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ABSTRACT

Pseudo-scalar meson production in semi-inclusive deep inelastic scattering (SIDIS)

at HERMES has provided essential information towards the understanding of the

transverse momentum dependent structure of the proton. SIDIS dihadron (hadron

pair) production also provides access to the structure of the proton and is complimen-

tary to that provided by pseudo-scalars production, as the same parton distribution

functions are involved. For example, while pion and kaon �nal states allow access

to �avor combinations of the Sivers distribution function, SIDIS φ meson production

(included in the K+K− dihadron sample) allows direct access to the Sivers function

for the strange quarks. The Sivers function for strange quarks is also related to the

orbital angular momentum of the gluons. In the SIDIS cross section, the distribution

functions are integrated with fragmentation functions for the respective �nal states.

These fragmentation functions yield information regarding the quark hadronization

process. Of particular interest, the Lund/Artru model of fragmentation makes spe-

ci�c predictions regarding the relation between results for dihadron and pseudo-scalar

meson production for certain transverse momentum dependent moments. This dis-

sertation presents the �rst transverse momentum dependent (non-collinear) analysis

of the transverse target moments in SIDIS dihadron production, extracting results

from the 2002-2005 Hermes data set for π+π0, π+π−, π−π0 and K+K− dihadrons. A

new transverse momentum dependent Monte Carlo generator, TMDGen, is also intro-

duced. Additionally, several theoretical developments have been completed, including

a new partial wave analysis of the fragmentation functions, computation of the next-

xix



to-leading twist dihadron cross section, and the �rst model calculation for transverse

momentum dependent dihadron fragmentation functions.
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CHAPTER I

Introduction

In the development and understanding of physical processes, one often considers

a particular physical circumstance or setting. One of the most remarkable pairings

of physical settings and physics concepts is the hydrogen atom and its relation to

Quantum Mechanics and Quantum Electrodynamics (QED). Both historically and

pedagogically, the hydrogen atom can be considered the key laboratory in the de-

velopment and understanding of Quantum Mechanics, and hints towards the QED

theory. In a very similar manner, the proton is the key laboratory in understand-

ing certain aspects of Quantum Chromodynamics (QCD)�the theory of quarks and

gluons and their interactions�and of the parton model�the description of hadrons

as bound states of quarks and gluons, denoted partons. Trying to understand the

internal structure of the proton in terms of its partonic constituents, including spin

and angular orbital momentum degrees of freedom, has pushed our understanding of

QCD and the constituent quark model, and may also hint towards physics beyond

the standard model.

Experiments regarding the proton's internal structure, as well as experiments

regarding the internal structure of the neutrons, deuterons, and other nucleons, raise

important questions concerning the present interpretation of QCD. Such questions

include how the spin and orbital angular momentum of each parton contribute to the
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total spin of the nucleon. Initially it was thought that the proton primarily constituted

of three quarks, denoted valence quarks, each carrying one third of the total spin.

Experimental evidence [1] later suggested that the valence quarks carry only a small

fraction of the total spin, resulting in the situation known as the �Spin Crisis� and

leading to the commissioning of several new experiments, including Hermes. The

quarks were eventually determined to carry about 1/3 of the proton's spin [2, 3, 4].

A current review of the Spin Crisis can be found in Refs. [5, 6].

The Hermes experiment included a polarized gas target and utilized the elec-

tron/positron beam of the Hera accelerator. Many Hermes results related to the

Spin Crisis involve semi-inclusive deep inelastic scattering, which can be understood

as the process of scattering an electron or positron from a nucleus in the target gas,

producing additional particles (thus inelastic), and detecting the scattered electron

and some, but not all, of the produced particles (thus semi-inclusive). The virtual

photon mediating the scattering must have high energy, allowing the individual par-

tons to be probed (hence the deep quanti�er) as opposed to interacting with the

nucleus as a whole.

Proton structure experiments also address another open question in QCD: the na-

ture of con�nement. Con�nement is the statement that quarks are never observed as

free particles, but rather occur in bound states with other partons. Although con�ne-

ment is experimentally con�rmed, it is not currently known how to derive con�nement

from the theory of QCD, and it must be independently postulated. Any quark which

might be observed as a free particle immediately undergoes a process resulting in the

quark being in a bound state. Two analogous titles are given this process: hadroniza-

tion, as bound states of quarks are denoted hadrons, and fragmentation, as the quark

is said to �fragment� into the observed hadrons.

The hadronization process, though not speci�cally a feature of proton structure,

is yet related to proton structure. Hadronization concerns how hadrons are initially
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formed, and thus addresses how the structure of a given hadron, such a proton,

is created. More practically, proton structure experiments involve interacting with

the partons, often removing quarks from the proton. Thus the measured results

are the integration of features of both the proton's structure, i.e. the state of the

quark before being struck, and the hadronization process, i.e. how the state of the

measured particles relate to the state of the quark after being struck. Details related

to proton structure are described by partonic distribution functions, which depend

on the type of parton, and details regarding the hadronization process are described

by fragmentation functions, which depend on both the type of parton struck and the

actual observed particles.

