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ABSTRACT

Development of a Simulation based Powertrain Design Framework for Evaluation of
Transient Soot Emissions from Diesel Engine Vehicles

by

Rahul Ahlawat

Co-Chairs: Jeffrey L. Stein and Hosam K. Fathy

This dissertation presents the development of a modeling and simulation framework

for diesel engine vehicles to enable soot emissions as a constraint in powertrain design

and control. To this end, numerically efficient models for predicting temporally-

resolved transient soot emissions are identified in the form of a third-order dual-input

single-output (DISO) Volterra series from transient soot data recorded by integrating

real-time (RT) vehicle level models in Engine-in-the-loop (EIL) experiments. It is

shown that the prediction accuracy of transient soot significantly improves over the

steady-state maps, while the model remains computationally efficient for systems-

level work.

The evaluation of powertrain design also requires a systematic procedure for dealing

with the issue that drivers potentially adapt their driving styles to a given design. In

order to evaluate the implications of different powertrain design changes on transient

soot production it is essential to compare these design changes on a consistent basis.

This problem is explored in the context of longitudinal motion of a vehicle following a

xiii



standard drive-cycle repeatedly. This dissertation develops a proportional-derivative

(PD) type iterative learning based algorithm to synthesize driver actuator inputs that

seek to minimize soot emissions using the Volterra series based transient soot models.

The solution is compared to the one obtained using linear programming. Results

show that about 19% reduction in total soot can be achieved for the powertrain de-

sign considered in about 40 iterations.

The two contributions of this dissertation: development of computationally efficient

system level transient soot models and the synthesis of driver inputs via iterative

learning for reducing soot, both contribute to improving the art of modeling and

simulation for diesel powertrain design and control.
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CHAPTER I

Introduction

“The exhaust from diesel engines ... has a characteristic pungent and

disagreeable smell. I cannot believe that the police will allow any large

proportion of diesel-engined vehicles in the streets of, say, London” - Sir

Harry Ricardo, 19251

Diesel engines are the preferred prime mover in medium duty vehicles due to their

superior fuel economy, favorable low end torque rating, and durability [2]. While

the lower fuel consumption, as compared to gasoline engines, is attributed to the

overall lean combustion and a better energy release efficiency [3], diesel combustion

is not homogenous in nature with parts of the combustion taking place in zones

that are oxygen deficient. The complex processes involved, such as turbulent mixing,

three-dimensional heterogeneity, and unsteadiness, coupled with the presence of high

temperature and high pressure rich zones, lead to conditions that are favorable to the

formation of regulated emissions: oxides of nitrogen (NOx) and particulate matter

(PM) [4]. Particulate matter has a damaging effect on human health and, along with

NOx, is one of the greatest control challenges for diesel engine vehicle emissions.

This dissertation presents the development of a modeling and simulation framework

1The smell was attributed to the presence of aldehydes. Quote adapted from [1]
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for diesel engine vehicles to enable soot emissions as a constraint in powertrain design

and control. The two original contributions of this dissertation are the development

of a low-order control-oriented transient soot model capable of predicting temporally

resolved transient soot emissions from the exhaust manifold of the vehicle and the

synthesis of driver inputs via iterative learning to eliminate the variability in soot

evaluation due to differences in driving styles. These tools provide a consistent basis

to evaluate the impact of changes in powertrain design and control on transient soot.

Such powertrain design and control changes include, but are not limited to, transmis-

sion shift quality control, developing supervisory controllers and power management

techniques for diesel hybrids, and the sizing of diesel particulate filters (DPF). In this

context, a generalized model of powershift transmissions for Engine-in-the-loop (EIL)

experiments is also developed and incorporated into this powertrain design frame-

work. Experiments to collect the transient soot data and other vehicle level models

enabling this evaluation are also discussed.

1.1 Particulate Emissions from Diesel Engines

Diesel exhaust consists of hundreds of gas-phase, semi-volatile, and particle-phase

organic compounds that are produced during combustion [5]. Diesel particulates

are defined by the US Environmental Protection Agency (EPA) as “all compounds

collected on a pre-conditioned filter in diluted diesel exhaust gases at a maximum

temperature of 325 K (125F)”, with the exception of condensed water. ‘Smoke’, on

the other hand, is the visible component of particulate matter, denoting an aerosol

i.e. suspension of particles in a gas [6]. Thus, particulate matter is a much broader

term than smoke. The formation of these particles exhibit dual modes, namely ‘nu-

cleation mode’ and ‘accumulation mode’. While the details of the chemical processes

behind the formation of these modes is beyond the scope of this work, some relevant

background is presented in Appendix A.
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The PM collected on a filter is usually separated with an extraction solvent into two

fractions [7, 8]. One fraction is a solid carbon material (soot) that cannot be dissolved

by an organic solution. It is harmful for human health and influences atmospheric

visibility. The other fraction can be dissolved by an organic solution and is called

the soluble organic fraction (SOF). This fraction has been adsorbed into the soot or

condensed onto the filter, and it is composed of unburned fuel and lubricating oil and

their thermally synthesized components [8, 9].

Although particulate matter encompasses both soot and SOF, the terms PM and

soot are used interchangeably in this work. The work is intended for evaluating time-

resolved mass fraction of particulates as seen out of the exhaust manifold, and not

cycle-resolved constituents in the cylinder. Soot constitutes the bulk of the mass of

particulates in the exhaust manifold, and experiments done at various speed and load

points by Hagena et al. [10] showed that below smoke numbers of around 1.5, which

corresponds to a concentration level of 32.4 mg/m3, soot and PM masses closely agree

with each other.

1.1.1 Health and Environmental Effects

Diesel particulate emissions have long proven to have deteriorating health and

environmental effects. In outdoor air, diesel particulates contribute to the total con-

centration of total suspended particulates (TSP). These particles have diameters of

the order of 100 nm and are small enough to be inhaled deep into the lungs. When

they penetrate the respiratory tract of the human or animal lung, they are deposited

in the pulmonary region and result in an inflammatory reaction or can act as car-

cinogens [5, 11, 12]. A statistical relationship also exists between exposure to diesel

exhaust gases and particulates and a tendency towards lung disorders and a higher

3



daily mortality [9]. In addition to lung disorders they also contribute to bladder

cancer [9], cardiovascular diseases such as cardiac arrhythmia, atherogenesis and my-

ocardial infarction [11].

In addition to negative health effects, diesel particulates contribute to soiling, material

damage (due to chemical and polluting effects), reduced visibility, and they disturb the

radiative balance affecting the climate [9, 11]. Diesel particulates are often identified

as ‘black smoke’ in environmental studies due to their light absorption properties and

are universally considered unpleasant and unacceptable.

1.1.2 Legislation

Federal certification standards for smoke opacity levels from on-road heavy-duty

vehicles commenced in 1970 in the US. The first diesel particulate standards in the

world to cover passenger cars and light-duty trucks were also established in the US in

1980 and were extended to heavy duty engines in 1985. PM is now regulated in most

countries and the mass emitted by both light duty (g/km) and heavy duty (g/kWh)

diesel engines has decreased by more than two orders of magnitude since the 1970s.

Current legislative practices extend to both smoke and particulates, and compliance

is necessary during both steady-state and transient operation [5, 6, 13]. A comparison

of US and EU standards is presented in Table. 1.1. Although the current standards

in both the US and EU are focused on reducing the mass of the particulates (TSP),

increasing regulations are also being placed to regulate particulate sizes (PM10 and

PM2.5) [14].

In order to meet the newest regulations for PM, most vehicles will require the use of

an exhaust stream diesel particulate filter (DPF). A DPF mechanically removes the

particles from the exhaust stream with efficiencies of approximately 97% by mass,

4



Table 1.1: Comparison of PM Emission Standards [11]

Passenger Vehicles Heavy Duty

PM Year PM Year
(mg/km) (g/kWh)

US 2007
61 2007

0.01 2007
US 2010 0.01 2010

Euro 4 25 2005 0.02 2005
Euro 5 5 2009 0.022 2008
Euro 6 5 2014 0.012 2013

and up to 99.9% by particle number [11]. Its use, however, increases back-pressure,

resulting in decreased fuel-economy. Eventually the DPF becomes laden with parti-

cles and must be regenerated by oxidizing the particles. The surface oxidation of soot

in a non-catalyzed DPF requires high temperatures that are not seen during regular

passenger car operation. In order to increase the exhaust gas temperature, additional

fuel is injected late in the combustion process, and this further results in additional

increase in fuel consumption [11, 15]. Also, from the engine combustion standpoint,

the improvement in soot comes with an increase in NOx emissions [4, 7, 13]. There-

fore, meeting the increasing stringent PM emission regulation without penalizing fuel

economy or NOx, is an extremely challenging task.

1.1.3 Motivation for Evaluating Transient Soot from Vehicles

Soot emissions from vehicles have a profound negative impact on health and the

environment and hence are regulated. These emissions have also been a concern

for military trucks as they serve as sources of thermal and visual signatures in the

battlefield, compromising vehicles’ safety [2]. Regulation testing, and more impor-

tantly, real-world driving, takes place at transient loads. Transient operation involves

frequent and sudden changes in engine speed and torque and is characterized by a

1Fleet average value
2Particle size also regulated

5



transition between operating states such that quantities of in-cylinder components

(air/fuel, exhaust gas recirculation (EGR), residual gas fraction (RGF)) and their

mixing processes are not well-controlled [4]. The periods during power outtake in-

creases, such as accelerations, result in a lower air/fuel ratio than the corresponding

steady-state value. This decrease is due to turbocharger inertia, thus causing in-

creased soot emissions due to the impaired conditions for oxidation. During these

periods, peak values of transient soot emissions can be more than ten times higher

than the corresponding steady state values [10, 16, 17]. Moreover, with the advent

of diesel hybrid vehicles, engines might be subjected to new transient loads that have

not been seen in conventional diesel vehicles, and estimating transient soot accurately

in an offline setting is becoming critical for design and development of such systems.

Thus, there exists a need for a methodology to quantify and evaluate these emis-

sions from diesel vehicles. Such tools would enable powertrain supervisory control

development and the design of power management strategies for diesel hybrids to

account for soot emissions. Accurate estimation would also serve in minimizing the

DPF loading and regeneration frequency, thus indirectly reducing the fuel consump-

tion penalty associated with a DPF [18]. Finally, since particle formation during

transient operation is not very well understood, due to the complicated physical pro-

cesses behind soot formation [4, 8], and the dependence on powertrain management,

engine subsystems and drive cycle [4], evaluation techniques will provide some insight

into these relationships, as least in a statistical sense.

1.2 Evaluation Methodologies for Transient Soot

In order to evaluate soot production over a transient cycle such as the Federal

Test Procedure (FTP), one of the three methodologies is commonly adopted:

1. Testing the actual vehicle on a chassis dynamometer
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2. Engine-in-the-loop (EIL) experiments

3. Vehicle simulations with transient soot model

The advantages of using an instrumented real-vehicle for testing are that it faces real

transient loads and the actual transient soot values are recorded. However, the ve-

hicles are typically only equipped with instrumentation to record tailpipe emission,

vehicle motion, driver input and sometimes engine speed. Usually, little information

is collected regarding engine operation and the reasons behind observed trends are

often inconclusive. If the testing is done by the Environmental Protection Agency

(EPA), then the exhaust is passed through a dilution tunnel and soot is recorded

on filter paper, thus temporal resolution of soot emissions is not available. Engine-

in-the-loop experiments bridge this gap by allowing controlled repeatable tests in a

laboratory setting. The experiments are done with a real engine driven by a fast

response dynamometer, where the dynamometer is controlled to emulate transient

loads as seen in a vehicle. This setting allows complete control over the engine sys-

tem and is a valuable tool for research and development, though these gains come

with a much higher cost of the test cell. It is important to point out that both these

approaches require instrumentation to measure vehicle transient soot emissions with

high temporal resolution. Commercially available instruments capable of transient

soot measurements with sufficient temporal resolution include the differential mobility

spectrometer (DMS) [19], cascade impactor operating principle [20, 21], and photo-

acoustic soot sensor (PASS) [22]. The latter provides only the mass concentration of

the soot, while the former twocan also be used to obtain particle size information [11].

The third way of evaluating transient soot is through offline simulation of vehicle

models equipped with a transient soot model. The advantages of this approach are

that there is no direct cost associated with conducting the experiments and it allows

the user to perform fast offline evaluations as well as enable control systems design.
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The major challenge in enabling this approach is that reliable control oriented models

of transient soot do not exist in the literature. This work uses EIL experiments to

collect the transient soot data and then makes a new contribution by developing a

control oriented transient soot model to enable soot evaluation during powertrain

design and control.

1.3 Background Research

The foundation of this research is based on the EIL experiments conducted by

Filipi et al. [2, 10, 23]. The block diagram of the EIL setup used is shown in Figure

1.1. Driver, transmission, and vehicle models are simulated on a real-time (RT)

platform and used to control an AC dynamometer coupled to a 6.0L V-8 direct-

injection diesel engine. These models accurately capture the desired dynamics while

being numerically efficient to run in real-time [24]. The vehicle level models are

forward-looking, hence the driver model issues throttle (α) and brake commands (β)

to follow the vehicle velocity on the FTP-75 city cycle. Model causality is selected such

that the torque converter model commands speed to the engine, as speed is easier

to control than engine torque. The measured engine torque is fed to the torque-

converter model to enable closed-loop drive-cycle simulation. The transient soot data

are recorded using a differential mobility spectrometer (DMS). Complete details of

the EIL setup and RT model are presented in Appendices B and C, respectively.

The vehicle was driven on the FTP-75 cycle using a proportional-integral-derivative

(PID) controller based driver model. The vehicle speed trace (for the first 400sec)

during the test run is shown in Figure 1.2 and the recorded transient soot for the

FTP cycle is shown in Figure 1.3. It can be seen that the vehicle was able to closely

follow the drive-cycle. The transient soot data shows numerous spikes associated

with acceleration commands. In order to compare the transient soot performance, a
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Figure 1.3: Transient soot for the FTP-75 cycle

steady-state soot map was developed by testing the engine under constant load and

speed. This map was then used to predict soot for the recorded engine speed and

fuel flow rate, and the interpolated values are referred to as quasi-steady-state (QSS)

estimates. Figure 1.4 shows the transient soot and QSS estimates for a portion of

the FTP cycle, along with the boost pressure and driver throttle command. These

experimental results elucidate the two key underlying ideas of this work:

1. Quasi-steady state predictions of transient soot are unable to account for the

soot spikes during the cycle. Transient engine operation accounts for 53% of the

cumulative soot produced during this cycle [4], and hence represents a significant

percentage of engine operation. Therefore, there is a need for transient soot

models for systems-level work capable of predicting this effect.

2. The soot spikes are aligned with driver throttle commands, while the boost

pressure lags behind due to turbocharger inertia. This is largely due to a greater

volume of fuel being injected into the cylinder to create more torque when the

driver presses the accelerator pedal, but the extra volume of air entering the
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Figure 1.4: Transient soot variation during accelerations

cylinder is delayed due to turbo-lag, reducing the in-cylinder air-fuel ratios

and creating soot spikes. Also when different hybrid configurations optimized

only for fuel economy were tested on the same engine, better fuel economy

results were obtained but the particulate emissions increased 141% and 247% for

rule-based and stochastic dynamic programming (SDP) based parallel electric

hybrids, respectively [2]. This was attributed to the power management strategy

causing greater transient loads on the engine, and operating it more aggressively

(high rate of power demand). In conventional vehicles, aggressive driving was

also found to increase particulate production by a factor of two when compared

to non-aggressive driving [4, 23, 25]. This indicates that the soot produced is

a strong function of driving style. Due to this strong driver-vehicle interaction,

it is difficult to attribute the soot performance solely to the powertrain. Thus,

there exists a need to assess the soot performance on the transient cycle while

decoupled from the driver.
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1.4 Objectives

This work intends to develop a modeling and simulation framework for diesel

engine vehicles to include soot emissions in powertrain design and control. Such a

framework is aimed at enabling a fair and unbiased evaluation of temporally resolved

mass concentration of soot particles from the exhaust manifold of a diesel engine

vehicle undergoing transient operation. It is important to clarify that the scope of

this work does not distinguish between cold-start and hot-start emissions, nor takes

the effect of ambient conditions into account. In order to achieve this, the first step

is to develop a control oriented transient soot model that meets three key criteria.

First, it must accurately capture the impact of powertrain transients on the resulting

transient soot emissions. Second, it must be simple enough to enable control sys-

tem design. Third, the model’s inputs should ideally consist of quantities that are

easy to simulate or control. The causality of the desired model is shown in Figure 1.5.

The evaluation of powertrain design also requires a systematic procedure for dealing

with the issue that drivers potentially adapt their driving styles to a given design. In

order to evaluate the implications of different powertrain design changes on transient

soot production, it is essential to compare these design changes on a consistent basis.

This problem is explored in the context of longitudinal motion of a vehicle following

a standard drive-cycle repeatedly. The development of an algorithm is proposed that

synthesizes the standard driver actuator set (accelerator and brake pedal position) for

an automatic transmission vehicle such that soot emissions are minimized, enabling

a fair comparison of different powertrain design changes.

Finally, potential changes in powertrain design are highlighted through transmission

calibration and control. The transmission models play a critical role in creating high

transient loads during gear-shift events, and high-fidelity RT models are sought such
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that there is an accurate representation of drivetrain transients during EIL experi-

ments. These models are required to run in real-time without requiring any additional

numerical procedures such as multiframing or variable time-step solvers, while accu-

rately representing the transient load on the engine, especially during shift events.

They should also be able to accommodate a variety of commercially available trans-

mission types for studying the impact of various vehicles/powertrains on transient

soot without extensive modifications or parameter identification exercises.

Therefore, to summarize, this dissertation has three objectives:

1. Develop a computationally efficient model to estimate temporally resolved mass

concentration of transient soot emissions from the exhaust manifold of a diesel
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engine vehicle.

2. Synthesize driver actuator inputs that seek to minimize soot emissions using

the transient soot model.

3. Develop high fidelity real-time model of the transmission for calibration and

control both for EIL experiments and offline simulation.

1.5 Literature Review

The literature review associated with transient soot modeling and synthesizing

driver input trace will be presented separately in the next two subsections.

1.5.1 Transient Soot Modeling

There exist several methods by which soot emissions can be modeled. The meth-

ods can be broadly classified into two different categories: physics based and empiri-

cal. Physics based models, at least to some degree, use physical principles to model

the underlying phenomenon whereas empirical models are primarily data driven rela-

tionships. Most of the processes contributing to the formation of soot are extremely

complex and are not adequately understood at a fundamental level [7]. Hence, it

is not possible to construct models predicting engine operations just from the basic

equations. The choice of the model, as always, depends on the objective of the study

so that is can possess sufficient fidelity with lowest possible computational cost.

1.5.1.1 Physics Based Models

Physics based models that predict transient soot emissions and can be further

classified as thermodynamics based or fluid dynamics based depending upon whether

the equations are primarily based on energy conservation (thermodynamic) or a full

analysis of fluid motion (fluid dynamics) [7]. Thermodynamics based models can be
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further subclassified into zero-dimensional, phenomenological or quasi-dimensional.

Zero-dimensional models are the most basic form of thermodynamic models as geo-

metric flow properties are not modeled. Phenomenological methods add more com-

plexity by providing details (that may be empirical) for some relevant phenomenon

involved in the process. Quasi-dimensional methods add some specific geometric fea-

tures like diesel fuel spray shapes to the basic thermodynamic model. In contrast,

fluid dynamics models are multidimensional due to the modeling of geometric infor-

mation of the flow field based on governing flow equations.

Zero-dimensional models of diesel combustion have been successfully used for pre-

dicting engine performance and fuel economy [27, 28] but traditionally have not been

accurate for predicting soot [29]. Phenomenological models are usually semi-empirical

in nature, i.e., they relate empirical observations of phenomena in a way consistent

with the fundamental theory, but not necessarily directly derived from the theory.

This category of modeling deals with the complexity of soot formation by represent-

ing the important species and mechanisms for the soot formation process. Perhaps

the most popular (and most cited) phenomenological soot model is the two-step Hi-

royasu model [30], which describes the net rate of change of the soot mass as the

difference between the soot formation and oxidation processes. The soot formation is

considered through a first order reaction of the fuel vapor, while the soot oxidation

represents a second order reaction between the generated soot and oxygen available

through empirical relationships. For both formation and oxidation processes, the

temperature dependencies are described using an Arrhenius function. This model

has widely been used though it is only valid in a narrow range of operating condi-

tions [11]. Bayer and Foster [31] developed a crank-angle resolved zero-dimensional

model for soot formation and oxidation based on the Hiroyasu model. A number of

other variations of Hiroyasu model have been reported [32, 33] that include different
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dependencies of the comprising terms for soot formation rate.

