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CHAPTER I

Introduction

Sourcing, once seen as a tactical function of vertically integrated firms, has today

become strategic for firms that now rely on extensive supply chains. In the US, man-

ufacturers on average spend 40-60% of their revenue on procuring goods and services

(U.S. Department of Commerce 2005). Vertical disintegration and specialization of

firms lead to complex relationships within a supply chain; for example, dependence

between firms across different tiers and competition among firms within each tier

often coexist. In addition, firms generally harbor private information. For example,

a supplier does not wish its cost data to be known by its customer (a buyer), and

a buyer does not wish its demand data to be known by its supplier. The complex

relationships and information asymmetry make firms’ interactions highly strategic,

and the recent rapid globalization of supply chains has magnified these effects. How

should firms in supply chains of various structures make strategic procurement deci-

sions in the presence of information asymmetry? The three essays in this dissertation

study three specific problems on this topic. I will briefly introduce each essay below.

In the essay “Does Pooling Component Demands when Sourcing Lead to Higher

Profits?” (Chapter II), I consider whether pooling purchases for a component used in

multiple products with uncertain demands results in increased profits for the buyer.

Demand pooling is a prominent concept widely taught in Operations Management
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courses, and the received intuition indicates that demand pooling is beneficial for the

buyer due to variability reduction. However, the standard pooling logic assumes the

price of the purchased component is exogenous and fixed. In this essay, I consider

a setting where the buyer purchases the component from a sole-source supplier who

strategically designs optimal price-quantity contracts to extract profit from the buyer.

The supplier’s ability to extract profit is mitigated by the fact that the buyer is

privileged with superior demand information (e.g., the buyer may have privately

surveyed her customers to forecast demands). I show that pooling may actually result

in decreased profits for the buyer facing a powerful, strategic supplier. One of the

key insights is that the variability reduction obtained by pooling can sometimes harm

the buyer because less demand variability makes it easier for the supplier to extract

higher profits through optimal pricing (adapted to the demands). I characterize cases

when pooling in the presence of a sole-source strategic supplier is disadvantageous,

and also provide insights into when it is still advantageous.

In the essay “Simple Auctions for Supply Contracts” (Chapter III), I study a

simple, practically implementable optimal procurement mechanism for a newsvendor-

like problem where the buyer’s (newsvendor’s) purchase price of the supplies is not

fixed, but determined through interactions with candidate suppliers, and the suppli-

ers’ production costs are their private information. Previous literature has studied

the buyer’s optimal mechanisms in this setting, notably Chen (2007). Chen showed

that the buyer’s optimal procurement mechanism can be implemented by the buyer

offering the suppliers a revenue function (specifying a payment for each quantity the

buyer may purchase) and then auctioning off the supply contract with the specified

revenue function to the highest bidding supplier. However, auctioning of supply con-

tracts with a specified revenue function is seldom observed in practice, and suppliers

would have to perform complex calculations in order to bid effectively in such an

auction. In this essay, I show that the optimal mechanism can be implemented by a
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simple modified version of the standard open-descending auction for a fixed-quantity

contract. What distinguishes this mechanism is its simplicity and familiarity for the

suppliers — open-descending price auctions are ubiquitous in practice, and the suppli-

ers’ decision making in this mechanism is almost trivial. The fact that the suppliers

can use very simple strategies in a familiar environment increases the chance that

suppliers are willing to participate in such a mechanism. I further show that this

simple mechanism can be generalized to ex ante asymmetric suppliers and a class

of non-linear production costs, whereas Chen (2007) treated the case with ex ante

symmetric suppliers with linear production costs.

The majority of procurement research focuses on interactions between buyers and

their direct suppliers. Expanding this scope to include another tier of the supply

chain, in the essay “Price-Quoting Strategies of a Tier-Two Supplier” (Chapter IV),

I study the price-quoting strategies used by a tier-two supplier, whose tier-one cus-

tomers compete for an OEM’s indivisible contract. At most one of the tier-two

supplier’s quotes will ultimately result in downstream contracting and hence produce

revenue for her, and when the tier-one suppliers’ costs of fulfilling the OEM’s con-

tract are too high, the OEM may not award the contract to either tier-one supplier,

in which case the tier-two supplier cannot earn any revenue. I characterize the tier-

two supplier’s optimal price-quoting strategies and show that she will use one of two

possible types of strategies, with her choice depending on the tier-one suppliers’ profit

potentials: secure, whereby she will always have business; or risky, whereby she may

not have business. Addressing potential fairness concerns, I also study price-quoting

strategies in which all tier-one suppliers receive equal quotes. Finally, I show that a

tier-two supplier’s optimal mechanism resembles auctioning a single quote among the

tier-one suppliers.

For clarity, in this dissertation principals are referred to as “she”, and agents as

“he”.
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CHAPTER II

Does Pooling Component Demands when Sourcing

Lead to Higher Profits?

2.1 Introduction

There exists a large research literature on inventory pooling, dating back to the

seminal paper by Eppen (1979). In its most basic form, inventory pooling refers to

satisfying several demand streams from a common inventory. In Eppen’s canonical

example, a firm with several locations (a steel wholesaler with several satellite ware-

houses) considers satisfying different locations’ demands from a central stock. More

generally, the inventory pooling concept applies to areas such as component com-

monality, whereby the same component is used for multiple products, rather than a

specific, non-interchangeable component being used for each product.

A central theme of the inventory pooling literature is that “statistical economies of

scale” is a key benefit that makes pooling attractive for firms. As Eppen (1979) shows,

for the simple case in which each location’s demand is normally and symmetrically

distributed, the amount of cost reduction enjoyed by the firm is positive and increases

linearly in the standard deviation of each location’s demand. In short, pooling enables

variability reduction which results in higher profits. This powerful intuition is widely

taught in operations management courses when examining pooling.
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In this chapter I ask if and how the above intuition will carry over to the following

problem. Consider two products a and b with independent demands, sold by OEMs

A and B, respectively. Both products require a common component c from a sole-

source supplier, and OEMs A and B independently approach the supplier and make

separate agreements to purchase the component. Alternatively, instead of OEMs A

and B, suppose one OEM D makes both products a and b (with the same demands as

before), and obtains the component c from the sole-source supplier. Would OEM D

experience higher profits than A and B combined because of the reduction in demand

variability compared to the two separate OEMs?

I became interested in this problem after interacting with a large manufacturer on

various supply chain issues. This manufacturer has several divisions, some of which

utilize common components. I learned that in some cases these divisions bought the

components from the same sole-source supplier. Additionally I noted that for some

such components, the divisions purchased the components and satisfied demands

independently (like OEMs A and B), while for other components, the divisions com-

bined the component purchases and inventories (like OEM D). Initially, I thought

that these different ways of treating various components stemmed from a lack of con-

sistency rather than being driven by strategic purposes. I thought that the second

(“OEM D”) approach would be better in all cases because of the variability reduc-

tion. However, I was intrigued by the fact that these components were sole-sourced,

which led me to think more carefully about the problem. This chapter shows that my

initial supposition based on adapting received wisdom to this situation with a sole-

source supplier was in fact incorrect, and that the decisions involved can be much

more subtle and interesting.

In answering this question, classic inventory pooling theory would suggest that

OEM D’s profit is higher than the sum of OEMs A and B’s profits. For instance,

assuming demands for both products are normal and i.i.d., the classic insight is that
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the profit advantage enjoyed by OEM D would be positive, and linearly increasing

in the standard deviation of the demand streams. Yet underlying this insight is a

tacit assumption that the per item cost of the component c is the same, whether

purchased by OEMs A, B or D. While this might appropriately model a situation in

which the component is a commodity, in the case I observed, as well as what I model,

the component was being bought from a sole supplier. Sole suppliers are common

in many industries (for example, The Economist (2009) points out that 90% of the

micro-motors used to adjust the rear-view mirrors in cars are made by Mabuchi, and

TEL makes 80% of the etchers used in making LCD panels. In these cases even

though other suppliers do exist, they generally could not provide the same level of

quality or performance, therefore a buyer wanting to use a high quality product really

has only one choice). The core of the problem I address boils down to the following

question: Does presenting a less variable demand stream to a powerful sole supplier

necessarily result in higher profits?

In stark contrast to the usual “statistical economies of scale” benefits of inventory

pooling, I find that the presence of a powerful and strategic sole supplier can actually

result in situations where OEMs A and B (with unpooled demands for c) may have

higher profits in total than OEMD. That is, I find that a strategic supplier can reverse

the common wisdom about the benefit of variability reduction through pooling. One

of my key insights is that, in the presence of a powerful strategic supplier who can

set prices for the component based on her expectations about the demands, the

variability reduction obtained by pooling can sometimes turn into a disadvantage.

This is because less demand variability can make it easier for the supplier to extract

higher profits through optimal contract design (adapted to the demand). In this

chapter, I characterize cases when pooling in the presence of a sole strategic supplier

is disadvantageous, and also provide insights into when it is still advantageous.

The remainder of this chapter flows as follows: §2.2 provides a literature review.
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My model is introduced in §2.3. §2.4 provides an analysis of which state of the world

(pooled or unpooled) yields higher profits for the purchasing OEM(s). §2.5 concludes

the chapter.

2.2 Literature Review

My research is closely related to two streams of existing literature. The first stream

is component commonality and inventory pooling. Stemming from the seminal paper

by Eppen (1979), a very large literature explores statistical economies of scale (the re-

duction of uncertainty upon merging multiple stochastic demand streams), and shows

that under various settings, component commonality, storage centralization, and in-

ventory sharing can reduce operations costs. Examples from this literature include

Eppen and Schrage (1981), Gerchak and He (2003), Benjaafar et al. (2005), and more

recently Hanany and Gerchak (2008). However, one tacit assumption in this literature

is that the purchase price of the good discussed is exogenous, and usually the supplier

is not modeled. This would be a reasonable assumption if the good is a commodity,

but less so when one supplier is the only source of supply (e.g., because the supplier

owns a patented technology). In this chapter I assume the component can only be

purchased from a sole-source supplier who strategically takes into account the opera-

tional structure of the buyer(s), which leads to the second related stream of literature

— procurement contract design. Based on the principal-agent model (e.g. Laffont

and Martimort (2002)), this literature analyzes how a powerful, profit-maximizing

member of the supply chain (the principal, may be a buyer or a supplier) should

optimally design procurement contracts for the other members (agents) who possess

private information. The principal-agent model captures the general practice of tai-

loring a contract to a specific buyer or supplier (instead of relying on one-size-fits-all

contracting), and is a canonical modeling construct. In the operations management

literature, several papers take the perspective of a buyer and find the optimal supplier
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selection and contracting mechanism, when the buyer faces operational issues like the

need for fast delivery (Cachon and Zhang (2006)), random demand (Chen (2007)), or

uncertain supplier qualifications (Wan and Beil (2009)). I analyze a different opera-

tional issue, namely component pooling, and study a supplier who designs contracts.

Other operations papers have examined the supplier’s perspective (although absent

the component pooling issue which is the crux of my research), with early references

including Corbett and de Groote (2000), and Ha (2001).

Relatively distantly related is a literature on the analysis of group purchasing,

particularly coalition forming and stability issues, for example Hartman and Dror

(2003). This literature usually assumes that either each buyer faces uncertain demand

and group purchasing benefits the buyers due to statistical economies of scale, or the

supplier announces a price schedule that offers greater discounts for larger purchase

quantities, then analyzes how to allocate the benefit from group purchasing to form

a stable coalition. In both cases the supplier is not acting strategically, and the pre-

assumed benefit of group purchasing is a premise for the analysis. In contrast, I model

a strategic supplier and ask whether there is always benefit from pooling purchases.

Thus the core research problems are very different.

2.3 Model and Preliminaries

I consider a stylized model in which an original equipment manufacturer (OEM)

approaches the sole supplier of a component to ask for pricing. The OEM needs this

component to manufacture an end product i (e.g., product a or b that I introduced

in §2.1). Assume each end product requires a single component. For tractability, I

make the simplifying assumption that product i’s mean demand µi can only take one

of n known values µi
θ, where θ denotes one of n different demand types. For example,

the demand type θ could be “high” or “low”, with corresponding mean demands

µi
high = 20, 000 and µi

low = 10, 000, in which case n = 2. Prior to approaching the
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supplier for the component, the OEM learns his demand type (e.g., whether demand is

going to be high or low). However, actual demand is likely to differ from its expected

mean when it is realized; to model this aspect I assume that product i of demand

type θ will actually experience a realized demand µi
θ+e

i where ei is a random forecast

error and is assumed to have mean zero, pdf f i and cdf F i. I assume ei is independent

of the product’s demand type θ. Therefore, even though the OEM can find out his

mean future demand µi
θ when he learns his demand type, the actual demand µi

θ + ei

remains a random variable to the OEM until it is realized.

The supply chain is decentralized (the supplier and the OEM are independent

decision makers) and I assume the supplier and the OEM each seek to maximize

their own expected profits. The component that the OEM needs is made by only

this supplier; given the market power of the supplier, she can offer the OEM take-

it-or-leave-it contracts. In such a setting, if the supplier knew exactly the demand

type (i.e., the mean demand) of the product sold by the OEM, she could extract all

expected supply chain profits, always leaving zero profits for the OEM (or leaving

the OEM just his reservation profit that would induce him to participate — which I

assume to be zero without loss of generality). Of course, this would then trivialize any

comparisons of the OEMs’ profits. However, OEMs are usually privileged with better

information about their end product demands. To model this aspect, I assume that

the demand type that the OEM finds out is his private information; the supplier has

a prior belief on the distribution of the product’s demand types but does not know

the actual demand type. I assume that the supplier’s prior on product i’s demand

types is that with probability piθ, the demand type will be θ (i.e., the mean demand

will be µi
θ). Clearly, the forecast error e

i is a random variable for the supplier just as

it is for the OEM. This means that the actual demand is uncertain to both the OEM

and the supplier, but the demand type (i.e., the forecasted mean demand) is known

only to the OEM. Therefore, although both parties face demand uncertainties, the
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OEM has strictly more information than the supplier.

The timing of the events in the model is as follows:

Stage 1: The OEM learns his demand type.

Stage 2: The supplier offers the OEM a menu of contracts consisting of quantity-

payment pairs (Qθ, tθ), each meant for a potential type θ. That is, the OEM

can buy Qθ units at total cost tθ. The OEM decides which (if any) quantity-

payment pair to choose.

Stage 3: Once the OEM has chosen the contract, the supplier produces the agreed-

upon quantity at per unit cost c, delivers the units to the OEM, and receives

the corresponding payment.

Stage 4: The OEM processes the components into finished goods. The demand for

the finished goods is then realized. The OEM receives revenue r for each unit

of demand he satisfies. I assume that r > c and define q
.
= c/r (c = qr).

Unsatisfied demand is lost and excess inventory has no salvage value.

The supplier designs and uses an optimal menu of contracts in Stage 2; doing

so maximizes her expected profit among all mechanisms that, ultimately, result in

quantity and money being exchanged between her and the OEM. This setup implies

that the supplier has market power, i.e., there are other OEMs so even a pooled OEM

(like OEM D in my motivating example) is not a monopsony. Due to the revelation

principle, the supplier can limit the search for an optimal menu of contracts to those

that induce the OEM to choose the contract designed for his demand type. Formally,

my model is

max
Qθ,tθ

EΘ[tΘ − cQΘ] (2.1a)

s.t. Ee[rmin{µθ + e,Qθ}]− tθ ≥ 0,∀ θ (2.1b)

Ee[rmin{µθ + e,Qθ}]− tθ ≥ Ee[rmin{µθ + e,Qθ′}]− tθ′ ,∀ θ′ ̸= θ (2.1c)

10



where random variable Θ reflects the supplier’s prior on the OEM’s types. In the

above formulation (and those to follow where it does not cause confusion), I suppress

superscript “i” for readability. (2.1b) is the participation constraint (PC) with reser-

vation profit set to zero, and (2.1c) is the incentive compatibility constraint (IC) which

ensures that the OEM chooses the contract designed for his demand type. Following

convention, I define information rent πθ as the expected profit of an OEM having

demand type θ who chooses the contract designed for his demand type:

πθ
.
= Ee[rmin{µθ + e,Qθ}]− tθ.

For convenience and without loss of generality, henceforth I denote a contract by a

quantity-information rent pair (Qθ, πθ) rather than a quantity-payment pair. Using

this notation and explicitly writing out the expectations, (2.1a)-(2.1c) can be shown

to be equivalent to

max
Qθ,πθ

∑
θ

pθ

[
r

(
(1− q)Qθ −

∫ Qθ−µθ

−∞
F (x)dx

)
− πθ

]
(2.2a)

s.t. πθ ≥ 0, ∀ θ (2.2b)

πθ ≥ πθ′ + r

∫ Qθ′−µθ′

Qθ′−µθ

F (x)dx,∀ θ′ ̸= θ. (2.2c)

The formulation can be further simplified, once one notices that my model sat-

isfies the Spence-Mirrlees property (Laffont and Martimort (2002), p.53), namely

the OEM’s marginal rate of substitution ∂πθ/∂Qθ

∂πθ/∂tθ
is monotonic in type θ. With this

property, all the constraints can be substituted with the lowest type’s participation

constraint, local downward incentive constraints, and monotonicity constraints (MC)

(contract quantity non-decreasing in type). Suppose the possible demand types faced
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by an OEM are such that µθ1 ≤ µθ1 ≤ · · · ≤ µθn ; then (2.2a)-(2.2c) are equivalent to

max
Qθ,πθ

∑
θ=θj

pθ

[
r

(
(1− q)Qθ −

∫ Qθ−µθ

−∞
F (x)dx

)
− πθ

]
(2.3a)

s.t. πθ1 ≥ 1 (2.3b)

πθj+1
≥ πθj + r

∫ Qθj
−µθj

Qθj
−µθj+1

F (x)dx, j = 1, . . . , n− 1 (2.3c)

Qθj+1
≥ Qθj , j = 1, . . . , n− 1. (2.3d)

Notice that Equations (2.3a)-(2.3d) describe the problem that the strategic sup-

plier solves to derive an optimal menu of quantity-payment pairs (represented by

equivalent quantity-information rent pairs in the above formulation) to offer to the

OEM. Since there is information asymmetry in my setting, the supplier cannot obtain

all of the supply chain profit, but has to leave some information rent to the OEM

which constitutes the OEM’s profit. The fundamental question that I am trying to

answer is if pooling or not pooling demands results in higher total profits (information

rents) for the OEMs. Next, I obtain results that characterize the information rent

structure in preparation for exploring this question.

2.3.1 Solving for Information Rent

By the analysis on page 43 of Laffont and Martimort (2002), I know participation

and incentive compatibility constraints (2.3b) and (2.3c) are binding at optimality.

Applying this insight, the objective function (2.3a) can be recast as a function solely

of Qθ. Relaxing the MCs (2.3d) for now (I will test these constraints ex post, and in

the case of them being violated, revise my solution), the first-order condition (FOC)
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for (2.3a) as a function of Qθj can be written as:

Pr(Θ = θj)(1− q) = Pr(Θ ≥ θj)F (Qθj − µθj)− Pr(Θ ≥ θj+1)F (Qθj − µθj+1
)

⇐⇒ λ(θj)(1− q) = F (Qθj − µθj)− (1− λ(θj))F (Qθj − µθj+1
), j < n, (2.4)

where

λ(θj)
.
=

Pr(Θ = θj)

Pr(Θ ≥ θj)
,

and the information rents can be derived recursively as:

π1 = 0, πθj+1
= πθj + r

∫ Qθj
−µθj

Qθj
−µθj+1

F (x)dx. (2.5)

For concision, I use Θ ≥ θj to denote Θ ∈ {θ̄|µθ̄ ≥ µθj}. As an example, if Θ

can take two values, high or low, then Pr(Θ ≥ low) = Pr(Θ = low or high) and

Pr(Θ ≥ high) = Pr(Θ = high).

Equation (2.3a), which represents the supplier’s objective function, is generally

not concave in its decision variable Qθj . Consequently, solving FOC (2.4) cannot

always guarantee a global maximizer. In the following proposition I provide a set of

sufficient conditions that guarantee (2.4) has a unique solution and it is the global

maximizer.

Proposition 2.1. Equation (2.4) has a unique solution and the solution is a global

maximizer of the supplier’s expected profit, if the forecast error e’s pdf f satisfies the

following conditions:

1. f(−x) = f(x);

2. f(x) is continuous in x;

3. f(x2) ≤ f(x1) for all x2 > x1 ≥ 0;

4. For all δ > 0 and x ≥ 0, f(x+ δ)/f(x) is non-increasing in x.

13



The conditions in Proposition 2.1 ensure that e is reasonably well-behaved. The

first three conditions require that e has a symmetric, continuous and unimodal pdf.

The fourth condition has the intuitive meaning that the pdf must be sufficiently

smooth. This condition will be violated, for example, if the pdf is piecewise linear

and alternates between being flat and steep. Considering that e is a demand forecast

error, the conditions in Proposition 2.1 are quite natural and mild. In fact, it is trivial

to test that many common distributions including uniform, triangular and normal

satisfy all four conditions. For the rest of this chapter, I assume these conditions are

satisfied, therefore Equation (2.4) determines the unique global maximizer.

The fundamental problem that I am addressing is the following: If two OEMs

making two separate products a and b that use the same component independently go

through the purchasing process described earlier in this section, would they actually

experience higher profits than one OEM that makes both products and pools the

demands for the common component? To gain insights into this fundamental problem

using the simplest possible setting, I assume that the mean demand for products a

and b can be of two possible types: Product i (i = a, b) has either high mean demand

µi
h, or low mean demand µi

l. Thus, when OEM A approaches the supplier, he is offered

a menu of two contracts, (Qa
h, π

a
h) and (Qa

l , π
a
l ). Similarly, when OEM B approaches

the supplier he is offered menu (Qb
h, π

b
h) and (Qb

l , π
b
l ). I define δ

i .= µi
h−µi

l and assume

δi ≥ 0. Unlike OEMs A and B who each sell a single product, OEM D sells both

products. For consistency, I assume that OEM D will have demand type hh, hl, lh

or ll, corresponding to a total mean demand for products a and b of µD
hh, µ

D
hl, µ

D
lh, or

µD
ll . (For example, type hl means product a’s mean demand is µa

h and product b’s

mean demand is µb
l , and thus µD

hl = µa
h + µb

l .) Accordingly, OEM D will be offered a

menu of four contracts: (QD
hh, π

D
hh), (Q

D
hl, π

D
hl), (Q

D
lh, π

D
lh) and (QD

ll , π
D
ll ). Without loss

of generality, I assume δa ≥ δb, and as a result µD
hh ≥ µD

hl ≥ µD
lh ≥ µD

ll . In the rest of

the chapter, I calculate the total information rent obtained by OEMs A and B each

14



selling a single product, and compare it to the information rent obtained by OEM D

selling both products, to understand if and when OEM D is better off than OEMs A

and B combined.

When OEMs A and B separately approach the supplier, she designs an optimal

menu of contracts for each OEM. For each product i, the supplier’s problem is a

two-type version of (2.3a)-(2.3d):

max
Qi

θ,π
i
θ

∑
θ=h,l

piθ

[
r

(
(1− q)Qi

θ −
∫ Qi

θ−µi
θ

−∞
F i(x)dx

)
− πi

θ

]

s.t. πi
l ≥ 0, πi

h ≥ πi
l + r

∫ Qi
l−µi

l

Qi
l−µi

h

F i(x)dx

Qi
h ≥ Qi

l. (2.6)

Ignoring the MC (2.6), the FOC solution to the above problem is

pil(1− q) = F i(Qi
l − µi

l)− pihF
i(Qi

l − µi
h), Qi

h = µi
h + (F i)−1(1− q).

It is trivial to test that this solution satisfies (2.6), thus this is the optimal solution.

At this solution, the information rents are

πi
l = 0, πi

h = r

∫ Qi
l−µi

l

Qi
l−µi

h

F i(x)dx.

On the other hand, for OEM D, the supplier’s problem is a four-type version of

(2.3a)-(2.3d). D’s demand type θaθb has prior probability pD
θaθb

= paθap
b
θb

and mean

demand µD
θaθb

= µa
θa + µb

θb
. Assume the forecast error eD = ea + eb has pdf fD and
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cdf FD. The supplier’s problem is

max
QD

θ ,πD
θ

∑
θ=hh,hl,lh,ll

pDθ

[
r

(
(1− q)QD

θ −
∫ QD

θ −µD
θ

−∞
FD(x)dx

)
− πD

θ

]
(2.7a)

s.t. πD
ll ≥ 0 (2.7b)

πD
lh ≥ πD

ll + r

∫ QD
ll −µD

ll

QD
ll −µD

lh

FD(x)dx (2.7c)

πD
hl ≥ πD

lh + r

∫ QD
lh−µD

lh

QD
lh−µD

hl

FD(x)dx (2.7d)

πD
hh ≥ πD

hl + r

∫ QD
hl−µD

hl

QD
hl−µD

hh

FD(x)dx (2.7e)

QD
hh ≥ QD

hl ≥ QD
lh ≥ QD

ll . (2.7f)

Ignoring the MCs (2.7f), the FOC solution of (2.7a)-(2.7e) is

pDll (1− q) = FD(QD
ll − µD

ll )− (pDlh + pDhl + pDhh)F
D(QD

ll − µD
lh) (2.8)

pDlh(1− q) = (pDlh + pDhl + pDhh)F
D(QD

lh − µD
lh)− (pDhl + pDhh)F

D(QD
lh − µD

hl) (2.9)

pDhl(1− q) = (pDhl + pDhh)F
D(QD

hl − µD
hl)− pDhhF

D(QD
hl − µD

hh) (2.10)

QD
hh = µD

hh + (FD)−1(1− q). (2.11)

At this solution, the information rents are

πD
ll = 0

πD
lh = r

∫ QD
ll −µD

ll

QD
ll −µD

lh

FD(x)dx (2.12)

πD
hl = πD

lh + r

∫ QD
lh−µD

lh

QD
lh−µD

hl

FD(x)dx

πD
hh = πD

hl + r

∫ QD
hl−µD

hl

QD
hl−µD

hh

FD(x)dx. (2.13)

If the solution satisfies (2.7f), then it is indeed an optimal solution. Otherwise, if
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the MCs (2.7f) are not satisfied, it is necessary to revise the solution.