In the earlier days of the parton model, it was assumed that one can neglect

motion of the partons in any direction not parallel with the direction of the center

of mass of the bound state. E�ects dependent on momentum transverse to, rather

than collinear with, the center of mass were considered to either �average out� or be

prevented by symmetry considerations [7]. Neglecting the transverse motion of the

quarks is denoted the �collinear assumption,� as one considers only partonic motion

collinear with the center of mass. Conversely, theories and functions which depend

on the transverse momentum of the partons are denoted �transverse momentum de-

pendent� (TMD).

Several results related the those leading to the Spin Crisis [1] could not be ex-

plained with collinear models. Two theories were put forth which depended on the

transverse momentum of the partons. One theory, that of D. Sivers, placed the TMD

e�ect within the structure of the nucleon [8], while the other theory, that of J. Collins,

placed the TMD e�ect within the hadronization process [9]. The e�ects from each

theory are thus called, respectively, the Sivers and Collins e�ects and are speci�cally

encapsulated in the Sivers distribution function and the Collins fragmentation func-

tion. Theoretically, it was found that additional Wilson lines, related to additional
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initial and �nal state interactions [10] allow the presence of TMD e�ects. Early re-

sults from Hermes [11] demonstrated both processes are realized in nature, and the

sub-�eld of TMD e�ects in nucleon structure and hadronization was established.

Additional TMD e�ects were developed, such as the Boer-Mulders e�ect [12], and

reconsidered, such as the Cahn e�ect [13, 14]. An increasing number of theoreti-

cal papers developed the relation between the TMD distribution and fragmentation

functions and various cross sections, e.g. Refs. [12, 15, 16]. These concepts were also

detailed for SIDIS hadron pairs (denoted dihadrons) and vector mesons [17, 18].

Even with the development of TMD functions, the collinear distribution and frag-

mentation functions remain important, as each collinear function is an integral of a

respective TMD function. Collinear functions are also easier to estimate in global

�ts, as the evolution with respect to energy scale is understood for collinear func-

tions [19, 20, 21, 22, 23], while the evolution equations for TMD functions are not

known. Knowledge of the evolution equations is required to compare results from

experiments at di�erent energy scales.

One of these distribution functions, for which both a collinear and TMD version

exists, is the transversity distribution h1 [15, 24, 25, 26]. This function occurs inte-

grated with the Collins function in the SIDIS production of pseudo-scalar mesons.

Unfortunately, since it is combined with a TMD function, certain di�culties arise

in the comparison of results between di�erent experiments. However, the SIDIS

dihadron cross section contains two terms where h1 occurs with collinear, yet Collins-

like, fragmentation functions. This collinear access to transversity has historically

been the primary motivation for SIDIS dihadron results, both experimentally and

theoretically. For instance, the only published SIDIS dihadron results [27], as well

as the published next-to-leading twist cross section [28], are both restricted to the

collinear case.
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However, much information is lost by not considering the TMD moments of the

cross section. For instance, the number of unpolarized moments at leading twist re-

duces from 15 to three, and the number of transverse target moments, again at leading

twist, reduces from 27 to two. As the Sivers function is a TMD function, none of the

nine transverse target moments having contributions from the Sivers function occur

in the collinear cross section. This is unfortunate, as the Sivers function for s-quarks,

occurring in φmesons and kaon-pair dihadron production, is of interest in understand-

ing the process leading to gluon orbital angular momentum [29]. However, two of the

nine transverse target moments related to Collins-like distribution functions exist in

the collinear cross section. As the Collins function is TMD, one would not expect

any of the moments to be present in the collinear case. This suggests that perhaps

the two Collins-like functions occurring in the collinear moments are fundamentally

di�erent than the other seven Collins-like functions, though no strong statement can

be made based on the published theory. The relation between the various Collins-like

functions, and the possible distinction of two of the functions from the other seven,

is clari�ed in Chapter II.

