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ABSTRACT 

 
Whose phenotype is it anyway?  The complex role of species interactions and 
resource availability in determining plant defense phenotype and community 

consequences. 
 

by 

Rachel L. Vannette 

 

Chair: Mark D. Hunter 

 

 

The expression of plant defense is influenced by resource availability and biotic 

interactions, with consequences for herbivores and plant fitness.  While the majority of 

plants associate with mycorrhizal fungi, which dramatically affect plant resource status, 

the role of these belowground interactions in shaping the expression of plant defense is 

poorly understood.  In addition, plant-herbivore interactions affect plant growth and 

defense, but their effects on mycorrhizal interactions can vary dramatically.  I 

hypothesized that changes in plant resource status and subsequent defense expression 

may mediate the interactions between mycorrhizal fungi and aboveground herbivores.  

Drawing from current knowledge of resource mutualisms, I hypothesized that the carbon 

costs and nutrient benefits of hosting mycorrhizal fungi would predict a nonlinear effect 

of mycorrhizae on the expression of plant defense.  An experimental manipulation of the 

abundance and identity of mycorrhizal fungi associating with Asclepias syriaca revealed 

mycorrhizal colonization nonlinearly affected the expression of plant defense, although 

the shape of the response to increasing fungal colonization depended on the plant trait 

examined.  In particular, traits (eg. trichomes, plant biomass) that increased with the 

concentration of phosphorus responded unimodally to mycorrhizal colonization as 
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predicted, while those traits that were putatively carbon-limited (eg. latex and toughness) 

declined with fungal colonization.  I also manipulated carbon available to plants and 

examined changes in plant defense and the effects of herbivores on mycorrhizal fungi.  

Growth under elevated CO2 increased plant biomass by 15% and toughness by 40%, but 

decreased cardenolide concentration by 20% and had little effect on trichome density.  

Herbivory by either aphids or caterpillars had no effect on mycorrhizal colonization when 

plants were grown in ambient CO2, but herbivory dramatically increased mycorrhizal 

colonization under elevated CO2.  Taken together, these results indicate that fungi and 

aboveground herbivores interact through changes in plant resource status and defense 

phenotype and exert strong influence on the expression of plant defense phenotype.  In 

addition, these experiments revealed substantial genetic variation within a single 

population of A. syriaca in the expression of plant defense and in response to mycorrhizal 

colonization and carbon addition, indicating the potential for evolutionary adaptation to 

changing environmental conditions.   
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Chapter I  

Introduction 

An organism’s phenotype determines in large part how it interacts with the world around 

it. It has long been recognized that the expression of phenotype is a consequence of an 

organism’s genetic composition, environment, and the interaction between the two (Fritz 

and Simms 1992), where the environment consists of both abiotic and biotic components 

(Strauss and Irwin 2004).  Although biotic interactions are ubiquitous and important in 

both natural and managed systems (van der Heijden et al. 2008, Garibaldi et al. 2011), 

their effects on phenotype and performance are often context-dependent (Chamberlain 

and Holland 2009, Hoeksema et al. 2010).  As a result, it remains difficult to anticipate 

when and how biotic interactions affect organism phenotype and their subsequent 

ecological or evolutionary consequences.   

 

This dissertation develops a resource-based framework to understand and predict 1) how 

biotic interactions affect organism phenotype, 2) under what conditions biotic 

interactions affect ecological outcomes, 3) the evolutionary causes and consequences of 

variation in the outcome of biotic interactions.  I consider two kinds of interactions which 

are both important in terrestrial ecological communities: mycorrhizae and herbivory. 

 

Nearly all plant taxa support symbiotic fungi within their roots in an association called 

mycorrhizae (Smith and Read 2008). Arbuscular mycorrhizal fungi (AMF), in the 

Phylum Glomeromycota (Schussler et al. 2001), are among the most common 

mycorrhizal associations for many forbs, agricultural plants, and tropical and some 

temperate tree species (Smith and Read 2008).  Mycorrhizal fungi exert significant 

influence on plant phenotype through multiple pathways (Vannette and Hunter 2009, 

Sikes et al. 2010).  Specifically, AMF gather phosphorus (P), nitrogen (N) and 
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micronutrients from the soil and transfer them to plants in exchange for simple sugars.  

Individual plants typically benefit from this interaction, but plant responses to 

colonization by AMF vary with fungal identity, soil fertility, and other factors, and can 

sometimes result in parasitism (Johnson et al. 1997, Klironomos 2003).  Despite early 

research that suggested that the abundance of fungi mediates the effect of fungi on plant 

performance (Gange and Ayres 1999), recent work fails to consider the abundance of 

AMF as a key variable in determining the outcome of mycorrhizal interactions 

(Hoeksema et al. 2010).   

 

Plants also interact with herbivorous insects that consume plant tissue, reduce plant 

growth and fitness and decrease crop yield in agricultural systems. However, plants are 

not passive recipients of this damage (Murdoch 1966) and exhibit physical and chemical 

defenses that protect their tissues from consumption.  Plants also actively respond to 

herbivory by repairing and re-growing lost tissue, and may mount an additional defense 

against future herbivory by increasing expression of physical or chemical traits (Karban 

and Baldwin 1997). Variation in plant defense, both constitutive and induced, can 

significantly affect plant fitness and affect the performance of herbivores and higher 

trophic levels (Poelman et al. 2008, de Roode et al. 2011). 

 

The availability of soil resources affects both plant defense against herbivores (Bryant et 

al. 1983, Herms and Mattson 1992) and association with mycorrhizal symbionts 

(Treseder and Allen 2002, Treseder 2004).  As a result, the effects of mycorrhizae and 

herbivory on plants are fluid and depend on their environmental context (Hunter and 

Schultz 1995, Johnson et al. 1997).  The research presented here explores how AMF and 

insect herbivores alter plant phenotype expression, how resource availability modulates 

the effect of interactions on phenotype, and offers a framework for predicting the effects 

of resource availability, herbivory, and mycorrhizae on the expression of defense 

phenotype and community patterns.   

 

In addition, coevolutionary relationships between plants and herbivores or AMF shape 

plant phenotype and patterns of resource allocation (Ehrlich and Raven 1964, Hoeksema 
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2010). Because not all functions (eg. growth, competitive ability, defense) can be 

maximized simultaneously, limitations imposed by resource availability and evolutionary 

or developmental constraints (tradeoffs) shape species and populations that vary in 

allocation patterns (Herms and Mattson 1992, Bergelson and Purrington 1996).  

Intraspecific variation in exposure to herbivores, competitors, pathogens or mutualists in 

space can generate and maintain phenotypic variation in traits that mediate interspecific 

interactions (Rausher 1984, Thompson and Cunningham 2002). Indeed, plant genotypes 

vary in their response to changes in the environment, and this intraspecific variation in 

phenotypic plasticity is fodder for the evolutionary process, and contributes to the 

adaptation of plant species to changing conditions (Fordyce 2006). In addition, although 

the ecological consequences of genetic variation are likely important in community 

dynamics (Bolnick et al. 2011), a lack of experimental investigations of the degree of 

genetic variation in response to biotic interactions limits our ability to predict its 

importance in ecological systems.    

 

In this dissertation, I examine how mycorrhizal fungi and insect herbivores influence 

plant phenotype and the above- and belowground ecological consequences of these 

phenotypic changes, respectively (Fig 1.1). I hypothesize that changes in plant resource 

status mediate the effect of biotic interactions on the expression of plant phenotype. For 

this reason, the effects of interactions on plant phenotype should vary with environmental 

resource availability.  In addition, if genetic variation exists in plant response to biotic 

interactions, natural selection could result in evolution within plant populations.  In this 

way, intraspecific variation could allow local plant populations to adapt to rapidly 

changing abiotic and biotic conditions that now challenge many natural systems (Jump et 

al. 2009). To test these hypotheses, I measure the effects of biotic interactions on the 

expression of plant phenotype among plant genotypes and examine how the outcomes of 

these interactions vary along resource gradients (Fig 1.1). 

 

This dissertation is divided into four primary chapters.  Chapter II explores how carbon 

fertilization (elevated CO2) changes the effects of herbivorous insects on plant defense 

and growth and examines the genetic variation in plant response to herbivory and carbon 
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fertilization.  Chapter III examines how herbivory and carbon fertilization affect plant-

fungal interactions and provides a quantitative comparison among potential mechanisms 

that may mediate the effect of aboveground herbivores on mycorrhizal fungi.  In Chapter 

IV, I develop a model to predict how variation in the association between plants and 

mycorrhizal fungi affects plant defense phenotype and herbivore performance.  The 

second part of chapter IV presents an initial test of the model.  Chapter V further tests the 

model developed in chapter IV using an experimental manipulation of two fungal species 

over a range of fungal abundance, in association with multiple plant genotypes and 

examines how herbivore performance varies with resulting changes in plant nutrition and 

defense expression.  

 

Chapter II. Genetic variation in the expression of defense phenotype may mediate 

evolutionary adaptation of Asclepias syriaca to elevated CO2. If plant phenotypic 

response to herbivory depends on resource availability, resource addition should modify 

plant phenotype and induced responses to herbivory (Bazin et al. 2002, Emmerson et al. 

2005, Bidart-Bouzat and Imeh-Nathaniel 2008).  In addition, if plant genotypes vary in 

the extent to which they respond to atmospheric conditions, plant populations may be 

better able to adapt to rapidly changing environmental conditions associated with climate 

or other anthropogenic change (Jump et al. 2009).  I examined the response of five 

genetic families of Asclepias syriaca (common milkweed) to elevated CO2 and herbivory 

by a specialist caterpillar Danaus plexippus (monarch caterpillar).   

 

I conducted a factorial experiment in which I exposed A. syriaca plants to herbivory by 

D. plexippus caterpillars and elevated CO2, then examined constitutive and induced 

expression of plant defensive traits (Fig. 1.2a).  If the phenotypic response of A. syriaca 

to herbivory differs among conditions of ambient and elevated CO2, this would indicate 

that plant induced responses are dependent on carbon availability and may be subject to 

change under future atmospheric conditions.  Additionally, if A. syriaca genotypes 

respond differentially to CO2 or herbivory, A. syriaca populations may be able to adapt 

rapidly to changing conditions.   
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Chapter III. Multiple pathways mediate the effects of resource availability and 

herbivore identity on mycorrhizal associations. Previous research has documented that 

aboveground herbivores can affect plant interactions with mycorrhizal fungi (Gehring 

and Whitham 1994, Gange 2007) and most studies implicate carbon as the main factor 

that limits mycorrhizal colonization following herbivory (Hartley and Gange 2009).  

However, recent studies indicate that plant defense induction, rather than carbon 

limitation, can alter mycorrhizal colonization of plants (Kleczewski et al. 2010, de 

Román et al. 2011) and raise doubts on the role of carbon limitation in mycorrhizal 

responses to herbivory (Barto and Rillig 2010).    

 

In order to test these alternative but potentially complementary hypotheses, we 

formalized multiple structural equation models that tested alternative causal pathways 

leading from herbivory to changes in mycorrhizal colonization.  Alternative intermediates 

in the models included changes in carbon allocation, induction of above and belowground 

defense, and additional mechanisms.  We compared models against the results of an 

experiment that measured mycorrhizal colonization of A. syriaca following herbivory by 

caterpillars and aphids, herbivores that differentially affect plant carbon status, under 

ambient and elevated CO2 (Fig. 1.2b).  In addition, we examined if model coefficients 

differed depending on herbivore identity and resource availability.  If experimental data 

conform to the hypothesized models that contain carbon-based pathways, this is good 

evidence that carbon limits plant-fungal interactions following herbivory.  In addition, if 

herbivore identity and carbon fertilization affect the pathways by which herbivores 

influence mycorrhizal colonization, this may lend further insight into if and how changes 

in resource availability and defense induction structure mycorrhizal associations. 

 

Chapter IV. Plant defense theory re-examined: nonlinear expectations based on the 

costs and benefits of resource mutualisms. Variation in resource availability, including 

soil fertility, affects the expression of plant defense phenotype (Bryant et al. 1983, Herms 

and Mattson 1992).  However, theoretical expectations for how defense expression varies 

with soil fertility have been developed with little consideration of the effects of soil 

symbionts. Resource mutualisms, including mycorrhizal interactions, are ubiquitous in 
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natural and managed systems (van der Heijden et al. 2008), and may change plant 

responses to soil fertility because of the costs and benefits associated with mutualistic 

interactions (Johnson et al. 1997).  In this chapter, We develop a benefit:cost framework 

to anticipate how the abundance of nutrition symbionts affect plant defense expression 

(Fig. 1.2c).  We test this model by inoculating A. syriaca plants with increasing 

abundance of mycorrhizal fungi. If plant phenotypic response to colonization corresponds 

with model predictions, this indicates that the exchange of resources within the 

mycorrhizal mutualism structures plant defense expression.   

 

Chapter V. Mycorrhizal abundance affects plant defense expression and herbivore 

performance. In addition to the role of mycorrhizal abundance in shaping plant 

phenotype, the species identity of mycorrhizal colonists may alter the costs and benefits 

transferred within the mycorrhizal interaction.  For example, fungal species in the 

Gigasporaceae allocate proportionally more resources toward the growth of extraradical 

hyphae than do fungal species in the Glomeraceae (Hart et al. 2001), with consequences 

for plant nutrient status (Powell et al. 2009).  Not only may fungal species differentially 

affect the benefits and costs associated with mycorrhizal interactions, but plant genotypes 

may respond differently to the mycorrhizal interaction.  In addition, the relative role of 

these factors in the expression of plant defense phenotype is unclear.   

 

To explore further how increasing fungal abundance alters plant nutrition, defense 

expression, and herbivore performance, and if these effects depend on the identity of 

fungal species and plant genotype, I manipulated these factors in a large greenhouse 

experiment.  I germinated seedlings of five genetic families of A. syriaca, grew them 

under three different mycorrhizal treatments (Glomus etunicatum, Scutellospora fulgida, 

and a mix of the two) with increasing fungal inoculum to generate a range of fungal 

colonization intensities.  I quantified plant defense expression and assessed herbivore 

performance on plants colonized by increasing abundance of fungi.  If fungal species 

vary in their relative effects on plant nutrition and phenotype expression, this may lend 

support to the cost:benefit approach and aid predictions of how fungi may affect plant 

defense expression and multitrophic interactions.  In addition, if genetic variation exists 
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in plant response to fungal colonization or species identity, this may lead to complex 

evolutionary dynamics among plants, fungi, and insect herbivores.  
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Fig. 1.1. Diagram illustrating above-belowground feedbacks within a multitrophic 
system.  Insect herbivores are affected by plant defense traits, but can also change the 
expression of plant defense phenotype. Mycorrhizal fungi affect plants through the 
exchange of nutrients for carbon.  Plant physiology and allocation patterns mediate plant 
responses to interactions with herbivores and mycorrhizal fungi, but plant genotypes vary 
in their allocation patterns, phenotype expression and response to these interactions. Both 
types of interactions occur across a gradient of resource availability (carbon, nutrients 
etc). 
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Fig. 1.2. Diagram illustrating the experiments and survey performed in Chapters II-VI, 
following the framework presented in Fig. 1.  The arrows and words in bold indicate 
focal interactions or traits in each chapter.  Chapter II describes the results of a 
manipulation of resource availability (CO2) and herbivory on plant defense trait 
expression among plant families (a).  Chapter III explores the effects of aboveground 
herbivory on mycorrhizal colonization of plants and explores the mechanisms involved in 
this interaction (b). Chapter IV develops expectations of the effects of mycorrhizal fungi 
on plant defense expression mediated by resource exchange between plants and fungi (c).  
Chapter V provides a test of predictions developed in Chapter IV, quantifying plant 
nutrients and defense trait expression among plant genotypes exposed to different fungal 
treatments, and exploring their effects on herbivore performance (d). 
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Chapter II 
 

Genetic variation in expression of defense phenotype may mediate evolutionary 
adaptation of Asclepias syriaca to elevated CO2 

 
Abstract  

How species interactions may modify the effects of environmental change on 

evolutionary adaptation is poorly understood.  Elevated CO2 is known to alter plant-

herbivore interactions, but the evolutionary consequences for plant populations have 

received little attention. We conducted an experiment to determine the effects of elevated 

CO2 and herbivory by a specialist insect herbivore (Danaus plexippus) on the expression 

of constitutive and induced plant defense traits in five genotypes of Asclepias syriaca, 

and assessed the heritability of these traits.  We also examined changes in relative fitness 

among plant genotypes in response to altered CO2 and herbivory.  The expression of 

plant defense traits varied significantly among genotypes.  Elevated CO2 increased plant 

growth and physical defenses (toughness and latex), but decreased investment in 

chemical defenses (cardenolides).  We identified no effect of elevated CO2 on plant 

induction of cardenolides in response to caterpillar herbivory.  Elevated CO2 affected the 

expression of chemical defenses (cardenolides) to a different extent depending on plant 

genotype.  Differential effects of CO2 on plant defense expression, rather than direct 

effects on relative fitness, may alter A. syriaca adaptation to changing climate.   
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Introduction 

Central to ecological conservation and management remains the question: will species be 

able to accommodate the rapid ecological changes imposed by anthropogenic 

disturbance? If species can adapt to these changes, how will global change drivers 

interact with other selective pressures acting in species’ environments to shape the 

evolution of species?  It is clear that many global environmental changes substantially 

alter the environmental conditions, and thus selection regime, experienced by biota 

(Reusch & Wood 2007). Species can accommodate changing conditions through a variety 

of mechanisms, including phenotypically plastic responses, migration, and genetic 

change (Jackson & Overpeck 2000).  While phenotypic plasticity and migration are likely 

responses to rapid environmental change (Parmesan 2006), habitat destruction and 

fragmentation have decreased the area of suitable habitat and increased dispersal 

distances among such habitats (Travis 2003).  As a result, in-situ evolution in response to 

changing climate is likely to become increasingly important (Davis & Shaw 2001), but 

evidence for this phenomenon is scarce (Gienapp et al. 2007).  It is unclear if natural 

populations host sufficient genetic variation to adapt evolutionarily to rapid 

environmental change (Jump et al. 2009, Kellermann et al. 2009).  

 

In order for species to respond evolutionarily, global environmental change (GEC) 

drivers must differentially alter the expression of organism growth, reproductive or other 

phenotypic traits under selection.  Additionally, the observed phenotypic traits must be 

both heritable and variable within populations. Recent literature documents a few 

examples of altered fitness responses within agricultural and native plants, insects, and 

bird species to global change drivers (Reusch & Wood 2007). Specifically, GEC drivers 

may directly alter the fitness of genotypes within a population by altering allocation to 

reproductive traits.  For example, rice (Oryza sativa L.) genotypes grown under elevated 

CO2 vary significantly in their grain yields as a result of intraspecific variation in 

photosynthetic rate (De Costa et al. 2007).  

 

In reality, the performance and fitness of organisms under environmental change will 

reflect complex interactions among changing biotic forces (competition, predation, 
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disease) and changing abiotic forces (temperature, precipitation, atmospheric 

CO2)(Tylianakis et al. 2008). For plants, the presence of competitors, herbivores, or 

symbionts within the environment can enhance or limit their responses to global 

environmental change (Brooker 2006). For example, elevated CO2 has no effect on 

Bromus erectus growth and reproduction when plants are grown with conspecifics. In 

contrast, B. erectus plants grown with heterospecifics under elevated CO2 show 

decreased growth and fitness (Steinger et al. 2007). In other words, competitive 

background and atmospheric CO2 interact to determine Bromus fitness.  Only by 

examining how species interactions modify the effects of environmental change can we 

begin to understand and predict the ecological and evolutionary consequences of these 

complex changes in natural systems. 

 

GEC drivers are known to alter the interactions of plants with insect herbivores through 

changes in plant palatability and quantity (Stiling & Cornelissen 2007, Bidart-Bouzat & 

Imeh-Nathaniel 2008). Elevated CO2 can alter plant-herbivore interactions by increasing 

plant growth, decreasing plant nutrient content, and altering the expression of plant 

defenses (Kinney et al. 1997, Agrell et al. 2000). However, not all plants respond to 

elevated CO2 in a similar or predictable fashion (Lindroth et al. 1993, Hunter 2001, 

Bidart-Bouzat & Imeh-Nathaniel 2008) and the outcomes of plant-herbivore interactions 

under future atmospheric conditions remain difficult to anticipate (Petri A et al. 2010). 

 

Predictions are complicated yet further if the expression of plant defense is modified by 

interactions with herbivores. Induced defenses, or those expressed in response to 

herbivore damage (Agrawal 2001) can affect plant fitness (Baldwin 1998, Agrawal 1999) 

and subsequent herbivore consumption (Van Zandt & Agrawal 2004a).   Elevated CO2 

has been shown to increase induction of chemical defenses in Arabidopsis thaliana and 

Brassica rapa (Bidart-Bouzat et al. 2005, Himanen et al. 2008), but decrease induction in 

Glycine max (Zavala et al. 2008), and has little or no effect on herbivore induction of 

plant defenses in Populus tremuloides, Acer saccharum, Lotus corniculatus, Gossypium 

hirsutum, and Quercus myrtifolia (Roth et al. 1998, Bazin et al. 2002, Agrell et al. 2004, 

Rossi et al. 2004). From these examples, we see that the effects of elevated CO2 on 
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induction are not well-understood and a general predictive theory has not yet been 

achieved.  

 

Elevated CO2 is well known to alter plant-herbivore interactions in ecological time 

(Lindroth et al. 1993, Hall et al. 2005, Stiling & Cornelissen 2007), whereas only a few 

studies have explored potential effects of elevated CO2 on the evolutionary outcome of 

plant-herbivore interactions (Bidart-Bouzat 2004, Lau & Tiffin 2009). Assessing genetic 

variation within populations for plant defense expression, and changes in fitness under 

increasing CO2, is crucial to understanding plant adaptation and plant-insect coevolution 

under realistic scenarios of environmental change. Since genetic variation often exists in 

the expression of plant defenses (Berenbaum et al. 1986, Simms & Rausher 1987), we 

expect that elevated CO2 may differentially affect the induction of defense among 

genotypes (Julkunen-Tiitto et al. 1993; Lindroth et al. 2001).  Additionally, elevated CO2 

may magnify or diminish differences in defense or fitness among genotypes and as a 

consequence, increase or decrease the strength of herbivory as a selective force on plant 

populations.  For example, some genotypes within species may exhibit greater defense 

induction than do other genotypes under ambient CO2 conditions, whereas elevated CO2 

may alleviate allocation tradeoffs such that all genotypes induce to approximately the 

same degree.  As a consequence, elevated CO2 may increase or decrease the fitness 

differences among plant genotypes.  Examining the interactive effects of herbivory and 

CO2 among multiple plant genotypes may allow us to anticipate both the phenotypic 

(ecological) and fitness (evolutionary) consequences of these forces.  Only the 

manipulation of multiple abiotic and biotic factors will allow us to understand the 

complex ecological mechanisms that drive adaptation to environmental change 

(Tylianakis et al. 2008), and may allow us to predict how these ecological changes affect 

the evolution of plant populations. 

 

To examine the potential for our focal plant population to accommodate changing 

atmospheric CO2 concentrations, and the effect of elevated CO2 on constitutive and 

induced plant defense, we examined the following predictions. First, we proposed that 

our focal plant population would contain genetic variation in the expression of 
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reproductive and defense traits, and that these traits would be heritable.  Second, we 

expected that CO2 would affect the expression of plant growth, reproduction, and 

constitutive and induced defense, and that plant genotypes would exhibit variation in 

phenotypic response to CO2. We tested this prediction by examining variation in 

phenotypic responses to elevated CO2 among plant genotypes.  Third, we predicted that 

plant fitness (measured as plant reproductive traits) would vary among genotypes and that 

elevated CO2 would alter the expression of these traits.   

 

To address these questions, we examined intraspecific variation and heritability in the 

expression of growth, reproductive, and defensive traits, and the effects of elevated CO2 

on these traits, in the common milkweed Asclepias syriaca L. (Apocynaceae).  We 

examined the induction of plant defenses in Asclepias syriaca by monarch larvae Danaus 

plexippus (Lepidoptera: Nymphalidae: Danainae), a specialist insect herbivore. 
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Materials and Methods 

Plant and Insect Species 

The common milkweed, A. syriaca, inhabits open fields throughout eastern North 

America, and reproduces asexually through rhizomatous growth belowground and 

sexually through the production of follicles that are fertilized by a single pollinium.  As a 

result, A. syriaca pods contain full-sibling seeds.  A. syriaca hosts at least 12 specialized 

insect herbivores, including chewing leaf feeders, phloem feeders, leaf miners, stem 

feeders, root feeders, and seed predators. Many physical and chemical traits deter 

herbivory or retard insect development on A. syriaca (Zalucki & Malcolm 1999, Zalucki 

et al. 2001, Agrawal & Fishbein 2006). High concentrations of cardenolides, toxic, bitter-

tasting steroids, can decrease the survival and performance of the specialist herbivore 

Danaus plexippus (Zalucki et al. 2001).  Latex, a sticky polyisoprene polymer that 

contains cardenolides and other compounds, is stored within pressurized laticifers and 

can engulf small herbivores and inhibit the feeding of larger ones (Zalucki & Malcolm 

1999, Zalucki et al. 2001). Trichomes produced on the upper and lower lamina and leaf 

veins of A. syriaca may inhibit feeding by herbivores (Levin 1973).  Leaf toughness, 

tightly correlated with specific leaf mass (SLM) (Frost & Hunter 2008), can also inhibit 

feeding by many insect herbivores (Coley 1983, Read & Stokes 2006).  While all of the 

defensive traits described here consist primarily of carbon, the enzymes required to 

construct them require nutrients such as nitrogen and phosphorus (Gershenzon 1994). 