Beyond the two step process described in the Hiroyasu model, a more detailed de-

scription of soot formation and oxidation is possible using multi-step models, though

this comes at a much higher computational cost. The most popular are those based

on the works of Fusco et al. [34, 35]. These models describe the relevant processes

of fuel pyrolysis, precursor and poly-cyclic aromatic hydrocarbons (PAH) formation,

particle inception, surface growth, coagulation, oxidation of the particles, and growth

species through an eight step process by considering average in-cylinder conditions.

Further modifications to these models have been reported in a vast collection of arti-

cles [35–38]. Leung et al. [38] reduced the computational intensity by using only four

steps. Other formulations include replacing the second order description of soot oxi-

dation by considering different types of active sites for oxidation [39] and replacing the

Arrhenius dependence of the formation with φ − T (fuel/air ratio and temperature)

maps which include chemical kinetic considerations in the formation rate [40, 41].

Another class of phenomenological models consist of mean-value (MV) models where

crank-angle resolved models are reduced to cycle-resolved models by using mean val-

ues of the states [42–45]. Although their accuracy for transient soot prediction is

questionable, Kirchen et al. [46] showed that reasonable estimates can be obtained

during a tip-in through a modified temperature representation.

Quasi-dimensional models include modeling of different zones in the cylinder. Warth

et al. [47] coupled the base Hiroyasu model with a two-zone thermodynamic model.

Tan et al. [8] extended the model to predict both soot and SOF. The influence of air

entrainment into the soot formation zone was considered by [31] and the effects of

turbulence were included by modeling representative mixing time scales [47] and the

spray lift-off length [31]. Li et al. [48] extend the complexity further by describing a
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four zone phenomenological soot model. In order to model further complexity, mul-

tidimensional models simulate the governing flow equations, often with the help of

computational fluid dynamics (CFD). In order to determine spatially and temporally

resolved in-cylinder soot distribution, Patterson et al. [49] implemented the Hiroyasu

model with the oxidation process described by Nagle et al. [39] in a 3-dimensional

CFD simulation. In further extensions to this work [50], the spray model was im-

proved, enabling it to reproduce effects of EGR and multiple injection events. The

model proposed by Fusco et al. [34] has also been implemented in CFD, and further

improvements are reported in [37, 38, 51].

1.5.1.2 Empirical Models

Empirical models have been used be used in the literature to predict both cycle-

resolved and time-resolved soot emissions from diesel engines. The underlying princi-

ple of these models is that they are data driven and can range anywhere from tuning

the parameters of some of the physics based models to using complete black box mod-

els. Accordingly, the computational demand of these models can vary significantly

depending upon the nature and structure of the model. Their advantage is that their

use does not require a very deep understanding of the underlying mechanisms and

these methods can be used for off-line optimization and control strategies. Their chief

disadvantage is that they are not reliable for extrapolation beyond the ranges over

which they were developed.

The empirical models range from quasi-stationary (QS) models to artificial intelli-

gence based phenomenological models. Quasi-stationary models are based on steady-

state maps of soot as a function of engine inputs and can be interpolated to obtain

quasi-steady state predictions during simulation [52]. Although these models are sim-

ple and easy to implement, they fail to capture transient soot accurately, especially
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the spikes during tip-in operations [10, 17, 53]. This is because although the fuel pump

responds rapidly to the increased fueling demand after a load or speed increase, the

turbocharger compressor air supply cannot match the higher fuel flow instantly, but

only after a number of engine cycles owing to the inertia of the turbocharger as there

is no mechanical connection between engine crankshaft and turbocharger [17]. In

order to account for these transient discrepancies but at the same time maintain the

initial goal of a simple and fast estimation, correction coefficients have been applied to

the steady-steady soot emissions leading to the development of extended-QS models.

These correction coefficients increase the instantaneous emissions at each operating

point in the cycle based on the changes in engine operating parameters.

One of the most intuitive ways to correct for transient soot emissions is to include

a correction factor based on load increase [54] at any given time-step. A similar

correction factor was also used in [55], where transient soot, y, is calculated as

y(t) = yss(t) ·
(
1 + cload

(current load change)tt−1

max load change

)
· (speed change)tt−1 (1.1)

where yss is the steady-state prediction and cload is the correction coefficient. The

value of cload is not assumed to be constant and is varied by dividing the engine

operating region into four regimes. In a similar approach, Hausberger et al. [56, 57]

presented two different concepts for transient corrections: using multiple regression

analysis via a black box compensation function and a multiplicative compensation

based on the vehicle driving cycle. While both the models were able to correct for the

total soot emissions (and not improve their temporal resolution), the former in some

cases increased the temporal error. They also concluded that much less correction is

needed for engines certified for Euro 2 due to less active control of the injection angle.
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A different approach was adopted by Ericson et al. [58] where correction coefficients

were based on air-fuel ratio during transients and a delay model was incorporated

to account for the turbocharger lag. Benz et al. [59, 60] pointed out the need for

control oriented transient soot models and proposed a nonlinear extended QS emission

model derived with a symbolic regression (SR) algorithm. The correction factor for

the set-point deviation model was calculated as

γsoot = (γ
γa
mair

(C1/γφB90
)
−γPrail

mair )C4·b (1.2)

where γ is the normalized value of the variables, mair, Prail and φB90 represent the

cylinder air mass when the intake valve is closed, fuel rail pressure, and location of

the 90% fuel mass burnt, respectively. The variables a and b were defined as

a =
C2γ

C3
mair

γPrail

+ C6 (1.3)

b = pmf + γφB90
+ C7 (1.4)

where pmf is the fuel mean pressure. The six variables were identified using ex-

perimental data and it was shown that the model accuracy improved during tip-in

operations. Eastwood et al. [61] further extended the work to model deviations from

QS estimates as a function of deviations of mass air flow (MAF) and manifold air

pressure (MAP) from their steady-state counterparts. They were able to predict the

transient soot qualitatively given a fine temporal resolution of the inputs, but quan-

titative accuracy varied with a number of other factors [46, 53]. Khan et al. [62]

presented some empirical correlations for engine operating conditions to engine out

soot and similar work has been described by Kirchen [11] and Watson [63]. In almost

all cases of extended-QS approach, the choice of model structure is largely based on

heuristics, and validation is only demonstrated for individual tip-in operations. The
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chief disadvantage of these approaches is that all load increases are treated equally.

It is a well known fact that due to the unfavorable turbocharger compressor charac-

teristics at low loads and speeds, load changes commencing from high speeds are less

severe than the ones commencing from lower engine speeds, owing to higher initial

turbocharger boost pressure. Also, during the motoring segments of the transient

cycle when the vehicle is coasting or braking, soot emissions from the extended-QS

models are either zero or uncorrected. Finally, most of these models require a multi-

tude of inputs, forcing the modeler to include combustion and air-flow dynamics at

least to some degree.

Other empirical methods include SISO ARMA model developed by Anand [64] for on-

line prediction of transient soot from experimental data, and black box models based

on artificial neural networks (ANN) [65, 66]. Ouladsine et al. [67] demonstrate the

use of neural networks for predicting opacity, though transient soot is not predicted.

The use of ANN in predicting transient soot is presented by Traver et al. [66] based

on characteristic pressure trace variables such as combustion center, maximum heat

release rate, or peak pressure generated from steady-state measurements. Another

successful transient soot model is presented in [68] using a 4 neuron multi-layer pecep-

tron (MLP) for function approximation. The major disadvantage of such approaches

is that a vast number of measurements are needed to identify the parameters. As

a combination of empirical and phenomenological modeling, Brahma [69, 70] uses a

neural network to parameterize the variation of the Hiroyasu model by introducing a

total of 23 model weights. After training the model, it was capable of predicting the

soot emissions better than either the soot model without the weighting factors, or a

standard neural network. However, the cylinder pressure and available fuel mass are

required as model inputs. Also, the accuracy of these models relies on the modeling of

underlying phenomenon, which is not well understood at a fundamental level. Johri
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et al. [71] have developed a neuro-fuzzy logic based transient emission model that re-

lies on dividing the input space into smaller subspaces and fitting local models. They

demonstrated successful fits, although the model still requires a number of different

inputs.

1.5.1.3 Summary of Transient Soot Modeling Literature

Many different methodologies are available for the estimation of diesel exhaust

soot emissions. Several researchers have successfully coupled single and multizone, as

well as CFD simulations, with detailed soot formation and oxidation models. Due to

the computational requirements of these approaches, however, there is considerable

interest in phenomenological models which only consider the most relevant processes

and still allow the prediction of the soot emissions with lower computational costs,

albeit with a lesser fidelity. The Hiroyasu model and all of its discussed variants

require cycle resolved cylinder pressure as an input while several also require histories

of the heat release rate, injection velocity or mass, and formation and oxidation tem-

peratures. Several researchers have commented on the sensitivity of the various soot

models to the mixture state description and in almost all cases, the soot model must

be parameterized against measured soot emissions. The underlying physical models

also face much debate due to the presence of formation and mixing phenomena that

are not completely understood. As the complexity of the model is decreased, the

calculation time also decreases but at the cost of reduced extrapolative performance.

As the interest of this work lies in time-resolved soot from the exhaust manifold (as

opposed to cycle resolved soot from the engine), empirical models are very appealing.

Existing empirical models can range from steady-state maps to extended quasi-steady

state approaches to neural network based models. The methods that are accurately

able to predict transient soot over a significant engine operating range require a lot

of data and/or a number of engine inputs that are not easy to simulate. Hence, in
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seeking a model that is easily identifiable, requires minimum number of inputs, is com-

putationally efficient for systems level work, and estimates transient soot accurately,

there is a gap in the literature that needs to be filled.

1.5.2 Synthesis of Driver Actuator Inputs

It has long been established that driving style has a significant effect on vehicle

emissions [72, 73]. Holmén et al. [74] did a real world study of 24 drivers driving

the same vehicle under the same conditions and used on-board exhaust emission and

engine operating data analyzers to record their emission performance. They showed

statistically significant differences in CO and NOx emissions between drivers. After

analyzing the data they concluded that under the same experimental conditions, the

variability associated with individual driving styles, like the intensity, frequency and

duration of acceleration events, result in significant variability in exhaust emissions.

The changes in soot emissions with driving style are also highlighted in [75–77] in the

context of loading of DPFs, as the filter should be able to regenerate under all driving

conditions. Clark et al. [25] conducted laboratory experiments with different driver

aids and showed that different driving styles (e.g. normal, aggressive, non-aggressive)

followed the drive cycle legally, but driver pedal behaviors were quite different, with

PM emissions for aggressive driving style being twice as much for the non-aggressive

driving style. They developed statistical correlations to compare driver performances

and incorporated more robust emissions control strategies. One of the ways to isolate

the variability associated with driving style from the evaluation of a drivetrain design

is to synthesize driver inputs that produce the best possible performance (minimum

soot emissions) from the vehicle. Methods for obtaining such driver input traces are

discussed next.
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1.5.2.1 Driver Input Trace Determination

Seeking the driver actuator set that maximizes a performance objective, the lit-

erature offers techniques roughly belonging to two different categories: trajectory

optimization methods and learning based methods. Trajectory optimization tech-

niques can be further classified into direct (e.g. optimal control) and indirect (e.g.

non-linear programming (NLP)) methods [78, 79]. Since the desired task is to find

the driver input trace that maximizes some performance objective, only the literature

belonging to conventional and hybrid vehicles is presented here, with the understand-

ing that for hybrids the problem amounts to finding the optimal power distribution

trace instead of driver trace. An example of direct trajectory optimization techniques

is the work presented by Hendrikx et al. [80] to calculate the minimum lap time of

a vehicle by synthesizing steering and propulsion forces via optimal control. How-

ever, due to the inherent non-linearities in vehicle dynamics/powertrain problems

and the sufficiency of solution at discrete points under most conditions, NLP tech-

niques are more popular for trajectory optimization. NLP techniques can be further

classified into the ones using static optimization methods such as linear program-

ming and sequential quadratic programming (SQP) [81], and the ones using dynamic

optimization techniques such as dynamic programming [52, 82]. Propkop [81] pa-

rameterized the control inputs for the driver for trajectory planning using predictive

online optimization and the solution was then obtained using SQP. Velenis et al. [83]

present an analysis for rally racing techniques by parameterization of driver steering,

acceleration and braking traces, and solving non-linear optimization for executing a

trail-braking maneuver. Gordon et al. [84] solve the trajectory optimization problem

for obstacle avoidance using gradient descent (for benchmarking purposes). In the

context of hybrid vehicles, Tate et al. [85] demonstrate the use of approximate linear

programming for finding the optimal power management strategy.
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Because of the simple pointwise nature, static optimization techniques are computa-

tionally more efficient but optimize the inputs for an instant in time instead of within

a time horizon. Dynamic optimization techniques consider the dynamic nature of the

system and are generally more accurate under transient conditions but suffer from

the curse of dimensionality, increasing the computational intensity exponentially with

inputs/states [52]. As a result, learning based techniques are increasingly being used

to construct computationally efficient solutions that are near-optimal. Cao et al. [86]

demonstrated the improvement in driver steering control input by updating the fuzzy

logic in each iteration, emulating the driver’s learning process for a given driving sit-

uation. Chen et al. [87] eliminated the driver uncertainty during emission tests by

using a robot driver that learns the performance of the vehicle during calibration and

then uses the derived fuzzy logic rules to drive the vehicle. Carlsson et al. [88, 89]

developed predictive driving strategies emulating foresight information for improving

fuel economy in subsequent trips along the same route by learning the road charac-

teristics. Gordon et al. [84, 90] describe a dual-model approach for synthesis of driver

steering, braking and acceleration inputs. A sub-optimal set of driver controls is syn-

thesized by iteration between two level of models and applied to obstacle avoidance

and high-speed competitive driving.

Such optimal solutions can also be used as driver aids to educate the driver and

improve vehicle performance. Van der Voort et al. [91] report such a support tool

that included a normative model formulating optimal driver behavior for reducing

fuel consumption. Tactical and strategic layers of the model analyze the maneuvers

and if the actual behavior deviates from this optimal behavior, it presents advice

to the driver on how to change the behavior. It was shown that the use of such a

tool can result in over 20% improvement in fuel economy. Additionally, instead of

solving for the driver trace some approaches solve the inverse problem of optimizing
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the engine/vehicle calibration to driving style (e.g. automatic mode selection) to

maximize the performance objective [82, 92].

1.5.3 Transmission Modeling

This subsection presents the literature review for automatic transmission mod-

eling for the purpose of emulating low frequency transient loads on the engine. A

general transmission modeling review is presented first, followed by the RT models.

Only the modeling of the transmission gearbox is considered here, and other systems,

such as torque converter and differential are not discussed.

The automatic transmission model can be divided into three separate components: a

compound epicyclic geartrain, torque transmitting friction elements (such as clutches

and band brakes), and transmission hydraulics. Since the primary interest is the

development of control-oriented models for analyzing low-frequency aspects of trans-

mission’s dynamic system behavior, the compound epicyclic gearsets along with the

interconnected shafts are modeled as lumped parameter mass-spring-damper systems.

Such models do not include effects such as friction between gears and backlash [93].

The compound planetary geartrain has more than one planetary gearsets connected

to other gearsets in different arrangements to allow different speed ratios during the

transmission’s operation. Popular arrangements include modified or extended Simp-

son [93–99], Ravigneaux [100–102] and Lepelletier [103–105] configurations. Several

methods are available in the literature to analyze the kinematics and dynamics of

these interconnected geartrains. Leising and Benford [106] developed a lever analogy

to represent these relationships by drawing levers proportional to the number of gear

teeth. This technique has since been used by many researchers including Tugcu et

al. [107], Karmel [108], Lee et al. [109] and Liu et al. [110]. While this method is

simple and convenient for analysis of the steady-state behavior, it has limitations for
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dynamic analysis. Another graphical tool that is extensively used for modeling the

transmission dynamics of compound epicyclic geartrains is the bond graph. Based

on the seminal work by Runde [94], this modeling approach has been widely used

[93, 95, 96, 99, 111, 112]. Acausal modeling such as the implementation in Mod-

elica has also proven beneficial due to the ease of obtaining the dynamic equations

[103, 113]. Finally, deriving the governing equations by the traditional way of using

appropriate conservation and constitutive relationships is perhaps the most popular

way to deal with automatic transmission models. In this approach, the model is

divided into various modes based on the interconnections during specific phases of

gear-shifts and equations are derived for each mode individually [100, 101, 114–116].

Friction elements are widely utilized to alter planetary gear configurations for auto-

matic shifting. They consist of (wet) clutches and band brakes. These friction ele-

ments primarily determine the automatic transmission’s output torque during a shift

event and represent very critical components of the transmission model [117, 118].

This necessitates the modeling and simulation of slip-stick friction for torque trans-

mission, while the effects such as clutch drag and viscous friction dynamics are often

ignored in control-oriented models [96]. The slip-stick friction models can be cate-

gorized as static or dynamic models. The dry friction model proposed by Coulomb,

is one of the most famous static models. It models friction torque as a function of

speed while slipping (effort source) and becomes multivalued when surfaces are stuck

to keep their relative velocity zero (flow source), though still within bounds speci-

fied by the Coulomb law [119, 120]. This causal inversion causes problems in model

formulation by changing the explicit nature of model formulation, and has been an

extensive area of research under the title of ‘ideal switching’ [121]. To circumvent this

problem various alternate models have been proposed. One approach to overcome the

discontinuity is to approximate it by a linear region near zero velocity, resulting in the
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so called classical model [96, 122]. Although easy to implement, it allows the body

to accelerate even though the forces on the body are less than peak stiction force.

It also causes numerical stiffness in the model if the linear approximation around

zero velocity has a steep slope. One popular way to remove the discontinuity is by

using a hyperbolic tangent function instead, though the problems associated with

acceleration and numerical stiffness still persist. Karnopp proposed a fixed causality

model in 1985 [123] to overcome the lack of verisimilitude at low velocities. This was

achieved by introducing a narrow stiction region in which the friction torque does

not depend on relative speed but rather on equivalent applied torque to the friction

element. Thus, the system is effectively reduced during stiction while the friction

force is calculated by an empirical function of slip speed outside this region. Though

this method is quite accurate and easy to simulate [96, 122], it requires the derivation

of separate set of equations for each possible combination. Hence, the complexity of

the friction model increases exponentially with the number of friction elements.

To account for some of the observed dynamic friction phenomena, a modified classical

friction model was proposed by Armstrong [119, 120]. It introduces temporal depen-

dencies for stiction and Stribeck effect and the sliding friction is equivalent to a static

model with delay. The major disadvantage of this model is that it requires seven

parameters to be estimated. One of the most fundamental dynamic models based on

Coulomb’s friction law is the Dahl model [124, 125]. It is a first-order model that

predicts velocity reversal and leads to hysteresis loops but does not capture Stribect

effect or stiction. Haessig and Friedland [122] introduced a friction model called the

bristle model that captures the behavior of the microscopic contact points between

two surfaces. The bristles are represented as stiff springs and the model is numer-

ically inefficient and results in oscillations due to the lack of damping [124]. They

then proposed a reduced version of the bristle model, known as the reset integrator
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model [122] that is computationally feasible. It models the friction element as spring

when slipping and as spring-damper when stuck. The switching between the slip

and stick states is dictated by the displacement of the spring. With this model the

logical complexity does not increase with the number of friction surfaces, like it did

with Karnopp model. It was shown that reset-integrator model approaches Karnopp

model as spring stiffness and damping rate go to infinity. The primary disadvan-

tage of this model is numerical stiffness if high damping coefficients and stiff springs

are used. Margolis [121] proposed a variation of this model where slip velocity was

used as a switching criterion between the two discrete states instead of the spring

displacement, and the friction element behaves as a damper when slipping. Another

popular dynamic model that models the Stribeck effect as well as varying break-away

force and frictional lag is the Lund-Grenoble model (commonly known as the LuGre

model) [126]. The difficulties associated with using this model includes a number of

parameters to be estimated and numerical stiffness at low velocities. Padthe et al.