One other strong motivation for considering TMD dihadron production is to test

the Lund/Artru string model of fragmentation [30], which predicts a sign change in

the Collins function between pseudo-scalar meson production certain partial waves of

vector meson production. In order to understand this prediction, it is necessary to

fully quantify the relation between the Collins function in pseudo-scalar production

and the nine Collins-like functions that occur in dihadron production. The previously

developed theory is incomplete in de�ning this relation, and thus one of the important

developments contained in this dissertation is the full quanti�cation of the connection

between Collins and Collins-like functions. Note, though, the Lund/Artru model can

only be tested in the TMD case, not in the collinear case.
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This dissertation presents the �rst TMD analysis of the transverse target moments

in SIDIS dihadron production. Data was collected by the Hermes spectrometer

during the years of 2002 to 2005. This document is organized as follows. Chapter II

provides three essential ingredients. First, it includes the theoretical background,

including de�nitions and conventions used in the remainder of this work. Second,

Chapter II also presents a new partial wave analysis of the dihadron fragmentation

functions, providing the explicit information needed to test the Lund/Artru model. A

side result of the partial wave analysis is the computation of the next-to-leading twist

cross section. Third, Chapter II contains the �rst model calculation of TMD dihadron

fragmentation functions. The next chapter, Chapter III, outlines needed numerical

methods. In particular, Chapter III includes a description of the acceptance correction

method utilized in this analysis and also details a new TMD Monte Carlo generator,

TMDGen. Prior to this work, no TMD Monte Carlo generator was available for SIDIS

dihadron production, and only limited TMD generators were available for pseudo-

scalar production. Chapters IV and V detail the actual analysis of the dihadron data

and the accompanying systematic studies. Finally, Chapter VI discusses the results

and conclusions of this work.
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CHAPTER II

Theory

This chapter includes four major sections. First, necessary de�nitions and conven-

tions are presented. Second, items relevant to the cross section and its interpretation

are given, the key items being an alternate partial wave expansion of the dihadron

fragmentation functions (developed by the author) and the calculation of the next-

to-leading twist dihadron cross section. The next-to-leading twist cross section has

not been computed prior to this work, and the alternate partial wave expansion not

only facilitates this computation but also aids in the interpretation of the moments.

Next, the Lund/Artru fragmentation model is discussed. Testing a key prediction of

the Lund/Artru model is one of the main motivations of the research contained in

this dissertation. The �nal section of this chapter focuses on a new TMD spectator

model calculation for dihadron fragmentation functions, a needed component for the

Monte Carlo generator described in Section 3.2.

2.1 De�nitions and Conventions

2.1.1 General De�nitions

Semi-inclusive deep inelastic scattering (SIDIS) is the scattering of a lepton from

a nucleon, such that the produced virtual photon has large invariant mass, the lepton

and some additional speci�ed particles are measured in the �nal state, and more
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Figure 2.1: Diagrammatic depiction of SIDIS production of a single hadron. The
incoming and scattered leptons are denoted l and l′, the target is denoted
P and the outgoing hadron h. The additional unmeasured particles are
denoted X. The non-perturbation QCD portion of the interaction is
shown as an open circle.

than two additional �nal state particles remain unmeasured. SIDIS production of

single hadrons with an electron or positron beam using a proton target is generally

written as

e+ p→ e′ + h+X, (2.1)

where e, e′ are the initial and scattered leptons, p is the proton, h is the measured

hadron, and X represents the unmeasured particles in the �nal state. See also Figure

2.1. SIDIS dihadron production is de�ned as

e+ p→ e′ + h1 + h2 +X, (2.2)

where now there are two measured hadrons in the �nal state, h1 and h2. Note,

SIDIS dihadron production involves multiple processes, including SIDIS vector meson

production. For a more detailed treatment of possible processes included in π+π−

dihadron production, see Section III of Reference [31].

According to the factorization theorem for SIDIS production [32], the process

can be separated into three portions: a soft, non-perturbative part dealing with the

distribution of quarks in the nucleon, the hard (perturbative) scattering of the virtual
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photon and the struck quark, and an additional soft, non-perturbative part dealing

with the fragmentation of the struck quark into the measured particles, i.e. the

hadronization process. This factorization theorem is independent of the speci�ed

�nal state particles, and thus applies to both hadron and dihadron production.

It will at times be important to distinguish with respect to which variables the

cross section is di�erential. These variables will be denoted independent variables,

as these are the statistically free variables. Additional variables will be denoted

dependent variables and can be written as functions of the independent variables.

In de�ning angular and kinematic variables, it is necessary to adopt a convention

for identifying which particle is h1 and which is h2. Following Ref. [33], let p1 denote

the positively charged hadron in the case of π+π− and K+K−, and let p1 denote the

charged hadron in the case of π±π0.

The twist is rigorously de�ned as the di�erence between the dimension and spin

of an operator in the operator product expansion of correlation functions [34]. In

practice, a good working de�nition of twist is related to writing a Taylor series ex-

pansion of the discussed object (cross section, distribution function, fragmentation

function, etc.) in terms of 1/Q2, with Q2 the negative squared invariant mass of the

virtual photon, de�ned in Equation 2.11. The leading term of the SIDIS cross sec-

tion is twist-2, and thus next-to-leading twist is twist-3. Subtleties lie in the relation

between twist and spin, and that the Taylor series expansion must be done in dimen-

sionless quantities, i.e. ratios of other quantities over Q2, though these subtleties will

not be of concern within this dissertation.
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2.1.2 Dirac Matrices

Gamma matrices will be in the chiral or Weyl representation, speci�cally,

γ0 =




0 I2

I2 0


 γi =




0 −σi

σi 0


 γ5 =




I2 0

0 −I2


 , (2.3)

with I2 the two by two identity matrix and the Pauli σ-matrices being

σ1 =




0 1

1 0


 σ2 =




0 −i

i 0


 σ3 =




1 0

0 −1


 . (2.4)

Note that γi, γ5, for i = 1, 2, 3 have opposite sign in this convention than in others.