The responses of A. syriaca defenses to elevated CO2 are therefore hard to predict.  

 

Much work has been conducted on the effects of the multi-trait Asclepias defensive 

phenotype on its specialist herbivores (Zalucki & Malcolm 1999, Zalucki et al. 2001, 

Agrawal & Malcolm 2002, Agrawal 2004, Agrawal & Fishbein 2006), and it is well-

established that variation in plant defensive traits affects herbivore performance and host 

choice in natural systems.  Additionally, Asclepias spp. are known to respond to insect 

herbivory by altering their chemical phenotype (Malcolm & Zalucki 1996, Martel & 

Malcolm 2004, Van Zandt & Agrawal 2004a, b, Zehnder & Hunter 2007).  Since we 

know that A. syriaca alters the expression of plant defenses in response to herbivory, it is 
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an ideal plant in which to investigate the effects of elevated CO2 on defense expression 

and induction.   

 

Asclepias syriaca is a perennial rhizomatous herb, and seedlings do not reproduce 

sexually for at least 2-3 years at our field site in northern Michigan (authors’ unpublished 

data).   Instead, plants reproduce asexually during this time, through rhizomatous growth 

and ramet production.  In the fall, all aboveground plant material senesces; belowground 

biomass and meristem production (buds on the rhizome) constrain regrowth and ramet 

number the following year.  Following established methods (Fagerstrom 1992), we 

therefore estimate A. syriaca fitness after one growing season using belowground 

biomass and the number of buds produced on the rhizome. We emphasize that this limits 

our conclusions about effects of treatments on plant fitness to the first few years of 

growth. 

 

Experimental Design.  

Asclepias syriaca pods were collected from a single population in northern Michigan at 

the University of Michigan Biological Station (UMBS) in Pellston, MI during Fall 2007.  

Five A. syriaca full-sibling families, hereafter referred to as genotypes, were delineated 

initially based on spatial clustering of their ramets and phenological, morphological, and 

chemical differences among genets.  Subsequent excavation of rhizomes and 

microsatellite analyses have confirmed the existence of independent genets at our field 

site.  During May 2008, we established 5 genotypes of A. syriaca, each generated from a 

single pod from one of the five field genotypes.  Seeds were cold stratified for 4-5 weeks 

during spring 2008, and were germinated in May 2008 on moist filter paper at 25oC.  

Following germination, seedlings were planted into 50 mL cells containing potting soil 

(SunGrow Metromix) and reared in a growth chamber for two weeks. Eighty seedlings of 

each genotype were planted individually into 6 inch pots containing approx 1L of a 2:1 

mixture of potting soil (SunGrow Metromix) and UMBS sandy soil, respectively.  

Transplanted seedlings were kept in the UMBS glasshouse for 2 weeks to prevent frost 

damage.  
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Four weeks after the initial planting (June 1-2, 2008), A. syriaca individuals were placed 

in open-top controlled atmosphere chambers in the field at UMBS. The chamber array 

consisted of 20 chambers, with 10 maintained at ambient CO2 concentrations, and 10 

maintained at elevated CO2 concentrations (760 ppm, dawn until dusk), dispersed 

uniformly within the array.  Each chamber held two individual plants from each of the 

five plant families (10 plants per chamber), five designated for caterpillar herbivory, the 

others undisturbed controls. Atmospheric CO2 concentrations were monitored daily in all 

elevated CO2 chambers and 2 ambient chambers using a LI-COR LI-6262 IRGA and CO2 

was adjusted to maintain the target concentration in each elevated CO2 chamber.  Plants 

were watered daily and their heights measured weekly for the nine weeks of CO2 

treatment.  Two weeks before the herbivory treatment was initiated (early July, 2008), 

when plants were approximately two months old, all plants were covered with a fine 

mesh (paint strainer bags, Mastercraft Mfg.) to keep any local herbivores from 

consuming the plants or inducing plant defenses, although nearly all plants were free of 

prior damage.     

 

We captured gravid monarch butterflies from the field at UMBS, allowed them to lay 

eggs in the laboratory, and collected eggs on leaf discs using a hole punch and stored 

them in a refrigerated incubator until use (maximum two weeks).  All monarch eggs 

came from five wild caught females of unknown provenance.   

 

The induction treatment was initiated 5 days before harvest.  A single D. plexippus egg 

that had darkened just prior to larval eclosion was ‘glued’ to the leaf of each treatment 

plant using milkweed latex.  Before it dries, latex is an effective defense against 

herbivores, but the tiny amount added was allowed to dry and was not harmful to the 

larvae.  Eggs were placed on a single individual of each plant family in each of 10 

ambient and 10 elevated CO2 chambers (100 plants total). The larvae hatched within 

hours and were allowed to eat for 5 days following eclosion, resulting in the consumption 

of approximately 10-20% of each plant.  Both control and herbivore treatment plants 

remained covered in mesh during the caterpillar treatment.   
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Although A. syriaca can rapidly (24 hrs) induce cardenolide expression in response to 

damage (Malcolm & Zalucki 1996), extended periods of damage (up to 30 days) by aphid 

herbivores can also affect cardenolide expression in Asclepias species (Zehnder & Hunter 

2007).  The length of our herbivory treatment, with continual damage throughout the 

treatment period, should be suitable to detect changes in plant expression of defenses.  

 

Harvest    

Plants were harvested at 12 weeks of age and each had between 6 and 22 leaves. A. 

syriaca plants have opposite leaves.  All plant heights were measured, and vertical 

growth since initiation of herbivore treatment was used to calculate net regrowth during 

the herbivory period as a measure of tolerance.  Five hole punches (424 mm2) of fresh 

leaf tissue were taken from one “side” of the two largest leaf pairs on each plant, placed 

immediately into 1 mL of methanol and stored at -10oC for cardenolide analysis (below).  

Five identical leaf discs were taken from the opposite “side” of the leaf pairs and stored 

in glassine envelopes to provide estimates of sample dry weights and measures of other 

leaf traits (below).  Latex that flowed from the first five holes punched was collected on a 

pre-weighed cellulose disc (1 cm. diameter), dried, and weighed.  

 

Analysis of Plant Traits 

Aboveground and belowground tissues were dried and weighed to the nearest 0.01 g as 

measures of above- and below-ground biomass.  The number of buds on each rhizome 

was counted and used as a measure of clonal reproduction (Fagerstrom 1992, Wikberg et 

al. 1994). The masses of all five discs were averaged and used to calculate the specific 

leaf mass (SLM = mass/area) for each plant as an index of foliar toughness (Frost & 

Hunter 2008).  The number of trichomes on five subsections of the upper and lower sides 

of each leaf was counted under a dissecting microscope at 4x using an optical 

micrometer, and averaged to a single value for each plant. The amount of leaf tissue 

consumed by caterpillars was estimated on scanned leaves using WinFOLIA software. 

Analysis of cardenolides in leaf tissue was performed using methods modified from 

Malcolm and Zalucki (1996) and Zehnder & Hunter (2007). Briefly, leaf discs were 

ground in methanol for 2 minutes using a ball mill (Rensch MM200), sonicated at 60oC 
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for 1 hour and evaporated to dryness.  Samples were re-suspended in 150 uL of methanol 

containing 0.15 mg/mL digitoxin as an internal standard and analyzed using reverse 

phase high performance liquid chromatography at high system pressures (UPLC, Waters 

Inc). Peaks were detected by absorption at 218 nm using a diode array detector, and 

absorbance spectra were recorded from 200 to 300 nm with digitoxin as the standard. 

Peaks with symmetrical absorption maxima between 217 and 222 nm were recorded as 

cardenolides.  Individual cardenolide compounds were separated by differences in 

retention time.  The cardenolide peaks reported here were detected in at least 2/3 of all 

examined samples.  Total cardenolide concentration was calculated as the sum of all 

separated cardenolide peaks, corrected by the concentration of the internal standard and 

the estimated sample mass. 

 

Statistical Analysis 

We estimated the heritability for each plant phenotypic trait using full-sibling estimates 

of heritability.  Full-sibling heritability estimates approach narrow sense heritability 

measures when all genetic variance is additive, and are typically lower than broad sense 

heritabilities (Falconer 1981, Roff 1997).  Although estimates of behavioral and 

physiological traits can be contaminated by dominance variation, morphological traits 

tend to have lower dominance variation in general. Thus, full-sib estimates of heritability 

are generally robust, compared to regression estimates (Mousseau & Roff 1987, Roff 

1997). We calculated heritability as 2 times the plant genotype variance component, 

divided by the total variance component (H2=(2VCfull-sib)/(VCfull-sib+VCerror)) (Lynch & 

Walsh 1996). We estimated the variance component explained by plant genotype using 

Proc Mixed (SAS v.9.1) using a one-way ANOVA, with Genotype as a random effect to 

extract the genotype variance component (Agrawal 2005). The significance of each 

heritability estimate was calculated using a z-test. Although heritability analyses 

conducted under controlled conditions usually yield higher estimates than do field 

estimates, the two are strongly correlated and heritabilities detected under lab conditions 

are considered meaningful under field conditions (Roff & Simons 1997). We 

acknowledge that a complete forecast of how trait values may change in the long-term 

depends on the pattern of additive genetic variances and covariances of traits (Schluter 
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1996).  As a result, our initial analysis does not currently allow a meaningful calculation 

of genetic covariances, but does describe a useful prerequisite for evolutionary change. 

 

To determine if herbivory (i.e. induction treatment), plant genotype, or CO2 caused 

significant variation in plant growth or defensive traits, F-tests were performed on the 

trait values of all treatment (herbivory) and control plants. Residuals were examined for 

each model and response variables were log-transformed if necessary to improve 

homoscedasticity. Following Quinn and Keough (2002), we used a split-plot model, with 

plant genotype and herbivory treatment crossed within CO2 treatments.  The model was 

run using PROC MIXED in SAS v 9.1.  Herbivory, plant genotype, CO2 and their 

interactions were considered fixed effects, while chamber and its interactions were 

considered random effects.  Differences among treatment means were assessed using 

Tukey’s HSD tests. Here, we focus on plant responses to insect damage. Analysis of D. 

plexippus performance on A. syriaca under ambient and elevated CO2 will be presented 

elsewhere. 
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Results 

Genetic variation and heritability of growth, reproductive, and defense traits  

Genotypes (full-sibling families) of A. syriaca collected from different genets within the 

same Northern Michigan population were highly variable in the expression of growth, 

reproductive, and defensive traits (Table 2.1).  Plant genotypes varied significantly in 

total biomass, bud number, regrowth ability, latex exudation, trichome density, and the 

expression of cardenolides (Table 2.1). However, plant traits were not uniformly heritable 

(Table 2.1). Despite our limited ability to detect significant heritability due to the 

inclusion of only five full-sibling families, we have detected patterns in these data and 

therefore make note of moderately significant trends (p<0.10) in heritability estimates. 

For example, plant growth and reproductive traits such as biomass, root biomass, and the 

number of buds on the rhizome displayed very low levels of heritability (H2=0.02-0.24, 

Table 2.1), while most of the defensive traits, including latex, and all cardenolide 

compounds examined exhibited moderate heritability estimates (H2=0.13-0.32, Table 

2.1), that approached statistical significance (p<0.10). In contrast, specific leaf mass, a 

proxy for leaf toughness, displayed very low heritability (H2=0.03, Table 2.1).  

 

Genotype responses to elevated CO2: growth, reproductive, and defense traits 

Elevated CO2 increased aboveground biomass and belowground biomass by an average 

of 15% (F1,90=4.82, p=0.031; F1,90=3.98, p=0.049, Tables 2.2&2.3), but did so to a similar 

extent among all plant genotypes.  Atmospheric CO2 concentration had no direct effect 

on the number of bud meristems produced on A. syriaca rhizomes (F1,90=0.89, p=0.35, 

Tables 2.2&2.3). Despite substantial effects of CO2 on aboveground and belowground 

biomass, we identified no interactions between genotype and CO2 on belowground 

biomass or meristem bud number produced by each genotype (Fig. 2.1 a&b) or in 

response to herbivory (three-way interaction) (Table 2.2).   

 

In contrast to its effect on growth and reproductive traits, elevated CO2 altered the 

expression of many plant defenses differently depending on plant genotype. Specifically, 

CO2 tended to increase latex exudation in two of the five genotypes (Family*CO2 

F4,90=2.14, p=0.082, Fig. 2.2). Plants grown under elevated CO2 contained on average, 
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20% less cardenolide than those grown under ambient atmospheric conditions 

(F1,90=4.18, p=0.04, Tables 2.2&2.3, Fig.2.3), but plant families were affected to different 

extents by increased CO2.  Some genotypes decreased cardenolide expression to a greater 

extent under elevated CO2 than did others. Of the three cardenolide peaks detected in the 

majority of plants, CO2 affected the expression of cardenolide peak 1 (the most polar 

compound) as well as total cardenolide concentration differently among plant genotypes.  

The concentration of cardenolide peak 1, comprising 5% of total cardenolide 

concentration, was reduced substantially in two genotypes under elevated CO2, whereas 

expression levels in the other genotypes remained unchanged (F4,81=4.69, p=0.0018, Fig. 

2.3a).  Similarly, total cardenolide concentration, comprised of all cardenolides in plant 

foliage including rare and common peaks, also declined in two of the five genotypes 

exposed to elevated CO2 (F4,81=2.58, p=0.043, Fig. 2.3d).  Plants grown under elevated 

CO2 decreased the expression of cardenolide peak 2 (20% of total cardenolide 

concentration), and this effect did not differ significantly among genotypes (CO2 

F1,90=3.33, p=0.0714, CO2xFamily F4,90=1,77, p=0.14, Fig 2.3b).  Elevated CO2 increased 

specific leaf mass by 40% (F1,90=60.29, p<0.0001, Table 2.2) irrespective of plant 

genotype (CO2*Family F4,90=0.20, p=0.937, Tables 2.2&2.3). Elevated CO2 also 

increased the variation among genotype averages in cardenolide expression (Fig. 2.3d), 

but tended to decrease the variation among genotypes in the expression of latex and 

individual cardenolide compounds (Figs 2.2 & 2.3). 

 

Effects of plant genotype and CO2 on plant responses to herbivory 

The amount of leaf tissue consumed by caterpillars did not differ among CO2 treatments 

(F1,79=2.05, p=0.15) or plant genotypes (F4,79=1.42, p=0.236).  Herbivory by caterpillars 

decreased aboveground plant biomass by 15% (F1,81=5.6,, p=0.020, Tables 2.2&2.3).  

Caterpillar herbivory reduced by 20% the rate of plant net regrowth during damage 

(Herbivory F1,81=9.19, p=0.0033, Tables 2.2&2.3). However, elevated atmospheric CO2 

mitigated the negative effect of insect herbivory on plant fitness, measured by the number 

of meristem buds produced on A. syriaca rhizomes (CO2xHerbivory F1,81=7.55, 

p=0.0072, Fig. 2.4).   
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Plant genotypes responded to caterpillar herbivory with altered physical and chemical 

defense expression.  All plant genotypes exhibited a 55% decline in latex exudation 

following caterpillar herbivory (F1,81=69.39, p<0.0001, Tables 2.2&2.3). However, 

elevated CO2 ameliorated the negative effect of caterpillar herbivory on latex exudation 

in some genotypes (3 way interaction F4,90=2.38, p=0.057, Table 2.3). In addition, all 

plant genotypes that were consumed by caterpillars displayed nearly 10% lower specific 

leaf mass than the control plants (F2,81=13.71, p=0.0004, Table 2.2). Neither herbivory, 

CO2, or their interaction affected substantially the density of trichomes on leaf surfaces 

(Table 2.2).  

 

Herbivory by caterpillars induced increases in the concentration of some, but not all, 

foliar cardenolide compounds.   Among all plant genotypes, caterpillar herbivory caused 

an average increase of 50% in the concentration of the second most polar cardenolide: 

peak 2 (F1,81=4.05, p=0.047, Table 2.2).  Similarly, the total concentration of cardenolides 

also increased by 31% in response to herbivory (F1,81=4.81, p=0.031).  The induction of 

chemical defenses was not significantly different among plant genotypes or modified by 

elevated CO2 (Tables 2.2 & 2.3).  
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Discussion 

Rapid environmental change has imposed novel selection regimes on most species, to 

which natural populations must adapt in order to persist in the face of altered conditions.  

Our focal plant population hosts substantial genetic variation in the expression of growth, 

reproductive, and defensive phenotypic traits. Despite high levels of genetic variation in 

nearly all traits examined, our full-sib analysis indicates that defensive traits are more 

heritable than growth or reproductive traits, consistent with classical theory (Mousseau & 

Roff 1987), and thus able to respond evolutionarily to selection. Although our analysis is 

limited to five genotypes, hindering our ability to detect significant heritability, our 

heritability estimates for defense traits in A. syriaca are similar to those described by 

Agrawal (2005), lending support to our results. Additionally, A. syriaca genotypes 

respond differently to elevated CO2 in the expression of defense, but not growth or 

reproductive traits.  From these results, we conclude that elevated CO2 will not directly 

change genotype frequencies within this population of A. syriaca; rather, insect herbivory 

acting on altered defensive phenotype will likely shape the evolution of this plant 

population instead.   

 

Field experiments demonstrate that the specialist herbivores of A. syriaca preferentially 

feed on plants depending on defense expression, previous damage or induction by 

previous herbivores (Van Zandt & Agrawal 2004a, Agrawal 2005), which may drive 

selection in A. syriaca populations (Agrawal 2005).  For example, A. syriaca genotypes 

with high levels of latex exudation or high trichome densities typically host lower 

abundances of weevils, leaf miners, and leaf-feeding beetles than those with lower 

expression of these traits (Agrawal & Van Zandt 2003).  As a result, selective herbivore 

damage is likely to act in combination with genotype-specific effects of elevated CO2 to 

alter the evolutionary (and potentially co-evolutionary) trajectory of this plant population 

and its herbivore community. 

 

Effects of CO2 on plant defense  

Elevated CO2 substantially altered the defensive phenotype of A. syriaca, decreasing 

plant expression of chemical defense and increasing expression of physical resistance and 
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tolerance to herbivory. Elevated CO2 increased plant tolerance to herbivory by mitigating 

the negative effect of herbivory on the number of bud meristems produced on plant 

rhizomes.  This response has been documented in other perennial plants, but is not a 

universal phenomenon.  Betula pendula (silver birch) seedlings are able to compensate to 

herbivory by increasing total net carbon uptake and regrowth following damage 

(Huttunen et al. 2007). In contrast, both Arabidopsis thaliana and Brassica rapa are less 

tolerant to insect herbivory when grown under elevated CO2 (Marshall et al. 2008, Lau & 

Tiffin 2009). The disparate effects of CO2 on plant tolerance identified may be due to the 

different metrics of tolerance assessed in these studies (seed production and regrowth), 

and since perennials can postpone reproductive costs until the next growing season 

(Huhta et al. 2009), the negative effects of herbivory may have not yet been manifest.  

Alternatively, perennials may be able to fully or overcompensate from herbivory damage 

with adequate access to nutrients (Huttunen et al. 2007), while annuals grown under 

elevated CO2 actually display accelerated phenology and a decreased lifespan (Marshall 

et al. 2008).  In this case, perennials may increase allocation to nutrient foraging through 

the growth and proliferation of fine roots or allocation to mycorrhizal symbionts, 

responses which Brassicaceous annuals are unlikely or incapable of performing.   

 

With regard to plant palatability, elevated CO2 increased leaf ‘toughness’ and decreased 

investment in cardenolide compounds among all A. syriaca families. We identified no 

effects of elevated CO2 on the induction of cardenolides.  In previous work, elevated CO2 

has been demonstrated to alter induced responses, increasing induction of N-containing 

glucosinolates in A. thaliana (Bidart-Bouzat et al. 2005), but also decreasing induction of 

proteinase inhibitors in Glycine max (soybean) (Zavala et al. 2008).  However, our study, 

along with the bulk of work on induced responses in perennial plants, indicates no 

substantial effect of elevated CO2 on induction of chemical defenses (Roth et al. 1998, 

Bazin et al. 2002, Agrell et al. 2004, Rossi et al. 2004). Our results indicate that plant 

induction under elevated CO2 does not correspond to predictions made by simple 

resource availability (Bryant et al. 1983), but that alternative plant defense theories based 

on the enzymatic costs of defense and plant ontogeny must be invoked to understand 

these effects (Gershenzon 1994, Boege & Marquis 2005).  
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However, elevated CO2 significantly reduced the constitutive expression of cardenolides 

in A. syriaca.  Although the majority of studies report that elevated CO2 increases the 

expression of carbon-based compounds (Bidart-Bouzat & Imeh-Nathaniel 2008), declines 

in carbon-based compounds have been detected as well. The reductions in cardenolide 

expression may be due to decreased availability of nutrients with which to synthesize 

enzymes (Gershenzon 1994) or resource-based tradeoffs among competing demands.  In 

support of the trade-off mechanism, elevated CO2 increased plant biomass and increased 

latex exudation in two of five plant families, but decreased cardenolide expression, which 

may indicate a trade-off in resource allocation among competing demands (Herms & 

Mattson 1992).   

 

Alternatively, CO2-induced changes in biomass and defensive phenotype may indicate a 

shift to a different ontogenetic stage where plants rely on tolerance and physical defenses 

rather than chemical defense (Boege & Marquis 2005). We were not able to test this 

hypothesis directly, since all plants were harvested at a single point in time.  However, 

unpublished data from our field site shows that A. syriaca loses chemical defense in favor 

of structural defense with age (M.D. Hunter, unpublished data) and elevated CO2 may 

accelerate this.  A similar ontogenetic effect of elevated CO2 on plant defense allocation 

was noted in loblolly pine (Pinus taeda), where elevated CO2 directly increased P. taeda 

biomass, and indirectly increased concentrations of condensed tannins in aboveground 

plant material through accelerated plant growth and ontogeny (Gebauer et al. 1998).  

Elevated CO2 often accelerates development in woody and herbaceous species (Norby et 

al. 1999, Ludewig & Sonnewald 2000), but the consequences for plant defense have 

rarely been considered. Further studies should investigate the effect of elevated CO2 on 

ontogenetic shifts in the defensive phenotype of perennial plant species and subsequent 

effects on herbivores throughout the growing season (Zavala et al. 2009).  

 

CO2 x Genotype interactions 

Despite intraspecific variation in phenotypic response to elevated CO2, changing 

atmospheric composition did not directly affect relative fitness of genotypes within our 
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focal plant population.  Instead, genotypes varied in the expression of defense phenotype 

and the effect of CO2 on the expression of defenses was often genotype-specific.   

 

In this study, elevated CO2 differentially affected the expression of latex and polar 

cardenolide peaks among plant families. A majority of previous work documents that 

plant species harbor genetic variation in the degree to which defense expression responds 

to elevated CO2. Clones of Populus tremuloides respond differentially to elevated CO2 in 

the production of condensed tannins (Mansfield et al. 1999, Lindroth et al. 2001).  

Similarly, Salix myrsinifolia clones produce different amounts of salicin, salicortin, and 

catechin in response to elevated CO2 (Julkunen-Tiitto et al. 1993). Genetic variation in 

the effects of CO2 on defense induction has also been documented. Bidart-Bouzat and 

colleagues (2005) reported significant genetic variation in the induction of total and 

individual glucosinolates by Arabidopsis thaliana under conditions of elevated, but not 

ambient CO2.  In our experiment, elevated CO2 increased variation among milkweed 

genotypes in total cardenolide expression, but decreased among-genotype variation in 

other traits, including latex exudation and some specific cardenolide compounds. 

Apparently, there is no simple relationship in milkweed between elevated CO2 and the 

expression of genetic variance in defense traits.  Some traits (e.g. total cardenolides) may 

exhibit more variation upon which natural selection can act whereas other traits (e.g. 

latex) may exhibit less.  