Proposition 2.2. The contract quantities determined by (2.8)-(2.11) can only violate

QD
ll ≤ QD

lh or QD
lh ≤ QD

hl, and not both. When the solution of (2.8)-(2.11) violates

QD
ll ≤ QD

lh, replace (2.8)-(2.9) with

(pDll + pDlh)(1− q) = FD(Q− µD
ll )− (pDhl + pDhh)F

D(Q− µD
hl), (2.14)

QD
ll = QD

lh = Q

and keep (2.10) and (2.11) unchanged, and the revised FOCs determine the optimal

solution. When the solution of (2.8)-(2.11) violates QD
lh ≤ QD

hl, replace (2.9)-(2.10)

with

(pDlh + pDhl)(1− q) = (pDlh + pDhl + pDhh)F
D(Q− µD

lh)− pDhhF
D(Q− µD

hh), (2.15)

QD
lh = QD

hl = Q

and keep (2.8) and (2.11) unchanged, and the revised FOCs determine the optimal

solution.

In the above revised solutions, two types are offered the same contract (e.g.,

QD
ll = QD

lh = Q); this situation is referred to as bunching. If the solution of (2.8)-

(2.11) violates a monotonicity constraint, an optimal solution can be obtained by

forcing equality of the violated constraint and ignoring the rest of the MCs (they will

always be satisfied), then re-deriving the FOC. The revised FOC (2.14) is actually

the sum of (2.8) and (2.9) with Q
.
= QD

ll = QD
lh, and (2.15) is the sum of (2.9) and

(2.10) with Q
.
= QD

lh = QD
hl. Note that (2.14) and (2.15) can still be represented by

Equation (2.4) (with λ(θj) replaced by

λ
.
=

pDll + pDlh
pDll + pDlh + pDhl + pDhh
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corresponding to Q, and λ(θj) replaced by

λ
.
=

pDlh + pDhl
pDlh + pDhl + pDhh

corresponding to Q), thus properties derived from (2.4) will remain true in both cases

of bunching.

In conclusion, to solve for information rents, I ignore the MCs and assume all PCs

and ICs are binding, and then solve the FOCs. For individual OEMs A and B, the

solution is optimal. For OEM D, I must test whether the monotonicity constraints

are satisfied. If they are satisfied, the solution is optimal. Otherwise, I need to solve

the revised FOCs to obtain the optimal solution.

2.3.2 Three Key Drivers of Information Rent

The above analysis reveals that the information rent for any demand type can be

expressed as the sum of several incremental information rents, where each incremen-

tal information rent can be characterized by Equations (2.4) and (2.5). Therefore,

understanding the properties of the incremental information rents as governed by

(2.4) and (2.5) is crucial for comparing pooling versus non-pooling profits. The three

lemmas below identify three key drivers of incremental information rents. In what

follows, θ and θ′ always refer to a type and its adjacent higher type (assuming θ is

not the highest type).

Lemma 2.1 (Type Rareness). Incremental information rent πθ′ −πθ is increasing in

λ(θ).1

Recall that λ(θ) was defined as Pr(Θ=θ)
Pr(Θ≥θ)

. The intuition behind Lemma 2.1 is easily

seen for an unpooled OEM, say A, having high-type mean demand. In this case,

λ(l) equals pal , and Lemma 2.1 states that πa
h is increasing in pal , which means it

1When bunching occurs, λ(θ) should be understood as λ or λ.

18



is decreasing in pah. To understand this, note that the larger pah is, the more the

supplier anticipates that OEM A has high-type mean demand, and consequently the

lower information rent the high-type OEM A will receive. In the extreme case, if

the supplier knows OEM A’s mean demand is of high type with certainty (pah = 1),

then the OEM A would get no information rent at all. Similarly, the rarer the high-

type OEM A is, the more information rent he receives. For OEM D, who can have

mean demands of four different types, λ(θ) reflects how likely the type θ is, compared

only within the set of types θ and higher. (The lower types do not matter because

I am only considering the incremental information rent.) In summary, Lemma 2.1

characterizes the impact of type rareness on incremental information rents.

I define δ = µθ′−µθ to be the “gap” between the type-θ′ and type-θ mean demands

(recall that θ is the lower type of the two). Lemma 2.2 shows that the incremental

information rent depends on the mean demands only through their gap.

Lemma 2.2 (Gap between Types). Incremental information rent πθ′ −πθ as a func-

tion of µθ and µθ′ is determined only by their difference: δ = µθ′ − µθ. Furthermore,

πθ′ − πθ < rδ.

The supplier’s contracts provide the OEM with information rent in order to ensure

that the OEM picks the contract meant for his demand type, and not the contract

meant for a lower demand type. Lemma 2.2 shows that the incremental information

rent does not depend on individual mean demands, but only on the gap between them.

Additionally, the incremental information rent is bounded by the largest possible

revenue difference of the two types, i.e., rδ. This means that when there is almost

no gap between the mean demands of two adjacent types (δ → 0), the two adjacent

types are almost identical and so there is little incremental information rent.

Another important element in the model is the demand forecast error. To be able

to quantify the effect of forecast error variability, I first define variability in a family

of distributions.
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Definition 2.1 (Rescaling). Suppose F is the cdf of a zero-mean random variable.

For any constant γ > 0, define cdf F(γ) as F(γ)(x)
.
= F (x/γ).

F(γ) is a γ rescaling of F . {F(γ), γ > 0} could be seen as a family of random

variables stemming from F . One could easily verify that the variance of F(γ) is γ2

times that of F . Thus when γ > 1 the variance of F(γ) is greater than that of F .

Lemma 2.3 (Demand Variability). Suppose γ > 1, and replace F by F(γ) in (2.4)

and (2.5). Then the incremental information rent πθ′ − πθ is increasing in γ.

Lemma 2.3 implies that the incremental information rent is actually increasing

in demand variability, within the same family of forecast error distributions. Notice

that information rent stems from the supplier’s uncertainty about the OEM’s de-

mand. Therefore, it is understandable that the OEM’s profit increases in his demand

variability. Recall that OEM D pools the demand for products a and b, and there-

fore faces reduced variability for his component demand. The interesting question

then is whether the reduced variability could actually lead to OEM D receiving lower

information rent than OEMs A and B.

2.4 Pooling versus Non-Pooling

In this section I compare OEM D’s information rent to the total information rents

of OEMs A and B. I have seen that incremental information rents are determined

by contract quantities (see (2.5)), which are in turn determined implicitly by FOC

(2.4). For OEM D, whose demand for component c can have four different types, cal-

culating information rent involves adding multiple layers of incremental information

rents. The complex multi-layer structure of D’s information rent makes it difficult

to directly compare the information rents in closed form. Thus I use the insights of

Lemmas 2.1-2.3 to facilitate comparisons. To ensure that the forecast error distribu-

tion for D’s component c demand (i.e., the forecast error distribution for products a
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and b combined) is tractable, I will assume that the forecast error ei for individual

product i is a normal random variable N(0, σi).2 (I assume that forecast errors are

small relative to mean demand, so that the probability of having negative demand is

negligible.)

I will now focus on when OEM D receives lower information rent than OEMs

A and B. I will study this analytically for each demand type faced by OEM D.

(Of course, a comparison before the OEMs learn their demand types could also be

done utilizing my analysis for each demand type and the prior distribution of the

types. Since this extra step only involves taking a weighted average of information

rents and yields similar insights to those I present below, it is omitted for brevity.)

I will also numerically illustrate what parameters lead to OEM D or OEMs A and

B receiving higher information rent. My primary method of presenting numerical

results will be showing the “pooling” and “non-pooling” regions — denoted with P

and N respectively — where OEM D’s information rent is greater or smaller than

that of OEMs A and B combined. I plot these regions in a two-dimensional box of δb

versus δa− δb (recall that I assumed δa ≥ δb), and in different plots I vary either σi or

pih. If not indicated otherwise, the default parameters are: pih = 0.5, q(= c/r) = 0.2,

and σi = 1, i = a, b. Due to Lemma 2.2, the values of µi
θ are irrelevant except for

δi = µi
h − µi

l, thus I do not assume any value for µi
θ (δi are indicated at the axes).

I first take a look at the comparison for demand type lh.

Theorem 2.1. Assume demand type is lh.

1. With sufficiently small σa, OEM D receives lower information rent than A and

B combined.

2. Suppose OEM D receives lower information rent than A and B combined. Then

2I have numerically tested error distributions other than normal (e.g., uniform and triangular)
and verified that the qualitative insights I will obtain in this section using normally distributed
forecast errors remain valid.
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as σa decreases, or pah increases, OEM D receives even lower information rent

and is still outperformed by A and B.

To understand my result, first notice that when OEM A has low demand and

OEM B has high demand, the combined information rents of A and B is just the

information rent of B, because the low-type OEM A earns no information rent. The

theorem’s first part establishes the existence of cases where OEM D earns less profit

than OEMs A and B combined. Compared to OEM B, what OEM D loses by having

pooled demand is his position in the type hierarchy: OEMD of type lh has the second-

lowest demand type, so the supplier does not have to grant him significant information

rent, while OEM B’s type is h and therefore he will be granted significant information

rent. (Recall that calculating information rent involves adding multiple layers of

incremental information rents, so higher types earn more information rent.) On the

other hand, OEM D has higher demand variability
√

(σa)2 + (σb)2 than OEM B’s σb,

and I know (from Lemma 2.3) that higher demand variability improves information

rent. However, when σa is small, OEMD’s gain from the increased demand variability

is minimal because
√

(σa)2 + (σb)2 is not much higher than σb. Therefore, when σa is

small enough, OEM D will make less profit compared to OEMs A and B combined.

This is the intuition behind the first part of Theorem 2.1.

Now I turn to the second part of the theorem. Since OEM A always gets zero

information rent, lowering σa or increasing pah has no impact on the combined infor-

mation rent of OEMs A and B. However, lowering σa or increasing pah does reduce

the information rent of OEM D, who has pooled demand for products a and b. The

reason is that information rent depends on demand variability (Lemma 2.3) and type

rareness (Lemma 2.1), and OEM D — through pooling demand for products a and b

— is negatively affected by either lowering σa or increasing pah.

Figure 2.1 illustrates my result. Comparing the panels from left to right, one can

see that the region in which A and B outperform D (the non-pooled region, denoted
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Figure 2.1: Pooling and non-pooling regions of demand type lh, varying σa and pah

with N) grows as the demand variability for a, σa, decreases, and as the probability

of product a having high-type demand, pah, increases. Furthermore, Figure 2.1 shows

that the regions in which non-pooling is optimal are fairly large and not limited to

very low values of σa.

It is interesting to compare the intuition behind Theorem 2.1 to the traditional

pooling intuition. In traditional inventory theory, pooling yields higher profits be-

cause of reduced demand variability. On the other hand, in my setting variability

drives information rent and therefore reducing it can reduce the OEMs’ profits. How-

ever, similar to the traditional setting, in my setting pooling can also be beneficial,

although not for the usual reason. In my setting pooling can be beneficial because

not all unpooled firms can make good use of their demand variability to generate

information rents (e.g., firms with higher mean demands are capable of generating

more information rents than firms with lower mean demands). Thus, pooling which

makes use of the demand variability that would be “wasted” if used by a stand-alone

OEM who is unable to earn much information rent on his own can be beneficial and
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result in higher profits.

Thus far I have shown that in the presence of a strategic supplier, an OEM D

having demand type lh can earn less profit than OEMs A and B with unpooled

demands. In fact this is not unique to demand type lh, but can also occur for type

hl. The intuition behind these results is fairly similar, and is explained below.

Theorem 2.2. Assume demand type is hl.

1. When σb is sufficiently small and δb is sufficiently close to δa, OEMs D receives

lower information rent than A and B combined.

2. Suppose OEM D receives lower information rent than A and B combined. Then

as σb decreases, OEM D receives even lower information rent and is still out-

performed by A and B. Similarly, increasing pbh results in OEM D still receiving

lower information rent than A and B combined, provided δa and δb are suffi-

ciently close.

The intuition behind this theorem is similar to Theorem 2.1’s. The first part

establishes the existence of cases where OEM D can be outperformed by OEMs A

and B for demand type hl. With type hl, OEM A receives information rents whereas

OEM B does not. For OEM D, the following tradeoff arises. On one hand, OEM A is

of the highest type whereas OEM D is not, so OEM D is lower in the type hierarchy,

which reduces his information rent. (In fact, when δb is sufficiently close to δa, OEM

D of type hl is offered the same contract as type lh; therefore OEM D’s loss of

information rent due to lower type hierarchy is significant.) On the other hand, OEM

D can make use of the demand variability of product b, which OEM B could not make

use of. (Again, recall that higher demand variability results in more information rent

by Lemma 2.3.) However, when product b’s demand variability is low, OEM D’s gain

in information rent due to product b’s demand variability is negligible, and as a result,

OEM D ends up with lower profit than OEMs A and B combined. For the second
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part, notice that when OEM B has low-type demand and thus earns no information

rent, lowering σb or increasing pbh has no impact on the combined information rent

of A and B. Therefore, the result follows by noting that OEM D’s information rent

decreases when σb is decreased (by Lemma 2.3) or pbh is increased (by Lemma 2.1).

Figure 2.2 illustrates this result. Comparing the panels from left to right, the non-

pooling region in which OEMs A and B outperform OEM D grows as the demand

variability for b, σb, decreases, or the probability that product b has high demand, pbh,

increases. Figure 2.2 again shows that the regions in which non-pooling is optimal

are fairly large and not limited to very low values of σb. Notice that for any given

σb and δb, as δa − δb approaches zero, non-pooling is more likely to be preferred.

However, the first two panels reveal that even when δa − δb is zero, there are cases

where OEM D earns higher profits. This occurs when σb is high, thus revealing that

gaining sufficiently high demand variability from product b can indeed compensate for

OEM D’s decrease in type hierarchy when pooling. Once again, notice that pooling is

beneficial when doing so utilizes more demand variability for generating information

rent.

Concluding the results for types lh and hl, I make the following observation. Fac-

ing a powerful strategic supplier, the only source of profit for the OEMs is information

rent. When not pooling purchases, only the high-type OEM gets information rent.

When pooling purchases, OEM D has a hierarchy disadvantage compared with a

high-type OEM A or B since D does not have the highest type. This can potentially

be compensated by the fact that OEM D can make use of demand variability for both

products, while for types lh or hl, the low-type OEM A or B cannot. Once again, I

would like to draw the reader’s attention to my finding that the presence of a strategic

supplier can reverse the common wisdom about the benefit of variability reduction

through pooling. In my setting, reduced variability harms the OEM, but pooling

that utilizes more demand variability for generating information rent can actually be
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Figure 2.2: Pooling and non-pooling regions of demand type hl, varying σb and pbh

beneficial. This is counter to the received intuition about pooling.

But what happens when both products a and b have high mean demands? In this

case, OEMs A, B, and D all have the highest type, so the tradeoff of hierarchy disad-

vantage versus increased variability that I set up above does not apply. Interestingly,

situations where pooling results in lower profits can be easily found in this case as

well.

Theorem 2.3. Suppose demands for products a and b are symmetric: δa = δb = δ,

pah = pbh = ph, σ
a = σb = σ, ph > 0.15, and σ is sufficiently large. If OEM D of

type hh receives lower information rent than A and B combined, then as ph increases,

OEM D receives even lower information rent and is still outperformed by A and B.

With demand type hh, both products’ demand variability will generate informa-

tion rent when OEMs A and B purchase separately, but for OEM D the variability

is reduced upon pooling due to statistical economies of scale. This gives the OEMs A

and B a variability advantage over OEM D, which gets greater as σ gets larger. On

the other hand, OEM D’s type-hh demand has the highest rank of four possible types
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Figure 2.3: Pooling and non-pooling regions of demand type hh, for varying levels of
pih (in this figure σi = 3)

in the demand type hierarchy, while A and B’s type-h demands are only the higher of

two possible demand types. As a result, D gains an advantage in type hierarchy. This

however is only a significant advantage when ph is small (e.g., ph = 0.05) because then

p2h would be very small and, by Lemma 2.1, the rareness of type-hh demand leads

to a large information rent for OEM D of type hh. As ph increases, the hh type

becomes less rare, and this coupled with the decrease in variability from pooling ends

up making OEM D worse off compared to OEMs A and B. Figure 2.3 illustrates this

trend. Reading the panels from left to right, as ph increases, the non-pooling region

in which OEMs A and B outperform D grows. (Notice that although the sufficient

conditions of Theorem 2.3 require pah = pbh, it is easy to generate examples where

OEMs A and B dominate OEM D when pah = pbh is violated, as can be seen on the

last panel of Figure 2.3.)

Although in the above results I focused on cases when OEMs A and B outper-

form OEM D, the intuition I built can also be used to predict when the opposite

happens. For example, consider the case where product b’s demand has small gap

but huge variability. On his own, OEM B would earn little information rent (e.g.,

zero information rent if the gap is zero, per Lemma 2.2). In this case OEM B’s de-

mand variability is “wasted”. However, OEM D can combine the gap from product

a with the variability from product b to generate significant information rent. This is

captured in the theorem below.
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Theorem 2.4. Fixing all other parameters, as δb becomes sufficiently small, OEM

D of types hl and hh receive higher information rent than A and B combined.

Notice that Theorem 2.4 does not consider type lh. In this case, OEM A receives

no information rent due to having low mean demand, and when δb is small, OEMs B

andD both receive only negligible information rents. Therefore the profit comparisons

for type lh are trivial. Theorem 2.4 is clearly demonstrated in Figures 2.2 and 2.3 by

the fact that the pooling regions occur near the left edge (where δb ≈ 0). I again point

out that, while Theorem 2.4 describes a case of my model where pooling is indeed

beneficial, the reason is completely different from the standard pooling logic: OEM

D receives higher profit because compared to OEM B, he can better utilize product

b’s demand variability to generate information rent.

So far I have focused on the OEMs’ profits. Besides profits, the existing pooling

literature has also studied how inventories (purchase quantities) change upon pooling.

Below, I briefly discuss how quantities are affected by pooling in my model.

In a traditional pooling model (where the good is purchased from a commodity

market at a fixed price c), how inventories change upon pooling is primarily driven

by the critical ratio (r − c)/r (= 1− q in my model), where r is the buyer’s revenue

from selling one unit of the good. When the demand pdf is symmetric about its mean

(as is in the seminal paper Eppen (1979)), total inventory decreases upon pooling if

(r−c)/r > 0.5, and increases if (r−c)/r < 0.5. The intuition is very simple: When the

critical ratio is high (low), lost sales are more (less) expensive than leftover inventory,

thus it is optimal to overstock (understock). Pooling reduces demand uncertainty, so

the level of overstock (understock) to achieve the critical ratio is also reduced. This

translates into decreased (increased) inventory when (r−c)/r > (<)0.5. Note that the

assumption of symmetric demand pdf is crucial; for example, Yang and Schrage (2009)

shows that with a right-skewed demand pdf, “inventory anomaly” can occur, namely

inventory can increase upon pooling even when (r − c)/r > 0.5. Interestingly, even
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when assuming symmetric (normal) demand pdfs in my model, “inventory anomaly”

can still occur, thanks to the presence of information asymmetry. The next figure

provides examples. In these examples, I set q = 0.6, σa = σb = 1, δa = δb = 1,

and plot QD
θaθb

− Qa
θa − Qb

θb
for varying pah and pbh, and types ll, lh and hl. (There

is no anomaly for type hh, as is explained in the next theorem.) In the traditional

pooling model, setting q = 0.6 (corresponding to a critical ratio of 0.4) would result

in positive values of QD
θaθb

− Qa
θa − Qb

θb
(increased inventory upon pooling), but this

is not always the case in my model.

The reason for the “anomaly” in my model is information asymmetry. It is well-

known that information asymmetry in principal-agent models results in downward

distortion, namely all types except the highest one purchase lower than first-best

(newsvendor) quantities. Furthermore, one can show (see Lemma 2.1’s proof in Ap-

pendix A) that the rarer the type, the greater the quantity distortion for that type.

Pooling changes the type distribution and affects the level of downward distortion,

which can lead to the anomaly. For example, in the first panel (type ll), when pal

and pbl are small (say 0.3), OEM D of type ll is much rarer than OEMs A and B

of type l (pDll = 0.09). Consequently, OEM D experiences much stronger downward

distortion in purchase quantity than OEMs A and B, leading to the anomaly. Similar

observations can be made in the other two figures.

On the other hand, when pal and pbl are sufficiently large, downward distortion in

purchase quantity is weak. I also know that the highest type never experiences down-
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ward distortion. In these cases the purchase quantities behave as in the traditional

pooling literature. The theorem below states conditions for the purchase quantities to

behave as in traditional pooling models despite the presence of the strategic supplier

and information asymmetry when the critical ratio (r − c)/r > 0.5. (The result for

the case where (r − c)/r < 0.5 is similar and omitted for brevity).

Theorem 2.5. Assume the critical ratio (r−c)/r > 0.5. Then for any OEM A’s type

θa and OEM B’s type θb, when pal and p
b
l are sufficiently close to 1, Qa

θa+Q
b
θb
> QD

θaθb
.

In particular, for demand type hh, Qa
h +Qb

h > QD
hh if (r − c)/r > 0.5.

The above discussion shows that in my model the traditional pooling intuition

and information asymmetry both influence the behavior of purchase quantities upon

pooling. When downward distortion is weak, the purchase quantities behave much

like in a traditional model. On the other hand, information asymmetry and downward

distortion can lead to “inventory anomaly”, namely inventory moves in the opposite

direction of what traditional pooling intuition suggests. This means I have identi-

fied information asymmetry as another possible cause of inventory anomaly, besides

skewed demand distributions as previously identified in Yang and Schrage (2009).

2.5 Concluding Discussion

In this chapter, I consider whether pooling purchases for a component used in

multiple products with uncertain demands results in increased profits for the buyer.

Received intuition on pooling indicates that pooling demands benefits the buyer by

reducing demand variability. However, my setting and the traditional pooling lit-

erature have a fundamental difference: I consider a strategic supplier who tries to

maximize her profit by strategically pricing supplies based on what she anticipates

about her customers’ demands, whereas the traditional literature usually does not

model a strategic supplier and the buyers effectively purchase from a commodity
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market at a fixed price. In my setting, pooling that significantly reduces demand

variability can actually result in reduced profits for the buyers because of reduced

information rent, which is not considered in the traditional pooling literature. I ad-

ditionally show that the analysis is complex and subtle because the comparison does

not only depend on the variability but also the “rank order” of the buyers’ demands. I

also show that information asymmetry and the resulting downward distortion can be

a cause of “inventory anomaly”, which is different from the cause previously identified

in the literature.

The purpose of this chapter is to show that received wisdom on pooling can fail

when the implicit assumption of an exogenous and fixed price is violated. I show

this using a standard principal-agent model. Therefore, my current knowledge is

limited to perfect competition amongst suppliers (e.g., commodity purchases) where

the standard pooling logic applies, and the situation considered in this chapter where

a sole powerful supplier is the only source of purchase for the buyers. However,

there exist many industries in between where there may be multiple suppliers (e.g.,

duopolies) with partial power, or sole suppliers that are not able to make take-it-or-

leave-it offers. Further research should explore when pooling demand will or will not

be beneficial in these environments; because pooling is such a canonical concept in

operations management, extending my knowledge to cover these cases as well would

be an interesting avenue for future work. Nevertheless, I expect that my main insights

would still apply: To the extent that the buyer’s profit relies on superior information

about his demand, demand pooling can be unattractive for reducing this informational

advantage.

This chapter studies the effect of pooling on the OEMs’ overall sales revenues

and procurement costs when meeting demand for a product, without considering

the higher-level decision of whether the OEMs should or should not pool their pur-

chases. Whether the OEMs should pool their purchases is a very important question,
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however answering it requires the consideration of additional factors, such as the

investment cost of instituting an inventory pooling system, the additional shipping

cost when inventory is physically pooled (in a centralized storage facility), or the

additional transshipping cost when inventory is virtually pooled (e.g., each OEM has

his own storage facility, but an IT system enables inventory information sharing and

transshipment across the OEMs’ facilities can be made when necessary), etc. In this

chapter I focus on the more fundamental question of whether pooling purchases al-

ways brings benefits to the OEMs, and leave the higher-level question of whether

the OEMs should or should not pool purchases to future work. However, obviously,

my analysis of sales revenues and procurement costs in the presence of pooling can

aid managers seeking to make a decision about whether or not to institute pooling

infrastructure in their organizations, and builds the foundation for further research

on this topic.

32



CHAPTER III

Simple Auctions for Supply Contracts

3.1 Introduction

In this chapter, I consider a newsvendor-like problem where one buyer (a newsven-

dor) faces n candidate suppliers who hold private information about their production

costs. The buyer needs to purchase goods from one or more suppliers before she can

use the goods to meet a random demand. Unsatisfied demand is lost, and unsold

inventory is discarded. If the buyer always purchases the good at an exogenous and

fixed price (for example, from a commodity market), she only needs to determine the

optimal purchase quantity, and the problem becomes the classical newsvendor prob-

lem. However, because each supplier’s production cost is his private information,

the buyer’s purchase price of the good is not fixed, but will be determined through

interaction with the suppliers. The buyer needs to design a sourcing mechanism to

determine the purchase quantity and price, and which supplier(s) to purchase from.