The commutator is de�ned as

σµν ≡ i

2
[γµ, γµ]. (2.5)

Projection operators P± are also de�ned as

P+ =
1

2
γ−γ+ = δ0,0 + δ3,3, (2.6)

P− =
1

2
γ+γ− = δ1,1 + δ2,2, (2.7)

with

γ+ =
1√
2
(γ0 + γ3) =

√
2 (δ2,0 + δ1,3) , (2.8)

γ− =
1√
2
(γ0 − γ3) =

√
2 (δ0,2 + δ3,1) . (2.9)
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2.1.3 Reference Frames

It will be useful to de�ne three references frames, along with various coordinate

systems in each frame. If one is only interested in de�ning the kinematic variables

and angles in terms of measured momenta, such enumeration is somewhat pedantic.

However, in Chapter III it will be necessary to invert all the relations, i.e. determine

the measured momenta based on the cross section variables. In this case, such an

enumeration is most useful.

The three di�erent reference frames are de�ned according to the system at rest in

the given frame: (I) the target, (II) the center of mass of the target, virtual photon

system, and (III) the center of mass of the produced hadron system. For each frame,

a number of coordinate systems are also relevant, denoted such that the Roman

numeral indicates to which rest frame the coordinate system belongs. The full listing

is given in Table 2.1.3, along with relations to other coordinate systems in use in the

literature.

In some references, e.g. Ref. [17], a convention is used where any coordinate

system with the z-axis coaxial with the virtual photon is a ⊥-system, while any

system with the z-axis coaxial with the produced hadron system's center-of-mass is a

T -system. In ⊥-systems the photon has no components of its momenta transverse to

the z-direction, while in T -systems the center of mass of the produced hadrons has no

transverse components. Frames Id and IIa are both ⊥ frames, while frames IIb, IIc,

IIIa, and IIIb are all T frames. The T/⊥ convention does not de�ne which object is

at rest in each frame. In fact, in some cases, a speci�c object at rest is implied, while

in other cases, the notation allows for any boost along the z-axis. For the purpose of

this dissertation, a more detailed notation is preferable.
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Identi�er Description
Ia The detector system: ẑ is along the lepton beam line and ŷ is in

the physical up direction.
Ib Similar to the detector system Ia, except that ẑ is along the

momentum of the actual beam lepton, which may di�er from the
ideal beam direction due to magnetic �elds or radiative e�ects.

Ic The prime frame of Ref. [35], Fig. 1, and Ref. [36], Fig. 1: ẑ
is again in the direction of the beam lepton (as Ib), but the x̂-ẑ
plane is now the lepton scattering plane.

Id The unprimed system of Ref. [35], Fig. 1, and Ref. [36], Fig. 1:
system Ib is rotated about ŷ(Ib) so that ẑ(Ic) is in the direction
of the virtual photon. Like frame Ib, the x̂-ẑ plane is the lepton
scattering plane.

IIa As with system Ic, the z-axis is aligned with the virtual pho-
ton direction and the x- and z-axis lie in the lepton scattering
plane. The di�erence in frames Ic and IIa is a boost opposite
the direction of the virtual photon.

IIb The z-axis is now in the direction of the produced meson system,
and the x axis remains in the lepton scattering plane.

IIc As with system IIc, the z-axis is aligned with the direction of
the produced meson system. However, the x axis of this system
is in the hadron production plane. The primed system of Ref.
[35], Fig. 2, is anti-aligned with coordinate system IIc.

IIIa Frame IIb is boosted to the frame III.
IIIb Frame IIc is boosted to the frame III, corresponding to the un-

primed system of Ref. [35], Fig. 2.

Table 2.1: Description of coordinate systems.

2.1.4 Variable De�nitions

2.1.4.1 DIS Variables

Let the virtual photon 4-momentum be denoted qµ, and the three momentum and

its magnitude be denoted q and |q|, respectively. Let the target 4-momentum be

denoted P µ, and the incoming and scattered lepton four-momenta as kµ and k′µ.