 

Importantly, the genotypes in this study originated from a single population. Since 

anthropogenic changes to habitat matrices have, in part, limited gene flow among 

populations, in-situ evolution is thought to be increasingly important in determining 

adaptation to changing conditions (Davis & Shaw 2001). As a result, our study allows 

population-level prediction of evolutionary changes in this species in response to 

caterpillar herbivory and rising atmospheric CO2 concentrations.  

 

Our results emphasize the key role of interactions in evolutionary adaptation to global 

climate change. We present evidence that in the absence of insect herbivory, the genetic 

composition of plant populations should not change substantially, but that selective 
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herbivory dependent on plant defensive phenotype (Agrawal & Van Zandt 2003, Van 

Zandt & Agrawal 2004a, Agrawal 2005) could alter gene frequency within this 

population. Managing populations under changing global conditions will require not only 

an understanding of populations’ genetic diversity and ability to adapt to changing 

conditions (Reusch & Wood 2007), but will also require that we anticipate the effects of 

species interactions on these adaptive responses (Hulme 2005).   

 

Conclusions 

A. syriaca families display substantial variation and heritability in the phenotypic 

expression of traits, especially those traits implicated in defense against herbivores.  

Elevated CO2 has substantial effects on A. syriaca defensive phenotype, shifting it from 

chemical defense towards increased tolerance and expression of physical defenses.  

Despite significant effects of elevated CO2 on A. syriaca growth and fitness components, 

the effects of elevated CO2 uniformly increased growth and reproductive traits similarly 

among all plant families.   However, elevated CO2 affects the expression of plant 

defensive phenotype differently among families and increased variation in expression of 

cardenolides among plant families. In this way, genetic variation in defense response to 

elevated CO2 and resulting changes in plant-herbivore interactions may mediate plant 

adaptation to changing climate. 
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Table 2.1 Number of values (N) used to calculate trait means (Mean), F-ratio for plant genotype, variance component (VC) explained 
by genotype, and full-sib heritability (H2) for growth, reproductive and defensive traits of Asclepias syriaca from Pellston, MI. 
 
 
 

Plant Trait N Mean F VCfull-sib VC error H 2

Growth and Reproductive Traits
Aboveground Biomass 197 0.316 6.04*** 0.00 0.02 0.11
Belowground Biomass 197 0.834 1.86 0.00 0.13 0.02

Rhizome Mass 197 0.537 1.74 0.00 0.01 0.24
Bud Number 197 27.6 1.84 3.85 197.74 0.02

Regrowth 197 0.737 2.87* 0.02 0.41 0.05
Defense Traits

Latex 197 1.47 6.87*** 17.80 117.71 0.13+
Trichome Density 197 5.89 5.15*** 0.10 0.46 0.18+

SLM 197 0.0212 2.2+ 0.00 0.00 0.03
Cardenolide Peak 1 188 0.06 11.49*** 0.00 0.00 0.2+
Cardenolide Peak 2 188 0.27 6.03*** 0.02 0.05 0.26+
Cardenolide Peak 3 188 0.5 17.49*** 0.08 0.19 0.31+
Total Cardenolides 188 1.13 20.39*** 0.27 0.60 0.32+

Significance of Heritability Estimates are based on z-scores, with +p<0.10, *p<0.05, **p<0.01



 

Factor Level Aboveground Biomass Belowground Biomass Rhizome Mass Bud Number Regrowth ln(Latex) Trichome Density SLM Cardenolide Peak 1 Cardenolide Peak 2 Cardenolide Peak 3 Total Cardenolides
Plant Genotype A ab0.340±0.023 a0.8696±0.059 a0.5716±0.048 a28.26±2.7 b0.664±0.12 ab2.31±0.12 ab5.01±0.23 ab0.211±0.0095 a0.0255±0.01 a0±0.046 a0.133±0.072 a0.201±0.149

B b0.353±0.023 a0.8697±0.057 a0.565±0.047 a24.89±2.6 ab0.365±0.12 b2.76±0.12 a4.46±0.23 ab0.222±-0.0095 c0.109±0.01 a0.0622±0.047 ab0.336±0.073 b0.698±0.15
C a0.253±0.023 a0.7304±0.057 a0.447±0.047 a30.04±2.6 a0.194±0.12 ab2.11±0.13 b5.58±0.23 a0.195±0.0093 a0.0469±0.01 b0.203±0.047 b0.552±0.074 b0.906±0.015
D b0.337±0.023 a0.7239±0.058 a0.0494±0.047 a33.05±2.6 ab0.341±0.12 b2.42±0.11 b5.22±0.23 b0.232±-.0093 bc0.0958±0.01 b0.297±0.046 b0.415±0.072 b0.910±0.15
E a0.227±0.023 a0.7200 ±0.058 a0.507±0.047 a27.64±2.6 ab0.366±0.12 a1.91±0.13 b5.20±0.23 ab0.211±0.0092 b0.0667±0.01 b0.33±0.047 c0.942±0.072 c1.712±0.15

Herbivory No Herbivory b0.327±0.014 a0.803±0.036 a0.513±0.037 a28.8±2.0 b0.522±0.095 b2.77±0.076 a5.15±0.18 b0.229±0.0059 a0.0629±0.006 b0.14±0.036 a0.459±0.046 a0.766±0.12
Caterpillar a0.277±0.014 a0.762±0.037 a0.521±0.037 a28.7±2.01 a0.250±0.095 a1.84±0.081 a5.03±0.18 a0.199±0.0059 a0.0745±0.006 a0.21±0.037 a0.492±0.046 b1.00±0.12

CO2 Ambient a0.279±0.014 a0.731±0.037 a0.469±0.037 a27.83±2.0 a0.391±0.097 a2.36±0.078 a4.96±0.18 a0.182±0.0059 a0.007890.006 a0.209±0.037 a0.519±0.046 b0.997±0.12
Elevated b0.325±0.014 b0.835±0.036 b0.564±0.036 a29.7±2.0 a0.382±0.094 a2.25±0.079 a5.22±0.17 b0.247±0.0059 b0.0584+0.006 a0.149±0.036 a0.432±0.046 a0.774±0.12

Table 2.2. Measurements of Asclepias syriaca growth, reproductive, and defense traits in an open-top chamber study.   
Values given are mean trait values± SE.  Trait values for plant genotypes were pooled across all herbivory and CO2 treatments, values 
for herbivory treatments were pooled across genotypes and CO2 treatments, and values for CO2 treatments were pooled across 
genotypes and herbivory treatments.  aPost-hoc comparison of means using Tukey-Kramer adjustment (p<0.05).  Means preceded by 
the same letter within each factor are not significantly different.     
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Table 2.3. F-ratios testing the effects of plant family, CO2 concentration, herbivory, and their interactions on the expression of 
Asclepias syriaca growth, reproductive, and defense traits.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source of Variation df Aboveground Biomass Belowground Biomass Rhizome Mass Bud Number Regrowth Latex Trichomes SLM Cardenolide Peak 1 Cardenolide Peak 2 Cardenolide Peak 3 Total Cardenolides
 Genotype 4 6.04*** 1.86 1.74 1.84 2.87* 6.87*** 5.15*** 2.2+ 11.49*** 16.03*** 17.49*** 20.39***

CO2 1 4.82* 3.98* 7.43** 0.89 0.01 0.93 2.63 60.29*** 5.04* 3.33+ 1.84 4.18*
Herbivory 1 5.6* 0.63 0.06 0 9.19** 69.39** 0.55 13.71*** 1.6 4.05* 0.24 4.81*

Genotype*CO2 4 0.44 0.42 0.79 0.16 1.04 2.14+ 0.94 0.2 4.69** 1.77 0.85 2.58*
Genotype*Herbivory 4 1.63 0.66 0.76 1.28 0.44 0.91 0.67 1.01 0.99 0.98 0.71 0.94

CO2*Herbivory 1 0 0.07 0.96 7.55** 0.15 3.57+ 0.03 2.56 0.74 0.22 0.54 0.85
Genotype*CO2*Herbivory 4 0.47 0.17 0.14 1.03 0.67 2.38+ 0.34 0.24 0.71 0.63 0.3 1.41

+p<0.10, *p<0.05, **p<0.01, ***p<0.001, Bold indicates significance after Bonferroni correction
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Figure 2.1. a&b The effect of elevated CO2 on genetic families of Asclepias syriaca in 
the production of a) belowground (rhizome plus fine root) biomass, and b)number of 
meristem buds on the rhizome, both traits associated with fitness.  Bars represent mean 
trait values ± 1 S.E. pooled across herbivory treatments and F and p values are derived 
from the full model. 
 
 

Genotype  F4,90 =0.42, p=0.79 

Genotype  F4,90 =0.16, p=0.96 

a) 

b) 
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Figure 2.2. The effect of elevated CO2 on latex exudation among genetic families of 
Asclepias syriaca.  Bars represent the mean dry mass of latex exuded ± 1 S.E. pooled 
across all herbivory treatments and F and p values are derived from the full model.   
 
 
 
 
 
 
 

Interaction: F 4,90 =2.14, p=0.082 
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Figure 2.3. a-d The effect of elevated CO2 on constitutive expression of cardenolide 
peaks 1-3 and total cardenolide concentrations (a-d) among five genetic families of 
Asclepias syriaca.  Bars represent the mean concentration of cardenolides in foliar tissue 
± 1 S.E. pooled across herbivory treatments and F and p values are derived from the full 
model. F-values listed are for genotype x CO2 interaction. Asterisks indicate differences 
between ambient and elevated CO2 treatments within families, using Tukey-Kramer 
adjustments for all pairwise comparisons. 
 
 

Interaction F 4,90=4.69, p= 0.0018 Interaction F 4,90=1.77, p= 0.14 

Interaction F 4,90=0.85, p= 0.49 Interaction F 4,90=2.58, p= 0.043 

a) b) 

c) d) 



 
39 

 
 
 

 
 

 
Figure 2.4. The interaction of elevated CO2 and insect herbivory on the number of 
Asclepias syriaca rhizome buds following herbivore treatment.  Bars represent mean trait 
values ± 1 S.E. pooled across genotypes and F and p values are derived from the full 
model.  
 
 
 
 
 
 
 
 
 
 
 

Interaction F1, 90=7.55, p=0.0072 

Caterpillar Herbivory Control (No Herbivory) 
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Chapter III 
 

Multiple pathways mediate the effects of aboveground herbivory on mycorrhizae 
 
Abstract 

Plants interact with other organisms residing both above- and below ground, and can 

dynamically link these communities through multiple pathways.  For example, 

aboveground herbivory can either increase or decrease colonization of plant roots by 

mycorrhizal fungi. Multiple mechanisms, including changes in the availability of 

photosynthate, may affect the strength and direction of this interaction. We formalized six 

structural models depicting hypothesized mechanisms by which aboveground herbivory 

affects plant growth, defense expression and root colonization by mycorrhizal fungi. We 

employed a novel application of multiple-groups structural equation modeling (MG-

SEM), to explore if and how carbon fertilization (CO2 enrichment) and herbivore identity 

(leaf-chewing caterpillar and phloem-feeding aphid) modify the effect of aboveground 

herbivory on mycorrhizal colonization. Our results show that the effect of aboveground 

herbivory on mycorrhizal colonization is mediated through a combination of direct and 

indirect pathways, including a reduction in defense expression following herbivory.  

Furthermore, MG-SEM revealed that aboveground herbivory by either aphids or 

caterpillars increases mycorrhizal colonization under elevated CO2, but not ambient CO2.  

Herbivory by caterpillars, but not aphids, strongly decreased the expression of plant 

defense, and as a consequence, indirectly increased mycorrhizal colonization under 

ambient CO2. Our results suggest that herbivore-specific changes in the expression of 

defense and availability of photosynthate constrain mycorrhizal associations following 

herbivory. 
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Introduction 

Feedbacks between aboveground interactions (eg. herbivory) and belowground processes 

(eg. decomposition) are increasingly recognized as key processes in ecological 

communities (Wardle et al. 2004, Lemons et al. 2005, van Dam and Heil 2011).  For 

example, belowground herbivory can drive patterns of succession and plant community 

composition aboveground (Brown and Gange 1989).  Conversely, insect herbivores can 

deposit frass, increasing nutrient mineralization belowground, which can feed back to 

alter plant quality (Frost and Hunter 2008).  Despite the importance and prevalence of 

above-belowground interactions, it remains difficult to anticipate the strength or direction 

of these interactions and how they may respond to changing ecological conditions (van 

der Putten et al. 2009).  

 

Plants link above and belowground systems through changes in physiology or resource 

allocation patterns (Holland et al. 1996, Henkes et al. 2008). Plants must respond to 

herbivore attack above ground while maintaining mutualistic associations with microbial 

partners below ground (Hamilton & Frank 2001).  The majority of plant taxa rely on 

mycorrhizal fungi for growth, survival (Smith and Read 2008), reproduction (Stanley et 

al. 1993), tolerance to damage (Kula et al. 2005) and resistance to herbivores (Vannette 

and Hunter 2011b) and plant pathogens (AzconAguilar and Barea 1996).  The abundance 

and diversity of mycorrhizal fungi with which plants associate can strongly affect plant 

community composition (van der Heijden et al. 1998), primary productivity (van der 

Heijden et al. 2008) and soil carbon (C) storage (Wilson et al. 2009). The degree of 

mycorrhizal colonization also can strongly influence both plant and fungal performance 

(Gange and Ayres 1999, Johnson et al. 2010).  For example, low colonization can limit 

nutrient uptake (Sanders et al. 1977, Lekberg and Koide 2005) and protection against 

root-feeding nematodes (de la Pena et al. 2006).  Conversely, high levels of fungal 

colonization may decrease plant growth (Douds et al. 1988), tolerance to damage 

(Garrido et al. 2010), and resistance to herbivores (Vannette and Hunter 2011b). As a 

result, the degree of association between plants and mutualistic fungi may drive 

population, community, and ecosystem-level processes.  Mycorrhizal interactions are 

maintained in large part through allocation by plants of labile C to mycorrhizal fungi 
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(Nehls et al. 2007, Baier et al. 2010).  Because mycorrhizal fungi are considered to be 

obligate symbionts of their plant hosts (Smith and Read 2008), C availability is generally 

thought to limit plant-fungal associations and structure mycorrhizal interactions (Smith 

and Read 2008).  

 

Herbivores that consume above and belowground plant tissue (Strong et al. 1984) and by 

removing nutrient-rich tissue, photosynthetic apparatus, or consuming directly the carbon 

that plants use to support mycorrhizal symbionts, herbivory can reduce mycorrhizal 

colonization (Gehring and Whitham 1994, Markkola et al. 2004, Gange 2007). Carbon 

availability can strongly affect plant response to defoliation in some systems; for 

example, extreme defoliation strongly decreases ectomycorrhizal colonization in Betula 

pubescens (white birch) (Markkola et al. 2004) and extensive herbivory by rabbits 

decreases mycorrhizal colonization of grasses (Wearn and Gange 2007). However, the 

effect of herbivory on mycorrhizal colonization varies among and within studies. In 

contrast to the studies mentioned above, heavy grazing by cattle (Eom et al. 2001) and 

herbivory by grasshoppers (Kula et al. 2005) both increased mycorrhizal colonization of 

prairie grasses. While the divergent outcomes among studies may simply be due to 

variation in carbon limitation imposed by herbivores, a recent meta-analysis identified no 

relationship between the proportion of tissue damaged and the effect on mycorrhizal 

fungi, and called into question the generality of the carbon limitation hypothesis (Barto 

and Rillig 2010). In addition, other mechanisms by which herbivores may affect 

mycorrhizae have recently been proposed.  For example, herbivory can induce changes in 

plant secondary metabolism belowground (Bezemer and van Dam 2005) and induction of 

general or specific defenses may negatively affect mycorrhizal associations (Kleczewski 

et al. 2010, de Román et al. 2011).  Additionally, hormonal signaling can mediate plant 

response to herbivory and may directly or indirectly alter mycorrhizal colonization 

(Tejeda-Sartorius et al. 2008, Kiers et al. 2010). We may begin to reconcile these 

seemingly contradictory studies and alternate approaches by examining and comparing 

among multiple pathways that may mediate the effects of herbivores on mycorrhizal 

fungi.  

 



48 

In order to understand and better predict how aboveground herbivory affects mycorrhizal 

associations and what mechanisms cause these changes, we formulated testable models 

from recently proposed hypotheses and used structural equation modeling (Cronin et al. 

2009, Schumacker and Lomax 2010) to compare among them using data from an 

experiment.  We then used a novel application of multiple group SEM (MG-SEM) 

(Schumacker and Lomax 2010) to examine whether resource availability and herbivore 

identity alter the strength and direction of pathways between aboveground herbivory and 

mycorrhizal colonization.   

 

Model Specification 

We formalized six alternative causal models that integrate potential mechanisms by 

which aboveground herbivory affects belowground defense and mycorrhizal associations.  

Model 1 (Damage Model, Fig 3.1a) summarizes potential effects of herbivores on 

mycorrhizal colonization mediated by damage to aboveground tissue, and implicit 

regrowth costs.  Plant tissue damaged by, or lost to, herbivores must be repaired or 

replaced, which may decrease primary metabolites available for overall plant growth, 

allocation to mycorrhizal fungi and belowground plant defense (Gehring and Whitham 

1994, Gange 2007). 

 

Model 2 (Root Allocation, Fig 3.1b). Plants under attack may instead allocate primary 

metabolites belowground (Dyer et al. 1991) to protect these resources from herbivores 

(Tao and Hunter 2011). The flux of carbon belowground may increase defense synthesis 

(Kaplan et al. 2008) and allocation to mycorrhizal fungi. 

 

Model 3 (Induction Costs, Fig 3.1c). Upon herbivore attack, plants exhibit a wide 

variety of physiological and genetic defense responses including the up-regulation of 

defense genes and synthesis of secondary metabolites above or belowground (Karban and 

Baldwin 1997, Dicke and Hilker 2003) Induction responses may be costly and are 

predicted to decrease plant growth (Heil 2001, Walters & Heil 2007) and resources 

available to support mycorrhizal fungi (Gehring and Whitham 1994). 
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Model 4 (Toxicity, Fig 3.1d). In contrast to Model 3, the main effect of herbivores on 

mycorrhizal colonization depicted in Model 4 is mediated by higher concentrations of 

plant defense toxins within roots.  Chemical defenses in roots and shoots can co-vary 

(Rasmann and Agrawal 2011) and defense induction above ground can subsequently 

increase defense expression below ground (Soler et al. 2005).  Because the activation of 

generalized or specialized defense-related genes and protein products in roots may 

directly affect mycorrhizal colonization through toxicity or other mechanisms 

(Kleczewski et al. 2010, de Román et al. 2011), the concentration of defense is predicted 

to negatively affect mycorrhizal fungi (Strauss et al. 2002).  

 

Model 5 (Water Stress, Fig 3.1e).  Herbivores may increase water loss or decrease 

turgor pressure in plants by compromising waterproof barriers during damage or by direct 

consumption of phloem (Schmidt et al. 2009). As a consequence, plants may close 

stomata, decreasing photosynthetic rates (Quick et al. 1992), and reduce C flow to 

mycorrhizal fungi or other demands.  

 

Model 6 (Full Model, Fig 3.1f).  Because all of the mechanisms described above may act 

simultaneously, we compared Models 1 through 5 to a full model that included all of the 

above processes.   

 

In all of the models described so far, we consider the interactions between herbivores and 

mycorrhizal fungi to be indirect, mediated by resource allocation for other functions.  

However, plants are known to target resources directly to soil symbionts in response to 

defoliation (Holland et al. 1996, Hamilton and Frank 2001).  In mycorrhizae, such direct 

interactions may be fine tuned by expression of invertases (Wright et al. 1998).  We 

therefore tested each of the above models with and without the presence of a direct 

pathway from herbivores to mycorrhizal colonization (paths not shown in Fig 3.1 for ease 

of interpretation).  

 

Context-Dependence: Herbivore Identity and Resource Availability 
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The relative strength of the mechanisms proposed above may vary with environmental 

context.  For example, the identity of herbivore may affect plant defense and resource 

allocation patterns based on herbivore feeding mode or the plant organ consumed (Stout 

et al. 1994).  Aphids consume photosynthate-rich phloem, whereas caterpillars consume 

nutrient-rich foliar tissue. Plants respond differently to carbon or nutrient limitation 

(Bloom et al. 1985), so while nutrient limitation can increase allocation to mycorrhizal 

fungi (Treseder and Allen 2002), carbon limitation imposed by phloem-feeders may 

instead decrease mycorrhizal colonization (Delvecchio et al. 1993). We therefore 

hypothesized that herbivory by caterpillars and aphids would differentially affect 

mycorrhizal colonization.  In addition, if C availability limits allocation to mycorrhizal 

fungi following herbivory, we hypothesized that C fertilization (plant growth under 

elevated CO2) would alleviate C-based tradeoffs and increase plant allocation to 

mycorrhizal fungi among all treatments.   

 

Analysis Overview 

To investigate how aboveground herbivory affects mycorrhizal associations, we 

compared 6 causal models (above) in which aboveground herbivory affects measurable 

plant traits and ultimately mycorrhizal colonization. We tested these alternative models 

against the results of an experiment (n = 400 plants), in which plants were grown in 

ambient and elevated CO2 and herbivory was imposed by either caterpillars or aphids to 

determine which causal model was best supported. Then we separated these data into four 

treatment groups and examined the effects on mycorrhizal colonization of aphid 

herbivory under ambient CO2, aphid herbivory under elevated CO2, caterpillar herbivory 

under ambient CO2, and caterpillar herbivory under elevated CO2 (n = 100 for each 

group).  We used MG-SEM to test the hypothesis that resource availability and herbivore 

identity alter the strength and direction of pathways linking above and belowground 

interactions.   

 

Materials and Methods 

Study System 
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The common milkweed, Asclepias syriaca, inhabits open fields throughout eastern North 

America, and associates with mycorrhizal fungi throughout its range (Medve 1984, 

Chapter IV).  Asclepias syriaca is attacked by specialized insect herbivores, including 

leaf chewers, phloem feeders, leaf miners, stem feeders, root feeders, and seed predators. 

Many physical and chemical traits deter milkweed herbivores and the expression of 

defense traits can be affected by herbivory in A. syriaca, in both above (Malcolm and 

Zalucki 1996, Martel and Malcolm 2004, Van Zandt and Agrawal 2004, Zehnder and 

Hunter 2007) and belowground plant tissue (Rasmann et al. 2011). In milkweed, the 

expression of toxic cardenolides in both above and belowground tissues covary 

(Rasmann and Agrawal 2011).  Plant defenses may be costly to produce, either in terms 

of carbon substrate or nutrients required for enzymatic synthesis (Gershenzon 1994), and 

defense expression may trade off with growth or other plant functions (Herms and 

Mattson 1992) and may negatively affect plant mutualists (Strauss et al. 2002), including 

mycorrhizal fungi. In our system, A. syriaca is known to increase growth at the expense 

of some defenses under CO2 enrichment (Chapter II).  

 

Experimental Design 

Asclepias syriaca pods were collected from a single population in northern Michigan at 

the University of Michigan Biological Station (UMBS) in Pellston, MI during Fall 2007. 

During May 2008, we established 5 genetic families of full siblings, each generated from 

a single pod from one of five field clones (Kabat et al. 2010).  Seeds were cold stratified 

for 4-5 weeks during spring 2008, and were germinated in May 2008 on moist filter paper 

at 25oC.  Following germination, seedlings were planted into 50 mL cells containing 

potting soil (SunGrow Metromix) and reared in a growth chamber for two weeks. Eighty 

seedlings of each family were planted individually into 6 inch pots containing approx 1L 

of a 2:1 mixture of potting soil (SunGrow Metromix) and unsterilized UMBS Rubicon, 

respectively; plants were not fertilized. Soil was homogenized in a cement mixer to 

ensure equal inoculation with local mycorrhizal fungi across treatments.  Transplanted 

seedlings were kept in the UMBS glasshouse for 2 weeks to prevent frost damage.  
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Four weeks after the initial planting (June 1-2, 2008), A. syriaca individuals were placed 

in controlled atmosphere chambers in the field at UMBS. The chamber array consisted of 

40 chambers, with 20 maintained at ambient CO2 concentrations, and 20 maintained at 

elevated CO2 concentrations (760 ppm, dawn until dusk).  Each chamber held two 

individual plants from each of the five plant families (10 plants per chamber).  Twenty 

chambers (10 ambient, 10 elevated) were assigned to caterpillar treatments while 20 

chambers (10 ambient, 10 elevated) were assigned to aphid treatments.  Atmospheric CO2 

concentrations were monitored daily in all elevated CO2 chambers and 2 ambient 

chambers using a LI-COR LI-6262 IRGA and CO2 was adjusted to maintain the target 

concentration in each elevated CO2 chamber. Two weeks before the herbivory treatments 

were initiated (early July, 2008), when plants were approximately two months old, all 

plants were covered with a fine mesh (paint strainer bags, Mastercraft Mfg.) to keep any 

local herbivores from consuming the plants or inducing plant defenses.     