[125] presented a comparison of Dahl, LuGre and Maxwell-slip model and showed

that these models can be classified as generalized Duhem models and can be used

to predict hysteresis effect. Other dynamic friction models that are specifically used

for clutch friction modeling include artificial neural network based models [118, 127].

This approach was shown to be especially suited in the presence of hydrodynamic

effects, as well as predicting time dependent engagement behavior, without adding

any significant computational load over static models. However, they require a large

amount of test data to be developed and their predictability depends on the nature

of the test data. More information on various other friction models in presented in

these literature review articles: [118, 119, 124, 128].

The automatic transmission model involves multiple friction interfaces and hence

more computationally intensive friction models are generally not suitable for this
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application. The most commonly used friction models include implementing every

causal combinations of Coulomb friction model [94, 95, 99, 111], Karnopp model

[93, 96, 103], and the Margolis model [100]. It is observed that when the equations of

motion are derived manually from first principles, use of the Coulomb friction model

is preferred. When automated subroutines are used for modeling (such as modelica

planetary gear-set models), then the use of a modular friction model is important.

The pressure profiles required for the clutches are either specified as feedforward

signals or simulated using a transmission hydraulics model [107, 129–131].

1.5.3.1 Real-Time Models

Simulating the automatic transmission in RT is a challenging task as the models

may be logically complex or result in numerical stiffness. One way to avoid these is-

sues is to not model clutch friction and use empirical blending functions to model shift

dynamics [24, 132]. These models, however, can result in unrealistic shifting behavior

at some operating points resulting in loss of fidelity during those shifts. Static fric-

tion model such as Karnopp model have been used for RT transmission models, but

different techniques are employed to reduce the logical complexity [103, 129]. Kozaki

et al. [129] reduce this clutch friction and hydraulics model using surrogation. Otter

et al. [103] use event-driven integration method for offline simulation and system

description is written as a linear complementary problem (LCP) [133]. They then use

this model in RT by modifying the fixed point iteration scheme. Hagiwara et al. [134]

demonstrate RT transmission and hydraulic models simulation by multiframing, but

the model details are not presented. Klages et al. [100] present the use of dynamic re-

set integrator model with the RT simulation of Ravigneaux geartrain. The numerical

stiffness during simulation is avoided by careful selection of PI gains, while hydraulics

were not simulated. While transmission hydraulic models usually are not conducive

to RT simulation, Watechagit [135] presents a RT model developed from reducing a
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detailed model of transmission hydraulics using activity analysis [136]. The model

runs in RT while capturing only the dominant dynamics that determine the clutch

pressure behavior.

1.6 Approach

Engine-in-the-loop experiments are first conducted by developing RT drivetrain

and vehicle dynamic models that possess sufficient fidelity for transient loading of the

engine. The models are then imported on a RT-platform and used to control the en-

gine dynamometer to allow closed-loop EIL experiments. The transient soot data are

recorded using a differential mobility spectrometer (DMS) at 10Hz and correlations

are drawn between soot spikes and driver input. It is shown that predictions from

steady-state maps do not match well with transient data and that driver aggression

can significantly impact the transient soot produced from the vehicle.

Next, a control oriented model capable of predicting temporally resolved soot at the

exhaust manifold of a diesel engine is developed. The choice of inputs is dictated by

signals that are easy to simulate. In this context, the inputs are chosen to be engine

speed and fuel flow rate. Boost pressure is not chosen as an input as simulating it

involves modeling the intake manifold system (Figure 1.5) that represents exhibits

high degree of plant nonlinearity, complex MIMO interactions, and non-minimum

phase dynamics [26]. These choice of inputs enable the system identification to be

carried out with minimum number of sensor signals. Both of these signals are usually

the outputs of the powertrain supervisory control, and this model enables the control

system development for soot reduction without simulating the combustion dynamics

or much detailed information about the engine subsystem. The experimental data

recorded are analyzed for statistical and spectral properties and system identifica-

tion techniques are then used to fit a model to the inputs and the soot output. A
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dual-input single-output (DISO) Volterra series with low parametric complexity is

developed and the model is reduced using Proper Orthogonal Decomposition (POD).

It is shown that this model can furnish good estimates for vehicle-level work, both

qualitatively and quantitatively. The model is then validated on a number of different

datasets, and a comparison with steady-state models is presented.

In-order to enable a fair comparison of the powertrains by considering that drivers

potentially adapt their driving styles to a given design, an iterative learning process

is proposed. It uses the notion that the performance of a system that executes the

same task multiple times can be improved by learning from previous executions [137].

A first order proportional-derivative (PD) controller is developed based on physics

of soot formation, and the EPA constraint of vehicle following the FTP cycle is im-

plemented using a lower level controller. Total soot is then shown to monotonically

decrease with the number of iterations. In-order to compare the performance of iter-

ative learning based algorithm, the problem is also solved using a linear programming

(LP) based approach. The system is linearized, sensitivity functions are numerically

calculated, and perturbations in driver pedal position are solved for that yield least

total soot for the drive-cycle while subjected to various constraints. The process is

then repeated iteratively until no appreciable improvement is detected. The results

indicate that the iterative learning based driving can give substantially better results,

while taking only a small fraction of computations as compared to the linear program-

ming based solution.

Physics based RT transmission model development for EIL experiments is proposed

using the dynamic Margolis friction model. Popular commercial power transmission

designs are analyzed and it is shown that the majority of them involve an oncom-

ing friction interface and an offgoing friction interface during a gear-shift event that
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produces the characteristic shifting dynamics for such transmissions. Hence, a dual-

clutch model is proposed that emulates this clutch to clutch shift inherent in pow-

ershift transmissions by alternately acting as on-coming and off-going clutches. The

different clutch capacities and friction properties of various clutches in the transmis-

sion are implemented using gain scheduling. The effective inertia and compliance of

the gearset is reflected as a lumped parameter model. It is shown that this formula-

tion does not require any other information about the system and hence can be used

as a subfunction in any vehicle system model with a powershift transmission. Volterra

series model is then used to capture the effect of gear-shifts from this transmission

model on transient soot, and results are compared to the soot obtained using blending

function based transmission models.

1.7 Contributions

This work makes three new contributions to the literature:

1. It develops a low order computationally efficient transient soot model based on

Volterra series with just two inputs.

2. It provides a consistent basis for evaluating soot emissions, independent of indi-

vidual driving styles by synthesizing driver inputs using iterative learning based

algorithm.

3. It incorporates a generalized framework for RT simulation of powershift trans-

missions using dynamic friction models while using a fixed integration time step

solver. This in turn produces more accurate transient loading on the engine as

well as enables transmission design and calibration for reduced soot production.
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1.8 Outline

The outline of the dissertation is shown in Figure 1.6. The rest of the dissertation

is organized such that Chapter 2 presents the analysis of transient soot data for

spectral and statistical properties and develops a dual-input single output Volterra

series model. Chapter 3 presents the development of an iterative learning based

algorithm and compares the results with the same problem solved using a linear

programming (LP) based algorithm. Chapter 4 presents the development of a physics

based RT powershift transmission model for EIL experiments. Chapter 5 outlines the

future work and draws the conclusions. The physical mechanisms of soot formation

are briefly discussed in Appendix A, and the details of Engine-in-the-loop experiments

are presented in Appendix B. The real-time vehicle models and their integration

to enable EIL experiments is presented in Appendix C, and the model of dynamic

wheel slip for RT simulation is discussed in Appendix D. Appendix E discusses data

processing and provides the datasets.
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CHAPTER II

Transient Soot Estimation Using Volterra Series

This chapter describes the development of a Volterra series based model for pre-

dicting transient soot emissions from a diesel engine with fuel flow rate and engine

speed as the two inputs to the model. Engine-in-the-loop experiments presented in

the last chapter are used to collect data and then used to construct a third-order

dual-input single-output Volterra series to model this system. Parametric complexity

of the model is reduced using proper orthogonal decomposition, and the model is

validated on various datasets. It is shown that the prediction accuracy of transient

soot significantly improves over the steady-state maps, while the model still remains

computationally efficient for systems level work.

2.1 Introduction

This chapter presents a Volterra series model for the transient soot emissions pro-

duced by a diesel engine, with fuel flow rate and engine speed as the two inputs

to the model. The model is intended for the purpose of designing powertrain-level

supervisory controllers that minimize transient soot emissions, among other possible

objectives. This can be particularly important in the context of hybrid diesel propul-

sion systems. While such systems offer more flexibility in controlling their engines

as compared to the conventional powertrains, optimizing their supervisory control
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for fuel economy alone can lead to frequent and sharp load increases, thereby signifi-

cantly penalizing soot emissions [23]. Our overarching goal, therefore, is to develop a

transient soot emission model that meets three key criteria. First, it must accurately

capture the impact of powertrain transients on the resulting transient soot emissions.

Second, it must be simple enough to enable control system design. Third, the model’s

inputs should ideally consist of quantities that are easy to simulate or control, such

as engine speed and fuel flow rate.

Quasi steady state models based on steady-state emission maps have been used in

the literature for control-oriented modeling but they fail to capture transient soot

accurately, especially the spikes during tip-in operations [6, 17, 23, 53]. More detailed

models exist in the literature that capture transient soot formation by simulating the

combustion events using computational fluid dynamics (CFD) [138], phenomenolog-

ical methods [3, 17, 29, 139], heuristic macro-parameter approaches [140] or using

black box models such as artificial neural networks [141]. However, these approaches

require a number of inputs to the model often not available to the control engineers

involved with vehicle-level control development. Also, simulating combustion can

sometimes be prohibitively slow in the context of system work [139].

In this work we seek to develop a model capable of predicting temporally resolved

soot at the exhaust manifold of a diesel engine, subjected to the transient loads emu-

lating the operation in a vehicle following the FTP-75 city cycle, with just two inputs:

engine speed (ωe) and fuel flow rate (ṁ). Both of these signals are usually the out-

puts of the powertrain supervisory control, and this model will enable the control

system development for soot reduction without simulating the combustion dynamics.

Although this work is focused on modeling the diesel engine soot emissions during

the FTP-75 city cycle, the techniques and analysis presented here can be generalized
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to other engines with different inputs and outputs. Experimental data for transient

soot are recorded using Engine-in-the-loop (EIL) experiments of conventional and

hybrid diesel vehicles. The data are analyzed for statistical and spectral properties

and system identification techniques are then used to fit a model to the inputs and

the soot output. It is shown that a dual-input single-output (DISO) Volterra series

with low parametric complexity can furnish good estimates, both qualitatively and

quantitatively. The model is then validated on a number of different datasets, and a

comparison with steady-state models is presented.

The rest of the chapter is organized such that section 2.2 briefly describes the test

conditions for recording the data and their analysis is presented in section 2.3. Section

2.4 develops the Volterra series model used for the identification of transient soot.

Section 2.5 presents the model validation results, and section 2.6 ends the chapter

with a summary.

2.2 Data Collection

The transient soot data are recorded using Engine-in-the-loop (EIL) testing, pre-

sented in Appendix B. The driver’s throttle command (α) is communicated to the

engine controller, which is then converted into an equivalent fuel flow rate and com-

manded to the engine. Thus during the EIL simulation, the engine subsystem is con-

trolled by two exogenous inputs, ωref
e and ṁ (or α). Along with the EIL simulation of

the conventional vehicle [2, 24], models for three other powertrain configurations are

also implemented: virtually downsized engine (scaling down the torque measurement

of the engine to emulate a smaller engine), parallel electric hybrid [142], and series

hydraulic hybrid [143]. These different configurations subject the engine to different

operating points and transient loads, generating data that cover a wide range on the

engine map. A downsized engine results in much harsher transients, series hydraulic
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hybrid subjects the engine to a lot of steady-state operation, whereas conventional

vehicle and parallel electric vehicles operate the engine at different transient profiles.

Multiple runs are made for each configuration in order to have separate datasets for

identification and validation.

These experiments were conduced by Hagena [4], and post processed data was made

available for this work. A total of 17 datasets were used for identification and val-

idation exercises in this work. All data were recorded with warmed-up engine and

ambient conditions were assumed to be constant. The inputs and output for these

datasets, along with the post-processing details are presented in Appendix E. Inter-

ested readers are referred to [4] for further details.

2.3 Statistical and Spectral Data Analysis

In this section we analyze the recorded data for noise, coherence and cross-

correlations. The input (ṁ & ωe) and output (Soot) data from EIL testing are

sampled at 10Hz for the entire FTP-75 city cycle. This soot data should not be con-

fused with the cylinder’s cycle-to-cycle soot emission, which has dynamics of a much

faster timescale. The soot data here is the engine’s soot emission per unit time, as

measured from the exhaust manifold, and has much slower dynamics due to the pres-

ence of the turbocharger and the exhaust manifold, and hence a sample rate of 10Hz

suffices. The data obtained are first analyzed for high-frequency noise. Figure 2.1

shows the average power spectra for the inputs and the output of a sample dataset. It

is observed that each of these signals primarily consist of low frequency components,

and are devoid of any significant high frequency noise. There is no pre-filtering to

prevent aliasing, because at frequencies near the Nyquist frequency, signals are almost

50dB lower than those in the low frequency range.
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Figure 2.1: Sample signal spectra

Coherence functions can be used to investigate the degree to which a given output can

be linearly predicted from all of the system inputs and to determine the frequencies

over which a linear model can accurately characterize the system dynamics. Quadratic

coherence always takes on a value in the interval [0, 1], with a value close to 1 if

there is a linear response between the input and the output, serving as a form of

correlation function in the frequency domain [144]. Regions of low coherence indicate

insufficient input power in that frequency range, significant system nonlinearities,

noise, or contributions from unmeasured inputs [145]. Partial coherence provides an

estimate of the linear relationship between one input and one output for multiple-

input multiple-output (MIMO) systems. These estimates are equivalent to ordinary

coherence estimates after the effects of all other inputs have been removed from both

the input and output of interest [145, 146]. Let the output of our system (Soot) be

represented by Y , and the cross-spectrum between two signals x and y be represented

by Gxy. Then the partial coherence functions for our system with two inputs and one
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output are given by

γ2
ṁY ·ωe

(f) =
|GṁY ·ωe

(f)|2
Gṁṁ·ωe

(f) ·GY Y ·ωe
(f)

(2.1)

γ2
ωeY ·ṁ(f) =

|GωeY ·ṁ(f)|2
Gωeωe·ṁ(f) ·GY Y ·ṁ(f)

(2.2)

where the residual spectrum, Gxy·z, is defined as

Gxy·z(f) = Gxy(f) ·
[
1− Gxz(f) ·Gzy(f)

Gzz(f) ·Gxy(f)

]
(2.3)

These partial coherence functions are plotted in Figure 2.2 for sample signals. Both

of these partial coherence plots indicate a lack of strong linear relationships between

ṁ & Soot, and ωe & Soot, for all frequencies. Hence our system warrants the use of

a non-linear model structure for identification. Figure 2.3 shows the quadratic coher-

ence estimate between the inputs of the model. Except at very low frequencies, the

quadratic coherence estimate is low, indicating low dependence between the inputs,

and hence requiring the need of a dual-input single output (DISO) model.

The correlation between the inputs and the output is analyzed next. Figure 2.4

shows the cross-correlation of Soot with ωe, and Figure 2.5 shows the same function

for Soot and ṁ, at different time lags. Since the time constants of the system are

much smaller than the total drive cycle, only the cross correlations corresponding to

the smaller time lags are shown. Both plots indicate that the correlations change for

different data-sets (conventional vehicle, downsized engine, parallel electric, and se-

ries hydraulic) making them valuable for the validation of the proposed model. Also,

since cross-correlations decrease with time, the system exhibits fading memory and

hence a finite order model can be used. In terms of time-history, strong correlations

are exhibited only around zero lag. Figure 2.6 shows the magnified view of the cor-
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Figure 2.4: Cross-correlations between ωe and Soot

relation coefficients for a sample dataset. The peak correlation of the transient soot

with the inputs is not at zero lag but slightly delayed, due to the slower exhaust

manifold dynamics. Also, higher correlations are exhibited with the time-lag of less

than one second, and hence the inputs in this window will be used for identification.

2.4 Transient Soot Volterra Models

This section presents the development of the proposed transient soot emission

model using a Volterra series. Volterra series are non-linear functional series with

polynomial basis functions, and can be interpreted as a direct generalization of the

linear convolution integral [147, 148]. For a single-input (u), single-output (y) (SISO)

system, it can be expressed as

y(t) =

∞∑

n=1

yn(t) (2.4)
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where yn(t) is the ‘n th-order output’ of the system

yn(t) =

∞∫

−∞

· · ·
∞∫

−∞

hu
n(τ1, τ2, . . . , τn)

n∏

i=1

u(t− τi)dτi, n > 0 (2.5)

where hu
n(τ1, τ2, . . . , τn) is called the ‘n th-order kernel’ or ‘n th-order impulse response

function’ [149]. If n = 1, this reduces to the familiar linear convolution integral.

A discrete-time equivalent of Equation 2.4 can be expressed as

y(k) =

∞∑

n=1

yn(k) (2.6)

where

yn(k) =
∞∑

−∞

· · ·
∞∑

−∞

hu
n(τ1, τ2, . . . , τn)

n∏

i=1

u(k − τi), n > 0, k ∈ Z (2.7)

Boyd and Chua [150] showed that this discrete time Volterra series can be approxi-

mated to the desired accuracy, if the non-linear operator hu
n(·) is causal, continuous,

time-invariant, and has fading memory, and if the inputs are bounded. This is the

case for a wide-class of non-linear systems, unless they contain dynamic behaviors

such as limit cycles, subharmonics, or chaos [151, 152]. An immediate consequence

is that the higher order terms can be neglected in such a way that only the first M

Volterra kernels need to be taken into account, where M is the order of the resulting

model. Since the desired representation is stable, the elements of hu
n(τ1, τ2, . . . , τn)

with τl > εn(∀l ∈ 1, . . . , n) can be ignored [153], and Eqn 2.6 simplifies to

y(k) =

M∑

n=1

εn∑

τ1=0

· · ·
εn∑

τn=0

hu
n(τ1, τ2, . . . , τn)

n∏

i=1

u(k − τi) (2.8)

Once the Volterra series is established, the problem at hand reduces to finding the

Volterra kernels. The main drawback here is that the kernels are, in principle, non-
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parameterized functions whose measurement is possible only if their individual con-

tributions can be separated from the total system response [154]. If the elements of

all the Volterra kernels, h = [h1, h2, . . . , hm]
T where m =

(
(εn +M + 1)!

(εn + 1)!M !
− 1

)
, are

treated as individual parameters to be estimated, and the Volterra model is linear

in these parameters, classical estimation algorithms can be applied. This approach,

however, can make the model over-parameterized. Hence orthonormal basis func-

tions such as the Laguerre functions [154–156] and Kautz functions [153], as well as

generalized orthogonal basis (GOB) functions [157] are often selected to expand the

Volterra kernels, and to reduce the parametric complexity. However, the use of these

basis functions requires some knowledge of the poles of the system, and implement-

ing them for higher-order MISO systems is quite exhaustive. In this work we treat

the elements of Volterra kernels as individual parameters, and reduce the parametric

complexity using proper orthogonal decomposition (POD) [120, 136]. For the given

input traces, the Volterra series input polynomials,

n∏

i=1

u(k − τi), are expanded using

orthogonal basis vectors. Since these orthogonal basis vectors are a linear combi-

nation of the Volterra input polynomial vectors, their coefficients are also the same

linear combination of the elements of the Volterra series kernels. Based on energy

considerations, a reduced subspace can be constructed for these orthogonal bases, and

the model’s projection onto this reduced subspace reduces the number of parameters

to be estimated. Linear regression is then used to calculate these coefficients from

the experimental data.