The ex ante symmetric and linear cost version of this problem, namely when all

suppliers’ costs are linear in production quantity and their unit costs are identically

distributed, has been the subject of several research papers, most recently and notably

Chen (2007). In his paper Chen shows that the following supply contract auction

is an optimal sourcing mechanism for the buyer: The buyer announces a supply

contract that specifies her payments for all purchase quantities, and auctions the
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contract among the suppliers. The winning supplier pays an upfront fee to the buyer,

then chooses to deliver any quantity of his choosing to the buyer and collects his

payment according to the contract. Chen notes that this mechanism fits well with

slotting allowance practice, where a supplier pays the retailer an upfront fee, then

determines how much inventory to ship and display on the shelf. Chen also cites

another optimal mechanism called the quantity auction proposed in Dasgupta and

Spulber (1990), where the buyer announces a supply contract and makes the suppliers

bid quantities they are willing to deliver under this contract in the “sealed-bid high-

quantity” format. Chen notes that the supply contract auction he proposes has

two advantages over the quantity auction. The first advantage is that the quantity

auction must be carried out in the sealed-bid high-quantity format, while thanks to the

revenue equivalence theorem, the supply contract auction can use several commonly

seen formats, where suppliers bid prices not quantities, which is more akin to practice.

The second advantage is that the contract used in the quantity auction depends on

the number of participating suppliers while the contract used in the supply contract

auction does not, so the buyer can run the supply contract auction without knowing

the exact number of participating suppliers. In his paper Chen assumes that all the

suppliers are ex ante symmetric, and have linear production costs.

While both the supply contract auction and the quantity auction are theoretically

optimal, they are not the most familiar and simple mechanisms for the suppliers.

Also, while slotting allowances are common in practice, the supply contract auction

mechanism described by Chen is much less observed in practice, especially outside

retail. In comparison, for example, the commonly used open-descending auction for

a fixed-quantity contract has a very simple and easily understandable structure, and

is widely observed in a variety of sourcing situations (Jap 2007). One reason for

its popularity is that the requirement on the participating suppliers’ decision-making

sophistication is minimal — a supplier only needs to compare the current auction price
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with his own cost. In fact, Chen points out that such an auction is simpler than the

supply contract auction and the quantity auction (Chen (2007), p.1563). However, the

open-descending auction for a fixed-quantity contract is not an optimal mechanism for

the buyer. Therefore, it would be ideal if the buyer can use an optimal mechanism that

is as similar to an open-descending auction for a fixed-quantity contract as possible,

and adds little complexity to the suppliers’ decision-making process.

In this chapter, I show that a variation of the standard open-descending auction is

an optimal mechanism for the buyer; I name it the modified open-descending auction.

The buyer announces that the mechanism will consist of two stages. In Stage 1, the

buyer will run a standard open-descending auction for an initial fixed quantity. In

Stage 2, the winning supplier from Stage 1 will receive one additional offer from the

buyer to supply more units at unit prices no higher than the auction’s ending price.

The timeline of the mechanism is as follows:

1. All suppliers participate in an open-descending auction for a fixed-quantity

contract and one supplier emerges as the winner.

2. The buyer informs the winning supplier how much she is willing to pay for each

additional unit the supplier chooses to deliver.

3. The winning supplier delivers the guaranteed initial quantity, plus any addi-

tional quantity of his choosing beyond the initial quantity.

4. The buyer’s demand is realized, unsatisfied demand is lost, and unsold inventory

is discarded.

What distinguishes the modified open-descending auction from the supply con-

tract auction and the quantity auction is its familiarity to the suppliers. Stage 1 of

my mechanism is just a standard open-descending auction. Stage 2 of my mechanism

would also be familiar to the suppliers, because it is common in many industrial set-

tings that suppliers will bid for an initial quantity and become a preferred supplier
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if chosen, with the expectation that they are to lower their prices in the future if

they want more business. For example, in a large conglomerate that I worked with,

the sourcing staff are expected to achieve a target price deflation over time for the

goods they source from the same supplier. The other major advantage of the modified

open-descending auction is that it requires a much less supplier sophistication. As I

will later show in §3.2, in both stages of my mechanism, the only computation that a

supplier needs to perform is comparing his own cost with another number. Further-

more, only one supplier will ever enter Stage 2. By contrast, in the quantity auction

and the supply contract auction, all suppliers must perform calculations using the

potentially complicated payment schedules provided by the buyer before determining

their best bidding strategies. These benefits of my mechanism are important, because

in practice suppliers are much more willing to participate in a mechanism that they

find more familiar and simpler.

Finally, with minor modifications, my proposed mechanism remains optimal when

the suppliers’ production costs are concave in quantity and ex ante asymmetric, while

Chen’s paper assumes ex ante symmetric and linear production costs. Therefore, the

modified open-descending auction is more practically implementable, and yet less

restrictive.

3.2 Base Model: Linear Symmetric Costs

To be consistent with Chen (2007), I first assume linear symmetric production

costs in my base model. Suppose a buyer needs to purchase a good from one or

more of n candidate suppliers to satisfy an uncertain future demand. Unsatisfied

demand is lost, and unsold inventory is discarded. Assume the buyer’s expected

revenue R(Q) from stocking Q units is non-negative, increasing, and concave in Q.1

1One example of the expected revenue function that satisfies these requirements is the classical
newsvendor’s expected revenue function R(Q) = pED[min{Q,D}], where p is the unit retail price,
and D is the uncertain demand. In this chapter I am not restricted to the classical newsvendor’s
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Define r(k)
.
= R(k)−R(k− 1) to be the buyer’s expected marginal revenue from the

kth unit, which is non-increasing. Assume supplier i’s unit production cost ci is his

private information, but it is common knowledge that each ci is an independent draw

from a random variable C ∈ [c, c̄] with cdf F and pdf f . These are the exact same

assumptions made in Chen (2007). My goal is to design a simple and practically

implementable contracting mechanism that maximizes the buyer’s expected profit.

To focus on the modified open-descending auction, I relegate the optimal mecha-

nism design analysis to the Appendix, and jump directly to describing the mechanism.

Define virtual cost function ψ(c)
.
= c + F (c)

f(c)
and assume ψ is increasing in c.2 Define

initial quantity

Q0
.
= max{Q ∈ Z|r(Q) ≥ ψ(c̄)}

and assume r(1) ≥ ψ(c̄), so that Q0 ≥ 1.3

Definition 3.1 (Modified Open-Descending Auction). The buyer first announces the

following rules to all candidate suppliers:

• The mechanism has two stages. Stage 1 is an open-descending auction for a

contract to supply Q0 units. The auction price p will start at an initial price

set by the buyer and thereafter will always equal the current lowest bid. Any

supplier can always bid a price lower than the current auction price, which

updates the auction price. The auction ends when no supplier is willing to bid

any lower, and the final lowest bidder is the winner. Suppose the auction ends

at price p0. The auction’s winner has the obligation to deliver Q0 units to the

buyer and the buyer will pay p0 for each of the Q0 units.

setup, but allow any general expected revenue functions that satisfy these requirements.
2This condition is often assumed in the economics literature, and is satisfied by many commonly

seen distributions; see Footnote 2 on p.1564 of Chen (2007).
3This condition, used here and in a similar way in §3.3, guarantees that the buyer will always

purchase. It only serves to simplify the analysis and is non-essential. When this condition is violated,
I can redefine Q0 ≡ 1 and run the modified open-descending auction similarly but with a starting
price ψ−1(r(1)); there is a possibility that all suppliers will drop out immediately after the auction
starts, in which case the buyer chooses not to purchase at all.
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• In Stage 2, the buyer will make one additional offer to the winning supplier

from Stage 1 that specifies the prices the buyer will pay for each additional

unit (beyond Q0) that the supplier chooses to deliver. The exact prices will

be specified in Stage 2, however no price for any additional unit will be higher

than p0. The winning supplier can choose to deliver any additional quantity

(including zero).

After announcing the rules, the buyer executes the mechanism as follows.

Stage 1 The buyer runs an open-descending auction for a contract to supply Q0

units, starting at price c̄.

Stage 2 Suppose Stage 1’s auction concludes at price p0 and supplier i is the winner.

The buyer then offers to pay min{p0, ψ−1(r(k+Q0))} for the kth additional unit

beyond Q0 that supplier i chooses to deliver, where k ≤ r−1(ψ(c))−Q0.

Put simply, the modified open-descending auction takes the following format: The

buyer uses an open-descending auction to allocate a fixed-quantity contract. After

the auction, the buyer makes one additional offer to the winning supplier to purchase

more units at discounted prices.

Theorem 3.1. The modified open-descending auction is an optimal mechanism for

the buyer. In Stage 1, each supplier i’s dominant bidding strategy is to keep lowering

his bid until auction price p reaches ci or the auction ends (when other suppliers are

not willing to bid lower), whichever happens first. In Stage 2, supplier i (given he is

the winner in Stage 1) will deliver an additional q0
.
= max{q ∈ Z|r(q +Q0) > ψ(ci)}

units to the buyer.

Having described the modified open-descending auction and the suppliers’ dom-

inant strategies, below I highlight a few features of the mechanism to show why I

believe it achieves my goal of designing a simple and practically implementable opti-

mal mechanism.
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First, as stated in §3.1, the mechanism is familiar to suppliers. Moreover, Theo-

rem 3.1 shows that each supplier i’s dominant bidding strategy in Stage 1’s auction

is identical to that in a standard open-descending auction (i.e., keep bidding lower

until the auction price p reaches his cost of fulfilling the contract ci). Each supplier

i’s computation is trivial: He only needs to compare his unit cost ci with the current

auction price p. Finally, in Stage 2 the winning supplier will receive an additional

offer that takes the form of a (weakly) decreasing sequence of payments for each

additional unit delivered. Therefore, to determine his optimal additional delivery,

supplier i again only needs to compare his unit cost ci with the decreasing sequence

of payments to find out the last unit that he can earn a profit on, and deliver this

additional quantity.

I want to point out that in judging whether a mechanism is “simple and practically

implementable”, I primarily consider how easy it is for the suppliers to understand its

procedures, and to determine their best bidding strategies in the mechanism. A mech-

anism that is very simple from the suppliers’ perspective may require computations

from the buyer that are not as simple. For example, the modified open-descending

auction appears to the suppliers as just an auction for a fixed-quantity contract start-

ing from a reserve price, plus an additional offer in the form of a decreasing sequence

of payments, and the suppliers’ decision-making in this mechanism is almost trivial.

However, from the buyer’s perspective, computing the initial quantity, the reserve

price, and the additional price offers all require some sophistication. Nevertheless,

while a savvy buyer can make all efforts to design an optimal mechanism, she can-

not necessarily force the suppliers to participate in the mechanism. Therefore, one

very important practical consideration in designing a mechanism should be that it is

simple and familiar to the suppliers, because suppliers may refuse to participate in a

mechanism they find unfamiliar or confusing.

In Stage 1 of my mechanism, the buyer uses an open-descending auction for a
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fixed-quantity contract to find the lowest-cost supplier. It is well known that when

auctioning a fixed-quantity contract, auction formats such as sealed first-price, Vick-

rey (sealed second-price) and reverse Dutch (open-ascending)4 auctions all result in

the same expected profit for the buyer as an open-descending auction (the revenue

equivalence theorem). Thus it is natural to ask if in my mechanism the buyer could

use any of these auction formats in Stage 1, i.e., if the term “open-descending” in

Definition 3.1 could be replaced by “sealed first-price”, “Vickrey”, or “reverse Dutch”.

As it turns out, the revenue equivalence theorem no longer holds true in my setting:

One cannot replace the open-descending auction in Stage 1 of my mechanism by

any of these commonly used auction formats without compromising the mechanism’s

optimality.

Proposition 3.1. In my mechanism, the open-descending auction in Stage 1 cannot

be replaced by any auction format that results in full revelation of the lowest-cost sup-

plier’s private cost information to the buyer, without compromising the mechanism’s

optimality. In particular, it cannot be replaced by a sealed first-price, Vickrey, or

reverse Dutch auction without compromising the mechanism’s optimality.

By optimal mechanism design theory, in any optimal mechanism the buyer must

purchase the total quantity that makes marginal revenue equal the lowest marginal

virtual cost. However, if in Stage 1 the buyer learns the winning supplier’s cost

information, then in Stage 2 she will offer to pay just above the supplier’s cost for

additional units, which will result in the total purchase quantity being greater than

that of an optimal mechanism. Therefore, such a mechanism can never be optimal.

The fact that a sealed first-price, Vickrey, or reverse Dutch auction in Stage 1

will fully reveal the winning supplier’s cost information to the buyer, however, is

4A reverse Dutch (open-ascending) auction for supplying Q0 units runs as follows. The auction
price p slowly increases from zero over time. When a supplier first indicates that he accepts the
current price p0, the auction ends and the supplier will deliver Q0 units and receive p0 for each of
the Q0 units from the buyer.
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not obvious: The buyer only observes the suppliers’ bids, which may or may not

equal their actual costs. Nevertheless, it turns out that the buyer can infer the

winning supplier’s true cost from his bid and his equilibrium bidding strategy (see

Proposition 3.1’s proof for details). Therefore, replacing the open-descending auction

in Stage 1 by a sealed first-price, Vickrey or reverse Dutch auction will cause sub-

optimality. By contrast, with the open-descending auction the buyer can only learn

an upper bound on the winning supplier’s cost, not the exact cost.

As stated in Definition 3.1, in announcing her mechanism the buyer does not

specify what the offer will be in Stage 2, and her freedom of offering any prices of her

choosing (no higher than p0) in Stage 2 will lead to sub-optimal purchase quantities

when sealed first-price, Vickrey or reverse Dutch auctions are used in Stage 1. Of

course, this problem could potentially be avoided if before Stage 1’s auction the buyer

removes her freedom by announcing the complete pricing recipe of how Stage 2’s price

offers will be computed as a function of the auction’s outcome. However, announcing

a pricing recipe — a multi-dimensional function that maps every possible auction

outcome to a list of prices — is against my intention to design an optimal mechanism

that is as simple and familiar as possible. Therefore, the attempt to replace the open-

descending auction in my mechanism with another commonly used auction format

will lead to either a sub-optimal mechanism, or a much more complicated mechanism.

This speaks to the unique role that the open-descending auction plays in my simple

optimal mechanism.

3.3 Extensions

In this section I extend the mechanism to allow concave and ex ante asymmetric

production costs, neither of which is addressed in Chen (2007).
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3.3.1 Ex Ante Symmetric Concave Costs

Production costs which are concave in quantity are commonly used to capture

economies of scale widely observed in many industrial settings. Common causes for

economies of scale include dilution of a large fixed setup cost (e.g., an initial machinery

investment), bulk purchase discounts for materials, and learning curve effect. The

modified open-descending auction can be easily extended to allow a class of concave

production costs.

Assume supplier i’s total cost for producing Q units is H(Q)ci, where H(Q) is

an increasing and concave function common to all suppliers, satisfying H(0) = 0 and

H(∞) = ∞. I call ci the base cost of supplier i. This cost model captures the case

where the economies of scale is common in the industry, and suppliers differ from each

other only in the base cost. This would be a reasonable assumption, for example, in a

labor-intensive industry where the technology and learning curve effect of all suppliers

are similar, and labor cost drives the production cost. In this case, base cost ci can

represent the hourly labor rate at the supplier. Define h(k)
.
= H(k) − H(k − 1),

so h(k)ci is supplier i’s marginal production cost for the kth unit. Obviously h(k) is

non-increasing in k, and H(Q) =
∑Q

k=1 h(k). Further assume r(Q)/h(Q) is decreasing

in Q and approaches 0 as Q → ∞. Intuitively, this means the marginal revenue is

diminishing faster than the marginal production cost. This assumption prevents the

optimal production from becoming infinite. Base margin ci is supplier i’s private

information, and is an independent draw from a random variable C ∈ [c, c̄] with cdf

F and pdf f . Assume increasing virtual cost function ψ(c)
.
= c + F (c)

f(c)
. Define initial

quantity

Q0
.
= max{Q ∈ Z|r(Q)/h(Q) ≥ ψ(c̄)}

and assume r(1)/h(1) ≥ ψ(c̄), so that Q0 ≥ 1.

Definition 3.2 (Modified Open-Descending Auction for Symmetric Concave Costs).
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The buyer first announces the following rules to all candidate suppliers:

• The mechanism has two stages. Stage 1 is an open-descending auction for a

contract to supply Q0 units. The auction price P will start at an initial price

set by the buyer and thereafter will always equal the current lowest bid. Any

supplier can always bid a price lower than the current auction price, which

updates the auction price. The auction ends when no supplier is willing to bid

any lower, and the final lowest bidder is the winner. Suppose the auction ends

at price P0. The auction’s winner has the obligation to deliver Q0 units to the

buyer and the buyer will pay P0 for the Q0 units.

• In Stage 2, the buyer will make one additional offer to the winning supplier

from Stage 1 that specifies the prices the buyer will pay for each additional

unit (beyond Q0) that the supplier chooses to deliver. The exact prices will

be specified in Stage 2, however the price for the kth additional unit will be no

higher than h(k + Q0)P0/H(Q0). The winning supplier can choose to deliver

any additional quantity (including zero).

After announcing the rules, the buyer executes the mechanism as follows.

Stage 1 The buyer runs an open-descending auction for a contract to supply Q0

units, starting at price H(Q0)c̄.

Stage 2 Suppose Stage 1’s auction concludes at price P0 and supplier i is the winner.

The buyer then offers to pay h(k + Q0)min{P0/H(Q0), ψ
−1(r(k + Q0)/h(k +

Q0))} for the kth additional unit beyond Q0 that supplier i chooses to deliver,

where k ≤ max{l|r(l +Q0)/h(l +Q0) > ψ(c)}.

Theorem 3.2. The modified open-descending auction for symmetric concave costs is

an optimal mechanism for the buyer. In Stage 1, each supplier i’s dominant bidding

strategy is to keep lowering his bid until auction price P reaches H(Q0)ci or the
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auction ends (when other suppliers are not willing to bid lower), whichever happens

first. In Stage 2, supplier i (given he is the winner) will deliver an additional q0
.
=

max{q ∈ Z|r(q +Q0)/h(q +Q0) > ψ(ci)} units to the buyer.

One can easily see that the symmetric linear costs problem (Definition 3.1 and

Theorem 3.1) is a special case of the symmetric concave costs problem (Definition 3.2

and Theorem 3.2), with h(k) replaced by 1 (equivalently, with H(Q) replaced by

Q). With symmetric concave costs, the price cap on the additional offer that the

buyer announces before the auction is no longer a constant p0 as in the base model,

but is a decreasing curve h(k+Q0)P0/H(Q0) for the k
th additional unit the winning

supplier chooses to deliver. The shape of the price cap curve matches the suppliers’

diminishing marginal cost curve h(·).

Since I have described how to extend the modified open-descending auction to

allow concave production costs, a natural question would be whether the mechanism

can be extended to also allow convex production costs. Unfortunately, the answer

is negative. The reason my mechanism works in linear and concave cost settings

is that if a supplier does not win the auction in Stage 1, he will have no business,

thus he has to bid down to his true cost in the auction. In a convex cost setting, it

can be optimal for the buyer to multi-source to avoid climbing too high on a single

supplier’s increasing marginal cost curve, and the buyer does not know a priori how

many suppliers she should source from. This makes it difficult to run a simple auction

in Stage 1. Dasgupta and Spulber (1990) studies the optimal mechanism with strictly

convex costs, however the proposed implementation of the optimal mechanism is very

complex.

It is worth noting that a recent paper, Tunca and Wu (2009), studies simplifying

complex mechanisms for strictly convex production costs using a two-stage approach.

The author are motivated by the observation that running a complex mechanism

such as in Dasgupta and Spulber (1990) with many suppliers can be impractical.
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To address this concern, they propose a two-stage mechanism, in which the buyer

first uses a preliminary auction to select a small number of suppliers as preferred

candidates, then runs a complex mechanism (such as the mechanism proposed by

Dasgupta and Spulber) among this reduced set of preferred candidates. This mecha-

nism is generally not optimal : With convex production costs, it may be optimal for

the buyer to purchase from all suppliers, so pre-selecting a subset of suppliers before

learning their full cost information means in some cases the final purchasing decision

will not be optimal. However, the authors point out that at the cost of optimality,

the buyer has a more practically implementable mechanism (compared with an op-

timal mechanism such as the mechanism proposed by Dasgupta and Spulber). To

reiterate, the two-stage mechanism proposed in Tunca and Wu (2009) achieves sim-

plicity by using pre-screening to reduce the set of candidate suppliers at the expense

of optimality in their convex cost setting. My modified open-descending auction also

uses pre-screening to reduce the set of candidate suppliers (actually to the greatest

extent possible, i.e., to a single supplier), but thanks to my mechanism’s design and

my concave (including linear) cost setting, I am able to maintain optimality.

3.3.2 Ex Ante Asymmetric Concave Costs

The modified open-descending auction can also be extended to allow ex ante

asymmetric costs. In this section, I assume each supplier i’s base cost ci is drawn

from an independent random variable Ci ∈ [ci, c̄i] with cdf Fi and pdf fi. Define

virtual cost function ψi(c)
.
= c+ Fi(c)

fi(c)
and assume ψi is increasing in c. Define initial

quantity

Q0
.
= max{Q ∈ Z|r(Q)/h(Q) ≥ ψi(c̄i),∀i}

and assume r(1)/h(1) ≥ ψi(c̄i), ∀i, so that Q0 ≥ 1.

It is well known that with ex ante asymmetric bidders, an optimal mechanism

biases towards higher-cost bidders, and against lower-cost bidders to intensify compe-
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tition. Thus, I propose the following modified biased open-descending auction, where

the suppliers’ bids are treated by supplier-specific biasing functions before being sub-

mitted in the auction. (Biased auctions have been studied in the literature; see

Rezende (2009) for a recent example.)

Definition 3.3 (Modified Biased Open-Descending Auction). The buyer first an-

nounces the following rules to all candidate suppliers:

• The mechanism has two stages. Stage 1 is a biased open-descending auction for

a contract to supply Q0 units. The rules of the auction are announced as follows.

Before the auction, the buyer will inform each supplier i of his biasing function

bi(·), and supplier i’s bid Pi will be treated as price bi(Pi) in the auction. The

auction price P will start at an initial price set by the buyer and thereafter will

always equal the current lowest price. Any supplier can always submit a bid that

lowers the current auction price. The auction ends when no supplier is willing

to further lower the auction price, and the final lowest bidder is the winner.

Suppose the auction ends at price P0. The auction’s winner, say supplier i, has

the obligation to deliver Q0 units to the buyer and the buyer will pay b−1
i (P0)

for the Q0 units.

• In Stage 2, the buyer will make one additional offer to the winning supplier

from Stage 1 that specifies the prices the buyer will pay for each additional

unit (beyond Q0) that the supplier chooses to deliver. The exact prices will

be specified in Stage 2, however the price for the kth additional unit will be

no higher than h(k + Q0)ψ
−1
i (P0/H(Q0)). The winning supplier can choose to

deliver any additional quantity (including zero).

After announcing the rules, the buyer executes the mechanism as follows.

Stage 1 The buyer first informs each supplier i of the biasing function bi(·) =

H(Q0)ψi(·/H(Q0)), then runs an open-descending auction for a contract to
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supply Q0 units, starting at price H(Q0)max{ψi(c̄i)}.

Stage 2 Suppose Stage 1’s auction concludes at price P0 and supplier i is the winner.

The buyer then offers to pay h(k+Q0)ψ
−1
i (min{P0/H(Q0), r(k+Q0)/h(k+Q0)})

for the kth additional unit beyond Q0 that supplier i chooses to deliver, where

k ≤ max{l|r(l +Q0)/h(l +Q0) > ψi(ci)}.

Theorem 3.3. The modified biased open-descending auction is an optimal mechanism

for the buyer. In Stage 1, each supplier i’s dominant strategy is to keep lowering his bid

until auction price P reaches bi(H(Q0)ci) or the auction ends (when other suppliers

are not willing to bid lower), whichever happens first. In Stage 2, supplier i (given he

is the winner) will deliver an additional q0
.
= max{q ∈ Z|r(q+Q0)/h(q+Q0) > ψi(ci)}

units to the buyer.

One can again easily see that the symmetric concave costs problem (Definition 3.2

and Theorem 3.2) is a special case of the asymmetric concave costs problem (Defini-

tion 3.3 and Theorem 3.3), with all ψi(·) replaced by a common ψ(·). With asymmet-

ric concave costs, the price cap curve on the additional offer h(k+Q0)ψ
−1
i (P0/H(Q0))

that the buyer announces before the auction is supplier-specific. In addition, each

supplier’s bid must be treated by his individual biasing function bi before being sub-

mitted to the auction. The use of biasing functions adds complexity to the mechanism,

but biasing is unavoidable whenever an optimal mechanism with ex ante asymmetric

agents is to be implemented.

3.4 Concluding Discussion

The classical newsvendor model and its variations are among the most important

in operations management, witnessed by the numerous research papers published

about them, as well as their prominence in business education and their applications

in practice. The vast majority of newsvendor models in the literature assume that
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the newsvendor purchases the good at an exogenous and fixed price, and selects the

optimal purchase quantity. In many real life situations, however, the newsvendor has

to source the good from among multiple competing suppliers. In these situations,

the competition among the suppliers drives the purchase price, the purchase price

determines the buyer’s purchase quantity, and the purchase quantity will in return

affect the suppliers’ competition. What is the buyer’s optimal strategy facing these

situations? For this problem, Chen (2007) made a notable contribution by developing

an optimal sourcing mechanism for the buyer in which suppliers bid and pay for

the right to supply any quantity of their choosing to the buyer. This is somewhat

equivalent to the buyer “selling the business” to the supplier and has some parallels in

the retail industry, for example slotting allowances as pointed out by Chen. However,

“selling the business” whereby suppliers bid to purchase a payment schedule from

the buyer is not as widely observed in practice as having the suppliers compete in a

traditional procurement auction whereby suppliers bid prices to supply a guaranteed

quantity.