 

Aphids were reared asexually from a single Aphis asclepiadis female taken from a natural 

population at UMBS and maintained on Asclepias syriaca plants in the greenhouse.  We 

captured five gravid monarch butterflies from the field at UMBS, allowed them to lay 

eggs in the laboratory, and collected eggs on leaf discs using a hole punch and stored 

them in a refrigerated incubator until use (maximum two weeks).  All monarch eggs 

came from five wild caught females of unknown provenance.   

 

The aphid and caterpillar treatments were initiated on July 15, 2008, 5 days before plants 

were harvested. Aphid treatments were initiated with two to five 4th or 5th instar aphids 

per treatment plant, and final aphid densities reached an average of 65.5 ±5.05 aphids/g 

of aboveground plant biomass, well within field densities at our site, and significantly 

higher than the aphid densities found on bagged control plants (1.5 ± 1.05 aphids/g.).  For 

caterpillar introduction, a single D. plexippus egg that had darkened just prior to larval 

eclosion was ‘glued’ to the leaf of each treatment plant using milkweed latex.  Eggs were 

placed on a single individual of each plant family in each of 10 ambient and 10 elevated 

CO2 chambers (100 plants total). The larvae hatched within hours and were allowed to 

eat for 5 days following eclosion, resulting in the consumption of approximately 10-20% 
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of each plant.  Both control and herbivore treatment plants remained covered in mesh 

during the aphid and caterpillar treatments. 

 

Harvest 

Plants were harvested at 12 weeks of age and each had between 3 and 11 pairs of 

opposite leaves. All plant heights were measured, and vertical growth since initiation of 

herbivore treatment was used to calculate plant growth rate during herbivory.  Five hole 

punches (424 mm2) of fresh leaf tissue were taken from one “side” of the two largest leaf 

pairs on each plant, placed immediately into 1 mL of methanol and stored at -10oC for 

cardenolide analysis (below).  Five identical leaf discs were taken from the opposite 

“side” of the leaf pairs and stored in glassine envelopes to provide estimates of sample 

dry weights and measures of other leaf traits (below).  Latex that flowed from the first 

five holes punched was collected on a pre-weighed cellulose disc (1 cm. diameter), dried, 

and weighed. All plants were separated into above and belowground tissues, dried, and 

weighed. 

 

Analysis of Plant Traits 

Plant traits were assessed as described in Chapter II. Above and belowground plant tissue 

was dried and weighed to the nearest 0.01 g as measures of above- and below-ground 

biomass. Analysis of cardenolides in leaf and root tissue was performed using methods 

modified from Malcolm and Zalucki (1996) and Zehnder & Hunter (2007).   Plant 

material was ground in methanol for 2 minutes using a ball mill (Rensch MM200), 

sonicated at 60oC for 1 hour and evaporated to dryness.  Samples were re-suspended in 

150 uL of methanol containing 0.15 mg/mL digitoxin as an internal standard and 

analyzed using reverse phase high performance liquid chromatography at high system 

pressures (UPLC, Waters Inc) using an Acquity column (1.7 μm, 2.1x50 mm, Waters, 

Milford, MA, USA). Peaks were detected by diode array at 218 nm, and absorbance 

spectra were recorded from 200 to 300 nm with digitoxin as the standard. Peaks with 

symmetrical absorption maxima between 217 and 222 nm were recorded as cardenolides. 

Total cardenolide concentration was calculated as the sum of all individual cardenolide 

peaks, corrected by the concentration of the internal standard and the sample mass. 
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A subset (c. 0.5 g) of fresh fine root tissue was sampled from each plant, cleared with 

10% KOH for 10 minutes, acidified using 2% HCl and stained in 0.05% trypan blue in 

1:1:1 water: glycerine:lactic acid.  Roots were mounted on slides and scored using the 

magnified gridline intersect method (McGonigle et al., 1990).  A site was considered 

colonized if AM hyphae, arbuscules, or vesicles were present.  

 

Statistical Analysis 

Prior to analysis, we transformed response variables as necessary to meet the assumptions 

of normality and homogeneity of variance, and examined bivariate correlations for 

linearity, as required for linear SEM models (Schumacker and Lomax 2010). We 

estimated each plant’s total investment in aboveground defense by summing the z-scores 

(centered and standardized values) for all measured aboveground defensive traits 

including foliar cardenolide concentration, specific leaf mass, trichome density, and latex 

exudation (Agrawal and Fishbein 2006). Total root cardenolides were calculated by 

multiplying root cardenolide concentration by total root mass.  Data were imported into 

AMOS (Arbuckle 2006), where all SEM analyses were performed.  To avoid listwise 

deletion, we used AMOS ML imputation to estimate missing data points (<3%)  (Allison 

2002).  Analysis of data after listwise deletion gave qualitatively similar results.  

 

To choose among causal models from our six proposed alternatives, we first required the 

SEM to be a good fit to the observed data.  There is no single best measure of fit for 

SEM, but models are typically considered to be a good fit when χ2 p-value > 0.10, CFI is 

maximized and RMSEA and AIC are minimized (Schumacker and Lomax 2010).  We 

report multiple fit indices for all candidate models (Table 3.1) and confidence intervals 

for RMSEA as reported by AMOS (Arbuckle 2006).  We then used the single best-

supported model chosen among the multiple causal models as a baseline for multiple 

group analysis (MG-SEM) in AMOS. We tested for multigroup invariance, that the 

treatment groups differ in their regression coefficients or factor covariances (Jöreskog 

1971, Byrne 2004).  Testing for invariance is a multistep process whereby increasingly 

invariant models (those with more constraints) are tested against ‘free’ models (where 

parameters, intercepts etc. may vary among treatment groups), and the difference in fit is 
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assessed (Byrne 2004).  We tested the fit of the unconstrained model against increasingly 

constrained models (Table 3.2). We then chose the best supported of these models and 

examined the regression coefficients to assess if herbivore identity or resource 

availability altered the effects of herbivory on mycorrhizal colonization (Fig. 3.2). 
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Results 

Best-fit model 

Using SEM to compare among alternative models using the entire dataset, we found that 

adding a direct pathway from herbivory to mycorrhizal colonization significantly 

improved the fit of all proposed models, so this pathway was included in the final 

structural model. Multiple fit statistics indicated that the covariance structure of the data 

best fit that proposed by the Induction Costs model (Table 3.1, Fig 3.1c).  In this model, 

aboveground herbivory affects mycorrhizal colonization through changes in aboveground 

plant defense expression and total root defense (cardenolides). The Induction Costs 

model was well-supported using the full dataset and provided a good fit to the data using 

established criteria (Schumacker and Lomax 2010). Root Allocation, Toxicity, Water 

Stress, and the Full model were poor fits to the data (Table 3.1).  The Damage Model 

(Fig. 3.1a), which implicitly includes carbon costs, also provided an adequate, though 

weaker, fit to the data (Table 3.1).  

 

Multiple-Groups Comparison 

The MG-SEM performed on the Induction Costs model revealed that the least 

constrained model, containing four groups in which pathways were allowed to vary 

among each treatment group, best fit the data (Table 3.2).  This indicates that herbivory 

and resource availability affect the direction and/or strength of pathways (mechanisms) 

that mediate interactions between aboveground herbivores and mycorrhizal colonization.   

 

Effects of Herbivore Identity and Resource Addition on Model Coefficients 

Because the unconstrained four-group model was a better fit to our data than the single-

group model, we compared the path coefficients among the four treatment groups to 

assess the direct (unmeasured plant mediated effects) and indirect (measured changes in 

plant growth and defense traits) pathways that mediate the effect of aboveground 

herbivory on mycorrhizal associations. Carbon fertilization strongly increased 

mycorrhizal colonization following herbivory by both D. plexippus and A. asclepiadis 

(Fig. 3.2 c & d) through direct routes (Fig. 3.3).  However, the strength of the indirect 

pathways varied most depending on herbivore species identity (Fig. 3.3), and the 
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direction of the indirect effect was determined by carbon fertilization (Fig. 3.3).  

Specifically, herbivory by D. plexippus decreased total plant defense expression above 

and belowground under both ambient and elevated CO2 (Fig. 3.2 b & d), driven mostly 

by a reduction in latex exudation and specific leaf mass. However, the indirect effect of 

caterpillar herbivory on mycorrhizal fungi, mediated by changes in defense, depended on 

CO2 fertilization (Fig. 3.2 b & d). Under ambient CO2, decreased defense expression was 

positively associated with mycorrhizal colonization, while under conditions of elevated 

CO2, decreased defense expression did not lead to increased mycorrhizal colonization. 

Herbivory by A. asclepiadis aphids did not significantly change aboveground defense 

expression, and as a result, aphid herbivory affected mycorrhizal fungi mainly through 

direct pathways (Fig. 3.3).  

  

Total aboveground defense and root cardenolide expression were positively correlated in 

all but one of the groups.  Conversely, the total expression of root cardenolides tended to 

be negatively correlated to mycorrhizal colonization in ambient aphid and elevated 

caterpillar treatments, but positively correlated in elevated aphid and ambient caterpillar 

treatments (Fig. 3.2).  Aboveground defense was negatively correlated with plant growth 

rate in all treatment groups (Fig. 3.2).  
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Discussion 

We compared among alternative causal models to determine the pathways by which 

aboveground herbivory affects mycorrhizal colonization, and if herbivore identity or 

carbon fertilization affected the strength and direction of those pathways.  A comparison 

among SEM models identified strong support for the Induction Costs model, in which 

changes in plant defense phenotype (indirect pathway) and a direct (unmeasured) 

pathway combine to mediate the effects of aboveground herbivores on mycorrhizal 

colonization. This model was also a good fit statistically to each individual treatment 

group and the best model overall for 3 of the 4 treatment groups.  We then explored if the 

strength of each pathway varied among treatment groups using MG-SEM and examined 

the path coefficients within each group.  This analysis revealed that herbivory by 

caterpillars, but not aphids, strongly reduced the expression of plant defense above- and 

below-ground and was linked to changes in mycorrhizal colonization.  However, the 

direction of this indirect effect depended on the carbon fertilization treatment: under 

ambient CO2, caterpillar-induced reduction in aboveground defense increased 

mycorrhizal colonization, whereas this effect was negligible under elevated CO2.  In 

addition, elevated CO2 enhanced the positive direct effect of both caterpillar and aphid 

herbivory on mycorrhizal colonization. We suggest that variation in the strength of the 

multiple possible direct and indirect pathways is mediated by herbivore identity and the 

availability of photosynthate and may reconcile reports of positive and negative effects of 

plant damage on mycorrhizal colonization (Delvecchio et al. 1993, Eom et al. 2001, 

Gange et al. 2002, Wearn and Gange 2007). 

 

Carbon limitation 

Resource availability can limit plant growth, the expression of defense phenotype, and 

other demands, such as allocation to mycorrhizal fungi through allocation tradeoffs 

(Herms and Mattson 1992, Gehring and Whitham 1994).  However, the extent to which 

carbon limitation structures mycorrhizal colonization following herbivory has been called 

into question (Barto and Rillig 2010).  In our study, growth under elevated CO2 allowed 

plants to increase mycorrhizal colonization substantially following aboveground 

herbivory, regardless of herbivore identity.  Although we did not directly quantify plant 
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carbon availability, two lines of evidence offer support for the carbon limitation 

hypothesis proposed by Gehring and Whitham (1994)--that carbon availability structures 

plant associations with mycorrhizal fungi.  First, our best-supported model includes 

tradeoffs between the expression of defense and mycorrhizal colonization, and plant 

growth rate. Secondly, specific path coefficients within the MG-SEM point towards 

carbon-based tradeoffs between the expression of plant defense and growth or 

mycorrhizal colonization. In particular, the expression of aboveground defense was 

negatively correlated with plant growth rate in all four treatment groups, although only 

significantly so in plants grown under ambient CO2 and exposed to aphids (Fig. 3.2a).  

Furthermore, all models included a negative correlation between aboveground or 

belowground defense and mycorrhizal colonization, indicating a tradeoff or cost 

associated with the expression of defense.  

 

The negative correlation between defense and colonization identified through structural 

equation modeling was also evident as a tradeoff among plant genotypes (Fig. 3.4).  This 

is a pattern similar to that reported by De Deyn and colleagues in the expression of 

iridoid glycosides and mycorrhizal colonization among lines of Plantago lanceolata 

(2009). In order to distinguish the cost of defense expression from direct effects of 

defense on mycorrhizal fungi (ie. toxicity), a thorough test should experimentally 

examine the effects of cardenolides on mycorrhizal fungi.  However, the results of the 

SEM may inform this relationship as an initial step. First, the data provided little support 

for the Toxicity model (Fig. 3.1d), which explicitly examined the effects of root defense 

on mycorrhizal colonization. Second, root cardenolide expression did not consistently 

affect negatively root colonization by mycorrhizal fungi, which would be expected if 

cardenolides were toxic to these fungi. Rather, when allocation to cardenolides overall 

was high (above and below ground), mycorrhizal colonization was correspondingly low. 

 

Taken together, our results strongly suggest that the availability of photosynthate limits 

mycorrhizal colonization following herbivory.  In this way, our results are consistent with 

other studies that have documented tradeoffs among the expression of defense, growth 

and mycorrhizal colonization (Laird and Addicott 2007, Kempel et al 2010). Our findings 
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contrast with those documented by de Roman and colleagues (2011), who demonstrated 

that the application of acibenzolar-S-methyl, a compound that induces plant systemic 

acquired response to pathogens, induces a transient decrease in mycorrhizal colonization 

of soybean (Glycine max L.).  These authors reported that the decrease in mycorrhizal 

colonization was associated with an upregulation of pathogenesis-related genes and 

increased glucanase activity rather than a decrease in root sugar content. We suggest that 

mycorrhizal responses to herbivory and pathogen infection may differ because of the 

specific signaling pathways triggered (Dicke and Hilker 2003), defenses upregulated, and 

the cost associated with mounting defenses against each challenger. However, we do not 

rule out the potential direct effects of root defense on mycorrhizal fungi that may occur in 

other systems. For example, increased expression of structural defense in tree roots may 

physically prevent colonization by ectomycorrhizal fungi (Kleczewski et al. 2010).   

Moreover, fungal species may be differentially susceptible to plant toxins, and fungi that 

have coevolved with host plants may be better adapted to plant secondary metabolites 

than are novel fungi (Callaway et al. 2008).   

 

Herbivore identity mediates plant response belowground  

It is well established that herbivore species can differentially affect plant growth, fitness, 

and defense expression (Stout et al. 1994, Kessler and Halitschke 2007) driven by 

variation in the amount and type of damage inflicted, plant hormonal signaling, and the 

eventual phenotypic response to herbivory (Bingham and Agrawal 2010). Our results 

extend the species-specific effects of herbivores belowground, and demonstrate that 

herbivores can differentially affect mycorrhizal colonization through species-specific 

changes in plant defense expression. Differences in the extent of damage inflicted can 

also vary among herbivore species.  For example, Wearn and Gange documented that 

herbivory by rabbits, but not insects, increased mycorrhizal colonization of grasses, and 

attributed this difference to the extent of damage inflicted and subsequent root carbon 

dynamics (Gange 2007, Wearn and Gange 2007). However, we add that differential 

effects of herbivores on defense expression may contribute to the availability of C 

belowground and subsequent effects on mycorrhizal colonization. In support of this view, 

a recent meta-analysis reported that the type of defoliation significantly affected 
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mycorrhizal response to damage--real herbivory tended to negatively affect mycorrhizal 

colonization, whereas simulated defoliation did not cause this reduction, but the percent 

foliar damage did not explain this variation (Barto and Rillig 2010). Combined, these 

results suggest that the induction (or reduction) of plant defenses in response to herbivory 

likely contributes to changes in mycorrhizal colonization following herbivory.  A few of 

the mechanisms that may underly these differences have been identified.  For example, 

herbivore species induce different signaling pathways (Heidel and Baldwin 2004), and 

these hormonal signal molecules may directly modulate mycorrhizal colonization (Kiers 

et al. 2010) or may affect subsequent defense expression and mycorrhizal colonization.  

Our experiment and analysis cannot disentangle the role of each mechanism, but we 

suggest that a better understanding of the effects of herbivory on plant hormonal 

signaling and its effects belowground may explain some of the variation in the effect of 

herbivores on mycorrhizal fungi. 

 

Implications and caveats 

We documented large (~20%) increases mycorrhizal colonization following herbivory in 

just a few days.  Longer term, increased allocation to belowground symbionts may 

increase plant nutrient gain, the expression of defense (Chapter V), and the ability to 

tolerate herbivory or regrow following damage by herbivores (Holland et al. 1996, 

Hamilton and Frank 2001).  The increase in mycorrhizal associations that we observed, 

particularly pronounced under elevated CO2, may fuel this regrowth response (Gavito et 

al. 2000, Compant et al. 2010). Indeed, in previous work, milkweeds grown under 

elevated CO2 were better able to sustain regrowth during herbivory (Chapter II). Our 

results suggest that plants growing under future atmospheric conditions may be better 

able to gain nutrients and respond to herbivory through increased associations with 

belowground symbionts (Phillips et al. 2011). 

 

In this study, we only report the effects of herbivores on mycorrhizal colonization, but 

fungal extraradical hyphal growth or sporulation may also respond to defoliation 

(Allsopp 1998). In addition, the identity of fungi within plant roots may also change with 

herbivory or resource availability (Saravesi et al. 2008, Pestana and Santolamazza-
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Carbone 2011).  Different species of mycorrhizal fungi may vary in their responses to C 

allocation or other changes in plant physiology and may also provide different benefits to 

plants under attack (Bennett and Bever 2007). Additionally, our experiment only 

examined mycorrhizal colonization five days after the onset of herbivory and the 

responses we observed may vary over time (Nishida et al. 2009).  Although these 

temporary responses belowground are likely to improve short-term nutrient acquisition 

and regrowth, future studies should examine the duration of such effects and examine the 

effects of temporal changes in the abundance and community composition of mycobionts. 

 

Conclusions 

Unravelling the complex interactions among herbivores, plants, and soil mycobionts is a 

daunting challenge, but quantifying the strength of multiple causal pathways under varied 

experimental conditions can offer insights into the multiple pathways that mediate these 

ubiquitous interactions.  Our results suggest that both herbivore-specific changes in the 

expression of defense and the availability of photosynthate constrain mycorrhizal 

associations following herbivory.  Understanding the pathways by which aboveground 

herbivores affect mycorrhizal fungi will not only improve our understanding of 

multitrophic interactions, but may also increase our ability to predict changes in plant and 

fungal communities and the ecosystem functions which these taxa mediate. 
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Table 3.1. Results of comparison between hypothesized structural models that include 
the direct allocation pathway.  Df indicates model degrees of freedom, a nonsignificant p-
value indicates that observed and modeled variance-covariance structures do not differ.  
The root-mean-square error of approximation (RMSEA) is a measure of global fit and 
should be less than 0.05.  90% CI indicates the confidence interval around the RMSEA.  
The comparative fit index (CFI) is a parsimony-adjusted measure of fit based on the 
correlation among variables; larger values indicate a better fit to the model. Chg. AIC 
indicates the difference between the hypothesized model AIC and the AIC for the 
saturated model.   
 

Model 
Description df   χ2 p-value RMSEA 90% CI CFI Chg. AIC 
a) Damage 

Model 3 2.32 0.51 0.00 0-0.077 1.00 -3.68 
b) Root 

Allocation 1 1.34 0.25 0.03 0-0.14 0.98 -0.66 
c) Induction 

Costs  4 3.01 0.56 0.00 0-0.066 1.00 -5.00 
d) Toxicity 1 1.97 0.16 0.05 0-0.15 0.94 -0.03 
e) Water 4 13.12 0.01 0.08 0.03-0.12 0.23 5.12 

f) Full Model 13   218.09 0.00 0.20 0.17-0.22 0.09 192.10 

 
 
 
 
 
 



 

 

Table 3.2. Results of comparison among increasingly constrained structural models.  Df indicates model degrees of freedom, a 
nonsignificant p-value indicates that observed and modeled variance-covariance structures do not differ.  The root-mean-square error 
of approximation (RMSEA) is a measure of global fit and should be less than 0.05, and 90% CI indicate the confidence interval 
around the RMSEA. 90% CI indicates the confidence interval around the RMSEA.  The comparative fit index (CFI) is a parsimony-
adjusted measure of fit based on the correlation among variables; larger values indicate a better fit to the model.  The AIC is a 
parsimony-adjusted measure of model fit used to compare among nested models. 
 
 

Model df χ2 p-value RMSEA 90% CI CFI AIC 
                

Unconstrained 16 20.1 0.21 0.026 0-0.056 0.75 148.1 
Structural weights 31 50.1 0.02 0.039 0.017-0.059 0.00 148.1 

Structural intercepts 43 125.1 0.00 0.069 0.055-0.084 0.00 199.1 
Structural means 46 125.1 0.00 0.066 0.052-0.080 0.00 193.1 

Structural covariances 49 125.1 0.00 0.063 0.049-0.076 0.00 187.1 
Structural residuals 61 221.9 0.00 0.082 0.070-0.093 0.00 259.9 

Saturated model 0 0.0 - - - 1.00 160.0 
Independence model 60 76.6 0.07 0.026 0-0.043 0.00 116.6 
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Figure 3.1. Structural models that illustrate the relationships implied by above-
belowground models. 
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Figure 3.2. Path coefficients from Induction Costs model describe the effects of 
herbivory on mycorrhizal colonization mediated by changes in defense phenotype among 
treatment groups.  The width of lines represents effect size (standardized coefficients), 
solid lines represent significant effects (p<0.05) dotted lines are nonsignificant.  Numbers 
represent unstandardized coefficients.  Gray lines depict negative effects and black lines 
depict positive effects. All analyses were performed in AMOS.   
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Figure 3.3. Standardized direct and total effects of aboveground herbivores (Aphis 
asclepiadis and Danaus plexippus) on mycorrhizal colonization of Asclepias syriaca 
plants under ambient and elevated atmospheric CO2 concentrations. Direct effects (gray) 
comprise plant-mediated unmeasured pathways, while the total effect (black) is the sum 
of the direct and indirect (measured changes in plant growth and defense traits) pathways 
on mycorrhizal colonization. Effect coefficients are taken from the four group model run 
in AMOS. 
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Figure 3.4. Correlation between cardenolide concentration (mg/g) in the roots of 
Asclepias syriaca and proportion root colonized by mycorrhizal fungi (%).  Circles 
represent mean trait values calculated for each genotype of A. syriaca. 
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Chapter IV 
 

Plant defense theory re-examined: non-linear expectations based on the costs and 
benefits of resource mutualisms 

 
 
Abstract 

General theories of plant defense often fail to account for complex interactions between 

the resources required for defense expression.  For example, the carbon that is used for 

carbon-based defense is acquired using nutrient-rich photosynthetic pigments, while 

nutrient gain itself requires substantial carbon allocation belowground.  We should 

therefore expect the expression of plant defense to reflect the tight linkage between 

carbon and nutrient gain, yet mechanistic studies linking resource gain with plant defense 

theory have been slow to emerge. The overwhelming majority of plants participate in 

nutrition mutualisms with fungal or bacterial symbionts. We propose the resource 

exchange model of plant defense (REMPD) in which the costs and benefits associated 

with nutrition mutualisms affect plant resource status and allocation to growth and 

defense.  The model predicts quadratic relationships between mutualist abundance and 

expression of defense.  Within plant genotypes, both plant biomass and defense 

expression are maximized at optimal nutrient exchange among mutualistic partners, and 

as a consequence, the two are positively associated.   

 

We tested the model by growing Asclepias syriaca, the common milkweed, with two 

mycorrhizal fungal species in nine fungal abundance treatments.  Plant growth and 

defense traits and mycorrhizal colonization were quantified after 14 weeks of plant 

growth.  Linear, quadratic, saturating and exponential decay models were fit to curves 

relating the proportion of root colonized by mycorrhizal fungi to plant traits, and 

compared using AICc.   
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As predicted by our model, increasing colonization by Scutellospora pellucida produced 

quadratic responses in plant growth, latex exudation and cardenolide production.  In 

contrast, Glomus etunicatum appeared to act as a parasite of A. syriaca, causing 

exponential decline in both plant growth and latex exudation.  As predicted by our model, 

plant growth was positively correlated with all defenses quantified.   

 

The REMPD combines cost—benefit analysis of mutualisms with plant resource 

acquisition strategies to predict the expression of plant defense. The effects of S. 

pellucida and G. etunicatum on defense expression differ, but both provide support for 

the model and suggest that resource mutualisms will affect the expression of defense in a 

predictable nonlinear fashion. 
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Introduction 

Predicting the expression of plant defense against herbivores in natural and managed 

ecosystems is essential to modeling and managing these systems. However, current 

general theories of plant defense are incomplete (Hamilton et al., 2001; Stamp, 2003).  

