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Chapter I 

 

Introduction 

The invention of light guiding by refraction dates all the way back to 1840s and was 

first demonstrated by Daniel Colladon and Jacques Babinet [1]. The concept of using 

total-internal reflection to confine light inside a core of higher refractive index medium 

such as glass surrounded by a transparent cladding layer of lower index medium was first 

proposed by Narinder Singh Kapanny and is considered the invention of “Fiber Optics” 

[2]. However, commercial application of glass fibers was made possible by the work of 

Charles K. Kao, winner of the 2009 Nobel Prize in Physics, who predicted the possibility 

of making fibers with attenuation less than 20 dB/km and hence suitable for 

communication in the early 1960s [3]. Today fibers with losses on the order of 0.2 dB/km 

at 1550 nm are manufactured by using high purity glass material and provide a low-loss 

medium for long-distance communication using lasers. 

Optical fibers can be classified on a number of criteria. The most basic of them is the 

fiber material used for the core. Different fibers have different loss, dispersion and 

nonlinear response characteristics depending on the material properties and its purity. 

Fused silica based optical fibers are currently the most commonly used fibers due to the 

abundance of the raw material and excellent light transmission capabilities. Plastic fibers, 

fluoride fibers and tellurite fibers are some other examples of different materials used in 

fiber fabrication depending on the application requirements. Another classification 

criterion for fibers is active versus passive fibers. Active fibers usually contain specific 

amounts of doping materials to extract stimulated processes required for lasers and 

amplifiers. For example, ytterbium (Yb), erbium (Er) and thulium (Tm) dopants are 

common in the fabrication of gain fibers used for building fiber lasers and amplifiers. A 

new class of fibers called photonic crystal fibers has also emerged in the last decade or
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so, which uses light guiding by periodic structures as against to total internal reflection 

and have the advantage of the flexibility in tailoring the dispersion properties of the fiber.  

Fibers can also be classified on the basis of the number of modes that can propagate 

in the core. Modes can be considered as the different eigenfunctions of the Maxwell‟s 

equations governing electromagnetic wave propagation as applied to fiber geometry [4]. 

The modal properties of the fiber depend on the physical dimensions the fiber such as 

core diameter and refractive index difference between the core and cladding material. 

Multimode fibers usually have a larger core diameter and are used for light delivery 

applications in imaging [5]. An important class of optical fibers is single mode fibers that 

can support propagation of light only in a single mode approximated by the fundamental 

Gaussian shape and are called single mode fibers.  

Single mode optical fibers have several unique properties that make them suitable for 

a number of applications compared to other physical layer media. In addition to 

delivering light with very low loss, single mode fibers transmit light in a fundamental 

Gaussian beam shape which allows for the preservation of a single spatial mode beam 

profile at the output. Typical single mode fibers confine the light beam in a core of 

diameter ~10 µm allowing for generation of high intensity beams inside the glass 

medium making them suitable for study of nonlinear phenomenon. This unique property 

has fuelled the field of nonlinear fiber optics since the 1970s with the demonstration of 

stimulated Raman, Brillouin and soliton effects.  

In my thesis, I will demonstrate systems and devices based on properties of single 

mode fibers, such as high nonlinearity, mode selectivity and single spatial mode output 

beam quality with potential applications in remote sensing, communication and optical 

metrology.      

1.1. MID-INFRARED SUPERCONTINUUM LASER 

Fiber lasers have recently grown to prominence for their capacity to efficiently 

generate kilowatt levels of power. The structure of optical fibers allows for excellent 

mode overlap between the pump and the signal beams to generate high power levels in 

relatively small pump and signal interaction lengths. Coupled with the nonlinear 

properties of the fiber material, a variety of fiber based devices have been demonstrated.  
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Particularly, supercontinuum light sources have attracted considerable attention for 

fiber based broadband light generation. The process of supercontinuum generation is the 

result of propagation of high intensity light pulses in a suitably dispersive medium, which 

results in the interplay of numerous nonlinear processes such as self-phase modulation, 

modulation instability, stimulated Raman scattering, etc. to give rise to a continuum of 

wavelengths at the fiber output [6,7]. Such a light source has advantages in that it 

possesses the broad wavelength nature of an incandescent lamp, while providing 

flexibility in spatially manipulating the output beam. Consequently, such light sources 

provide a high level of directionality and intensity for applications such as LIDAR [8], 

chemical sensing [9], etc. 

In remote chemical sensing applications, the laser output invariably travels through 

the atmosphere before being detected by suitable detectors. To increase the strength of 

the received signal, it is required that the wavelength of the light source suffer minimal 

attenuation while passing through the atmosphere. From this standpoint, studies have 

been conducted, which suggest specific wavelength ranges where the atmosphere is 

relatively transparent called the atmospheric transmission windows [10]. Of particular 

interest are the three windows extending from 2-2.4 µm, 3-5 µm, and 8-12 µm. The 

transmission windows in the 2-5 µm range are attractive due to their proximity to the 

1.55 µm telecommunication band where the large scale of manufacturing provides 

commercial-off-the-shelf components with high reliability and competitive pricing. 

With the intention of leveraging mature telecommunication technology, our research 

group has worked extensively in the past few years developing a novel broadband 

supercontinuum light source extending from 800 – 4500 nm. Typical supercontinuum 

lasers use specialty mode-locked source which are capable of generating high peak 

power, ultra-short pulses suited for nonlinear processes. However, it was demonstrated by 

Xia et al. in [11] that the need for mode-locked lasers can be eliminated by using a novel 

two-step pulse break up process which uses the physics of the fiber to initiate high peak 

power pulse generation starting from approximately nanosecond long quasi-cw light 

pulses of moderate intensity. The technique makes use of the anomalous dispersion 

regime of optical fibers, where longer wavelengths travel slower than shorter 

wavelengths contrary to the normal dispersion regime, where the reverse occurs. This 
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particular regime is of significance to the observation of nonlinear phenomenon since the 

fiber can support soliton pulses through the interplay between dispersion and nonlinearity 

[12]. Instability in the medium caused by high intensity pulses propagating through an 

anomalously dispersive medium, such as fused silica SMF with 1.55 µm wavelength 

input, leads to modulation of the beam amplitude initiated by background noise, which 

causes quasi-cw pulses to break up into higher intensity sub-picosecond pulses similar to 

those observed at the output of mode-locked lasers. Such process is termed as modulation 

instability initiated pulse break-up. Subsequently, stimulated Raman processes, which 

denote energy transfer to longer wavelengths based on phonon interaction in the fiber 

glass medium and soliton self-frequency shift, which corresponds to intra-pulse Raman 

energy transfer from the shorter wavelength components to the longer wavelengths, in a 

suitable nonlinear medium leads to generation of light over a continuum of wavelengths 

and hence termed as supercontinuum generation. The extent of the long wavelength edge 

of the continuum starting from 1.55 µm wavelengths depends on the fiber material 

absorption edge. For example, wavelengths up to 2.8 µm have been generated in fused 

silica fibers starting from nanosecond long input pulses by carefully adjusting the length 

of the fused silica SMF used in the pulse break-up stage and the high nonlinearity 

medium [11]. In order to shift the spectrum further, low mid-infrared loss medium such 

as ZBLAN fluoride fibers can be used. Continuum extending out to 4.5 µm has been 

demonstrated in these fibers [13]. 

However, the efficiency of energy transfer from 1.55 µm to longer wavelengths, 

particularly beyond 3.8 µm is relatively poor. For example, the ZBLAN based 10.5 W 

supercontinuum source demonstrated in [14] generates almost no light beyond 3.8 µm. 

The long wavelength edge is predicted to be limited by the high material absorption in 

ZBLAN at wavelengths beyond 4.2 µm. Modifications in the properties of the ZBLAN 

fibers such as the numerical aperture and core diameter reduction can lead to higher 

nonlinearity in the fiber core and lower bend-induced loss in the fiber at longer 

wavelengths and hence lead to extension of the continuum long wavelength edge closer 

to the material absorption edge, as will be demonstrated in my thesis. Larger wavelength 

shifting can also be achieved by generating higher peak power 1.55 µm pulses at the 

input of the ZBLAN fiber compared to ~6.1 kW pulses used previously. However, such 
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increase is usually associated with the advent of damage to various system components 

and limitations from the nonlinearity in the power amplifier system. 

In chapter 2, I will discuss results of a novel technique to efficiently shift light from 

1.55 µm to beyond 3.8 µm. The method involves breaking the continuum process into 

two stages separated by an intermediate amplification stage. Such parsing of the 

supercontinuum generation process will be shown to provide additional boost to the 

wavelength shifting process by moving the supercontinuum pump closer to the material 

absorption edge. In this scheme, higher efficiency Tm-amplifiers are used to amplify 

wavelength components around 2 µm at the output of a standard SMF-based 

supercontinuum source. Coupling of the amplifier ~2 µm pulses leads to long wavelength 

generation with ~2.5 times the efficiency of previously demonstrated Er:Yb based 

amplifier systems operating at 1.55 µm. Experiment and simulation results will be 

presented to demonstrate the successful implementation of the two-stage continuum 

process in wavelength generation >3.8 µm.            

1.2. BROADBAND SURFACE-NORMAL OPTICAL MODULATOR 

Another application for fiber-based broadband light sources is in the area of optical 

networks [15]. Typical network configurations use wavelength-division multiplexing to 

support multiple users on a single physical connection by using wavelength allocation to 

users. The availability of broadband lasers can increase the capacity of the physical 

network by allowing more number of users to be connected to a single central unit 

housing the light source [16]. Such sharing of network resources amongst users can lead 

to reduction in operation costs. Cost sharing of network components can help in the large 

scale commercial deployment of passive optical networks in the last mile, which refers to 

the leg of the network connecting users to a central office. Increasing the capacity in the 

last mile can lead to reduction in the bottleneck of current networks and allow for higher 

speed connectivity to end users [17]. Wavelength division multiplexing is particularly 

advantageous in these architectures as it allows for independent operation of remote 

terminals unlike in the case of time-division multiplexed networks, where 

synchronization between different users is necessary. An additional advantage in WDM-

PONs is that the network components need not operate at the aggregate network capacity 
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speeds, but instead operate at individual user link speeds. Such WDM-based passive 

networks are currently under experimental deployment in several parts of the world. 

However, large-scale deployment is yet not feasible due to complexity involved in 

channel assignments. For example, each user needs to operate at a specific wavelength 

for accommodation with a central office. Any drift in operating wavelength can cause 

collision of information packets with other users on the network. 

To solve the above problem, devices capable of operation over a larger wavelength 

band are sought for the user terminal. One approach is to generate a carrier for the 

upstream communication link at the central office and provide it to the user, where 

broadband modulators, also referred to as “colorless” modulators, imprint local data on to 

the carrier and reflect it back to the central office [18]. Some examples of previously 

demonstrated colorless modulators include reflective semiconductor optical amplifiers 

[19] or injection locked Fabry-Perot lasers [20]. However, due to the active nature of both 

these devices, there is risk of accidental lasing in the network due to reflections in the 

fiber link from passive components in the network. 

The ideal component choice for remote terminal, therefore, is a passive, reflective and 

colorless modulator. The requirement for wavelength independent operation suggests 

non-resonant electro-optical effects as ideal candidate due to their relative insensitivity to 

the wavelength of incident light. Free-carrier dispersion is one such effect observed in 

semiconductors at wavelengths above the band-edge. Devices based on the free-carrier 

effect have been demonstrated in both waveguide and surface-normal configurations [21, 

22]. However, waveguide modulators are currently not pursued for low-cost applications 

due to the associated complexity of assembly, drive circuitry and packaging of coupling 

optics, which makes large-scale manufacturing difficult [23]. Surface-normal devices 

such as VCSELs and LEDs on the other hand are cheaply available as their 

manufacturing has been shown to benefit from economies of scale.  

In chapter 3, I describe a surface-normal, broadband, GaAs-based optical modulator 

which uses the single mode properties of the delivery fiber in optical networks to create 

amplitude modulation. The devices splits the incident fundamental Gaussian light beam 

from a standard SMF and phase modulates two halves independently using the variation 

in charge carrier density across a pin-junction diode. A fraction of the phase modulated 
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light is not coupled in to the fiber due to the higher-order mode rejection properties of 

single mode fibers and leads to phase to amplitude modulation conversion, which can be 

observed using a detector. The device is fabricated in GaAs material and the performance 

is compared with a similar device fabricated in Silicon. Device characterization results in 

terms of modulation depth, frequency response and insertion loss are presented. Also, 

using a supercontinuum laser, the wavelength response of the modulator is characterized. 

Such a measurement is performed for the first time to my knowledge and provides a 

potential application of broadband supercontinuum sources as described in my thesis. 

1.3. OPTICAL PROBE FOR DEFECT DETECTION IN BORES 

Fibers as an efficient medium of light delivery have found illumination applications in a 

number of fields, such as in vivo surgery where direct access is limited. Optical probes 

used in medicine [24] and part manufacturing metrology [25] are two prime examples. 

Fiber based probes provide the flexibility and small physical dimensions for endoscopic 

imaging [26] as well as surgical applications [27]. The fiber-based biomedical probe 

demonstrated by Herz et al. in [28] has a cross-sectional dimension as small as 5 mm, 

allowing it to reach inside arteries, etc. Borescopes used for inspection of inner diameter 

surfaces of cylindrical parts also provide substantial advantage over previously used 

labor-intensive techniques such as wax-film and coordinate measuring machines (CMM) 

[29].  

In chapter 4, I describe an optical probe based on scattering for detection of porosity 

defects, commonly found in cast metal parts, inside cylindrical bores as small as 5 mm in 

diameter. The technique is novel in its multiple angle defect inspection allowing not only 

detection of surface defects but also classification of the defect based on depth 

information. In this case, I use the spatial coherence of the output beam from a single-

mode fiber to be able to generate unique features in the scattering profile from various 

types of surface defects and hence be able to detect and classify defects based on their 

scattering signatures. The probe design is explained in details and characterization of the 

proposed technique is carried out for a number of samples. Finally, a particular problem 

of interest to the automotive industry, in porosity detection inside transmission valve 

body spool bores is carried out and results and analysis are presented. 
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Chapter II 

 

All-fiber integrated mid-infrared supercontinuum light source based on 

higher efficiency Tm-amplifiers 

Light generation in the mid-IR wavelength range from 2-5 μm is beneficial for a number 

of applications, including spectroscopy [1,2], explosive and chemical detection [3], 

remote sensing and ranging [4], free-space communications [5], and medicine [6]. 

However, efficient broadband sources extending over a range of wavelengths in the mid-

IR are not easily available due to lack of reliable components in the mid-infrared 

wavelength range unlike in the telecommunication bands extending from 1.3-1.6 μm. 

Of particular interest are light sources capable of generating wavelengths in the so-

called atmospheric transmission windows [7], where losses during propagation are 

minimal. The transmission windows are found in regions where atmospheric constituents 

such as CO2, water-vapor, etc. do not absorb light. Fig. 2.1 below shows the atmospheric 

transmission in the visible to mid-infrared wavelength range. High transmission is 

observed in the 2-2.5 and 3.5-4.2 µm wavelength ranges. Light sources in these 

wavelengths are suited for applications requiring long distance propagation through the 

atmosphere.  

 

Fig. 2.1 Atmospheric transmission in the visible to mid-infrared wavelength range (Source: Santa Barbara 

Research Center) 



11 

 

2.1. Background 

Currently available solid-state laser technologies operating in the mid-IR wavelength 

range include quantum cascade lasers (QCL) [8], optical parametric oscillators (OPO) 

[15, 16] and rare-earth doped ZBLAN fiber lasers [24]. In comparison, SC sources are 

attractive because they can cover multiple wavelength bands, thus increasing the 

sensitivity and selectivity of spectroscopic studies. 

 One technique to reliably generate mid-IR SC is by shifting light from a near-IR 

laser into the mid-IR wavelengths using nonlinear optical processes. In ZBLAN fibers, 

SC extending to ~6.28 µm has been demonstrated by pumping ~2 cm length of fiber with 

mode-locked 1480 nm pulses of ~50 MW peak power and 20 mW average power [9]. 

Another mid-IR SC fiber laser demonstration based on ZBLAN fiber used a 1550 nm 

mode locked Er-doped laser and generated ~5 mW in the wavelength range from 1.8-3.4 

µm [2]. Fibers based in high nonlinearity materials such as tellurite have also been used 

for SC generation. For example, continuum extending from ~0.8-4.87 µm with 90 mW 

output average power has been demonstrated by coupling 110-fs long, 1.55 µm pulses in 

to 0.8 cm length of tellurite photonic crystal fiber (PCF) [10].  

 A novel technique to eliminate the need of mode-locked lasers for high peak 

power pulse generation has been previously demonstrated. In this technique, modulation 

instability in standard SMF is used to initiate pulse break-up of quasi-continuous wave 

laser diode pulses [11]. Typically, one nanosecond long 1.55 µm laser diode pulses are 

first amplified through two or more stages of Er/Er:Yb fiber amplifiers. After initiating 

pulse break-up in a few meter lengths of standard SMF, SC extending from 0.8-4.4 µm 

has been generated in ~7 m length of ZBLAN fiber, with 23 mW average power output 

[32]. Also, using linear scaling of the time-average power with the pulse repetition rate, 

up to 10.5 W average power output in a continuum extending from 0.9-3.8 µm has been 

demonstrated [12]. More recently, by using ~20 kW 1.55 µm peak power pulses and 

longer lengths of ZBLAN fibers (~12 m), a high average power spectrum extending out 

to ~4.2 µm has been achieved using all 1.55 µm amplification stages [13].  

 In this chapter, I demonstrate an all-fiber integrated mid-IR supercontinuum laser, 

based on a Tm-doped power amplifier stage. The motivation to incorporate a TDFA stage 

is driven by the higher pump-to-signal conversion efficiency demonstrated in Tm-doped 
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gain fibers compared to EYFAs. For example, slope efficiency as high as 56% is 

demonstrated in LMA Tm-doped gain fiber [40] compared to LMA-EYFAs, which have 

demonstrated slope efficiencies of ~38% [43] in comparable fiber geometries. Also, 

shifting the SC pump from 1.55 to ~2 µm is pursued with an attempt to generate a longer 

extending SC in the mid-IR wavelengths. 

 Various techniques to generate ~2 µm light pulses for input to TDFAs have been 

demonstrated. For example, by using a mode-locked Er fiber laser with polarization-

maintaining components operating at 1557 nm followed by an EYFA, a Raman shifting 

soliton pulse to ~2 µm in 12 m length of high numerical aperture (NA) fiber has been 

demonstrated in the past [20]. A subsequent dispersion-managed large mode area TDFA 

stage generates pulses with up to 230 kW peak power at ~2 µm. Another approach 

generates ~750-fs long ~1.95 µm pulses using a saturable absorber based on carbon 

nanotubes in the Tm-doped fiber laser cavity [21]. Techniques using ~1.55 µm laser 

diode pulses instead of mode-locked lasers have also been demonstrated. One approach 

involves successive orders of cascaded Raman wavelength shifting in germanium-doped 

fused silica fibers with NA of ~0.41 [22]. In this approach, up to 3 orders of shifting from 

1.53 μm leads to light generation at 1.94 μm. Another demonstrated technique involves 

gain-switching a Tm-doped fiber cavity with a modulated 1.55 µm pump to generate 10-

ns long 2 µm pulses [23]. 

