide range

of working processors for ultra low power applications. Examples include Sublim-

inal [64], Phoenix processors [71], and the 180mV FFT processor [58]. However,

to reduce the high energy efficiency marginally and improve processing throughput

significantly, near-threshold operations are proposed. In addition, near-threshold op-

eration also combines with parallel computing platforms in a synergistic manner. Zhai

et al. show that exploiting near-threshold techniques achieves substantial energy sav-

ings in chip multi-processing [57] and Kaul et al. presents 494 GOPS/W SIMD vector

processing accelerators operating at 300mV [69].

Although these subthreshold and near-threshold techniques offer great energy ef-

ficiency, variability has become a serious concern for operating at extremely low volt-

ages. Variation-aware architectures are implemented using circuit techniques such

as clock/power gating and dynamic voltage-frequency scaling [70], and fine-grained

power management using both dual-supply voltage and power gating [69]. EVAL [68]

provides a framework to show how several techniques such as ABB (Adaptive Body Bi-

asing) / ASV (Adaptive Supply Voltage), FU (Functional Unit) replication, and issue-

queue resizing can trade off variation-induced errors for power and performance. How-

ever, little analysis has been performed to investigate the impact of process variabil-

ity on large parallel architectures such as a SIMD machine. Recently, Synctium [63]

studied the variation issues in near-threshold SIMD architectures and proposed de-

coupled parallel SIMD pipelines and pipeline weaving using decoupling queues and
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micro-barriers to tolerate variation-induced timing errors. Our work differs in that

we first provide a detailed analysis of variation impact on wide SIMD architectures

for different technology nodes, and show past studies have over-estimated the effect

of delay variations in near-threshold operations. We also propose simple techniques

to handle delay variations in multiple technology nodes and present a variation-aware

wide SIMD architecture that effectively tolerate the timing variability problems in

90nm technology by exploiting simple SIMD functional unit duplications connected

via an XRAM crossbar.

6.6 Summary

Near-threshold operation enables a more energy-efficient architecture. In partic-

ular, a combination of near-threshold circuit techniques and parallel SIMD compu-

tations has the capability of providing high energy efficiency with high-throughput

performance. Although near-threshold techniques offer new promising architectural

design options, they suffer from large delay variations due to increased process vari-

ability. In this work we provide a systematic study of variation issues of near-threshold

wide SIMD architectures and show that the variation-induced timing errors in wide

SIMD architectures are fairly small, and can be allayed with combinations of three

simple techniques: structural duplication, voltage margining and frequency margin-

ing. Through a case study based on Diet SODA in 90nm technology node, we show

that the variation-induced timing errors in wide SIMD architectures can be handled

by increasing the number of SIMD functional units from 128 to 130 and exploiting
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XRAM crossbars to build a new error-free datapath. However, for lower technology

nodes, use of only structural duplication is not as efficient; rather a combination of

structural duplication and voltage margining results in a solution with the lowest

power overhead.
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CHAPTER 7

Conclusion

Wireless mobile communication has become one of the central uses of computing

technology. An increasing number of wireless protocols have emerged that the cost

of supporting multiple protocols using hardwired ASIC solutions more expensive and

complex. In addition, today’s devices not only support advanced signal processing

of wireless communication protocols, but also media processing such as video encod-

ing/decoding and interactive video conferencing. The advanced functionalities for

next generation mobile computing require higher data rates, more sophisticated algo-

rithms, and greater computational diversity with stringent power requirements. This

dissertation explores the architectural impacts of emerging wireless protocols and ad-

vanced signal processing on a SIMD-based architecture for SDR, SODA, to improve

efficiency. The efficient mobile computing in Diet SODA exploits massively parallel

systems and near-threshold voltage operations to provide efficiency and programma-

bility as well.
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7.1 Summary

This dissertation presents a set of design proposals for an energy-efficient pro-

grammable wireless protocol implementation. In order to satisfy demanding perfor-

mance and power requirements of next generation mobile computing, this dissertation

takes a hardware-software co-design approach that optimizes and evaluates a mobile

computing platform based on the characteristics of wireless signal processing algo-

rithms. This dissertation makes the following contributions.

Design and Analysis of advanced signal processing algorithms This dis-

sertation presents algorithmic characterization of two major mobile signal process-

ing algorithms: a representative 4G protocol algorithm (Low Density Parity Check

(LDPC)) and high definition mobile video (H.264). Based on insights from their char-

acteristics, a wide-SIMD architecture for SDR, SODA, is revisited and optimized to

meet performance and power requirements. The key enhancements on SODA are 1)

use of programmable crossbar to support complex shuffle operations, 2) SIMD parti-

tioning to support fine-grain SIMD computation, 3) Bypass and temporary buffer to

support efficient access for short-lived intermediate data, and 4) fused operation to

support accelerating frequently used instruction pairs.

Design, implementation, and evaluation of an energy efficient signal

processing architecture, Diet SODA This dissertation presents an energy ef-

ficient signal processing architecture, Diet SODA. The key design idea is to apply

near-threshold operation on a wide-SIMD architecture to achieve both high energy

efficiency and high throughput performance in a synergistic manner. A combination
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of near-threshold circuit techniques and parallel SIMD computations offer several

new promising architectural design options: 1) very wide SIMD datapath to com-

pensate for degraded throughput performance induced by near-threshold operations,

2) scatter-gather data prefetcher to exploit the large latency gap between memory

operating at full voltage and the SIMD datapath operating at near-threshold voltage,

and 3) dual operating mode to support both less stringent realtime-constrained tasks

and high-throughput demanding tasks.

In-depth study of variations in near-threshold operations This dissertation

presents a systematic study of delay variations induced by near-threshold operations

at both circuit- and architecture-levels. The variation-induced timing errors in wide

SIMD architectures are shown to be fairly small; therefore three simple techniques—

1) structural duplication, 2) voltage margining and 3) frequency margining—are ex-

plored to tolerate and mitigate the timing variability problems. Through a case study

based on Diet SODA in 90nm technology node, the variation-induced timing errors

in wide SIMD architectures can be handled by the structural duplication scheme by

increasing the number of SIMD functional units to replace underperforming ones and

exploiting XRAM crossbars to build a new error-free datapath. However, for lower

technology nodes, use of only structural duplication is not as efficient; rather a com-

bination of structural duplication and voltage margining leads to a solution with the

lowest power overhead.
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7.2 Future Work

There are many possible extensions and applications for the concepts and archi-

tectures presented in this dissertation.

Additional Applications. Mapping more applications to Diet SODA, particu-

larly 4G wireless protocols and biometric applications, would provide additional in-

sights into the performance and efficiency of the mechanisms and compositions in Diet

SODA. Many applications that we have used have regular data-level and task-level

parallelisms that map naturally to the architecture. Therefore, it would be interesting

to explore how more control-dependent and less parallelizable applications map to or

tweak the architecture.

Other Variations Effects. We explored the effects of Vth and LER variations in

near-threshold voltage operations on wide-SIMD architectures. There are also other

factors such as voltage droop (IR drop) and temperature variations that significantly

impact timing errors. On-chip sensors can be used to detect the changes in voltage

and temperature. With this information, voltage and/or frequency tuning can be

exploited, which may achieve near-optimal energy efficiency on wide-SIMD architec-

tures. Reliable SRAM and XRAM crossbar are interesting research topic because

they are more vulnerable to process variations.
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