Recent advances have improved our understanding of the evolution of defensive 

strategies among plant species and genotypes (Fine et al., 2006; Agrawal & Fishbein, 

2008), but the prediction of individual phenotypic expression of plant defense remains 

challenging. While early hypotheses relied on plant nutrient availability in ecological 

time to predict plant allocation to defense or growth (Bryant et al., 1983), many of the 

underlying assumptions have since been challenged (Gershenzon, 1994; Hamilton et al., 

2001). Plant nutrient status alters not only the availability of precursor compounds for the 

synthesis of defense, but also changes plant physiology and allocation patterns (Bloom et 

al., 1985; Herms & Mattson, 1992; Shipley & Meziane, 2002) and influences the ability 

of plants to acquire other resource types (Hamilton et al., 2001). For example, Populus 

tremuloides plants grown under elevated CO2 are limited by nitrogen (N) availability, but 

plants that are able to acquire more N through increased carbon (C) allocation 

belowground improve subsequent C acquisition through increased photosynthesis (Zak et 

al., 2000). Carbon and nutrient acquisition are coupled through alternate allocation to 

roots and shoots (Ingestad & Agren, 1991). When resource acquisition is uncoupled and 

resources become limiting, trade-offs become evident (Herms & Mattson, 1992; Mole, 

1994; Donaldson et al., 2006). Here, we develop a general model that integrates the 

coupled acquisition and expenditure of resources in an ecological context and generates 

novel predictions regarding the expression of defense.  By incorporating into defense 

theory the complex interactions among nutrients during resource acquisition and 

allocation, we may gain a better understanding of phenotypic variation in defense 

expression (Glynn et al., 2007).  

 

Current models of plant defense (Stamp, 2003), as well as models of optimal resource 

allocation within plants (Shipley & Meziane, 2002), fail to incorporate the biotic 

interactions that mediate resource acquisition and alter plant allocation patterns between 

growth and defense. Soil microbes are intimately coupled with root function, but can 
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induce changes in plant physiology not predicted by models of nutrient uptake by roots 

alone (Wright et al., 1998a).  For example, mycorrhizal fungi and rhizobia can act to 

stimulate plant photosynthesis (Kaschuk et al., 2009) and net assimilation rate (Wright et 

al., 1998a) independently of plant nutrition.  Conversely, symbionts also require 

resources for their own growth, which can result in parasitism and growth depressions in 

host plants (Peng et al., 1993; Johnson et al., 1997).  As a result, incorporating microbial 

associations into models of plant defense expression may result in novel predictions.   

 

Plant Resource Acquisition through Nutrition Mutualisms 

Over 80% of land plants acquire mineral nutrients from soil microbes at the expense of C 

(Wang & Qiu, 2006; Smith & Read, 2008).  As a consequence, general theories of plant 

defense should include the feedback among resources mediated by plant-microbe 

interactions.  Additionally, resource mutualisms represent a convenient framework in 

which to examine plant allocation patterns, the interactions among nutrients, and 

resulting effects on plant defense expression. Incorporating resource exchanges among 

organisms into plant defense theory will increase our understanding and prediction of 

plant defense expression in an ecological context.   

 

Plant interactions with mycorrhizal fungi are among the most common nutrition 

mutualisms and provide an excellent opportunity to explore the interactions among 

primary currencies and the expression of plant defenses.  More than 80% of all plant 

species examined host symbiotic fungi within their roots (Wang and Qiu 2006) and 

transfer hexose sugars to fungal partners in exchange for mineral nutrients and water 

(Smith and Read 2008). We focus on the interaction between arbuscular mycorrhizal 

fungi (AMF) and their plant partners because this symbiosis is the most common 

nutrition mutualism among plant species (Wang & Qiu, 2006).  Although the exact 

currencies of transfer may vary, other types of nutrition mutualisms, including symbiotic 

N-fixing bacteria and additional types of mycorrhizal fungi, are likely to function 

comparably in their effects on defense (Kempel et al., 2009), and our model seeks to 

generalize to plants participating in these mutualisms as well. Because the vast majority 
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of land plants exchange vital resources with soil symbionts, these interactions may be a 

key (and underappreciated) variable in the expression of plant defense.   

 

Although other models of defense incorporate resource uptake from roots (Herms and 

Mattson 1992), resource dynamics resulting from exchange with mycorrhizal fungi differ 

from those of nutrient uptake via roots (Wright et al., 1998b), in part because there can be 

fitness conflicts between partners (Kiers & Denison, 2008). We propose that the 

fundamental exchange of resources within the mycorrhiza mediates the expression of 

plant defense.  How might variation in mycorrhizal associations alter the expression of 

plant defense?  

 

Mycorrhizal associations are typically classified as mutualistic interactions, but 

intrinsically involve both costs and benefits (Koide & Elliott, 1989; Fitter, 1991).  Plant 

responses to colonization are largely a function of these exchanges.  The costs and 

benefits of the currencies transferred, and therefore the outcome of mycorrhizal 

associations, vary within natural and agricultural systems (Johnson et al., 1997). Plant 

and fungal identity, ontogeny and abiotic resource availability alter the costs and benefits 

of association among partners, and therefore mediate the outcome of mycorrhizal 

interactions (Johnson et al., 1997; Hoeksema et al., 2010).  However, one aspect of the 

mutualism notably missing from this discussion is the importance of partner abundance 

(but see Gange & Ayres, 1999).  While the abundance of mutualist partners can affect 

mutualist performance and population dynamics (Holland et al., 2002), and is tied to 

partner performance in non-mycorrhizal systems (Morris et al., 2010), recent work on 

mycorrhizae has not emphasized the importance of fungal abundance.  We argue that the 

factors that alter resource exchange (costs and benefits of association) between soil 

mutualists and plants in large part determine the effect of soil mutualists on the 

expression of plant defense (Jones & Last, 1991).   

 

Experimental evidence demonstrates that mycorrhizal fungi can substantially alter insect 

performance (Goverde et al., 2000; Gange, 2001), often increasing aphid performance 

and that of specialist insects, while decreasing the performance of generalist chewing 
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insects (Hartley & Gange, 2009; Koricheva et al., 2009). However, the effect of 

mycorrhizal fungi on insect herbivores and secondary metabolites varies substantially 

among studies (Hartley & Gange, 2009). Our model offers a framework for interpreting 

and reconciling these results in terms of resource stoichiometry and effects on plant 

defense.   

 

Model description – the resource exchange model of plant defense 

Plants are predicted to allocate optimally to obtain limiting resources (Bloom et al., 

1985), and have associated for 465 million years with mycorrhizal fungi (Brundrett, 

2002), which aid in acquisition and uptake of macro and micronutrients (Smith & Read, 

2008).   Although mycorrhizal fungi confer multiple benefits to plants including pathogen 

protection and improved water relations (Auge, 2001; Borowicz, 2001), we focus on 

nutrient benefits, a key factor in predicting the outcome of AMF symbioses (Johnson, 

2010) and the expression of plant defense (Herms & Mattson, 1992; Gershenzon, 1994).   

 

When mineral nutrients limit plant growth, plants increase C allocation belowground, 

increasing the root:shoot ratio (Bloom et al., 1985; Shipley & Meziane, 2002) or 

allocation to mycorrhizal fungi (Treseder & Allen, 2002).  We refer to allocation to fungi 

as the carbon ‘cost’ associated with nutrient acquisition through mycorrhizal symbionts.  

In return, mycorrhizal fungi transfer phosphorus (P), nitrogen (N) and micronutrient 

‘benefits’ to plants (Smith & Read, 2008).  The cost associated with hosting mycorrhizal 

fungi can be substantial, from 4 to 20% of net photosynthetic intake (Jakobsen & 

Rosendahl, 1990).  Nutrient returns are also considerable: some plants receive in excess 

of 50% of total P inflow from AMF (Li et al., 2006), and substantial N influx via AMF 

has been documented as well (Govindarajulu et al., 2005).  A stronger C sink in roots and 

an increase in nutrients with which to construct photosynthetic apparatus allow plants to 

increase the rate of photosynthesis so that under some circumstances, fungi essentially 

‘pay’ for themselves (Kaschuk et al., 2009). 

 

Previous models have described the costs and benefits of mycorrhizal fungi (Koide & 

Elliott, 1989; Fitter, 1991; Gange & Ayres, 1999), and postulated that they may alter the 
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expression of plant defense against herbivores (Jones & Last, 1991; Bennett et al., 2006), 

and we build upon these previous efforts.  Specifically, we propose that the costs and 

benefits of symbiosis are dynamic, depend intrinsically upon the abundance of soil 

mutualists, and affect the expression of plant defenses.  After describing the basic model, 

we illustrate how environmental or biotic variation may shift the shape of the cost or 

benefit curves and alter plant defense expression. We conclude by incorporating our 

predictions with those of the growth-differentiation balance hypothesis (GDBH) (Herms 

and Mattson 1992) to generate the novel predictions of the REMPD. 

 

Mycorrhizal fungal abundance varies substantially within and among ecosystems 

(Treseder & Cross, 2006).  As a result, plant associations with fungi also vary among 

habitats and ecosystems. Limited fungal abundance in the environment can constrain the 

formation of the mycorrhiza and associated resource exchange in greenhouse, agricultural 

and natural systems (Lekberg & Koide, 2005).  Greater fungal abundance can increase 

colonization of plant roots and resource exchange (Sanders et al., 1977; Fitter, 1991) (Fig 

1 a), due to a greater extraradical biomass and nutrient flux to the root. Indeed, the 

proportion of root colonized is significantly correlated with AMF biomass, quantified 

using phospholipid fatty acids (van Diepen et al., 2007) and hyphal length outside the 

root (Miller et al., 1995).  We use the proportion of root length colonized as a proxy for 

the abundance of a single fungal species with which a plant associates (Hart & Reader, 

2002a) because it is easily quantified and reported in most studies.  Although we 

acknowledge that the proportion of root colonized does not perfectly represent nutrient 

flux between partners (Li et al., 2008), we use it to represent the maximum nutrient 

transfer rate within the symbiosis. Using this assumption, we hypothesize benefit and cost 

curves based on fungal colonization of root tissue.  

 

As mycorrhizal fungal abundance in the environment increases and plants increasingly 

associate with these fungi, mycorrhizal interactions and nutrient exchange between plants 

and fungi increases, but the carbon cost associated with hosting fungi also increases (Fig 

4.1a), owing mainly to the construction and maintenance costs of fungal tissue (Douds et 

al., 1988; Peng et al., 1993). Some plants have developed adaptations to limit the extent 
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of root colonization to prevent parasitism (Koide & Schreiner, 1992), while others are 

unable to limit fungal colonization and exhibit growth depressions (Klironomos, 2003).  

 

We use the ratio of the gross carbon cost to nutrient benefit afforded by the mycorrhiza to 

represent the net effect of the mycorrhizal symbiosis (Fig. 4.1b).  At low fungal densities, 

nutrient return for C investment is high, and increased photosynthetic capability can 

allow plants to keep up with or overcompensate for the C cost of the fungi (Kaschuk et 

al., 2009).  However, at high colonization density and fungal abundance, carbon costs of 

fungal tissue construction and respiration can exceed P benefits (Douds et al., 1988) and 

result in net parasitism (Johnson et al., 1997). As a result, the cost:benefit ratio curve 

(Fig. 4.1b) suggests that benefits obtained from mycorrhizal fungi are maximized at 

intermediate colonization densities, where carbon costs are balanced by nutrient gains 

associated with the mycorrhiza. Optimal colonization density will depend on plant and 

fungal identity, as well as abiotic context.  What then are the consequences for defense? 

 

Specifically, the resource exchange model predicts three zones of fungal abundance, 

nutrient transfer and associated zones of plant defense expression (Fig 4.1c). First, when 

plants are colonized by no or few fungal propagules, both growth and defense are limited 

by nutrient and carbon availability. Carbon costs associated with the symbiosis are low 

and balanced by any increase in nutrients transferred within the mycorrhiza.  Within this 

zone, increasing nutrient acquisition should increase the expression of both growth and 

defense (Glynn et al., 2007). 

 

The second zone of fungal abundance represents maximal C:nutrient exchange efficiency 

and an optimal association with soil mutualists (Zone II, Fig 4.1b &c).  Within this range, 

photosynthetic rates are maximal, plants are co-limited by C and nutrients, and we predict 

that defense expression is also maximized (Fig 4.1c).  High nutrient availability facilitates 

enzymatic synthesis of both carbon and nutrient-based defenses (Gershenzon, 1994), and 

precursor molecules are also predicted to be available.  Within this zone, plant genotypes 

may vary in their relative allocation to growth and defense (Fig. 4.1d), but both should be 

expressed maximally within any individual plant.  In other words, we expect genetic 
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tradeoffs between growth and defense, but that individual-based tradeoffs will not be 

manifest in this zone.  Coevolved plant—fungal symbioses at equilibrium are predicted to 

function primarily in zone II (Johnson et al., 2010).   

 

The third zone represents fungal parasitism.  Arbuscular mycorrhizal fungi, as obligate 

symbionts, must acquire carbon from plants in order to grow and reproduce, and although 

some plants can decrease allocation to AMF, others are unable to limit the extent of 

infection (Koide & Schreiner, 1992; Johnson et al., 1997). As a result, plants can exhibit 

growth depressions associated with supporting the construction and maintenance costs of 

a large amount of mycorrhizal fungi (Peng et al., 1993). We predict that at high levels of 

fungal colonization, the expression of defenses, and potentially plant growth, will decline 

(Fig 4.1c) due to a reduction in C available for the construction of primary and secondary 

metabolites.   

 

Predictions  

From the conceptual model presented above, the following predictions can be made 

regarding the expression of defense.  First, the relationship between defense expression 

and fungal colonization will be nonlinear, increasing to a local maximum, and decreasing 

at high fungal abundance.  The shape of this relationship should hold both for plant 

growth and defense, as plants that are exchanging nutrients at an optimal rate will grow 

and defend maximally.  However, we expect the expression of defense to decline earlier 

than any decline in growth at high levels of AMF colonization (Herms & Mattson, 1992; 

Glynn et al., 2007).  

 

Secondly, since nutrient benefits conveyed by mycorrhizal symbioses are contingent 

upon abiotic nutrient availability (Johnson et al., 1997), the shape of the cost and benefit 

curves will depend on soil fertility. Specifically, plants that can access sufficient N and P 

without AMF will experience only a C cost to hosting mycorrhizal fungi, and therefore 

experience parasitism at most levels of colonization by mycorrhizal symbionts. We 

predict that increasing environmental P availability will diminish the benefits gained 

through mycorrhizal fungi, and as a result, decrease the ideal AMF abundance.  In 
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addition, the trade balance model of AMF functioning (Johnson, 2010) predicts that the 

costs and P benefits of association with AMF are dependent on N availability.  With 

sufficient N, rates of photosynthesis compensate for the C cost of AMF, and plants are 

more likely to exhibit positive growth responses to elevated P.  The cost:benefit curves in 

Figure 1 may be extended to a plane with two or more nutrients to represent the 

interactions among these resources (see Discussion for integration with the GDBH).  

What are the consequences for defense?  In high-nutrient environments, plants are not 

likely limited by nutrient availability, but fungal parasitism may limit the C available for 

defense expression in those plants unable to control C flow to fungi.  In contrast, plants 

growing in nutrient-poor environments may rely heavily on mycorrhizal fungi, and may 

not experience fungal parasitism.  Plant defense expression in these plants would be 

positively correlated with fungal colonization and nutrient benefits.   

 

The REMPD was developed for plants hosting a single species of mycorrhizal fungus, 

but fungal species vary in nutrient gathering ability and carbon demand (Hart & Reader, 

2002b).  The balance of nutrients conveyed and the carbon required to support the 

construction of a hyphal network determine the net benefit of the interaction. In reality, 

plants are associated with multiple species of fungi (Opik et al., 2006), which may access 

a greater range of nutrients than a single fungal species (Koide, 2000; Jansa et al., 2008).  

As a result, the slope and maximum of the nutrient benefit curve may increase, but the 

costs to hosting multiple fungi may also be greater.  Plant defense expression will still be 

determined by the net benefit:cost ratio curve. 

 

An initial test of the resource exchange model of plant defense 

Study system 

As an initial test of the REMPD, we inoculated Asclepias syriaca L. (common milkweed) 

plants with a series of mycorrhizal fungal soil treatments.  Asclepias syriaca is a 

perennial herb that grows throughout eastern North America and is associated with 

mycorrhizal fungi throughout its range (Landis et al., 2004).  Asclepias syriaca is 

attacked by a variety of insect herbivores and expresses traits that deter damage by 

herbivores or reduce herbivore growth and reproduction (Dussourd & Hoyle, 2000; 
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Zalucki et al., 2001; Agrawal, 2005). Cardenolides, toxic, bitter-tasting steroids, can 

decrease the survival and performance of the specialist herbivore Danaus plexippus 

(Zalucki et al., 2001).  Latex, a sticky polyisoprene polymer that contains cardenolides 

and other compounds, is stored within pressurized laticifers and can engulf small 

herbivores and inhibit the feeding of larger ones (Zalucki & Malcolm, 1999; Zalucki et 

al., 2001). Trichomes, produced on the upper and lower lamina and leaf veins of A. 

syriaca, may inhibit feeding by herbivores (Levin, 1973). These defensive traits are 

primarily composed of carbon, but synthesis of such compounds and structures requires 

nutrient-rich enzymes (Gershenzon, 1994).   While A. syriaca does not require 

mycorrhizal fungi for growth, plants at our field site are associated with AMF in 

colonization levels ranging from 10-80% root length colonized (authors’ unpublished 

data). Mycorrhizal fungal species Glomus etunicatum and Scutellospora pellucida 

associate with A. syriaca at our field site. 

 

Materials and Methods 

To investigate the effect of mutualist abundance on the expression of plant defenses, we 

manipulated the density of mycorrhizal fungi available to milkweed clones. We 

delineated five genets of A. syriaca growing in a natural population in northern Michigan 

(Pellston, MI, USA) based on morphological, phenological, and chemical similarity.  

Clonal structure at this site has since been verified using microsatellite markers (Kabat et 

al., 2010).  Rhizomes of A. syriaca were unearthed, bleached in 5% bleach solution, and 

freed from all fine roots.  This process removes mycorrhizal fungi from A. syriaca roots.  

Rhizomes were then overwintered at 3 ˚C in a refrigerator. Cultures of Glomus 

etunicatum (MI210B) and Scutellospora pellucida (NC118), were obtained from INVAM 

and cultured on Sorghum roots to obtain sufficient inoculum.  In spring, rhizomes were 

cut into 5 cm pieces containing meristem buds and were planted into fungal density 

treatments.  Rhizome biomass was recorded and did not differ among fungal treatments 

(ANOVA for S. pellucida: F1,87=0.08, p=0.77, and G. etunicatum: F1,145=0.78, p=0.37). 

Conical Deepots TM(Steuwe and Sons Inc., Tangent, Oregon, USA), with a diameter of 

6.4 cm and depth of 25cm, were filled with 600 mL 1:1 autoclaved Sunshine 

Metromix:sand including mycorrhizal fungal inoculum which contained spores, hyphae, 
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and colonized sorghum root pieces, in 9 dilutions ranging from 150 mL to 4 mL mixed 

inoculum/pot.  These inoculation densities were determined from an initial trial with A. 

syriaca in order to generate a wide range of colonization densities.  Arbuscular 

mycorrhizal fungi (AMF) density treatments were established separately with Glomus 

etunicatum and Scutellospora pellucida species. Due to some plant mortality, sample 

sizes varied among treatments (G. etunicatum N=9-22, S. pellucida N=4-17 per fungal 

density) and clones were pooled to provide replicates of AMF treatments.  Rhizome 

pieces were planted in inoculated soil, maintained in a greenhouse and watered daily.  

 

Harvest and Analysis of Plant Traits 

At the end of four months, plants were destructively harvested, foliar defense levels were 

assessed and above- and below-ground biomass measured. Five hole punches (424 mm2) 

of fresh leaf tissue were taken from one half of the two largest leaf pairs on each plant, 

placed immediately into 1 mL of methanol and stored at -10 ˚C for cardenolide analysis 

(below).  Five identical leaf discs were taken from the opposite half of the leaf pairs and 

stored in glassine envelopes to provide estimates of sample dry mass and measures of 

other leaf traits (below).  Latex that flowed from the first five holes punched was 

collected on a pre-weighed cellulose disc (1 cm. diameter), dried and weighed. 

Trichomes on the lower surface of the leaf were counted under a dissecting microscope.  

Plant chemical defenses were assessed following established protocols (Zehnder & 

Hunter, 2007).  Briefly, cardenolides were separated and quantified by extracting plant 

material in methanol.  Samples were run on a HPLC (Waters Inc, Milford, MA, USA) 

with digitoxin as an internal standard, and peaks with symmetrical absorbance between 

218 and 222 nm were quantified as cardenolides.  Total cardenolides were calculated as 

the sum of individual peaks.   

 

A subset (c. 0.5 g) of fresh fine root tissue was sampled from each plant, cleared with 

10% KOH for 10 minutes, acidified using 2% HCl and stained in 0.05% trypan blue in 

1:1:1 water: glycerine:lactic acid.  Roots were mounted on slides and scored using the 

magnified gridline intersect method (McGonigle et al., 1990).  A site was considered 

colonized if AM hyphae, arbuscules, or vesicles were present.  Non-AMF hyphae were 
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also detected at low levels (<0.05%), and occurrence did not differ among treatments. 

Above- and below-ground plant tissues were collected, dried and weighed; total biomass 

was calculated from dry mass plus estimates of tissue removed for cardenolide and root 

analysis.   

 

Statistical Analysis 

The resource exchange model of plant defense (REMPD) predicts that plant defenses will 

respond non-linearly to changes in AMF colonization (Fig. 4.1c).  We therefore 

examined a series of linear and non-linear model fits to the plant traits measured during 

our experiments (Motulsky & Ransnas, 1987).   We fit linear, quadratic, Michaelis-

Menton, and negative exponential functions to relationships between defense traits and 

AMF density using the stats package in R (v. 2.11.0) (Team, 2010).  The first three 

models were fit to increasing or null relationships, but only linear and exponential decay 

functions were fit to decreasing relationships in order to limit regressions to hypothesized 

and biologically realistic relationships.  Mean trait values at each colonization density 

were weighted by variance-1 in the trait value and fit to either a linear (y=a+bx), quadratic 

(y=a+bx+cx2), Michaelis-Menten (y=ax/(k+x)), or negative exponential (y=ae^bx) 

model. Data were plotted and log-transformed if necessary to reduce heteroscedasticity.  

We used weighted regression (Sokal & Rohlf, 1995), because fungal colonization 

followed neatly the treatments imposed (Fig. 2).  Measures of model fit including AICc 

(McQuarrie & Tsai, 1998), and adjusted R2 were extracted from each model using 

package qpcR (Spiess & Ritz, 2010). Adjusted R2 was calculated as 1-(1-R2) n-1/(n-p-1), 

where n=sample size and p is the total number of regressors.  R2, defined broadly, was 

calculated for all models as 1-Residual Sums of Squares/Total Sums of Squares.  Model 

selection was performed using AICc; models with the lowest AICc are presented in the 

results. 

 

Additionally, we assessed correlations among plant biomass and defense traits among all 

plants from all treatments using Pearson product moment correlations using the stats 

package in R (v. 2.11.0).  
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Results 

As is required to test REMPD, we succeeded in generating a wide range of AMF 

colonization densities on A. syriaca plants for both fungal species (Fig 4.2a & b).  

Glomus etunicatum colonized A. syriaca root length to a greater extent than did S. 

pellucida, with maxima of 45% and 28% root length colonized, respectively.  Proportion 

root length colonized by arbuscules was correlated with total mycorrhizal colonization 

(F1,127=360.8, p<0.0001, R2=0.73).  Plant growth and defense traits varied in the shapes 

of their responses to AMF abundance, from linear through saturating to quadratic.  The 

statistics underlying model fits are provided in detail in Tables 4.1 and 4.2.  Below, we 

report general trends and refer back to the Tables for statistical support.  

 

As predicted by REMPD, A. syriaca biomass responded nonlinearly to colonization by S. 

pellucida (Fig. 4.3a, Table 4.1), increasing at low to mid fungal abundance, and 

decreasing at high fungal abundance.  In contrast, an exponential decay model best 

represented the relationship between A. syriaca biomass and colonization by G. 

etunicatum, as if G. etunicatum was acting only as a parasite (Fig. 4.3b, Table 4.2). As 

predicted by REMPD, the relationship between latex exudation by A. syriaca and 

colonization by S. pellucida was best represented by a quadratic function (Fig. 4.3c, 

Table 4.1), maximized at intermediate levels of fungal colonization.   The expression of 

foliar cardenolides was also best represented by a quadratic function (Fig. 4.3e), 

maximized at intermediate S. pellucida density (Table 4.1). In contrast, colonization by 

G. etunicatum tended to decreased latex exudation, best represented by an exponential 

decay model (Fig. 4.3d, Table 4.2).  Glomus etunicatum did not affect cardenolide 

expression in A. syriaca (Fig. 4.3f, Table 4.2).  Trichome density was not statistically 

related to the abundance of either fungal species (Tables 4.1 and 4.2), but tended to 

increase in response to colonization by S. pellucida (Table 4.1).  