In this chapter, I show that a simple variation of the standard open-descending

auction for a fixed-quantity contract can implement the optimal mechanism for this

problem. This is attractive because many suppliers are familiar with standard open-

descending auctions. The suppliers’ decision making in my modified open-descending

auction is also extremely simple, which adds to its practical appeal. Speaking to

the unique role that the open-descending auction plays in my setting, I find that

one cannot replace the open-descending auction by other commonly used auction

formats such as sealed first-price, Vickrey or reverse Dutch auctions, without com-

promising the mechanism’s optimality, or adding complexity. Finally, the modified

open-descending auction can be easily extended to allow concave production costs

and ex ante asymmetric suppliers, showing great flexibility.
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CHAPTER IV

Price-Quoting Strategies of a Tier-Two Supplier

4.1 Introduction

Business-to-business transactions are important: According to Kshetri and Dho-

lakia (2002), the global value of goods and services traded among businesses is es-

timated to exceed US$60 trillion annually. This important area is addressed by a

growing operations management literature on procurement, including work on re-

verse, or procurement, auctions, which have become commonplace in practice (Jap

2007). In such studies the auctioneer (often an OEM) and the bidders (the OEM’s

immediate suppliers, also called tier-one suppliers) are modeled as strategic decision

makers, but the suppliers’ costs are typically assumed to be exogenous. However,

in reality these suppliers’ costs are often influenced by many factors, including their

own internal production costs, as well as their costs of sourcing from upstream sup-

pliers. Although existing models capture cases where these upstream suppliers sell

commodities and have little pricing power, when an upstream supplier is powerful she

too should be considered as a strategic decision maker whose pricing decisions affect

the downstream suppliers’ costs and thus the outcome of the OEM’s auction. To take

a first step at analyzing this important but under-studied issue, in this chapter I focus

on the strategic pricing decisions of a tier-two supplier whose downstream customers

(tier-one suppliers) will compete in an OEM’s reverse auction.
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I became interested in this problem after encountering this type of setting in prac-

tice. I observed a situation in which a Fortune 50 OEM, who was considering whether

it would be cost-effective to construct additional office space, ran a reverse auction to

solicit bids from general contractors. For a particular key element of the construction,

these general contractors were relying on the same specialized subcontractor who had

quoted them prices. Obviously, the subcontractor faced a strategic problem of how

to quote prices to the general contractors, but it was not clear to me what strategy

should be employed, nor was there any existing research addressing this issue that I

am aware of.

Several factors make understanding the tier-two supplier’s price-quoting strategy

an interesting and difficult problem, and to examine it I employ a stylized model

capturing the following salient features of the underlying supply-chain situation:

First, I initially assume that all the tier-one suppliers depend on one single tier-two

supplier for a critical part of their product/service. In my example above the tier-two

supplier had specialization in a particular type of construction. More generally, it is

not rare for many tier-one suppliers to rely on a tier-two supplier that specializes in a

particular type of component or service — for example, The Economist (2009) points

out that 90% of the micro-motors used to adjust the rear-view mirrors in cars are

made by Mabuchi, and TEL makes 80% of the etchers used in making LCD panels.

My initial assumption that all tier-one customers depend on the same tier-two supplier

is a simplification of this reality, for expositional purposes. In §4.6 I will relax this

simplifying assumption and show that the main insights from the base model still

hold true.

Second, the tier-one customers are in competition for an indivisible contract from

the OEM, modeled as an open-descending reverse auction held by the OEM. Natu-

rally, a tier-one supplier will only execute a quote (purchase from the tier-two supplier

at the quote price) if he has an order from the OEM. This alongside the first feature
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leads to the following implication in the supply chain: When her customers are com-

peting for the same contract, the tier-two supplier can give each customer a quote,

but anticipates that only one customer can possibly win the OEM’s contract and

subsequently purchase from her at the quoted price.

Third, the tier-two supplier’s quotes directly affect her customers’ costs. I model

this as the tier-one supplier’s costs for fulfilling the OEM’s contract consisting of the

cost of inputs from the tier-two supplier plus their internal cost of processing the

inputs into final products. The tier-two supplier has an incentive to quote high prices

to maximize revenue, but of course the OEM would walk away and not award the

contract if the tier-one suppliers’ costs end up being exorbitant. I capture the latter

reality with a walk-away price, or reserve price, in the OEM’s auction.

Fourth, firms typically closely guard their cost information to protect profits, so

in reality the tier-two supplier does not perfectly know her customers’ true internal

processing costs. Of course, if the tier-two supplier somehow knew the tier-one sup-

pliers’ processing costs, she could pick out the most cost-efficient supplier and give

this supplier a price quote that consumes as much of his profit margin as possible,

leaving only minimal profit for him. In contrast, when faced with uncertainty about

the tier-one suppliers’ costs, the tier-two supplier benefits from giving quotes to mul-

tiple tier-one customers because doing so affords her multiple shots at the OEM’s

contract. I model this using the canonical asymmetric information setting from eco-

nomics, whereby each tier-one supplier knows exactly his own internal processing

cost, but the tier-two supplier only has an estimate.

These factors conspire to make the tier-two supplier’s quoting problem interesting

and difficult. The tier-two supplier has an incentive to offer quotes to multiple tier-

one customers, but only has imperfect information about how aggressive she should

be and which quote (if any) will ultimately bring her revenue. Particularly, she faces

a complicating situation due to downstream competition — if she decides to tip the
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scales in favor of one customer (offers him a low quote that is likely to give him an

overall cost advantage), this would come at the expense of making the other customers

— those with higher quotes that would deliver more revenue to the tier-two supplier

— less likely to win the auction. These tensions lead to several questions. Does

the tier-two supplier always want to provide equal quotes to ex ante identical tier-

one suppliers? In general, what does the tier-two supplier’s quoting strategy look

like? I address these questions in §4.4, where I find that the tier-two supplier would

indeed offer non-identical quotes, particularly when the value of the underlying OEM

contract is high.

There are two implications in the forgoing discussion. The first implication is that

the supplier may offer her customers different (unequal) quotes. There is evidence

that this is done in practice and does survive legal challenges. These legal challenges

attempt to link unequal quotes to price discrimination, which the Robinson-Patman

Act (RPA) forbids. In a recent example of this, Michael Foods (a manufacturer of

egg and potato products) offered quotes for ingredients to two food service providers,

Sodexo and Feesers, who then bid against each other for a food service contract

at a downstream institution. Michael Foods offered Sodexo a quote lower than the

quote it offered Feesers, and consequently Feesers sued alleging an RPA violation.

While successful in a district court, this claim was overturned by the Third Circuit

court (Feesers, Inc. v. Michael Foods, Inc., Jan. 7, 2010), who cited RPA’s “two

purchaser” requirement: For RPA to apply, at least two sales must be alleged to

different purchasers at different prices, meaning mere offers to sell are not sufficient.

Citing a series of similar court decisions in several competitive bidding settings, Stoll

and Goldfein (2007) note that courts generally find in favor of suppliers who offer their

customers different price quotes where only the winning bidder actually purchases

from the supplier, because the two purchaser requirement is not met. Nonetheless,

they also point out that in at least one instance, a circuit court has ignored the
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two purchaser requirement and applied the RPA in a competitive bidding setting.

The preponderance of evidence suggests that unequal quotes generally survive legal

challenges, but Stoll and Goldfein (2007) point out that the Supreme Court has yet to

definitively rule on whether RPA can be applied to the competitive bidding setting,

and is not likely to do so for at least several years.

The legal challenges make it clear that tier-one customers may find unequal quotes

unfair, as a customer may resent being forced to accept a higher quote if others are

given lower quotes for the exact same good. Thus a tier-two supplier might wish to

avoid unequal quotes solely to preserve customer goodwill. Addressing this possibility,

in §4.5.1 I extend my analysis to consider the case where the tier-two supplier always

provides equal quotes to its customers, and study how the identical quote compares

to non-identical quotes. I find that the restriction to identical quotes generally hurts

the tier-two supplier, unless its customers are ex ante symmetric and the underlying

value of the OEM’s contract is relatively low.

The second implication is that, the tier-two supplier quotes prices depending on

her estimates of the tier-one suppliers’ costs. If the tier-two supplier can somehow

learn her customers’ private cost information, she could potentially resolve her concern

of getting too greedy with her quotes and accidentally ending up empty-handed. This

is because better information can reduce/eliminate uncertainty over her customers’

costs, enabling her to better target quotes without pushing the tier-one suppliers’ costs

past the OEM’s walk-away reserve price. Furthermore, better information may allow

the tier-two supplier to identify and back only the most efficient tier-one customer.

While there is a clear benefit to soliciting information, the tier-two supplier cannot

naively ask her customers for their costs — each tier-one supplier would tend to claim

to have high internal processing cost, hoping that the tier-two supplier would quote

him a lower price. These tensions lead to several questions: How should the tier-

two supplier best solicit cost information from her customers? Does soliciting the
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cost information really resolve the aforementioned concerns? I explore these issues

in §4.5.2, where I show that the tier-two supplier’s optimal mechanism resembles

auctioning off a single quote among the tier-one customers. The tier-two supplier has

her customers compete for the opportunity to receive a single quote before they bid

for the OEM’s business, and in so doing the tier-two supplier increases the chance

her quote results in revenue (leads to business with the OEM).

Before introducing modeling details in §4.3, in the next section I briefly review

related literature.

4.2 Literature Review

This chapter deals with procurement and sourcing. There is a long line of research

on this topic. A major branch of procurement literature this research fits into deals

with competitive bidding. In these settings multiple suppliers compete in an auction

for a contract from a buyer (see Elmaghraby (2000) for a survey on this topic; recent

examples in the operations management literature include Chen et al. (2005), Chen

et al. (2008), Li and Scheller-Wolf (2010), etc.). In this vast literature the bidding is

virtually always analyzed at just a single supply-chain interface, namely the multiple

suppliers seeking the contract and the buyer offering the contract are the only players

considered. In this chapter, I expand upon this scope by also considering the actions

of a tier-two supplier who is situated one tier below the interface at which the auction

for the contract occurs. To the best of my knowledge, the only other paper to consider

competitive bidding within a multiple-tier supply chain is Lovejoy (2010). Lovejoy

considers a supply chain-formation problem in a supply chain of multiple tiers, from a

commodity market to a final buyer (similar to the OEM in this chapter). In each tier

there may be one or more potential suppliers, but only one will emerge as active. It is

assumed that the supply cost of the commodity market and the final buyer’s purchase

price are exogenous, and the costs of the suppliers at all tiers are publicly known.
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Lovejoy defines the “balanced principal solution” as a prediction of the supply chain

formation and profit distribution outcome, whereby each supplier bids a price to each

buyer and vice versa, then the mutually preferred pair form a supply chain and share

the margin. A key difference between Lovejoy (2010) and this chapter is that the

former assumes all supply chain members have complete and perfect cost informa-

tion of all other parties, while imperfect information and the resulting information

asymmetry and uncertainty play a pivotal role in this chapter.

A major part of my model and results revolve around the possibility of the tier-two

supplier quoting different prices to her customers. Thus I also want to compare my

findings to the vast literature on price discrimination (Stole (2007) offers an excel-

lent review). In this literature, price discrimination generally occurs either between

imperfect substitute goods, or between separated markets/segments. When there

is perfect competition (all customers have full access to perfect substitute goods),

no price difference is sustainable. Therefore, the source of price discrimination in

the price discrimination literature is imperfect competition. In my setting, however,

price discrimination arises despite the fact that the tier-one suppliers’ offerings are

perfect substitutes, and the OEM is free to choose any one supplier. This is because

the source of my price discrimination is asymmetric information (tier-one suppliers

are privileged with better information about their costs than the tier-two supplier).

With asymmetric information, the tier-two supplier quotes different prices in order

to manage the trade-off of her potential revenue versus the risk of not having an or-

der. Thus, while similar in appearance to the traditional price discrimination which

arises to take advantage of imperfect competition, the price discrimination in my

setting arises for a totally different reason, namely to manage uncertainty caused by

asymmetric information.

More generally, the main novelty of this research is that it adopts the perspective

of a tier-two supplier. While there have been many studies of buyers’ procurement
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auctions and suppliers’ bidding strategies therein, mine is the first to study the price-

quoting decisions of a supplier whose customers will be competing with each other in

a downstream auction.

4.3 Base Model

4.3.1 Supply Chain Structure

I model a three-layer supply chain. The top layer is an original equipment manu-

facturer (OEM) who wishes to auction off an indivisible contract for the provision of

goods or services. I refer to the suppliers who compete in the OEM’s sourcing auction

as tier-one suppliers. For expositional purposes I assume that there are two tier-one

suppliers competing for the OEM’s business, and denote them as TO1 and TO2 (TO

stands for tier-one). The tier-one suppliers do not supply the good or service entirely

by themselves; they require inputs from an outside source before they can produce

the good or supply the service requested by the OEM. I model this outside source

as a tier-two supplier, TT (standing for tier-two), who supplies TO1 and TO2 with

a critical component or service. This stylized model captures a variety of situations,

ranging from manufacturing (where TT supplies a critical component) to food service

(where TT Michael Foods provides inputs to downstream TOs Sodexo and Feesers).

For consistency I will refer to TT as providing a component used in production by

TOs. The focus of this chapter is on how TT should price her component for cus-

tomers TO1 and TO2. (A more general model with any number of TOs and also

participants in the OEM’s auction who do not depend on TT for a component is

examined in §4.6.)
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4.3.2 OEM’s Auction

The OEM uses an open-descending auction with a reserve price. Such an auction

is simple to describe to bidders and is widely used in practice (Jap 2007): The auction

begins at the publicly announced reserve price r, and participants alternately bid the

price down, until no one is willing to bid any lower. The last remaining bidder wins

the contract and is paid the auction’s ending price. If no one is willing to match

the starting price r, no contract is awarded. The reserve price sets a ceiling on the

amount the OEM is willing to pay for the contract, capturing the OEM’s alternatives

to contracting with a supplier. For example, when purchasing goods, the OEM would

forgo the purchase if exorbitant procurement costs would make acquiring the goods

unprofitable.

During the auction, tier-one suppliers TO1, TO2 compete on contract price. TOi’s

cost to fulfill the OEM’s contract is composed of two parts xi + yi, where xi is the

cost of purchasing the component produced by TT , and yi is the cost of processing

the component into the final product, shipping it to the OEM, etc. For simplicity I

refer to yi as processing cost. I assume the TOs are rational and seek to maximize

their expected profits, as is standard in the auction-theoretic literature. If TOi wins

the OEM’s auction at price p, his profit equals p− xi − yi; if he loses the auction his

profit is zero. Note that in the OEM’s auction, each TOi finds it a dominant strategy

to lower his bid until either he wins the auction, or the price drops below his total

cost xi + yi. Therefore, TO1 will win the contract if and only if x1 + y1 < x2 + y2 and

x1 + y1 < r. Similarly, TO2 will win the contract if and only if x2 + y2 < x1 + y1 and

x2 + y2 < r. When xi + yi > r, i = 1, 2, the OEM will not award the contract.

4.3.3 TT ’s Problem

Like the TOs, TT is assumed to be a rational expected profit maximizer. The goal

of this chapter is to study TT ’s price-quoting strategy that maximizes her expected
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profit. Let si denote TT ’s cost of supplying TOi with the component needed for the

OEM’s contract, and normalize the components’ alternative value for TT to be zero.

I allow s1 ̸= s2 even though the components delivered to each TOi are identical, to

address the possibly heterogeneous additional costs associated with each TOi such as

shipping costs. TOi’s processing cost yi is his private information, and is a realization

of random variable Yi which has a commonly known, positive and finite pdf over a

closed interval. Assume the Yi’s are independently distributed. The sequence of events

begins with each TOi soliciting from TT a quote xi for a supply of the component.

TOi has the power to decide whether to execute the quote he receives, and obviously

would only want to do so if he wins the OEM’s contract. With their respective quotes

in hand, TO1 and TO2 then compete in the OEM’s auction. If TOi wins the auction,

TT will incur si to supply the component at the quoted price xi; if neither TOi is

able to meet reserve price r, no deliveries or payments are made.

In what follows, for convenience I define TOi’s realized base margin to be zi
.
=

r − yi, which is distributed according to Zi
.
= r − Yi. To ensure the typical auction-

theoretic property that Zi’s failure rate is increasing (IFR), I assume that the Zi’s (or

equivalently, Yi’s) have log-concave probability densities.1 The realized base margin

zi is the highest revenue that TT can possibly achieve by selling to TOi.

Thus far I have not imposed any assumptions on how TT will deal with the TOs

regarding supplying the component. A common and easily implemented approach is

that TT simply quotes a fixed price to each TOi. Of course, in doing so TT would

strategically account for the distributions of the base margins Zi, i = 1, 2. I refer to

this approach as Quoting Prices (QP). Note that I did not rule out the possibility

that TT provides different price quotes to its customers. As mentioned in §4.1, this
1Corollary 3 in Bagnoli and Bergstrom (2005) ensures that assuming Zi’s having log-concave

probability densities leads to IFR of Zi’s. Corollary 5 in the same paper shows that assuming Zi’s
having log-concave probability densities is equivalent to assuming so for Yi’s. Finally, the same
paper points out that many common distributions have log-concave probability densities, including
uniform, normal, logistic, and exponential distributions.
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is indeed done in practice. While the TOi’s may perceive dissimilar quotes as unfair,

the preponderance of court decisions suggests little if any legal ground for opposing

such practices. Written formally, TT ’s problem is

max P (x1, x2), (4.1)

where P (x1, x2)
.
=
∑
i=1,2

(xi − si) Pr{TOi wins the contract},

=
∑
i=1,2

(xi − si) Pr(xi + Yi < r, xi + Yi < xj + Yj, j ̸= i),

=
∑
i=1,2

(xi − si) Pr(Zi > xi, Zi − xi > Zj − xj, j ̸= i). (4.2)

I call a pair of quotes (x1, x2) a quoting strategy and denote the pair as a whole by

X = (x1, x2). In particular, the optimal quoting strategy, namely the maximizing

solution to problem (4.1), is denoted by X∗ = (x∗1, x
∗
2). It is clear that by a simple

change of variables argument2 I can transform the model into an equivalent one with

si = 0. Therefore, without loss of generality, for concision I will hereafter assume

si = 0. In subsequent sections I will study two other quoting approaches, but to

avoid confusion I delay their formalization until I am ready to discuss them in §4.5.

4.4 Quoting Prices

Quoting prices to two competing tier-one suppliers can lead to quite complex

trade-offs. For example, with two tier-one suppliers, TT can provide different prices

to the two TOs. Suppose Zi is uniformly distributed over [ai, ai + 2], and a1 and

a2 take the value of either 2 or 9 in the four possible combinations in Figure 4.1.

At points A and D where (a1, a2) = (2, 9) and (9, 2), since TO1 and TO2 have very

dissimilar base margin distributions, one would expect that TT will quote different

prices to them. However, given that the two TOs are ex ante symmetric at points

2Define x̃i
.
= xi − si, Ỹi

.
= Yi + si, ỹi

.
= yi + si. Consequently, Z̃i = Zi − si and s̃i = 0.
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B and C where (a1, a2) = (2, 2) and (9, 9), would TT ever want to quote different

prices? The answer is not immediately clear. These questions will be explored in this

section.

4.4.1 Intuition

Before analytically examining TT ’s optimal quotes, I would like to discuss the

subtleties involved using a simple example. Suppose two tier-one suppliers TO1 and

TO2 are present for quotes. Assume both Zi’s have uniform distribution over [2, 4].

Since TT ’s quotes can be different for TO1 and TO2, for illustrative purposes I fix

the quote to TO2 at x2 = 2.5 and examine what happens as I increase x1, the quote

to TO1. As seen in Figure 4.2, the trade-offs are quite complex. As x1 increases,

the dark-colored lines represent TO1’s chance of winning the OEM’s contract and the

payoff that TT will receive if TO1 wins, and light-colored lines represent the same

for TO2. Naturally, the payoff from TO1, x1, increases, and TO1’s chance of winning

60



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

C
h
an

ce o
f W

in
n
in

g

P
ay

o
ff

Quote x
1

Payoffs and Chances of Winning

of Two TOs, with Quote x
2
=2.5

Payoff x
2

Figure 4.2: Payoffs and chances of winning for varying x1, with x2 = 2.5.

decreases. However, there is more: As x1 increases, even though x2 is fixed, the

chance that TO2 wins increases because TO1 becomes less competitive. TT ’s profit

is greatly affected by the competition amongst TT ’s own customers. For example,

suppose TT quotes x1 = 3.6 to TO1. Although x1 is much higher than x2 so TT

prefers TO1 to win the contract, in reality TO1’s chance of winning is only about

7%, while TO2’s chance of winning is much higher at over 70%. This results in an

interesting effect for TT : Whichever TO she prefers to win, because she quotes a high

price to him, actually competes unfavorably against the other TO for the very same

reason! Such subtleties make it difficult to intuitively see when, if ever, and why, a

high-low quote combination for ex ante symmetric TOs as in my example may be a

good idea. To answer this question, I need to resort to analytical tools.
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4.4.2 Analytical Results

Recall that TT ’s problem is described by (4.1) and (4.2), and I assume si = 0

without loss of generality. First I provide a preliminary result related to the support

of Zi, denoted by [ai, ai + hi]. Proof of this and subsequent results are provided in

Appendix C.

Proposition 4.1. It is never optimal to quote xi out of the support of base margin

Zi, i = 1, 2.

This is an intuitive result considering that TT will not give up guaranteed profit

potential by quoting below ai, but neither would TOi execute a quote yielding him

negative “profit” as would happen when TT quotes above ai+hi. Because the optimal

xi always stays in [ai, ai + hi], I only need to characterize xi in this interval. I next

identify a special category of quoting strategies.

Definition 4.1. A quoting strategy Xs = {xs1, xs2} is said to be secure if xi = ai for

some i. A quoting strategy Xr = {xr1, xr2} is said to be risky if xi > ai, i = 1, 2.

I call a strategy secure when with this strategy at least one TOi will certainly

meet the reserve price r, and thus TT can secure her business. With a secure strat-

egy, Pr{both TOs losing} = 0. On the other hand, with a risky strategy I have

Pr{both TOs losing} > 0, namely there is positive probability that TT will not trans-

act.

Intuitively, when using a secure strategy, TT only needs to secure the business

with one TOi. The next proposition formalizes this idea and characterizes the optimal

secure strategy, namely the one that generates the highest expected profit for TT

among all secure strategies.

Proposition 4.2. An optimal secure strategy Xs∗ will have only one xs∗i = ai. For

the other j ̸= i it must be true that xs∗j > aj. In addition, either xs∗j > ai, or

xs∗j = aj + hj.
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The intuition behind Proposition 4.2 is straightforward. When quoting xs∗i = ai

to TOi, TT is already guaranteed payoff ai even before quoting to TOj. Therefore, it

would only make sense to provide a quote to TOj that can possibly generate higher

payoff to TT , i.e., xs∗j > ai. The only exception is when ai > aj+hj and no meaningful

quote to TOj (aj ≤ xj < aj + hj) can match ai; in this case TT ’s best strategy is to

ensure TOj never meets the reserve price by quoting xs∗j = aj + hj to him.

Developing upon this intuition, I show a special property of the optimal secure

strategy. Assume Zi is replaced by Ẑi
.
= Zi + a in (4.2), i = 1, 2 (i.e., shift both Zi’s

by a). I denote the optimal secure strategy for problem (4.1) by Xs∗ = {xs∗1 , xs∗2 },

and denote the optimal secure strategy after shifting Zi’s by X̂
s∗ = {x̂s∗1 , x̂s∗2 }.

Proposition 4.3. For all a, x̂s∗i = xs∗i + a, i = 1, 2. In other words, the optimal

secure strategy remains fixed relative to the support of Zi’s as both Zi’s are shifted by

the same amount.

According to Proposition 4.2, with a secure strategy where xsi = ai, TT locks in a

guaranteed payoff ai, then gambles with TOj for additional profit, or eliminates TOj

if he is too inefficient. When quoting for TOj, TT only cares about balancing the

additional profit xsj − xsi , and the chance of getting it. Neither is affected when both

Zi’s are shifted by the same amount. Thus the optimal secure strategy Xs∗ remains

fixed relative to the support of Zi’s, invariant in a.

A secure strategy guarantees TT at least a minimal payoff. The following theorem,

which studies how TT ’s quoting strategy changes as both TOs’ base margins increase,

characterizes when TT finds it optimal to use a secure strategy, and when she instead

finds it optimal to use a risky strategy.

Theorem 4.1. Replace Zi by Ẑi
.
= Zi + a in (4.2) and consider the resulting optimal

strategy. There exists a threshold Tsec < ∞ such that when a < Tsec the optimal

strategy is risky and when a > Tsec the optimal strategy is secure.
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This theorem establishes a threshold in a for the transition of the optimal strategy

between secure and risky. The result is important because it describes how the tier-

two supplier changes her behavior as she faces tier-one suppliers with higher base

margins (e.g., because the tier-one suppliers become more efficient and cut their

costs, or because the OEM announces a higher reserve price). As TOs’ base margins

increase, TT will eventually want to use a secure strategy. This makes intuitive sense:

The business becomes more and more lucrative, and TT wants to make sure she at

least obtains the business. On the other hand, if the base margins are fairly low,

losing the business is not as damaging, and TT may want to take a risk and gamble

with higher quotes to the TOs. Doing so may lead to loss of business, but can provide

higher payoffs if business is won.