A third-order dual-input, single output (DISO) Volterra-series was established for the

identification of the transient soot. The order of the model was kept low to avoid

fitting noise, and the time-history of less than one second was used based on the

cross-correlation results presented in Section 3. The two inputs (ṁ & ωe, represented

here as u1 & u2 for use of compact notations in Eqns. 2.9-2.11) were normalized by

their maximum permitted values to get ū1, ū2 ∈ [0, 1]. As a result, the higher order

45



terms can be neglected and soot is approximated as the sum of the first three orders

of the output. The three orders of the output for this DISO system are calculated as

shown in Eqns. 2.9-2.11, where the superscript of the Volterra kernel represents the

input associated with the kernel.

y1(k) = yu1
1 (k) + yu2

1 (k) =

2∑

n1=1

εn∑

τ=0

h
un1
1 (τ)ūn1(k − τ) (2.9)

y2(k) = yu1u1
2 (k) + yu1u2

2 (k) + yu2u2
2 (k)

=
2∑

n1=1

2∑

n2=n1

εn∑

τ1=0

εn∑

τ2=0

h
un1un2
2 (τ1, τ2)ūn1(k − τ1)ūn2(k − τ2) (2.10)

y3(k) = yu1u1u1
3 (k) + yu1u1u2

3 (k) + yu1u2u2
3 (k) + yu2u2u2

3 (k)

=
2∑

n1=1

2∑

n2=n1

2∑

n3=n2

εn∑

τ1=0

εn∑

τ2=0

εn∑

τ3=0

h
un1un2un3
3 (τ1, τ2, τ3)ūn1(k − τ1)ūn2(k − τ2)ūn3(k − τ3)

(2.11)

Assuming the elements of each kernel are individual parameters, this results in a

model with 470 parameters. In order to reduce the number of these parameters

to be estimated, the Volterra input polynomials in Eqns. 2.9-2.11 are arranged in

the columns of A, with different rows corresponding to the data at different time

samples. The columns of A are then mean centered and normalized by the standard

deviation to scale the matrix and obtain Ā. Singular value decomposition is then

performed to obtain the orthogonal matrices U and V, and the matrix of singular

values Σ = diag(σ1, σ2, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0, as

Ā = UΣVT (2.12)

The columns of the matrix V470×470 form an orthogonal basis of the state space

for the traces of Volterra input polynomials, and the squares of the singular values
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provide a measure of how much signal energy is captured by each of these basis

vectors. Let h̄ = [h̄1, h̄2, . . . , h̄470]
T be the vector of the coefficients of the orthogonal

basis vectors, representing linear combinations of the elements of the Volterra kernels

h = [h1, h2, . . . , h470]
T . Then, a reduced model is derived by considering only the first

r dimensions of this vector, spanned by the first r columns of matrix V, and denoted

by Vr. The new basis vectors are then calculated by projecting the system’s model

onto this subspace (Galerkin projection) as

Φ = AVT
r (2.13)

It was observed that the first 5 principal components captured 99.9% of the system’s

energy (Figure 2.7). Since this result is input dependent, additional modes were

included to increase model confidence, and r was chosen as 25. Let Y denote the

time trace of the transient soot recorded during experiments, Ȳ the model estimate,

and h̄r = [h̄1, h̄2, . . . , h̄r]
T the vector containing the r coefficients of the reduced model,

then Ȳ = Φh̄r, and the least-squares optimal solution for model identification, ĥr, is

calculated as

ĥr = argmin
h̄r

‖Y −Φh̄r‖2 (2.14)

2.5 Model Validation Results

This section presents the validation of the model based on Volterra series, and

compares the results with steady-state maps. Since 17 datasets of processed data

were available for this work, identification of the model was performed using some

datasets, and model validation exercises were carried out on the others. Model es-

timates for the validation datasets were obtained by projecting the Volterra input

polynomials of the respective sets onto Vr, and then multiplying them with the vec-

tor of new coefficients (ĥr) obtained during identification. A sample of the Volterra
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Figure 2.7: Energy based analysis for number of modes

series predictions is shown in Figure 2.8. It is observed that the identification done

with highly transient datasets (conventional vehicle, downsized engine, parallel elec-

tric hybrid) improved the prediction accuracy during tip-in operations over steady-

state maps. This is intuitive as when the driver presses the throttle in a drive-by-wire

system, greater volume of fuel is injected into the cylinder to create more torque but

the boost pressure lags behind due to turbocharger inertia, reducing the in-cylinder

air-fuel ratios. The controller monitors this, and it limits the amount of fuel in-

jected, nevertheless instantaneous excursions of air/fuel ratio and residual exhaust

gas are quite probable. Additionally, the momentum of the incoming charge and

the swirl intensity are reduced. This impedes the mixture preparation, and increases

the heterogeneity of the mixture resulting in an overshoot in particulate and gaseous

emissions [4, 17, 23]. None of these effects are captured by the steady-state maps

because they are not memory based, and hence fall short of accurate soot predictions

during transients.

The predictions were, however, biased for the steady-state operation. This disparity
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Figure 2.8: Volterra estimates for the identification dataset

can be explained by considering the physics of soot formation. As summarized in

Appendix A, particle formation due to nucleation is predominant at low-load steady-

state operations resulting in smaller spectral diameter of the particles. At transient

loads, aggregation mode also contributes to the particle formation of bigger diameters

[4, 23]. Since this Volterra series is identified using only FTP-75 data that contains

limited amount of steady-state information, the predictions were slightly inaccurate.

When identification was done using the data-set predominantly containing steady-

state data (series hydraulic hybrid dataset), the bias at steady-state predictions was

eliminated. In this case the accuracy over transient predictions deteriorated due to

the lack of a sufficiently rich model during identification.

This problem was circumvented using datasets rich in both transient and steady-state

information for identification. For this purpose, the conventional vehicle dataset was

augmented by that of the series hydraulic hybrid, and coefficients were obtained that

resulted in the least total error for both of these datasets. The improvements in steady

state predictions are shown in Figure 2.9. Validation was then performed on different
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Figure 2.9: Steady-state bias for Volterra estimates

datasets, including electric and hydraulic hybrids with different control strategies, all

producing different time traces of the inputs. Figure 2.10 shows the results for the

validation of downsized engine data-set for part of the FTP-75 city cycle. The model

estimates are compared with experimental data and quasi-steady state predictions

obtained by using steady-state maps at the same inputs. As seen from the graph,

the prediction accuracy with Volterra series improves substantially over the steady-

state map during transients, whereas both the models match the experimental data

at quasi steady-state operations.

2.5.1 Residual Analysis

A more structured approach to model validation can be adopted by the statistical

analysis of the residuals [144], defined as R = Y − Ȳ . If the model captures all

the dominant dynamics of the system, the residuals should closely resemble white

noise. Figure 2.11 shows the autocorrelation of the residuals for a validation dataset.

Also plotted is the 99% confidence interval for the autocorrelation of white noise
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Figure 2.10: Volterra Estimates for the Validation Dataset

containing an equal number of samples (13, 601). The results are presented for low

values of time lags as the time constants of the system are much smaller. Figure 2.12

shows the cross-correlation of the residuals with the inputs. Results show very weak

correlations between the residuals and the input at low lags, indicating the presence

of some unmodeled dynamics. Figure 2.13 elucidates this point by looking at the

cross spectra of the residuals from Volterra series and that from quasi steady-state

predictions. It can be seen that although there are some low frequency components

present in Volterra series residuals, they are far less than those present in quasi steady-

state residuals. This explains the difference in their performance in predicting soot

during tip-in operations. The difference in their performance at 0Hz is attributed to

the presence of noise and steady-state bias (Figure 2.9).

The selection of datasets for identification and validation was largely dictated by their

dynamic content. Figure 2.14 shows the Volterra series based model’s L2 error norms,

as well as the percentage reduction in these error norms over the results obtained us-

ing quasi-steady-state predictions. The choice of the identification dataset is shown
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Figure 2.11: Autocorrelation of the residuals
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Figure 2.12: Cross-correlation of the residuals
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Figure 2.13: Cross spectra of the residuals (downsized engine)

first in every row, and the different columns present the validation results, with the

diagonal entries representing the performances on the identification datasets. If the

Volterra series error norm reduces over that of the quasi steady-state predictions, the

entry is shown in green. If the error norm increases, the entry is shown in red and the

model is not considered validated. It can be seen that with the exception of datasets

8 and 13, the model can be identified successfully using any of the datasets. These

two datasets are unable to validate or identify soot as compared to the other datasets.

This discrepancy can be introduced by a number of factors affecting the experiments,

such as the lack of control of air humidity or an error in DMS calibration prior to the

test run. Since the model works well with the other 15 datasets, irrespective of the

choice of identification and validation datasets, it is assumed that these two datasets

are erroneous. The improvements for the other 15 datasets depend on the content

of transient information in the identification dataset. Identification done with rich

transient datasets, while still augmenting them with series hydraulic hybrid dataset,

demonstrate greater improvements. In this dissertation, datasets 1 and 15 (conven-

tional vehicle and series hydraulic hybrid, respectively) are used for identification.
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The percentage reductions in L2 error norms for this choice are shown in Figure 2.15.

As expected, the identification datasets show substantial improvements. All valida-

tion datasets, with the exception of datasets 8 and 13, produce improvements as well.
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Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8 Data9 Data10 Data11 Data12 Data13 Data14 Data15 Data16 Data17

0.010981036 0.010910806 0.022786848 0.020946244 0.02391803 0.027567079 0.027567079 0.007101664 0.021890795 0.009496225 0.027532386 0.013901001 0.00801268 0.013980573 0.006002766 0.007732403 0.004109274

Data1 + 15 0.008(26.9%) 0.009(16.7%) 0.018(20.8%) 0.017(20.9%) 0.014(41.2%) 0.02(27.1%) 0.02(27.1%) 0.009(-21.4%) 0.017(20.2%) 0.008(19.6%) 0.026(4.9%) 0.013(6.3%) 0.01(-24.3%) 0.011(20.3%) 0.002(59.4%) 0.006(21.1%) 0.003(26.7%)

Data2 + 15 0.009(20.1%) 0.009(20.8%) 0.017(24.2%) 0.018(16.1%) 0.017(28.2%) 0.022(20.9%) 0.022(20.9%) 0.009(-26.5%) 0.018(16%) 0.008(11.2%) 0.024(13.4%) 0.013(7.5%) 0.01(-25%) 0.011(22.6%) 0.002(66%) 0.005(29.4%) 0.003(29.8%)

Data3 + 15 0.01(12%) 0.009(16.4%) 0.013(41%) 0.019(10.4%) 0.02(17.2%) 0.025(7.7%) 0.025(7.7%) 0.01(-44.5%) 0.023(-6.8%) 0.01(-7%) 0.026(6.7%) 0.013(5.8%) 0.017(-109.4%) 0.006(58.9%) 0.006(0.1%) 0.004(54.2%) 0.004(-4.6%)

Data4 + 15 0.009(16.9%) 0.01(10.6%) 0.02(11.6%) 0.014(32.5%) 0.009(61.9%) 0.019(31.9%) 0.019(31.9%) 0.007(-2.8%) 0.017(24.1%) 0.009(9.7%) 0.027(0.9%) 0.013(3.9%) 0.01(-21.5%) 0.012(12.4%) 0.004(37.6%) 0.007(6.9%) 0.003(27.5%)

Data5 + 15 0.01(12.7%) 0.01(6%) 0.021(9.4%) 0.015(26.8%) 0.005(79.3%) 0.019(32.1%) 0.019(32.1%) 0.006(17.7%) 0.018(17.7%) 0.008(16.5%) 0.031(-12.7%) 0.014(0.6%) 0.009(-14.8%) 0.013(10.4%) 0.004(38.3%) 0.008(0.8%) 0.003(35.4%)

Data6 + 15 0.009(21.4%) 0.01(8.5%) 0.019(14.4%) 0.015(29%) 0.008(67.8%) 0.018(35.7%) 0.018(35.7%) 0.008(-8.9%) 0.015(29.3%) 0.008(13.3%) 0.028(-0.7%) 0.014(2.6%) 0.01(-21.1%) 0.012(12.8%) 0.003(42.4%) 0.007(3.4%) 0.003(20.9%)

Data7 + 15 0.009(21.4%) 0.01(8.5%) 0.019(14.4%) 0.015(29%) 0.008(67.8%) 0.018(35.7%) 0.018(35.7%) 0.008(-8.9%) 0.015(29.3%) 0.008(13.3%) 0.028(-0.7%) 0.014(2.6%) 0.01(-21.1%) 0.012(12.8%) 0.003(42.4%) 0.007(3.4%) 0.003(20.9%)

Data8 + 15 0.01(10.3%) 0.01(9%) 0.019(15.9%) 0.016(24.3%) 0.008(67.5%) 0.019(29.3%) 0.019(29.3%) 0.005(24.9%) 0.019(12.6%) 0.008(11.2%) 0.032(-14.9%) 0.014(1%) 0.01(-20.4%) 0.011(17.8%) 0.003(53.2%) 0.006(17.2%) 0.003(31.1%)

Data9 + 15 0.009(16.7%) 0.011(1.5%) 0.02(12.1%) 0.015(26.9%) 0.011(54.6%) 0.018(33.9%) 0.018(33.9%) 0.01(-37%) 0.015(32.9%) 0.009(7.8%) 0.026(7.2%) 0.014(-1.3%) 0.009(-12.8%) 0.013(10.1%) 0.003(43.6%) 0.008(0.3%) 0.003(18.7%)

Data10 + 15 0.008(23.8%) 0.009(14.2%) 0.019(17.8%) 0.016(25.9%) 0.009(63.1%) 0.019(31.6%) 0.019(31.6%) 0.007(0.1%) 0.018(19.7%) 0.007(29.5%) 0.029(-6.7%) 0.013(4.4%) 0.01(-19.2%) 0.012(16.8%) 0.003(54.6%) 0.007(12.5%) 0.003(25.2%)

Data11 + 15 0.017(-50.6%) 0.017(-57.2%) 0.023(-1.6%) 0.022(-7.1%) 0.025(-3.4%) 0.026(4.2%) 0.026(4.2%) 0.018(-157.8%) 0.024(-7.7%) 0.019(-96.7%) 0.019(32.7%) 0.018(-30.5%) 0.012(-54.3%) 0.011(22.2%) 0.004(37.2%) 0.007(10.6%) 0.006(-56.6%)

Data12 + 15 0.009(16.2%) 0.009(16%) 0.017(23.6%) 0.02(3.8%) 0.023(2.8%) 0.026(6.7%) 0.026(6.7%) 0.011(-53.1%) 0.023(-2.9%) 0.01(-4.2%) 0.024(13%) 0.013(9.2%) 0.01(-23.7%) 0.011(22.8%) 0.002(62.2%) 0.006(27.7%) 0.003(33%)

Data13 + 1 0.008(24.9%) 0.009(14.2%) 0.024(-4.1%) 0.017(19.5%) 0.015(35.6%) 0.02(25.9%) 0.02(25.9%) 0.009(-27.2%) 0.017(21.8%) 0.008(19.4%) 0.027(2.1%) 0.013(5.6%) 0.003(60.6%) 0.018(-26.7%) 0.008(-31.7%) 0.012(-54.3%) 0.003(30.2%)

Data14 + 1 0.009(19.2%) 0.01(12.9%) 0.014(38.9%) 0.02(6.8%) 0.02(18.1%) 0.026(6.1%) 0.026(6.1%) 0.01(-37.4%) 0.023(-5%) 0.009(1.3%) 0.03(-10.7%) 0.013(4.1%) 0.019(-136%) 0.005(64.5%) 0.008(-25.5%) 0.004(43.5%) 0.004(-3.3%)

Data15 + 1 0.008(26.9%) 0.009(16.7%) 0.018(20.9%) 0.017(20.9%) 0.014(41.2%) 0.02(27.1%) 0.02(27.1%) 0.009(-21.4%) 0.017(20.2%) 0.008(19.6%) 0.026(4.8%) 0.013(6.3%) 0.01(-24.3%) 0.011(20.3%) 0.002(59.4%) 0.006(21.2% 0.003(26.7%)

Data16 + 1 0.008(24%) 0.009(16.1%) 0.016(31.6%) 0.018(14.6%) 0.017(29.3%) 0.023(17.9%) 0.023(17.9%) 0.009(-25.9%) 0.02(8.9%) 0.008(12.4%) 0.027(0.3%) 0.013(6%) 0.014(-77.3%) 0.007(46.8%) 0.004(27.7%) 0.003(56.8%) 0.003(21.8%)

Data17 + 1 0.008(27.1%) 0.009(16.5%) 0.02(12.2%) 0.017(21.1%) 0.014(39.9%) 0.02(28%) 0.02(28%) 0.009(-20.6%) 0.017(23.2%) 0.007(22.1%) 0.026(6.4%) 0.013(6.8%) 0.007(12%) 0.013(5.4%) 0.004(33.7%) 0.008(-0.7%) 0.002(53.1%)

L2 Error norm

Validation

ID

SS error norm

Figure 2.14: Use of different datasets for identification
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Figure 2.15: Performance comparison of different datasets

Figure 2.16 shows the results of improvements for the different configurations (identi-

fication and failed datasets not included). It can be seen that the model estimates are

about 17%, and 21% more accurate than the quasi steady state predictions for con-

ventional vehicle and downsized engine, respectively. Improvements are much higher

for the hybrids, 41% for the parallel electric and 27% for the series hydraulic, as

engine tip-in becomes more frequent. Overall, the models estimate soot both qualita-

tively and quantitatively better than steady-state maps by just using a 25 parameter

third-order model, thus being computationally efficient and conducive to controls

work.

2.6 Summary

This work presented the development of black-box transient soot models using

Volterra series with only two inputs ωe and ṁ. Based on the data, a third-order 25

parameter discrete-time Volterra series was developed, and validated. It was shown

that the model estimated the transient soot significantly better than the steady-state
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Figure 2.16: Reduction in L2 Error Norms for Volterra Models

maps, both qualitatively and quantitatively, while still remaining computationally

efficient. Development of this model, thus provides a valuable tool required for the

offline powertrain control system development of conventional and diesel hybrid ve-

hicles.
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CHAPTER III

Iterative Learning Based Driver Input Synthesis

This chapter presents the synthesis of driver inputs for reducing diesel soot emis-

sions using iterative learning control. Transient soot emissions from diesel engine

vehicles are extremely sensitive to driver aggressiveness. Using closed-loop tracking

controllers to model the driver for evaluating emissions over a prescribed drive cycle

introduces driver-model induced variability in the results. This work develops an al-

gorithm producing driver input traces that significantly reduces the soot emissions for

a given cycle, thus providing a consistent basis for evaluating the influence of power-

train design changes on soot emissions. Possible improvements are first explored using

conventional optimal techniques and results are obtained using linear programming.

It is then shown that a first-order PD-type iterative learning control based algorithm

can deliver better performance than linear programming, substantially reducing the

total soot emissions at a fraction of the computational cost.

3.1 Introduction

In this chapter we seek to develop an algorithm for obtaining a driver input trace

that produces minimum soot emissions from a diesel engine vehicle, while following

the FTP drive cycle within EPA speed constraints. Transient soot produced by a

turbo-charged diesel engine is extremely sensitive to the rate at which power is de-
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manded from the engine [23, 55]. This high rate of power demand results in aggressive

driving style. In the context of the longitudinal motion of an automatic transmission

vehicle, the driver is primarily responsible for issuing throttle and brake commands.

A more aggressive driver actuates a greater number of tip-in operations during which

a greater volume of fuel is injected into the cylinder. The boost pressure lags be-

hind due to turbocharger inertia, increasing the heterogeneity of the mixture, and

resulting in an overshoot in particulate and gaseous emissions [10, 17]. When assess-

ing these transient emissions for offline calibration and control system development,

driver models are used to enable closed-loop simulation. Such driver models, when

used for vehicle level analysis, often use a tracking controller with compensatory ac-

tion with or without cycle preview [158, 159], and the gains of the controller are

tuned to match the desired aggressiveness of the driver [2, 24]. However, there ex-

ists an infinite choice of controller gains capable of keeping the vehicle within EPA

speed constraints, but each one producing significantly different soot emission results.

Moreover, there is no intuitive way to scale these gains when porting the driver model

to a different vehicle and/or powertrain configuration. This variable nature of driving

greatly influences soot emission results [87]. To eliminate this driver model induced

variability in emission evaluations and to enable an unbiased comparison of differ-

ent powertrain designs, development of an algorithm for synthesizing driver inputs is

proposed. This driving algorithm produces time traces of a standard driver actuator

set: accelerator pedal and brake pedal positions, such that the performance objective

(soot reduction) is maximized.