 

Analysis of Pearson correlations revealed that all defense traits measured, including latex 

exudation, foliar cardenolide expression and trichome density, were positively correlated 

with plant biomass (Table 4.3), as predicted by REMPD.  Cardenolide concentration was 
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negatively correlated with trichome density, while other relationships among defense 

traits were not statistically significant (Table 4.3).
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Discussion 

Our model incorporates ecologically realistic nutrient exchange dynamics between plants 

and soil mutualists to generate novel predictions regarding the expression of defense.  An 

initial test of the model provides good support for REMPD with the fungal species S. 

pellucida, but results contrary to expectations with the fungal species G. etunicatum. We 

detected quadratic responses in A. syriaca biomass, latex exudation and cardenolide 

expression in response to colonization by S. pellucida (Figs 4.3a,c,e), as predicted by 

REMPD (Fig. 4.1c). In contrast, increasing colonization by G. etunicatum led to 

exponential declines in both plant biomass and latex exudation. The quadratic 

relationships predicted by our model are based on the assumption that soil symbionts act 

as mutualists over some range of colonization densities; in this case, G. etunicatum 

appears to be acting only as a parasite.  As a consequence, we should expect to see only 

the ‘right-hand side’ of Figure 4.3c expressed.  Both growth (Fig. 4.3b) and latex defense 

(Fig. 4.3d) declined with G. etunicatum colonization, suggesting that the increasing 

carbon cost associated with hosting G. etunicatum seems to have outweighed any nutrient 

benefits received from the interaction.  The different plant responses to the two fungal 

species were likely due to intrinsic differences in the biology of the fungi. Glomus 

species tend to invest heavily in intraradical structures and relatively little outside the root 

and as a result tend to confer fewer nutrient benefits (Powell et al., 2009).  In contrast, 

Scutellospora species often display lower rates of root colonization but more extensive 

extraradical hyphal growth (Hart & Reader, 2002c), and tend to increase plant growth.  

These differences in fungal biology were reflected in the plant phenotypic response. 

Fungal life-history and allocation patterns may aid predictions of the effects of other 

fungal species on plant growth and defense expression.   

 

The positive correlations between plant biomass and defense traits also support REMPD. 

Although cardenolides, latex and trichomes are all composed primarily of carbon, the 

benefits associated with S. pellucida colonization at intermediate densities allowed for 

increased allocation to both growth and defense.  In consistent fashion, parasitism by G. 

etunicatum decreased resource availability for allocation to both growth and latex 

defense.  Overall, these results suggest that allocation to growth and defense are coupled, 
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as the model predicts. However, defense traits were not uniformly correlated with one 

another and some defense traits may receive preferential allocation over others. We 

recognize that ‘defense’ is not a univariate trait and suites of traits may co-occur or trade-

off (Rasmann & Agrawal, 2009).   Specifically, resistance and tolerance (Vandermeijden 

et al., 1988), as well as constitutive and induced resistance (Karban & Baldwin, 1997) 

should be included in the broad definition of defense.  They should be quantified in future 

work to construct a complete description of A. syriaca defense across a range of AMF 

densities. Overall, we predict that defense viewed and quantified broadly will respond 

nonlinearly to fungal colonization and resource exchange.   

 

Additional variation in our results may be due to multiple plant genotypes used in our 

experiment.  Previous work has demonstrated that A. syriaca genotypes vary in the 

expression of growth and defense traits (Agrawal, 2005; Vannette & Hunter, accepted).  

Genotypic differences in allocation patterns and nutrient requirements may interact with 

fungal nutrient exchange dynamics to shift the shape of plant response to fungal 

colonization (Fig. 4.1d) (Garrido et al., 2010).  Future experiments will allow us to 

partition variation in defense among effects of plant genotype, fungal colonization, and 

their interaction.  

 

Additional support for our model can be found in previous research that documents the 

effects of fungal density on plant phenotype. Gange & Ayres (1999) proposed that the 

increasing costs and diminishing benefits conveyed by mycorrhizal fungi would result in 

a nonlinear response of plant biomass to fungal abundance. They describe numerous 

examples where plant ‘benefit’ was nonlinearly related to arbuscular colonization 

intensity.  More recently, Garrido and colleagues (2010) manipulated the density of 

mycorrhizal fungi within the roots of Datura stramonium (jimson weed), and 

documented a curvilinear response—increasing, then decreasing—of root mass, seed 

production and leaf area to increasing fungal colonization.  However, the tolerance of 

jimson weed to herbivory decreased with increasing mycorrhizal colonization.  Although 

plant tolerance of simulated herbivory did not seem to follow our predicted pattern, we 

suggest that unmeasured plant resistance traits may respond in kind with root biomass 
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and reproduction. It is a combination of tolerance and resistance traits that define the 

defensive strategy of plants; this combination should follow the predictions of REMPD.   

 

Synthesis 

While previous plant defense theory has ignored the role of soil mutualists, these 

symbionts play a crucial role in mediating nutrient acquisition for the majority of plants 

(Smith & Read, 2008).  The identity and abundance of soil symbionts vary, and 

accordingly, alter nutrient exchange with plants.  Although AMF are an integral part of 

roots, the cost:benefit ratio of the association can change dramatically depending on plant 

and fungal genotypes and environmental resource availability (Johnson et al., 1997; 

Hoeksema et al., 2010).  As a consequence, AMF can act parasitically (Johnson et al., 

1997), a condition not accounted for in models of plant defense based only on optimal 

allocation models. 

 

The model we develop here (REMPD) offers both complementary and novel predictions 

when compared with previous theories of plant defense.  In order to facilitate a 

comparison of REMPD to GDBH (Herms & Mattson, 1992), we present both models 

independently in Figure 4 (note the difference in the x-axes) and their integration in 

Figure 5. Both models predict a nonlinear response in plant defense to environmental 

variation that is ultimately linked to internal nutrient availability (Fig. 4.4).  However, the 

models differ in two specific ways.  First, two different mechanisms may account for 

decreasing defense expression: a resource-based tradeoff between growth and defense, as 

posited by GDBH (Fig. 4.4a), or the increasing resource demands of soil microbial 

symbionts (REMPD). Second, REMPD predicts that plant growth rate may also decline 

at fungal abundance, as a result of the increasing cost of root symbionts. Our results (Figs 

4.3a &b), as well as those from other studies (Gange & Ayres 1999), confirm that plant 

biomass can decline with increasing fungal colonization.   

 

Additionally, the costs and benefits of fungal colonization may be altered by soil fertility 

(Hoeksema et al., 2010), especially in plants unable to limit fungal colonization at high 

nutrient availability. To facilitate predictions of the integrative effects of symbiotic 
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exchange and varying environmental nutrient availability on defense expression 

(Kleczewski et al., 2010), we constructed a response surface to illustrate plant defense as 

a function of environmental nutrient availability and fungal abundance (Fig. 4.5), using 

the following assumptions: 1) When resource availability is very low, the effect of AMF 

on defense should be quadratic (this is our basic model).  2) Likewise, when AMF 

density is very low, the effect of resources on defense should be quadratic (this is the 

prediction from GDBH).  3) When resource availability is high, and nutrient gain is 

therefore already saturated, the only effect of AMF on plants is carbon parasitism and 

defenses should decline with increasing AMF (Fig. 4.5).  4) When AMF density is high, 

nutrient gain has already saturated, and increasing resources will have no effect on 

defense (Fig. 4.5). Therefore, one important difference between the predictions of our 

combined model and that of GDBH is that we predict that defense expression will be 

insensitive to soil fertility at the highest levels of fungal colonization.  In Fig. 4.5, we 

extend our model predictions to a single dimension of soil fertility but acknowledge that 

extending the model to consider multiple soil nutrients would also be valuable (Johnson, 

2010). 

 

In summary, REMPD proposes that positive feedbacks mediated by ecological 

interactions between nutrient and C availability can increase the availability of precursor 

compounds and enzymes available for growth and the synthesis of defense (Gershenzon, 

1994), and increase allocation to both demands (Bennett et al., 2006).  Both our initial 

experiment and data from previous work in mycorrhizal systems support the potential for 

the resource exchange mechanism as a useful framework for understanding plant defense 

expression and tritrophic interactions.  In addition, the model makes novel predictions 

about the ecological costs that may limit defense expression and it offers insight into the 

interactions among resources that control defense expression.  Further experimental tests 

of REMPD will determine the generality of the cost:benefit approach and its effects on 

plant defense expression.  
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Table 4.1. Best-fit regression models and their adjusted R2 values of the effects of 
Scutellospora pellucida colonization on Asclepias syriaca growth and defense traits.  
Best-fit models were selected using AICc from weighted linear, quadratic, negative 
exponential and Michaelis—Menten regression analyses. All analyses were performed in 
R (v. 2.11) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Trait Best-fit Model Adj R2

Plant Biomass Quadratic* 0.58
Foliar Cardenolides Quadratic* 0.54

Latex Quadratic* 0.64
Trichomes Linear 0.21

+ p<0.10, *p<0.05, **p<0.01, ***p<0.001



96 

Table 4.2. Best-fit regression models and their adjusted R2 values of the effects of 
Glomus etunicatum colonization on Asclepias syriaca growth and defense traits.  Best-fit 
models were selected using AICc from weighted linear, quadratic, negative exponential 
and Michaelis—Menten regression analyses. All analyses were performed in R (v. 2.11) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Trait Best-fit Model Adj R2

Plant Biomass Negative Exponential** 0.76
Foliar Cardenolides Linear 0

Latex Negative Exponential 0.15
Trichomes Linear 0

+ p<0.10, *p<0.05, **p<0.01, ***p<0.001
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Table 4.3. Pearson product-moment correlations between plant biomass and the 
expression of various defense traits in Asclepias syriaca.  N=234 
 
 
 

 
 
 
 
 

Plant Trait Latex Cardenolides Trichomes
Plant Biomass 0.328*** 0.134+ 0.1423*

Latex 1 0.0017 0.0503
Cardenolides 1 -0.174*

Trichomes 1
+ p<0.10, *p<0.05, **p<0.01, ***p<0.001
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Figure 4.1. Hypothesized relationships between increasing arbuscular mycorrhizal fungi 
(AMF) mutualist density and a) carbon costs and nutrient benefits.  Costs increase with 
increasing mutualist density, while benefits saturate. As a result, b) the benefit:cost ratio 
is nonlinearly related to mutualist density.  Zone I represents limited fungal abundance 
and nutrient transfer, zone II represents optimal exchange with mutualistic fungi and 
maximal nutrient benefits, and zone III represents fungal parasitism, where carbon costs 
exceed nutrient benefits. The benefit:cost ratio translates directly to the c) expression of 
plant defenses predicted by our model (solid), in comparison to CNB (dotted). d) The 
shapes of the phenotypic response curves to fungal abundance vary among plant 
genotypes (A and B). 
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Figure 4.2. Box and whiskers plot of Asclepias syriaca root tissue colonized by a) 
Scutellospora pellucida and b) Glomus etunicatum in response to experimental inoculum 
manipulation.   
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Figure 4.3. Expression of Asclepias syriaca defensive traits when grown under 
experimental manipulation of fungal inoculum density.  The left column illustrates 
responses to colonization by Scutellospora pellucida, while the right column illustrates 
responses to colonization by Glomus etunicatum inoculum.  Solid lines represent the 
best-fit linear regression model, dashed lines represent the best-fit quadratic regression 
model, while dotted and dashed lines represent the nonlinear best fit Michaelis-Menten or 
negative exponential regression model.  Trait means ± 1 SD represented are a &b) plant 
biomass, c&d) latex exudation, and e&f) total foliar cardenolide concentration. 
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Figure 4.4. Comparison of (a) the Growth Differentiation Balance Hypothesis (GDBH, 
after Herms & Mattson 1992) and (b) Resource Exchange Model of Plant Defense 
(REMPD).  Note the different x-axes in the figures.  In b) mycorrhizal colonization is 
assumed to increase plant internal nutrient availability and increase net assimilation rate 
(NAR).  REMPD predicts that increasing arbuscular mycorrhizal  (AM) costs will 
decrease defense expression, and decrease plant growth at high colonization levels.   
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Figure 4.5. An integration of the Growth Differentiation Balance Hypothesis with the 
Resource Exchange Model of Plant Defense. Soil fertility alters the benefits associated 
with mycorrhizal fungal colonization and the subsequent effects on defense expression.  
When soil fertility is very high, mycorrhizal fungi act only as parasites, and increasing 
mycorrhizal costs result in declines in defense expression.  When mycorrhizal 
colonization is very high, defense expression is insensitive to variation in soil fertility.   
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Chapter V 

 

Mycorrhizal abundance affects the expression of plant defense and herbivore 
performance 

 

Abstract 

Mutualisms intrinsically involve costs and benefits, with the potential for dynamic 

outcomes for partnering organsims.  Increasing abundance of belowground symbionts, 

eg. arbuscular mycorrhizal fungi (AMF), should increase both carbon costs and nutrient 

benefits to plants, but the effects of AMF abundance on multitrophic interactions are not 

well understood. Although our understanding of mycorrhizal interactions is based on 

studies that manipulate the presence or absence of fungi, plants in natural systems are 

nearly always colonized by AMF to some extent. Increasing AMF colonization should 

improve plant phosphorus nutrition, affect nonlinearly the expression of plant defenses, 

and influence the performance of a specialist insect herbivore.  To examine how AMF 

abundance affects plant defense and herbivore performance, we grew Asclepias syriaca 

seedlings with Glomus etunicatum, Scutellospora fulgida, and a mix of the two species in 

one of ten abundance treatments.  We quantified plant phosphorus (P), defense 

expression and the performance of specialist herbivore Danaus plexippus. Colonization 

by S. pellucida increased foliar P and chemical defense (cardenolides), decreased latex 

exudation and specific leaf mass and unimodally affected trichome density.  Glomus 

etunicatum affected unimodally foliar P and trichome density and tended to decrease 

specific leaf mass and increase cardenolide expression.  Colonization by the mix of AMF 

decreased specific leaf mass and increased trichome density. Mycorrhizal colonization 

explained more variation in the expression of most plant traits than did fungal species 

identity or plant genotype. Mycorrhizal colonization strongly increased caterpillar growth 

rate, driven by a decline in specific leaf mass. We conclude that variation in mycorrhizal 
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colonization can profoundly influence the expression of plant defense and herbivore 

performance.
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Introduction 

Interactions between plants and other organisms are ubiquitous and mediate essential 

functions in natural and managed systems (Bronstein 1994b, van der Heijden et al. 2008, 

Garibaldi et al. 2011). Nearly all plant species associate with belowground microbes, 

including bacteria and mycorrhizal fungi, in nutrition symbioses that are often 

characterized as mutually beneficial. Nevertheless, many of these interactions 

intrinsically involve both costs and benefits, and as a result, can vary from mutualism to 

antagonism (Bronstein 1994a, Johnson et al. 1997). Belowground symbionts influence 

plant nutrition and growth, ultimately affecting plant-plant interactions, and thus 

community composition (van der Heijden et al. 1998, Smith and Read 2008) and plant-

consumer interactions (Gange 2007). However, the mechanisms by which nutrition 

symbionts affect trophic interactions are not well understood (Hartley and Gange 2009).  

Developing this understanding is important, because most plants are consumed by insect 

herbivores and greater than 90% of plants associate with belowground symbionts.  

 

The presence of nutrition symbionts can substantially increase plant nutrient content and 

thereby increase the performance of nutrient-limited herbivores (Borowicz 1997, 

Goverde et al. 2000). However, nutrition symbionts can also alter the expression of plant 

defenses.  For example, inoculation with mycorrhizal fungi increases alkaloid 

concentration in Castanospermum australe (Abu-Zeyad et al. 1999) and nodulation with 

rhizobia increases cyanogenic potential in Phaseolus lunatus (lima bean) (Thamer et al. 

2011).  Nutrition symbionts may also affect the expression of carbon-based defenses. For 

example, colonization by arbuscular mycorrhizal fungi (AMF) increases the 

concentration of the iridoid glycosides acubain and catalpol in Plantago lanceolata 

(Gange and West 1994).  Although most studies that investigate the effects of nutrition 

symbionts on multitrophic interactions examine chemical defenses, changes in physical 

traits may also affect herbivores.  Indeed, herbivores may respond to microbially-induced 

increases in nutritional quality or changes in chemical or physical defense, depending on 

their feeding mode and degree of specialization (Hartley and Gange 2009), but the 

relative roles of changing nutrition and defense in plant protection and herbivore 
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performance remain elusive, since changes in plant resistance and nutrition are often 

confounded or not concurrently quantified.  

 

In addition, most studies simply manipulate the presence or absence of these microbes.  

However, plants in natural systems are rarely, if ever, free of microbial colonists, instead 

varying in the degree of association with and the identity of belowground symbionts 

(Gange and Ayres 1999). To develop a quantitative understanding of plant-symbiont 

interactions and their multitrophic effects, we generate a realistic gradient of symbiont 

abundance and examine its effects on plant defense, nutrition and herbivore performance. 

 

Arbuscular mycorrhizal fungi (AMF, Phylum Glomeromycota) are common 

belowground symbionts and associate with the majority of plant species examined to date 

(Wang and Qiu 2006). Plant hosts supply photosynthate to fungi (Schussler et al. 2001) 

and in return, are provided with resources gathered from the soil, most often phosphorus 

(P), micronutrients, and water (Smith and Read 2008).  It is clear that the identity of 

AMF species colonizing plants affects plant resistance to herbivory (Gange 2001), 

tolerance to herbivory (Bennett and Bever 2007), and the performance of herbivores 

(Goverde et al. 2000). In contrast, the effect of mycorrhizal abundance on plant-herbivore 

interactions is not well understood. Earlier work suggests that the abundance of 

mycorrhizal fungi alters plant performance (Gange and Ayres 1999), and indeed, 

greenhouse and some field studies document strong effects of the abundance of 

mycorrhizal fungi on plant growth and nutrition (Wright et al. 1998, Lekberg and Koide 

2005). However, most recent studies of the effects of mycorrhizal fungi on multitrophic 

interactions continue to rely on presence/absence manipulations of AMF. 

 

Previously, we used a cost-benefit approach (Morris et al. 2010) to develop expectations 

for how AMF abundance may affect plant defense against herbivores in the Resource 

Exchange Model of Plant Defense (REMPD; Vannette and Hunter 2011b). Increasing 

colonization by AMF or other beneficial microbes is predicted to increase plant carbon 

costs and nutrient benefits—both components of plant defense traits (Fig. 5.1a). When 

plants associate with a greater abundance of mycorrhizal fungi, they often receive more 
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nutrients from their symbionts (Fitter 1991), but are required to expend more carbon to 

support the growth and reproduction of these fungi (Douds et al. 1988). The benefits 

gained by the plant can saturate with increasing mycorrhizal abundance because 

competition for nutrients (Violi et al. 2007) and constraints on fungal foraging distance 

(Drew et al. 2003) may limit the amount of nutrients gathered by fungi.  However, the 

carbon costs associated with maintaining mycorrhizal symbiosis are unlikely to saturate 

and therefore can result in net parasitism and growth depressions in plant hosts (Peng et 

al. 1993, Klironomos 2003).  As a result, the benefit:cost ratio shifts with symbiont 

abundance (Fig. 5.1b) and REMPD predicts that plants will respond unimodally to 

increasing association with AMF in growth and defense expression (Fig. 5.1c) (Vannette 

and Hunter 2011b). Moreover, colonization by different symbionts may shift the 

benefit:cost ratio because of interspecific variation in nutrient-gathering ability or 

maintenance and construction costs (Hart and Reader 2002a) (Fig. 5.1d).  As a result, 

colonization by different fungal species, particularly those that differ in life-history or 

allocation strategies may produce different phenotypic responses in plants (Fig 5.1d) 

(Powell et al. 2009). 

 

Here, we provide an experimental test of the relationships illustrated in Figure 5.1.  We 

hypothesize that increasing levels of colonization by AMF will improve plant phosphorus 

nutrition and nonlinearly affect the expression of plant defenses. Additionally, we 

hypothesize that AMF identity will differentially affect plant responses to varying AMF 

abundance in a unimodal relationship. Finally, we hypothesize that changes in plant 

phosphorus and defense mediated by increasing AMF abundance will influence the 

performance of a specialist insect herbivore.  

 

Study System 

To test these hypotheses, we inoculated Asclepias syriaca L. (common milkweed) 

seedlings with a series of AMF soil treatments.  Asclepias syriaca is a perennial herb that 

grows throughout eastern North America and associates with AMF throughout its range 

(Landis et al. 2004).  Asclepias syriaca is attacked by a variety of specialist insect 

herbivores and expresses several traits that can deter damage by herbivores or reduce the 
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growth and reproduction of even specialists (Dussourd and Hoyle 2000, Zalucki et al. 

2001, Agrawal 2005). Cardenolides, toxic, bitter-tasting steroids, can affect the survival 

and performance of monarch butterflies Danaus plexippus (Zalucki et al. 2001, De Roode 

et al. 2008) and aphids (de Roode et al. 2011). Latex, a sticky polyisoprene polymer that 

contains cardenolides and other compounds, is stored within pressurized laticifers and 

can engulf small herbivores and inhibit the feeding of larger ones (Zalucki and Malcolm 

1999, Zalucki et al. 2001). Trichomes, produced on the upper and lower lamina and leaf 

veins of A. syriaca, may inhibit feeding by herbivores (Levin 1973). While all these 

defensive traits are primarily composed of carbon, their synthesis requires nutrient-rich 

enzymes (Gershenzon 1994).  

 

Although A. syriaca does not require AMF for growth, plants at our field site in northern 

Michigan, USA, associate with AMF at colonization levels ranging from 10-80% of root 

length colonized (authors’ unpublished data). Most arbuscular mycorrhizal fungi provide 

phosphorus to the plant, and fungal species may vary in their nutrient-gathering ability 

and carbon cost to the plant (Hart and Reader 2002a). In addition, families of A. syriaca 

vary substantially in defense expression (Chapter II) and may respond differentially to 

mycorrhizal colonization or AMF identity.
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Materials and Methods 

To investigate the effect of symbiont abundance on the expression of plant defenses 

among plant families, we manipulated the density of AMF available to milkweed plants. 

We delineated five genets of A. syriaca growing in a natural population in northern 

Michigan (University of Michigan Biological Station, Pellston, MI) based on 

morphological, phenological, and chemical similarity.  Clonal structure at this site has 

since been verified using microsatellite markers (Kabat et al. 2010). Follicles containing 

full-sibling seeds were collected from five different genets at our field site, cold moist 

stratified for at least three months, and germinated. Pure cultures of Glomus etunicatum 

and Scutellospora fulgida, AMF species that associate with A. syriaca at our field site 

(R.L. Vannette personal obs.), were obtained from INVAM (http://invam.caf.wvu.edu/) 

and cultured on Sorghum roots to obtain sufficient inoculum for experiments.   

 

We generated a range of mycorrhizal colonization by limiting the availability of fungal 

inoculum to plants.  Seedlings were planted in conical Deepots TM(Steuwe and Sons Inc.), 

with a diameter of 6.4 cm and depth of 25cm, filled with 600 mL 1:1 autoclaved 

Sunshine Metromix:sand containing mycorrhizal fungal inoculum. To each pot was 

added 150 mL (1/4 pot volume) of fungal inoculum consisting of spores, hyphae, and 

colonized sorghum root pieces in densities ranging across 11 AMF inoculation densities 

from 100% autoclaved inoculum to 100% live inoculum (Table 5.1).  The top and bottom 

of each pot contained 225 mL of autoclaved soil mixture to prevent contamination. These 

inoculation densities were determined from an initial trial with A. syriaca to generate a 

wide range of colonization intensities. AMF density treatments were established 

separately for Glomus etunicatum, Scutellospora fulgida, and a mix of the two species. 

(N=10 replicates/ treatment =1550 plants - see Table 1 for replication level by family and 

AMF treatment). 