 In our approach, ~1-ns long laser diode pulses at 1.55 μm are amplified to ~2.5 

kW peak power. Pulse break-up through modulation instability, and long wavelength 

shifting through Raman processes in ~25 m length of standard SMF gives rise to ~2 μm 

pulsed light components for input to a Tm-doped fiber amplifier. The technique 

eliminates the need of mode-locked lasers for high peak power pulse generation at ~2 µm 

and uses all standard telecommunication wavelength fiber-coupled components. Also, 

due to absence of a regenerative cavity, the system does not require any bulk 2 µm 

optical isolators to prevent feedback from spontaneous emission or spurious reflection 

from subsequent TDFA or SC generating stages. 
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2.2. Motivation 

From a mid-IR light generation perspective, the motivation to switch from an Er:Yb 

power amplifier system to a Tm-amplifier are manifold. One of the main reasons is the 

higher pump-to-signal conversion efficiency recently demonstrated in Tm-amplifiers. For 

example, Tm-amplifier slope efficiencies of up to 53% have been demonstrated for 

790nm pumped systems in continuous-wave mode of operation in comparison to ~38% 

of maximum demonstrated slope efficiency from commercially available Er:Yb gain 

fibers [43]. Also up to 300 W output light generation has been demonstrated from a Tm-

fiber laser. The higher efficiency obtainable in Tm-systems is due to a cross-relaxation 

process that occurs during stimulated absorption [18]. Fig. 2.2 shows the transitions Tm-

systems when excited by 790 nm pump light. 

 

Fig. 2.2 Quasi-three-level Tm-doped fused silica fiber amplifier system with cross relaxation of adjacent 

Tm3+ ions when pumped with 790 nm light 

As shown, the ground 
3
H6 state ions can be excited to an upper level, 

3
H4 using 790 

nm pump photons. However, when excited ions relax into the 
3
F4 meta-stable state, the 

subsequent relaxation of the ion leads to bumping an additional ground state Tm-ion to 

the meta-stable state through cross-relaxation between adjacent ions and both ions 

contribute to the stimulated emission process around 2 μm. As a result, up to two signal 

photons can be made available for every pump photon used by the system giving rise to 

theoretical quantum efficiency >100%. 

Another incentive to switching to a Tm-amplifier is that by pumping the 

supercontinuum generating fiber at 2 μm instead of 1.55 μm, one can expect to get a 

longer wavelength shift in the mid-infrared for same peak power pulses. This can be used 

to an advantage either by generating a longer extending mid-IR spectrum, or by operating 
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at a lower peak power setting so as to prevent peak-power related damage in the system. 

On the same lines, it could also reduce the length of specialty mid-infrared fiber that is 

required for efficient light generation and hence reduce system cost. Another underlying 

advantage is cutting off the amplification of the spontaneous emission going from an 

Er:Yb mid-amp to Tm-power-amp, where gain could be robbed away from signal pulses 

by spontaneously emitted components. By switching to a Tm-amplifier system, all light 

below ~1.9 μm, including ~1.53 μm amplified spontaneous emission is absorbed in the 

Tm-gain fiber, thus reducing the impact of ASE in the output.  

2.3. Challenges 

One of the basic requirements for implementing a Tm-based mid-infrared 

supercontinuum system is a pulsed 2 µm source. In my approach, I have used a standard 

telecommunications-component based light source in which nanosecond laser diode 

pulses at 1.55 μm are amplified to a few kW peak power. Pulse break-up using 

modulation instability, self-phase modulation and Raman processes in a reasonably long 

length of standard SMF gives rise to an off-the-shelf, reliable and versatile system for 2 

μm light generation. 

The proposed architecture for the Tm-based mid-infrared supercontinuum laser is 

shown in Fig. 2.3. 
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Fig. 2.3 Proposed system architecture for replacing Er:Yb power amplifier with Tm-amplifier for more 

efficient mid-infrared supercontinuum generation 

In concept, the novelty of the approach lies in reversing the order of the modulation 

instability-based pulse break-up process and the power amplifier stage. In previously 

demonstrated Er:Yb systems, all amplification stages are stacked together to give rise to 

high peak power 1.55 µm pulse generation up to ~20 kW, followed by ~2 m fused silica 

single mode fiber, which initiates the pulse break-up process. Subsequently, ZBLAN 

fibers with low loss in the 1.5-4 µm region are used for supercontinuum generation in the 

mid-IR. In the new Tm-based system, it is proposed to switch the pulse break-up stage to 

before the power amplifier. Due to the lower peak power (up to 3 kW) available from the 

Er:Yb mid-amplifier stage, a longer length of fused silica single mode fiber is required 

for generation of 2 µm light components for input to a Tm-amplifier, which has a gain 

band extending from 1.91-2.13 µm. The amplified Tm-output is then coupled in to 

suitable length of ZBLAN fiber for mid-infrared supercontinuum generation. 

In practice, once the ~1 ns long 1.55 µm light pulses have under gone spectral shift to 

2 µm, it is unclear whether amplification of wavelength selective components of different 

parts of the pulse can generate enough peak power to further sustain  the supercontinuum 

generation process in to the mid-IR. Such a scheme has never been demonstrated in a 

quasi-cw regime and is one of the foremost risks to the successful implementation of the 
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Tm-based architecture. Another question that arises is whether the Tm-based system 

could demonstrate power scalability in a manner similar to the demonstrated Er:Yb 

system by increasing the pulse repetition rate and pump power. The novelty of the two-

stage continuum generation also raises doubt regarding the stability and efficiency of the 

subsequent mid-IR generation processes. In addition, components for Tm-amplifier have 

become available only recently, making their performance in the proposed architecture 

unpredictable.  

In the remainder of this chapter, I will demonstrate how the above challenges were 

mitigated successfully. I have demonstrated a mid-IR supercontinuum laser based on Tm-

amplifier with a fused silica supercontinuum input. The laboratory set-up has shown 

successful generation of a spectrum extending from 1.9 to >4.5 µm wavelengths at the 

output of ~8.5 m length of ZBLAN fiber with power scalable generation of up to 0.7 W 

average power in band IV wavelengths. The band IV generation efficiency of the 

demonstrated system has been optimized to >2.5 times that of the previously 

demonstrated Er:Yb system [13]. All components of the system have been shown to 

perform stably for a continuous period of 2-hours without the need for any human 

intervention and any apparent damage to system components.  

2.4. Tm-system set-up 

2.4.1. Fused silica continuum based 2 µm light source 

The experimental set-up for 2 μm light generation is shown in Fig. 2.4 and consists of an 

amplified 1.55 μm source followed by a spectrum shifting standard SMF fiber. The seed 

laser consists of a 1553 nm distributed feedback (DFB) laser diode with ~1-ns long 

pulses output at a repetition rate adjustable from a few MHz down to ~10 kHz. The laser 

diode pulses are amplified through two stages – a single mode Er-doped fiber amplifier 

(pre-amp) followed by a cladding pumped Er:Yb doped mid-amp. The pre-amp stage 

consists of ~2 m length of 4/125 μm gain fiber pumped by up to 400 mW at 980 nm. A 

100 GHz line width optical add-drop multiplexer at the signal wavelength is used to filter 

out amplified spontaneous emission (ASE) generated in the pre-amp stage. The mid-amp 

stage consists of ~5 m of cladding pumped 7/130 μm Er:Yb co-doped fiber pumped by a 

single 10W 976 nm laser diode.  
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A near-IR continuum starting from 1.55 µm is first generated in standard SMF. The 

mid-amp is used to boost the peak power level of the optical pulses to few kW level and 

the output is spliced to ~25 m length of standard SMF. For the case of the mid-amp 

output, the peak power of the pulses can be estimated from their duty cycle and the 

measured average power at the output of the amplifier. For example, with a pulse width 

of ~1-ns and a pulse repetition rate of 500 kHz, 1 W output from the mid-amp 

corresponds to ~2 kW peak power of the individual pulses.  

 

Fig. 2.4 Experimental set-up for fused silica supercontinuum based 2 μm source 

The output of the standard SMF-based 2 µm light source is spliced to a large mode 

area-TDFA, which serves as the power-amp. LMA gain fiber is chosen to reduce 

nonlinear effects in the amplifier and has core/cladding dimensions of 25/250 µm. The 

gain fiber has a low core NA of ~0.1 to reduce the multi-modedness in the fiber at 2 µm 

wavelength, which is achieved in Tm-doped fibers by a raised refractive index pedestal 

layer surrounding the fiber core [40]. The gain fiber has rated peak absorption of 5 dB/m 

at 793 nm and a 4.5 m length is chosen to provide sufficient pump depletion. The mode 

conversion from standard SMF to LMA gain fiber is achieved by a pump-combiner/mode 

adapter with a 10/125 µm fiber at the input and a 25/250 µm passive fiber matched 

geometrically to the Tm-gain fiber at the output. The output of the Tm-gain fiber is 

spliced to a second pump-combiner/mode adapter, which has a dual-clad output fiber 

with 10/125 µm core/cladding diameters allowing for convenient coupling to the ZBLAN 

fiber. In addition, the output combiner combines two fiber-coupled 35 W, 790 nm pump 

lasers with 105 µm core diameter, 0.22 NA fiber pigtails in to the gain fiber to form a 

backward pumped amplifier configuration. The gain fiber is heat sunk by coiling it 

around a copper mandrel with grooves matched to fit the gain fiber. 
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In another implementation of the TDFA, a small-core gain fiber with core/cladding 

dimensions of 10/130 µm is used. The small-core set-up provides direct splicing of the 

standard SMF output to the TDFA input. A single combiner on the output side couples 

pump light in to the gain fiber in the backward propagating direction. 

2.4.2. 35 W, 790 nm pump diode set-up  

The 35 W pump diodes used in the set-up demonstrate a FWHM of ~1.2 nm with center 

wavelengths of ~791 nm and typical threshold currents of 8 A. The electro-optical 

efficiency of the lasers is specified to be ~41% with 35 W output at ~49 A current. The 

pump diode is mounted on a thermo-electric (TE) cold plate to temperature tune the 

pump wavelength. A thermistor mounted on the cold-plate provides feedback to the 

electronic circuit driving the current in the cold-plate to maintain the diode temperature 

stable during operation. The current through the two pump lasers is modulated by a 

square wave with 50% duty cycle at ~250 Hz to reduce the thermal load in the system 

and allows for modulation of the SC output without the need for external chopping 

equipment. The modulation is achieved by connecting the two pumps in series with a 

MOSFET switch driven by a signal generator. A bank of resistors is also included in the 

circuit to provide current limiting along with other safety measures to prevent damage to 

the pumps due to parasitic currents. For driving the pump diodes with continuous wave 

(CW) current, the signal generator is replaced by a 9 V battery to keep the MOSFET 

switch turned on. 

One of the challenges in the operation of the 35 W pump diodes is the large current 

required to drive them. As mentioned, the diodes require ~49 A current to generate 35 W 

of output power. In addition, the diodes need to be modulated with 50% duty cycle to 

allow for supercontinuum modulation. A schematic of the drive circuit used to modulate 

the pump diode is shown in Fig. 2.5. The circuit uses a 60 A heavy duty constant voltage 

power supply made by TENMA in series with a MOSFET switch, driven by a signal 

generator. The generator outputs a 250 Hz square wave signal with 50% duty cycle, with 

a voltage swing from -0.5 V to ~11 V. During the low voltage phase of the input signal, 

the MOSFET switch is turned off disconnecting the power supply from the diode circuit. 

Conversely, when 10.5 V is applied to the gate terminal of the MOSFET, the circuit is 
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complete causing current to flow through the diodes. The diodes themselves are 

connected in series to eliminate the need for separate power supplies for the two diodes. 

A bank of resistors is also included in the circuit to provide current limiting. Across the 

two diodes, Schottky diodes are connected in reverse polarity as shown in the schematic 

to prevent accidentally reverse biasing the pump lasers. A Zener diode is also connected 

across the diodes to prevent the signal generator voltage applied at the gate of the 

MOSFET to accidentally appear across the pump diodes. A voltage sensing circuit is also 

included in the set-up, which grounds the gate of the MOSFET, in the event a high 

current spike causes the instantaneous current in the circuit exceeds 55 A, which is the 

maximum rated current for the two pumps. For driving the pump diodes with CW 

current, the signal generator is replaced by a 9 V battery to keep the MOSFET switch 

continuously turned on while the power supply provides current to the pump lasers. The 

capacitors across the power supply prevent fluctuations in the voltage due to the power 

supply during starting up and shut down. 

 

Fig. 2.5 Circuit for driving 35 W diodes with modulation of pump diode current 

The voltage waveform across the bank of resistors is measured to determine the 

approximate peak current in the circuit. Fig. 2.6(a) shows the voltage drop across the 

resistors and the MOSFET switch in comparison to the signal generator waveform 

driving the gate of the MOSFET switch. As can be seen, when the signal generator 

outputs -0.5 V, the switch is off, causing all of the power supply voltage to drop across 

the switch. However, when the switch is on, a voltage proportional to the resistance value 
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of the resistor banks (75 mΩ) in the circuit is observed on the scope. Fig. 2.6(b) shows 

the current waveform through the resistors, obtained by dividing the voltage across the 

resistors by their resistance value. The figure shows no presence of spikes in the current 

waveform due to parasitics in the circuit. 

     

           (a)               (b) 

Fig. 2.6 (a) Voltage waveform from signal generator applied to the gate of the MOSFET switch and the 

corresponding voltage drop across the 75 mΩ resistor and the MOSFET switch, (b) Current waveform 

through the 75 mΩ resistor bank showing lack of high amplitude current spikes 

2.4.3. ZBLAN fiber properties 

ZBLAN fibers are made of multi-composite glass composed of several heavy metal 

fluorides, specifically ZrF4-BaF2-LaF3-AlF3-NaF. They form a suitable nonlinear medium 

for mid-IR supercontinuum generation due to their relatively low loss compared to fused 

silica in the 2-4 µm wavelength region. The approximate loss curve of the fiber in 

comparison to fused silica, as provided by the manufacturer is shown in Fig. 2.7(a). As 

can be seen, the fiber has low loss of ~100 dB/km at 3.8 µm, beyond which the loss 

increases exponentially with wavelength due to the multi-phonon absorption edge of 

ZBLAN glass. In general, it is difficult to fabricate ZBLAN fibers with low loss because 

chemical vapor deposition techniques, which are popular for fabrication of fused silica 

glass cannot be applied to them due to lack of gaseous raw materials and the high quality 

of raw materials required during processing [24].  

Nonlinear properties of ZBLAN are suited to supercontinuum generation processes. 

The nonlinear refractive index of ZBLAN is ~0.85 times that of fused silica [24], whereas 

the Raman gain coefficient is ~2.2x that of fused silica [25]. The Raman shift spectra of 
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ZBLAN glass as compared to fused silica based on results presented in [26], is also 

shown in Fig. 2.7(b), which shows the peak Raman shift to be at 580 cm
-1

 compared to 

~440 cm
-1

 for fused silica. The zero dispersion wavelength of ZBLAN glass is close to 

1.65 µm with longer wavelengths experiencing anomalous dispersion. All these 

properties suit efficient longer wavelength generation as the dominant nonlinear process 

occurring in the fiber when pumped at 2 µm is asymmetric stimulated Raman shifting 

towards longer wavelengths as compared to SPM-based symmetric broadening.  

The fibers used in my experiments have a core radius of 8 µm and a cladding 

diameter of 123 µm. The fiber has a large numerical aperture of ~0.27, custom requested 

to reduce bend-induced loss at longer wavelengths [12].  

           

                       (a)                                                                                      (b) 

Fig. 2.7 (a) ZBLAN fiber loss compared to fused silica (Source: KDD-FiberLabs) (b) ZBLAN Raman shift 

spectrum compared to fused silica 

The output from the combiner used for coupling pump light into the gain fiber cannot 

be directly spliced to ZBLAN fibers due to the low melting temperature of ZBLAN glass 

(340°C) which is ~5 times lower than fused silica glass [27]. As a result, light output 

from the amplifier is butt-coupled to the ZBLAN fibers using a nanomax stage. The 

procedure involves angle cleaving the ends of the two fibers and keeping them in close 

proximity of each other while maintaining alignment between the two cores. 

Experimentally determined coupling losses are found to be in the range of 50-55% 

depending on the quality of cleaves and the proximity of the two fibers. The coupling 

efficiency is lower than that obtained in Er:Yb system (~60%) due to the larger mode 

area of 2 µm light in fused silica single mode fiber, compared to 1.55 µm. For example, 
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the calculated mode area in single mode fiber is ~10.4 µm at 1.55 µm and ~11.5 µm at 2 

µm wavelength. 

  The complete system used for mid-IR supercontinuum generation is shown in Fig. 

2.8.  

 

Fig. 2.7 Experimental set-up consisting of two SC stages separated by a Tm-doped power-amp stage 

2.5. Experimental results 

2.5.1. Two-stage LMA-TDFA based Mid-IR SC laser spectrum 

The output spectrum of ~8.5 m length ZBLAN fiber mechanically spliced to the LMA-

TDFA is shown in Fig. 2.9. The spectrum extends from ~1.9 to 4.5 µm with ~2.6 W total 

average power, of which ~0.7 W lies in wavelengths beyond 3.8 µm. The TDFA is 

pumped with ~30 W of 790 nm pump power with 50% modulation and outputs ~8 W of 

average power around 2 µm. The input to the TDFA comprises of output from ~25 m 

length standard SMF with ~2.5 kW peak power 1.55 µm laser diode input pulses of ~1-ns 

duration at 500 kHz repetition rate. The mechanical splice loss is observed to be ~45% 

corresponding to a coupled pump power of ~4.4 W. The residual power in the 1.8-2.1 µm 

wavelengths at the output of the ZBLAN fiber is ~0.13 W and is calculated from the area 

under the curve in the calibrated spectrum in these wavelengths, indicating ~97% SC 

pump depletion. With the modulation of the TDFA pumps with a 50% duty cycle square 

wave at 250 Hz, the SC output is also modulated. Hence an observed SC output power of 

2.6 W corresponds to ~5.2 W SC output during the ON phase of the 250 Hz modulation 

signal. Similarly, the ~0.7 W average power measured in wavelengths beyond 3.8 µm 

indicates ~1.4 W power output from the laser in these wavelengths for 50% of the time.  
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The generated SC is continuous and with a spectral power density >0 dBm/nm (1 

mW/nm) between ~3.6-4.3 µm. The intensity of the measured spectrum is calibrated in 

dBm/nm as follows. First, the measured SC spectrum is corrected for the spectral 

responsivity of the HgCdTe detector and the monochromator grating response. The 

spectral power density is then calculated by using the SC output power in the 3.5-3.8 µm 

wavelength region measured by the thermal power meter and appropriate wavelength 

filters. The SC laser generates ~0.9 W beyond 3.5 µm. The dip in the spectrum at ~4.25 

µm is attributed to the CO2 absorption in the atmosphere while traversing ~0.75 m path 

length inside the monochromator.  

  

Fig. 2.8. SC spectrum generated from ~8.5 m length of ZBLAN fiber at ~61 W of 790 nm pump power in 

the LMA Tm-amplifier with ~5.2 W of total output with 50% modulation 

Figure 2.10 shows the power scaling of the TDFA-based mid-IR SC laser as a 

function of the pulse repetition rate and the 790 nm pump power. By varying the pulse 

repetition rate electronically, the demonstrated Tm-system shows versatility in its ability 

to adjust the output power with similar spectral extent. Figure 2.10(a) shows the linear 

scaling of the average power at the output of 8.5 m length ZBLAN fiber over 125-500 

kHz pulse repetition rates, while Fig. 2.10(b) shows the corresponding output spectrum. 