I continue to use the numerical example in Figure 4.1 to demonstrate this behavior

(see Figure 4.3). Recall that Zi ∼ U [ai, ai +2]. I plot TT ’s strategy (risky or secure)

as a1 and a2 take values from 0 to 10. Theorem 4.1 indicates that starting anywhere

in Figure 4.3, moving northeast along a 45◦ line will eventually lead to using a secure

strategy (and never risky again).

I am now ready to answer an important question asked at the beginning of §4.4

about Figure 4.1, namely how TT would quote when facing ex ante identical TOs.

Theorem 4.1 finds that with ex ante identical TOs, at sufficiently high ai (e.g., point

B (a1, a2) = (9, 9)), TT will use a secure quoting strategy, which (by Proposition 4.2)

is always asymmetric. I want to point out that, although TT provides asymmetric

quotes at point B (9, 9) as well as points A (2, 9) and C (9, 2), the reasons are different.

Quoting asymmetric prices at points A (2, 9) and D (9, 2) is expected as the TOs are

ex ante asymmetric. At point B (9, 9), although the TOs are ex ante identical, TT

views them differently: She uses one to lock in the business, and gambles with the

other. It is the different roles TT wants them to play that leads to asymmetric quotes

to symmetric TOs.
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The different roles TT has her customers play in a secure strategy lead to the

following interesting dynamic: TT puts up with the fact that the TO with the lower

quote is most likely to win in the OEM’s auction, leaving less chance for TT to get

the higher quote. Despite this fact, Theorem 4.1 shows that TT will desire to treat

her two customers differently and induce this situation when the profit potentials are

high enough and locking in a sizeable profit is paramount. Finally, I also want to

point out that when using a secure strategy, TT may still get the higher quote so

there is usually still uncertainty in TT ’s payoff.

On the other hand, when a secure strategy is not as attractive, I may expect

that TT would want to treat her two customers more equally. Indeed, the next

theorem shows that when the two TOs are ex ante symmetric, if the profit potential

is sufficiently low, the optimal strategy will be risky and symmetric, and thus provides

both customers with equal quotes.

Theorem 4.2. Assume Z1 and Z2 are i.i.d., replace Zi by Ẑi
.
= Zi + a in (4.2),

65



i = 1, 2, and consider the optimal quotes (x∗1, x
∗
2). There exists some Tsym ≤ Tsec such

that when a < Tsym the optimal strategy is risky and symmetric.

With Theorem 4.2 I can finish answering the question raised earlier about Fig-

ure 4.1, namely how TT would quote when facing ex ante identical TOs: With ex

ante identical TOs, at sufficiently low ai (e.g., point C (2, 2)), TT will quote equal

prices. The reason is that, when the profit potential is sufficiently low, TT does not

care simply about securing the minimal possible profit, but seeks to maximize her ex-

pected profit in light of the risk of getting nothing. This is achieved with a symmetric

quoting strategy.

In conclusion, TT ’s price-quoting strategy is greatly affected by the profit poten-

tials of the TOs. When the profit potentials are high, TT gives one TO a low quote

and the other TO a higher quote, using the TOs for different strategic purposes.

This is the consequence of TT ’s desire to lock in a sure-fire payoff, but this results

in even ex ante symmetric customers being treated differently. On the other hand,

when the tier-one profit potentials are low, TT uses a different approach that does not

guarantee her a payoff, but takes the risk of not getting any business in exchange for

potentially higher payoffs. Since neither TO is given a sure-fire low quote, there is no

clear advantage granted to either customer. In such a case, TT treats her customers

more equally as they serve similar strategic purposes for her. A numerical example

of the optimal price quotes will be later provided in Figure 4.4.

4.5 Alternative Approaches

Thus far I have studied how TT should best provide quotes to her customers (the

TOs). In doing so I allowed TT to provide different quotes to different TOs. However,

there can be situations where the TOs would perceive different quotes as being unfair.

Such a concern may prompt TT to restrict herself to only offering identical quotes to
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her customers (imposing the constraint x1 ≡ x2). I refer to this approach as Quoting

Equal Prices (QEP). Intuitively, this case is more likely to occur when TT does not

have much supply chain power.

At the other extreme, if TT is unconcerned about fairness issues, and she has the

power to set forth any rules of her choosing in supplying the component to the TOs,

she could use an Optimal Mechanism (OM) to maximize her expected profit. As

optimality rather than simplicity is the primary concern, an optimal mechanism may

transcend quoting prices only based on priors about TOs’ costs, and involve more

elaborate procedures such as soliciting cost information from the TOs. In this section

I study these two alternative approaches.

4.5.1 Quoting Equal Prices

With the QEP approach, TT ’s problem is written formally as

max P (x) (4.3)

where P (x)
.
= x

∑
i=1,2

Pr{TOi wins the contract},

= xPr(x < max{Z1, Z2}). (4.4)

The QEP approach is the same as QP except for the constraint to provide equal

quotes to the TOs. Having learned that the optimal QP quotes can be different even

to ex ante symmetric TOs, it is natural to ask in what way the constraint of using

equal quotes affects TT ’s strategies. I take a number of steps to answer this question.

First, as a natural extension of Proposition 4.1, I have the following preliminary

result.

Proposition 4.4. Suppose TOi’s base margin Zi has support [ai, ai + hi]. Then it is

never optimal to quote x out of [max{a1, a2},max{a1 + h1, a2 + h2}].
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Then I show the optimal quote is described by the following condition.

Proposition 4.5. The optimal QEP quote x∗ must satisfy

x∗ =
1− F1(x

∗)F2(x
∗)

f1(x∗)F2(x∗) + F1(x∗)f2(x∗)
.

Furthermore, when Z1 and Z2 are i.i.d. with cdf F and pdf f , the unique optimal

QEP quote x∗ is determined by

x∗ =
1− F (x∗)2

2F (x∗)f(x∗)
.

Proposition 4.5 allows me to characterize the behavior of the optimal QEP quote

with symmetric TOs.

Theorem 4.3. Assume Z1 and Z2 are i.i.d. with support [0, h], replace Zi by Ẑi
.
=

Zi + a in (4.4), i = 1, 2 and consider the optimal QEP quote x∗. As a increases, x∗

must be greater than a, but x∗ − a will asymptotically converge to 0. In other words,

facing symmetric TOs, the optimal QEP quote asymptotically converges to, but never

reaches, a secure quote.

Corollary 4.1. Assume Z1 and Z2 are i.i.d., replace Zi by Ẑi
.
= Zi + a in (4.2)

and (4.4), i = 1, 2, and consider the optimal QP quotes (x∗1, x
∗
2) and the optimal QEP

quote x∗. When a is sufficiently small, I have x∗ = x∗1 = x∗2, and when a is sufficiently

large, I have x∗1 < x∗ < x∗2 (assume without loss of generality that x∗1 ≤ x∗2).

Comparing Theorem 4.3 to Theorem 4.1 reveals an important insight: While the

optimal QP strategy may be risky or secure (Theorem 4.1), the optimal QEP strategy

with ex ante symmetric TOs is always risky (Theorem 4.3). This distinction makes

clear the significance of the capability to discriminate, as the usage of secure strategies

depends on it. In addition, Corollary 4.1 establishes how the optimal QEP quote

compares to the optimal QP quotes. As illustrated in Figure 4.4, which continues the
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numerical example of Figure 4.1 (Zi ∼ U [a, a + 2]), when the profit potential is low

(a is small) the optimal QEP quote coincides with the equal optimal QP quotes, and

when the profit potential is high (a is large) the optimal QEP quote lies between the

unequal optimal QP quotes. This addresses the question posed at the beginning of the

subsection: With symmetric TOs, the constraint of using equal quotes has a negative

impact on TT ’s expected profit only when the TOs’ profit potentials are high. As

an aside, Figure 4.4 also illustrates several results from Section 4.4; in this example I

have Tsym = Tsec ≈ 6.4 (Theorems 4.1 and 4.2), and x∗1 and x∗2 move in parallel as a

increases once the optimal strategy becomes secure at a = Tsec (Proposition 4.3).

4.5.2 Optimal Mechanism

In §4.4 I established how TT should optimally quote prices to the TOs based

on her priors about TOs’ processing costs. These quotes, however, could potentially

lead to non-transaction (if she quotes above both TOs’ profit margins), or transaction
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with money left on the table (if she quotes too low). TT may mitigate such concerns

if she could find ways of soliciting TOs’ private cost information. However, soliciting

accurate information is not easy. For example, if TT simply asks the TOs “what

is the highest quote you can accept (what is your base margin zi)”, each TO will

claim to have a very low base margin in the hopes of receiving a lower quote from

TT . The asymmetry of information clearly puts TT at a disadvantage. On the

other hand, although both TOs are potential customers of TT , eventually at most

one TO will get the OEM’s contract. Therefore TT might counter against the TOs’

incentives to underreport their base margins by playing one TO against another when

she determines their quotes.

There are of course infinitely many ways in which TT could solicit, and predicate

her actions upon, information from the TOs. The challenge is to find the way that

generates the greatest expected profit for TT . To tackle this challenge, I utilize

optimal mechanism design theory. A generic mechanism can be described as a set

of “rules” that operate on cost signals provided by the TOs. I will formalize this

below, but before doing so I make an observation. Canonical mechanism design

analysis, Myerson (1981), designs a seller’s optimal mechanism where the mechanism

is comprised of allocation and payment rules, and after the seller receives cost signals

the mechanism determines who receives the item and who pays how much. In my

setting, however, TT does not have the power to allocate the OEM’s contract; the

decision of which TO (if any) gets the contract is determined by the OEM’s auction.

Instead of directly controlling the contract allocation, TT can indirectly affect the

contract allocation via the quotes she provides the TOs. To capture this fact, in my

setting I replace allocation rules with quoting rules, which alongside the (upfront)

payment rules form my mechanism. The resulting mechanism subsumes a range

of possibilities, from pure non-contingent upfront purchasing as in Myerson (1981)

(positive upfront payments and zero quotes), to payments and purchasing purely
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contingent upon the OEM’s auction (zero upfront payments and positive quotes),

and any mixture in-between.

Having described that my mechanism involves cost reports, upfront payments,

and quotes, I now formalize these concepts. TT announces a mechanism — a set of

rules

{p1(ž1, ž2), p2(ž1, ž2), x1(ž1, ž2), x2(ž1, ž2)}

that map the TOs reported base margins ži into upfront payments pi ≥ 0 and quotes

xi ≥ 0 to TOi, i = 1, 2. Each TO chooses whether to participate, and if so, reports his

base margin as ži (not necessarily equal to his true base margin zi). With the TOs’

reports in hand, TT then announces the payment pi(ž1, ž2) that TOi must pay TT

upfront (before participating in the OEM’s auction), and quotes the price xi(ž1, ž2)

that TOi must pay TT if he chooses to order the component from TT (of course, a

rational TOi would order only if he wins the OEM’s contract). In a sense, the upfront

payment can be interpreted as a fee that a TO pays for the right to purchase the

component if he wins the OEM’s contract. Thus, this setup is similar to the capacity

reservation and execution type of supply contracts, which are prevalent in practice.

The TOs’ strategic behaviors in the mechanism are predicted by the Bayesian-Nash

equilibrium concept, and TT ’s expected profit is derived from the TOs’ equilibrium

strategies.

The goal of mechanism design is to find the mechanism which maximizes TT ’s

expected profit. By the revelation principle, it suffices to search for the optimal

mechanism only among direct-revelation mechanisms, namely those in which each TO

willingly reports his true base margin in equilibrium. Consequently, TT ’s (simplified)
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mechanism design problem is

max
p1,p2,x1,x2

∑
i=1,2

[pi(ž1, ž2) + xi(ž1, ž2) Pr{TOi wins the contract}] (4.5)

s.t. vi(zi, zi) ≥ 0, (4.6)

vi(zi, zi) ≥ vi(zi, ži), ∀zi, ži, (4.7)

where vi(zi, ži), defined as

EZj
[(zi−xi(ži, Zj)−(Zj−xj(ži, Zj))

+)+ Pr{Zj−xj(ži, Zj) < zi−xi(ži, Zj)}−pi(ži, Zj)],

is TOi’s expected profit under mechanism {p1(ž1, ž2), p2(ž1, ž2), x1(ž1, ž2), x2(ž1, ž2)},

given that TOi’s true base margin is zi, he reports base margin ži, and TOj, j ̸= i

reports truthfully žj = zj. In the formulation, (4.6) and (4.7) ensure, respectively, that

TT ’s mechanism is indeed individually rational (each TOi willingly participates in the

mechanism) and incentive compatible (each TOi finds truthfulness optimal). With the

range of search significantly reduced by the revelation principle, I can now characterize

the optimal mechanism. Define the virtual base margin as ψi(zi)
.
= zi− 1−Fi(zi)

fi(zi)
, where

Fi and fi are the cdf and pdf, respectively, of TOi’s base margin Zi
.
= r − Yi.

3 The

following theorem describes the optimal mechanism.

Theorem 4.4. An optimal mechanism {p∗1(ž1, ž2), p∗2(ž1, ž2), x∗1(ž1, ž2), x∗2(ž1, ž2)} is

as follows4: If ψi(ži) > max{ψj(žj), 0}, then p∗i + x∗i = max{ψ−1
i (ψj(žj)), ψ

−1
i (0)},

p∗j = 0, and x∗j > žj; if max{ψ1(ž1), ψ2(ž2)} < 0 then p∗i = 0 and x∗i > ži, i = 1, 2.

Theorem 4.4 reveals three key aspects of the optimal mechanism. First, TT

chooses to “back” at most one (or possibly neither) TOi in the OEM’s auction,

meaning she provides him with a quote low enough to guarantee that this TOi can

3Since by assumption Zi’s probability density is log-concave, the results of Bagnoli and Bergstrom
(2005) can be used to show that ψi(·) must be an increasing function.

4For readability I suppress the arguments (ž1, ž2) when writing p∗ and x∗.
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meet the OEM’s reserve price. Any TO that is not “backed” instead receives a very

high quote that effectively prices them out of the running in the OEM’s auction.

Note that how much TT can get a TO to pay her depends on how much payment

this TO can expect to get from the OEM. Once the TOs reveal their true costs, TT

can control which TOi will win the OEM’s contract. Eliminating the other TOj will

maximize how much TOi can get from the OEM, and in return, how much TT can

get from TOi.

Second, the optimal mechanism can be implemented by pure quotes, wherein the

upfront payments are always zero. Notice that after soliciting cost information, TT

knows which TO is going to win the contract. Because the outcome of the OEM’s

auction is no longer uncertain, contingent payments are interchangeable with upfront

payments; in particular, the optimal mechanism can be achieved with quotes only, a

favorable result considering the simplicity of using just quotes. However, I will need

both upfront payments and price quotes to describe the optimal mechanism when I

extend my model to more general settings in §4.6.

My third observation is based on the fact that under the optimal mechanism, TT ’s

equilibrium realized profit equals max{ψ1(z1), ψ2(z2), 0}, where ψi(zi) = zi− 1−Fi(zi)
fi(zi)

is

TT ’s profit if she “backs” TOi. Note that TT does not take all of TOi’s base margin

zi, but leaves him a profit of 1−Fi(zi)
fi(zi)

, which increases in zi. This setup is necessary

to counter the TOs’ natural tendency to underreport their base margins. It explains

my third observation: When TT compares the TOs to determine which one to back,

the comparison is done on virtual base margin rather than actual base margin. Of

course, as is well known in the mechanism design literature, with ex ante symmetric

tier-one suppliers, the one who reports the highest base margin will be chosen, while

when the tier-one suppliers are ex ante asymmetric, this may not always be the case.

The distinction between the optimal mechanism and the QP approach is evident.

With the QP approach, TT is willing to quote prices to both TOs, thus effectively
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taking two shots at success in the OEM’s auction. Doing so is optimal for TT be-

cause at the time she provides quotes she is uncertain about which TO will succeed.

However, when TT can make her quotes contingent upon information reported by

her customers, she uses this opportunity to identify which TO is more profitable to

back exclusively in the OEM’s auction. This confirms my speculation made at the

outset of this subsection that soliciting information could be superior to passively

accommodating uncertainty.

Although Theorem 4.4 found the optimal mechanism, I have thus far been silent

on how this mechanism might be implemented by TT . The optimal mechanism can

actually be implemented as an auction. Instead of directly providing quotes to both

TOs, TT has the TOs bid against each other to receive a quote. When the TOs are

ex ante symmetric (Z1 and Z2 have identical distributions), the optimal mechanism

can be implemented as the following open-ascending auction. Before the auction,

TT sets the reserve price at ψ−1
1 (0) (= ψ−1

2 (0)), and announces that only the TO

willing to accept the highest price will receive a quote. Starting from the reserve

price, the TOs take turns bidding higher prices they are willing to accept until one

drops out, at which point the remaining TO is the auction winner and is provided a

quote from TT equal to his final bid (the auction’s ending price). If no TO is willing

to match the reserve price, TT will not provide any quotes. When the TOs are ex

ante asymmetric, the optimal mechanism can be implemented similarly, but with

one key change: TT uses a biasing rule when comparing bids to decide the auction

winner, and when computing the winner’s quote price. This biasing rule intensifies

competition by favoring the weaker TO (the one with a lower ex ante base margin).

(For brevity I omit the details of running a biased auction; interested readers are

referred to Duenyas et al. (2011) which describes running such auctions in detail.)

A key takeaway from this subsection is that the optimal mechanism resembles an

auction for a quote. In practice, auctions for quotes are not commonplace; what is
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more common (as is seen in the court cases referenced in §4.1) is for the tier-two

supplier to simply quote prices to their customers. Thus, for now the analyses of

Sections 4.4 and 4.5.1 appear to more closely resemble how tier-two suppliers act in

practice. However, since auctions for firm contracts are becoming prevalent in supply

chains, it is plausible that an auction for a quote could be deployed by a tier-two

supplier, especially as I have shown it to be the optimal mechanism. Also, although a

tier-two supplier using an auction to select an exclusive customer is seldom observed,

it is not uncommon to see a supplier causes a bidding war among its customers who

want to buy its whole business to obtain exclusive access to an important technology it

possesses. While the scenario of buyers bidding for the whole business of the supplier

is different from my setting, the motivation behind it is actually very similar, namely

the supplier can achieve maximal value by making the buyers compete for exclusive

access to the important technology.

4.6 Extensions

Thus far in this chapter, to make the presentation simple, I assumed that only

two TOs participate in the OEM’s auction, and both depend on TT for the crucial

component. Of course, in many cases in industry there are more than two TOs

competing in the OEM’s auction. Furthermore, it is possible that while some TOs

rely on components from TT , others (e.g., a TO with its own internal component

production capability) might not. This section examines such possibilities.

The base model I introduced in §4.3 has a three-tier structure: TT quotes prices for

the component to TO1 and TO2, and TO1 and TO2 compete for the OEM’s contract.

In this section’s more general model, the basic structure remains unchanged, but

instead of two TOs, I assume there are n TOs (TOi, i = 1, ..., n) who request price

quotes from TT before they compete for the OEM’s contract. In addition, I also

assume there are m outside competitors CPj, j = 1, ...,m participating alongside the
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n TOs in the OEM’s auction, where the CP s do not require inputs of the component

from TT . (When n = 2 and m = 0, the general model reduces to the base model.)

Exactly as in Section 4.3, TOi’s cost to fulfill the OEM’s contract is xi + yi where xi

is the cost of purchasing the component from TT , and yi is the cost of processing the

component into the final product; yi is TOi’s private information but it is common

knowledge that yi is a realization of random variable Yi. In contrast, CPj’s total cost

cj includes its cost of the component and cost of processing it into the final product.

cj is a realization of random variable Cj whose distribution is common knowledge,

and to ensure typical auction-theoretic properties (IFR), I assume that Cj has a

positive, log-concave probability density; see Footnote 1. I assume all Yi and Cj are

independently distributed. Again, the OEM’s reserve price, announced prior to the

auction, is denoted by r. Note that under this setting, if a TOi is to win the OEM’s

contract, it means xi + yi < xj + yj, ∀j ̸= i (TOi has the lowest total cost among

TOs), xi + yi < r (TOi can meet the reserve price), and xi + yi < cj, ∀j (TOi has

lower total cost than all CP s).

I find it convenient to define R
.
= min{r, C1, . . . , Cm}. R represents a “sufficient

statistic” capturing the OEM’s reserve price and the outside competitors that all TOs

face in the auction. Namely, to win the OEM’s contract, TOi’s total cost must be

the lowest among all TOs and lower than R. Thus, TOi’s base margin in the general

model is given by R−Yi, replacing r−Yi in the base model. With TOi’s base margin

defined as Zi
.
= R − Yi and with Zi’s support denoted by [ai, ai + hi], I now extend

my analytical approach for the base model. A critical, complicating factor of course

is that R is a random variable, whereas r was a constant.

As before, I consider three different approaches: Quoting Prices (QP), Quoting

Equal Prices (QEP), and Optimal Mechanism (OM).
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4.6.1 Quoting Prices

TT ’s problem is

max P (x1, ..., xn)

where P (x1, ..., xn)
.
=

n∑
i=1

xi Pr{TOi wins the contract}

=
n∑

i=1

xi Pr(Zi ≥ xi, Zi − xi > Zj − xj, j ̸= i). (4.8)

Despite the increased complexity in TT ’s problem, I nonetheless show that many key

results from §4.4 remain.

Theorem 4.5. Propositions 4.1, 4.2, 4.3 and Theorem 4.1 still hold true for the

general model.

Therefore, my main insight holds true in the general model: TT uses two different

types of strategies, risky or secure, and the TOs’ profit potentials determine which

will be used — a risky strategy when the profit potentials are low, and a secure

strategy when they are high.

4.6.2 Quoting Equal Prices

Now I impose the identical quotes restriction. Denote TT ’s (identical) quote to

all TOs by x. TT ’s problem is

max P (x)

where P (x) = xPr{Some TOi wins the contract}

= xPr(x < max
i=1,...,n

{Zi}).

Section 4.5.1’s main results continue to hold:
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Theorem 4.6. Propositions 4.4 and 4.5, and Theorem 4.3, hold for the general model,

where I make the following changes to the results’ statements to accommodate the

general model: In Proposition 4.5 the condition

x∗ =
1− F1(x

∗)F2(x
∗)

f1(x∗)F2(x∗) + F1(x∗)f2(x∗)

is replaced by

x∗ =
1− F (x∗)

f(x∗)

where F (x) and f(x) are the cdf and pdf of the random variable max
i=1,...,n

{Zi}, respec-

tively; and in Proposition 4.5 and Theorem 4.3 the statement “Z1 and Z2 are i.i.d.”

is replaced by “the Yis are i.i.d. and R has a log-concave pdf”.

Therefore, when using the identical quotes approach, the insight that secure strate-

gies are never optimal is preserved with the general model.

4.6.3 Optimal Mechanism

With the general model, a mechanism can be described with a set of rules

{p1(y̌1, ..., y̌n), ..., pn(y̌1, ..., y̌n), x1(y̌1, ..., y̌n), ..., xn(y̌1, ..., y̌n)}

where pi ≥ 0 is the transfer payment TOi must pay TT upfront (before participating

in the OEM’s auction), and xi ≥ 0 is TT ’s price quote to TOi, which he pays if and

only if he places an order for the component. Both pi and xi are functions of all

TOis’ reported processing costs y̌1, . . . , y̌n (where y̌i does not necessarily equal TOi’s

real cost yi).
5 Let the upper bound of R’s support be denoted by u, let Yi’s cdf

and pdf be denoted by Gi and pdf gi, respectively, and define virtual cost function

5In §4.5.2, because r is known there is no difference between asking TOs to report base margin
ži or cost y̌i. In the general model however, since the TOs do not know R before the auction, it is
only possible to ask them to report their costs as I do here.
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ωi(y) = y + Gi(y)
gi(y)

.6

Theorem 4.7. An optimal mechanism

{p∗1(y̌1, ..., y̌n), ..., p∗n(y̌1, ..., y̌n), x∗1(y̌1, ..., y̌n), ..., x∗n(y̌1, ..., y̌n)}

is as follows7: If ωi(y̌i) ≤ min
j ̸=i

{ωj(y̌j), u}, then p∗i = ER[1{ωi(y̌i)<R}(R − ωi(y̌i) +

y̌i − ω−1
i (min

j ̸=i
{ωj(y̌j), u}))] and x∗i = Gi(y̌i)

gi(y̌i)
, and ∀j ̸= i, p∗j = 0 and x∗j > u − y̌i; if

mini{ωi(y̌i)} > u, then p∗i = 0 and x∗i > u− y̌i, ∀i.

The optimal mechanism for the general model is a generalization of that for the

base model. The main difference is that price quotes (which are paid only upon

ordering) and upfront payments are required in the general model and cannot be

interchanged, whereas they are interchangeable in the base model. What leads to

this distinction is that in the base model the reserve price r is a constant, while

its counterpart in the general model R is a random variable. With an uncertain R,

the outcome of the OEM’s auction is no longer fully predictable even when TT has

all TOs’ cost information, and thus contingent and upfront payments are not inter-

changeable. Nonetheless, the optimal mechanism’s basic structure remains: TT backs

only one TO, and the optimal mechanism can still be implemented via an auction-

type approach in a similar spirit to that described in §4.5.2 (details are omitted for

brevity).

4.7 Concluding Discussion

In this chapter I consider a tier-two supplier’s optimal price-quoting strategy in

the following model: The tier-two supplier gives price quotes to her customers, who

are tier-one suppliers competing for an OEM’s contract. Because (i) the tier-two

6Since I assume Yi has log-concave probability density, due to Bagnoli and Bergstrom (2005) I
know ωi(·) must be an increasing function.