The DIS variables are all dependent on the quantities given in Table 2.2. As the

target mass M and beam energy E are assumed �xed, only two of the DIS variables
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Variable De�nition
E lepton beam energy
E ′ scattered lepton energy
θe2 angle between lepton beam and scattered lepton

(polar angle of scattered lepton in frame Ia)
M Target mass

Table 2.2: Input quantities for DIS variables.

can be chosen as independent. The DIS variables can be computed from the quantities

in Table 2.2, the most common variables being

ν =
q · P
M

= E − E ′, (2.10)

Q2 = −q2 ≈ 4EE ′ sin2(θe2/2), (2.11)

W 2 = (P + q)2 = M2 + 2Mν −Q2, (2.12)

x =
Q2

2Mν
, (2.13)

y =
k · P
q · P =

ν

E
, (2.14)

s = (k + P )2 =
Q2

xy
+M2 +m2

l , (2.15)

γ =
2Mx

Q
=

Q

yEB

=
Q

ν
, (2.16)

ε =
1− y − 1

4
γ2y2

1− y + 1
2
y2 + 1

4
γ2y2

, (2.17)

sin θγ = γ

√
1− y − 1

4
γ2y2

1 + γ2
. (2.18)

The approximation in the de�nition of Q2 is based on the assumption of e�ectively

massless leptons. Note the lepton mass ml has been left in the equation for s. The

quantity Q2 is de�ned as the negative square of the mass of the virtual photon,

while W is the mass of the virtual photon, target system. The variables x and y are

interpreted as the fraction of the target momentum carried by the struck quark, and

the fraction of the beam energy transferred to the virtual photon, respectively. The
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variable ν is the virtual photon energy in the lab frame. The value ε is the ratio of

longitudinal and transverse photon �ux, and θγ is the angle between the lepton beam

and the virtual photon. For a complete review of the de�nition of the various DIS

variables, see Section 16 of Ref. [37].

2.1.4.2 SIDIS Variables

The mass, energy, and momentum of the produced hadron system in the lab frame

will be denoted, respectively, Mh, Eh, Ph. The magnitude of the momentum will be

written as Ph := |Ph|. In the case of single hadron production, the momentum is

measured and the particle identi�cation yields the mass, thus specifying the energy.

For dihadron production, the energy and momentum of the system is determined

from the energy and momentum of the two measured hadrons, from which the di-

hadron mass can be determined. Thus for dihadron production, the invariant mass is

considered one of the SIDIS variables, while for single hadron production the hadron

mass is considered �xed.

The kinematic SIDIS variables generally used in the cross section (in addition to

Mh) are z and Ph⊥. They are de�ned, respectively, as the fraction of the virtual photon

energy carried by the hadron system, and as the projections of Ph perpendicular to

the virtual photon direction. In the lab frame, they can be computed as

z =
Eh

ν
, (2.19)

Ph⊥ = Ph sin θγh, (2.20)

where θγh is the angle between the dihadron momenta and the virtual photon mo-

menta, measured in the lab frame.
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Figure 2.2: Diagram depicting the angles φh and φS, from Ref. [38].

2.1.4.3 Angles

Three planes are utilized in de�ning the relevant azimuthal angles. The lepton

scattering plane includes the lepton beam, scattered lepton, and virtual photon. The

hadron production plane includes the virtual photon and the center of mass of the

produced hadron system. The decay plane includes the center of mass of the produced

hadron system as well as the two measured hadrons.

Both SIDIS dihadron and single hadron production utilize the azimuthal angle

φh, the angle between the lepton scattering plane and the hadron production plane,

and φS, the angle between the lepton production plane and the transverse target

polarization direction. Both of these angles are measured perpendicular to the virtual

photon momenta direction, and thus can be measured in either reference frame I or

II. A diagram showing these de�nitions is given in Figure 2.2. Note, a subtlety

exists in regards to de�ning asymmetries about the virtual photon direction or about

the lepton beam direction. For a full treatment, see Ref. [16] and the discussion

in Section 3.2.1. The de�nitions for φh, φS are given in agreement with the Trento
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convention [39], and can be explicitly computed according to

φh = signum
[
(k × Ph) · q

]
arccos

(q × k) · (q × Ph)

|q × k| |q × Ph| , (2.21)

φS = signum
[
(k × S) · q]

arccos
(q × k) · (q × S)

|q × k| |q × S| , (2.22)

with signum[a] = 1 if a > 0, −1 otherwise, and where S is a vector indicating the

target polarization in the lab frame. For Hermes, S is (0,−1, 0).