The spectrum out of the ZBLAN fiber has similar spectral extent and shape, however, the 

average power content scales linearly with the pulse repetition rate. The preservation of 

the spectral shape with increasing repetition rate shows that the doubling of the output 

average power with doubling of the pulse repetition rate is achieved by increasing the 
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frequency of occurrence of the pulses while maintaining similar pulse peak powers. 

Figure 3 also shows that the amount of 790 nm pump power required to double the output 

average power with pulse repetition rate does not scale linearly. For example, at 125 kHz, 

the SC laser outputs ~0.4 W average power at 12 W of modulated pump power. 

However, to double the output average power to ~0.8 W at 250 kHz, only ~3 W of 

additional modulated pump power is required suggesting ~13% slope efficiency with 

system repetition rate. The increase in efficiency with repetition rate is attributed to the 

threshold of the TDFA (~6 W) and the increase in amplifier efficiency at higher pulse 

duty cycles due to lower losses to spontaneous emission. 

 
(a)                                                                           (b) 

Fig. 2.10. Output from 8.5 m length of ZBLAN showing power scaling with repetition rate and 790 nm 

pump power: (a) Output time-average power, (b) Output spectrum 

Figure 2.11 compares the SC spectrum generated by ~8.5 m ZBLAN fiber pumped by 

a TDFA power amp to the best EYFA power amp results observed to date from ~12 m 

length of ZBLAN fiber with identical properties [13]. The observed long wavelength SC 

edge from the TDFA-based mid-IR source extends ~270 nm beyond the EYFA system 

output. The extension in the long wavelength edge is attributed to shifting of the SC 

pump from 1.55 to ~2 µm in the TDFA-system. Figure 4 also shows that the EYFA-SC 

extends in either direction around the ~1.55 µm SC pump. In comparison, the TDFA-SC 

extends only towards the longer wavelengths with respect to the SC pump at ~2 µm. The 

difference in the nature of the spectral broadening between the two systems is attributed 

to the dispersion properties of ZBLAN material, which has a ZDW around 1.65 µm [34]. 

As a result, pumping the ZBLAN fiber at ~2 µm compared to 1.55 µm, amounts to 

shifting the SC pump in to the anomalous dispersion regime, where spectral broadening is 
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observed to occur largely through stimulated Raman processes without much contribution 

from SPM as observed in EYFA systems.   

     
Fig. 2.11. Mid-IR SC spectrum from 8.5 m ZBLAN in TDFA power amp system compared to 12 m 

ZBLAN in EYFA-based system [13] 

The evolution of the long wavelength edge of the 8.5 m ZBLAN fiber output as a 

function of modulated TDFA pump power at 500 kHz pulse repetition rate is shown in 

Fig. 2.12(a). At a fixed repetition rate, higher TDFA pump power corresponds to higher 

peak output powers and, hence, longer extending SC spectrum. Figure 2.12(b) plots the -

20 dB SC wavelength edge of the measured spectra versus the modulated TDFA pump 

powers with saturation in the wavelength edge beyond ~4.5 µm. The long wavelength 

edge of the SC is limited by the absorption edge of the ZBLAN fiber. For example, at 4.5 

µm, the absorption loss in the fiber is expected to be ~1 dB/m suggesting that any 

generated components at longer wavelengths in the ~8.5 m length of ZBLAN undergo 

rapid attenuation, preventing further spectral extension.    
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(a)                                                        (b) 

Fig. 2.12. Evolution of the long wavelength SC edge in 8.5 m ZBLAN fiber length as a 

function of TDFA pump power measured at 500 kHz pulse repetition rate 

2.5.2. LMA-TDFA based SC Laser efficiency 

The thermal power meter measurements for the TDFA output, 8.5 m ZBLAN SC output 

and spectral content beyond 3.8 µm at the output of the ZBLAN fiber are plotted against 

the corresponding modulated TDFA pump power in Fig. 2.13. The LMA-TDFA operated 

in backward pumped configuration shows an overall efficiency of ~27% with ~8 W 

output power at ~30 W of 790 nm pump power. Observed SC output power of ~2.6 W 

corresponds to an overall mid-IR output efficiency of ~9% with respect to the 790 nm 

pump. ~0.7 W of the ZBLAN output lies in wavelengths beyond 3.8 µm leading to an 

observed efficiency of ~2.35% in generating wavelengths >3.8 µm with respect to the 

TDFA pump power.    
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Fig. 2.13. Power meter measurement of TDFA output, 8.5 m ZBLAN SC output and output average power 

beyond 3.8 µm versus TDFA pump power 

Table 2.1 summarizes the efficiency of various components of the TDFA-based 

MISCL. The Er:Yb mid-stage amplifier in the set-up outputs ~1.25 W of average power 

around 1.55 µm. The first SC section comprising of ~25 m standard SMF spliced to the 

mid-amp, outputs ~1 W total power, of which ~0.59 W lies in wavelengths beyond 1.8 

µm, where TDFA gain occurs. The efficiency of the TDFA stage is maximized by 

optimizing the splices between the LMA gain fiber and the pump-combiner fibers and 

heat-sinking the Tm-gain fiber. Also, active cooling of the 35 W pump diodes allows 

pumping the amplifier close to 793 nm, where the maximum rated pump absorption in 

the gain fiber occurs. The length of the fiber between the TDFA output combiner and the 

ZBLAN fiber is kept at a minimum practically permissible length of ~0.5 m to reduce 

nonlinear losses in its ~10 µm diameter core. Approximately 55% coupling efficiency is 

observed at the mechanical splice from the TDFA output to the ZBLAN fiber due to the 

mode-mismatch between the ~10 µm core diameter combiner output fiber and the high-

NA ZBLAN fiber with ~8 µm core diameter.  
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Table 2.1. Efficiency of various components of the TDFA-pumped ZBLAN SC Mid-IR 

laser 

The length of ZBLAN fiber used in the mid-IR SC generation is optimized for 

efficient generation of wavelengths beyond 3.8 µm. Three different lengths of ZBLAN 

fiber, 5.5 m, 8.5 m and 13 m, were used in the set-up. The power generated in 

wavelengths beyond 3.8 µm was measured as a function of the TDFA average output 

power at a fixed repetition rate of 500 kHz and the observed results are plotted in Fig. 

2.14. It is observed that for the ~13 m length of ZBLAN fiber, the long wavelength 

power generation saturates at higher TDFA output powers, compared to the result from 

~8.5 m length. On the other hand, the ~5.5 m length does not generate as much long 

wavelength power for the same amount of TDFA output power indicating lower long 

wavelength efficiency. Based on the result, we observe ~8.5 m length to be optimal for 

higher efficiency long wavelength generation. For longer lengths of ZBLAN, the longer 

wavelength components undergo additional attenuation in the excess length of ZBLAN 

fiber. In comparison, the 5.5 m length is found to be short of optimal length and would 

require higher peak power output from the TDFA to generate power in longer 

wavelengths more efficiently.  
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Fig. 2.14. Experimental optimization of power generation beyond 3.8 µm for various lengths of ZBLAN 

fibers  

2.5.3. First stage optimization 

The output from ~25 m length of standard SMF for various peak power settings of the 

1.55 µm input pulse is shown in Fig. 2.15(a). Light generation in the TDFA gain band 

extending from ~1.75-2.1 µm is observed at input powers as low as ~1 kW with longer 

extending spectrum at higher peak powers. At ~2.5 kW peak power, a flat continuum 

extending from ~1.5-2.25 µm covering the entire TDFA gain band is obtained from ~25 

m length standard SMF. Figure 2.15(b) shows the effect of the first stage input peak 

power on the spectrum output of ~12 m length of ZBLAN fiber for a fixed CW TDFA 

pump power of ~8 W. At low TDFA pump powers, the spectral extent of the ZBLAN 

output is found to be heavily dependent on the peak power used for 2 µm light 

generation. For example, the 1.5 kW peak power case used for 2 µm light generation 

yields the longest extending ZBLAN output spectra compared to the 2.5 kW case. 

However, the ASE peak from the TDFA in the ZBLAN output is ~8 times higher in the 

1.5 kW case compared to 2.5 kW due to insufficient strength of the input signal in the 

TDFA gain band. Hence, even though the SC extends to beyond 4 µm at lower first stage 

peak powers, the efficiency of SC generation is poor in the 1-1.5 kW peak power cases.  

Figure 2.15(c) shows the relative power in wavelengths >2.5 µm plotted against the 

peak power used at the input of the standard SMF. The result shows that higher spectral 

shifting efficiency is achieved at 2.5 kW peak power compared to lower peak powers 

with saturation observed beyond 2 kW. Above 2.5 kW, the standard SMF generates 
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additional components beyond 2.1 µm, which are not efficiently amplified in the TDFA. 

By pumping the TDFA with higher pump power, spectrum extending to 4.5 µm with 

~97% pump depletion is obtained, as shown in Fig. 2.9 for first stage peak powers of 

~2.5 kW to provide higher efficiency long wavelength generation. However, the 

demonstrated result shows the flexibility in extent of spectral generation in the two-step 

SC scheme based on the availability of pump power in the system and the application 

requirement. 

 

(a) 

 

                                                          (b)                                                                           (c) 

Fig. 2.15. Stage 1 peak power optimization (a) Output spectrum from ~25 m standard SMF for various peak 

input powers of 1.55 µm pulses, (b) 12 m ZBLAN output at ~8 W CW TDFA pump power for various 1.55 

µm peak powers used in 2 µm light generation (c) Relative average power generated beyond 2.5 µm at 

output of ~12 m ZBLAN as a function of the stage 1 peak power for fixed TDFA pump power 

Figure 2.16 shows the effect of the length of standard SMF used in the first stage on 

output spectrum from the ZBLAN fiber. Three lengths of standard SMF are used - 10m, 

25m and 50m, and in each case, the 1.55 µm peak power is adjusted so that the same 
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average power (~0.6 W) is generated beyond 1.8 µm at the output of the fiber, measured 

using a power meter placed after a Ge long-pass filter. The standard SMF output is 

spliced to the LMA-TDFA and the output spectrum from ~8.5 m length of ZBLAN at 

~20 W of pump power is measured in each case. Figure 9 shows that the SMF length 

used in the 2 µm light generation does not influence the extent of ZBLAN output as long 

as similar average powers are generated in the TDFA gain band at the output of the 

standard SMF. The observed result can be explained by the fact that since the standard 

SMF with ZDW ~1.3 µm, is pumped at 1.55 µm in the anomalous dispersion regime, 

soliton propagation is supported in the fiber from the balance of pulse broadening and 

compression through dispersion and fiber nonlinearities. Therefore, the soliton pulses at 

the output of 50 m length of standard SMF do not undergo much broadening compared to 

higher peak power pulses used in the generation of similar spectra from only 10 m length. 

Also, the dispersion length of the fiber is several kilometers for nanosecond long pulses 

in standard SMF and hence dispersive effects are not expected to be dominant. Hence the 

choice of SMF length can be made on the basis of ease of peak power generation from 

the Er:Yb mid-amp, with shorter fiber lengths requiring higher peak power pulses. Also, 

the low cost of standard SMF does not provide any incentive to using shorter fiber 

lengths and 25 m standard SMF length is chosen as optimal. The results indicate that in 

applications where remote delivery of the 2 µm light is required, the length of standard 

SMF can be chosen depending on the set-up requirements, without appreciable 

degradation in the performance of the mid-IR SC laser providing additional flexibility for 

practical applications.  

 
Fig. 2.16. ~8.5 m ZBLAN output at ~20 W TDFA pump power for various standard SMF lengths in the 

first stage 
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2.5.4. Small-core TDFA based mid-IR SC spectrum 

The mid-IR SC spectrum from the small-core TDFA based set-up is shown in Fig. 2.17. 

The small-core TDFA (10/130 µm core/cladding diameter) is pumped with a maximum 

CW pump power of ~8 W with optimal settings in the first stage and a pulse repetition 

rate of 50 kHz. The TDFA output is mechanically spliced to ~12 m length of ZBLAN 

fiber. A spectrum extending from ~1.9-4.3 µm is obtained with ~300 mW average output 

power, of which ~85 mW lies in wavelengths beyond 3.8 µm. The peak in the observed 

spectrum at ~2 μm corresponds to the ASE generated in the amplifier and any un-

depleted SC pump. The wiggles in the spectrum around 2.7 μm correspond to water 

vapor absorption and those at ~4.25 μm are due to CO2 absorption in the air during 

propagation in the monochromator.     

 

Fig. 2.17. Output spectrum from ~12 m length of ZBLAN fiber with spectrum extending from 1.9-4.5 μm 

Compared to the LMA system, the small-core TDFA system shows less overall 

efficiency. For example, the efficiency in the generation of wavelengths beyond 3.8 µm 

with respect to the TDFA pump power is ~1.1% in the small-core system compared to 

~2.35% observed in the LMA system. One of the main factors contributing to the lower 

efficiency of the small-core system is the higher nonlinearity in the amplifier. In the case 

of the above result, we observe ~15% pump-to-signal conversion efficiency in the small-

core amplifier with respect to the coupled pump power. The higher nonlinearity in the 

small-core gain fiber leads to shifting of ~2 µm amplified pulses to longer wavelengths 

within the amplifier, which reduces the length of the gain fiber for which the input signal 
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lies spectrally in the amplifier gain band. Lower nonlinearity in the amplifier is also 

preferred to achieve efficient coupling to the ZBLAN fiber. For example, at 2.4 µm 

wavelength, the mode field diameter in the 10 µm core amplifier fiber is expected to 

increase to ~14 µm, which increases the free-space coupling loss to the 8 µm core 

ZBLAN fiber due to larger mode-area mismatch. The small-core TDFA system is also 

observed to be limited in its average power scaling capability with damage consistently 

observed at the combiner fiber and gain fiber splice at CW pump powers >26 W at 400 

kHz pulse repetition rate. The set-up however, can be used for low power applications 

with passively cooled 790 nm pump lasers and a single small-core combiner for coupling 

in the pumps to provide for a simpler system design. 

2.5.5. LMA-TDFA system characterization 

The loss in the passive components of the system is characterized as shown in Fig. 2.18. 

As can be seen, an attenuated supercontinuum is coupled in to the input combiner fiber 

and the output after the two pump combiners, two gain fiber to combiner fiber splices and 

~4.5 m length of 25/250 µm Tm-doped fiber is measured. By dividing the output 

spectrum with the input, the wavelength dependent system loss is measured and shown in 

the figure. The input spectrum is attenuated by ~15 dB to prevent any nonlinear effects in 

the amplifier. Two different splice times used in the splicing are shown in Fig. 2.18. The 

measured loss is a combination of the absorption in the gain fiber, combiner loss and 

splice loss. Loss due to absorption in fused silica fiber is accounted for by measuring the 

loss in a similar length of standard SMF as is used in the set-up. The results indicate a 

minimum loss of ~2 dB measured in the wavelength range from 2050- 2150 nm. At 

wavelengths below 2050 nm, the loss increases due to absorption in the Tm gain fiber. 

The two combiners used in the set-up have a rated insertion loss of 0.9 dB. Assuming 

identical splice losses in the combiner to gain fiber splices, the average splice loss is 

estimated to be ~0.55 dB each. 
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Fig. 2.18 Set-up and results of characterization of system loss for the assembled Gen-II Tm-amplifier 

Further attempts to optimize the gain fiber to combiner splice were also made. The 

splicing process uses an Ericson FSU995FA model splicer, which has three fusion cycles 

during splicing. For the splicing of the large mode area fiber, only two fusion cycles are 

used. The first fusion cycle is fixed at a current of 13 mA and fusion time of 0.7 s. The 

fusion current and time of the second fusion cycle is varied and the performance of the 

amplifier is measured at 10 W of pump power. The results are shown in Fig. 2.19 below. 

In general, the splice performance for a number of different values of the fusion current 

and times is found to be similar as seen in the case for Fig. 2.18(b). However, at fusion 

current of 18 mA and fusion time of 3 s, consistently better performance is observed. 

 

Fig. 2.19 Splice optimization from gain fiber to combiner by varying the splicing current and time and 

subsequently measuring the output of the amplifier at 10 W pump input 

The amplifier performance is characterized at 1 MHz pulse repetition rate. The 

measured large mode area Tm-amplifier gain profile is shown in Fig. 2.20(a). The 

procedure used for gain profile measurement involves dividing the output spectrum for 
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various pump powers with the input spectrum. Fig. 2.20(b) shows the measured output 

power from the amplifier versus the input pump power. The result suggests a maximum 

slope efficiency of 38% from the amplifier.  

 

   (a)     (b) 

Fig. 2.20 (a) Measured amplifier gain profile for supercontinuum input, (b) Amplifier performance for 1 

MHz input repetition rate indicating maximum slope efficiency of 38.1% 

The maximum observed slope efficiency for the large mode area amplifier is ~38.1% 

are shown in the figure above, which falls short of the observed performance measured 

by the fiber manufacturer Nufern. Up to 54% slope efficiency has been observed for 

similar fibers [40]. The observed gap is accounted for by the loss in the gain fiber to 

combiner splice, the output combiner, and the ~0.5 m length of combiner fiber at the 

output. The various losses and the projected efficiency are summarized in Table 2.3 

below. As can be seen, up to 57% slope efficiency can be expected from the amplifier by 

eliminating losses in the gain fiber to combiner splice and the output combiner and 

nonlinearity in the ~0.5 m lengths of combiner fiber lead. 

Component Loss Projected slope 

Gain fiber to combiner splice 

Output combiner 

Spectrum shifting to 2.4 µm 

12% 

11.5% 

10% 

43.8% 

50.4% 

57% 

Table 2.2 Gap between the measured slope efficiency and results presented by fiber manufacturer Nufern 

As mentioned previously, to reduce the thermal load in the system and allow for 

practical applications, the supercontinuum output is modulated at 50% duty cycle with a 
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250 Hz square wave voltage. The modulation is implemented by switching the 35 W 

pump diodes on and off, causing the output of the amplifier to be modulated at 50% duty 

cycle. To confirm the modulation, the amplifier output is measured in the presence and 

absence of modulation as shown in Fig. 2.21. As can be seen, the output measured with 

modulation is slightly lower than half the output without modulation. This can be 

expected since modulation circuit does not turn on instantaneously with the positive 

voltage swing of the gate signal. Also, the amplifier takes finite time determined by the 

~0.5 ms lifetime of the ions in the upper state before stimulated emission occurs [18]. 

These factors contribute to a duty cycle of ~45% at the output of the amplifier even 

though the electrical signal input is at 50% duty cycle. Such effects can be avoided by 

designing the electrical signal to have a duty cycle slightly larger than 50% so as to 

account for the lag in the turning on of the pump diodes and the amplifier output.  