7For readability I suppress the arguments (y̌1, ..., y̌n) when writing p∗ and x∗.
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supplier’s price quote will only realize as revenue when her customer places an order,

and (ii) at most one of the competing tier-one suppliers will get the contract and hence

need to place an order, this situation has an interesting and complicating implication:

Even if the tier-two supplier can give price quotes to multiple customers, eventually

at most one quote can results in revenue, and this may or may not be the quote that

the tier-two supplier would most like to fulfill, i.e., the most lucrative quote. To the

best of my knowledge, despite the widespread existence of multi-tier supply chains, my

research is the first to identify and study the tier-two supplier’s price-quoting problem.

By studying decision-making at the second tier of the supply chain, I complement the

extant procurement literature that focuses primarily on transactions within a single

supply-chain interface (e.g., a buyer and her immediate suppliers).

In analyzing the problem, I identify two types of strategies deployed by the tier-

two supplier: secure, where at least one of the tier-two supplier’s price quotes will be

exercised (i.e., the customer will place an order); and risky, where there is positive

probability that none of the quotes will be exercised. I find that the optimal strategy is

risky when the tier-one suppliers’ profit potentials are low, and secure when the profit

potentials are high. With a secure strategy, the tier-two supplier uses her customers

for different strategic purposes (even when they are ex ante symmetric): She provides

one customer a low quote to guarantee winning the business, and gambles with the

others’ quotes to obtain possible high profits, but at lower probabilities.

In analyzing the tier-two supplier’s problem I allow her to strategically provide

non-identical quotes to her customers. Non-identical quotes for the same item are

seen in practice (cf. paragraph 9, §4.1), and my work has the potential to inform how

to make the best price-quoting decisions and why. However, there is also evidence

from practice that tier-one suppliers might perceive non-identical quotes as unfair.

This motivates me to also study the tier-two supplier’s strategy when she constrains

herself to provide equal quotes to her customers. I find that with this constraint, the
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tier-two supplier facing ex ante identical tier-one customers will never use a secure

strategy, and that such a constraint negatively affects her expected profit only when

her customers’ profit potentials are high.

Finally, while the results above are motivated by the existing practice of tier-two

suppliers offering price quotes to their customers, it is of interest to ask what among

all mechanisms would be theoretically optimal for the tier-two supplier. To answer

this question, I employ mechanism design theory. The identified optimal mechanism

has the following structure: The tier-two supplier solicits cost information from her

customers, and with this information she strategically backs only one of the tier-

one suppliers. This structure enables the optimal mechanism to be implemented by

auctioning off a single quote among the tier-one suppliers. Although to my knowledge

auctions for price quotes are not commonly deployed by tier-two suppliers, my analysis

points to clear benefits of using an auction in such a scenario, and thus has the

potential to inspire the use of such approaches in practice.

This research should be of interest to tier-two suppliers seeking to make better

pricing decisions. I also hope that the research will spur further research into pricing

decisions at various tiers of the supply chain, an important but under-studied area of

procurement.

81



CHAPTER V

Conclusion

The three essays in this dissertation study three specific procurement-related prob-

lems in the presence of information asymmetry.

In the essay “Does Pooling Component Demands when Sourcing Lead to Higher

Profits?” (Chapter II), I find that pooling purchases from a strategic sole supplier

of a component used in multiple products with uncertain demands can in fact re-

duce buyers’ profits because of reduced information rent, which is not considered

in the traditional pooling literature. One important insight from this essay is that

pooling which reduces demand uncertainty faced by the buyers can also reduce their

informational advantage over the supplier, enabling the supplier to extract more of

the buyers’ profits. This insight highlights the sole supplier’s strategic behaviors as

a dominant factor in determining the buyers’ profits, and warns procurement man-

agers that naively applying the received wisdom about pooling — which ignores the

supplier’s possible strategic responses — may lead to an unwanted outcome.

The essay “Simple Auctions for Supply Contracts” (Chapter III) shows that a

buyer facing several candidate suppliers who have private cost information can use a

simple modified open-descending auction as an optimal mechanism. The major ad-

vantages of this mechanism over the mechanisms previously proposed in the literature

are that this mechanism is very familiar to the suppliers, and the suppliers only need
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to use extremely simple strategies in this mechanism. The fact that the suppliers can

use very simple strategies in a familiar environment means that they are more apt to

participate in such a mechanism. The modified open-descending auction can also be

extended to allow concave production costs and ex ante asymmetric suppliers. All

these features suggest that the mechanism has great potential for practical use.

The essay “Price-Quoting Strategies of a Tier-Two Supplier” (Chapter IV) is one

of the first research works to study the price-quoting strategies of a tier-two supplier,

whose customers (the tier-one suppliers) will compete downstream for an indivisible

contract. The tier-two supplier’s price-quoting problem is complicated by the fact

that at most one quote will generate revenue, and she does not know which one

will, if any. I show that the tier-two supplier’s optimal strategy has the following

structure: If the business is lucrative enough, she uses a secure strategy whereby at

least one of the tier-two suppliers’ price quotes will be exercised. Otherwise, she uses

a risky strategy whereby there is positive probability that none of the quotes will be

exercised. In addition, a secure strategy always consists of a higher quote for one

customer and a lower quote for the other(s), even when the customers are ex ante

symmetric. This means asymmetric quotes can be optimal for ex ante symmetric

customers. The intuition is that the tier-two supplier can use her customers for

different strategic purposes: She provides one customer a low quote to guarantee

winning the business, and gambles with the others’ quotes to obtain possible high

profits, but at lower probabilities. I also show that if the tier-two supplier is not

limited by giving out fixed-price quotes, then she can maximize her expected profit

by making her customers compete for exclusive access to her product (auctioning a

single quote). This essay complements the extant procurement literature that focuses

primarily on transactions at a single supply-chain interface (e.g., a buyer and its

immediate suppliers), and should be of interest to tier-two suppliers seeking to make

better pricing decisions.
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This dissertation has the potential to help procurement managers understand

certain business situations more clearly and make better decisions. In particular, it

highlights the impact of information asymmetry on procurement, and suggests strate-

gies to tackle resulting challenges. More broadly, this dissertation adds to the nascent

and growing Operations Management scholarship on procurement, and contributes

to the field’s general understanding of supply chain management.
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APPENDIX A

Proofs of Chapter II

Proof of Proposition 2.1. Let the first derivative of the supplier’s objective func-

tion with respect to Qθj be denoted by

FDθj(Qθj)
.
= rPr(Θ ≥ θj)[λ(θj)(1− q)− F (Qθj − µθj) + (1− λ(θj))F (Qθj − µθj+1

)],

and the second derivative be denoted by

SDθj(Qθj)
.
= rPr(Θ ≥ θj)[(1− λ(θj))f(Qθj − µθj+1

)− f(Qθj − µθj)].

It is straightforward to observe that FDθj(Qθj) is positive when Qθj is sufficiently

small (so that F (Qθj − µθj) = 0), and negative when Qθj is sufficiently large (so

that F (Qθj − µθj+1
) = 1). Assume f has support over (−s, s) and satisfies all four

conditions in Proposition 2.1. Next, for each of three possible cases I will show that

FDθj(Qθj) is first positive then negative, thus the supplier’s objective function is

unimodal and the unique solution to (2.4) characterizes the global optimal solution.

Case 1: µθj+1
− µθj ≥ 2s (µθj − s < µθj + s ≤ µθj+1

− s < µθj+1
+ s).

In this case, it is clear that FDθj(Qθj) is decreasing over (µθj − s, µθj + s),

constant over [µθj + s, µθj+1
− s], and increasing over (µθj+1

− s, µθj+1
+ s). Yet
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I already know FDθj(Qθj) > 0 when Qθj = µθj − s and FDθj(Qθj) < 0 when

Qθj = µθj+1
+ s. Thus it is clear that FDθj(Qθj) is first positive then negative.

Case 2: s < µθj+1
−µθj < 2s (µθj −s < µθj < µθj+1

−s < µθj +s < µθj+1
< µθj+1

+s).

In this case, it is clear that FDθj(Qθj) is decreasing over (µθj −s, µθj+1
−s), and

increasing over (µθj + s, µθj+1
+ s). Between µθj+1

− s and µθj + s, the second

derivative SDθj(Qθj) equals

rPr(Θ ≥ θj)[(1− λ(θj))f(Qθj − µθj+1
)− f(Qθj − µθj)].

By Condition 3, f(Qθj − µθj+1
) is non-decreasing and f(Qθj − µθj) is non-

increasing, therefore SDθj(Qθj) is non-decreasing. Because of this, I know

FDθj(Qθj) is convex over (µθj+1
−s, µθj +s). If FDθj(Qθj) < 0 at µθj+1

−s, then

by convexity of FDθj(Qθj), FDθj(Qθj) must be negative over (µθj+1
−s, µθj +s).

If FDθj(Qθj) > 0 at µθj+1
−s, then by convexity of FDθj(Qθj), FDθj(Qθj) crosses

zero only once. In both cases, it is clear that FDθj(Qθj) is first positive then

negative.

Case 3: µθj+1
− µθj ≤ s (µθj − s < µθj+1

− s ≤ µθj < µθj+1
≤ µθj + s < µθj+1

+ s).

In this case, it is clear that FDθj(Qθj) is decreasing over (µθj − s, µθj), convex

over (µθj , µθj+1
) (similar to Case 2), and increasing over (µθj+s, µθj+1

+s). I now

characterize FDθj(Qθj) over (µθj+1
, µθj + s). Recall that the second derivative

SDθj(Qθj) equals

rPr(Θ ≥ θj)[(1− λ(θj))f(Qθj − µθj+1
)− f(Qθj − µθj)].

By Condition 4, f(Qθj − µθj)/f(Qθj − µθj+1
) is non-increasing in Qθj . Thus I

know over (µθj+1
, µθj + s), SDθj(Qθj) cannot first be positive then negative; it

may only be always positive, or always negative, or first negative then positive.
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When SDθj(Qθj) is always positive over (µθj+1
, µθj +s), FDθj(Qθj) is increasing

over (µθj+1
, µθj+1

+ s). Following the same proof as in Case 2 I know FDθj(Qθj)

must be first positive then negative.

When SDθj(Qθj) is negative over (µθj+1
, t) and positive over [t, µθj + s) where

µθj+1
< t ≤ µθj + s, I know the right-derivative of FDθj(Qθj) at µθj+1

is nega-

tive. Condition 2 then guarantees that the left-derivative of FDθj(Qθj) at µθj+1

is also negative. Combining this and the fact that FDθj(Qθj) is convex over

(µθj , µθj+1
), I know FDθj(Qθj) must also be decreasing over (µθj , µθj+1

). As a

result, FDθj(Qθj) is decreasing over (µθj −s, t) and increasing over (t, µθj+1
+s),

so it is first positive then negative.

Proof of Proposition 2.2. To prove that the violation of the MCs can only occur in

the two cases mentioned in the proposition, I need to show the solution to (2.8)-(2.11)

(ignoring MCs (2.7f)) always satisfies QD
ll < QD

hl < QD
hh.

As discussed in §2.3.1, the participation and incentive compatibility constraints

are always binding at optimality. First plug the binding constraints (2.7b)-(2.7e) into

(2.7a), then take the first derivative of the objective function with respect to QD
hl.

Doing so yields

FDhl(Q)
.
=
∂[(2.7a)]

∂QD
hl

∣∣∣∣
QD

hl=Q

= pDhl(1− q)− (pDhl + pDhh)F
D(Q− µD

hl) + pDhhF
D(Q− µD

hh).

Due to Proposition 2.1, I know that FDhl(Q) = 0 always has an interior solution.

Recall that from (2.11) I have QD
hh = µD

hh + (FD)−1(1− q). If I evaluate FDhl(Q) at

Q = QD
hh = µD

hh + (FD)−1(1 − q), I can easily see that FDhl(Q
D
hh) < 0. This means

the solution to FDhl(Q) = 0, QD
hl, is smaller than QD

hh.

I next show QD
ll < QD

hl. Notice that

µD
lh − µD

ll = (µa
l + µb

h)− (µa
l + µb

l ) = (µa
h + µb

h)− (µa
h + µb

l ) = µD
hh − µD

hl.
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Define δ
.
= µD

lh − µD
ll = µD

hh − µD
hl. Using Equations (2.8), (2.10), (2.12) and (2.13),

and applying the definitions of δ and γ, (2.8) and (2.10) can be rewritten as

λ(θ)(1− q) = F (s)− (1− λ(θ))F (s− δ), (A.1)

and (2.12) and (2.13) can be rewritten as

πθ′ − πθ = r

∫ s

s−δ

F (x)dx, (A.2)

for types (θ, θ′) = (ll, lh) and (hl, hh), where s = Qθ − µθ, λ(ll) = pDll for (2.8), and

λ(hl) = pDhl/(p
D
hl + pDhh) for (2.10). Taking the total derivative of (A.1) with respect

to λ(θ) yields

1− q =
ds

dλ(θ)
[f(s)− (1− λ(θ))f(s− δ)] + F (s− δ)

=⇒ ds

dλ(θ)
=

1− q − F (s− δ)

f(s)− (1− λ(θ))f(s− δ)
. (A.3)

Because the objective function is concave at the global optimal solution (by Proposi-

tion 2.1), I know the denominator of (A.3) is positive. The numerator is also positive,

because Equation (A.1) and the fact that F (s) > F (s− δ) together imply

λ(θ)(1− q) = F (s)− (1− λ(θ))F (s− δ) > λ(θ)F (s− δ).

Therefore, I know s is increasing in λ(θ). Notice that

λ(ll) = pDll = pal p
b
l < λ(hl) =

pDhl
pDhl + pDhh

=
pahp

b
l

pah(p
b
l + pbh)

= pbl .

As a result, QD
ll −µD

ll = QD
ll −µa

l −µb
l < QD

hl−µa
h−µb

l = QD
hl−µD

hl, which immediately

yields QD
ll < QD

hl.
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Ultimately I wish to solve optimization problem (2.7a)-(2.7f). Thus far I have

examined the solution obtained with MCs (2.7f) ignored. If the solution satisfies

(2.7f), then it is the optimal solution to (2.7a)-(2.7f). If it violates (2.7f), which as

argued above can only be true if QD
ll > QD

lh or QD
lh > QD

hl, then I must revise my

solution. I now show how to revise (2.8)-(2.10) to obtain the true optimal solution. I

show this for the case when QD
ll ≤ QD

lh is violated; the other case is similar.

Suppose when ignoring the MCs the FOC solution is such that QD
ll > QD

lh. Con-

sider a function I(x, y) = G(x) + H(y) such that both G and H are unimodal, and

suppose the x0 that maximizes G and the y0 that maximizes H are such that x0 > y0.

If I impose the requirement that x ≤ y and find the optimal (x∗, y∗)
.
= {(x, y)|x ≤

y, G(x)+H(y) ≥ G(x′)+H(y′), ∀ x′ ≤ y′}, it is easy to see (by a contradiction argu-

ment) that y0 ≤ x∗ = y∗ ≤ x0. Since by Proposition 2.1 my maximization problem is

decomposable, and unimodal in both QD
ll and QD

lh, this result applies to my problem.

I thus know that adding back the violated constraint QD
ll ≤ QD

lh will result in a new

optimal solution for which QD
ll = QD

lh = Q for some Q. Differentiating the objective

function with this equality enforced and setting the derivative to zero yields FOC

(2.14). Furthermore, since Equation (2.14) is a specific instance of Equation (2.4), I

can apply Proposition 2.1 to conclude that the FOC solution Q will be the unique

global maximizer of the supplier’s objective function.

Proof of Lemma 2.1. By (2.5),

πθ′ − πθ = r

∫ Qθ−µθ

Qθ−µθ′

F (x)dx,

so to show πθ′ − πθ increases in λ(θ), it is sufficient to show Qθ increases in λ(θ). I

focus on type ll; arguments for the other types are similar. Depending on whether

the MC for type ll in (2.7f) is slack or binding, the equation that determines Qll is

either (2.8) or (2.14), respectively. I denote the solution to FOC (2.8) by Q∗(2.8),
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and the solution to FOC (2.14) by Q∗(2.14). Similarly denote the solution to FOC

(2.9) by Q∗(2.9).

Suppose when λ(ll) = λ1, Q
∗(2.8) < Q∗(2.9) (so the MC for type ll in (2.7f) is slack

and QD
ll = Q∗(2.8)). To prove Lemma 2.1 for this case, I need to show three things: (i)

While the MC for type ll remains slack, when λ(ll) increases, Q∗(2.8) increases. (ii) If

increasing λ(ll) to some point λ(ll) = λ2 causes the MC for type ll to become binding,

then I switch my consideration to the parameter λ and need to show that when λ

increases, Q∗(2.14) increases. (iii) At the “switch point” λ(ll) = λ2 between the non-

bunching and bunching cases, I have continuity, namely QD
ll = Q∗(2.8) = Q∗(2.14).

(i)-(ii) follow from the fact that both (2.8) and (2.14) fit the structure of (2.4),

so as argued following Equation (A.1), I know Q∗(2.8) and Q∗(2.14) are increasing in

λ(ll) and λ, respectively. I next prove (iii). Q∗(2.8) increases in λ(ll). Since Q∗(2.9)

remains constant (since I am increasing λ(ll) in a way that keeps λ(lh) fixed), if

type ll’s MC becomes binding at λ(ll) = λ2, then Q
∗(2.8) = Q∗(2.9) at λ(ll) = λ2.

Furthermore, as argued following Equation (A.1), I know that Q∗(2.8) ≤ Q∗(2.14) ≤

Q∗(2.9), which in turn implies that QD
ll = Q∗(2.8) = Q∗(2.14) at λ(ll) = λ2.

The above arguments proved the lemma when increasing λ(ll) took it from non-

bunching to bunching. The case where increasing λ takes it from bunching to non-

bunching can be treated analogously. Iteratively applying these results yields the

lemma over any interval of λ(ll) or λ.

Proof of Lemma 2.2. Regardless of whether there is bunching, the equations

characterizing the optimal solution and information rent always fit the structure of

(2.4) and (2.5), respectively. Therefore I only need to prove Lemma 2.2 for the general

equations (2.4) and (2.5).

Consider two pairs of mean demands µθ, µθ′ and µ′
θ, µ

′
θ′ such that µθ′ − µθ =

µ′
θ′ − µ′

θ = δ. Notice that (2.4) and (2.5), with either pair of mean demands, can be

rewritten as (A.1) and (A.2) where s = Qθ−µθ or s = Q′
θ−µ′

θ. Therefore µθ, µθ′ and
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µ′
θ, µ

′
θ′ yield the same information rent πθ′ −πθ. This shows that µθ and µθ′ determine

information rent only through δ = µθ′ − µθ. The inequality πθ′ − πθ ≤ rδ follows

because F (x) ≤ 1 for all x.

Proof of Lemma 2.3. I prove the result for type θ = ll only; the proofs for other

types are analogous. The proof’s structure is similar to that of Lemma 2.1’s proof.

Suppose when γ = γ1, Q
∗(2.8) < Q∗(2.9) (so the MC for type ll in (2.7f) is slack,

meaning QD
ll = Q∗(2.8)). To prove Lemma 2.3 for this case, I need to show three

things. (i) While the MC for type ll remains slack, when γ increases πlh − πll also

increases. (ii) If increasing γ to some point γ = γ1 causes the MC for type ll to become

binding, then I switch my consideration to the bunching case meaning QD
ll = Q∗(2.9),

and I need to show that when γ continues to increase, πlh − πll increases. (iii) At

the “switch point” γ = γ1 between the non-bunching and bunching cases, I have

continuity, namely QD
ll = Q∗(2.8) = Q∗(2.14) (which implies that the information

rent gap πlh − πll is also continuous at the switch point).

I begin by addressing (iii). The arguments are precisely the same as that used

to prove point (iii) in the proof of Lemma 2.1, except with γ’s in the role of λ’s.

Therefore, it suffices to show (i)-(ii).

Notice that the incremental information rent πlh − πll is determined by (2.12) to-

gether with (2.8) or (2.14) (corresponding to non-bunching or bunching, respectively).

In both cases the incremental information rent can be expressed in the following gen-

eral way, where θ and θ′ play the roles of ll and lh, respectively:

λ(θ)(1− q) = F(γ)(s̃)− (1− λ(θ))F(γ)(s̃− δ), (A.4)

π̃θ′ − π̃θ = r

∫ s̃

s̃−δ

F(γ)(x)dx, (A.5)

where δ
.
= µθ′ − µθ. Suppose γ > 1. To show that the incremental information rent

increases in γ, it suffices to show that π̃θ′ − π̃θ is greater than πθ′ − πθ, which I will
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define to be the incremental information rent when γ = 1; namely

πθ′ − πθ = r

∫ s

s−δ

F(1)(x)dx

where

λ(θ)(1− q) = F(1)(s)− (1− λ(θ))F(1)(s− δ).

To this end, let s′ be the root of the following equation:

λ(θ)(1− q) = F(γ)(s
′)− (1− λ(θ))F(γ)(s

′ − γδ), (A.6)

and notice that s′ = γs. I now show that s′ ≤ s̃. Because s′ is the solution to (A.6),

I have

F(γ)(s
′)− (1− λ(θ))F(γ)(s

′ − δ) ≤ F(γ)(s
′)− (1− λ(θ))F(γ)(s

′ − γδ) = λ(θ)(1− q).

By the proof of Proposition 2.1, I know that when s̃ increases, the RHS of (A.4) is

first smaller then greater than λ(θ)(1 − q). Therefore, I know the solution to (A.4),

s̃, must be greater than s′.

Now I show π̃θ′ − π̃θ ≥ πθ′ − πθ. In fact, since s̃ ≥ s′, I have

π̃θ′ − π̃θ = r

∫ s̃

s̃−δ

F(γ)(x)dx ≥ r

∫ s′

s′−δ

F(γ)(x)dx = r

∫ δ

0

F(γ)(s
′ − t)dt

=
1

γ
r

∫ γδ

0

F(γ)(s
′ − k/γ)dk ≥ 1

γ
r

∫ γδ

0

F(γ)(s
′ − k)dk

=
1

γ
r

∫ s′

s′−γδ

F(γ)(y)d =
1

γ
γ(πθ′ − πθ) = πθ′ − πθ,

where k = γt and y = s′ − k. This proves (i) and (ii).

The above arguments prove the lemma when increasing γ took it from non-

bunching to bunching. The opposite case where increasing γ takes it from bunching
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to non-bunching can be treated analogously. Iteratively applying these results yields

the lemma over any interval of γ.

Proof of Theorem 2.1. Before proving the theorem I introduce a technique that

will appear multiple times in this and later proofs. I first note that the incremental

information rent πθ′ − πθ is continuous in λ(θ), σ, and δθ. (Continuity in λ(θ) and

γ was shown in the course of proving Lemmas 2.1 and 2.3. Continuity in δθ comes

from similar arguments.)

By the definition of continuity, when I establish a property about the size of the

incremental information rent at a certain point in the parameter space, it will also

hold in a sufficiently small neighborhood around that point. With this technique, I

can show that my desired properties hold in a neighborhood of a particular point by

showing they hold at the particular point.

I begin with the first part of the theorem. When σa = 0,
√
(σa)2 + (σb)2 = σb.

Notice that OEM B’s demand of type h has gap δb, variability σb, and λ(l) = pbl . In

comparison, OEM D’s demand of type lh has gap δb, variability
√

(σa)2 + (σb)2 = σb

and λ(ll) = pal p
b
l < pbl = λ(l). Thus OEM B’s type-h demand has the same gap and

variability as OEM D’s type-lh demand, but has higher λ. Due to Lemma 2.1, I know

πb
h > πD

lh, thus OEMs A and B have higher combined information rent than D. By

continuity, this is also true when σa is sufficiently small.

I now prove the theorem’s second part. When σa decreases, OEM B’s information

rent will not change, nor will the low-type OEM A’s information rent (it is constant

at zero). Thus the combined information rents of A and B do not change. However,

the information rent of D decreases because when σa decreases, the variability of the

combined demand
√

(σa)2 + (σb)2 also decreases and, by Lemma 2.3, so does D’s

information rent. Similarly, when pah increases, OEMs A and B’s information rents

are not affected, but λ(ll) = pal p
b
l decreases and (by Lemma 2.1) this causes D’s

information rent to decrease.
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Proof of Theorem 2.2. I begin with the theorem’s first part. When δa = δb, types

lh and hl are indistinguishable, so bunching occurs between them, and consequently

πD
hl = πD

lh. Therefore the comparison of πa
h versus πD

hl is essentially the comparison of

πa
h versus πD

lh. On the other hand, when σb = 0,
√

(σa)2 + (σb)2 = σa. Notice that

OEM A with type-h demand has variability σa, gap δa and λ(l) = pal . In comparison,

OEM D of type-lh demand has the same variability
√
(σa)2 + (σb)2 = σa, gap δb = δa

and lower λ(ll) = pal p
b
l < pal = λ(l). Due to Lemma 2.1 I know πa

h > πD
lh, thus OEMs

A and B have higher combined information rent than D. By continuity this is also

true when σb is sufficiently small and δa is sufficiently close to δb.

The second part’s proof is similar to that of Theorem 2.1. As σb decreases, the

information rent of OEM A’s type-h demand does not change, but OEM D’s infor-

mation rent decreases. Also, as pbh increases, πa does not change, but πD
lh decreases

since λ(ll) = pal p
b
l decreases.