 

Herbivore Assay 

Eggs of monarch butterflies, D. plexippus, were obtained from Michigan Monarchs 

(http://www.mi-monarchs.com) and attached to the leaves of a subset of plants to assess 

fungal-induced changes in plant nutrition and defense.  Eggs were applied to 4 replicates 
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of each plant family x AMF treatment to expose caterpillars to a range of fungal 

abundance treatments (Table 1, N=4 replicates/treatment=320 caterpillars). A single egg 

was applied to one leaf of the fourth expanded leaf pair from the apical meristem and 

held to the leaf using a single drop of water.  The entire leaf was enclosed with a small 

mesh cage, as were those on paired plants from the same mycorrhizal abundance 

treatments (n=4/treatment, 320 total), but with no monarchs, to control for the effect of 

the cage on plant performance and trait expression. Eggs hatched within 2 days and the 

date of eclosion was recorded.  Caterpillars were allowed to feed for five days, after 

which they were collected, allowed to void their guts and frozen. Caterpillars were 

subsequently freeze-dried and weighed using a microbalance (Mettler Toledo, Columbus, 

Ohio, USA).  Caterpillar growth rate was calculated by dividing total caterpillar biomass 

by the number of days the caterpillar had fed following eclosion.   

 

Harvest and Analysis of Plant Traits 

At the end of three months of growth, plants were destructively harvested, and plant 

growth, phosphorus content, and defense responses to mycorrhizal treatments were 

quantified. For all analyses presented here, defense traits were quantified on control 

(herbivore-free) plants.  Five hole punches (424 mm2 total) of fresh leaf tissue were taken 

from one half of the two largest leaf pairs on each plant, placed immediately into 1 mL of 

methanol and stored at -10oC for cardenolide analysis (below).  Five identical leaf discs 

were taken from the opposite half of the leaf pairs and stored in glassine envelopes to 

provide estimates of sample dry mass and measures of other leaf traits (below).  Latex 

that flowed from the first six holes punched was collected on a pre-weighed cellulose disc 

(1 cm. diameter), dried, and weighed. Trichomes on the lower surface of the leaf were 

counted under a dissecting microscope.  Plant chemical defenses were assessed following 

established protocols (Zehnder and Hunter 2007).  Briefly, cardenolides were separated 

and quantified by extracting plant material in methanol.  Samples were analyzed by 

HPLC (Waters Inc) with digitoxin as an internal standard, and peaks with symmetrical 

absorbance between 218-222 nm were quantified as cardenolides.  Total cardenolides 

were calculated as the sum of individual peaks.   
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To quantify levels of AMF colonization that resulted from inoculation treatments, a 

subset (approx 0.1 g) of dried fine root tissue was sampled from two control plants from 

each plant family from all AMF species x abundance treatments (n = 310).  Roots were 

rehydrated for 24 hours in water, cleared with 10% KOH for 10 minutes, acidified using 

2% HCl and stained in 0.05% trypan blue in 1:1:1 water: glycerine:lactic acid.  Stained 

roots were mounted on slides and scored at 200x using the magnified gridline intersect 

method (McGonigle et al. 1990) using a Nikon compound microscope (Melville, NY, 

USA).  A site was considered colonized if AM hyphae, arbuscules, or vesicles were 

present.  Non-AMF hyphae were also detected at low levels (< 0.05%).  

 

Quantifying Benefits and Costs 

In order to quantify one currency of the benefits conferred by AMF to plants, we 

examined foliar phosphorus.  We ground foliar tissue from two control plants of each 

plant family from all AMF x abundance treatments (n =310).  Foliar phosphorus in 

ground samples was converted to soluble P using acid reflux and quantified using the 

molybdenum method with ascorbic acid reduction by Mike Grant at the laboratory in 

Pellston, MI. All analyses of constitutive defenses and phosphorus were performed on 

control plants that were not exposed to herbivores.  Previous work has demonstrated that 

root colonization by mycorrhizal fungi is correlated with fungal biomass in roots (van 

Diepen et al. 2007) and carbon costs associated with hosting mycorrhizal fungi (Peng et 

al. 1993).  The proportion of A. syriaca root colonized by AMF is also predictive of 

fungal biomass in roots, measured using fatty acid 16:1ω5c (R2 = 0.48 for colonization by 

G. etunicatum) (author’s unpublished data).  We use mycorrhizal colonization as an 

estimate of fungal abundance within the root and carbon costs associated with hosting 

AMF (Gange and Ayres 1999). 

 

Statistical Analysis 

We hypothesized that plant defense expression would respond unimodally to variation in 

AMF colonization (Fig. 5.1c) and that this response would depend on AMF identity.  To 

explore the shape of plant response to variation in AMF colonization, we examined a 

series of linear and non-linear model fits between plant traits and AMF colonization 
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(Motulsky and Ransnas 1987). We used weighted regression to analyze the effects of 

mycorrhizal colonization on plant defense expression (Sokal and Rohlf 1995) using 

average mycorrhizal colonization for each AMF x abundance treatment because only a 

subset of the plants were examined for mycorrhizal colonization and foliar phosphorus.  

To examine how AMF colonization affected plant defense expression, we compared the 

following full weighted regression equations, fit separately for each plant trait and AMF 

treatment using the stats package in R (v. 2.11.0) (R Development Core Team 2010).  

Only linear and quadratic models were fit to increasing relationships between AMF 

colonization and defense. 

1) D=Fi + C + Fi*C 

2) D=Fi + C + C2 +C*Fi + C2*Fi 

3) D=e^(C+Fi) 

 where D=plant defense trait, Fi= each plant family, and C= AMF colonization.   

 

Mean trait values at each colonization density, for each plant family were weighted by 

variance-1 in the trait value. Measures of model fit, including AIC and adjusted R2, were 

extracted from each model. Adjusted R2 was calculated as 1-(1-R2) n-1/(n-p-1), where 

n=sample size and p is the total number of regressors. AIC was used to select the best-fit 

model.   

 

To examine the relative contribution of AMF identity, colonization, and plant family 

identity to the expression of plant traits, we used ANCOVA to partition the variance in 

defense traits explained by each predictor (Hunter et al. 1997) by calculating the 

Explained Sums of Squares/Total Sums of Squares by AMF species.  Mean trait values 

were used as above, and weights were applied as described previously. Since all traits 

exhibited different best-fit curves, we modified Eqn. 2 above to include AMF identity 

and interactions with plant genotype and AMF colonization.  

4)D=Fi + C + C2 + C2*Fi + S + S*Fi + S*C2 + S*C2*Fi 

 where D=plant defense trait, Fi= each plant family, and C= AMF colonization, 

and S=AMF species (eg. Glomus etunicatum, Scutellospora fulgida, or the mix).   
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To assess the correlation among plant traits, we examined Pearson product-moment 

correlations among all measured plant traits on mean trait values. Mean trait values for 

each AMF species x colonization x plant genotype combination (N=155) were used for 

the correlation analysis.  In addition, plant defense can be represented as a suite of traits 

that may act in concert to reduce herbivore consumption and performance (Rasmann and 

Agrawal 2009).  To examine changes in the plant multi-trait defensive phenotype induced 

by mycorrhizal fungi, we used permutational MANOVA in the package vegan (Oksanen 

et al. 2010) in R to assess if mycorrhizal colonization, AMF identity, or their interaction 

alters the overall expression of milkweed defensive phenotype. Mean trait values were 

used as for the correlation analysis. 

 

To examine how caterpillar growth rate varies with increasing mycorrhizal colonization 

among AMF species, we used ANCOVA on caterpillar growth rates averaged for each 

plant family x AMF species x colonization treatment (Table 5.1, N=75).   To further 

assess how changes in plant nutrition and defense traits affect caterpillar growth, we used 

multiple regression to assess the effects of individual plant traits on log-transformed 

caterpillar growth rate. Correlations among variables were examined for multicollinearity 

using Pearson correlations (above), and since the expression of traits was not highly 

collinear (r>0.80), we used all traits in the multiple regression.  For this analysis, we 

calculated average caterpillar growth rates for each plant family x AMF species x 

colonization and regressed these mean values on average plant traits, since traits were not 

measured on the same plants that caterpillars consumed.  We first examined the fit of the 

full model, which contained all measured plant traits as predictors, then used the step 

function, which uses AIC to choose among models using a combination of forward and 

reverse selection and AIC values. 
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Results 

Inoculum treatments with either Glomus etunicatum or Scutellospora fulgida generated a 

wide range of AMF colonization intensities (0-35% and 0-28% respectively), whereas the 

range of colonization intensities generated by the mixed species inoculum was narrower 

(0-15%) (Fig. 5.2). We identified characteristic fungal structures 

(http://invam.caf.wvu.edu) for each fungal species in their respective treatment, but not in 

the other’s single-species treatment, and structures characteristic of both fungal species 

were clear in the mix treatment. Arbuscular colonization was consistent within AMF 

inoculum treatments (ANOVA F20,236=4.39, p < 0.0001) and mycorrhizal colonization 

levels did not vary significantly among plant families. Total colonization and arbuscular 

colonization were highly correlated (p<0.0001, R2=0.79), and since arbuscules represent 

the functional structure of the mycorrhiza, we used mean arbuscular colonization values 

for each AMF x abundance treatment (y-values in Fig. 5.2) were used as measures of 

AMF abundance in all subsequent analyses (Gange and Ayres 1999). Plant phosphorus 

increased linearly in response to colonization by S. fulgida (F1,159=55.23, p<0.001), 

responded unimodally to colonization by G. etunicatum (F1,159=3.74, p=0.025), but did 

not respond strongly to colonization by a mix of fungal species (F1,160=0.28, p=0.59) (Fig. 

5.3).   

 

Effects of mycorrhizal colonization on individual plant traits 

With a few exceptions (noted below) plant families responded in similar ways to AMF 

treatments (Fig. 5.4).  However, we observed substantial variation among plant defense 

traits in their responses to AMF colonization.  Moreover, the identity of AMF species 

determined the shape of defense responses to increasing levels of AMF colonization 

(Table 5.2, Fig. 5.4).  Among most plant families, increasing colonization by S. fulgida 

decreased latex exudation and specific leaf mass (Fig. 4 a & d), but increased cardenolide 

concentration (Fig. 5.4j).  Trichome density responded unimodally to colonization by S. 

fulgida, first increasing then decreasing (Fig. 5.4g). Similarly, colonization by G. 

etunicatum increased foliar cardenolide concentration, affected unimodally trichome 

density (among most genotypes), and decreased nonlinearly plant expression of specific 

leaf mass (Fig. 5.4 e, h, k).  Plant families varied in their response to increasing 
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colonization by G. etunicatum in latex--some families increased, but others decreased 

latex exudation with increasing mycorrhizal colonization (Fig. 5.4 b). Colonization by a 

mix of fungal species decreased latex exudation and strongly decreased specific leaf mass 

(Fig. 5.4 c, f), but tended to increase trichome density and did not predict cardenolide 

concentration (Fig. 5.4 j, l).  

 

Plant family identity and mycorrhizal colonization influence plant defense expression 

The full model that included AMF colonization, identity and plant family explained a 

large proportion of the variation in plant traits, from 10-92% of variation explained, 

depending on the plant trait examined (Adjusted R2 presented in Table 5.2).  In general, 

mycorrhizal colonization and plant genotype explained more variation in plant trait 

expression than did AMF identity, revealed by the ANCOVA used to partition the 

variance explained by these predictors (Table 5.3). AMF colonization explained the most 

variation of all predictors in latex exudation, trichome density, specific leaf mass, and 

foliar phosphorus concentration (Table 5.3).  While the identity of AMF colonist 

significantly affected the expression of all measured traits, this effect was outweighed by 

both fungal colonization and plant family identity in latex exudation, trichome density, 

and foliar phosphorus concentration.  Plant family identity explained the greatest amount 

of variation in the expression of cardenolides, followed by AMF colonization and AMF 

identity. 

 

Correlations among traits and effects of mycorrhizal colonization on multivariate plant 

defense expression  

Pearson correlations revealed that foliar phosphorus was positively associated with 

trichome density, but negatively associated with specific leaf mass and latex. In addition, 

the expression of latex and specific leaf mass were positively correlated (Table 5.4). 

Cardenolide expression was not significantly associated with phosphorus concentration 

or other defense traits.  Plant defense modeled as a multivariate trait also responded 

strongly to fungal colonization (perMANOVA AMF F2, 144=11.6, p<0.001, Colonization 

F1,154=19.8, p<0.001, Interaction F2,154=4.26, p<0.001). In general mycorrhizal 

colonization shifted plant defense phenotype away from physical defenses, such as latex 
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and specific leaf mass, and increased trichome density, foliar P content and cardenolide 

concentration.  

 

Effects of mycorrhizal colonization and plant traits on herbivore performance 

The growth rate of the specialist herbivore D. plexippus varied among fungal treatments 

(ANCOVA: Interaction F2,72=7.41, p<0.001) (Fig. 5.5), but was in general greater on 

mycorrhizal plants than nonmycorrhizal plants.  Caterpillar growth rates varied 

unimodally with colonization by G. etunicatum and S. fulgida.  The response of 

caterpillars to fungal colonization by the mix of AMF species was not continuous, but 

rather increased sharply with the presence of fungi. There was not enough variation in 

colonization by the mix treatment to determine the effect of AMF colonization on 

herbivore performance in this treatment.    

 

Caterpillar growth rate was strongly negatively associated with specific leaf mass (Table 

5.5), as revealed by multiple regression.  In addition, caterpillar growth rate tended to be 

positively affected by phosphorus concentration and trichome density (Table 5.5) and 

negatively associated with latex exudation and cardenolide concentration, although these 

effects were not significant.  Only specific leaf mass, a measure of leaf toughness (Frost 

and Hunter 2008), was retained as a significant predictor of caterpillar growth rate in the 

stepwise regression (Table 5.5).   
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Discussion 

We hypothesized that increasing mycorrhizal colonization would nonlinearly affect the 

expression of plant defenses, mediated by increased foliar phosphorus (P), but we found 

that the direction and strength of mycorrhizal effects on plant defense varied among 

fungal treatments and with the particular defense trait examined.  First, colonization by 

either species of fungi alone generally increased plant ‘benefit’ (P); colonization by G. 

etunicatum increased foliar P while S. fulgida weakly affected affected foliar P in a 

unimodal relationship. However, trichome density was the only trait to respond 

unimodally to colonization by AMF as predicted by the benefit:cost ratio.  In contrast, 

specific leaf mass (toughness) and latex declined with mycorrhizal colonization, and 

cardenolide expression increased exponentially in response to the two single-species 

fungal treatments.  These changes in plant defense expression were correlated with 

changes in foliar P--trichome density was positively correlated with leaf P, whereas leaf 

toughness and latex exudation were negatively correlated with leaf P. Mycorrhizal 

colonization also increased the performance of a specialist herbivore, D. plexippus 

apparently by reducing leaf toughness.  Interestingly, fungal abundance explained a 

greater proportion of the variation in most defense traits than did fungal identity or plant 

family.  

 

Effects of mycorrhizal colonization on the expression of defense  

Most studies that examine the ecological role of mycorrhizal fungi in an experimental 

setting manipulate the presence or absence of fungi.  However, our results suggest that 

fungal abundance may be an overlooked, but key aspect of the mycorrhizal mutualism 

(Gange and Ayres 1999, Violi et al. 2007, Garrido et al. 2010) and explain more variation 

in plant phenotype than other factors more commonly manipulated (Karst et al. 2008, 

Hoeksema et al. 2010).  In addition, differences among fungal species in their effects on 

plant phenotype and subsequent ecological dynamics that have been attributed to species 

identity may be confounded by differences in the proportion of root colonized rather than 

fungal identity per se.     
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Despite the effect of fungal abundance on plant P and the expression of plant defense, the 

reponse of most traits differed from expectations generated by the benefit:cost analysis in 

the resource exchange model (REMPD) (Fig. 5.1). Although both our estimates of the 

costs (mycorrhizal colonization) and benefits (foliar P) were associated with changes in 

defense expression, only trichome density responded unimodally to increasing abundance 

of either single species of fungi as predicted. We suggest a few complementary reasons 

for these deviations from predictions.  First, similar to the results reported by Garrido and 

colleagues (2010), the effects of AMF colonization on plant trait expression in our study 

depended on the specific trait examined. Variation in the shape of phenotypic response 

among plant traits may result from the nutrient requirements for construction of specific 

physical structures or chemical compounds (Gershenzon 1994, Donaldson et al. 2006). 

For example, while phosphorus was negatively associated with latex and specific leaf 

mass, foliar phosphorus was positively associated with trichome density (Table. 5.4). In 

constrast, the expression of physical defense traits, such as toughness and latex have been 

shown to increase with CO2 fertilization (Chapter II), suggesting that the expression of 

these may be limited by the availability of photosynthate.  As a result, we may improve 

trait-specific predictions by tailoring them to the specific nutrient requirements of each 

trait and assessing trait-specific benefit:cost ratios.  Second, mycorrhizal colonization of 

A. syriaca in natural populations ranges from 10-80% of the root length colonized, with a 

mean of approximately 30% (author’s unpublished data). The proportion of root 

colonized that we generated in our experiment only spanned a portion of these values, 

and as a result, may not capture the entire range of effects and shape of the curve 

hypothesized by REMPD.   In addition, the proportion of root colonized may not 

adequately represent the carbon costs imposed by mycorrhizal fungi (Gavito and Olsson 

2003).  Finally, the relative benefits and costs associated with hosting mycorrhizal 

colonization may depend on soil fertility (Johnson et al. 1997, Violi et al. 2007).  In our 

experiment, plants were minimally fertilized with phosphorus-free fertilizer, but soil 

fertility may still have been greater than field conditions. We suggest that variation in soil 

nutrient availability likely mediates the effects of mycorrhizal fungi on defense, may 

explain the variation in results between this chapter and Chapter IV, and is the subject of 

current investigation.   
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Taken together, these explainations suggest that our current experiment may not have 

explored the entire benefit:cost response curve and that the ‘optimal’ colonization density 

for maximum trait expression may vary among plant traits due to differences in resource 

requirements. Future studies should attempt to generate a greater range of colonization 

densities under a range of soil fertility to more fully assess the assumptions of the model.   

 

Species-specific effects on expression of plant defense 

In our experiment, AMF species varied in their effects on plant phosphorus and defense, 

and this may be attributed to species-specific carbon requirements and efficacy of 

nutrient foraging (Hart and Reader 2005), which is phylogenetically conserved (Hart and 

Reader 2002b, Powell et al. 2009).  Specifically, fungal species in the Gigasporaceae (eg. 

Scutellospora fulgida) are more effective at increasing host nutrition when compared 

with those in the Glomeraceae (eg. Glomus etunicatum) (Powell et al. 2009).  Consistent 

with this finding, colonization by S. fulgida in our experiment linearly increased leaf P, 

whereas colonization by G. etunicatum affected unimodally leaf P (Fig. 5.3). Moreover, 

the two AMF species induced slightly different responses in plant defense traits (Fig. 

5.4), which were tied to changes in phosphorus concentration. These results lend support 

to the finding that association with different symbionts can generate divergent responses 

in plant partners, in part mediated by costs and benefits associated with different species 

(Stanton and Palmer 2011).   

 

We were unable to generate a wide range of root colonization intensities with the mix of 

fungi and as a result, cannot fully evaluate the effect of fungal abundance in this 

treatment. In addition, the proportion of root colonized by a mix of fungal species was 

lower than colonization by either species separately. Other studies have been able to 

generate a range of colonization intensities with a mix of fungal species (Garrido et al. 

2010), and some document greater arbuscular colonization by a mix of fungi than single-

species inoculum (Bennett and Bever 2009). We suggest that interspecific interactions 

among fungi within or outside the root (Cano and Bago 2005, Bennett and Bever 2009, 

Kennedy et al 2009) may in part explain the smaller proportion of root colonized by the 
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mix of fungal species.  Furthermore, we identified no evidence of complementarity, 

displayed by increased P or enhanced defense expression in the mix treatment.  This was 

contrary to our expectations, since previous work suggests that increased fungal diversity, 

specifically phylogenetic diversity (Maherali and Klironomos 2007), may promote plant 

nutrition and growth due to complementarity in resource use (Jansa et al. 2008).  

However, our results are consistent with those described by Violi and colleagues, who 

reported that colonization by a mix of G. intraradices and Scutellospora heterogama 

reduced the P benefits conveyed by either fungal species alone (Violi et al. 2007).  

 

Effects of AMF colonization on plant resistance and the maintenance of mutualism 

In our study, mycorrhizal colonization increased the growth rate of D. plexippus, 

consistent with predictions that mycorrhizal colonization should increase the performance 

of specialist herbivores (Gehring and Bennett 2009).  However, in our study, D. 

plexippus growth was more closely associated with a decrease in physical defense rather 

than simple changes in nutrition (Koricheva et al. 2009).  In natural systems, , D. 

plexippus may oviposit preferentially on plants that contain high concentrations of 

cardenolides (Lefevre et al. 2010), which increased with mycorrhizal colonization. 

Indeed, the sharp decrease in the expression of physical defense and increased chemical 

defense in response to mycorrhizal colonization seems ecologically and evolutionarily 

unfavorable in light of herbivory by specialist herbivores and unlikely to contribute to the 

maintenance of this mutualism (Kiers and van der Heijden 2006). How then is this 

mutualism maintained? 

 

Mycorrhizal colonization may enhance plant fitness through other mechanisms or when 

generalist herbivores are considered.  For example, increased expression of chemical 

defenses in A. syriaca may deter generalist herbivores such as the deer that are common 

at our field site and can severely reduce plant fitness.  In addition, high concentrations of 

cardenolides can also reduce the growth and survival of specialist herbivores in some 

situations (Malcolm and Zalucki 1996).  While mycorrhizal colonization did not improve 

A. syriaca resistance to specialist herbivory in this experiment, increased mycorrhizal 

colonization may improve plant tolerance to and regrowth following herbivory (Bennett 
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et al. 2006, Vannette and Hunter 2009). No clear pattern has emerged from previous 

studies that examine the effects of mycorrhizal fungi on plant tolerance (Kula et al. 2005, 

Bennett and Bever 2007, Garrido et al. 2010). In a previous study with A. syriaca, we 

describe increased plant regrowth following herbivory in plants grown under elevated 

atmospheric CO2 (Chapter II), associated with increased levels of mycorrhizal 

colonization (Chapter III).  We suggest that mycorrhizal fungi may favor tolerance and 

regrowth following herbivory in A. syriaca, but future experiments must test 

experimentally this hypothesis. Alternatively, mycorrhizal colonization may provide 

other benefits to maintain the mutualism including increasing plant reproduction or 

resistance to pathogens (Sikes et al. 2009) and root herbivores (Rasmann and Vannette, in 

prep).   

 

Plant families vary in response to mycorrhizal colonization 

Plant families varied significantly in phenotypic response to AMF species in the 

expression of trichomes and cardenolides, and in response to mycorrhizal colonization in 

the expression of latex. Although plant family by AMF interactions explained 

substantially less variation in defense traits than did main effects, they may still 

contribute to eco-evolutionary dynamics.  In contrast to previous work that has 

documented variation among genotypes in the association or dependence on AMF in 

weeds (Ramos-Zapata et al. 2010) agricultural cultivars (Graham et al. 1997) and other 

plants (reviewed in Hoeksema 2010), we identified little variation among genotypes in 

the proportion of root colonized. However, our results demonstrate that plant genotypes 

can vary in their phenotypic responses to variation in AMF. This finding is relevant 

because insect herbivores can exert significant selection pressure on Asclepias syriaca 

(Agrawal 2005).  As a result, the soil biotic environment may interact with plant 

genotype to determine the expression of defense and may lead to complex evolutionary 

dynamics within this system.  

 

Conclusions 

Our results demonstrate that increasing mycorrhizal abundance exhibits strong trait-

specific effects on the expression of plant defense, mediated in part by an increase in 
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plant phosphorus status, and in turn, increases the performance of a specialist herbivore. 

Although further research should examine plant responses to a greater range of 

colonization densities and soil fertility to thoroughly test the assumptions of REMPD, the 

results presented here suggest that trait expression responds to changes in the costs (C) 

and benefits (P) associated with mycorrhizal colonization, although not in a unimodal 

fashion as predicted. In addition, genetic variation in phenotypic response to mycorrhizal 

colonization may also allow for selection by herbivores on plant-fungal associations. 

Overall, our results emphasize that mycorrhizal abundance can profoundly influence 

plant defense and the performance of herbivores, with implications for the outcome of the 

mycorrhizal mutualism (Holland et al. 2002).   
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Table 5.1. Fungal treatments consisted of live and autoclaved whole fungal inoculum (homogenized root pieces, spores, hyphae) from 
Glomus etunicatum, Scutellospora fulgida, or a 1:1 mix of the two species.  Total Plant Replicates describe the total number of 
seedlings planted, while Plant Trait Replicates describe the number of plants used for analysis of constitutive defense traits.  Total 
Caterpillar Replicates is the total number of caterpillars (1/plant) used to assess plant defenses.   
 