 

Fig. 2.21 Tm-amplifier output with and without modulation versus peak pump current 

The output of the ZBLAN fiber in band IV wavelengths is also tested with and 

without modulation. With the pulse repetition rate set to 200 kHz, the output of 13 m 

length of ZBLAN is measured and shown in Fig. 2.22. As expected, the output with 

modulation is slightly less than 50% of the output without modulation. The result 

suggests that the output of the Tm-amplifier, ZBLAN and the band IV power scales 

similarly with modulation.  
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Fig. 2.22 Band IV power at the output of 13 m length of ZBLAN with and without modulation 

2.6. Simulations 

2.6.1. Simulator modeling 

Simulations are performed to understand the optical processes associated with the 

two-stage TDFA-based SC system. In the fiber, the complex envelope A(z,t) of a pulse, 

under the slowly varying approximation satisfies the generalized nonlinear Schrödinger 

equation (GNLSE) given by [37], 
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where the pulse moves along z in the retarded time frame τ = t – (z/νg) with the central 

angular frequency of ω0. The linear terms in the differential operator D


 account for the 

second (β2), third (β3) and the fourth order (β4) dispersion as well as the loss (α) of the 

fiber. The terms in the operator N


 result from nonlinear interactions, which describe 

self-phase modulation, self-steepening and stimulated Raman scattering effects. In 

particular, the effective nonlinearity is defined as γ = n2ω0/cAeff, where n2 and Aeff are the 
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nonlinear refractive index and effective mode area of the fiber respectively. In addition, 

hR(t) represents the Raman response function, and fR is the fractional contribution of the 

Raman response to the nonlinear polarization. 

The GNLSE described above is solved by a modified adaptive split-step Fourier 

method with the initial pulse shape as the known boundary value [31, 32]. The step size is 

determined and dynamically adjusted by the nonlinear gain in each section. Quasi-CW 

flat-top pulses with 80 ps FWHM are used as input in the simulator. A temporal window 

of 100 ps and spectral window of 333.33 THz is chosen to cover the entire SC spectrum 

corresponding to 2
16

 sampling points. The actual Raman shift spectrum of fused silica 

and ZBLAN fibers [26] is used in the simulations. The peak Raman gain coefficient (gR) 

of fused silica fiber is set to 6.4x10
-14

 m/W at the center wavelength of 1553 nm [32] and 

that of ZBLAN fiber is set to ~2.2 times that of fused silica [25]. The dispersion 

parameters of the standard SMF are approximated based on the fiber datasheet and that of 

the ZBLAN fiber from the measured material dispersion [34]. For standard SMF, an 

effective nonlinear parameter of γ = 1.6 W
-1

km
-1

 is used at 1553 nm [32]. Since the n2 of 

ZBLAN is ~0.85 times that of fused silica [24], an effective nonlinear parameter of 1.36 

W
-1

km
-1

 is used for the ZBLAN fiber. The loss (α) in the standard SMF (Corning) and 

ZBLAN fiber (KDD FiberLabs) used in the simulations are as per provided by the fiber 

manufacturers. To account for the dispersion of the mode profile in the ZBLAN fiber at 

longer wavelengths, the Raman gain is scaled inversely with wavelength based on a 

linear dependence of the effective area on wavelength. Based on calculations, the 

effective area is expected to increase by ~1.45 times from 1.55 to 4 µm. The bend 

induced loss in the fiber is neglected due to the high NA and ~60 cm coiling diameter of 

the ZBLAN fiber in the experiments.   

For modeling the TDFA, negative loss is assumed at wavelengths where gain is 

observed (1.95-2.13 µm). Experimentally measured TDFA gain profile is used in the 

simulations with peak gain observed at 1980 nm. The dispersion of the gain fiber is 

assumed to be same as that of standard SMF, while the nonlinearity parameters are scaled 

in proportion to the core diameter of the gain-fiber used in the experiments. In addition to 

the above components, the simulator also takes into account the effect of the pump-

combiner output fiber pigtail and the mechanical splice loss observed from the pump-
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combiner output fiber to ZBLAN fiber as observed experimentally. Figure 2.23 shows the 

block diagram of the simulation flow. 

 

Fig. 2.23 System model for simulator depicting various components in the SC laser design 

2.6.2. Simulation results 

To verify the validity of the simulator, experimental results are compared to simulations. 

Figure 2.24 shows the comparison of output spectrum from 25 m length of standard SMF 

with 2.5 kW peak input power at 1553 nm as well as corresponding output from 8.5 m 

length of ZBLAN fiber with ~12 dB of power gain in the TDFA stage as observed in 

experiments. The figures show a single run of the simulation as well as an ensemble 

average of 12 simulation runs in comparison with the experimentally observed results. 

The single run simulation output has several spectral features due to the smaller pulse-

width used in the simulation compared to experiments. Also, due to the averaging of the 

experimental spectral measurements with a lock-in time constant of 300 ms and 500 kHz 

system repetition rate, the measured spectrum shows ensemble average over 150,000 

instances of the 1.55 µm input pulse. The ensemble average of 12 simulation runs shows 

a trend towards reduction in the fluctuations in the spectrum as observed in the 

experimental results. The output of the different simulation runs show variation due to the 

evolution of the spectrum from background noise. The simulation output is also averaged 

over ~2 nm intervals to resemble the monochromator resolution in the experimental 

measurements.   

With ensemble averaging of the spectrum, reasonable agreement in terms of spectral 

extent between experiments and simulations is observed for both the standard SMF and 

ZBLAN output cases. For the case of the fused silica SMF (Fig. 2.24(a)), the simulation 
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output shows longer extension of the output spectrum compared to experimental results, 

which is attributed to the larger mode profile dispersion in standard SMF due to a 

numerical aperture of ~0.13. For the case of ZBLAN output in Fig. 2.24(b), the 

simulations show higher depletion of the SC pump at ~2 µm compared to experimental 

results. This is attributed to the fact that the ZBLAN fiber has a cut-off wavelength of 

~2.75 µm, which suggests some of the coupled 2 µm light in to the ZBLAN fiber may not 

be in the fundamental mode. These components would not contribute to the spectral 

broadening process due to lower field intensity of higher order modes and hence remain 

un-depleted at the output of the ZBLAN fiber. 

 
(a)                 (b) 

Fig. 2.24 (a) Comparison of simulation vs. experimental result at the output of 25 m standard SMF with 2.5 

kW peak input power pulses at 1553 nm, (b) Comparison of simulation vs. experimental result for the 

output of 8.5 m ZBLAN at 12 dB power gain in the TDFA 

In experiments, the efficiency of long wavelength generation is observed to be 

dependent on the ZBLAN fiber length for a given TDFA output power level. Simulations 

are performed to confirm the observed experimental results. For example in Fig. 2.14, 

experimental results shows 8.5 m ZBLAN length to be more efficient in generation of 

wavelengths >3800 nm compared to 5.5 and 13 m ZBLAN lengths. Figure 2.25 shows 

the simulation results obtained for the relative power, i.e. area under the curve, beyond 

3800 nm for 5.5, 8.5 and 13 m ZBLAN fiber lengths as a function of TDFA gain 

corresponding to ~3 W, ~5.2 W and ~7 W of experimentally measured power-amp 
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output. The observed results confirm a similar trend, where 8.5 m length shifts a larger 

fraction of the SC pump to wavelengths beyond 3800 nm.  

  

Fig. 2.25. Simulation results for confirming dependence of efficiency in long wavelength generation on 

ZBLAN length 

Experimental results observed for the dependence on the 1.55 µm pulse peak powers 

on the 12 m ZBLAN output (Fig. 2.15(b)) contradict expectations. For a fixed amount of 

TDFA pump power, one would expect the input spectrum (Fig. 2.15(a)) corresponding to 

2.5 kW peak power 1.55 µm pulses to give rise to the furthest extending spectrum. 

However, the observed results follow a trend that is opposite to this expectation. To 

verify the validity of the observed results, simulations are performed for two of the above 

measured cases. Fig. 2.26 compares the experimental and simulation results for the 1.5 

kW and 2.5 kW, 1.55 µm pulse peak power cases. Simulation results match the observed 

experiments, whereby lower 1.55 µm peak power pulses lead to longer extension of the 

ZBLAN output spectrum. The explanation of this phenomenon is observed in the time-

domain evolution of pulses in the TDFA, shown in Fig. 2.26. It is observed that in the 

time domain, for the case of 2.5 kW 1.55 µm peak power, more number of ~2 µm pulses 

evolve in the TDFA compared to the 1.5 kW case. As a result, the 2.5 kW 1.55 µm pulse 

peak power case generates, at the output of the TDFA, larger number of relatively low 

peak power ~2 µm pulses compared to the 1.5 kW case, which would explain the shorter 

extending spectrum out of the ZBLAN fiber compared to the 1.5 kW peak power case. 

Also, since the duty cycle in the 2.5 kW case is larger due to the presence of a larger 
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number of 2 µm pulses, the ASE generation can be expected to be lower, leading to 

larger pump depletion. 

 

(a) 

 

 (b) 

Fig. 2.26. Simulation results for 1.55 µm peak power dependence on ZBLAN output (a) Spectral domain 

comparison between simulation and experiments for 1.5 kW and corresponding TDFA output time-domain 

pulse profile (b) 2.5 kW peak power cases with ZBLAN spectral output comparison between experiments 

and simulations and corresponding TDFA output pulse profile 

In experiments, the long wavelength edge of the TDFA mid-IR SC spectrum extends 

longer than that from the EYFA-based system. Simulations are performed to compare the 

output from 8.5 m length of ZBLAN fiber in the two systems. For the case of the EYFA 

system, input parameters used in [13], specifically, 20 kW peak power pulse at 1.55 µm 

is input to ~1 m length of standard SMF and the output is propagated through 8.5 m 

length of ZBLAN fiber after accounting for the mechanical splice loss. For the TDFA 

system, the single-run result shown in Fig. 2.24(b) is used. Figure 2.27(a) compares the 

output spectrum in the two cases, generating a spectrum at the output of the TDFA 
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system extending ~330 nm further than the EYFA systems as observed in experiments. 

Figure 2.27(b) shows the corresponding input pulse profile to the ZBLAN fiber in the 

two systems. In the EYFA system case, simulations suggest that the MI-initiated pulse 

break-up process in the 1 m length standard SMF after the Er:Yb amplifier stages gives 

rise to high peak power pulses responsible for long wavelength generation in the ZBLAN 

fiber. In the case of the TDFA system, simulations show that the amplification of 

wavelength shifted components in 25 m length of standard SMF around 2 µm yields a 

pulse profile with higher peak powers, which would explain the longer extending 

spectrum in the same length of ZBLAN fiber compared to the EYFA-based MISCL.      

 

Fig. 2.27. (a) Simulation results comparing output spectrum of 8.5 m length of ZBLAN fiber for EYFA and 

TDFA systems, (b) Pulse profile comparison at the input of the ZBLAN fiber in the two power amp 

systems  

The long wavelength edge of the TDFA-based mid-IR SC is experimentally found to 

be limited to ~4.5 µm as shown in Fig. 2.12. Based on the fiber specifications, the loss is 

the ZBLAN fiber is expected to be ~1 dB/m at 4.5 µm and the long wavelength edge 

seems to be loss-limited by the material absorption and poor confinement of longer 

wavelengths [12]. Simulations are performed to study the dependence of the loss profile 

of the ZBLAN fiber on the long wavelength edge. As shown in Fig. 2.28(a), three 

different loss profiles for the fiber displaced by around 200 nm from the manufacturer 

specifications is used in the simulator and the corresponding output from 10 m length of 

ZBLAN fiber is shown in Fig. 2.28(b). It is observed that the long wavelength edge of the 

SC spectrum shifts in accordance with the loss curve indicating that the SC long 

wavelength edge is limited by the loss in the ZBLAN fiber. For example, when the loss 
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profile is shifted to lower wavelengths by ~200 nm, the long wavelength edge reduces by 

~206 nm. Similarly, shifting the loss curve towards the longer wavelengths causes the SC 

output to shift by ~160 nm. The slightly lower shift in the SC edge compared to a shift in 

the loss is attributed to the mode profile dispersion accounted in the simulations. 

 

Fig. 2.28. (a) Input loss profile for ZBLAN fiber in to the simulator, (b) Corresponding output spectrum 

from 10 m length of ZBLAN fiber. 

2.7. Discussion of results 

The demonstrated TDFA-based mid-IR SC laser using a two-step nonlinear broadening 

set-up has several advantages. Firstly, it allows use of higher efficiency Tm-based 

systems compared to EYFAs. We have observed ~1.35 times higher pump-to-signal 

conversion efficiency in the large mode area TDFA compared to the Er:Yb power 

amplifier used in results demonstrated in [13]. Secondly, by shifting the SC pump to ~2 

µm, longer extending spectrum is obtained compared to Er:Yb power-amp based system. 

Specific to the case of ZBLAN fibers with zero-dispersion wavelength ~1.65 µm, the 

TDFA system pumps the nonlinear medium in the anomalous dispersion regime and 

broadens spectrum more efficiently towards longer wavelengths through Raman 

processes. SC lasers pumped in the normal dispersion regime [9-13], in comparison, 

broaden the spectrum towards either direction with respect to the pump wavelength. By 

further optimizing the experimental parameters, ~2.5 times higher optical efficiency in 

generating wavelengths beyond 3.8 µm is achieved in the thulium-based mid-IR SC laser 

compared to previously demonstrated Er:Yb system [13]. 
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The absolute efficiency of the LMA-TDFA seeded by fused silica SC is currently 

observed to be ~27% with respect to 790 nm pump power. The observed efficiency is 

considerably lower than published numbers for Tm-amplifiers. Particularly, for the 

25/250 µm LMA gain fiber used in our experiments, absolute efficiency of ~53% has 

been demonstrated [40] in a CW lasing cavity configuration with respect to the launched 

pump power. In comparison, for our system, the signal loss in the splice at the gain fiber 

output end and the insertion loss of the output combiner currently amount to ~1 dB. In 

the absence of these losses, the expected TDFA efficiency is ~34.2%. Also, the 

generation of high peak powers leads to spectral broadening to ~2.5 µm in the ~0.5 m 

length of 10 µm core diameter fused silica fiber at the output of the pump-combiner. Due 

to the phonon losses associated with the spectral shifting process, ~11% reduction is 

observed in the power amp efficiency. The remainder of the gap in observed amplifier 

efficiency is attributed to the low duty cycle of the input signal to the amplifier. At 500 

kHz pulse repetition rate with a 1-ns long 1.55 µm pulse, the system duty cycle is set to 

1:2000 with respect to the TDFA pump. However, at the output of 25 m length of 

standard SMF, only a fraction of the 1.55 µm pulse shifts to the TDFA gain band, leading 

to lower 2 µm signal duty cycle. The low input duty cycle results in larger losses to 

spontaneous emission in the amplifier and currently reduces the efficiency of the system.  

An optical efficiency of ~9% is demonstrated for the TDFA-based mid-IR laser in 

converting 790 nm pump light to SC. In comparison, a QCL operating at room-

temperature generating 4.6 µm wavelength light with up to 8.8% wall-plug efficiency has 

been demonstrated [14]. Also, a ZnGeP2-based OPO has been demonstrated with 22 W of 

output power in the 3-5 µm range and requiring 110 W of pump power yielding a 20% 

optical conversion efficiency [15]. Another mid-IR OPO has been demonstrated based on 

a periodically poled MgO-doped congruent LiNbO3 crystal capable of generating 16.7 W 

at 3.84 µm starting from 110 W at 1064 nm (15.2% optical conversion efficiency) [16]. 

Table 2.4 summarizes the results of these mid-IR light generation technologies in 

comparison to the demonstrated TDFA-based SC laser.  

 Our results show mid-IR SC generation with efficiencies approaching that of 

other technologies can be achieved with some improvements. One of the main loss 

component in the current system is the ~45% loss in the mechanical splice from the 
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TDFA output to the ZBLAN fiber. Due to the dissimilar melting temperatures of fused 

silica and ZBLAN materials, fusion splicing of the two fibers is difficult. However, some 

preliminary work has been demonstrated in fused silica to fluoride fiber mechanical 

splices using a shape memory connector with losses as low as 0.8 dB at 1550 nm [41]. 

Incorporation of such a splice would increase the efficiency of the system by ~1.3 times. 

The splice loss from the LMA-gain fiber to the combiner fiber is currently estimated to 

be ~0.6 dB, which can be reduced by better control and uniformity of the fusion 

temperature, which could not be achieved by our two-electrode arc-based splicer. The 

insertion loss of the combiner is observed to be ~0.4 dB and agrees with specifications 

provided by the manufacturer. Another approach to increasing the efficiency of the SC 

laser is by increasing the repetition rate of the 1.55 µm pulses. By increasing the duty 

cycle of the input pulses, higher amplifier efficiency can be achieved by reducing losses 

to spontaneous emission in the gain fiber. However, operation at higher repetition rates 

would also require more pump power and better thermal management to prevent damage 

to components due to increase in the average power levels in the system.  

 

Table 2.3. Comparison of TDFA-based mid-IR SC laser efficiency with other mid-IR lasers 

Compared to the EYFA-system, the Tm-based system generates a spectrum extending 

~270 nm towards the longer wavelengths. Based on the simulation results shown in Fig. 

2.27, we attribute the longer spectral edge to higher peak power pulses at the output of 

the TDFA compared to MI-initiated pulse break-up in 1 m length of standard SMF 

following a Er:Yb power amplifier. The long wavelength edge of the SC spectrum 

obtained from the TDFA-based MISCL is limited to ~4.5 µm as observed in Fig. 2.12. 
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Due to pumping of the ZBLAN fiber in the anomalous dispersion regime, spectral 

broadening is dominantly Raman-induced soliton self-frequency shifting as evidenced by 

the asymmetry of the spectrum around the 2 µm SC pump (Fig. 2.9). Based on the 

theoretical model proposed in [12] for MI-initiated Raman-based SC generation 

processes in step-index ZBLAN fibers, the edge of the SC is limited by the absorption 

loss in the fiber and the bend-induced loss. By using a fiber with a high numerical 

aperture of ~0.27 and coiling the fiber around a ~60 cm diameter cylinder, the effect of 

bend-induced loss is eliminated based on the calculations presented in [12], where 

negligible bend-induced loss is calculated for a ZBLAN fiber with comparable geometry. 

Using simulations we studied the effect of the absorption edge of the ZBLAN fiber on the 

SC edge. By shifting the loss edge, we observe a similar trend in the edge of the 

generated SC showing that the long wavelength edge of the SC is largely dominated by 

the material loss in the fiber.        

 One approach for longer wavelength generation using the TDFA-based high peak 

power source entails use of higher nonlinearity fibers. A tellurite PCF with ~10x the 

Raman gain coefficient compared to ZBLAN [25] and only 1.7 µm
2
 mode-field area has 

been demonstrated as a candidate for spectral generation up to ~4.8 µm with ~17 kW 

peak power 1.55 µm pulses coupled in to ~0.8 cm length of fiber with ~50% efficiency 

[10]. The results in Fig. 2.11 indicate that the TDFA-based 2 µm source should generate 

spectrum extending beyond 4.5 µm in suitable tellurite PCFs since we have shown 

further extending spectrum compared to EYFA-system with ~20 kW peak power 

generation capabilities. However, to the best of our knowledge, maximum average power 

handling of only ~1.12 W in a 18 µm solid core tellurite fiber has been demonstrated to 

date [39]. 

2.8. Summary 

I have demonstrated an all-fiber integrated, power scalable mid-IR SC laser based on a 

thulium-doped power amplifier stage. The laser generates a continuous spectrum 

extending from ~1.9-4.5 µm in ~8.5 m length of high NA ZBLAN fiber with a 

core/cladding diameter of ~8/125 µm. Time-average power output of up to ~2.6 W with 

~50% modulation is measured with ~0.7 W power in wavelengths beyond 3.8 µm. 
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An overall efficiency of ~9% is achieved in conversion of the 790 nm TDFA pump 

power to the SC output by optimizing the power-amp stage and the length of the ZBLAN 

fiber in the set-up. Compared to previously demonstrated Er:Yb based systems, ~2.5 

times higher efficiency is observed in the conversion of power-amp pump to wavelengths 

>3.8 µm due to higher power-amp stage efficiency and shifting of SC pump to the mid-

IR. Approximately 270 nm further extending spectrum in the mid-IR is also obtained by 

generating higher peak power pulses at the output of the TDFA as shown by the 

simulation results. 