Proof of Theorem 2.3. The theorem assumes σ is sufficiently large. However, due

to the scalability of the information rents in δ and σ, I can replace this condition by

δ is sufficiently small. To see why, note that if I choose scalar κ > 0 and set

πθ′ − πθ = r

∫ s

s−δ

F(σ)(x)dx

where

λ(θ)(1− q) = F(σ)(s)− (1− λ(θ))F(σ)(s− δ)

and

π′
θ′ − π′

θ = r

∫ s′

s′−κδ

F(κσ)(x)dx

where

λ(θ)(1− q) = F(κσ)(s
′)− (1− λ(θ))F(κσ)(s

′ − κδ),

then s′ = κs, and hence π′
θ′ − π′

θ = κ(πθ′ − πθ). Thus, to study the relative sizes
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of OEM A’s, B’s and D’s information rents with σ large, I can analyze the related

scaled-down setting (where δ is small) which reduces the magnitude of the information

rents but leaves their relative sizes unchanged. Consequently, for the remainder of

the proof I will instead use the condition δ → 0.

When the demands for a and b are symmetric, bunching occurs between types

lh and hl. Thus to show that OEMs A and B continue to outperform D when pl

decreases, I need to show that πa
h + πb

h’s derivative with respect to pl is smaller than

(πD
hh − πD

lh) + πD
lh’s derivative with respect to pl. I now establish a property that

facilitates my comparison of the derivatives.

Due to Proposition 2.2’s proof,

dQθ

dλ(θ)
=

1− q − F (Qθ − µθ′)

f(Qθ − µθ)− (1− λ(θ))f(Qθ − µθ′)
. (A.7)

My first step is to show that

dQθ

dλ(θ)
→ δ/λ2(θ) as δ → 0. (A.8)

I begin by noting that a Taylor expansion of F about the point Qθ − µθ′ , together

with the fact that µθ′ = µθ + δ, yields

F (Qθ − µθ) = F (Qθ − µθ′) + δf(Qθ − µθ′) + o(δ). (A.9)

Recall FOC (2.4):

λ(θ)(1− q) = F (Qθ − µθ)− (1− λ(θ))F (Qθ − µθ′).

With (A.9), this implies that as δ → 0 the RHS of (2.4) approaches λ(θ)F (Qθ−µθ′)+
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δf(Qθ − µθ′), hence

1− q − F (Qθ − µθ′) →
δf(Qθ − µθ′)

λ(θ)
as δ → 0. (A.10)

Since the RHS of (A.10) approaches zero as δ → 0, I also have

Qθ − µθ′ → F−1(1− q) as δ → 0. (A.11)

By Lipschitz continuity of f , combining (A.11) and (A.10) yields

1− q − F (Qθ − µθ′) →
δf(F−1(1− q))

λ(θ)
as δ → 0. (A.12)

I now apply these insights to the RHS of (A.7). Since µθ + δ = µθ′ , (A.11) implies

that the denominator of (A.7)’s RHS approaches λ(θ)f(F−1(1 − q)) as δ → 0. Ad-

ditionally, (A.12) implies that the numerator of (A.7)’s RHS approaches δf(F−1(1−

q))/λ(θ) as δ → 0. Upon simplifying, I recover (A.8).

Furthermore,
d(πθ′−πθ)

dQθ
= r(F (Qθ − µθ) − F (Qθ − µθ′)) (by Equation (2.5)) →

rδf(F−1(1 − q)) as δ → 0 (by combining (A.9) and (A.11)). Combining this and

(A.8) yields

d(πθ′ − πθ)

dλ(θ)
=

d(πθ′ − πθ)

dQθ

dQθ

dλ(θ)
→ rδ2f(F−1(1− q))/λ2(θ) as δ → 0. (A.13)

Let F(σ) denote the error distribution of ei. Then F(
√
2σ) denotes the error dis-

tribution of eD. Generally speaking, for any κ > 0, since F(κσ)(κs) = F(σ)(s), I

know

d

dx
F(κσ)(x)

∣∣∣∣
x=κs

=
1

κ

d

dx
F(σ)(x)

∣∣∣∣
x=s

and

F−1
(κσ)(1− q) = κF−1

(σ)(1− q).
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Combining these equalities yields

f(κσ)(F
−1
(κσ)(1− q)) =

1

κ
f(σ)(F

−1
(σ)(1− q)). (A.14)

I now use (A.13) and (A.14) to prove the theorem. By (A.13),

dπa
h

dλ(l)
=

dπb
h

dλ(l)
→ rδ2f(σ)(F

−1
(σ)(1− q))/λ2(l),

and by (A.14),

dπD
lh

dλ(ll)
→ rδ2f(

√
2σ)(F

−1

(
√
2σ)

(1− q))/λ2(ll) =
1√
2
rδ2f(σ)(F

−1
(σ)(1− q))/λ2(ll).

Similarly,

d(πD
hh − πD

lh)

dλ
→ 1√

2
rδ2f(σ)(F

−1
(σ)(1− q))/λ

2
.

(λ is used because types lh and hl are bunched.)

Note that λ(l) = pl for both OEMs A and B, and λ(ll) = p2l and λ = 2pl/(1 + pl)

for OEM D. Therefore, by the chain rule, to show

d(πa
h + πb

h)

dpl
<

d[(πD
hh − πD

hl) + πD
hl]

dpl
,

I need only show

2
√
2/p2l < 1/p4l · 2pl + (1 + pl)

2/(4p2l ) · 2/(1 + pl)
2.

The latter can be verified to be true when pl < 0.85.

Proof of Theorem 2.4. I first show that bunching between types ll and lh will occur

if δb is sufficiently small. When δb → 0, (2.8) converges to 1− q = FD(QD
ll − µD

ll ), so
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its solution Q∗(2.8) converges to µD
ll + (FD)−1(1− q). Furthermore, since

pDlh(1− q) = (pDlh + pDhl + pDhh)F
D(QD

lh − µD
lh)− (pDhl + pDhh)F

D(QD
lh − µD

hl)

>(pDlh + pDhl + pDhh)F
D(QD

lh − µD
lh)− (pDhl + pDhh)F

D(QD
lh − µD

lh) = pDlhF
D(QD

lh − µD
lh),

I have Q∗(2.9) < µD
lh + (FD)−1(1 − q). Notice that Q∗(2.9) − [µD

lh + (FD)−1(1 − q)]

only depends on µD
lh and µD

hl through the gap µD
hl − µD

lh = δa − δb, which converges to

δa as δb → 0. Thus, as δb → 0, Q∗(2.9)− [µD
lh + (FD)−1(1− q)] approaches a negative

constant. Therefore, for sufficiently small δb, Q∗(2.8) > Q∗(2.9), violating the MC.

This means bunching occurs between types ll and lh as δb → 0.

As in (A.1)-(A.2), the information rent of OEM i (i = a or b) is described by

πi
h = r

∫ si

si−δi
F i(x)dx

and

pil(1− q) = F i(si)− pihF
i(si − δi),

where si
.
= Qi

l − µi
l. When bunching occurs between types ll and lh, the information

rent of OEM D is described by

πD
lh = r

∫ s

s−δb
FD(x)dx

πD
hl = r

∫ s

s−δa
FD(x)dx

πD
hh = r

∫ s

s−δa
FD(x)dx+ r

∫ shl

shl−δb
FD(x)dx

(pDll + pDlh)(1− q) = FD(s)− (pDhl + pDhh)F
D(s− δa) (A.15)

pDhl(1− q) = (pDhl + pDhh)F
D(shl)− pDhhF

D(shl − δb), (A.16)

where s
.
= Q − µD

ll (recall that bunching occurs between types ll and lh) and shl
.
=
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QD
hl − µD

hl. Since p
D
θaθb

= paθap
b
θb
, I can further simplify (A.15) and (A.16) as

pal (1− q) = FD(s)− pahF
D(s− δa)

and

pbl (1− q) = FD(shl)− pbhF
D(shl − δb).

The similar structure of OEMs A, B and D’s information rent is now evident.

To prove the theorem for OEMD of type hl, I must show that πD
hl > πa

h (recall that

πb
l = 0). Observe that the equations determining πD

hl and π
a
h are identical except that

the former involves FD while the latter involves F a. Since FD has higher variability,

from Lemma 2.3 I know that πD
hl > πa

h. Hence, to prove the theorem for OEM D of

type hh, it is sufficient to show that πD
hh−πD

hl > πb
h. Again, the equations determining

πD
hh − πD

hl and πb
h are identical except that the former involves FD while the latter

involves F b. The result follows from Lemma 2.3.

Proof of Theorem 2.5. Proposition 2.1’s proof showed that FDθj(Qθj) is first

positive then negative. From the expression for FDθj(Qθj) it then follows that Qθj is

decreasing in µθj+1
. Because µθj ≤ µθj+1

< ∞, I can obtain upper and lower bounds

on Qθj by solving (2.4) with µθj+1
replaced by µθj and ∞, respectively. Doing so

establishes that

µθj + F (−1)(λ(θj)(1− q)) < Qθj ≤ µθj + F (−1)(1− q).

The theorem assumes (r − c)/r > 0.5 (equivalently, q < 0.5), and pal and pbl are

sufficiently close to 1. The above bounds ensure that

Qi
θi > µi

θi + (F i)(−1)(λ(θi)(1− q)), i = a, b,
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and

QD
θaθb ≤ µa

θa + µb
θb + (FD)(−1)(1− q).

Therefore, to show Qa
θa +Qb

θb
> QD

θaθb
, it is sufficient to show

(F a)(−1)(λ(θa)(1− q)) + (F b)(−1)(λ(θb)(1− q)) > (FD)(−1)(1− q).

If λ(θa) and λ(θb) are sufficiently close to 1,

(F a)(−1)(λ(θa)(1− q)) + (F b)(−1)(λ(θb)(1− q))

will be sufficiently close to

(F a)(−1)(1− q) + (F b)(−1)(1− q).

Because F i(x) = Φ(σi)(x), I have

(F a)(−1)(1−q)+(F b)(−1)(1−q) = Φ−1
(σa+σb)

(1−q) > Φ−1

(
√

(σa)2+(σb)2)
(1−q) = (FD)(−1)(1−q).

Therefore, the result follows if λ(θa) and λ(θb) are sufficiently close to 1.

Recall that when θi = l, λ(θi) = pil, which is close to 1 by assumption. When

θi = h, by definition λ(θi) ≡ 1. Therefore, the result follows.
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APPENDIX B

Proofs of Chapter III

The Appendix includes the optimal mechanism design analysis and the proofs. I

mentioned that Theorem 3.1 is a special case of Theorem 3.2 (with h(k) replaced by 1,

or equivalently, H(Q) replaced by Q), which is in turn a special case of Theorem 3.3

(with all ψi(·) replaced by a common ψ(·)). Therefore, it suffices to analyze the

model with asymmetric and concave production costs as described in §3.3.2, and show

proof for Theorem 3.3. I will first find the optimal direct-revelation mechanism, then

show the modified biased open-descending auction always leads to the same outcome

(purchase quantity and payment) as the optimal direct-revelation mechanism.

A mechanism can be described as a set of binding rules announced by the buyer

stating how purchase quantities and payments will be determined based on the sup-

pliers’ bids. My goal is to design the purchase quantity and price rules that maximize

the buyer’s expected profit. Due to the revelation principle, it suffices to search for

the optimal mechanism within direct-revelation mechanisms, namely the ones that

require the suppliers to report their base costs and map their reported base costs to

purchase decisions, while providing the incentive for the suppliers to report their base

costs truthfully. For brevity, I use −i to represent j,∀j ̸= i in subscripts. For supplier

i, denote his reported base cost with si, the purchase quantity from and payment to
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him with Qi(si, s−i) and Mi(si, s−i). The expected payment to supplier i when he

reports si, given that all other suppliers report truthfully, equals

mi(si)
.
= EC−i

[Mi(si, C−i)].

Also define

qi(si)
.
= EC−i

[H(Qi(si, C−i))].

Note that because H is increasing, if Qi is decreasing in si, so is qi. One can then see

that supplier i’s expected profit when reporting si, given all other suppliers report

truthfully, equals

ui(si)
.
= mi(si)− ciqi(si).

The buyer’s mechanism design problem can be written as

max
Qi,Mi

E

[
R

(
n∑

i=1

Qi(Ci, C−i)

)]
−

n∑
i=1

ECi
[mi(Ci)] (B.1)

s.t. Qi ∈ Z+, ui(ci) ≥ 0, ui(ci) ≥ ui(si), ∀si ̸= ci, i = 1, ..., n.

By the standard analysis on pp 64-67 of Krishna (2002), the incentive compati-

bility constraint ui(ci) ≥ ui(si) can be replaced with

ui(ci) = ui(c̄i) +

∫ c̄i

ci

qi(ti)dti

and qi(·) being non-increasing. In addition, since ui(ci) ≥ ui(c̄i) under these two

conditions, ui(ci) ≥ 0 can also be replaced with ui(c̄i) ≥ 0. Combining

ui(ci) = ui(c̄i) +

∫ c̄i

ci

qi(ti)dti
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and

ui(ci) = mi(ci)− ciqi(ci)

yields

mi(ci) = ui(c̄i) + ciqi(ci) +

∫ c̄i

ci

qi(ti)dti.

As a result,

ECi
[mi(Ci)] =

∫ c̄i

ci

mi(ci)fi(ci)dci

=ui(c̄i) +

∫ c̄i

ci

ciqi(ci)fi(ci)dci +

∫ c̄i

ci

∫ c̄i

ci

qi(ti)fi(ci)dcidti

=ui(c̄i) +

∫ c̄i

ci

ciqi(ci)fi(ci)dci +

∫ c̄i

ci

∫ ti

ci

fi(ci)dciqi(ti)dti

=ui(c̄i) +

∫ c̄i

ci

(
ci +

Fi(ci)

fi(ci)

)
qi(ci)fi(ci)dci

=ui(c̄i) + E

[(
Ci +

Fi(Ci)

fi(Ci)

)
H(Qi(Ci, C−i))

]
.

Define virtual cost function ψi(c)
.
= c + Fi(c)

fi(c)
and assume ψi(·) is non-decreasing for

all i. Then the mechanism design problem becomes

max
Qi,Mi

E

[
R

(
n∑

i=1

Qi(Ci, C−i)

)
−

n∑
i=1

ψi(Ci)H(Qi(Ci, C−i))

]
−

n∑
i=1

ui(c̄i) (B.2)

s.t. Qi ∈ Z+, ui(c̄i) ≥ 0, qi(·) non-increasing, i = 1, ..., n.

First observe that the optimal mechanism must have ui(c̄i) = 0 for all i. Next,

recall that Qi non-increasing in ci implies qi(·) non-increasing. Therefore, if I find a

purchase quantity rule Qi that maximizes

R

(
n∑

i=1

Qi(ci, c−i)

)
−

n∑
i=1

ψi(ci)H(Qi(ci, c−i))

for every realization {ci}ni=1 and is non-increasing in ci, then Qi will be the optimal
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purchase quantity rule. The next lemma states that to maximize

R

(
n∑

i=1

Qi(ci, c−i)

)
−

n∑
i=1

ψi(ci)H(Qi(ci, c−i)),

the buyer should purchase from the lowest-virtual cost supplier i quantity Q such that

marginal revenue r(Q) equals marginal virtual cost ψi(ci)h(Q). (The buyer compares

suppliers based on virtual costs, rather than actual costs, in order to account for

information rents; this is a well-known result in mechanism design.) Obviously, the

resulting purchase quantity rule Q∗
i is non-increasing in ci, therefore it is the optimal

purchase quantity rule.

Lemma 2.1. Denote with subscript (i) the ordered virtual costs: ψ(1)(c(1)) ≤ ... ≤

ψ(n)(c(n)). The following purchase quantity rule is optimal: Q∗
(1)(c(1), c−(1)) = max{Q ∈

Z|r(Q) ≥ ψ(1)(c(1))h(Q)}; Q∗
(i) ≡ 0, ∀i ≥ 2.

Proof of Lemma 2.1. First I show that it is optimal to only purchase from

supplier (1). Suppose instead the buyer purchases Q(i) > 0 and Q(j) > 0. Since

ψ(i)(C(i)) ≥ ψ(1)(C(1)) for all i ≥ 2, and due to the concavity of H(·),

H(Q(i)) +H(Q(j)) = H(Q(i)) + [H(Q(j))−H(0)]

≥H(Q(i)) + [H(Q(i) +Q(j))−H(Q(i))] = H(Q(i) +Q(j)),

I know

ψ(i)(c(i))H(Q(i)) + ψ(j)(c(j))H(Q(j)) ≥ ψ(1)(c(1))H(Q(i) +Q(j)).

Thus it is optimal to only purchase from supplier (1). Then maximizing the integrand

R

(
n∑

i=1

Qi(ci, c−i)

)
−

n∑
i=1

ψi(ci)H(Qi(ci, c−i))
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is equivalent to maximizing

R
(
Q(1)(c(1), c−(1))

)
− ψ(1)(c(1))H(Q(1)(c(1), c−(1))),

which is achieved at

Q∗
(1)(c(1), c−(1)) = max{Q ∈ Z|r(Q) ≥ ψ(1)(c(1))h(Q)}.

Finally, Q∗
(1) is increasing in c(1) because ψ(i)(·) is assumed non-decreasing and r(·)/h(·)

is assumed decreasing.

Using Q∗
i from Lemma 2.1, the corresponding optimal payment rule can be written

as

M∗
i (ci, c−i) = ciH(Q∗

i (ci, c−i)) +

∫ c̄i

ci

H(Q∗
i (ti, c−i))dti,

which will guarantee the required relationship

m∗
i (ci) = ciq

∗
i (ci) +

∫ c̄i

ci

q∗i (ti)dti.

The next lemma provides a more convenient expression of the optimal allocation and

payment rules, which will be useful in proving Theorem 3.3.

Lemma 2.2. Define

Pi(c−i, k)
.
= max{c|ψi(c) ≤ ψj(cj), ∀j ̸= i, ψi(c) ≤ r(k)/h(k)},

Wi(ci, c−i, k)
.
= 1{ci≤Pi(c−i,k)},

Ni(ci, c−i, k)
.
= h(k)Pi(c−i, k)Wi(ci, c−i, k).

Then

Q∗
i (ci, c−i) =

∞∑
k=1

Wi(ci, c−i, k)
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and

M∗
i (ci, c−i) =

∞∑
k=1

Ni(ci, c−i, k).

Lemma 2.2 expresses the optimal allocation and payment rules from a per-unit

perspective. Pi(c−i, k) denotes a threshold of supplier i’s base cost ci; the buyer

will purchase the kth unit from supplier i if his base cost ci is below the threshold.

Wi(ci, c−i, k) is an indicator function of whether the buyer will purchase the kth unit

from supplier i, thus summing up Wi(ci, c−i, k) for all k yields the optimal purchase

quantity from supplier i. Finally, the definition of Ni(ci, c−i, k) states that the buyer

will pay exactly h(k) times the threshold Pi(c−i, k) for the kth unit (given that she

will purchase this unit from supplier i), thus summing up Ni(ci, c−i, k) for all k yields

the optimal payment to supplier i.

Proof of Lemma 2.2. First I show that

Q∗
i (ci, c−i) =

∞∑
k=1

Wi(ci, c−i, k).

Since r(k)/h(k) is decreasing in k, Wi(ci, c−i, k) is decreasing in k, namely once the

buyer does not purchase a kth unit from supplier i, she will not purchase any further

units from supplier i. Thus the buyer only purchases from one supplier, and then by

Lemma 2.1 it is clear that

Q∗
i (ci, c−i) =

∞∑
k=1

Wi(ci, c−i, k).

Next I show
∞∑
k=1

Ni(ci, c−i, k) =M∗
i (ci, c−i).

Since ∫ c̄i

ci

Wi(ti, c−i, k)dti = Pi(c−i, k)− ci,
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Ni(ci, c−i, k) can be rewritten as

Wi(ci, c−i, k)

[
h(k)ci +

∫ c̄i

ci

h(k)Wi(ti, c−i, k)dti

]
.

Summing this over all k yields

∞∑
k=1

Ni(ci, c−i, k) = ciH

(
∞∑
k=1

Wi(ci, c−i, k)

)
+

∫ c̄i

ci

H

(
∞∑
k=1

Wi(ti, c−i, k)

)
dti

= ciH(Q∗
i (ci, c−i)) +

∫ c̄i

ci

H(Q∗
i (ti, c−i))dti,

which equals M∗
i (ci, c−i).

Now I make use of Lemma 2.2 to prove Theorem 3.3.

Proof of Theorem 3.3. First I show that continuing to bid while b−1
i (P ) > H(Q0)ci

is supplier i’s dominant strategy: When b−1
i (P ) > H(Q0)ci, if the auction ends and

supplier i is the winner, he can just choose to deliver the guaranteed Q0 units and

secure a positive profit b−1
i (P )−H(Q0)ci. On the other hand, if he loses the auction,

he has profit 0. Thus he will keep bidding. When b−1
i (P ) < H(Q0)ci, if the auction

ends and supplier i is the winner, he incurs a negative profit b−1
i (P ) − H(Q0)ci.

Because the buyer pays no more than h(k+Q0)ψ
−1
i (P/H(Q0)) for the k

th additional

unit, supplying additional units could only worsen the supplier’s already negative

profit (notice that b−1
i (P ) < H(Q0)ci ⇔ h(k+Q0)ψ

−1
i (P/H(Q0)) < h(k+Q0)ci). On

the other hand, if he drops out, he has profit 0. Thus he will drop out.

Next I show when all suppliers’ strategy is to keep bidding lower as long as

b−1
i (P ) > H(Q0)ci, the purchase quantity and payment of the modified open-descending

auction is identical to those described in Lemmas 2.1 and 2.2. Since the auction’s

starting price H(Q0)max{ψi(c̄i)} ≥ H(Q0)ψi(ci) = bi(H(Q0)ci), ∀i, all suppliers can

meet the reserve and the auction ends when the second-lowest-cost supplier drops

out. Utilizing the ordered virtual costs notation, the winner of the auction will be

108



supplier (1) with the lowest virtual cost ψ(1)(c(1)), and the auction’s ending price P0

will equal H(Q0)ψ(2)(c(2)). Supplier (1) will first deliver Q0 units, then will deliver

the kth additional unit as long as

h(k +Q0)ψ
−1
(1)(min{ψ(2)(c(2)), r(k +Q0)/h(k +Q0)}) ≥ h(k +Q0)c(1).

It is not difficult to see that

ψ−1
(1)(min{ψ(2)(c(2)), r(k +Q0)/h(k +Q0)})

= sup{c|ψ(1)(c) ≤ ψ(i)(c(i)), ∀i ≥ 2, ψ(1)(c) ≤ r(k +Q0)/h(k +Q0)}.

The right-hand side expression equals P(1)(c−(1), k+Q0) defined in Lemma 2.2. Thus

supplier (1)’s total delivery quantity under the modified open-descending auction can

be written as Q = max{q ∈ Z|c(1) ≤ P(1)(c−(1), q)}, which equals Q∗
i by Lemma 2.2.

Additionally, it is easy to verify that in the modified biased open-descending auc-

tion, the buyer pays h(q)P(1)(c−(1), q) to supplier (1) for the qth unit shipped (this

expression also applies to the initial Q0 units), which equals N(1)(c(1), c−(1), q) defined

in Lemma 2.2. Hence the modified open-descending auction is an optimal mecha-

nism.

Proof of Proposition 3.1. By the revelation principle, for any mechanism there ex-

ists an outcome-equivalent direct mechanism. Among direct mechanisms, the buyer’s

expected profit maximization problem (B.1) can be simplified into problem (B.2). By

Lemma 2.1, in the symmetric linear costs case as I consider here, the optimal purchase

quantity equals Q∗ = max{Q ∈ Z|r(Q) ≥ ψ(c(1))} where supplier (1) is the supplier

with the lowest unit cost. Note that this optimal purchase quantity is necessary for

the mechanism’s optimality. However, if the auction in Stage 1 reveals c(1) to the

buyer, then in Stage 2 the buyer will offer to pay c(1) + ε for each additional unit

delivered, up to r−1(c(1))−Q0 units, where ε is an arbitrarily small positive number.

109



Receiving this offer, supplier (1) will deliver a total max{Q ∈ Z|r(Q) ≥ c(1)} units,

which is greater than Q∗. Such a mechanism cannot be optimal.

Next, suppose that I can replace the open-descending auction in the mechanism

by a sealed first-price, Vickrey or reverse Dutch auction and retain optimality. I show

a contradiction. Notice that each of these latter three auction formats, a supplier’s

bidding strategy can be described as a simple bidding function βi(ci) that only de-

pends on the supplier’s cost ci. Since I assume an optimal mechanism, the lowest-cost

supplier must always win Stage 1’s auction. This is because (as I mentioned above)

any optimal mechanism must ensure that the buyer purchases from the lowest-cost

supplier, and in the mechanism the buyer will only purchase from Stage 1’s auction

winner. The requirement that the lowest-cost supplier must always win Stage 1’s

auction implies ci < cj ⇔ βi(ci) < βj(cj), ∀i ̸= j, which in turn implies the following

properties of βi: All suppliers use the same bidding function: βi(·) ≡ β(·) for all i;

β(·) is deterministic; β(·) is monotonic. The three properties imply βi(·) ≡ β(·) is a

one-to-one mapping between supplier i’s unit cost ci and his bid βi in the auction.

Hence, at the conclusion of the auction the buyer can infer the winning supplier i’s

unit cost ci = β−1(βi) from his bid βi. By the earlier discussion, such a mechanism

cannot be optimal.
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APPENDIX C

Proofs of Chapter IV

Note. Although Propositions 4.1 through 4.4 and Theorem 4.1 are stated for two

TOs with independent Zi’s, their proofs here are provided for any number of TOs and

without assuming Zi’s are independent. This will facilitate proofs of Theorems 4.5

and 4.6.

Proof of Proposition 4.1. Recall that Zi has positive pdf over [ai, ai + hi]. I take

the example of TO1 and show that any quoting strategy (x1, ..., xn) with x1 > a1+h1

or x1 < a1 is weakly dominated by a quoting strategy with x1 ∈ [a1, a1 + h1].