2.1.4.4 Additional Dihadron Variables

As the mass of the additional particle in the �nal state is assumed to be known,

the additional measured particle increases the number of independent variables by

three. Likewise, all previous SIDIS variables are now de�ned to be with respect to

the two hadron system. Letting pµ
1 , pµ

2 be the 4-vectors of the two measured hadrons,

one can de�ne 4-vectors

P µ
h = pµ

1 + pµ
2 , (2.23)

Rµ =
1

2
(pµ

1 − pµ
2) . (2.24)

The three additional variables are usually chosen to be the invariant mass of the

dihadron system, Mh =
√

(Ph)µ (Ph)
µ, and cosϑ, φR, the cosine of the polar angle as

well as the azimuthal angle of Rµ in reference frame IIIa. Note, Rµ has azimuthal

angle φR in both coordinate system IIb and IIIa, as this angle is una�ected by the

boost in the z-direction. Other choices for independent variables include z1, z2, using

Equation 2.19 for each of the individual hadron energies; ζ = (z1−z2)/(z1+z2), to the

asymmetry between z1, z2; and/or ϕ, the azimuthal angle of Rµ in frame IIIb. Note

that the polar angle ϑ is the same in both frame IIIa and IIIb. The set of variables

(Mh, cosϑ, ϕ), correspond with those chosen in exclusive meson production [35, 36].
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To determine a closed form equation for φR, one needs to compute the x-axis in

coordinate system IIb from the available 3-vectors k, q, Ph, R, corresponding to the

3-momenta of input lepton and the virtual photon and the 3-vector portions of the

4-vectors P µ
h and Rµ. Let n be a vector parallel to the x-axis in coordinate system

IIb. Then n is coplanar with k, q and thus can be written as a linear combination of

these two vectors. Imposing the constraint that n is perpendicular to Ph, and �xing

the sign of n by requiring (Ph × n) · (q × k) > 0, yields the expression

n = (q · Ph) k − (k · Ph) q. (2.25)

Let RT denote the projection of R perpendicular to Ph,

RT = R− R · Ph

|Ph|2 Ph. (2.26)

One can then identify

φR = signum
[
(n×RT ) · Ph

]
arccos

n ·RT

|n||RT | , (2.27)

which can also be equivalently written as

φR = signum
[
(R× Ph) · n

]
arccos

(q × k) · (Ph ×RT )

|q × k| |Ph ×RT | . (2.28)

Note Ph×RT = Ph×R. Although φR has been de�ned with words in many references,

no closed form solution for φR has been presented prior to this work. Note, Equation

2.28 must be computed in reference frame II.

In some references [27], φR⊥ is used instead of φR.1 The di�erence between φR⊥

and φR is Q2 suppressed, and thus ignored in leading twist analyses. The angle φR⊥
1Some references, e.g. Refs. [31, 40], actually use the symbol φR but give it the de�nition of φR⊥.

Such references are generally focused on the high Q2 limit (leading twist), where the angles become
equivalent.
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is de�ned by taking the projection of RT perpendicular to k, and then considering

the azimuthal angle with respect to the lepton scattering plane. In analogy with the

Trento convention for φh, one can then write

φR⊥ = signum
[
(q × k) ·RT

]
arccos

(q × k) · (q ×RT )

|q × k| |q ×RT | , (2.29)

consistent with the de�nition of φR in Ref. [18]. In the high Q2 limit, Ph becomes

parallel with q, and Equation 2.28 and 2.29 become equal, as required.

An additional relationship between the quantities φR and ϕ can be determined by

comparing the rotation matrix that transforms frame IIa to IIb with the matrix that

transforms frame IIa to IIc. The di�erence in the azimuthal angles of these frames

is simply ϕ − φR. Also note that ϕ = φh + φR⊥. Comparing the rotation matrices

yields the result

tan (ϕ− φR) = tan(φh) cos θ
(II)
γh , (2.30)

where cos θ
(II)
γh is the angle between the virtual photon and Ph in rest frame II. This

expression then implies

φR − φR⊥ = φh − tan−1
(
tan(φh) cos θ

(II)
γh

)
. (2.31)

Once again, this equation shows that in the limit of in�nitely high Q2, the di�erence

between φR and φR⊥ approaches zero, as in that limit the quantity cos θ
(II)
γh approaches

unity.

To compute the quantity cos θ
(II)
γh , one can boost P µ

h to frame IIa, where the z

component is P (IIa)
h,z =

∣∣∣P (IIa)
h

∣∣∣ cos θ
(IIa)
γh . If one �rst computes the analogous quantity
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in the lab frame (rest frame I) via2

cos θγh =

√
1−

(
Ph⊥
Ph

)2

, (2.32)

one can then determine

P
(IIa)
h,z =

(
ν +M

W

)
Ph cos θγh − |q|

W
Eh, (2.33)

∣∣∣P (IIa)
h

∣∣∣ =

√
P 2

h⊥ +
(
P

(IIa)
h,z

)2

, (2.34)

cos θ
(IIa)
γh =

P
(IIa)
h,z∣∣∣P (IIa)
h

∣∣∣
. (2.35)

Combining Equations 2.30 with 2.33 through 2.35 yields a precise relation relation

between φR and φR⊥. Note, that although the di�erence between φR and φR⊥ is

well known to be suppressed by Q2, no exact expression such as Equation 2.31 was

previously available.