 The novelty of our approach lies in the two-step SC generation. 2.5 kW peak 

power laser diode pulses at 1.55 µm are first shifted to beyond 2 µm in ~25 m length of 

low near-IR loss standard SMF, based on modulation instability-initiated SC generation 

process. The first stage SC is followed by a thulium-based large mode area fiber 

amplifier, which provides gain for the ~2 µm wavelength components. Coupling the 

TDFA output to low mid-IR loss ZBLAN fiber gives rise to a second SC generating stage 

extending up to ~4.5 µm wavelength. Dependence of the parameters used in the 

generation of the first stage SC on the ZBLAN output were studied and optimized for 

increased long wavelength generation efficiency of the laser. Scaling of the SC average 

output power was also demonstrated, whereby similar spectral extent at increasing 

average powers is achieved by proportionately increasing the pulse repetition rate. 

Numerical simulations were also presented to verify the observed results, which indicate 

the long wavelength edge of the SC to be limited by the high absorption in the ZBLAN 

fiber beyond 4.5 µm.  

 The demonstrated fused silica SC-seeded TDFA system provides an alternative to 

mode-locked lasers at 2 µm for mid-IR light generation, while using all commercial off-

the-shelf parts. The achieved optical efficiency in SC generation is currently limited by 

the high mechanical splice loss from the TDFA output fiber to the ZBLAN fiber and the 

low duty cycle of the input signal. With further optimization of these factors, mid-IR SC 

light generation with efficiency comparable to competing technologies such as OPOs can 

be achieved using TDFAs. 
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Chapter III 

 

Broadband, surface-normal optical modulator based on free-carrier 

effect in GaAs 

Since the past few decades, the bottleneck in the field of high-speed network delivery has 

concentrated in the user access network. The access network has been defined in [1] as 

“the set of equipment connecting the subscriber unit to the equipment at the service 

provider‟s premise”. There has been significant progress, technologically, in the long-

haul and metropolitan area networks due to the maturity in high-speed optical networking 

system like SONET. But until recently, the single most crucial reason for the existence of 

such a bottleneck has been the absence of any such technology in the local loop. However 

the advent of Passive Optical Network (PON) architectures has since the late 1990‟s been 

the single most effective attempt to solve the problem of the “last-mile”. In this chapter I 

shall review the technological issues regarding implementation of passive optical 

networks. In particular, I shall look at a proposed architecture [2] to provide sharing of 

cost of optical components to bring down subscriber equipment cost, which is presently 

the most crucial feature hindering mass deployment of PONs.  

3.1. Concepts in Optical Access Networks 

The technological solutions that have to be adopted in an Access Network (AN) are 

basically different from other mainstream optical networks. Their basic requirements are 

defined by the scenario and telecom demands of the users. An AN typically covers a local 

area which is commonly in a distance of 10 km radius or shorter from a central Head-End 

of the local telecom service center and the information bandwidth that is expected to be 

transported over each link is between 10 Mbps and 1 Gbps [1]. 
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Fig. 3.1 Optical Network scenarios regarding distance and bit-rate 

In this context, an Optical Access Network (OAN) corresponds to an implementation 

wherein, optical fiber technology is used in this last-mile to connect the user to the 

service-provider.  

 

Fig. 3.2 Fiber/Copper Access Techniques 

Several architectures came up one after the other as technological advances emerged 

in the field of optical networking. More importantly, the fiber has kept moving closer and 

closer to the user, until has finally reached the door-step. Some of these architectures are 

described in Fig. 3.2. Of these architectures, FTTH (fiber-to-the-home) has been effective 

in carrying the fiber right up to the user and thus delivering direct unlimited capacity link. 

The underlying basis of such FTTH architecture is a passive optical network. This simply 

implies a distribution network consisting of solely passive components thus bypassing the 

need of costly powering and maintenance of any such devices. This is responsible for 

making the PON architecture cost-effective as compared to laying new SONET-rings.  

Figure 3.3 shows a simplified PON architecture. The network typically contains an 

Optical Line Termination (OLT) at the subscriber premise. A high bandwidth optical 

signal is sent on a single fiber access line and then optically split, using a passive optical 

splitter (POS) to multiple Optical Networking Units (ONUs). Each ONU 
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transmits/receives an independent optical channel and provides end users with 

dynamically allocated 1 Mbps-1Gbps of voice, data and video bandwidth. At the end of 

the network (the OLT and ONUs), both the upstream and downstream information flows 

are multiplexed into one fiber optic, using different wavelength for each direction, 

enabling a simultaneous transmission. In this case optical power is simply split amongst 

branches and sent to each ONU. This provides simpler implementation. 

                                      

Fig. 3.3 General Structure of an optical access network 

In the scheme of passive optical networks, information distribution can be carried out 

amongst multiple users on the basis of either time- or wavelength- division multiplexing. 

In the case of time-division multiplexed networks, synchronization amongst various users 

can add to operation complexity and also there is need for all users to carry equipment 

capable of operating at the aggregate channel capacity. In contrast, for the case of 

wavelength-division multiplexed (WDM) networks, various users operate on different 

wavelength channels making them transparent to others and every wavelength channel 

can operate at a speed independent of other users. However, the cost of components is 

higher for WDM-PONs, since every user requires a light source operating at a different 

wavelength and co-ordination between user wavelengths would increase the complexity 

of network operation.  

One approach to reducing the cost of components in a WDM-PON is achieved by the 

architecture shown in Fig. 3.4. The central office (CO) in such a network would contain a 

single broadband light source, which provides a minimum of two wavelengths per user 

for the upstream and downstream communication channels. The upstream wavelength 

light is modulated over by a passive, reflective modulator at the user terminal and sent 

back to the central office. Cost reduction is achieved in this architecture by sharing a 
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single light source amongst multiple users and eliminating the need for active lasers at the 

user premises. For the shared light source, a multi-wavelength source with 1021 channels 

over 1525-1607 nm has been demonstrated in the past [3]. Broader SC light sources 

extending in the atmospheric transmission windows also allow for free-space 

communication applications for such networks. However a colorless modulator operating 

over a broad wavelength range is a key enabler for the implementation of such an 

architecture and allow for significant cost reduction. 

 

Fig. 3.4 Cost-shared architecture for WDM-PONs with single broadband light source at the central office 

and a passive, reflective modulator at each user premise 

The achievable throughput from the system architecture shown in Fig. 3.4 depends on 

the modulation depth, insertion loss, operating speed and optical bandwidth of the 

modulator. The wavelength range of operation of the modulator limits the number of 

channels that can be supported by a single CO, whereas the speed of operation of the 

device limits the maximum bandwidth available to each user. The available modulation 

depth and insertion loss determine the maximum operating distance in order to achieve 

satisfactory bit-error rate performance. A variety of modulator solutions such as 

wavelength locked Fabry-Perot laser diodes [4], reflective semiconductor optical 

amplifiers [5], optical injection-locked VCSELs [6] and reflective electro-absorption 

modulators [7] have been investigated for the upstream communication channel from the 

user to the CO. They provide large modulation depth and operating speeds up to a few 

GHz. However, these solutions operate over less than 50 nm wavelength range, thereby 

limiting the number of users that can be connected to a single CO.  
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In this chapter, I will discuss my results of design, fabrication and characterization of 

a GaAs-based modulator operating on the principle of the free-carrier effect (FCE) in 

surface-normal geometry. The device consists of two forward biased pin diodes, which 

independently modulate the phase of two halves of an incident beam. By coupling the 

differentially phase modulated beam in to a single mode fiber (SMF), phase to amplitude 

modulation conversion is achieved using the mode-selectivity properties of standard 

SMF. 

The choice of modulator technology for WDM-PON applications is governed by a 

number of operation constraints. For broad optical bandwidths the modulator needs to be 

non-resonant, thereby limiting the use of electro-absorption modulators due to their 

relatively narrow wavelength range of operation. The modulator also needs to be 

polarization independent since the polarization of the light received by the user is 

random, which presents penalty on use of electro-optic modulators. Other modulator 

technologies such as thermal, acousto-optic and micromechanical based solutions are also 

unsuitable due to limited operation speed capabilities. Based on these constraints, FCE is 

chosen for the modulator design.  

FCE is a non-resonant effect that occurs in semiconductors above the band-edge 

wavelength due to the polarizability of charged carriers. Semiconductor devices based on 

the FCE have also been extensively studied as candidates for integrated optical 

components with the advantage of leveraging mature fabrication technology. Much of the 

focus in FCE modulators lately has been on waveguide devices due to their ability to 

provide high extinction ratios (>15 dB), and large operating speeds up to 40 Gbit/s, [8]. 

However, high packaging costs and operation in small, non-circular optical modes make 

waveguide devices unsuitable for low-cost and free-space optical networks [9]. 

Surface-normal optical modulators are also attractive for free-space as well as on-chip 

applications such as mobile optical communication links [10], optical signal processing 

arrays [11], chip-to-chip optical interconnects [12] and pulse-shaping [13]. Also, 

modulators capable of operation in the 2-2.4 μm wavelength region have applications in 

free-space systems due to the lower attenuation at these wavelengths in the atmosphere 

and their ability to pass through haze [14]. 



57 

 

Amongst semiconductor-based surface-normal optical modulators, a MEMS device 

has been recently demonstrated with >15 dB contrast [15]. However, the device has 

limited operating speeds of ~1 MHz. Systems based on electro-absorption (EA) 

modulators are also under investigation [11] and results suggest high contrast ratio (~10 

dB) with operating speeds >1 GHz. However, demonstrated tunability of EA modulators 

is only ~70 nm [16]. In comparison, FCE based devices are of interest due to their ability 

to operate over larger wavelength range. 

In this chapter, I will discuss results on a FCE-based surface-normal optical 

modulator in GaAs. A Si-based FCE device has been demonstrated with 24% typical 

modulation depth and 60 MHz electrical bandwidth in the past [17]. However, theoretical 

studies predict larger phase shifts per unit length from the FCE in materials with smaller 

carrier effective masses such as GaAs compared to Si [18]. Techniques such as ion-

implantation used in the fabrication of the Si-based device, are not suited for GaAs, due 

to the tendency of the GaAs crystal to decompose and emit arsenic at the high 

temperatures of 800-900°C required for these processes [19]. The demonstrated device is 

instead fabricated on n-type GaAs substrate with epitaxially grown p-type and intrinsic 

layers to avoid exposure of the device to high temperatures during processing. 

3.2. Device design 

The chosen modulator design is a pin-junction device based on the FCE, which occurs 

due to the polarizability of free carriers in semiconductors. The FCE is a non-resonant 

effect and occurs at wavelengths above the semiconductor band-gap, thus allowing 

modulation over a broad wavelength range. Also, FCE-based devices have been 

demonstrated to be polarization independent [17], making them suitable as remote 

external modulators. The operating speed of FCE-based modulators is determined by the 

lifetime of the carriers in long length devices and the carrier transit times in short length 

device, and hence can be designed to switch on the order of few nanoseconds.  

Surface-normal geometry with free-space coupling is chosen for the modulator to 

ensure low fabrication and packaging costs. However, this limits the available interaction 

length between the incident light beam and the device active region. Since larger phase 
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shifts can be achieved by larger contrast in the carrier density, the pin diode needs to be 

operated in the forward biased mode.  

Recombination of carriers in the diode invariably leads to generation of heat. Change 

in the junction temperature also leads to change in the device refractive index. In most 

semiconductors, the thermal effect is more dominant compared to the FCE, resulting in 

undesirable device operation at speeds below 100 kHz. To cancel out the thermal effect, 

split beam geometry, as shown in Fig. 3.5(a), is used in the modulator. Each of the two 

halves of the incident light beam is modulated separately by the two diodes while 

maintaining the same average current through each. As a result, both halves of the beam 

experience equal phase shifts due to the thermal effect. In addition to cancelling out the 

thermal effect, the dual diode structure can also be used to achieve a large amplitude 

change for a given phase shift in the incident light beam as outlined in Fig. 3.5(b), by 

using mode rejection properties of SM fibers [17]. In the absence of current through the 

diodes, a fixed π/2 phase shift is introduced between the two halves of the beam. As a 

result, when the beam is coupled back into the SM fiber, some higher order modes will be 

excited due to the non-uniform phase front of the reflected Gaussian beam. On the other 

hand, when the diodes are turned on, the differential phase shift between the two halves 

of the beam is reduced and the phase over the beam front is more uniform, leading to 

stronger coupling of the phase modulated light. In this way, phase-to-amplitude 

modulation conversion can be attained effectively. 

 

   (a)             (b) 

Fig. 3.5 (a) Device schematic showing two-diode geometry for cancelling thermal effect (b) Phase to 

amplitude conversion using mode rejection property of SM fiber [17] 

  At near infrared wavelengths, the FCE can be modeled by Drude theory [18], 

where the induced phase shift in an incident light beam is given by, 
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                                               (3.1) 

where,   q - charge of electron 

λ – wavelength of incident light 

ΔNe,h – change in electron (e) and hole (h) density 

me
*
, mh

*
 - electron and hole effective mass. 

Compared to Si, GaAs has smaller effective mass of carriers (me,h
*
) [20], which should 

result in larger phase shift per unit length according to Eq. (3.1). The diodes are operated 

in forward biased mode, which makes the operation speed cutoff dependent on carrier 

diffusion time. The higher carrier mobility and twice as large carrier drift velocity in 

GaAs should make higher speed operation possible compared to Si. To verify these 

hypotheses, simulations were first performed to compare similar devices in the two 

material systems. The simulations were performed using Sentaurus Device simulator tool, 

which evaluates the charge continuity for the device structure to solve the Poisson‟s 

equation and develops a map of charged carrier density in the device.  

      

Fig. 3.6 Simulations showing the density of carriers when the diode is in on and off states; Phase shift is 

calculated at various points along the incident lowest order Gaussian beam and the mode overlap integral in 

the on and off states gives the resulting modulation depth 

Figure 3.6 shows the procedure used to predict the response of the modulator. A 

device cross section of 10 µm is chosen to match the mode field diameter of the light 

beam coming out of a standard SMF at 1.55 µm. A 3 µm thick intrinsic region is used for 
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the diode to allow for reliable fabrication of the device, with thicker regions providing 

larger phase shifts at the expense of higher fabrication costs. Simulations with voltage 

signals of up to 1 GHz frequency are performed and the resulting peak carrier densities in 

the diode intrinsic region in the device on- and off-states are obtained. The phase shift 

experienced by the incident light beam along the wave front is then calculated using Eq. 

(3.1), with material parameters summarized in Table 3.1. The coupling efficiency to 

standard SMF is calculated by computing the Gaussian mode overlap integral in the on- 

and off- states of the device to give the expected modulation depth over a range of input 

frequencies. 

Parameter GaAs Si 

Refractive index at 1.55μm 

Relative permittivity 

Electron effective mass 

Hole effective mass 

3.37 

13.1 

0.067me 

0.5me 

3.45 

11.8 

0.9163me 

0.537me 

Table 3.1 Material parameters used for calculating expected modulator performance for GaAs and Si [20] 

Figure 3.7(a) compares the simulation results for identical modulators in GaAs and 

Si. The results suggest an expected peak modulation depth of ~50% for the GaAs 

modulator and ~20% for a Si modulator in the 1550 nm region, implying ~2.5 times more 

modulation depth in GaAs compared to Si under similar bias conditions. The relative 

frequency response of the Si and GaAs modulators is compared in Fig. 3.7(b). The 

simulation results suggest the diffusion capacitance limited -3-dB cutoff frequency in 

GaAs to be ~600 MHz compared to ~350 MHz in the case of Si device, implying ~1.8 

times larger theoretical operation bandwidth in GaAs.  
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   (a)      (b) 

Fig. 3.7 (a) Expected modulation depth vs. frequency for GaAs and Si modulator with the same structure, 

(b) Relative frequency response beyond 50 MHz for Si and GaAs modulators 

Simulations predict device operation with 50% expected modulation depth and 600 

MHz operation speed cutoff, which falls short of competing optical modulator 

technologies. However, unlike time-division multiplexed (TDM) systems shared by 32 or 

more users, devices for WDM-PON systems do not need to operate at the aggregate 

system speed of a few GHz. As a result, modulators operating at only a few hundreds of 

MHz can still provide higher throughput to individual users compared to TDM systems, 

with lower equipment costs. The required modulation depth for the modulator in WDM-

PONs is set by the noise and signal attenuation in the communication channel. Compared 

to long-haul communication systems, the signal degradation in PONs is not severe due to 

lack of active components in the network and operation over short distances of ~20 km. 

Simulation studies, such as [21], suggest that >10
-9

 bit-error rates can be achieved with 

~3 dB modulation depth in ASK systems for power levels >-15 dBm at the receiver. 

Therefore the designed modulator can be used for short distance or local access network 

applications with the predicted performance. 

3.3. Device fabrication 

The device is fabricated on n-type substrate with epitaxially grown intrinsic and p-type 

layers with doping concentrations described in Table 3.2. Epitaxially grown p-type layer 

provides a sharp doping profile transition compared to ion-implantation techniques [19], 

and thus can provide larger free carrier density contrast in the intrinsic region. The device 

intrinsic layer thickness is chosen to be 3 μm to allow for reliable fabrication and keeping 
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fabrication costs low. Thicker layers can be used at the expense of increased epi-wafer 

costs. 

Layer Thickness Doping concentration (cm
-3

) 

n-type substrate 

Intrinsic layer 

p-type layer 

400 μm 

3 μm 

0.5 μm 

1-4 x 10
18

 (Silicon) 

< 1 x 10
15

 

1 x 10
20

 (Carbon) 

Table 3.2 Thickness of epitaxially grown layers and target doping concentrations 

The schematic of the device based on the design factors discussed above is shown in 

Fig. 3.8. The device consists of two pin diodes of 4 µm x 10 µm cross section separated 

by a 2 µm trench for electrical isolation. The active region of the device is only ~3.5 µm 

with a total interaction length of 7 µm for the incident light, which is reflected from the 

metal contacts on the top of the device. Light is incident from the back of the device, 

where a phase-bias etch is provided to allow for π/2 phase shift between the two halves of 

the incident beam without any modulation signal. Such a scheme provides for maximum 

amplitude change for a given phase change. An anti-reflection (AR) coating reduces 

reflection of un-modulated light from the front incident layer. The n-type substrate is 

thinned down as much as possible as necessary for the mechanical stability of the device.   

                                 

Fig. 3.8 Device schematic 

The fabrication steps are shown in Fig. 3.9. Two p-type ohmic contacts of an alloy of 

Pd/Zn in the ratio 1:2 with dimensions of 10 μm x 4 μm each and separated by 2 μm are 

patterned on the wafer. Connecting pads to the p-contact with ~0.2 mm
2
 area are laid 

down to allow for connections to external drive circuitry (Fig. 3.10(a)). The surface area 
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of the pads is an important factor that contributes to the parasitic capacitance of the 

device due to the only 3 μm thick intrinsic layer separating the highly conducting p- and 

n-type regions, and hence needs to be kept as small as possible. The semiconductor 

surface is then wet-etched until the buried n-type layer is exposed. Au/Ge eutectic contact 

to the n-type substrate is patterned by lift-off and the device is annealed at 400ºC after 

passivation to reduce the contact resistance. 