Seeking the driver actuator set produced by a trained driver, the literature offers

techniques roughly belonging to two different categories: trajectory optimization tech-

niques and learning based methods. Optimization based techniques can be further

classified into the ones using static optimization methods such as sequential quadratic

59



programming (SQP) [81], and the ones using dynamic optimization techniques such

as dynamic programming [52, 82]. Because of the simple pointwise nature, static opti-

mization techniques are computationally more efficient but optimize the inputs for an

instant in time instead of a time horizon. Dynamic optimization techniques consider

the dynamic nature of the system and are generally more accurate under transient

conditions. However these suffer from the curse of dimensionality, which exponen-

tially increases the computational intensity with inputs and states [52]. Learning

based techniques are computationally very efficient but generally do not guarantee

optimality of the solution. Cao et al. [86] demonstrated the improvement in driver

steering control input by updating the fuzzy logic in each iteration. Chen et al. [87]

eliminated the driver based uncertainty during emission test results by using a robot

driver that learns the performance of the vehicle during calibration and then uses

the derived fuzzy logic rules to drive the vehicle. Additionally, instead of solving

for a driver trace some researchers solve the inverse problem of optimizing the en-

gine/vehicle calibration to driving style (e.g. automatic mode selection) to maximize

the performance objective [82, 92].

In this work we reduce the soot emissions by developing the driving algorithm us-

ing iterative learning control (ILC). In order to compare the performance of the ILC

based algorithm, the problem is also solved using a linear programming (LP) based

approach. In this LP approach, the starting driver trace is produced by a PI controller

that closely follows the FTP-75 cycle. The system is linearized, sensitivity functions

are numerically calculated, and perturbations in driver pedal position are solved that

yield the least total soot for the drive-cycle while subjected to various constraints.

The process is then repeated iteratively until no appreciable improvement is detected.

Then iterative learning control based driving algorithm is used to achieve the same

task. A first order proportional-derivative (PD) controller is developed based on the
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understanding of processes contributing to high soot formation, and the EPA con-

straint is implemented using a lower level controller. Total soot is then shown to

monotonically decrease with the number of iterations. The results indicate that the

ILC based algorithm outperforms the linear programming based solution while tak-

ing only a small fraction of computations. Improvements are only shown for the first

400sec of the FTP-75 city cycle but the numbers are quite representative of the entire

cycle. Also, the techniques presented in this paper are general enough to be applied

to various other performance objectives and powertrain configurations.

The rest of the chapter is organized such that the next section presents the engine,

drivetrain and vehicle modeling details for this work. The following sections then

describe the process of obtaining the optimal driver trace using linear programming,

followed by the development of a driving algorithm based on iterative learning control.

The final section outlines the summary and important conclusions of this chapter.

3.2 System Modeling

The block diagram of the system using a driving algorithm is shown in Figure

3.1. The driving algorithm is responsible for issuing driver accelerator and brake

pedal positions. The solid and dashed lines indicate the flow of signals in the time

domain, and the iteration domain, respectively. The soot performance for a given

cycle is accounted by the driving algorithm only in the next iteration of simulation.

The vehicle speed feedback for following the prescribed cycle may take place in the

time or iteration domain depending upon the driving algorithm strategy. Once the

algorithm converges, the iteration domain feedback disappears, thus making it a

purely feedforward strategy for a given vehicle to follow a specific cycle. Hence, an

implicit assumption in this work is that the system remains trial invariant.
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Figure 3.1: Model Structure for Vehicle Simulation

The modeling details of various vehicle level components are presented in Appendix

C, and the variables in the block diagram correspond to those in Figure C.5. The soot

emissions are modeled using Volterra series as presented in Chapter 2. This section

presents the engine modeling details.

3.2.1 Engine Modeling

The engine model consists of three main components: a fuel control module, an

engine torque map, and a transient soot model. The fuel control module is modeled

as a PI controller that decides the fuel demand depending on the engine speed, the

idle speed set-point, and the driver demand. The amount of fuel injected into the

engine is controlled in a manner that is consistent with the driver pedal position

except when engine conditions are such that the idle controller is necessary. Under

these conditions, the idle controller engages and overrides the driver pedal position.

The engine torque map takes fuel demand, as dictated by the fuel control module,

and engine speed as inputs, and outputs the engine torque. The steady state engine

map used for this purpose is shown in Figure 3.2. This engine torque is then used
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Figure 3.2: Steady-state engine map

to obtain the engine speed by accounting for the load torque, and the engine and

impeller inertia [160].

The transient soot model uses inputs and produces output at 10Hz, whereas the

complete vehicle model is integrated at a much higher frequency. Therefore, the

inputs to this model are down-sampled and the outputs are held constant using zero-

order hold (ZOH) to match the integration time-step.

3.3 Driver Trace Determination Using Linear Programming

This section presents the derivation of optimal driver trace using linear program-

ming. The drivetrain and vehicle dynamics models in the simulation have 5 indepen-

dent states, and the soot model (discrete time model at 10Hz) requires the past 10

input values (accelerator pedal position), and 10 engine state points (engine speed).

Hence the number of input-state pairs does not computationally render this problem

to the use of dynamic programming. Moreover each simulation runs in approximately
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real-time and without parametrization of the driver input trajectory, it is too com-

putationally intensive for static optimization methods. Hence, an iterative solution

based on linear programming is proposed here. An initial solution set is obtained by

the use of a PI tracking controller to closely follow the FTP-75 cycle. The linear pro-

gramming (LP) problem is then defined to solve for small perturbations to this initial

driver input such that the sum of perturbations in soot is minimized, while subjected

to the EPA speed constraint. For the successful following of an FTP drive cycle, the

EPA requires vehicle speeds to remain within 2 mph of the highest and lowest speeds

within 1sec of the current time instant (EPA §86.116 − 90). This constraint limits

the perturbations in the vehicle velocity and, hence, the perturbations in the driver

command. For the linearization assumption to be valid, the permitted perturbation

in the driver command is limited to 1%. Also, the negative perturbations in soot are

limited such that a negative soot solution is not possible. The number of variables

to be optimized are reduced by using ZOH in the driver input for 0.2sec. Figure

3.3 and 3.4 show the effect of using ZOH on various simulation variables. It can be

seen that this approximation does not introduce any significant error in the problem.

Therefore using this assumption, the problem of finding the optimal input set for the

first 400sec of the FTP cycle reduces to a 2001 variable LP problem. Let the driver

input be denoted by u, vehicle velocity by v, upper and lower EPA speed bounds at

any instant of time as vu and vl respectively, and soot by y. Hence, the LP problem

is stated as
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Figure 3.3: Effect of ZOH on simulation variables
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Figure 3.4: Effect of ZOH on simulation variables (magnified)
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min
x

fTx (3.1)

subject to : δvl ≤ δv ≤δvu

−0.01 ≤ δu(i) ≤0.01 i ∈ [1, 2001]

and − y ≤δy

where, f(i) = 1 ∀ i ∈ [1, 2001], and f(i) = 0 ∀ i ∈ [2002, 6003]

x = [δy0 δy0.2 . . . δy400 δu0 δu0.2 . . . δu400 δv0 δv0.2 . . . δv400]
T

δvl = vl − v, and δvu = vu − v

It is assumed that periods of engine idling exceeding 4sec resets all the vehicle states,

and hence inputs are not calculated for idling after 2sec of vehicle rest until 2sec before

vehicle motion. This further reduces the problem space, although the mathematical

notation in this section does not reflect this assumption for brevity. Sensitivity of

vehicle velocity and soot to changes in driver input is calculated numerically by per-

turbing only one input by 0.1% at an instant of time, and recording the change

in outputs at each subsequent instant. Therefore, the variables satisfy the equality

constraint

Aeqx = b (3.2)

where Aeq =




I −ST 0

0 −RT I


 (3.3)

b(i) = 0 ∀ i ∈ [1, 2001] (3.4)
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S =




∂y0
∂u0

∂y0.2
∂u0

. . .
∂y400
∂u0

∂y0
∂u0.2

∂y0.2
∂u0.2

. . .
∂y400
∂u0.2

...
...

. . .
...

∂y0
∂u400

∂y0.2
∂u400

. . .
∂y400
∂u400




(3.5)

R =




∂v0
∂u0

∂v0.2
∂u0

. . .
∂v400
∂u0

∂v0
∂u0.2

∂v0.2
∂u0.2

. . .
∂v400
∂u0.2

...
...

. . .
...

∂v0
∂u400

∂v0.2
∂u400

. . .
∂v400
∂u400




(3.6)

Since the system is causal the sensitivity of the output trace to the change in in-

put at any given time would be zero for all times preceding that instant. Therefore,

∂vp
∂uq

= 0 and
∂yp
∂uq

= 0 ∀ q > p. Also, since the system has fading memory [161], it is

assumed that outputs after 50sec are not affected by a perturbation in the input at

a given instant of time. Thus,
∂vp
∂uq

= 0 and
∂yp
∂uq

= 0 ∀ p− q > 50. This assumption

simplifies the problem structure further and allows multiple sensitivity function eval-

uations during a single simulation run. Another implicit assumption in formulating

this as a linear programming problem is that the model remains continuous during

perturbation i.e. no new gear shift events take place during the perturbation.

This problem was solved using Simplex algorithm to minimize the sum of total soot,

and iterated with the previous solution as the starting point for the sensitivity evalu-

ation. During each iteration, the solution of the LP problem was used in the original

non-linear problem to calculate the improvement in total soot and check for possible

constraint violations. If constraints were found to be violated at any instant of time,

the LP problem was re-solved with tightened constraints at that instant of time. The

67



0 50 100 150 200 250 300 350 400
−10

0

10

20

30

40

50

60

Time(sec)

S
pe

ed
(m

ph
)

Driving Algorithm Following the FTP−75 Cycle

 

 

Initial
Linear Prog. Solution

Figure 3.5: LP solution for min soot problem

iterative process of LP was continued until three consecutive iterations yielded less

than one percent improvements .

This process resulted in total soot reduction of 8.63%. The resultant vehicle velocity

trace is shown in Figure 3.5, with the EPA speed bounds marked. The improvement

with different iterations is shown in Figure 3.6, and Figure 3.7 shows the transient

soot profile for the solution. From Figure 3.5, it can be seen that the solution, for a

large part, lies on the lower velocity bound. This solution suggests that lower vehicle

velocity, which in turn implies lower engine speed, will result in least soot. This is

true as lower engine speeds will see fewer combustion cycles per second. However, the

bulk of soot contribution is from transient components, where during tip-in operations

greater volume of fuel is injected into the cylinder to create more torque, but the

turbocharger inertia prevents boost pressure from rising instantaneously. This reduces

the in-cylinder air-fuel ratios, and the momentum of the incoming charge and the

swirl intensity are reduced. This impedes the mixture preparation, and increases the

heterogeneity of the mixture resulting in an overshoot in the soot emissions [17, 23,
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Figure 3.6: Reduction of total soot with iteration
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Figure 3.7: Reduction of transient soot for minimum soot problem
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161, 162]. The Volterra series used for estimating soot here [161] is able to capture

this effect. However, when the sensitivity functions are calculated by perturbing the

input by 0.1%, it did not result in any appreciable change in engine acceleration, hence

not capturing acceleration induced soot spikes in the LP problem. This problem is

circumvented by defining an alternate problem: minimizing the sum of positive vehicle

accelerations. Let us first define a function κ(·) as

κ(x) =





x ∀ x ≥ 0

0 ∀ x < 0

(3.7)

Let v̇ denote the vehicle acceleration, then the alternate LP problem can be redefined

with a different x and Aeq as,

min
x

fT κ(x) (3.8)

x = [δv̇0 δv̇0.2 . . . δv̇400 δu0 δu0.2 . . . δu400 δv0 δv0.2 . . . δv400]
T

where Aeq =




−0.2I 0 B

0 −RT I




(3.9)

where B is the lower triangular Toepliz matrix,
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B =




1 0 0 . . . 0

−1 1 0 . . . 0

0 −1 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1




(3.10)

The improvements in total soot with each iteration of LP are shown in Figure 3.8.

After 5 iterations a total soot reduction of 13.4% was achieved. Figure 3.9 shows

the vehicle speed trace for this solution. This solution tries to minimize the number

and amount of positive accelerations by cutting corners within the speed bounds,

and avoiding steep accelerations. As a result, transient soot is substantially reduced

compared to the initial driver input set. The comparison of soot traces is shown in

Figure 3.10. The solution is still computationally expensive due to hundreds of sim-

ulation runs required for calculating sensitivity matrices during each iteration, but

can provide us with a systematic procedure for reducing soot by altering the driving

style for any given vehicle-powertrain configuration.

3.4 Synthesis Using Iterative Learning Control

This section presents the synthesis of driver inputs using iterative learning con-

trol. ILC is based on the notion that the performance of a system that executes

the same task multiple times can be improved by learning from previous executions

[137]. Therefore, it produces a feedforward control that tracks a specific reference

or rejects a repeating disturbance by using the error information from previous it-

erations, whereas non-learning controllers would yield the same error on each pass

[137, 163]. This methodology has several advantages over well designed feedback

and feedforward controllers. Feedback controllers introduce lag in transient tracking,
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Figure 3.8: Improvement in total soot with LP
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Figure 3.9: LP solution for minimum acceleration problem
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Figure 3.10: Soot trace comparison

while feedforward controllers can eliminate this lag for measurable signals, but fail to

accommodate the variations or uncertainties in the system model, and perform well

only to the extent the system is known [137, 164]. ILC is an open loop scheme that

combines the benefits of feedback and feedforward control by having a feedback loop

on the control signal in the iteration domain.

ILC requires that the system is trial invariant and resets to the same initial conditions

after each iteration [163]. Thus ILC can readily be applied to time-varying and non-

linear systems as long as they remain trial invariant. Let e be the error signal to

be reduced, and u the control input with subscripts denoting the time index and

superscripts denoting the iteration index, then a widely used first-order linear ILC

algorithm can be defined as

u j+1
k = u j

k + L(q) ∗ e j
k+1 (3.11)

where L(q) is the learning function and q is the forward time-shift operator qxk =
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xk+1. Let us define one trial delay operator, Z−1, as

u j
k = Z−1u j+1

k (3.12)

Then the block diagram for Equation 3.11 can be drawn as shown in Figure 3.11 [163].

The trial invariant plant, P, produces error, e j
k , when tracking a trial invariant signal

r. The learning law consists of a linear mapping (linear ILC) from the error to the

change in control input. The control input for the next iteration, u j+1
k , is obtained by

adding this change in control input to the input from the previous iteration. Thus,

ILC represents feedback in the iteration domain with a built-in integrator. Also, since

error signal from only one previous iteration is utilized, this is a first order ILC. The

block diagram in Figure 3.11 is labeled using lifted systems representation, where

signals are vectorized (lifted) to include values at all instants of time and feedback in

the iteration domain takes the form of a MIMO controller.

The purpose of the ILC is to find u∗ = lim
j→∞

u j, such that lim
j→∞

e j = 0, if there exists

an input that can give perfect tracking. If this is not the case, the algorithm converges

to u∗, where u∗ is the solution of the optimization problem
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u∗ = argmin
u

‖e‖2 (3.13)

where ‖ · ‖ is a suitable norm [165]. Therefore, the ILC problem is analogous to

iterative optimization techniques as it relies on underlying repetitive process to mini-

mize an objective function, except it can also use the data collected during the online

trials [166]. Thus, ILC derives the output by learning the best possible inverse of the

system dynamics for a given trajectory [167] and requires much less computational

power as the feedforward signal is calculated off-line [168].

In order to find the driver input trace that produces the least soot emissions over the

FTP cycle, the problem is formulated in the ILC framework. Since soot, yk ∈ [0,∞)

and the objective is to minimize soot, the soot output is regarded as the error. Volterra

series model [161] is used for predicting the soot and the ILC technique is applied in

pure simulation, although the proposed method can readily be applied to a vehicle on

chassis dynamometer. As with the LP approach, the driver input trace obtained from

a PI controller closely following the FTP cycle is used as the control input in the first

iteration. Since there is a clear correlation between the control input (driver pedal

position) and the error (soot), this problem can be tackled using a PD-type ILC.

PD-type is one of most widely used learning functions, particularly for non-linear

systems [137, 167, 169]. Let Q(q) represent the Q− filter, Kp the proportional gain,

and Kd the derivative gain, then ILC law for our system can be expressed as,

u j+1
k = Q(q) ∗ [u j

k +Kp · y j
k+1 +Kd · κ(y j

k+λ+1 − y j
k )] (3.14)

where λ =
Tsoot

Tveh
, Tsoot being the update period for the soot model (0.1sec) and Tveh the

integration time-step for the vehicle model (0.004sec). The integral term is not used

for the learning function because ILC has a natural integrator action from one trial to
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the next. The gains are tuned based on physical insight into the system. Higher en-

gine speeds produce more soot (more combustion cycles per sec), and hence reducing

soot through proportional gain requires less accelerator actuation and therefore the

gain is negative. The derivative gain reduces the spikes in soot emissions and is active

only when there is an increase in soot emissions. This gain is also negative, as more

benign accelerations would reduce these spikes. Since transient soot is responsible for

the bulk of the soot produced, magnitude of Kd is chosen to be much higher than Kp.

The soot spikes from the simulation data are defined using the parameter λ. Since the

complete model is integrated at 250Hz while the soot model is updated at 10Hz, this

parameter in the ILC law is necessary to update the input that would actually affect

the soot output. The described ILC formulation thus works on 10001 control input

points (u) for the first 400sec of the FTP cycle, one for each integration time step.

Also, since the gains are chosen based on physical principles, the formulation is quite

robust to the change in model parameters as long as the system remains trial invariant.

The control input for the next iteration is calculated by the convolution of this up-

dated input with the Q-filter. Q-filters are employed to determine which frequencies

are emphasized in the learning process as there will be frequencies for which the

system model is inaccurate. It helps to achieve monotonic convergence by disabling

learning at high frequencies and provides the benefits of added robustness and high

frequency noise filtering [137]. For a given Q-filter, when filter type and order are

specified, the bandwidth of the filter can also be used as a tuning parameter. While

learning gains influence the rate of convergence, the Q-filter influences the converged

error performance. Increasing the Q-filter bandwidth decreases robustness but im-

proves performance, whereas decreasing the bandwidth has the opposite effect [137].

In our work, a zero-phase non-causal FIR Gaussian lowpass filter [137, 170] with the
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bandwidth of 10Hz is used. Since the goal is to lowpass filter the signals used in

feedforward update, zero phase lag must be introduced. Also, since the update is

done in between the iterations when signal information is available for all times, the

non-causal nature of the filter does not pose any problems. Let the input calculated

from learning for a continuous time system, but before being filtered, be represented

by ũ j+1(t), i.e. ũ j+1(t) = [u j(t) + L(s) ∗ e j(t)], t ∈ [t0, t0 + T ] where T is the total

cycle (simulation) time, and let s be the Laplace operator, then Q(s) can be defined

by the integral transform

u j+1(t) = Q(s) ∗ ũ j+1(t)

=

t+T∫

t−T

Γ(t, τ)ũ j+1(t) dτ (3.15)

Since in this investigation we use a Gaussian filter, the kernel Γ(t, τ) is chosen as the

Gaussian distribution function

Γ(t, τ) =
1

σ
√
2π

· e−
(t−τ)2

2σ2 (3.16)

where the standard deviation parameter σ can be specified to get the desired band-

width. To implement this filter in discrete time, the integral transform of Equation

3.15 is implemented as a non-causal digital filter using moving weighted average of

data points in the feedforward signal vector [170]. Therefore, for our system the filter

takes the form
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u j+1
k = Q(q) ∗ ũ j+1

k , k ∈
[
p+ 1,

T

Tveh
− p

]

=

γ0ũ
j+1
k +

p∑

i=1

γi(ũ
j+1
k−i + ũ j+1

k+i )

γ0 + 2

p∑

i=1

γi

(3.17)

Hence, (p + 1) number of filter coefficients are used, obtained from the Gaussian

distribution function in Equation 3.16. The only requirement is 2p · Tveh ≪ T . Since

ILC reduces the driver accelerator actuation, the constraint of following the drive cycle

must be implemented explicitly. For this purpose, a lower level variable structure

PI controller is implemented to follow the velocity profile ǫ mph within the EPA

constraints, where ǫ is a very small velocity. The controller becomes active when

the vehicle velocity comes closer than ǫ to the speed bounds. It then alters the ILC

produced driver control input to keep the speed within the constraints. The gains

are tuned such that during the simulation, the transient response does not overshoot

ǫ, thus following the speed constraint at all times. Let Kc
p and Kc

i be the constraint

controller gains, then the structure of the controller is defined as

PI Controller :





Kc
p = 0, Kc

i = 0 if vl + ǫ ≤ v ≤ vu + ǫ

Kc
p 6= 0, Kc

i 6= 0 if vl + ǫ ≥ v, or v ≥ vu + ǫ

The control input is bounded as well, u ∈ [−1, 1], and the bounds are implemented

using saturation functions with anti-windup loops.