First I show quoting strategy (x1, ..., xn) with x1 > a1+h1 is weakly dominated by

(a1+h1, x2, ..., xn). This is straightforward: The former strategy renders TO1 unable

to meet the OEM’s reserve price, and so does the latter. Therefore, they lead to the

same level of expected profit for TT .

Next I show that, for any i, any strategy with xi < ai is weakly dominated

by one where xi ≥ ai. Assuming without loss of generality a1 − x1 ≥ ai − xi, ∀i

and a1 − x1 = t > 0, it suffices to show that quoting strategy (x1, ..., xn) is weakly

dominated by (a1, x2 + t, ..., xn + t), called the revised strategy.

Revised strategy (a1, x2 + t, ..., xn + t) is generated by increasing each quote in

(x1, ..., xn) by t = a1 − x1. Notice that doing so will not affect the TOs’ sample
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path (realizations of Zi’s) cost comparison in the OEM’s auction; namely, the most

cost-efficient TO will remain so after the change. On the other hand, notice that at

least one TO can meet the OEM’s reserve price with both strategies (x1, ..., xn) and

(a1, x2+ t, ..., xn+ t), meaning the most cost-efficient TO will always meet the reserve

price. As a result, the revised strategy does not change the winning TO. However,

because quotes to all TOs increased by t, whichever TO wins will, under the revised

strategy, yield an additional profit of t for TT , meaning TT ’s expected profit with

(a1, x2 + t, ..., xn + t) is higher than (x1, ..., xn) by t > 0.

Proof of Proposition 4.2. I begin by stating a simple fact useful in showing the

proposition: TT ’s profit is improved by increasing the lowest quote(s) of a secure

strategy until either reaching the next lowest quote, or reaching the point beyond

which the strategy would become risky. This is easy to see by a sample-path argument.

When increasing the lowest quote(s), the sample paths where these TOs would win

the OEM’s contract either remain so, or become ones where the other TOs would

win, both of which mean higher profit for TT . (Note that the key assumption that

the quoting strategy remains secure ensures these sample-paths do not become ones

where no TO could meet the reserve price.)

Without loss of generality, I consider a secure strategy Xs = (xs1, ..., x
s
n) where

xs1 = a1 ≥ ai for all i such that xsi = ai. I take three steps to show the proposition.

First, repeatedly using the above argument, I can improve TT ’s expected profit by

increasing any xsj < a1 to a1 (the strategy remains secure because I still have xs1 = a1).

Denote the resulting strategy by X ′s = (x′s1 , ..., x
′s
n ). Now, x

′s
1 = a1 is the lowest quote

and is a secure quote. Without loss of generality, assume a1 = x′s1 = ... = x′sj <

x′sj+1 ≤ ... ≤ x′sn . Second, simultaneously increasing x′si , i = 2, ..., j to x′sj+1 improves

TT ’s expected profit. I use a sample-path argument to show this. When increasing

x′si , i = 2, ..., j to x′sj+1, the sample paths where these TOs would win the OEM’s

contract become ones where TO1 wins, or one of TOk, k ≥ 2 wins. The former
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sample paths do not affect TT ’s profit, and the latter sample paths will improve TT ’s

profit. Denote the resulting secure strategy by X ′′s = (x′′s1 , ..., x
′′s
n ), where x′′s1 = a1,

and x′′si > max{a1, ai}, i = 2, ..., n. Finally, if ai + hi < a1, then I can decrease x′′si

to ai + hi without reducing TT ’s expected profit — this is part of Proposition 4.1’s

proof.

As shown in the above three steps, any secure strategy Xs is dominated by an-

other secure strategy that satisfies the conditions in Proposition 4.2. Therefore these

conditions are necessary for optimality.

Proof of Proposition 4.3. For any secure strategy Xs, define X̂s by x̂si
.
= xsi + a,

∀i. Since

P (X̂s) =a+ a1 +
n∑

i=2

(x̂si − a− a1) Pr{TOi winning}

=a+ a1 +
n∑

i=2

(xsi − a1) Pr{TOi winning}, (C.1)

the optimal secure strategy X̂s∗ that maximizes P (X̂s∗) is obviously invariant in a

and is characterized by x̂s∗i = xs∗i + a, ∀i.

Proof of Theorem 4.1. First I prove a lemma that will be used in this proof.

Lemma 3.1. Fix a secure quoting strategy Xs and a risky quoting strategy Xr. Re-

place Zi by Ẑi
.
= Zi + a in (4.2) and consider the secure strategy X̂s .

= Xs + a =

(xs1 + a, ..., xsn + a) and the risky strategy X̂r .
= Xr + a = (xr1 + a, ..., xrn + a). The

derivatives of TT ’s expected profit P (X̂s) and P (X̂r) with respect to a are constants

and satisfy

d

da
P (X̂s) ≡ 1,

d

da
P (X̂r) ≡ 1− Pr{All TOs losing} < 1.

Proof of Lemma 3.1. First consider the secure strategy. Assume Xs has xs1 = a1.
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Since the expected profit can be written as in (C.1), it is immediately seen that

d

da
P (X̂s) ≡ 1.

Next consider the risky strategy. Because

P (X̂r) =
n∑

i=1

(a+ xri ) Pr{TOi winning},

I know

d

da
P (X̂r) ≡ 1− Pr{All TOs losing} < 1.

Take the optimal secure strategy Xs∗ and any risky strategy Xr. Replace Zi by

Ẑi
.
= Zi + a in (4.2), and consider the optimal secure strategy X̂s∗ .

= Xs∗ + a and the

risky strategy X̂r .
= Xr + a. Due to Lemma 3.1,

d

da
P (X̂s∗)− d

da
P (X̂r) > 0

is a constant. As a result, there exists a finite a∗Xr such that P (X̂s∗) > P (X̂r) when

a > a∗Xr . Define Tsec = sup{a∗Xr} for all Xr. Then when a > Tsec, the optimal secure

strategy X̂s∗ generates higher expected profit for TT than all risky strategies, thus

is the optimal strategy.

Next I show Tsec is finite. Denote Ẑi’s pdf by f̂i and recall that f̂i is positive and

finite over [a+ ai, a+ ai + h]. Consider a family of strategies

X̂δ .
= (x̂1 = a+ a1 + δ, x̂2(a+ a1 + δ)∗, ..., x̂n(a+ a1 + δ)∗)

where x̂i(a+ a1 + δ)∗ is the optimal x̂i given x̂1 = a+ a1 + δ. I first show that there

exists T1 < ∞, ε > 0, such that a > T1 and 0 < δ < ε imply that TT prefers using
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X̂0 to using X̂δ, that is, P (X̂0) ≥ P (X̂δ). Since by definition

P (X̂0) ≥ P (a+ a1, x̂2(a+ a1 + δ)∗, ..., x̂n(a+ a1 + δ)∗).

it suffices to show

P (a+ a1, x̂2(a+ a1 + δ)∗, ..., x̂n(a+ a1 + δ)∗)− P (X̂δ) ≥ 0.

Notice that X̂δ can be thought of as strategy

(x̂1 = a+ a1, x̂2(a+ a1 + δ)∗, ..., x̂n(a+ a1 + δ)∗)

with the quote x̂1 = a+ a1 increased by δ. For small δ, increasing δ has three effects

on TT ’s profit. First, with some positive probability p0 > 0 invariant in a, TT may

no longer have business because no TO meets the reserve price, which leads to a loss

of at least a + a1. Second, TT will receive δ additional profit when TO1 wins the

contract, whose probability is at most 1− δf̂1(a+ a1) + o(δ). Third, the chance that

another TOi wins may increase by at most δf̂1(a + a1) + o(δ), which brings in an

increased profit of at most max
2≤i≤n

{a+ ai + hi − a− a1}. Combining the three effects,

I can upper bound the profit impact of increasing x̂1 by δ:

P (a+ a1, x̂2(a+ a1 + δ)∗, ..., x̂n(a+ a1 + δ)∗)− P (X̂δ)

≥(a+ a1)p0 − δ(1− δf̂1(a+ a1))− max
2≤i≤n

{ai + hi − a1}δf̂1(a+ a1) + o(δ).

It is obvious that there exist T1 <∞, ε > 0 such that when a > T1 and 0 < δ < ε, the

right hand side is positive, and thus TT prefers using X̂0 to using X̂δ. In other words,

for a greater than a finite T1, a secure strategy is preferred to all risky strategies that

have a+a1 < x̂1 < a+a1+ε. Repeating the proof for all x̂i, I know that for a greater
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than a finite T1, the optimal strategy among all strategies that have x̂i < a + ai + ε

for some i must be secure.

Next I show that there exists a T2 <∞ such that for a greater than T2 the optimal

strategy is secure among all strategies that have x̂i > a + ai + ε for all i. To show

this, assume X̂∗ is the optimal strategy among those that satisfy x̂i > a + ai + ε for

all i. For all a, TT ’s profit with X̂∗ is upper-bounded by (a + maxi{ai + hi})(1 −

Pr{all TOs losing|x̂i = a + ai + ε}). In comparison, TT ’s profit with any secure

strategies is lower-bounded by a + mini{ai}. Obviously, Pr{all TOs losing|x̂i = a +

ai + ε} is a positive constant invariant in a. Therefore, there exists some finite T2

such that as a > T2, X̂
∗ is dominated by a secure strategy.

Combining the above results, I know Tsec ≤ max{T1, T2} < ∞, namely Tsec is

finite.

Proof of Theorem 4.2. Denote the i.i.d. Zi’s (common) cdf by F . Fix a quoting

strategy X = (x1, x2), and consider the strategy X̂ = (x̂1, x̂2) = (x1+a, x2+a). TT ’s

expected profit under strategy X̂ equals

P (x̂1, x̂2) = (a+x1)

∫ ∞

x1

F (z1−x1+x2)dF (z1)+ (a+x2)

∫ ∞

x2

F (z2−x2+x1)dF (z2),

and

∂P (x̂1, x̂2)

∂x1
− ∂P (x̂1, x̂2)

∂x2

=2(x2 − x1)

∫ ∞

0

f(x1 + t)f(x2 + t)dt+ (a+ x2)f(x2)F (x1)− (a+ x1)f(x1)F (x2)

−
∫ ∞

0

(f(x1 + t)F (x2 + t)− F (x1 + t)f(x2 + t))dt.

Furthermore,

d

da

[
∂P (x̂1, x̂2)

∂x1
− ∂P (x̂1, x̂2)

∂x2

]
= f(x2)F (x1)− f(x1)F (x2). (C.2)
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Notice that 1/
√
2 times (C.2) equals the constant rate of change of P (x̂1, x̂2)’s (1,−1)

directional derivative in a. Obviously, (C.2) is anti-symmetric in x1 and x2, meaning

switching the indices will change its sign. Therefore, if I can show for x1 < x2 it

is negative, then when a is sufficiently small (possibly negative), P (x̂1, x̂2)’s (1,−1)

directional derivative will be positive when x1 < x2, and the (−1, 1) directional deriva-

tive will be positive when x1 > x2, implying the optimal quotes must be symmetric.

Below I show (C.2) is indeed negative for x1 < x2. Observe that

(C.2) < 0 for x1 < x2 ⇐⇒ f(x)/F (x) is decreasing in x,

which is in turn implied by the assumption that Yi has log-concave pdf.

Tsym ≤ Tsec is implied by Proposition 4.2, which requires an optimal secure strat-

egy to never be symmetric (implying that an optimal strategy that is symmetric must

be risky and can only occur with a ≤ Tsec).

Proof of Proposition 4.4. Quoting x < maxi{ai} is strictly dominated by quoting

maxi{ai}, because maxi{ai} is a higher quote and yet guarantees at least one TO

will meet reserve price r. Quoting x > maxi{ai+hi} is weakly dominated by quoting

maxi{ai+hi}, because both quotes guarantee TOi cannot meet the reserve price.

Proof of Proposition 4.5. The necessary condition is a first-order condition. To

show the condition is also sufficient when the Zi’s are i.i.d., I only need to show

max{Z1, Z2} = r −min{Y1, Y2} is IFR, so that its failure rate function

2F (x)f(x)

1− F (x)2

is increasing. Since Yi is assumed to have a log-concave density, by the results of

Huang and Ghosh (1982), min{Y1, Y2} also has a log-concave density; then by the

results of Bagnoli and Bergstrom (2005), max{Z1, Z2} = r−min{Y1, Y2} is IFR.

Proof of Theorem 4.3. Denote the cdf and pdf of Ẑi by F̂ , f̂ , respectively. Notice
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that Ẑi has support [a, a + h]. From Proposition 4.5 I know the optimal QEP quote

x∗ is characterized by

x∗ =
1− F̂ 2(x∗)

2F̂ (x∗)f̂(x∗)
.

Since as x→ a,

1− F̂ 2(x)

2F̂ (x)f̂(x)
→ ∞ > x,

I know x∗ > a must always be true.

To show the optimal quote converges to a secure quote x∗ = a, I take any ε > 0

and consider a quote x = a+ η where η > ε. TT ’s expected profit from this quote is

upper-bounded by (a + h)(1 − F̂ 2(a + ε)), which is obviously dominated by a, TT ’s

profit from quoting x = a, when

a > h(1− F̂ 2(a+ ε))/F̂ 2(a+ ε).

Therefore, for any ε > 0, quoting x > a + ε cannot be optimal when a is sufficiently

large, meaning x∗ asymptotically converges to a secure quote x = a.

Proof of Corollary 4.1. When a is sufficiently small, I know the optimal QP quotes

are symmetric (Theorem 4.2), which must also be the optimal QEP quote. When a

is sufficiently large, I know that x∗1 = a and x∗2 − a is invariant in a (Theorem 4.1,

Proposition 4.3), but x∗ asymptotically converges to a (Theorem 4.3), so it must be

true that x∗1 < x∗ < x∗2.

Proof of Theorem 4.4. Obviously, the mechanism design problem in Theorem 4.4

is a special case of the problem in Theorem 4.7, with R ≡ r and n = 2. Assuming

Theorem 4.7 is true (the proof is provided later), I only need to show the mechanism

of Theorem 4.7 reduces to the mechanism of Theorem 4.4.

Now assume R ≡ r and n = 2. By definition, zi + yi = Zi + Yi ≡ r, i = 1, 2, and

u ≡ r. Considering the relationship between Zi and Yi, it is not difficult to verify

the following equation: ψi(zi) + ωi(yi) = r. Theorem 4.7 states that the supplier i (if
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any) satisfying ωi(y̌i) ≤ min
j ̸=i

{ωj(y̌j), u} is charged upfront payment

p∗i = ER[1{ωi(y̌i)<R}(R− ωi(y̌i) + y̌i − ω−1
i (min

j ̸=i
{ωj(y̌j), u}))]

and quoted price

x∗i =
Gi(y̌i)

gi(y̌i)
.

Notice that when R ≡ r and n = 2,

ωi(y̌i) ≤ min
j ̸=i

{ωj(y̌j), u} ⇐⇒ ψi(ži) ≥ max{ψj(žj), 0},

and for supplier i that satisfies the above condition,

p∗i = ER[1{ωi(y̌i)<R}(R− ωi(y̌i) + y̌i − ω−1
i (min

j ̸=i
{ωj(y̌j), u}))]

= ψ−1
i (max{ψj(žj), 0})−

1− Fi(ži)

fi(ži)
,

x∗i =
Gi(y̌i)

gi(y̌i)
= ωi(y̌i)− y̌i = r − ψi(ži)− r + ži =

1− Fi(ži)

fi(ži)
.

Furthermore, since R ≡ r and TT backs only one TOi in the auction, I know the

OEM will pay r to TOi for the contract and TOi will transfer a total amount of pi+xi

to TT , implying r ≥ pi + xi. Alternatively, any upfront payment p′i ≥ 0 and price

quote x′i ≥ 0 satisfying p′i + x′i = pi + xi would ensure that TOi meets the reserve

price (because r ≥ pi + xi), and transfer the same amount to TT . Therefore, I know

that any p∗i ≥ 0 and x∗i ≥ 0 satisfying p∗i + x∗i = max{ψ−1
i (ψj(žj)), ψ

−1
i (0)} form an

optimal mechanism. This concludes the proof.

Proof of Theorem 4.5. The proofs of Propositions 4.1 through Proposition 4.3 and

Theorem 4.1 were provided for the generalized model (notice that none of the proofs

require the Zi’s to be independently distributed).

Proof of Theorem 4.6. The proof of Proposition 4.4 was provided for the general-

119



ized model.

To show Proposition 4.5 extends to the general model, I first need to show

maxi{Zi} = R − mini{Yi} is IFR. Since Yi and R are assumed to have log-concave

density, by the results of Huang and Ghosh (1982), mini{Yi} also has log-concave

densities; then by the results of Bagnoli and Bergstrom (2005) and Theorem 3.2 in

Barlow, Marshall and Proschan (1963), maxi{Zi} = R−mini{Yi} is IFR.

To show the next step, I denote the cdf, pdf and support of R by W , w and

[R,R], and those of Y
.
= mini{Yi} by G, g, and [Y , Y ], respectively. I need to show

maxi{Zi} = R − Y has zero probability density at left end point of its support:

f(R− Y ) = 0 (so x∗ = 1−F (x∗)
f(x∗)

cannot hold at this point). By definition,

F (z) =

∫ Y

Y

g(y)W (y + z)dy, f(z) = F ′(z) =

∫ Y

Y

g(y)w(y + z)dy.

Therefore,

f(R− Y ) =

∫ Y

Y

g(y)w(y +R− Y )dy.

Notice that ∀y ∈ [Y , Y ], y + R − Y ≤ R, and consequently f(R − Y ) = 0. This

concludes the extension of the proof.

Proof of Theorem 4.7. For concision I use subscript −i to denote subscript j, ∀j ̸=

i. Suppose Zi has support [ai, bi]. For TOi with cost yi and report y̌i, if I assume all

other TOj’s report their true costs y̌j = yj, then TOi’s expected profit is

vi(y̌i, yi) = ER,Y−i
[(min{R, Y−i + x−i(y̌i, Y−i)} − yi − xi(y̌i, Y−i))

+ − pi(y̌i, Y−i)],

∂vi
∂yi

= −ER,Y−i
[1{min{R,Y−i+x−i(y̌i,Y−i)}−yi−xi(y̌i,Y−i)>0}].

A direct-revelation mechanism must satisfy maxy̌i vi(y̌i, yi) = vi(yi, yi). By the enve-
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lope theorem:

vi(yi, yi) = vi(bi, bi) +

∫ bi

yi

ER,Y−i
[1{min{R,Y−i+x−i(z,Y−i)}−z−xi(z,Y−i)>0}]dz,

and

EY−i
[pi(yi, Y−i)]

=ER,Y−i
[(min{R, Y−i + x−i(yi, Y−i)} − yi − xi(yi, Y−i))

+]− vi(yi, yi). (C.3)

So TT ’s expected profit equals

P
.
=

n∑
i=1

EYi
[ER,Y−i

[pi(Yi, Y−i) + xi(Yi, Y−i)1{min{R,Y−i+x−i(Yi,Y−i)}−Yi−xi(Yi,Y−i)>0}]]

=
n∑

i=1

{∫ bi

ai

gi(z)[ER,Y−i

[
(min{R, Y−i + x−i(z, Y−i)} − z − xi(z, Y−i))

+]

−
∫ bi

z

ER,Y−i
[1{min{R,Y−i+x−i(w,Y−i)}−w−xi(w,Y−i)>0}]dw

+ ER,Y−i
[(xi(z, Y−i))1{min{R,Y−i+x−i(z,Y−i)}−z−xi(z,Y−i)>0}]

]
dz − vi(bi, bi)

}
.

Notice that

∫ bi

ai

gi(z)

∫ bi

z

ER,Y−i
[1{min{R,Y−i+x−i(w,Y−i)}−w−xi(w,Y−i)>0}]dwdz

=

∫ bi

ai

∫ w

ai

gi(z)ER,Y−i
[1{min{R,Y−i+x−i(w,Y−i)}−w−xi(w,Y−i)>0}]dzdw

=

∫ bi

ai

Gi(w)ER,Y−i
[1{min{R,Y−i+x−i(w,Y−i)}−w−xi(w,Y−i)>0}]dw.
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Plugging it back in, I have

P =
n∑

i=1

{∫ bi

ai

gi(z)

[
ER,Y−i

[
(min{R, Y−i + x−i(z, Y−i)} − z − xi(z, Y−i))

+

− Gi(z)

gi(z)
1{min{R,Y−i+x−i(z,Y−i)}−z−xi(z,Y−i)>0}

+ xi(z, Y−i)1{min{R,Y−i+x−i(z,Y−i)}−z−xi(z,Y−i)>0}

]]
dz − vi(bi, bi)

}
=

n∑
i=1

{∫ bi

ai

gi(z)

[
ER,Y−i

[
1{min{R,Y−i+x−i(z,Y−i)}−z−xi(z,Y−i)>0}(

min{R, Y−i + x−i(z, Y−i)} − z − xi(z, Y−i)−
Gi(z)

gi(z)
+ xi(z, Y−i)

)]]
dz − vi(bi, bi)

}
=ER,Y

[
n∑

i=1

{
1{min{R,Y−i+x−i(Yi,Y−i)}−Yi−xi(Yi,Y−i)>0}(

min{R, Y−i + x−i(Yi, Y−i)} − Yi −
Gi(Yi)

gi(Yi)

)
− vi(bi, bi)

}]
.

To maximize P , I set vi(bi, bi) = 0. Observe that

min{R, y−i + x−i(yi, y−i)} − yi − xi(yi, y−i) > 0

can be true for at most one i. Thus, if

min{R, y−i + x−i(yi, y−i)} − yi −
Gi(yi)

gi(yi)

takes value (
R− yi −

Gi(yi)

gi(yi)

)+

whenever

yi −
Gi(yi)

gi(yi)
< yj −

Gj(yj)

gj(yj)
, ∀j ̸= i,
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then the sum must be maximized. This is achieved by setting

xi(yi, y−i) =
Gi(yi)

gi(yi)

for the TOi with the smallest ωi(yi) if ωi(yi) < u (otherwise xi(yi, y−i) > u− yi), and

x−i(yi, y−i) > u − y−i (eliminate all other TOs with forbiddingly high quotes). This

is the optimal quoting rule. With the optimal quotes, TT ’s expected profit can be

written as

P = ER,Y [(R−min{ωi(Yi)})+].

Now consider the payment rule. The envelope theorem implies (C.3). With the

optimal quotes, (C.3) can be rewritten as

EY−i
[pi(yi, Y−i)]

=ER,Y−i

[
1{ωi(yi)<min{R,ω−i(Y−i)}}(R− ωi(yi))−

∫ bi

yi

1{ωi(z)<min{R,ω−i(Y−i)}}dz

]
. (C.4)

Define the following payment rule:

pi(yi, y−i) = ER

[
1{ωi(yi)<min{R,ω−i(y−i)}}(R− ωi(yi))−

∫ bi

yi

1{ωi(z)<min{R,ω−i(y−i)}}dz

]
.

Obviously, this payment rule ensures that (C.4) always holds. Assuming ωi(yi) <

ωj(yj), ∀j ̸= i, this payment rule is equivalent to

pj(yi, y−i) =0, j ̸= i,

pi(yi, y−i) =ER[(R− ωi(yi))
+]−

∫ ω−1
i (min{ω−i(y−i)})

yi

Pr(R > ωi(z))dz

=ER[1{ωi(yi)<R}(R− ωi(yi) + yi − ω−1
i (min{ω−i(y−i), u}))].

This is the optimal payment rule, and coupled with the optimal quote rule I have an
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optimal mechanism.

Finally, I must confirm incentive compatibility and individual rationality of the

above mechanism. Under this mechanism, TOi’s expected profit, reporting cost y̌i,

equals

vi(y̌i, yi) =ER,Y−i
[1{ωi(y̌i)<min{R,ω−i(Y−i)}}[(R− ωi(y̌i) + y̌i − yi)

+

− (R− ωi(y̌i) + y̌i − ω−1
i (min{ω−i(Y−i), u}))].

When y̌i = yi, obviously vi(yi, yi) ≥ 0, so the participation constraint is satisfied.

When y̌i > yi, on the sample paths of {ωi(y̌i) < R}, I must have R−ωi(y̌i)+ y̌i −

yi > 0, and (R − ωi(y̌i) + y̌i − yi)
+ − (R − ωi(y̌i) + y̌i − ω−1

i (min{ω−i(Y−i), u})) =

ω−1
i (min{ω−i(Y−i), u})− yi > 0 does not depend on y̌i. However, by reporting higher

than true cost y̌i > yi, TOi receives this positive profit on fewer sample paths. Thus

TOi prefers reporting truthfully, y̌i = yi.

When y̌i < yi, on the sample paths of {ωi(y̌i) < ωi(yi) < min{ω−i(Y−i), u}}, since

R−ωi(y̌i)+y̌i−yi < R−ωi(y̌i), TOi’s profit is no higher than reporting truthfully. On

the sample paths of {ωi(y̌i) < min{ω−i(Y−i), u} < ωi(yi)}, whenR−ωi(y̌i)+y̌i−yi > 0,

the profit is ω−1
i (min{ω−i(Y−i), u})−yi < 0; when R−ωi(y̌i)+y̌i−yi < 0, the expected

profit is

− ER[R− ωi(y̌i) + y̌i − ω−1
i (min{ω−i(Y−i), u})]

=−
∫ ω−1

i (min{ω−i(Y−i),u})

y̌i

Pr(R > ωi(z))dz < 0.

In both cases, these sample paths would have reduced TOi’s expected profit. Thus

TOi again prefers reporting truthfully, y̌i = yi.

The above analysis shows that vi(y̌i, yi) ≤ vi(yi, yi) is always true, so the incentive

constraints are satisfied. This concludes the proof.
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