 

Fig. 3.9 Schematic of device fabrication steps 

To reduce free-carrier absorption (FCA) of light in the highly doped substrate, 

provision in the fabrication needs to be made to allow for thinning down the substrate. To 

achieve this goal, the wafer is flip-chip bonded to a glass carrier before lapping operation 

(Fig. 3.9). Since the device has two diodes separated by only a 2 μm trench, conventional 

wafer bonding techniques cannot be used due to the possibility of shorting the two diodes 

at high process temperatures. Instead, I use solder bonding at ~200º C to mount the 

device onto a glass carrier while ensuring electrical isolation between the two diodes. The 

GaAs substrate is then thinned down to ~100 μm, with the glass carrier substrate 

providing mechanical strength for further device processing. Back-side aligning is used to 

define a device window on the exposed semiconductor surface as shown in Fig. 3.10(b). 

Approximately 56 nm deep dry etch is performed on one half of the device window to 

achieve π/2 radians phase bias between the two halves of the incident light beam and a 

single layer anti-reflection (AR) coating of SiO is evaporated on to the device designed 

for an operation wavelength close to 1.55 μm. 
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                                       (a)                                (b) 

Fig. 3.10 (a) Fabricated p-contacts and vias. The p-contacts are separated by a 2μm trench, (b) Front side 

device window with ~56 nm phase bias etch on one half of the window 

3.4. Experimental set-up 

Two optical sources are used in the device characterization experiments. A 1530 nm 

continuous wave distributed feedback (DFB) laser diode is used to measure the 

modulation depth, frequency response and insertion loss of the modulator. An amplified 

nanosecond pulsed SC source, as described in [22], is used to measure the wavelength 

response of the modulator. The SC source, as shown in Fig. 3.11, consists of a 

nanosecond pulse driven 1553 nm DFB laser diode with variable repetition rate followed 

by three stages of fiber amplifiers. Pulses amplified to ~4 kW peak power are coupled in 

to ~2 m of SMF followed by 6 m of high nonlinearity fused silica fiber with a zero 

dispersion wavelength of 1544 nm. The SC extends from ~900 nm to 2700 nm with ~165 

mW average power. 

 

Fig. 3.11 Schematic of the SC source used for wavelength response measurement 

The experimental set-up is shown in Fig. 3.12. An imaging spectrometer is placed in 

the beam path to select the wavelength of light. An AR coated CaF2 50:50 beam splitter 

is used to direct light in and out of the modulator. Fused silica aspherical lenses are used 
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to focus light in to the modulator and the reflected modulated light in to 2 m long SMF. 

The detection system at the output end of the SMF consists of an InGaAs detector. For 

modulation depth measurement, a DC to 1 MHz variable-gain amplifier is used. The 

frequency response of the modulator is measured using a RF-amplifier with ~13 dB gain 

and a 2 GHz oscilloscope. 

For measuring wavelength response, a pulsed SC source is used. To ensure overlap of 

the optical pulses and the modulating signal, the repetition rate of the SC source and the 

modulation signal are synchronized at 100 kHz. The modulated optical signal is detected 

by a strained InGaAs detector (0.8-2.6 μm operation) followed by a lock-in amplifier. 

The relative response of the modulator is measured by comparing the amplitude of the 

lock-in voltage normalized to the incident average power over the wavelength range of 

the source.   

 

Fig. 3.12 Experimental set-up 

 

Fig. 3.13 Drive circuit schematic 
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The device is operated in a push-pull configuration and the drive circuitry is shown in 

Fig. 3.13. A sine wave generator is used to drive the input terminal of a hybrid coupler. 

The 180º out-of-phase outputs are fed to two bias tees which combine the AC signal with 

a DC bias current.  

3.5. Experimental results 

A maximum modulation depth of ~43% is observed with the 1530 nm DFB laser, as 

shown in Fig. 3.14, at a drive current of 30 mA DC + 20 mA AC rms current at 100 kHz. 

The overall insertion loss of the modulator is ~7 dB, comprised of ~3 dB coupling loss to 

SMF in addition to ~4 dB of device loss. For a substrate with ~4x10
18

 cm
-3

 doping 

concentration, the FCA coefficient is ~30 cm
-1 

[23], which corresponds to ~2.6 dB loss 

on double pass through a 100 µm substrate. The remaining 1.4 dB loss occurs due to light 

escaping through the isolation trench and diffraction of the beam. 

 

Fig. 3.14. Modulation depth measured with a 1530 nm continuous wave laser  

  

Fig. 3.15 Modulation depth before and after ~2 m SMF 
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Optical modulation is achieved in the modulator in two steps. First, the varying 

density of free carriers in the device active region produces a variable phase shift in the 

incident light beam. The resulting phase modulation is then converted to amplitude 

modulation by coupling to SMF. Fig. 3.15 gives evidence of the phase to amplitude 

conversion process by showing the observed modulation depth in the optical beam before 

and after the ~2 m long SMF in the set-up. The data suggests that before coupling in to 

the SMF, there is only ~8% modulation on the light amplitude, which occurs due to 

interference between the modulated light beam and the weak reflection from the AR 

coating interface. At the output end of the SMF, ~43% modulation depth is observed due 

to the mode selectivity of the fiber between the device on and off states as outlined in Fig. 

3.5. However, the SMF also adds ~3 dB of coupling loss to the overall insertion loss of 

the modulator. 

 

Fig. 3.16 Wavelength response measured using SC source 

The wavelength response of the modulator, measured using the SC source is shown in 

Fig. 3.16. Modulation is observed over 1200-2400 nm with peak performance around 

1500 nm and response falling off on either side. Our data suggests >1 dB modulation 

over 300 nm from 1450-1750 nm. Loss of modulation at the lower wavelengths is due to 

the cut-off wavelength of the SMF. Below 1200 nm, the fiber is multimode resulting in 

poor phase modulation to amplitude modulation conversion. At wavelengths above 2400 

nm, the high absorption loss in the fiber prevents observation of modulation. The peak of 

the wavelength response around 1500 nm is due to the spectral characteristics of the 

single layer AR coating deposited on the device. Away from 1500 nm, the reflection from 
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the front surface of the device increases and causes the observed modulation depth to fall. 

Also, the phase bias etch of ~56 nm corresponds to an optimal π/2 radians phase 

difference between the two halves of the incident beam only around 1530 nm 

wavelength. Away from this wavelength, the available amplitude change for a given 

phase change reduces, leading to reduced modulation depth. 

 

Fig. 3.17 Frequency response of the modulator 

     

Fig. 3.18 Power coupled in diode 2 relative to power delivered to diode 1 

The frequency response of the modulator is shown in Fig. 3.17. The relative 

modulation depth is measured by comparing the amplitude of the detected optical signal 

at higher frequencies compared to that at 100 kHz. We observe a 3-dB bandwidth of ~20 

MHz and a maximum speed of operation of ~270 MHz. At higher frequencies, the 

modulation depth is too weak to be detected by the set-up. The degradation in the 

frequency response of the modulator beyond 20 MHz is attributed to poor RF isolation 

between the two diodes, which is confirmed by measuring the crosstalk between the two 

pin diodes versus frequency as shown in Fig. 3.18. The figure shows the relative power 
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parasitically coupled in to the neighboring diode versus input frequency. Below 20 MHz, 

the isolation between the two diodes is >-10 dB. However, at higher frequencies, more 

power from one diode leaks into the other, which results in the reduction of phase 

difference between the two halves of the incident light beam leading to the substantial 

drop in the observed frequency response. 

The fabricated device has split beam geometry to reduce the dominant thermal effect 

observed at low frequencies. By operating the two diodes out of phase and with similar 

average currents, contribution of thermal effect to phase change can be made similar in 

both halves of the beam. To verify the hypothesis, the frequency response of the 

modulator was tested at low frequencies with single-arm and dual-arm drive 

configurations. As can be seen in Fig. 3.19, the response in the dual arm case is uniform 

over 50 Hz to 100 kHz compared to the steep fall in the frequency response of the single 

arm case. In the case of single arm operation, the refractive index in one of the device 

arms changes with the temperature of the active region determined by the instantaneous 

value of the current through the diode. For GaAs, the temperature coefficient of the 

refractive index (dn/dT) is ~2.24x10
-4

 K
-1 

[24], which can lead to up to 90% modulation 

depth as observed, for only ~25°C change in the junction temperature. 

 

Fig. 3.19 Thermal effect cancellation by dual arm operation 

3.6. Discussion 

The measured results for the modulator frequency response are not in agreement with 

performance expected based on the simulations due to device parasitics. One of the main 

contributing factors to the device parasitics is the poor RF isolation between the two 
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diodes in the fabricated device. Better RF isolation requires better control over the etch 

profile of the isolation trench, which has an aspect ratio >2 due to a depth of ~4.5 µm and 

width of only 2 µm. A taper in the profile of the isolation trench can lead to higher 

capacitive coupling between the two diodes. Strong evidence is not available to verify 

this hypothesis due to the small size of the isolation trench. However, the tapering of the 

isolation trench can be attributed to the complex dependence of etch profiles on process 

parameters in dry etching.  

The observed peak modulation depth of ~43% is in agreement with the expected 

modulation depth calculated from simulations. Calculations suggest observation of ~0.56 

radians peak phase shift between the two arms of the modulator and the experimental 

data corresponds to ~0.46 radians. The variation can be attributed to the residual 

reflection from the AR coating interface. Larger modulation depth can be achieved by 

increasing the intrinsic region thickness. For example, simulations suggest that by 

increasing the device intrinsic region thickness to 6 µm, ~75% modulation depth can be 

achieved in theory. However this would result in a significant increase in epi-wafer costs. 

The observed wavelength response of the modulator is strongly dependent on the 

spectral characteristics of the single layer AR coating deposited on the device. For device 

insertion losses of ~4 dB, analytical calculations suggest that when the front face 

reflectivity of the device exceeds ~20%, the un-modulated component in the reflected 

light is stronger and subsequently the observed modulation depth falls below 3 dB from 

the maximum. The 3-dB wavelength cutoff can be made larger by using broadband 

multilayered TiO2/MgF2 AR coating. The wavelength of operation for the modulator 

observed to be from 1200-2400 nm is limited by the properties of the SMF. The designed 

modulator consists of the pin junction device that produces a differential phase shift in 

the incident light beam, and the SMF provides subsequent phase modulation to amplitude 

modulation conversion. Hence, even though the pin device may produce a phase shift on 

the incident light beam at wavelengths down to the bandgap of GaAs (~870 nm) and 

beyond 2400 nm, amplitude modulation cannot be observed at these wavelengths due to 

the multimode behavior at shorter wavelengths and the high absorption at longer 

wavelengths in standard SMF. In the absence of the AR coating response and 

wavelength-dependent SMF properties such as mode field diameter and absorption, Eq. 
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(3.1) indicates that the phase shift due to free carriers should increase with wavelength. 

However, calculations suggest that due to the ~56 nm phase bias etch in the device 

design, the increased phase shift should not result in an appreciable increase in the 

observed modulation depth. For example, at 2.4 µm wavelength the phase-bias between 

the two halves of the beam is ~1 radian instead of the optimal π/2 radians necessary for 

maximum amplitude change for a given phase change. As a result, the expected 

modulation depth at 2.4 µm would increase only marginally to ~52% compared to ~50% 

at 1.55 µm in the presence of an ideal AR coating. However, due to the larger mode field 

diameter in SMF at 2.4 µm, the device insertion loss is also expected to be much higher. 

The analysis suggests that the wavelength response of the modulator should be largely 

governed by the spectral characteristics of the coating and the fiber properties. 

Several feasible improvements would make the device attractive for practical 

applications in communication networks. The insertion loss of the modulator can be 

reduced by designing devices on semi-insulating substrates. Absorption loss in a 100 µm 

substrate with ~10
16

 cm
-3

 doping concentration should be less than 1 dB compared to 

~2.6 dB in the ~1-4x10
18

 cm
-3

 n-type doping concentration of the substrate used in our 

fabrication. Better frequency response of the modulator can also be achieved by locating 

all contact pads onto a semi-insulating surface rather than highly doped GaAs substrate to 

reduce parasitic capacitance [19]. Vertical etch profiles in the isolation trench need to be 

achieved in order to minimize the crosstalk between the two pin diodes, which requires 

greater process control. 

3.7. Summary 

In summary, I have demonstrated an optical modulator with surface-normal geometry in 

GaAs based on the FCE. The modulator demonstrates a maximum modulation depth of 

~43% obtained by varying the free carrier density across only 3 μm long device intrinsic 

region. The 3-dB modulation bandwidth is measured to be ~20 MHz and operation is 

demonstrated in conjunction with a broadband SC laser over a wavelength range of 1200-

2400 nm.  

Compared to a surface-normal modulator in Si, we observe ~1.8 times more 

modulation depth in half the interaction length in a GaAs modulator, largely due to the 
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superior electrical properties of GaAs as pertinent to FCE. Simulations suggest better 

speed performance for GaAs-based modulators compared to Si. However, higher 

modulation speeds could not be demonstrated due to poor RF isolation between the two 

differentially modulating pin diodes. 

The modulator can be a potential low-cost solution for access systems with >50 nm 

centralized light sources. With colorless modulators that operate over a broad wavelength 

range, more channels can be provided by a single central office and hence lead to higher 

capacity systems with potentially lower costs. The modulator can also lead to 

applications in free-space communication systems where 2-2.4 μm wavelengths are used 

due to higher penetration of these wavelengths through the atmosphere, smoke and fog. 
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Chapter IV 

 

Optical Probe for Porosity Defect Detection on Inner Diameter Surfaces 

of Machined Bores 

Porosity defects are formed during metal casting processes due to non-optimal process 

conditions such as casting pressure, cooling rates and parts geometry. Pockets of air-

bubbles trapped inside the casting when exposed during a machining process appear as a 

surface deformity and pose a quality issue in cast components. Specifically, in the case of 

sealing surfaces such as spool bores in a transmission valve body, tight tolerances of 

within tens of microns need to be maintained between the bearing surfaces to provide 

isolation between adjacent channels [1]. As a result, surface macro-porosities with 

dimensions typically in the few hundreds of microns range are unacceptable to ensure 

good quality of manufactured parts. In addition, the occurrence of porosity on bearing 

surfaces can cause increased friction and wear, leading to adverse performance 

implications and even operation failure of automotive parts [2].   

Currently, automotive manufacturing plants use manual inspection techniques on 

sampled parts for finding porosity defects [3]. Manual inspection is time and labor 

intensive, and also prevents any quantifiable data collection for studying trends in the 

porosity defects for manufactured batches. The inability to characterize the impact of 

porosity on proper part functioning leads to scrapping parts with any level of porosity 

present and hence, increased wastage of resources.  

 A number of non-contact techniques for porosity detection on machined surfaces 

have been demonstrated in the past. X-ray based techniques can be used to detect 

porosity on the surface as well as inside the bulk metal [4]. However, the technique is 

very expensive to implement on the plant floor and detection of inner porosity is not 

currently considered responsible for breakdown of parts, which makes the technique
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excessive. Other non-destructive techniques such as eddy current based sensing 

ultrasonic testing, and pneumatic sensors have also been investigated in the past [2,5].  In 

comparison, optical techniques provide the ability to not only detect defects on the 

surface but also provide qualitative information on the nature of the defect with the help 

of image processing. For example, an optical inspection technique for detecting porosity 

on flat surfaces has been demonstrated [6] where images of suitably illuminated metal 

surfaces are captured, and processed using suitable algorithms to detect dark spots 

corresponding to porosity. The technique also uses detectors at two different angles to 

determine depth of the defect, thereby providing qualitative defect analysis and reducing 

system false alarm rates. 

Detection of surface defects inside small bores using optical techniques presents 

unique challenges due to limited working space and non-flat inspection geometry. In the 

past, a computer vision based technique equipped with a robotic arm has been 

demonstrated for inspection inside bores [7]. More recently, an optical system utilizing a 

360°-view line-scan algorithm and capable of in-line inspection speeds has also been 

presented to identify pores over 500 μm within 8-15 mm diameter bores [3]. However, 

computer vision based techniques are limited by the two-dimensionality of the acquired 

images. As a result, a qualitative distinction of detected surface defects becomes difficult, 

which can lead to high false alarm rates [2].  

In this chapter, I present results on an optical-scattering based surface defect detection 

probe for small bores, which can also distinguish between porosity versus bump-type 

defects. The technique uses the spatial coherence of the light beam exiting a standard 

SMF at 1.55 µm wavelength. The ability to transport and focus the beam on to a tight 

spot provides a convenient tool for detecting surface defects and in addition allows for 

characterization of the defect based on a reproducible scattering signature. Specifically, 

the probe uses the difference in the scattering signature from a surface defect compared to 

the background surface and, hence, is applicable to most metal parts with surface 

roughness less than the wavelength of the incident light. In my approach, I use a focused 

beam of laser light at 1530 nm to illuminate the surface under inspection, and by using 

synchronous detection the effect of ambient light can be nullified. Based on the scattering 

signature in the specular and grazing directions, surface defects can not only be detected, 
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but also classified as entering into the metal surface or protruding out from the metal 

surface. The small cross-section of the probe allows for inspection of bores down to 5 

mm diameter. Also, porosity as small as 50 μm in lateral dimension and ~40 μm deep can 

be detected with greater than 3-dB contrast to the background scattering intensity 

variation. The ability of the demonstrated system to detect porosity and distinguish it 

from bump-type defects can help to reduce the occurrence of false alarms during 

detection.    

4.1. Experimental configuration and methodology 

The probe uses a two-detector methodology to distinguish between porosity and bump 

defects. The system can integrate light scattering information along the specular and 

grazing directions to ascertain the nature of a defect on machined metal surfaces. Typical 

requirements for in-line inspection systems require ability to detect presence of porosity 

and provide location and dimensional information. The demonstrated system can provide 

such information and in addition can distinguish porosity from dust or metallic dirt 

particles on the metal surface to help reduce the occurrence of false alarms on the plant 

floor and increase robustness over current optical inspection techniques. 

The probe consists of a fiber coupled 1530 nm distributed feedback laser diode as the 

light source. The choice of wavelength is determined by the root mean squared (RMS) 

roughness of a machined bore surface, which is typically specified between 0.01-0.8 μm 

[8]. At 1530 nm, the wavelength of the incident light is larger than the surface RMS 

roughness and, hence, a strong specular component in the reflection is observed at this 

wavelength from typical machined surfaces. Although cheaper light sources are available 

in the visible regime, light will scatter profusely for σ/λ > 0.3, where σ is the RMS 

roughness of the surface and λ is the wavelength of light [9], thereby reducing reflection 

in the specular direction for shorter wavelengths. On the other hand, telecom lasers also 

provide the convenience of being fiber coupled and, hence, can be located remotely with 

delivery provided by standard single mode fiber. In addition, they are available 

commercially and their eye-safe wavelength of operation allows for in-plant installation 

without causing operation hazards at milliwatt levels of powers.  
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A schematic of the designed probe is shown in Fig. 4.1. The light emerging from the 

fiber is collimated using a fused silica lens, and the beam is split using a beam splitter to 

allow for spatial separation between the incident light and the specularly reflected light, 

as shown in Fig. 4.1. A chopper assembly is introduced in the beam path to allow for 

reliable signal detection of the weakly scattered light in the grazing direction. The 

collimated light beam is focused onto a graded-index (GRIN) relay rod. The choice of the 

focusing lens in the set-up is based on the required Rayleigh range of the focal spot. 