The results for the ILC based driving algorithm are presented in Figs. 3.12-3.16. With

approximately 40 iterations, an improvement of 18.8% was seen after which no sub-
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stantial improvement was detected. This improvement is about 8% higher than one

of the most intuitive solution: vehicle follows exactly the lower EPA speed constraint

using a PI controller. Attempts were made to incorporate further improvements in

the results by increasing the period over which soot spikes are defined, but it did not

result in any substantial improvement. Figure 3.13 shows the vehicle speed trace on

the FTP cycle and Figure 3.14 shows a magnified view of the first speed hump. It

can be seen that the solution tries to minimize both the positive vehicle acceleration

as well as the vehicle speed. As a result, minor speed humps are avoided and accel-

eration is much more gradual on longer speed humps. This is partly achieved by a

head start when possible. Also, since part of the objective is to reduce soot through

speed reduction, a large part of the lower speed constraint is active. Figure 3.15 and

Figure 3.16 show the soot trace and driver actuation comparison, respectively. The

traces with ILC show reduced transient soot for most of the cycle, resulting in an

overall substantially lower soot. There are, however, a few instances where transient

soot is actually increased. For example, when due to decreases in accelerator pedal

position the shift logic downshifts, and hence more acceleration is required to fol-

low the drive cycle or the constraint controller is actively trying to keep the vehicle

speed within the constraints. In spite of these few unexpected soot increases, the ILC

based driving algorithm gives very good performance with just 40 simulation runs.

Comparison to other intuitive solutions, such as the one that calculates the minimum

acceleration path for the FTP cycle within EPA speed limits independent of the vehi-

cle and uses a PI controller to follow vehicle on that speed path, is left for future work.

3.5 Summary

This chapter presented the synthesis of driver inputs to reduce transient diesel

soot emissions in an offline setting using iterative learning control. The soot reduc-
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Figure 3.12: Soot reduction with ILC iterations
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Figure 3.13: Vehicle velocity trace for ILC solution

80



20 30 40 50 60 70 80 90 100 110 120 130
−5

0

5

10

15

20

25

30

35

Time(sec)

S
pe

ed
(m

ph
)

Driving Algorithm Following the FTP−75 Cycle

 

 

Initial
ILC Solution

Figure 3.14: Magnified vehicle velocity trace
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Figure 3.15: Soot trace comparison
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Figure 3.16: Driver actuation comparison

tion problem was defined for the FTP-75 cycle with constraints keeping the vehicle

speed within EPA speed limits. The optimal driver trace was first obtained using a

linear programming approach. It was shown that an alternate objective function such

as the sum of positive vehicle accelerations was able to deliver better performance

than an objective function for minimizing soot. The results showed 13.4% reduction

in total soot but were still computationally intensive. Then a first-order PD-type ILC

scheme was developed to reduce the total soot that resulted in 18.8% improvement,

substantially reducing the transient soot spikes, with just 40 simulation runs.

By calculating the driver input trace that reduces soot emissions, this work provides

a consistent basis for evaluating the influence of changes in powertrain designs on

transient soot emissions. This methodical procedure can be applied to different design

candidates for evaluating their soot performances over a drive cycle, and for enabling

a fair comparison by eliminating the variability introduced by a fixed driving style.

This ILC based algorithm can also be readily applied to a real vehicle operating on

a chassis dynamometer as the model is quite robust. Although the driving algorithm
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has been developed for reduction in transient soot, the proposed framework is general

enough to be applied to other objective functions. Moreover, the use of ILC has been

demonstrated in an application where conventional optimization schemes cannot be

applied due to the computational load.
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CHAPTER IV

Real-Time Transmission Model Development

This chapter presents a real-time powershift transmission model development for

engine-in-the-loop experiments for evaluating transient soot. Transient soot emis-

sions produced during EIL experiments are very sensitive to transient loading on the

engine and the transmission model plays a key role in dictating transients during

gear-shift events. The simulation of a powershift transmission involves representa-

tion of slip-stick friction that often results in numerical stiffness affecting the model’s

RT properties. In this work a framework is presented to model a generic powershift

transmission with Margolis friction model for RT simulation using fixed time-step

integration solvers. It is shown that a better representation of shift dynamics can be

obtained using this method than static blending functions and that these dynamics

have a substantial effect on the transient soot from the engine. This model can thus

enable transmission calibration and control system development for reducing soot

emissions.

4.1 Introduction

This chapter presents the development of a RT powershift transmission model for

use in engine-in-the-loop experiments for evaluating transient soot. Powershift trans-

missions are stepped-ratio transmissions characterized by continued transmission of
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power during gear shifts by the use of friction clutches. While these friction ele-

ments determine the transmission output torque, they also produce transient load on

the engine and can significantly impact engine performance during gear-shift events

[117, 118]. Hence the transmission model fidelity is a key enabler for our desired EIL

experiments.

The desired transmission model is intended for use in both RT and non-real-time ap-

plications for evaluating transient soot emissions by systems-level researchers. Hence,

it should fulfill four distinct requirements. First, it must be able to run in real-

time without requiring any additional numerical procedures such as multiframing or

variable time-step solvers. Secondly, it must accurately represent the transient load

incident upon the engine for the purposes of capturing the effect on transient soot,

especially during shift events. Thirdly, it should be able to accommodate a variety

of commercially available transmission types for studying the impact of various vehi-

cles/powertrains on transient soot. Finally, it must be easy to parameterize and use

for systems-level work. Such a model would improve the fidelity of EIL experiments

and provide better estimates of transient soot from the vehicles.

Control oriented real-time transmission models available in the literature model the

gearsets along with the interconnected shafts as lumped parameter mass-spring-

damper systems. Shift dynamics are represented using an empirical blending function

[24, 132] or by modeling the physics of slip-stick friction. While the blending func-

tions are easy to simulate without adding any substantial computational load, they

can often result in unrealistic shifting behavior leading to the loss of fidelity during

shifts. On the other hand, simulating slip-stick friction interfaces for a powershift

transmission could be challenging for RT simulation due to numerical stiffness or log-

ical complexity issues. Using static friction models such as Karnopp model results
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in high logical complexity that rises exponentially with the number of friction inter-

faces. Kozaki et al. [129] demonstrated the use this clutch friction by reducing it

through surrogation. Others have implemented various numerical schemes to handle

this complexity in RT, such as modifying the fixed time-step integration scheme [133],

and multiframing [134]. Klages et al. [100] present the use of dynamic reset integra-

tor model with the RT simulation of Ravigneaux geartrain. The numerical stiffness

during simulation is avoided by careful selection of PI gains, while hydraulics were

not simulated.

The proposed approach in this work uses the dynamic Margolis friction model that

does not require any information about the rest of the system. Popular commercial

power transmission designs are analyzed and it is shown that the majority of them

involve an oncoming friction interface and an offgoing friction interface during a gear-

shift event that produces the characteristic shifting dynamics for such transmissions.

Hence, a dual-clutch model is proposed that emulates this clutch to clutch shift in-

herent in powershift transmissions by alternately acting as on-coming and off-going

clutches. The different clutch capacities and friction properties of various clutches

in the transmission are implemented using gain scheduling. The effective inertia and

compliance of the gearset is reflected as a lumped parameter model. Since the pri-

mary interest lies in looking at the low frequency aspects of transmission’s dynamic

system behavior, effects such as friction between gears and backlash are neglected.

Though this formulation is general enough to include viscous effects, the work here

does not take that into account. One of the advantages of this formulation is that no

other information about the system is needed and hence it can be used as a subfunc-

tion in any vehicle system model with a powershift transmission. The Volterra series

model is then used to capture the effect of gear-shifts from this transmission model on

transient soot, and results are compared to the one obtained using a blending function.
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Figure 4.1: Schematic of an epicyclic gear-set

The rest of the chapter is organized such that section 4.2 discusses the dynamics of

clutch-to-clutch shift, some popular friction models are presented in section 4.3 and

section 4.4 presents the proposed model. Simulation results are presented in section

4.5 and the chapter’s summary is outlined in section 4.6.

4.2 Dynamics of a Clutch-to-Clutch Shift

This chapter presents the need for clutches in a transmission and discusses the re-

sulting dynamics from clutch-to-clutch shifts. The schematic of an epicyclic geartrain

is shown in Figure 4.1. The common representation of this geartrain is using one-half

of the side view, since the system is axisymmetric. The kinematic equations of this

gear set are shown in Equations 4.4, where ωa denotes the angular speed, Ta denotes

the torque and Na denotes the number of gears, where a can be carrier (C), sun (S)

or the ring gear(R). It can be seen that in order to uniquely define all the speeds of

this gear-set, two out of three speeds should be specified.
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ωC =

(
NS

NS +NR

)
ωS +

(
NR

NS +NR

)
ωR (4.1)

TS =

(
NS

NS +NR

)
TC (4.2)

TR =

(
NR

NS +NR

)
TC (4.3)

(4.4)

Automatic transmissions use more than one of such gearsets connected to each other,

forming a compound planetary geartrain. One of the popular configurations is mod-

ified Simpson arrangement shown in Figure 4.2. This is characterized by CR-CR

(carrier-ring, carrier-ring) connections. Two of such planetary gearsets would have

six speed variables and only two speed equations governing them (Equation 4.4 for

each planetary gearset). In order to the number of degrees of freedom, two CR con-

nections are made thus acting as two constraint equations. Therefore the result is

two equations in four unknowns. In order to eliminate these two extra variables, fric-

tion clutches are used to make gear-specific interconnections with typically one of the

clutches specifying the input speed, resulting in a unique speed ratio for every clutch

combination. Different gear ratios are obtained by combination of different clutches,

with two of them engaged in any given gear. This arrangement is represented us-

ing the clutching chart shown in Table 4.1. It should be noted that typically only

one clutch is changed from one gear to another in order to have better shift control.

As a result of this clutch switching, gear shift events involve oncoming and offgoing

clutches.

Typically, the gear shifting process can be divided into two distinct phases, as shown

in Figure 4.3 for an upshift. The first phase is called the torque phase. As the hy-
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Figure 4.2: Stick diagram of a 4-speed modified Simpson geartrain

Table 4.1: Clutching chart for the 4-speed modified Simpson geartrain

Gear C123 C3R CR B1R B24

1 × ×
2 × ×
3 × ×
4 × ×
R × ×
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draulic pressure in the clutch cavity of the offgoing clutch starts decreasing, its torque

capacity also decreases, and so does the torque carried by the clutch. In the initial

part of this phase, the constraint effect of the control clutches remains unchanged

and the corresponding dynamic equations have therefore the same form as the before

the shift. The offgoing clutch remains locked at all times, but the torque transmit-

ted through it decreases, first slightly, and towards the end of this phase steeply.

Once the pressure starts building up in the oncoming clutch towards the end of the

phase, the torque capacity of the oncoming clutch increases, and the increased torque

transmitted through the oncoming clutch causes the torque transmitted through the

offgoing clutch to decrease steeply. Throughout this phase, the engine speed remains

essentially constant and this phase lasts until the offgoing clutch separates.

The next phase starts when the offgoing clutch has disengaged and the oncoming

clutch is slipping, as it does not have enough torque capacity to accelerate the iner-

tial load. The speed of the engine decreases as output inertia (vehicle) is much greater

than the input inertia. As the pressure builds up in this clutch, the torque capacity
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increases and slip speed reduces as both the surfaces try to attain the same speed.

After the torque capacity becomes high enough to accelerate the inertial load, the

clutch is locked. This phase is called speed or inertia phase and lasts till the torque

capacity continues to rise and until the maximum torque capacity is achieved.

The shift quality during this clutch-to-clutch shift is dependent on how well the pres-

sures of the two clutches are controlled. During the torque phase of the lower gear,

as the torque capacity of the offgoing clutch decreases and the clutch capacity of the

oncoming clutch increases, the output torque decreases significantly. This is caused

by the transfer of torque from a higher gear ratio to a lower gear ratio (upshift), and

is commonly known as torque hole. Ideally, the offgoing clutch is disengaged at the

exact moment when it’s transmitted torque transitions from a positive to a negative

value. This perfect shift occurs naturally when overrunning or one way clutches are

used in the mechanism. However when hydraulically actuated friction clutches are

used, a perfect shift is difficult to accomplish, but is closely approximated in many

modern automatic transmissions. If the offgoing clutch is disengaged too late, the

clutches fight each other and bindup (or tie-up) occurs. Bindup also enlarges the size

of the torque hole more than necessary, giving the driver a feeling of reduced power.

If the offgoing clutch is disengaged too early, the capacity of the oncoming clutch is

not sufficient to balance the engine torque, the engine accelerates noticeably and flare

occurs. Bindup and flare are both undesirable, although flare is more noticeable to

the driver whereas bindup is more damaging to the transmission. The clutch pres-

sures are thus controlled to ensure satisfactory shift quality.

The shift control is obtained through both, the coordinated control of clutch pressures

with fuel injection and throttle commands as well as direct control of clutch pressures.

To reduce the torque peak during inertia phase, fuel injection is usually delayed at
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the beginning of this phase [114, 171]. Direct control of clutch pressures is extremely

difficult due to the lack of reliable pressure sensors inside the transmission. In the

absence of these pressure signals, the clutch control is achieved through hydraulic

feedback (washout signal) [172], slip-speed control [173], or estimated input/output

torques [115]. Watechagit [135] presents online estimation for pressures using non-

linear observers. Extensive review of shift control is beyond the scope of this work

and interested readers are referred to [135, 174].

4.3 Modeling Slip-Stick Friction for Clutches

This section presents the popular slip-stick friction models from the literature.

Since friction opposes the motion and its magnitude is independent of velocity and

contact area, it can be described using Coulomb’s law as

Tf = Tc sgn(ωs) (4.5)

where Tf is the friction torque, and Tc is the Coulomb torque which is proportional to

the normal load. This model is represented in Figure 4.4(a). Since it does not specify

the value of the friction torque, it can take any value in the interval [−Tc, Tc]. There-

fore this represents a model with ideal relay or switched causality. In wet clutches

hydrodynamic forces also contribute to the friction force caused by the viscosity of

lubricants. Such a friction force, Tv, is a function of slip velocity. Another component

of static friction model is stiction (static friction), that describes the friction force at

rest to be higher than the Coulomb friction level. Static friction counteracts external

forces below a certain level and thus keeps an object from moving. The Stribeck

effect describes the friction force at low velocities does not decrease discontinuously

but that the velocity dependence is continuous. The model including these effects

(shown in Figure 4.4(a)), and takes the form
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Tf =





T (ωs) if ωs 6= 0

Te if ωs = 0 and |Te| < Ts

Ts sgn(Te) otherwise

(4.6)

where T (ωs) is the viscous torque, Te is the external torque and Ts is the Stribeck

friction torque. Although this model is simple to implement, this causal inversion

causes problems in model formulation by changing the explicit nature of model equa-

tions. To circumvent this problem, various alternate models have been proposed.

One approach to overcome the discontinuity is to approximate it by a linear region

near zero velocity as shown in Figure 4.4(b), resulting in the so called classical model

[96, 122]. Although simple in nature, it allows the body to accelerate even though the

forces on the body are less than peak stiction force. It also causes numerical stiffness

in the model if the linear approximation around zero velocity has a steep slope. One

popular way to remove the discontinuity is by using a hyperbolic tangent function

instead, though the problems associated with acceleration and numerical stiffness

still persist. Karnopp proposed a fixed causality model [123] to overcome the lack of

verisimilitude at low velocities. This was achieved by introducing a narrow stiction

region in which the friction torque does not depend on relative speed but rather on

equivalent applied torque to the friction element (Figure 4.4(c)). Thus, the order of

the system is effectively reduced during stiction while the friction force is calculated

by an empirical function of slip speed outside this region. Though this method is

quite accurate and easy to simulate [96, 122], it requires the derivation of separate

set of equations for each possible combination. Hence the complexity of the friction

model increases exponentially with the number of friction elements. For example, if

a modified Simpson geartrain has 5 friction surfaces, then there are 25 combinations

of discrete states. Therefore, when using this model for modeling automatic gearbox

there is need for abstraction or numerical algorithms to deal with this logical com-
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Figure 4.4: Comparison of static friction models
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plexity in real-time

Dynamic friction models can be used to avoid the need to calculate the constraint

force manually. Haessig and Friedland [122] proposed a popular model known as the

reset integrator model. It models the friction element as a spring when slipping and as

spring-damper when stuck. The switching between the slip and stick states is dictated

by the displacement of the spring. Let the spring deflection θs be defined such that

θ̇s = ωs, the spring stiffness be ks(ωs) and bs represent the damping coefficient, then

the friction torque, Tf is calculated as

Tf = (1 + a(θs))ks(ωs)θs + bsω̃s (4.7)

where the model switching and stiction force when sticking are represented by ω̃s and

a(θs) such that

ω̃s =





0 if (ωs > 0 and θs > θs0) or (ωs < 0 and θs < −θs0)

ωs otherwise

(4.8)

a(θs) =





a if |θs| < θs0

0 otherwise

(4.9)

Thus, the damping is active only when sticking (|θs| < θs0). As the deflection reaches

its maximum value θs0 , only the spring force is active, and its value also drops due to

the absence of stiction. With this model the logical complexity does not increase with

the number of friction surfaces, like it did with Karnopp model. It was shown that

reset-integrator model approaches Karnopp model as spring stiffness and damping

rate go to infinity. Margolis [121] proposed a variation of this model where slip

velocity was used as the switching criteria between the two discrete states instead of
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the spring displacement, and during slipping the friction element acted as damper.

While both of these models are physically intuitive, simulating these models in RT

could be challenging due to numerical stiffness if high damping coefficient and spring

stiffness are used. The exact cause of this reason is elucidated next.

4.3.1 Control Systems Perspective on Numerical Integration

Once the model is formed in the continuous-time domain, it is converted into

discrete-time using numerical integration methods for simulation. The integration

solver used for real-time simulation also requires the use of explicit, low order causal

algorithms such as Euler, Adams-Bashforth and Runge-Kutta methods running fixed

time-steps, as the communication between the model and the hardware needs to be

synchronized at a predetermined rate [175]. Standard solvers for stiff and constrained

systems are implicit or variable time-step based, and cannot be used in real-time with-

out modifications because of their iterative and/or adaptive strategies [176]. Hence,

simulating a numerically stiff system in RT using a fixed time step integration solver

is a challenging task. Although there exist some alternate methods that can be used

for solving stiff ODEs under certain conditions, such as linearly implicit integration

methods [176, 177], Jacobian approximation using sparsing techniques [178], multi-

framing or time scale decomposition [179, 180], or implementation of stability limit

as constraint [181], a large number of models are only limited to the use of fixed

time-step solvers in RT due to practical limitations.

While the slow decay rates dictate dominant dynamics of a system, the fast ones

control the stability of the numerical method [182]. One of the ways to analyze the

stability properties of a (linear) discretized system is to look at the poles of its pulse

transfer function. This transfer function is obtained using s-to-z mapping functions

to approximate the continuous-time transfer function. When bilinear transformation
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(or Tustin’s rule), which is an implicit method, is used, any stable continuous-time

filter will be converted into a stable discrete-time filter using this mapping function.

However, the stability regions of mapping functions from explicit integration methods

do not contain the entire left half-plane [183, 184]. To elucidate this point, consider

the linear system governed by the equation ẋ = Ax, where x ∈ R
m and Am×m is

a constant matrix with eigenvalues λj where j = 1, 2, 3...m. Then Euler’s forward

difference method (explicit fixed time step integration method) can be expressed as

xn+1 = xn + hẋ (4.10)

where h is the fixed integration time-step. Let P (hA) = I+hA, then xn+1 = P (hA)xn,

and the condition for absolute stability dictates

|xn+1| < |xn| ⇒ |I + hA| < 1 (4.11)

Since A has eigenvalues λj, then P (hA) has eigenvalues (1+hλj) where j = 1, 2, 3...m.

Hence absolute stability demands |1 + hλj | < 1, or in the scalar case, |1 + hλ| < 1.