Treatment Live Inoculum (mL/pot) Autoclaved Inoculum (mL/pot) Total Plant Replicates Plant Trait Replicates Total Caterpillar Replicates
0 0 150 50 (N=10/family) 30 (N=6/family) 20 (N=4/family)
1 0.5 149.5 150 (N=10/family/AMF) 150 (N=10/family/AMF) 0
2 1 149 150 (N=10/family/AMF) 90 (N=6/family/AMF) 60 (N=4/family/AMF)
3 2 148 150 (N=10/family/AMF) 150 (N=10/family/AMF) 0
4 5 145 150 (N=10/family/AMF) 90 (N=6/family/AMF) 60 (N=4/family/AMF)
5 10 140 150 (N=10/family/AMF) 150 (N=10/family/AMF) 0
6 25 125 150 (N=10/family/AMF) 90 (N=6/family/AMF) 60 (N=4/family/AMF)
7 40 110 150 (N=10/family/AMF) 150 (N=10/family/AMF) 0
8 60 90 150 (N=10/family/AMF) 90 (N=6/family/AMF) 60 (N=4/family/AMF)
9 100 50 150 (N=10/family/AMF) 150 (N=10/family/AMF) 0
10 150 0 150 (N=10/family/AMF) 90 (N=6/family/AMF) 60 (N=4/family/AMF)
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Table 5.2. Results of weighted linear, quadratic, and negative exponential regressions 
examining the effect of average arbuscule colonization on defense trait expression in 
Asclepias syriaca seedlings (Eqns 1-3).  Negative exponential models were fitted only to 
decreasing relationships.  Models include effect of plant family.  Average arbuscule 
colonization (shown in Fig. 2) was calculated for each inoculum treatment level for each 
AMF species x abundance treatment separately. The best-fit model for each trait x fungal 
species combination was chosen using AIC.  The symbols indicate the significance of the 
mycorrhizal colonization term.  Adjusted R2 for the entire model is presented.  All 
analyses were performed in R v. 2.11. 
 



 
  
  

 

Table 5.3. Variance in plant trait values explained by AMF identity, colonization and plant family identity determined by F-tests and 
sums of squares derived from weighted ANCOVA. Variance explained was calculated by dividing the sums of squares explained by 
each predictor by the total sums of squares for each trait.  Df column indicates error df for each analysis, and df row indicates the df 
for each predictor.  All analyses were performed on the family average trait value for AMF x abundance treatment level and weighted 
by variance -1.  AMF treatments indicate fungal species treatments including Scutellospora fulgida, Glomus etunicatum, and an equal 
mix of the two species.  Plant family denotes different genetic families of Asclepias syriaca.  Colonization is average arbuscule 
colonization (y-values from Fig. 2) calculated separately for each inoculation treatment for each AMF x colonization treatment. AMF 
Colonization2 refers to the quadratic term in the model.  All analyses were performed in R v. 2.11. 
 

 
 
 
 
 
 
 
 

 
 
 
  
 

AMF 
Species

AMF 
Colonization

AMF 
Colonization2 Plant Family

AMF Species x 
Colonization2

AMF x Plant 
Family

Colonization2 x 
Plant Family

AMF x Colonization2 

x Plant Family
Plant Trait df 2 1 1 4 2 4 4 8

Latex 134 0.083*** 0.089*** --- 0.16*** 0.043* --- 0.046** ---
Trichome Density 133 0.030*** 0.38*** 0.063*** 0.25*** --- 0.025* --- ---

SLM 134 0.089*** 0.29*** 0.24*** 0.075*** 0.027*** --- --- ---
Cardenolides 90 0.11*** 0.026*** 0.17*** 0.56*** 0.011** 0.019+ --- ---

Phosphorus (not weighted) 134 0.046** 0.14*** 0.038** --- 0.073*** --- --- ---
*p<0.05, **p<0.01, ***p<0.001, Bold indicates that F-values are significant after Bonferroni adjustment.
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Table 5.4. Pearson product moment correlations coefficient calculated pairwise for traits 
expressed by Asclepias syriaca.  Correlations were calculated from average trait values 
for each plant family x AMF species x AMF colonization combination (N=155).  SLM 
stands for Specific Leaf Mass, and cardenolides and phosphorus refer to total foliar 
cardenolide or phosphorus concentration, respectively.  All tests were performed in R v. 
2.11. 
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Table 5.5. Partial unstandardized regression coefficients from multiple regression 
examining the effect of measured Asclepias syriaca traits on the log-transformed growth 
rate of Danaus plexippus caterpillars.  Regression was conducted on the family means for 
each AMF x inoculum treatment combination (N=75). Coefficients and their significance 
are reported from both the full model and stepwise best-fit model.  All regression 
analyses were performed in R v. 2.11. 
 

Predictors Full Model Stepwise 
Latex -0.23 --- 

Trichome Density 0.12 --- 
SLM -284.40*** -324.15*** 

Cardenolide Concentration -0.25 --- 
Phosphorus 1.75 --- 

+p<0.10, *p<0.05, **p<0.001, ***p<0.0001 
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Figure 5.1. Hypothesized relationships between increasing mycorrhizal symbiont density 
and a) carbon costs and nutrient benefits.  Costs increase with increasing mycorrhizal 
density, while benefits saturate. As a result, b) the benefit:cost ratio is nonlinearly related 
to mycorrhizal density. The benefit:cost ratio translates directly to the c) expression of 
plant defenses predicted by Vannette and Hunter (2011b) d) The shapes of the phenotypic 
response curves to mycorrhizal abundance vary in response to fungal species (A and B). 
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Figure 5.2. Proportion of Asclepias syriaca root colonized by mycorrhizal fungi +/- 1SE.  
Fungal treatments imposed included Glomus etunicatum (GE), Scutellospora fulgida (SF) 
and a mix of the two species (Mix).  Inoculum treatments ranged from 150 mL 
autoclaved inoculum to 150 mL live inoculum (1/4 total pot volume).   
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Figure 5.3. The effect of mycorrhizal colonization on Asclepias syriaca foliar 
phosphorus (P) varies among fungal treatments.  Increasing arbuscular colonization by 
a)Scutellospora fulgida increases foliar P content linearly (F1,159=55.23, p<0.0001, 
R2=0.25).  Colonization by b) Glomus etunicatum affects P content nonlinearly 
(F2,160=3.74, p=0.026, R2=0.045), while c) the mix of two species has no significant effect 
on plant P (F1,162=0.29, p=0.59, R2=0.001).   
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Figure 5.4. Effects of increasing colonization by Scutellospora fulgida, Glomus 
etunicatum, and a mix of the two species on the expression of defense traits among 
genetic families of Asclepias syriaca.   Points represent the mean trait value for each of 
five half-sibling genetic families at a given level of colonization.  Lines represent the 
best-fit model for each plant genotype determined using weighted regression.  Best-fit 
lines were chosen from Table 5.2 based on AIC values, and line is absent if the best-fit 
full model was not significant (p-value>0.05).   
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Figure 5.5. Caterpillar Danaus plexippus growth rate increases with mycorrhizal 
colonization of host plant Asclepias syriaca. Increasing abundance of AMF Scutellospora 
fulgida and Glomus etunicatum affects caterpillar growth in a unimodal fashion, while 
colonization by a mix of fungal species linearly increases herbivore performance. Points 
represent mean caterpillar growth rate for live caterpillars recovered from individual 
plant families on each AMF abundance treatment.  
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Chapter VI 

 

Conclusion 

 

Biotic interactions can influence the phenotype of partner organisms, with important 

ecological and evolutionary consequences (Fritz and Simms 1992).  However, despite a 

large body of work both at experimental and theoretical levels (Strauss and Irwin 2004), 

it remains difficult to anticipate when and how species interactions drive ecological 

outcomes (Hoeksema et al. 2010), especially when these interactions encompass both 

above and belowground communities (van der Putten et al. 2009) and involve multiple 

trophic levels (Hartley and Gange 2009). 

 

In this dissertation, I integrate a series of manipulative experiments to examine the 

importance of biotic interactions, for the expression of plant defense and begin to 

examine the community consequences of these multitrophic interactions.  To understand 

the mechanisms by which biotic interactions affect plant defense phenotype, I quantify 

changes in plant defensive traits and manipulate the availability of resources that may 

underlie plant responses to these interactions.  I also examine whether plant responses 

vary among plant genotypes, in order to examine the potential for evolutionary change in 

response to variation in biotic interactions.  First, I use this framework to assess how 

aboveground herbivory affects the expression of plant defensive phenotype, if plant 

responses are limited by resource availability, and how phenotypic changes may affect 

above-belowground interactions and the evolution of plant populations. I then develop 

and test predictions for how belowground nutrition symbionts affect plant defense 

expression and the performance of aboveground herbivores. Below I summarize the 

results from my four primary chapters.   
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Chapter II. Genetic variation in the expression of defense phenotype may mediate 

evolutionary adaptation of Asclepias syriaca to elevated CO2.  Plant responses to 

herbivory may be limited by resource availability (Walls et al. 2005) with the 

consequence that resource addition may alter plant response to herbivory (Bidart-Bouzat 

and Imeh-Nathaniel 2008).  In addition, genetic variation in plant responses to herbivory 

or resource availability could indicate the potential to respond evolutionarily to selection 

imposed by changing conditions.  In this chapter, I investigated how herbivory by the 

specialist herbivore D. plexippus interacts with carbon fertilization imposed by elevated 

CO2 to affect defense expression among A. syriaca plant families.  

 

Growth under elevated CO2 increased plant biomass and changed plant defense 

phenotype: increasing expression of the physical defenses of toughness and latex, and 

decreasing expression of toxic cardenolide compounds.  Elevated CO2 did not modify the 

expression of plant resistance traits in response to caterpillar herbivory, but did increase 

plant growth during herbivory, thereby increasing plant tolerance to herbivory.  

Importantly, genetic families of A. syriaca varied in their defense responses to elevated 

CO2.  For example, some plant families reduced expression of chemical defenses by 50% 

while others actually increased chemical defense expression with carbon fertilization.   

 

The results of this experiment demonstrate that carbon availability changes constitutive 

plant defense expression, but not the expression of A. syriaca resistance traits following 

herbivory.  In addition, this population hosts genetic variation in phenotypic response to 

rising CO2 concentration, which will likely allow A. syriaca to adapt evolutionarily to 

elevated CO2, mediated by herbivory rather than differences in growth responses to 

changing atmospheric conditions.    

 

Chapter III. Multiple pathways mediate the effects of resource availability and 

herbivore identity on mycorrhizal associations. Nearly all plants interact simultaneously 

with aboveground herbivores and belowground mycobionts (Fritz and Simms 1992, 

Gange 2007, van der Heijden et al. 2008).  Interactions among these organisms span 

above and belowground ecological communities (Gehring and Bennett 2009) and are 
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linked by plant resource allocation and changes in phenotype (Hartley and Gange 2009).  

Although carbon availability has been assumed to structure plant associations with 

mycorrhizal fungi following herbivory, recent work suggests that other mechanisms may 

mediate this above-belowground interaction instead (Barto and Rillig 2010, de Román et 

al. 2011).  We formalized alternative causal pathways by which aboveground herbivory 

affects mycorrhizal colonization and tested these models against the results of an 

experiment.  In addition, we explored whether herbivore identity or carbon fertilization 

altered the strength of the pathways by which herbivory affects mycorrhizal fungi.   

 

Structural equation modeling revealed that aboveground herbivory by aphids and 

caterpillars affects mycorrhizal colonization through multiple pathways, including 

changes in aboveground and belowground defense expression.  Herbivore identity 

mediated the strength of defense-related mechanisms—caterpillar herbivory decreased 

aboveground defense expression, indirectly increasing mycorrhizal colonization.  In 

contrast, carbon availability mediated the total effect of herbivory on mycorrhizal fungi—

when grown under elevated carbon, plants strongly increased mycorrhizal colonization 

following herbivory.  The results presented here suggest that the amount of photosynthate 

available can limit plant associations with mycorrhizal fungi following herbivory, and 

that specific responses to herbivore species can differentially affect root-associated fungi. 

 

Chapter IV. Plant defense theory re-examined: nonlinear expectations based on the 

costs and benefits of resource mutualisms. Resource availability is predicted to affect 

plant defense against herbivores, but despite the ubiquity of resource mutualists and their 

profound influence on plant resource status, current theory does not account for these 

interactions and their potential effects on plant defense expression (Stamp 2003).  We 

combine the documented effects of mycorrhizal fungi, common nutrition symbionts, on 

plant resource status using a benefit:cost framework to predict how resource mutualisms 

affect plant defense expression.  Specifically, the model predicts that the nutrition 

(phosphorus) benefits associated with hosting mycorrhizal fungi will saturate with 

increasing fungal abundance, whereas the carbon costs to the plant will continue to rise 

with increasing fungal colonization.  The ratio of the two predicts that plant benefit, in 
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terms of defense expression, is maximized at intermediate levels of fungal colonization 

and decreases at high levels of fungal colonization.  We tested this model using A. 

syriaca propagated from rhizomes, inoculated with increasing densities of mycorrhizal 

fungi Scutellospora pellucida and Glomus etunicatum. 

 

In general agreement with our model, colonization by S. pellucida caused plant defense 

to vary unimodally with increasing fungal abundance, whereas increasing colonization by 

G. etunicatum in general, decreased plant defense expression in a negative exponential 

relationship. We suggest that variation in the effects of fungal species on plant defense 

may be mediated by differences in the carbon costs or nutrient benefits conferred to 

plants. Finally, combining realistic levels of variation in mycorrhizal colonization and a 

mechanistic understanding of resource exchange between plant and fungal partners may 

improve our predictions of the expression of plant defense.  

 

Chapter V. Mycorrhizal abundance affects plant defense expression and herbivore 

performance. To more fully test the assumptions and generality of the model developed 

in Chapter IV, and to compare the relative importance of AMF abundance to AMF 

identity and plant genotype, we conducted a large-scale experiment.  We quantified the 

benefits [phosphorus] conveyed by mycorrhizal fungi, subsequent effects on plant 

defense expression, and assayed herbivore performance on plants colonized by a range of 

mycorrhizal fungi.  We planted A. syriaca seedlings from five genetic families into soil 

containing three fungal communities of increasing fungal density.  These fungal 

treatments included increasing densities of single species inoculum of Glomus 

etunicatum, Scutellospora fulgida, or a mix of the two species.   

 

Colonization by either single-species of fungi increased plant phosphorus concentration, 

but at high colonization intensity, the benefits (foliar P) conveyed by Glomus etunicatum 

saturated, and declined to a small extent.  In contrast, colonization by a mix of fungal 

species did not significantly affect plant P.  Plant defense expression varied in response to 

increasing colonization according to fungal treatment and the individual trait examined.  

In general, colonization by S. fulgida decreased latex exudation and leaf toughness, but 
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increased cardenolide expression.  Similarly, increasing colonization by G. etunicatum 

decreased latex, toughness, and increased cardenolide expression. Colonization by either 

species affected unimodally the density of trichomes.  Plant families responded similarly 

to colonization by mycorrhizal fungi in the expression of most traits, but varied in their 

response to mycorrhizal fungi in the expression of trichomes. The growth rate of the 

specialist herbivore D. plexippus increased with decreasing plant toughness and was 

higher on plants colonized by mycorrhizal fungi compared to uninoculated control plants. 

We conclude that nutrient benefits in part explain the effects of mycorrhizal fungi on 

plant defense expression and herbivore performance.  Our results suggest that AMF 

abundance is a key variable in determining the role of mycorrhizal fungi in multitrophic 

systems.  This experiment provided limited support for REMPD, and we suggest that 

specific nutrient requirements for defensive traits must be combined with the cost:benefit 

framework to aid predictions of the effects of mycorrhizae on plant defense.   

 

Synthesis This dissertation illustrates how aboveground herbivores and mycorrhizal fungi 

interact through changes in plant photosynthate, phosphorus, and subsequent effects on 

the expression of plant defense.  The results presented here document how a realistic 

range of mycorrhizal colonization influences the availability of plant photosynthate and 

phosphorus status, plant defense phenotype and herbivore performance.  These results 

suggest that biotic interactions, including mycorrhizal colonization and herbivory, exert 

strong influence on the expression of plant phenotype and extended phenotype (Dawkins 

1982), including herbivore performance.  In Asclepias syriaca, the effects of these biotic 

interactions on defense can exceed effects of plant genotype, despite substantial 

genotypic variation within this system. In addition, resources, including external 

availability and plant resource status, mediated the effects of biotic interactions on the 

expression of plant defense. Specifically, aboveground herbivores exert strong influence 

on mycorrhizal colonization of plants under elevated, but not ambient CO2 

concentrations, indicating that photosynthate limits the belowground response of plants to 

herbivory.  In addition, the effects of mycorrhizal colonization on the expression of plant 

defense were in part mediated by changes in plant phosphorus status and the benefit:cost 

ratio associated with hosting these mycobionts.   
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A few overall trends in the phenotypic response of A. syriaca to treatments were 

noteworthy.  Specifically, elevated CO2 and mycorrhizal colonization exert opposing 

forces on defense expression.  For example, growth under carbon fertilization increased 

plant physical and structural defenses (toughness and latex exudation) but decreased the 

concentration of chemical defenses in plant tissue.  In contrast, mycorrhizal colonization 

generally reversed this trend, decreasing physical defenses and increasing chemical 

defense and plant P concentration.  Moreover, increases in mycorrhizal colonization 

triggered by carbon allocation following herbivory may maintain plant growth and 

nutrient gain in the face of damage by insect herbivores.  As a result, changes in A. 

syriaca defense expression and association with mycorrhizal fungi can be predicted in 

terms of changes in plant resource status.   

 

Another conclusive finding from this dissertation is that substantial genotypic variation 

exists in the response of A. syriaca to carbon fertilization and mycorrhizal interactions in 

the expression of some defense traits.  For example, A. syriaca genotypes vary widely in 

cardenolide expression and in their response to mycorrhizal colonization and carbon 

fertilization in the expression of cardenolides. The genetic variation in both the 

magnitude and shape of plant response to biotic (mycorrhizae) and abiotic (CO2) context, 

may allow for evolutionary adaptation within milkweed populations in response to 

selection by herbivores on plant defense expression.  In addition, results described in 

chapter V suggest that plant genotypes vary in phenotypic response to the identity and 

abundance of soil fungi, which may allow for complex evolutionary dynamics in this 

multitrophic system. Future research should evaluate experimentally the consequences of 

multitrophic interactions and resource availability for the evolution of plant defense 

expression. 

 

Caveats and future directions  The results presented in this dissertation strongly support 

a central role of plant resource status in mediating plant phenotype expression. The 

experiments described here demonstrate clear effects of carbon fertilization on plant 

phenotype and the role of phosphorus in predicting the effects of mycorrhizal fungi on 

defense expression.  However, plant defense expression did not exactly follow the precise 
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benefit:cost curve outlined in Chapters IV and V.  To reconcile the variation in the 

response of traits to mycorrhizal colonization and carbon fertilization, I suggest that 1) 

costs and benefits associated with fungi be more precisely measured, 2) soil fertility must 

be taken into consideration and 3) the range of costs and benefits must be fully explored.  

First, the results in this dissertation provided a rough estimate of the costs associated with 

mycorrhizal colonization, but may either over or underestimate the costs involved. A 

complete quantification of carbon costs should include measurements of extraradical 

hyphae, also constructed from carbon derived from plants.  On the other hand, plants in 

natural systems often have the benefit of tapping into established hyphal networks (van 

der Heijden and Horton 2009) and may not bear the primary carbon cost associated with 

constructing a large network.  As a long-lived perennial, Asclepias syriaca may construct 

or tap into an existing network and contribute over multiple years, and as a result, the 

carbon cost is likely to vary through time. Second, soil fertility can influence the costs 

and benefits associated with hosting AMF (Graham et al. 1997, Graham and Eissenstat 

1998), Fig. 4.5. Our experiments may have been conducted at a relatively high level of 

nutrient availability and thus our results would only capture the parasitic effects of 

mycorrhizal fungi and little of the benefits (Region III in Fig. 4.1b). We are currently 

investigating how carbon costs, nutrient benefits, and the effects of AMF on plant fitness 

change over time and are influenced by nutrient availability in soil.  Third, the shape of 

the response curve for individual traits may vary with nutrient requirements.  As a result, 

not all traits will likely respond in kind to mycorrhizal colonization, but these traits all 

should be limited by nutrients or carbon at some point.  To fully explore the shape of the 

response of plant defense to mycorrhizal colonization, a greater range of fungal 

colonization densities should be generated, under a larger range of nutrient availability.   

 

For the maintenance of mutualisms in evolutionary time, mycorrhizae must offer fitness 

benefits or come at low cost to both partners involved (Hoeksema and Bruna 2000, Kiers 

and van der Heijden 2006, Hoeksema 2010).  However, under some experimental 

conditions, we failed to identify fitness benefits from colonization by AMF.  Under 

current investigation is how the effects of AMF on A. syriaca may be dependent on other 

factors, including soil fertility, the duration of the association and the presence of root 
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herbivores. Initial evidence suggests that mycorrhizal colonization decreases the 

incidence of root herbivory by a generalist herbivore and increases the survival of 

Asclepias spp. following root herbivory (Rasmann and Vannette in prep).  In addition, the 

results of chapters II and III suggest that mycorrhizal fungi can increase plant tolerance 

and regrowth following herbivory, and that growth in future atmospheric conditions may 

augment this effect. Future studies could also examine the role of AMF in drought stress 

(Auge 2001) and protection against pathogens (Borowicz 2001), which are both likely 

important to this long-lived clonal plant (Burdon et al. 2006) that often grows in dry 

conditions.  Accounting for these additional benefits conveyed by AMF may tip the 

benefit:cost ratio in favor of mutualistic stability over a wider range of conditions.    

 

Not only can the degree of plant association with mycorrhizal fungi change with resource 

availability or herbivory (Barto and Rillig 2010), but fungi community composition may 

also change (Saravesi et al. 2008, Gehring and Bennett 2009). Initial evidence from this 

system indicates that herbivory by D. plexippus or A. asclepiadis affects the community 

of mycorrhizal fungi within the roots of A. syriaca (Fig. 6.1.).  Ongoing work will shed 

light on the changes in fungal community composition caused by aboveground herbivory 

in field and greenhouse studies. Future studies should synthesize this knowledge of how 

herbivory shifts AMF community composition with the consequences for plant 

phenotype and fitness to improve our understanding of above-belowground feedbacks 

within this multitrophic system and potential consequences for community dynamics and 

ecosystem function (eg. Bever 2002, Rillig 2004).   

 

The experiments described here were conducted in pots, and as a result, plants were not 

exposed to competition from conspecifics or heterospecifics or other soil organisms, 

which could mediate plant responses to fertilization or biotic interactions (Amthor 2001).  

However, field data provide evidence that at least some of these findings are relevant in 

natural systems. Clones of A. syriaca vary widely in mycorrhizal colonization of roots in 

the field (~20-80%), and in defense phenotype (R. Vannette, Hunter Lab, unpublished 

data).  In addition, experimental manipulation of herbivory by larvae of D. plexippus 

increased mycorrhizal colonization of A. syriaca roots one month after herbivory under 
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growth in the field (Fig. 6.2.). Additional studies are ongoing and will more fully explore 

patterns of herbivory, mycorrhizal colonization and interactions between them in A. 

syriaca in the field.  In addition, our experiments did not generate the same range of 

colonization densities as found in the field (0-35% in experiments, compared to 10-80% 

in the field).  Future experiments should include a greater experimental duration or 

number of fungal species to capture the variation present in field conditions. 

 

Despite these caveats, the work described in this dissertation adds to our ability to predict 

the importance and outcome of interspecific interactions by quantifying their effects on 

plant resource status and expression of defense phenotype. A better understanding of 

multitrophic interactions that span above and belowground systems can guide practices 

for agricultural, horticultural, or restoration applications and inform the ecological and 

evolutionary dynamics within these systems.  
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Figure 6.1. The effect of herbivory by Danaus plexippus and Aphis asclepiadis on fungal 
community composition in the roots of Asclepias syriaca seedlings measured using 
Terminal-Restriction Fragment Length Polymorphism (T-RFLP). Plants were grown as 
described in Chapter III and harvested five days following herbivory by D. plexippus and 
A. asclepiadis.  DNA was extracted from roots of A. syriaca and methods for T-RFLP 
followed those by Aldrich-Wolfe (2007).   Points represent mean NMDS coordinates for 
fungal communities of plants receiving no herbivory or herbivory by aphids or 
caterpillars ±1 SD.  Analysis of Similarity was performed in the package vegan using R 
v. 2.11.0. 
 
 



154   
 

 

 
 
Figure 6.2. Herbivory by Danaus plexippus larvae increases the proportion of arbuscules 
within the roots of two-year-old Asclepias syriaca plants.  Four genotypes of A. syriaca 
seedlings were planted in plots within the field at the University of Michigan Biological 
station in Pellston, MI.  Caterpillars were allowed to eat ~20% of leaf tissue during the 
first and second year of plant growth, and plants were harvested one month following the 
second herbivory treatment.  
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