Since the diameter of typical spool bores varies between 5-15 mm, a Rayleigh range of 

~5 mm ensures that the beam spot incident on the ID surface is within square root of 2 

times the spot at focus, thus eliminating the need for refocusing and motion of the probe 

relative to the bore axis. A Rayleigh range of 5 mm requires a spot size of ~50 μm at 

1530 nm wavelength, which can be achieved by a lens with 50 mm focal length for a ~3 

mm collimated beam. The relay rod is ~6 inches in length and 2.7 mm in diameter. By 

focusing the beam spot just inside one end of the lens, a similarly focused spot is 

obtained just outside the other face of the lens. A 90° prism is mounted at the end of the 

relay rod to deflect the beam and make it incident on the ID surface under inspection. The 

prism has a front face of 3.5 mm x 3.5 mm and is glued on to the GRIN relay rod using 

UV-cured optical adhesive. The GRIN lens rod is mounted at the center of a rotation 

stage to allow for 360° rotation about its axis, thereby eliminating the need to rotate the 

fiber and focusing lens assembly. The entire probe set-up is mounted on a translation 

stage to allow for motion in and out of the spool bores. 

 

Fig. 4.1 Schematic of the designed probe 
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The detection scheme is shown in Figs. 4.1 and 4.2. Two detectors are used for 

measuring the light scattered from the machined surface. Light reflected specularly from 

the metal surface is coupled back into the GRIN lens rod through the right-angle prism 

and deflected onto detector 1 by the beam splitter (Fig. 4.1). Detector 2 is placed at the 

base of the GRIN lens rod at ~5 mm from the lens rod axis and faces perpendicular to the 

direction of the incident beam. The light scattered along the grazing direction (>85°) that 

escapes from the mouth of the bore gets collected at detector 2. In the grazing direction, a 

small area detector (~4 mm
2
) is used to minimize detection of stray light, while for the 

specular direction a large area detector (~130 mm
2
) is used to capture as much light as 

possible, since directional filtering of the specular light is already provided by the GRIN 

lens rod. Figure 4.2 shows the actual probe used for measurements. 

 

Fig. 4.2 The implementation of the probe showing detectors mounted for gathering light scattered in the 

specular and grazing directions from the metal surface (BS: beam splitter) 

Three different kinds of samples were used in my experiments. Type I samples 

include surface defects on a flat metal surface (Fig. 4.3) and were used to determine 

distinguishing scattering signatures for porosity versus metal chips or dirt particles. Type 

II samples include actual spool bores in rejected transmission valve bodies detected with 

porosity defects obtained from Ford Motor Company (Fig. 4.4). Type III samples were 

used to determine the minimum detectable porosity defect by the probe. The porosity 

samples were made using silicon fabrication technology. The unpolished backside 
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surface of a silicon wafer with RMS roughness of ~0.4 μm was used to resemble a typical 

machined surface. Holes of different sizes ranging from 25 μm to 1 mm were etched on 

the surface. The inside surface of the holes was then roughened using a tungsten-carbide 

scribe tool to replicate the rough interiors of typical porosity defects. The entire surface 

was subsequently coated with Titanium metal to give it a metal finish similar to 

automotive parts. Figure 4.5 shows two such samples with 300 μm and 50 μm 

dimensions. 

 

Fig. 4.3 Bump vs. porosity defect definition 

 

Fig. 4.4 Actual spool bores on a transmission valve body 

 

Fig. 4.5 Porosity samples fabricated on rough silicon wafer 

4.2. Experimental results 

In our experiments, type I samples were used to determine the distinguishing signature 

between porosity and metal chip or bumps. Figure 4.6(a) shows the measured intensity 

from a metal sample with bumps and porosity in the specular (detector 1) and grazing 

directions (detector 2). The results show that for near normal incident angles, the 

presence of both the porosity and bump leads to change in the intensity of the specularly 

reflected light. Thus a surface defect can be detected by monitoring the intensity of 

specular reflection from the metal surface. However, since the intensity drops for both the 
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bump and porosity, it is difficult to distinguish between defects that project out of the 

surface, such as the metal bump and defects such as porosity that go into the surface. The 

distinguishing feature in the case of bumps versus porosity, as seen in the data, lies in the 

grazing directions. The bumps appear as a peak in the scattered intensity, whereas the 

porosity leads to a valley. Each of these features stand out compared to the background 

fluctuations caused by the background roughness of the metal surface. The magnitude of 

the contrast of the defect over the background scattering fluctuations depends on the 

nature of each individual defect. The results were also verified to be reproducible for a 

number of similar defects with random surfaces as shown in Fig. 4.6(b), where the 

contrast of the defect feature to the background fluctuations is found to be a function of 

lateral dimension and the depth of the defect being measured.    

 

Fig. 4.6 (a) Typical type I sample results showing different scattering signatures for bump and porosity in 

the grazing directions (b) Reproducibility of the scattering signature for four different bumps and porosity 

defects on type I sample 

Porosity and metal chip defects were measured inside spool bores (Fig. 4.4) of 5 mm 

diameter. Figures 4.7(a) and 4.7(b) show the scattered intensity from porosity and bump 

defects respectively, inside the spool bore of a rejected transmission valve body. The 

probe was manually aligned to traverse along the axis of the bore and was stepped by 50 

μm along the axis of the bore and 1° angular increments, corresponding to ~45 μm steps 
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along the circumference of the bore. Although the probe can scan over the entire 360° 

range, the plot shows a 180° scan around the observed defect. The scattered light 

intensity from each point was measured at the two detectors in the specular and grazing 

directions. The plot shows the relative intensity of scattered light from the ID surface 

normalized to the average background intensity, with higher intensity represented by 

lighter shades and lower intensity by darker shades of a gray scale with 8 levels.  

 

Fig. 4.7 (a) Normalized scattered intensity from a porosity defect on the inner surface of a 5 mm diameter 

spool bore (b) Normalized scattered intensity profile from a metal chip inside a 5 mm diameter spool bore 

As can be seen in Fig. 4.7(a), porosity appears as dark spots, suggesting decrease in 

scattering intensity in both the specular and grazing directions. Figure 4.7(b) shows the 

results obtained for a metal chip inside the spool bore. In the grazing direction, the defect 

clearly shows up as a bright spot. The dark region on the sides of the bright spot is caused 

by shadowing due to the metal chip, since it protrudes out of the surface unlike porosity. 

Figure 4.8 shows the intensity profile in the grazing direction (det 2) for both the porosity 

and the metal chip. Similar to the case of flat surfaces, presence of porosity leads to 

decrease in scattering intensity along grazing directions and a metal chip shows up as a 

peak. The results confirm that the hypothesis of detecting porosity, and the ability to 

distinguish from bump-type defects based on the scattering signature in the grazing 

direction holds for a cylindrical bore geometry as well. The probe can therefore detect 

porosity inside spool bores, and by comparing the scattered intensity changes in the 

specular and grazing directions, it is possible to distinguish porosity from metal chips. 
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Fig. 4.8 Scattering profile in the grazing direction for porosity and bump-type defects inside a cylindrical 

bore 

The minimum detectable porosity was determined using a range of Type III samples 

with varying defect sizes, fabricated as mentioned in Section 4.1. Table 4.1 summarizes 

the change in scattered intensity along specular and grazing directions for porosity-type 

defects varying from 1 mm down to 25 μm lateral size. The lateral dimension of the 

defect was determined by the masks used in the fabrication process, and their depth was 

measured using a profilometer. For the larger defects (300 μm and larger), there is greater 

than 6 dB of contrast to background in the specular direction and more than 5 dB of 

contrast in the grazing direction. In general, for the range of defect sizes measured, the 

contrast is observed to increase with increasing lateral dimension and depth of the defect. 

The data suggests that deeper defects tend to rob more power from the grazing direction. 

In the case of the specular direction, the change in the scattered signal is attributed to the 

increased roughness inside the defect. For defects down to 50 μm dimension, the contrast 

to the background intensity is greater than 3 dB, as seen in Table 4.1. For smaller 

porosity, the contrast falls to below 3 dB. The limit on the ability to detect a defect is 

determined by the variations in the background intensity due to the machined nature of 

the bores used in automotive parts. Most bores have inherent honing marks on the inner 

surface to help retain lubricants used to reduce friction, which invariably lead to a ripple 

on the background scattered intensity in the absence of defects. Misalignment of the 

probe with respect to the bore axis also adds to variation in the background intensity. IT 

is also observed that the scattered signal in the grazing direction is less sensitive to the 

random surface variations than in the specular direction, as can be seen in Fig. 4.6(a). 

Based on these observations, the threshold of defect detection is set to be 3-dB in the 
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grazing direction. From Table 4.1, we can see that defects with 25 μm lateral dimension 

and ~27 μm depth fall below the threshold in the grazing direction and hence deemed 

undetectable by the system. The set threshold may vary based on the factory floor setting 

and the background roughness of the surface under inspection. In such a case, one could 

expect to increase the detection threshold and be able to only detect correspondingly 

larger defects on the surface as suggested in Table 4.1. 

Lateral size 

(μm) 

Pore depth 

(μm) 

Contrast in grazing Contrast in specular 

1000 

500 

300 

50 

25 

~240 

~170 

~140 

~37 

~27 

6 dB 

5.5 dB 

5 dB 

3.4 dB 

2.9 dB 

8 dB 

6.5 dB 

6.2 dB 

3.8 dB 

3.2 dB 

Table 4.1 Contrast to background for defect sizes ranging from 1 mm down to 25 μm 

4.3. Simulation results 

To verify the applicability of the demonstrated technique to most machined surfaces, 

simulations were performed to predict scattering patterns from an ideal reflecting surface 

with features resembling bump and porosity defects. In the case of calculation of scatter 

pattern from random surfaces, it is important to consider the roughness of the surfaces 

compared to the source wavelength [10]. Since the experimental samples were machined 

surfaces with RMS roughness on the order of few hundreds of nanometers, the Kirchhoff 

diffraction theory is used to model scattering of incident light at 1530 nm wavelength. In 

this approach, a one-dimensional surface with bump and porosity defect is used as the 

scattering source. The light source is assumed to be a beam with 50 μm FWHM at the 

scattering surface, incident at -5° to the normal to resemble near-normal incidence. The 

scattering pattern in the specular (3°-7°) and grazing (85°-90°) directions with respect to 

the normal is computed using the Fresnel-Kirchhoff‟s integral,  

                                      x

zi

incp dx
z

e
xxEE .).().(

                                (4.1) 
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where, the integral is computed over all points on the scattering surface. Einc corresponds 

to the amplitude profile of the electric field of the incident Gaussian beam and z 

represents the distance travelled by the light wave from the source to the detector for 

every point on the scattering surface. β is the propagation constant and γ(x) represents the 

shadow factor, which is set to 0 for the set of points on the surface that do not contribute 

to the scattering pattern due to absence of direct line-of-sight from the point to the 

detector and 1 for others. 

The goal of the simulations is to determine the applicability of the proposed technique 

for typical polished metal samples with respect to the background surface roughness. To 

this effect, the relative specular and grazing scattering intensity from three identical 

surfaces, one without any defect, second with a porosity-type defect and third, with a 

bump defect, is computed for 10nm-1000nm RMS roughness of the background surface. 

Both the porosity and the bump are assumed to be rectangular with 300 μm each side 

length. The inside surface of the bump and porosity is modeled 20 times more rough than 

the background to resemble a defect.  

 

Fig. 4.9 Simulation results for relative scattering intensity in the (a) specular, and (b) grazing directions 

from a flat surface, metallic bump and porosity defects as a function of the RMS roughness of the 

background surface 

The simulation results for relative scattered intensity from the three different surface 

types in the specular and grazing directions are shown in Figs. 4.9(a) and 4.9(b) 

respectively. As can be seen, a surface defect can be detected by a drop in the specular 

signal intensity (Fig. 4.9(a)). However, for the case of bump and pore type defects, the 
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scattering pattern in the specular direction is identical since the surface of the bump and 

the pore is the same except for the difference in height. As a result for a beam size much 

smaller than the defect width, the bump and pore seem identical surfaces in the specular 

direction.  

In the grazing direction (Fig. 4.9(b)), bump-type defects show scattering patterns 

similar to a flat surface, thereby allowing the distinction between porosity and bump-type 

defects possible. The simulation results show that the technique for porosity versus bump 

classification in the grazing direction is applicable over a broad range of RMS surface 

roughness. For practically observed RMS values ranging from 0.01 to 0.8 μm for typical 

polished surfaces [8], the porosity should give much reduced scattering in the grazing 

direction compared to a flat surface or bump-type defect (Fig. 4.9(b)). For the case of 

bumps, as the background surface roughness becomes comparable to the inspection 

wavelength, 1530 nm in our case, the distinction between bump and flat reduces in both 

the specular (Fig. 4.9(a)) and grazing (Fig. 4.9(b)) directions. As a result, simulations 

suggest the probe cannot detect bumps on surfaces with RMS roughness larger than the 

wavelength of incident light. 

4.4. Discussion 

The experimental results provide evidence of the ability to distinguish between porosity 

and bump defects by simultaneously monitoring the change in scattering intensity along 

the specular and grazing directions. In the case of the metal chip inside the spool bore, the 

specular scattering profile consists of randomly bright and dark spots depending on the 

actual profile of the metal particle being inspected. However, in the grazing direction the 

location of the defect identifies as a bright spot, indicating an increase in scattering 

intensity and, hence, a bump-type defect. The porosity defects show up as dark spots in 

both the specular and grazing directions, thus confirming the hypothesis. The ability to 

distinguish between porosity from metal chips on the surface can help reduce false alarm 

rates in the detection scheme and at the same time increase confidence in the detected 

porosity by combining data collected independently from the two detectors.   

The demonstrated probe can measure porosity defects down to 50 μm lateral 

dimension and ~40 μm depth with >3 dB contrast to the background fluctuations in 
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intensity. The smallest detectable defect by the system is determined by the spot size of 

the light beam incident on the metal surface. In my experiments, the smallest spot size is 

~50 μm, determined by the choice of the focusing lens in the system. A 50 mm focal 

length lens was chosen to provide a Rayleigh range of 5 mm to suit the varying diameters 

of the spool bores in typical transmission valve bodies. Smaller defect sizes can be 

detected by using a tighter focal length lens. For example, a GRIN lens rod based 

endoscopic probe has been demonstrated in the past with spot sizes as small as 11 μm 

[11]. However, a tighter focus also leads to higher sensitivity of the specularly reflected 

light intensity to misalignment of the probe from the cylinder axis. I could not determine 

the influence of defect depth on contrast to background due to lack of multiple samples 

with similar lateral dimensions and different depths. 

The observed experimental results shown in Fig. 4.6(a) for defects on a flat metal 

surface are in agreement with the simulation results. The RMS roughness of the metal 

sample used in the experiments is measured to be ~93 nm, averaged over five different 

points. At this RMS value, simulations for the grazing direction (Fig. 4.9(b)) indicate a 

decrease in scattered light intensity for the pore and increased intensity for the bump 

compared to a surface with no defect, similar to the observed experimental results. 

Even though the demonstrated porosity detection system is used to measure porosity 

inside spool bores of transmission valve bodies, bores in the range of 5-15 mm diameter 

on a number of other manufacturing parts such as steering gears, fuel injection systems, 

etc. can also be inspected using this technique. 

The amount of power required for reliable defect detection is determined by the 

sensitivity of the detector placed in the grazing direction, due to the weak nature of 

scattering in the grazing direction from most polished surfaces. The amount of light 

scattered in the grazing direction in turn depends on the RMS roughness of the surface 

under inspection. All the experimental samples had RMS roughness values on the order 

of 0.1 μm, and light signal scattered in the grazing direction were consistently observed 

to be ~20 dB lower than the specular signal. As a result, for a detection sensitivity of -24 

dBm (Noise equivalent power = ~4 μW), the signal source needs to be >5 mW to have a 

signal-to-noise ratio greater than 10 dB at the grazing angle detector. For inspection of 

smoother surfaces, higher laser powers would be required to maintain the large signal-to-
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noise ratio and calibration runs could be performed to adjust the signal level, based on the 

roughness of the each individual bore.  

For potential in-line implementation, the system can incorporate faster mechanical 

and data acquisition schemes. Ball and screw type actuators can achieve rotation speeds 

of up to 4000 rpm and with data acquisition systems sampling at 15 ksamples/second, the 

inner circumference of a 20 cm long and 10 mm diameter bore can be inspected in 20 

seconds with a circular spot resolution of 150 μm diameter. Since optical detectors in the 

1550 nm region are available with down to nanoseconds of response times, the inspection 

speed limitation of the probe is expected to be primarily mechanical. For example, with a 

100 kHz bandwidth detector, the probe would have to rotate at >9600 rpm to be unable to 

detect a change in intensity, while traversing a 50 μm diameter spot.   

The 360° rotation of the probe about its axis can complicate the mechanical design of 

the system, including the coupling of the electrical and optical signals in high speed in-

line systems. In my design, the mechanical motion of the GRIN lens rod and the delivery 

optical fiber are decoupled by using free space coupling into the lens rod rotating about 

its axis. The electrical signal coupling however, would require a slip ring type of 

arrangement to maintain electrical contact with the data acquisition system in the set-up. 

In terms of structural stability, the probe used in the experiments has a length of ~15 cm, 

which limits the depth of penetration inside transmission valve bodies to about 10 cm. 

For measurement of deeper bores up to 21 cm in transmission valve bodies, two or more 

GRIN lens rods would have to be cascaded with anti-reflection coatings on the end faces. 

A longer probe will reduce the resonance frequency of vibrations of the rod [12], and 

require more careful mechanical design. For example, the resonant frequency for a 21 cm 

long and 2.7 mm diameter circular glass rod with a typical Young‟s modulus of 50 GPa 

and a density of 2800 kg/m
3
 is ~6000 rpm, which would be the upper limit of operation 

speed for the probe. 

The demonstrated probe gathers scattering information from the surface under 

inspection in the specular and grazing directions to detect defects and classify them as 

porosity versus bump-type defects. Such qualitative distinction provides information that 

is important to reduce the false alarm rates for in-line inspection systems operating on the 

plant floor, which cannot be achieved by 2D imaging based systems. Based on the 
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simulation results, porosity defects can be detected on the surface over a broad range of 

surface RMS roughness encountered in automotive machined parts. However, at surface 

roughness comparable to the wavelength of the incident light, the signature associated 

with the detection of bump-type defects is expected to disappear. In cases where bump-

type defect detection on rough surfaces is required, a longer wavelength light source can 

be used. 

4.5. Summary 

In this chapter, I have demonstrated a standard SMF based novel optical probe for 

detection of porosity inside bores down to 5 mm diameter. The probe uses a GRIN lens 

relay rod to focus a beam of near-infrared laser light, and surface defects are detected 

based on the change in the scattering intensity due to the high spatial coherence of the 

incident beam. Based on the difference in the scattering signatures in the specular and 

grazing directions, I have shown that the probe can distinguish between bumps versus 

porosity type defects. For both the porosity and bump-type defects, there is reduced 

scattering in the specular direction making them difficult to distinguish using a single 

detector. However, in the grazing direction, the porosity and bump provide different 

signatures and can be distinguished. We also tested the set-up for defect sizes ranging 

from 1 mm down to 25 μm and confirmed detection of defects down to ~50 μm lateral 

dimension and ~40 μm deep with greater than 3-dB contrast to the background intensity 

fluctuations.  