Since h is always a positive real number and λ is a complex number, the region de-

scribed by |1+ hλ| < 1 on a complex hλ plane is referred to as the region of absolute

stability, and the function P (hA) = I+hA is called the stability function. Karim [185]

derived stability regions of higher order Runge-Kutta methods, and these regions of

stability are shown in Figure 4.5. When the system has more than one eigenvalue,

all the eigenvalues must follow the stability condition. It can be seen that as the

order of integration algorithm increases, the region of stability also increases, making

it possible to integrate a given system (in a stable way) using larger integration time

steps. Also note that a purely oscillatory system cannot be integrated using a first or

second order integration algorithms, whereas Runge-Kutta 3rd and 4th order methods

can integrate an unstable system in a stable fashion. Thus, when simulating a nu-
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Figure 4.5: Region of stability for different orders of Runge-Kutta methods

merically stiff system using one of these explicit fixed time-step solvers, the highest

eigenvalue enforces the use of a much smaller integration time-step than the one that

is required to simulate the dominant dynamics, resulting in excessive computations

and often the loss of real-time simulation properties.

Thus, model structure, model complexity and the numerical solution have to be

adapted to the needs of real-time simulation. While this stability constraint can be

implemented directly for linear systems, being cognizant of the underlying causes of

numerical stability is still important for nonlinear discontinuous systems [186]. Hence,

based on model properties such as the number of states, damping coefficients, etc.

and some simulation trials, a decision on the order of integration method and the

step-size of the numerical solver can often be obtained.
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4.4 Development of Real-Time Transmission Model

This section presents the development of a real-time powershift transmission model

for use in EIL experiments. The model is required to possess sufficient fidelity to

accurately capture shift transients while being computationally efficient, as well as

should be able to accommodate different powershift drivetrain configurations with-

out extensive modifications or parameter identification. Some of the popular auto-

matic transmission designs are 4-speed modified Simpson (e.g. GM Hydramatic 440),

4-speed Ravigneaux (e.g. BMW A4S270R, A5S310Z, A5S325Z), 5-speed extended

Simpson (e.g. ZF 5HP24) and 6-speed Lepelletier (e.g. Toyota U660E, Ford 6R60,

GM 6L80, ZF 6HP19) shown in Figures 4.2, 4.6, 4.7,and 4.8 respectively. The sched-

ule of clutches for these different designs can be read from their clutching charts and

it seen that that almost all the gearshifts (for forward vehicle motion) involve an

oncoming clutch and an offgoing clutch. Although there exist a very few exceptions

to this rule [109], such a design is favorable from a controls standpoint to achieve a

much smoother shift. Figure 4.9 shows the stick diagram of a dual-clutch transmis-

sion (DCT) where odd and even gears are mounted on parallel shafts. This specific

DCT differs from the automatic transmissions in that it uses the clutch for launch-

ing instead of a torque converter and spur gears are used instead of epicyclic gears.

However, synchronizers engage before a gear-shift, and gear ratio transfer is achieved

by engaging one clutch and disengaging the other. Hence if synchronizers are treated

as ideal power switches, the gearshift dynamics are similar to that of an automatic

transmission.

Therefore, to develop a generalized framework for modeling a powershift transmission,

two separate clutches are required to be modeled: an oncoming and an offgoing clutch.

Since the interest lies in predicting the low frequency dynamics, the transmission gears

and shaft inertias are lumped as a second order mass-spring-damper system. From a
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Figure 4.6: Stick diagram of a 4-speed Ravigneaux geartrain

Table 4.2: Clutching chart for the 4-speed Ravigneaux geartrain

Gear C34 C123 CR B1R B24

1 × ×
2 × ×
3 × ×
4 × ×
R × ×

Input

C1234

C45 CR B35 B2

S1

P1

R1
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B1R
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Figure 4.7: Stick diagram of a 5-speed extended Simpson geartrain
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Table 4.3: Clutching chart for the 5-speed extended Simpson geartrain

Gear C1234 C45 CR B35 B2 B1R

1 × ×
2 × ×
3 × ×
4 × ×
5 × ×
R × ×

Input

R3

P3

S3

C35R C456 C1234 B26 B1R

S2

P2

R

Output

S1

P1

Figure 4.8: Stick diagram of a 6-speed Lepelletier geartrain

Table 4.4: Clutching chart for the 6-speed Lepelletier geartrain

Gear C35R C456 C1234 B1R B26

1 × ×
2 × ×
3 × ×
4 × ×
5 × ×
6 × ×
R × ×
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Figure 4.9: Stick diagram of a typical dual-clutch transmission

physical standpoint, not all clutches are alike, and possess different clutch capacities

and coefficients of friction, but they operate on the same physical principles. These

differences are accounted using gain scheduling, without adding any additional states

into the system. The decision for a slip-stick friction model from the literature is

dependent on the generalizability of the proposed approach. Since the framework is

intended to be used in different drivetrain configurations, a constraint equation is not

implemented for the stick-slip friction (Karnopp model). Instead, a dynamic Margolis

model is used that models the clutch friction as a damper when slipping and a spring

with damping when locked. The solver selection and time-step decision framework

presented in the previous section is used to iteratively select spring stiffness, damping

coefficient and solver step-size so that acceptable results can be obtained. Let ωin

be the clutch input speed (turbine speed for an automatic transmission) and ωtin the

transmission input speed, then the clutch’s slip speed, ωs is defined as ωs = ωin−ωTin
.

The clutch remains locked as long as the slip speed remains less than some critical

slip velocity, ωc
s and the clutch capacity, Tcap, is sufficient to carry the external torque.

When the clutch starts slipping, the torque transmitted is a function of this speed.
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In this work the slip torque, Tslip is calculated as

Tslip = Tcap · tanh
(ωs

k

)
(4.12)

where k is a scaling parameter. The clutch capacity is a function of the clutch inner

and outer radii, Ri and Ro, the number of friction interfaces, N , the coefficient of

friction, µ, the surface area A and the applied pressure. The governing relationship

for clutch capacity can then be calculated using the constant pressure theory as

Tcap =
4

3
Nµ(ωs)

R3
o − R3

i

R2
o − R2

i

AηPmax (4.13)

where η ∈ [0, 1] is the clutch modulation signal and Pmax is the maximum pressure.

The clutch modulation signal is calculated offline using a full hydraulics model simula-

tion and specified as a feedforward signal. This proposed model, in combination with

the torque converter and the differential model presented in Appendix C, is shown

in Figure 4.10 when the clutch is locked. As the gear-shift command is issued, the

clutch capacity starts decreasing for the offgoing clutch though it still remains locked,

and the oncoming clutch starts slipping (torque phase). This arrangement is depicted

in Figure 4.11, and it can be seen that torque is being transmitted through two sep-

arate mechanical paths. Later during the torque phase, the offgoing clutch starts

slipping (Figure 4.12) and is disengaged (Tcap = 0) at the beginning of the inertia

phase. Therefore, a clutch-to-clutch shift transmission is modeled using just two fric-

tion component models, and without requiring any other configuration information

about the system.

4.4.1 Obtaining Clutch Pressure Profiles

Most of the clutches used in today’s transmissions are hydraulic clutches. The

clamping force of the hydraulic clutch is obtained by hydraulic pressure with no me-
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Figure 4.12: Offgoing clutch slipping during gear-shift

chanical linkages connecting the force piston to the operating lever, and hence the

clutch engagement rate must be controlled by controlling the pressure buildup in

the force cavity of the clutch [187]. The clutch pressures are controlled using pulse-

width modulated (PWM) solenoid valves [135]. It converts a current signal into a

hydraulic pressure output and the dynamic characteristics are modeled using a sec-

ond order transfer function, assuming constant line pressure. The output pressure

of the solenoid is fed to the pressure control spool valve as the signal pressure. The

position of the spool (xv) is the result of the force balance of signal pressure force,

output pressure force and offset spring force. Let pout be the output pressure, ps the

signal pressure, psup the supply pressure, pfb is the feedback pressure, As the area

of the signal pressure side, Afb the area of the feedback pressure side, Ain(xv) the

intake flow area as a function of the spool position, Aout(xv) the output flow area as

a function of the spool position, Mv the mass of the spool, Dv and kv the damping
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coefficient and spring stiffness, β the bulk modulus of the fluid (assumed constant),

Cd the discharge coefficient, xov the spring pre-load, ρ the mass density of oil, V the

chamber volume and Q the flow rate, then the dynamic equations can be written as

Mvẍv = Asps − Afbpfb −Dvẋv − kv(xv + xov) where |xv| < xlim (4.14)

ṗout =
β

Vload
(Qin −Qout −Qfb −Qload) (4.15)

Qin = sgn(psup − pout)CdAin(xv)

√
2

ρ
|psup − pout| (4.16)

Qout = sgn(pout)CdAout(xv)

√
2

ρ
|pout| (4.17)

Qfb = sgn(pout − pfb)Cdπr
2
fbo(xv)

√
2

ρ
|pout − pfb| (4.18)

ṗfb =
β

Vfb
(Qfb + Avbẋv) (4.19)

The hydraulic fluid that is output of the pressure control spool valve is fed to the

piston chamber through an orifice with pressure ps such that the piston is pushed

forward. The free travel h needs to be cleared before the clutch force can be estab-

lished. In the absence of sufficient pressure the return spring pushes the piston back.

Let xp be the displacement of the piston, Ap the area of the piston, pp the hydraulic

pressure in the piston chamber, Mp the mass of the piston, Ds and ks the damping

coefficient and spring constant of the clutch return spring, xo the spring pre-load, Aor

the area of the orifice, and Vo the chamber volume when x = 0, then the governing

equations can be written as
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Mpẍp = Appp −Dsẋ− ks(x+ xo) where 0 < x < hp (4.20)

ṗp =
β

Vo + xAp

(
sgn(ps − pp)CdAor

√
2

ρ
|ps − pp| − ẋAp

)
(4.21)

These transmission hydraulic components are modeled for both the clutches and the

pressures are controlled to obtain smooth shifts. In the absence of closed-loop control,

the release timing of the off-going clutch is based on the estimation of the oncom-

ing clutch fill. The fill time of the oncoming clutch varies due to many factors, and

therefore the release timing of the offgoing clutch can be early or late, causing flare

or tie-up, respectively. Thus, the use of feedback control is desirable for controlling

clutch pressures during a shift. However, clutch pressure sensors are usually not

present in production vehicles. In the absence of this information, pressure control is

a challenging task, especially during the torque phase when the engine speed remains

essentially constant. Proposed methods in the literature include model based estima-

tion of pressures [135], estimation of output shaft accelerations [173], estimation of

output shaft torque [188], controlling slip-speeds [115, 189], and mechanical control

using washout [172]. Due to the simplicity of implementation, the washout signal

based pressure control is implemented in this work. The on-coming clutch pressure is

used as a reducing signal (‘washout’ signal) to control the valve pressurizing the off-

going clutch. The complete vehicle and transmission model, along with the hydraulics

model is simulated for vehicle tip-in and braking operations, while the numerical inte-

gration is carried out with a variable time-step solver. The clutch modulation signal,

η, is defined as the ratio of clutch pressure to the maximum clutch pressure, and is

recorded for different gear-shifts. A sample clutch modulation profile for the off-going

clutch is shown in Figure 4.13.
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Figure 4.13: Off-going clutch modulation profile

4.4.2 Simulation Results

The proposed transmission model is integrated with the other vehicle system mod-

els presented in Appendix C and the Volterra series based transient soot model pre-

sented in Chapter 2. The numerical stiffness problems associated with simulating

transmission hydraulics is avoided by getting pressure signals from offline simulation

and using them as feedforward signals, while those associated with simulating slip-

stick friction are dealt by a careful selection of solver step-size with spring stiffness

and damping coefficient of the clutches. Transition from slip to stick state was imple-

mented to take place when the slip speed dropped below 5 rad/sec. The model was

able to run in RT with an integration time-step of 0.5ms. Simulation results for a

tip-in operation (throttle command going from 0− 100% in 5sec) are presented here.

Results are compared with the blending function based model presented in Appendix

C. Figure 4.14 shows the upshifts taking place during this operation; different shift

dynamics in the two models caused a change in transmission output speed leading to

slightly different shift points. The change in engine speed due to different transmis-

sion gear-shift models is shown in Figure 4.15, and the resulting change in transient

soot is shown in Figure 4.16. Since the blending function is a static map, some ar-
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Figure 4.14: Comparison of gear numbers

tificial oscillations are seen in the engine speed. The differences in the engine speed

profiles result in different transient soot profiles, with some values being over 30%

different. The output torque profiles are shown in Figure 4.17. The same blending

function is unable to produce smooth shifts for all conditions, whereas the proposed

physics based transmission model results in much smoother shifts.

4.5 Summary

Transient soot emissions produced during EIL experiments are a strong function of

transient loading on the engine and the transmission model plays a key role in dictat-

ing transients during gear-shift events. The simulation of a powershift transmission

involves modeling slip-stick friction that results in numerical stiffness affecting the

model’s RT properties. In this work a framework was presented to model a generic

powershift transmission with Margolis friction model for RT simulation using fixed

time-step integration solvers. Popular commercial power transmission designs were

analyzed and it was shown that a large majority of them involve an oncoming friction
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Figure 4.15: Comparison of engine speeds

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

10
x 10

−3

Time(sec)

S
oo

t (
g/

s)

Variation of Transient Soot with Transmission Model

 

 

Physics based
Blending function

Figure 4.16: Comparison of transient soot
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Figure 4.17: Comparison of output shaft torques

interface and an offgoing friction interface during a gear-shift event that produces

the characteristic shifting dynamics for such transmissions. Hence, a dual-clutch

model was proposed that emulated this clutch-to-clutch shift inherent in powershift

transmissions by alternately acting as on-coming and off-going clutches. The different

clutch capacities and friction properties were implemented using gain scheduling. The

effective inertia and compliance of the transmission gears and shafts were reflected

using a lumped parameter model. It was shown that this formulation does not require

any other information about the system and hence can be used as a subfunction in any

vehicle system model with a powershift transmission. The Volterra series model was

then used to capture the effect of gear-shifts from this transmission model on tran-

sient soot, and results were compared to the soot obtained using blending function

based transmission models. It was seen that a better representation of shift dynamics

can be obtained using the proposed method than static blending functions and that

these dynamics can have a substantial effect on transient soot from the engine.
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CHAPTER V

Conclusions

This dissertation presented a modeling and simulation framework for diesel engine

vehicles to enable soot emissions as a constraint in powertrain design and control. To

this end, this work made the following contributions:

1. Enable recording of transient soot data using EIL experiments

• Real time vehicle level models were developed and integrated with test cell

hardware.

• Temporally resolved transient soot data were obtained and correlated with

other control and input signals such as fuel flow rate and throttle pedal

position.

2. Provide computationally efficient low order transient soot models for systems-

level work

• A third order Volterra series with just two inputs, fuel flow rate and throttle

pedal position, was used to model the transient soot emission and signifi-

cant improvements over steady-state maps were presented.

• The number of parameters to be estimated for the Volterra series were

reduced by Principal Component Analysis (PCA) using energy considera-

tions.
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3. Provide a consistent basis for comparison of powertrain design changes by syn-

thesizing driver inputs

• Iterative learning based algorithm was used to drive the vehicle in a manner

that reduces transient soot emissions.

• ILC based algorithm produced substantial improvement in soot with much

less computational load than linear programming based solution.

4. Provide a generalized modeling framework for real-time simulation of powershift

transmissions with fixed time-step integration solver

• Various slip-stick friction models were studied and their numerical proper-

ties were analyzed for RT simulation.

• The Margolis model was selected and implemented in the modeling frame-

work. The effects of gear-shifts from this transmission model on transient

soot were shown, and the results were compared to blending function based

model.

5.1 Future Work

The framework presented in this dissertation provides a methodical procedure

for considering the influence of design changes on transient soot. In this context,

the importance of transmission design and control is highlighted here. Heavy-duty

trucks and freight-liners use automated-manual transmissions (AT) with over 18 gear-

ratios to maintain engine operation around high efficiency range as much as possible.

Frequent changes in vehicle loading, such as those caused by changes in road-grade

on the freeway, can result in frequent gear-shift events. The Volterra series based

soot model, and physics based transmission model developed in this work, enable

transmission sizing and control system design to implement soot sensitive gear-shift
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control. The use of ILC based algorithm to synthesize driver input traces provides a

fair comparison to evaluate these design decisions. Such systematic evaluations can

greatly reduce the calibration time as well as provide a consistent basis for making

sizing decisions on gear-ratios and designing gear-shift logic for such transmission

systems.
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APPENDIX A

A Brief Overview of Diesel Soot Formation Modes

Diesel particulate matter formation exhibits dual mode formation: nucleation

mode and accumulation mode. Particle formation is initiated with the pyrolysis of

the fuel in the absence of oxygen into soot nucleation sites. Once the particles are

formed, they undergo surface growth which adds considerable mass. When two par-

ticles collide, they may form a new particle either through coagulation or agglomera-

tion. Coagulation (surface growth) results when two small, relatively young spherical

particles collide with a large number of active sites. When the collision particles are

old, there are much fewer active sites resulting in an aggregate structure (agglomera-

tion). Surface growth and particle aggregation both contribute to the particle growth

process in the accumulation mode [4, 11]. These various soot formation modes are

shown in Figure A.1.

The sequences of particle size-number distributions obtained during an interval of the

FTP-75 cycle with DMS is shown in Figure A.2. The particle size at the beginning

of the transient is shown in Figure A.2(a). The near-idle operation is characterized

by relatively large numbers of very small particles, while the profiles show greater

particle diameter size at the on set of a transient load. This shift in particle size
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Figure A.1: Modes of soot formation [11]

distribution represents a puff of smoke emanating from the exhaust manifold of a

diesel vehicle. The features of the particulate size distributions change as the engine

stabilizes during high load conditions resulting in the typical dual-mode shape (Figure

A.2(b)). In summary, particle formation due to nucleation is predominant at low-

load steady-state operations resulting in smaller spectral diameter of the particles.

At transient loads, accumulation mode also contributes to the particle formation

of bigger diameters and high load steady-state operation displays the dual model

behavior [23].
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Figure A.2: Particle size distributions during transient operation on FTP-75 [23]
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APPENDIX B

Hardware Specifications for Engine-in-the-loop

Experiments

Engine-in-the-loop (EIL) experiments integrates a real engine with virtual vehicle

level models running on a real-time (RT) platform to enable engine testing under

transient conditions [190]. Driver, transmission, and vehicle models are simulated on

the real-time (RT) platform and used to control an AC dynamometer coupled to a

6.0L V-8 direct-injection diesel engine. These models accurately capture the desired

dynamics while being numerically efficient to run in real-time [24]. The vehicle level

models are forward-looking, hence the driver model issues throttle (α) and brake com-

mands (β) to follow the vehicle velocity on the FTP-75 city cycle. Model causality

is selected such that the torque converter model commands speed to the engine, as

speed is easier to control than the engine torque. The measured engine torque is

fed to the torque-converter model to enable closed-loop drive-cycle simulation. The

transient soot data are recorded using a differential mobility spectrometer (DMS).

The engine used in this investigation is an International 6.0L V-8 direct-injection

diesel engine. The engine is equipped with exhaust gas recirculation (EGR) to in-

troduce cooled exhaust gases into the intake manifold. EGR flow rate is controlled
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Table B.1: Engine Specifications

Engine Type 4-stroke diesel, V-8 configuration, Direct injection

Displacement 6.0L

Aspiration Variable geometry turbocharger

Rated Power 242kW @3300rpm

Rated Torque 760Nm @2000rpm

through the modulation of the EGR valve and the setting of the variable geometry

turbocharger (VGT). The VGT is also used to enhance engine performance as it re-

duces turbocharger lag and allows control of intake manifold pressure. The engine

control is achieved using INCA software and hardware provided by ETAS Inc., and

allows for monitoring and control of all electronically controlled quantities includ-

ing EGR flow rate, VGT setting, and injection characteristics [4]. Complete engine

specifications are presented in Table B.1.

Dynamometer

The engine speed is controlled using an AC dynamometer. The dynamometer

used in this investigation is a 330kW AVL ELIN series 100 asynchronous dynamome-

ter. This dynamometer is especially suited for transient testing as it has a 5ms torque

response time and a −100% to +100% torque reversal time of 10 ms. The complete

specifications of the dynamometer are presented in Table B.2.

Control of the dynamometer, engine, measurement, and auxiliary devices is facilitated

through PUMA open software by AVL. Part of this software is the EMCON 400

controller used for engine and dynamometer control using tunable PID controllers.