2.1.4.5 Intrinsic Variables

The transverse momentum of the struck quark (i.e. the quark to which the dis-

tribution function corresponds) will be denoted pT , with magnitude pT := |pT |, and
azimuthal angle φp. Likewise, the transverse momentum of the fragmenting quark (i.e.

the quark to which the fragmentation function corresponds) will be denoted kT , with

magnitude kT := |kT | and azimuthal angle φk. The quantities pT and kT are always

positive, in contrast with some sources which de�ne kT as the norm of the a four vec-

tor with only transverse components. The Minkowski metric would then make such a

norm negative. The above identi�cation of pT , kT is consistent with the Amsterdam

notation of the distribution and fragmentation functions, [15, 16, 28, 36], which is

used throughout this dissertation. Note, some theorists do not follow the Amsterdam
2This is from the inversion of Equation 2.20, assuming θγ,h ≤ π/2.
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notation, and instead follow that of the Torino theory group, e.g. [41, 42, 43], where

pT

∣∣∣
Torino

= zkT

∣∣∣
Amsterdam

= k′T , (2.36)

kT

∣∣∣
Torino

= pT

∣∣∣
Amsterdam

. (2.37)

2.2 Partial Wave Expansion and Cross Section

2.2.1 Distribution Functions

Distribution functions will be given in the Amsterdam notation [12, 15, 44], as

previously noted. The leading twist distribution functions can be interpreted as dif-

ferences in helicity distributions or equivalently as helicity amplitudes [45]. Owing to

the great deal of literature available concerning the distribution functions, a few refer-

ences are provided rather than attempting to summarize this large and complex �eld

of study. Some of the more common leading twist fragmentation functions include

the Sivers function f⊥1T [8, 46], transversity h1 [47, 48], the Boer-Mulders function h⊥1
[12, 49], and pretzelocity h⊥1T [50, 51]. It should be remarked that the Sivers function

for the φ meson, as well as for K+K− hadron pairs, has been related to the orbital

angular momentum of the gluons and can provide important tests for the relevant

mechanisms [29].

2.2.2 Fragmentation Functions

The diagram used to de�ne the leading twist fragmentation functions is given in

Figure 2.3. A new convention is adopted in this work, where the name and symbol

of the fragmentation are entirely associated with the quark spin states, i.e. χ, χ′

in Figure 2.3, while the various polarization states of the produced hadron(s), i.e.

|l1,m1〉 and |l2,m2〉, are associated with partial waves of fragmentation functions.

Such a convention requires a slight rede�nition of the fragmentation functions and a
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Figure 2.3: The generic diagram for the three leading order fragmentation functions.
Via the optical theorem, the fragmentation functions are de�ned as the
imaginary part of the above amplitude. The quarks are indicated as q, q′,
with their spin states speci�ed by χ, χ′, while the hadrons (dihadrons) h
and h′ are, respectively, in the partial waves |`1,m1〉 and |`2,m2〉.

new partial wave expansion. Note, previous de�nitions of the fragmentation functions

either assume no polarization in the �nal state hadrons [16] (applicable for pseudo-

scalar production), or de�ne mixtures of certain partial waves as new fragmentation

functions [15, 18, 52]. For example, one of the original sources for the SIDIS cross

section, Ref. [15], introduces new fragmentation functions, including G1L and G1T ,

based on the polarization of the �nal state. According to the convention proposed in

this dissertation, there are only two fragmentation functions: the unpolarized frag-

mentation function D1 which corresponds to the sum of non-quark-spin-�ip diagrams,

i.e those with χ = χ′, and the polarized fragmentation function or generalized Collins

fragmentation function H⊥
1 , which corresponds to the sum of diagrams where the

quark �ips spin, i.e. χ 6= χ′.

One advantage to this new convention is that it places a clear distinction between

the spin structure of fragmentation and the polarization structure of the produced

system. However, the �nal result for the cross section with this convention is fully
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consistent with the cross section in the literature [18], given the relation between

notations in Section 2.2.6.

To rigorously de�ne the fragmentation functions, one must �rst consider the lead-

ing twist fragmentation correlation matrix ∆, de�ned as the sum of all possible po-

larization states of Figure 2.3. This quantity is rigorously de�ned as a certain matrix

element, e.g. Equation 24 of Ref. [15]. It is common to de�ne a shorthand notation

for an integral of traces of the fragmentation correlation matrix [15, 52]. For this

document, let ∆[Γ] be de�ned as short hand for

∆[Γ](z,Mh, |kT |, cosϑ, φR − φk) = 4π
z|R|
16Mh

∫
dk+ Tr [Γ∆(k, Ph, R)]

∣∣∣∣
k−=P−h /z

.