Inspection of bores in power train parts is of importance to prevent malfunction and 

early breakdown of mechanical systems. Challenges to porosity detection include 

difficulty to inspect small bores down to 5 mm diameter and that 100% parts inspection is 

time-consuming and expensive. The designed probe can detect porosity and distinguish 

from bump type defects due to metal chips, thereby reducing the chances of false alarms. 

The probe is less than 4.5 mm in diameter and can be up to 21 cm long, making it 

suitable for inspection of a variety of automotive parts such as fuel injection systems, 

transmission valve bodies and engine cylinder parts where effective sealing surfaces are 

important and surface defects such as porosity affect quality of manufacturing.    
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Chapter V 

 

Summary and future work 

5.1 Optical probe for porosity detection in bores 

In the previous chapter, I have demonstrated a novel scattering based porosity detection 

system for defect inspection on the inner surfaces of bores down to 5 mm diameter. The 

technique uses scattering along the grazing and specular direction from the surface under 

inspection in a very tight geometrical space to not only detect defect, but also provide 

classification information on the depth of the defect. This is of significance in practical 

implementation of defect detection systems on the plant floor, since false alarm-rates can 

be reduced. For example, in most 2-D imaging approaches to defect detection, due to lack 

of any depth information on an encountered surface anomaly, even metal chips or 

detergent particles as a result of the manufacturing process gets classified as a defect.  

High rate of occurrence of false alarms deters the implementation of 2D systems for 

inline applications [1]. Also, manual inspection is tedious for the case of parts such as 

transmission valve bodies where small diameter bores of up to 20 cm length make visual 

inspection difficult and unreliable. As a result, currently no inline inspection technique 

for porosity detection in transmission valve bodies exist and a human inspection on 

sampled parts is practiced [2]. This approach has drawbacks since porosity defect 

occurrences are random and due to the high required quality on parts specifications, 

detection of porosity on the sampled part leads to rejection of the entire batch without 

individual part inspection [3]. Conversely absence of porosity on the sampled part does 

not guarantee quality of the non-sampled parts and hence 100% inline inspection can 

greatly improve the reliability of the manufacturing process. In addition, occurrence of 

porosity defects is high during the ramp-up time of casting processes and ~5% output of
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every manufacturing cycle are initially discarded without inspection [3]. An inline 

technique can help better understand the ramp-up process and help reduce the wastage 

associated with lack of such inspection tools. 

Using the designed probe, I have demonstrated ability to detect porosity defects down 

to ~50 µm lateral dimension. Typical requirements on acceptable defects are currently 

estimated at ~500 µm [3]. In comparison, my system could detect defects ~10 times 

smaller. If such resolution is not required, the field of view of the probe while measuring 

a single pixel can be increased thus increasing the speed of inspection of the system. 

Currently estimated required inspection time for a single part is ~20 s [2]. Specific 

improvements required for increasing the speed of inspection in the assembled probe to 

meet inline implementation requirements are as described in the discussion section of 

Chapter 4. In addition, given the large number of bores in a single part, inspecting 

multiple bores simultaneously would be required. A proposed system to achieve this end 

is shown in Fig. 5.1, where the part is held stationary, while multiple probes move in and 

out of the bores for quick inspection of the part. To speed up the travel time and rotation 

of the probe, better mechanical stages than those used for the prototype demonstration 

will be required. 

 

   (a)            (b) 

Fig. 5.1. (a) Envisioned valve-body inspection station, (b) Individual probes will consist of rotation and 

motion stages with light coupled through fiber 

5.2 Higher efficiency mid-IR Supercontinuum Generation  

The main focus of my thesis work has been in the generation of mid-infrared 

supercontinuum laser (MISCL) with higher efficiency. The approach used in my work is 
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based on modulation-instability initiated spectral broadening starting from near-IR 

telecommunication wavelengths.  

In the Tm-based MISCL system demonstrated in my thesis, the initial motivation for 

switching from a Er:Yb-based power amplifier stage to a Tm-based final amplification 

stage was largely influenced by two factors. First, by shifting the pump of the SC 

generation process from 1.55 to ~2 µm, extension in the long wavelength edge can be 

expected in the nonlinear medium. Secondly, Tm-amplifiers have been demonstrated to 

achieve higher pump-to-signal conversion efficiencies compared to Er:Yb amplifiers. For 

example, slope efficiencies of ~56% have been achieved with large mode area Tm-doped 

gain fibers [4] compared to only ~38% slope efficiency for Er:Yb co-doped gain fibers 

with similar geometry [5] operating in continuous-wave master-oscillator power 

amplifier configuration.  

Advantage in terms of higher efficiency in mid-IR light generation has been 

demonstrated through both of these factors in the generation of wavelengths beyond 3.8 

µm with ~2.5 times higher optical efficiency than Er:Yb systems. In addition, several 

other benefits are also provided by the system from a practical system implementation 

stand point.  

1. Shorter length of ZBLAN fiber (~8.5 m) required for ~0.5 W light generation in 

wavelengths 3.8 µm compared to Er:Yb based systems (>12 m) [6]. 

2. Due to a large wavelength separation between the pump and the signal wavelengths 

in the Tm-doped power amplifier stage, backward pumped amplifier configuration 

is implemented without apparent damage to the 790 nm pump lasers from high peak 

power 2 µm light leaking into the pump ports. In the Er:Yb case, additional 1.55 

µm wavelength blocking filters are required to prevent damage to the 976 nm pump 

diodes. 

3. Higher long wavelength generation efficiency results in operation of the system at 

an overall lower average power in the power-amp stage. For example, in the Er:Yb 

system, ~55 W of average pump power is required at the gain fiber to pump-

combiner fiber splice for generating 0.5 W in wavelengths beyond 3.8 µm [6], 

compared to ~23 W for the Tm-based MISCL. The lowering of the system average 
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power results in the ease of requirements on the quality of the splice between the 

pump combiner to gain fiber. 

4. The 25 µm large mode area core diameter gain fibers are commercially available 

for Tm-systems, whereas only 15 µm core Er:Yb co-doped fibers are available [7]. 

The larger core diameter allows for lower nonlinearity in the Tm-doped power 

amplifier and increases the threshold of saturation effects in the amplifier.  

5. Lower nonlinearity also allows for possibility of forward pumping in the power 

amplifier and reducing the thermal load on the gain fiber to output pump combiner 

fiber splice. 

6. Higher long wavelength generation efficiency with respect to the SC pump also 

means lower required average powers at the output of the power amplifier stage for 

the mechanical splice from the fused silica to ZBLAN fiber. For example, for 0.5 W 

light generation beyond 3.8 µm, only ~8 W of average power output from the Tm-

amplifier is required compared to ~13 W from the Er:Yb stage [6]. The lower 

power should lead to more thermal stability of the mechanical splice. 

7. By switching the amplifier system, the chain of increasing spontaneous emission in 

the output is broken and the ASE source in the system is reset.  

In the new Tm-based MISCL system, a novel demonstration of splitting of the SC 

generation process is used to generate mid-IR SC in two distinct nonlinear broadening 

stages compared to previously demonstrated MI-based systems (Fig. 5.2). First, in low 

near-IR loss standard fused silica SMF, moderately amplified 1.55 µm laser diode pulses 

are used for SC generation beyond 2.1 µm. Compared to other pulsed 2 µm sources, the 

demonstrated wavelength shifting approach using standard SMF is also attractive due to 

its open-loop operation configuration. Starting the SC generation process from 1.55 µm 

eliminates the need for 2 µm fiber coupled components such as DFB, isolators, WDMs, 

etc. which are currently customized products and expensive. 
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Fig. 5.2. (a) Previously demonstrated single-step SC architecture based on MI-initiated pulse break-up 

followed by nonlinear broadening, (b) Novel two-step SC generation architecture using Tm-based fiber 

amplifiers 

In terms of electro-optic conversion efficiency of the pump lasers used in the power 

amplifier stages, Er:Yb systems have a slight advantage currently due to the maturity of 

processing of InGaAs quantum wells over the years. 976 nm pump lasers fiber coupled in 

to 100 µm core fibers with ~46% electro-optic conversion efficiency are commercially 

available currently [9]. In comparison, 790 nm pumps with typically 39-41% electro-

optic conversion efficiency were used in my experiments. The relatively lower efficiency 

of 790 nm diodes is attributed to the higher intrinsic photon energy and material-related 

issues of comparatively newer InGaAsP fabrication [8]. However, with interest in high 

power 2 µm Tm-based systems pumped at 790 nm, pump diode technology should catch 

up with state-of-the-art performance from 976 nm diodes. Another disadvantage of 790 

nm pump lasers from a practical standpoint is the higher current requirements for these 

lasers. For example, the 790 nm pumps need ~50 A current for generating 35 W pump 

power output coupled in to a 100 µm core fiber compared to ~12 A required for 

commercially available 976 nm pumps. Such disparity arises possibly from the electrical 

connection of the laser bars inside the pump package. The higher current requirement 

needs additional circuitry to protect the pumps from damage due to rapidly switching 

high currents as demonstrated in my experiments.  
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Future work: 

I have demonstrated mid-IR SC generation with ~9% optical efficiency in conversion 

from the 790 nm pump to the mid-IR output with ~2.35% efficiency in generation of 

wavelengths beyond 3.8 µm. However, there exists some scope of further improvement 

in the efficiency of the Tm-based MISCL system and are discussed as possible future 

work. 

Higher repetition rate scaling: The efficiency of the system can be increased by 

operating at higher pulse repetition rates due to higher 790 nm pump power in the system. 

Also the duty cycle of the input pulses increases with increase in system repetition rate 

leading to lower losses of the 790 nm pump to spontaneous emissions in the amplifier. 

Both factors combined, still higher efficiency in mid-IR SC generation should be possible 

in the Tm-based MISCL. 

It is important to note that higher pulse repetition rate would also require system 

operation at higher average powers. Hence better cooling and thermal management 

schemes need to be implemented in the system. One approach to keeping the thermal 

load in the system within the current levels is to reduce the duty cycle of the pump 

modulation signal. Currently, the system operates at 50% modulation duty cycle of the 

pumps at 500 kHz repetition rate. By doubling the repetition rate to 1 MHz and 

simultaneously reducing the pump modulation duty cycle to 25%, similar average powers 

can be maintained in the system while making the amplifier more efficient through 

increase of the pulse repetition rate. This would require more pumping power in the 

system than currently available and electronics to adjust the duty cycle of the modulation 

signal to the pump drive circuit. 

Fused silica to ZBLAN splice: In my experiments, I have used a mechanical splice to 

couple light output from the TDFA in to the ZBLAN fiber. Such a scheme results in a 

coupling loss of ~45%, which is a large fraction of the current system inefficiency. 

Recently, some preliminary work has been demonstrated in [10] with fused silica to 

fluoride fiber mechanical splices with losses as low as 0.8 dB at 1550 nm. Such a scheme 

uses a CuAlBe alloy shape memory connector to hold the ZBLAN and fused silica fibers 

butted against each other, while maintaining low coupling losses. Incorporation of such a 
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splice would increase the efficiency of the system by ~1.3 times. The high power 

handling capability of such a splice would have to be tested before implementing it in the 

MISCL system. 

The mechanical splice loss is also currently high due to the mode mismatch between 

the fused silica and ZBLAN fibers used in my experiments. The 2 µm light at the output 

of the 10 µm core, 0.15 NA fused silica fiber has a mode-field diameter of ~11 µm and 

yields higher coupling losses in to a 8 µm core, 0.27 NA ZBLAN fiber. The loss can be 

reduced by using larger core ZBLAN fibers. For example, fibers with ~10 µm core 

diameter can be tested to achieve lower coupling losses from the fused silica to ZBLAN 

fiber through better matching of the 2 µm fundamental mode in either fibers. However, a 

trade-off exists whereby increasing the fiber core diameter results in an increase in the 

fiber cut-off wavelength, all other parameters remaining the same, and would result in 

higher levels of multi-moded behavior in the fiber at ~2 µm. 

Large-mode area fiber splicing: In my experiments, a two-arc fusion splicer was used to 

splice the 25/250 µm core/cladding diameter gain fiber to geometrically patched passive 

fibers on the combiner/mode adapter. An estimated splice loss of ~0.6 dB is observed by 

optimizing the splice time and current. The two-arc splicer does not typically do not 

provide much control on the splicing conditions with similar splice quality over a range 

of splice parameters. In addition, the Tm-gain fiber achieves large mode area operation 

by using a high refractive index pedestal layer, which makes the splice to the combiner 

fiber typically lossy. The poor quality of the splice degrades the system performance in a 

couple of ways: a) in the power handling capability of the splice and, b) in the 

degradation of the single mode beam quality of the 2 µm light in the 25 µm fiber core.  

By using more sophisticated equipment and better splice recipes, lower loss and 

better quality splices can be achieved. For example, in the case of the Er:Yb based 

MISCL system, ~1.25 times higher amplifier efficiency was achieved by optimizing arc 

power and time parameters of the splice. In addition, better quality splices are expected 

by offsetting the splicing arc away from the gain fiber [11]. 

Higher nonlinearity fiber: In the Tm-based MISCL system, mid-IR light generation is 

achieved to ~4.5 µm. The long wavelength edge of the generated SC is limited by the 
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properties of the ZBLAN fiber (material loss and mode-field dispersion). At wavelengths 

beyond 4.5 µm, the loss in the ZBLAN fiber increases to beyond ~1 dB/m and mode-

field diameter increases to above 12 µm. As a result, the Raman gain generated by the 

ZBLAN fiber at these wavelengths cannot compensate for the linear loss in the fiber and 

SC generation process ceases to generate longer wavelengths.  

Longer wavelength generation is possible using higher nonlinearity fibers such as 

tellurites. Particularly, a photonic crystal fiber with ~1.7 µm
2
 mode area and ~10x higher 

Raman gain coefficient [12]. Using ~17 kW peak power pulses at 1.55 µm, SC 

generation out to 4.8 µm has been demonstrated in just 0.8 cm length of the fiber [13]. 

The higher Raman gain coefficient allows for using small lengths of the tellurite fiber and 

hence the long wavelength edge is not expected to be limited by the material absorption.  

Some concerns about implementing a tellurite PCF include the limitation of results 

with tellurite fibers to low average powers. Only up to ~1.2 W of average output power 

has been demonstrated to date with tellurite fibers indicating difficulty in achieving high 

quality fiber fabrication [14]. 

Cascaded SC generation: The demonstrated Tm-based MISCL results confirm the ability 

to cascade nonlinear media separated by wavelength-offset amplifier stages to sustain 

longer wavelength generation. Particularly in the mid-IR, with emergence of Er-doped 

ZBLAN fibers pumped at 976 nm for 2.7-3 µm light amplification [15], a similar 

architecture can be implemented for long wavelength generation in ZBLAN by shifting 

the SC pump further to around 2.7 µm. This can lead to further extension of the long 

wavelength generation efficiency and allow for higher power scaling in the wavelength 

range beyond 3.8 µm based on improvements in the Er-doped ZBLAN fiber 

performances.       

5.3 Broadband surface-normal optical modulator 

One application of a broadband supercontinuum light source spanning several hundred 

nanometers in wavelength is the ability to provide higher throughput in communication 

systems. For example, in the case of wavelength-division multiplexed (WDM) optical 

networks, each user is assigned a separate wavelength channel for communication 

allowing for parallel communication pathways on a single physical medium such as fiber 



99 

 

or free-space. Another advantage of WDM systems is the variable speed and transparent 

operation of users with respect to others on the network eliminating any bottlenecks in 

the system due to the presence of a large number of users. However, implementing WDM 

networks is expensive due to the requirement of dedicated components for every channel 

in the system. For instance, on a network with 12 channels, 12 different wavelength light 

sources are required along with components such as filters and WDMs for the specific 

wavelength channel to prevent any cross-talk between users. Hence WDM systems are 

typically implemented only in the long-haul sections where higher component costs can 

be justified. 

One technique to implement WDM networks on the end-user level is the 

implementation of architectures with cost-shared components [16]. For example, by 

replacing the light source with a broadband single supercontinuum laser, the need for 

individual lasers can be eliminated. The system would still requires devices at the end-

user premise for relaying information back to the central office without requiring 

wavelength specific equipment at the user end. Such systems are termed as colorless 

optical networking units and can help increase the throughput, while reducing the 

component cost in the system.  

In my thesis, I have demonstrated a colorless modulator for application in a 

broadband light source based WDM network. The modulator operates over 1200 nm 

wavelength range with surface-normal geometry for easy coupling of light into the device 

and potentially low fabrication costs. The modulator is passive and based on a non-

resonant free-carrier effect in semiconductors with wavelength properties largely 

determined by the optical characteristics of the anti-reflection coating. Hence it can be 

suited to most wavelength ranges in the near-IR for telecommunication applications, or 

the near-IR (1.7 µm) and mid-IR (2-2.4 µm) free-space communication windows.  

Operation in conjunction with a supercontinuum laser was demonstrated in my 

experiments with the fabricated modulator as a probable application for SC lasers in 

broadband communication system. However, there are several shortcomings that need to 

be overcome before such systems can be practically implemented. Firstly, the pulse 

profile at the output of the SC source is largely noisy and hence higher penalty in terms 

of bit-error rates could be encountered. Secondly, the high peak power used in the pulse 
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generation can lead to higher nonlinear effects during propagation through the medium 

and lead to inter-channel cross-talk. Also, the demonstrated properties of the modulator 

are not up to the current telecommunication equipment standards. For example, a contrast 

ratio of only ~43% was demonstrated for the GaAs-based modulator and an insertion loss 

of ~4-dB is measured in the device. Improving the performance of the modulator requires 

substantial improvement in the fabrication methodology and higher fabrication costs as 

discussed in Chapter 3. For example, the insertion loss can be reduced by using a semi-

insulating substrate in fabrication, which would require additional fabrication steps. The 

modulation depth can be improved by increasing the thickness of the intrinsic layer, 

which would increase the epi-wafer cost. Also, the theoretically predicted modulation 

bandwidth for the GaAs-based modulator is ~450 MHz, and is limited by the RC-time 

constant of the device diffusion capacitance, which serves as a trade-off between higher 

modulation depths and speeds.  

One approach to using SC sources in a communication system would be to tailor the 

pulses so as to generate a broad continuum extending 100-200 nm in a single pulse [17]. 

In conjunction with the demonstrated surface-normal modulator, a potentially low-cost, 

higher capacity system implementation with few MHz bandwidth can be implemented in 

a fiber-based system. The key advantage of the system would be the larger number of 

users and hence lower cost per user. 

To conclude, I have demonstrated three optical systems as part of my PhD thesis with 

applications in different fields ranging from communication to spectroscopy to metrology 

of automotive parts. Particularly in the field of defect inspection, the demonstrated probe 

can help improve the quality standards of automotive parts manufacturing using non-

contact, inline parts inspection. In the case of mid-IR light sources, by achieving higher 

optical conversion efficiency, SC lasers can rise to the forefront of mid-IR applications 

with their ability to generate several octaves of wavelength simultaneously. With a 

thorough analysis through simulations and extensive experiments, I believe both these 

technologies can serve as disruptive solutions for future applications.    
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