Control over the engine is exercised through pedal position; a throttle controller

inputs 0 − 5V signal in the engine wiring harness that corresponds to 0 − 100% of

pedal position.
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Table B.2: Dynamometer Specifications

Speed Range ±8000 rpm

Torque Range −1273 Nm to +1400 Nm

Power(absorbing) 330kW

Power(motoring) 330kW

Rotational Inertia 2.91kgm2

Torque Response 5 ms

Torque Reversal 10 ms(−100% to +100%)

Engine and Dynamometer Instrumentation

Engine speed is measure using a HEIDENHAIN ROD 426 type optical rotary

encoder. It has a scanning frequency of 300kHz and a system accuracy of 1/20th

of the grating period. An HBM Z6 bending beam (load cell) is used for the torque

measurement at the dynamometer. Intake manifold is instrumented with a pressure

transducer to measure intake manifold pressure. The sensor is placed close to the

cylinder to give an accurate reading of the conditions in the intake manifold. The

sensor used is a piezoelectric pressure transducer (Kistler 4618A0) with a functional

range of 0−2 bar and a nonlinearity and hysteresis of < ±0.3% of full scale operation.

It is connected to a charge amplifier that produces 0−10 Volt DC signal proportional

to the measured pressure.

A coriolis flow meter is used to measure the fuel mass flow rate. The sensor capacity

is 377.8 g/s with an error resolution of ±0.5% of flow rate. It outputs a 4 − 20 mA

that is linear to the mass flow rate.
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Differential Mobility Spectrometer

Temporally resolved particulate concentrations are recorded by a differential mo-

bility spectrometer (DMS) 500 by Cambustion. This instrument measures the number

of particles and their spectral weighting in the 5nm to 1000nm size range with a time

response of 200ms [19], and the data are provided at 10Hz. The instrument provided

aerosol size spectral data by using corona discharge to place a prescribed charge on

each particle. The charged particles are then introduced into a strong electrical field

inside a classifier column. This field deflects the particles away from the electrode

through a sheath flow toward the electrometer detectors. Particles with lower aero-

dynamic drag-to-charge ratio are deflected more quickly and are attracted towards

the electrode rings closer to the beginning of the classifier column, and vice versa.

As the particles land on the grounded rings, and give up their charge, the outputs

from the electrometers are processed in real time to provide spectral data and other

desired parameters [4, 23].

These aerosol size spectral data are then converted into particulate mass. Agglomer-

ates formed during diesel combustion are non-spherical and therefore their mass does

not correlate with the cube of the particle diameter. Similarly, the constituents of the

particles change as the diameter varies and consequently there is a non-linear relation-

ship between particle density and diameter. To convert particle spectral density to

mass, a relationship has been suggested by the manufacturer [23]. The spectral diam-

eter (Dp) in nanometers is divided into bins, density of the particles within each bin

is assumed to be constant and then the mass of the particles in each bin is determined

by

Particle Mass = 6.95× 10−3 ·D2.34
p · Number of particles (B.1)
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APPENDIX C

Real-Time Models for Engine-in-the-loop

Experiments

The accuracy of HIL simulations is dependent on the quality of real-time models.

Estimating and improving the model quality is thus a key enabler in a successful HIL

simulation [191]. While many limitations exist on the hardware, such as the fidelity

of sensors and actuators, network/control bandwidth, and signal conditioning and

processing, model fidelity is often the limiting factor during HIL experiments [190].

This appendix provides the details of drivetrain and vehicle dynamics models used

for EIL experiments. These models are executed on a dSPACE real time board, and

require a fixed integration time step. As these models subject the engine to transient

loads, it is important that they accurately represent vehicle transient loads along

with the capability to run in RT. The driver model is responsible for the closed-loop

following of the vehicle on the prescribed drive cycle and is discussed in the next

section.
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Figure C.1: Bond Graph Model of the Drivetrain

Drivetrain Model

Models of the drivetrain include torque converter, automatic transmission, and

open differential. The bond graph model of the complete drivetrain is shown in

Figure C.1. The measure engine load torque (Tl) is an input to the drivetrain model

and is represented as a modulated effort source in the bond graph. This torque is

then used to accelerate the torque converter impeller inertia, Jimp, and calculate the

impeller (or engine speed), which is commanded to the engine by the dynamometer.

The inputs to the torque converter model are the impeller (ωi) and turbine speed (ωt),

and the outputs are impeller (Ti) and turbine torques (Tt) calculated from steady-state

characteristic curves. The characteristic curves represent the relationship between the

torque ratio (TR), speed ratio (SR), and input capacity factor (K) defined as

SR =
ωt

ωi
(C.1)

TR =
Tt

Ti
(C.2)

K =
ωi√
Ti

(C.3)

The K-factor and torque ratio curves [2, 24] used in this work are shown in Figure C.2.
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Figure C.2: Torque Converter Characteristic Curves

In the bond graph model, this relationship is represented in the form of a resistive

gyrator (RGY), as the flow motion in a physics-based torque converter model exhibits

gyrator action [192]. Kozaki et al. [129] show that torque converter dynamics typi-

cally become pronounced at frequencies of approximately 30 − 50 Hz. In this work,

the EIL setup is required to have a bandwidth of 15− 25 Hz, therefore, modeling the

torque converter as a static set of characteristic curves is acceptable for this work.

The output torque of the torque converter is an input to the transmission model.

Part of the torque imparted by the torque converter on the transmission is lost as

a result of oil churning. This churning loss depends on the speeds of the different

transmission gears, and therefore depends on the transmissions instantaneous gear

ratio. Thus churning losses are modeled as a modulated resistor incorporating the

relationship

Tchur = b gchur,1 ωt + b gchur,2 ω
2
t (C.4)
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The remaining torque excites the dynamics of the transmission and drive shaft, which

can be captured using a lumped parameter mass-spring-damper model. The kine-

matic relationship of the gear-box are incorporated in the form of a resistive modu-

lated transformer element, RMTF, with the transformer coefficient modulated by the

instantaneous effective gear ratio. Based on the driver throttle position (α) and the

transmission output shaft speed (ωd), a shift map is incorporated to decide the gear

of operation. The shift map is developed to keep the engine in the desired operating

range while meeting the grade and top speed requirements for the vehicle. The up-

shift and downshift speeds are differed to prevent gear hunting. The shift map used

in this work is shown in Figure C.3.

The transients introduced during the process of gear-shift are captured using the ef-

fective gear ratio. This gear ratio is constant when a particular gear is fully engaged,

but it varies with time during gear shifting. This variation is represented by blend-

ing function [24, 132] as shown in Figure C.4 for a well controlled up-shift event. A

smooth shift controls the pressure profiles in the clutches to reduces flare or tie-up
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Table C.1: Blending Function Parameters

Parameter Value

Ts 0.8 sec

Ts1 0.2 sec

Ts2 0.4 sec

Ys1 0

Ys2 0.3

in the transmission and hence controls the variation of torque ratio. This blending

function is implemented in the RMTF element along with the shift map to capture

the variation in torque and speed during the gear-shift. The numerical parameters of

the blending function are listed in Table C.1.

The open differential is modeled as a resistive transformer to incorporate the kine-

matic relationships for the final gear reduction with some losses. The complete list

of parameters for the drivetrain model is presented in Table C.2.
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Table C.2: Drivetrain Model Parameters

Parameter Description Value

Jimp Impeller inertia 0.18 kgm2

Jtran Transmission inertia 0.2 kgm2

Jtur Turbine inertia 0.12 kgm2

ktran Transmission shaft stiffness 6250 N/m

btran Transmission shaft damping coefficient 0.000079709 Ns/m

b1chur,1 First coefficient of churning loss for gear 1 0.0192 Ns/m

b2chur,1 First coefficient of churning loss for gear 2 0.015 Ns/m

b3chur,1 First coefficient of churning loss for gear 3 0.031 Ns/m

b4chur,1 First coefficient of churning loss for gear 4 0.0367 Ns/m

b1chur,2 Second coefficient of churning loss for gear 1 0.00001361 Ns2/m2

b2chur,2 Second coefficient of churning loss for gear 2 0.000005719 Ns2/m2

b3chur,2 Second coefficient of churning loss for gear 3 -0.00003189 Ns2/m2

b4chur,2 Second coefficient of churning loss for gear 4 -0.00004177 Ns2/m2

g1 1st gear ratio 3.42

g2 2nd gear ratio 2.26

g3 3rd gear ratio 1.50

g4 4th gear ratio 1.00

gfd Final drive gear ratio 3.56

ηtran Transmission gear efficiency 0.97

ηfd Differential gear efficiency 0.94
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Figure C.5: Bond Graph Model of Vehicle Dynamics

Vehicle Dynamics Model

The dynamics captured in the vehicle model is the longitudinal motion of a point-

mass vehicle. The bond graph model of vehicle dynamics is shown in Figure C.5. The

brake pedal position command (β) is converted into brake torque using Karnopp’s

model of stick-slip friction [123, 160]. Rolling resistance is also modeled as an empiri-

cal function of wheel speed. The braking moment, bearing loss and rolling resistance

losses are subtracted from the wheel hub torque and net torque is used to accelerate

the wheel [193]. Let ωw be the wheel’s rotational velocity, Tw, the output torque of

the drivetrain, Jw, the wheel’s rotational inertia, Mb, the braking moment, Fx, the

friction force from the tire in the longitudinal direction, R, the effective rolling radius

of the tire, Mr, the moment due to rolling resistance, and bw, the coefficient of bearing

damping, then the wheel dynamics are modeled as

Jw
dωw

dt
= Tw −Mb − FxR−Mr − bwωw (C.5)

The resulting wheel hub velocity is multiplied by the effective wheel radius in a

transformer (TF) to obtain the wheel’s longitudinal velocity, Rωw. This velocity

along with the vehicle’s longitudinal velocity, v, is used to calculate the longitudi-
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nal tractive/braking effort. The longitudinal tractive/braking effort is modeled as a

modulated effort source and depends on the slip ratio, i ∈ [−1, 1], defined as

i = 1− |v|
|Rωw|

, i > 0, Rωw 6= 0 (C.6)

i = 1− |Rωw|
|v| , i < 0, v 6= 0 (C.7)

(C.8)

The negative values of slip are used to represent skid. Numerical measures are taken

to calculate i for low velocities. Once slip is calculated, tractive/braking effort is

calculated as

Fx =
iµmvg

ic
∀i < ic (C.9)

Fx = sgn(i)µmvg ∀i ≥ ic (C.10)

where ic represents a critical slip. Note that v = Rωw represents the condition for pure

rolling (i = 0), and in that case no braking or tracking effort can be produced. Road

load such as aerodynamic drag is subtracted from the longitudinal friction force to get

the net tractive effort. It is then divided by vehicle mass and numerically integrated

to obtain the vehicle velocity.

mv
dv

dt
= Fx −

1

2
ρcdA · sgn(v) · v2 −mg sin(θi) (C.11)

The numerical parameters for the vehicle dynamics model are presented in Tab. C.3.

A dynamic RT wheel slip model is also developed as an improvement of this model,

and is presented in Appendix D.
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Table C.3: Vehicle Dynamics Model Parameters

Parameter Description Value

mv Vehicle inertia 5100 kg

Jw Wheel inertia 32 kgm2

R Wheel radius 0.4412 m

bw Wheel bearing damping coefficient 4 Ns/m

µ Coefficient of friction 0.7

ic Critical slip 0.3

A Frontal area 3.58 m3

cd Coefficient of aerodynamic drag 0.7 m−1

ρ Air density 1.00 kg/m3

Driver Model

The vehicle-level models are implemented on the RT platform and the model is

integrated using 4th order Runge-Kutta solver with a fixed time-step of 5ms. To

enable closed loop simulation for following a prescribed drive cycle, the driver is

modeled as a reference-tracking PI controller. The driver model produces the input

trace, u ∈ [−1, 1], where positive commands reflect accelerator pedal position (α)

and negative commands reflect the brake pedal position (β). An anti-windup loop

is implemented to prevent the windup of driver input due to saturation. The block

diagram of the driver model is shown in Figure C.6.

To compensate for the communication lag in the system, a lead filter, F (s) =

(4.8s+ 12)

(s+ 12)
, was implemented with the PI controller. The lead filter was designed

using loop shaping by operating the engine at steady-state, and then superimposing

sinusoidal engine speed and pedal position profiles onto the steady-state [23]. Pre-

views of 1, 2 and 3 seconds was also enabled as a feedforward controller with preview

gains for better following of the drive cycle. This driver model structure, along with
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the chosen causality of vehicle component models resulting in speed control of the dy-

namometer, and low inertia of the dynamometer motor resulted in the desired closed

loop system bandwidth of 15− 25Hz. Overruns were limited to < 1% of integration

time steps, and were mostly concentrated during model initialization.
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APPENDIX D

Dynamic Wheel Slip Model for RT Simulation

This appendix presents a dynamic wheel slip model that can be used for RT sim-

ulation using fixed integration time step solvers. Since most hysteresis-based friction

models found in the literature [194, 195] are not very conducive to RT-simulation, a

simpler tire friction model is used to demonstrate this dynamic slip model in which

the tire is modeled as an elastic band in the longitudinal direction [196]. The friction

force of the tire, contributing to traction during acceleration, and braking force during

deceleration, is dependent upon both the vehicle’s longitudinal velocity, v, and tire’s

rotational velocity, ω. This effect is captured in the quantity, i, the slip coefficient.

During acceleration, when |v| < R|ω|, i can be calculated as

di

dt
+

R|ω|
lr

i =
R|ω| − |v|

lr
(D.1)

where lr is the longitudinal relaxation length of the tire. This model captures the

first-order longitudinal dynamics of the tire. Let Tw be the output torque of the

half-shaft, Jw be the wheel’s rotational inertia, Mb be the braking moment, Fx be

the friction force from the tire in the longitudinal direction, R be the effective rolling

radius of the tire, and Mr be the moment due to rolling resistance, then the wheel
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dynamics are modeled as

Jw
dω

dt
= Tw −Mb − FxR−Mr (D.2)

It can be shown [197, 198] that the eigenvalues contributed by Equations (D.2) &

(D.1), λs1,s2, are given by

λs1,s2 =

−|v|
lr

±

√(
v

lr

)2

+
∂Fx

∂i

4R2sgn(v)

lr

2
(D.3)

Hence, as the longitudinal velocity of the vehicle increases, the model becomes numer-

ically stiff, and requires a smaller integration time-step (Section 4.3.1). This model

cannot be used at all times, since for real-time simulation a fixed integration time-step

is required. This problem is tackled by using the kinematic relationships for slip once

a threshold velocity, Vmin, is achieved. The complete slip model is shown in Figure

D.1 in the form of a hybrid automaton. Please note that slip-coefficient i ∈ [−1, 1],

where negative values of i correspond to skid. When i = 0, then condition for pure

rolling is satisfied, and |v| = R|ω|; no braking or traction force can be produced by

the tire in this case.

The traction/braking force is calculated assuming pure adhesion for low slips (i < ic).

After a critical slip, ic is exceeded, the friction force is produced by both adhesion

and sliding [196]. Let the longitudinal stiffness of the tire be Ci, the peak coefficient

of friction be µp, and the coefficient of friction between the road and the tire be µ,

then

Fx = iCi · sgn(v −Rω) ∀i < ic (D.4)

Fx = µ(µp, i)xmg(1− µ(µp, i)xmg

4iCi

)sgn(v −Rω)∀i ≥ ic (D.5)
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Pure Rolling
di

dt
= 0

Slip (Dynamic)
di

dt
+

|Rω|
lr

i =
|Rω| − |v|

lr

Skid (Dynamic)
di

dt
+

|v|
lr
i =

|v| − |Rω|
lr

Slip (Steady State)

i = 1− |v|
|Rω|

Skid (Steady State)

i = 1− |Rω|
|v|

!(|v| = |Rω|); Stick; i := 0

!((|v| ≥ Vmin) ∧ (|v| < |Rω|)); SS;−

!((|v| < Vmin) ∧ (|v| < |Rω|));Dyn;−

!((|v| ≥ Vmin) ∧ (|v| > |Rω|)); SS;−

!((|v| < Vmin) ∧ (|v| > |Rω|));Dyn;−

!((|v| < Vmin) ∧ (|v| < |Rω|));
StartSlip; i := 0

!(|v| = |Rω|); Stick; i := 0

!((|v| ≥ Vmin) ∧ (|v| < |Rω|));
StartSlip; i := 0

!(|v| = |Rω|); Stick; i := 0

!((|v| < Vmin) ∧ (|v| > |Rω|));
StartSkid; i := 0

!(|v| = |Rω|); Stick; i := 0

!((|v| ≥ Vmin) ∧ (|v| > |Rω|));
StartSkid; i := 0!(|v| = |Rω|); Stick; i := 0

Figure D.1: Hybrid automaton representation of the slip model

This performance of this slip model is tested in simulation. One such testing scenario

is presented in Figure D.2. The vehicle is given a full throttle step-input on a surface

with high coefficient of friction. The slip increases instantaneously, but stabilizes to

low values when higher vehicle velocities are reached. After 15 seconds of acceleration,

the vehicle is suddenly braked. This results in wheel lockup, as represented by −100%

slip before the vehicle comes to a complete rest.
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APPENDIX E

Data Processing

The data used in this dissertation were obtained by the Engine-in-the-loop exper-

iments conducted by Hagena [4]. The engine speed was recorded using the optical

encoder and saved using PUMA, and the fuel flow rate was measured using a coriolis

flow meter (see Appendix B). These data was exported at 10Hz and used without any

processing. The particulates were recorded using Differential Mobility Spectrometer

(DMS). Raw data from DMS contained the number of particles and their spectral

weighting. A sample particulate spectral density curve is shown in Figure E.1. After

the experiment, the total particle mass was calculated by discretizing the x-axis of

the curve into particle diameter bins and then using the relationship

Particle Mass = 6.95× 10−3 ·D2.34
p · Number of particles (E.1)

Here, Dp is the spectral diameter in nanometers. After the particle mass was calcu-

lated for each bin, the total mass was found by summing the masses in each bin and

dividing by the number of bins per decade as an approximation for integration over

a logarithmic scale.

138



Figure E.1: Sample particulate spectral density curve [23]
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Table E.1: Description of the datasets

Number Description

1 Conventional vehicle
2 Conventional vehicle
3 Conventional vehicle with downsized engine
4 SDP parallel electric hybrid
5 SDP parallel electric hybrid with rate limit
6 SDP parallel electric hybrid with rate limit and compensation
7 SDP parallel electric hybrid
8 SDP parallel electric hybrid with rate limit and compensation
9 SDP parallel electric hybrid
10 SDP parallel electric hybrid with rate limit and compensation
11 SDP parallel electric hybrid
12 Smoothed SDP parallel electric hybrid
13 Series hydraulic hybrid
14 Series hydraulic hybrid
15 Series hydraulic hybrid
16 Low-idle series hydraulic hybrid
17 Optimized series hydraulic hybrid

Total Mass =

∑

Bins

Mass

Bins/Decade
[kg/m3] (E.2)

Time-resolved soot emissions were then obtained by multiplying this mass per unit

volume with the volume flow rate. Separate computers were used to initialize DMS

and PUMA recordings, and the differences in clock pulse synchronization were ac-

counted by aligning the soot trace with the change in engine throttle command. After

this processing, the datasets were saved at 10 Hz provided for this work. Interested

readers are referred to [4] for further details.

There were 17 different datasets provided for this work. The description of the

datasets is given in Table E.1. The inputs and output time traces for these datasets

are shown in Figures E.2-E.18.
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Figure E.2: Inputs and output for dataset 1
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Figure E.3: Inputs and output for dataset 2
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Figure E.4: Inputs and output for dataset 3
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Figure E.5: Inputs and output for dataset 4
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Figure E.6: Inputs and output for dataset 5
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Figure E.7: Inputs and output for dataset 6
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Figure E.8: Inputs and output for dataset 7
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Figure E.9: Inputs and output for dataset 8
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Figure E.10: Inputs and output for dataset 9

0 200 400 600 800 1000 1200 1400
0

0.5

1

1.5

F
ue

l F
lo

w
 R

at
e(

g/
s) Inputs and Output for Datasets 10

0 200 400 600 800 1000 1200 1400

1000

2000

3000

E
ng

in
e 

S
pe

ed
(r

pm
)

0 200 400 600 800 1000 1200 1400
0

0.5

1
x 10

−3

Time(sec)

S
oo

t(
g/

s)

Figure E.11: Inputs and output for dataset 10
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Figure E.12: Inputs and output for dataset 11
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Figure E.13: Inputs and output for dataset 12
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Figure E.14: Inputs and output for dataset 13
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Figure E.15: Inputs and output for dataset 14
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Figure E.16: Inputs and output for dataset 15
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Figure E.17: Inputs and output for dataset 16
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Figure E.18: Inputs and output for dataset 17
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