(2.38)

The fragmentation functions can be rigorously de�ned as traces of the fragmentation

correlation matrix

D1 = ∆[γ−(1+iγ5)], (2.39)

i
|kT |
Mh

eiφkH⊥
1 = ∆[−i(σ1−+iσ2−)γ5] = ∆[(γ2−iγ1)γ−γ5]. (2.40)

These fragmentation functions are denoted non-expanded fragmentation functions

when it is needed to distinguish them from fragmentation functions occurring in the

partial wave expansion. In the case of pseudo-scalar meson production, some of

the traces in Equations 2.39 and 2.40 are zero, thus reducing the de�nitions to the

common expressions for pseudo-scalar productions [15].

2.2.3 Partial Wave Expansion

Note, for the rest of this dissertation, the h, h′ of Figure 2.3 are assumed to

be dihadrons. However, the following equally applies to any hadron, dihadron, or

higher multiplicity hadron Fock state, with the caveat that certain �nal states have
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limited partial waves. For example, only the pure s-wave state |0, 0〉 is available for

pseudo-scalar meson production.

The partial waves of the non-expanded fragmentation function can be de�ned

in the direct product basis |`1,m1〉 |`2,m2〉, de�ning the polarization states of both

dihadrons occurring in Figure 2.3. However, nature generally prefers direct sum bases

rather than direct product bases. For example, the four possible states of a quark,

anti-quark pair in nature are a spin-0 pseudo-scalar meson and three polarizations

of spin-1 vector mesons, not as two spin-aligned and two spin-anti-aligned states.

Similarly, individual terms in the cross section are not related to partial waves in the

direct product basis |`1,m1〉 |`2,m2〉, but are related to partial waves in the direct

sum basis |`,m〉, i.e. the overall spin-state of the two dihadron system.

Note, there are four quarks exiting the top of the diagram in Figure 2.3. Thus, in

the usual shorthand, one writes

1

2
⊗ 1

2
⊗ 1

2
⊗ 1

2
=

(
1

2
⊗ 1

2

)
⊗

(
1

2
⊗ 1

2

)
,

= (1⊕ 0)⊗ (1⊕ 0) ,

= 2⊕ 1⊕ 1⊕ 1⊕ 0⊕ 0. (2.41)

Thus, sixteen states are actually present: the �ve states of the spin-2 system, nine

states arising from three sets of the three states of the spin-1 system, and the two

spin-0 states. However, distinguishing between the three di�erent spin-1 states, as

well as between the two spin-0 states, is di�cult. Theoretically, the di�erent ` =

1 and ` = 0 states can be distinguished by using Generalized Casimir operators

[53, 54]. These operators are related to the coupling scheme, i.e. the placement of

parenthesis in Equation 2.41. Speci�cally, Equation 2.41 corresponds to coupling the

�rst two and the last two quarks in the intermediate state. An alternate coupling

scheme would be to couple the third quark to the �rst two in the intermediate step.
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Although the �nal line in Equation 2.41 does not depend on the coupling, di�erent

bases within the degenerate 1⊕1⊕1 and 0⊗0 space are implied by di�erent couplings.

Relations between choices of basis are then given by Racah Coe�cients, and Clebsch-

Gordan coe�cients �nally could be used to relate all the states [54, 55]. This would,

unfortunately, require experimentally adjusting the coupling scheme, i.e. measuring

the interference between a three quark state and a one quark state, which is not

possible.

Thus, only nine combinations of the sixteen states are experimentally accessible,

appearing as 2 ⊕ 1 ⊕ 0. The experimentally observed spin-1 states are the sum of

three distinct spin-1 systems: one arising from interference between the vector meson

states (denoted pp-interference), and the other two arising from interference between

vector meson states and pseudo-scalar states (denoted sp-interference). Likewise, the

measurable spin-0 state contains the pseudo-scalar state as well as pp-interference

between the two transverse polarization states.

The partial wave expansion into the 2⊕1⊕0 states is accomplished by expanding

the fragmentation functions of Equations 2.39 and 2.40 in terms of spherical harmon-

ics. The polar angle is cosϑ, while the azimuthal angle is φR−φk as other constraints

require these functions to only depend on this di�erence and not the angles φk, φR

individually [18].

Previously, partial wave analyses have only been preformed either at leading

twist [18] or at next-to-leading twist but integrated over Ph⊥ [28]. In both cases, the

partial wave analysis is done with respect to the direct product basis |`1m1〉 |`2m2〉
of the two dihadrons occurring in Figure 2.3. Previous expansions are related to

those listed here via Clebsch-Gordon coe�cients, up to normalizations of the basis

functions. In fact, the common Legendre polynomial expansion of the dihadron frag-

mentation functions [18, 28] corresponds with the cosϑ dependent factor in Equations

2.42 and 2.43. Thus, although the usual expansions in terms of Legendre polynomi-
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als occur with little motivation in the literature, the full justi�cation is given by the

partial wave expansion in the direct sum basis.

The partial waves of the fragmentation functions are then de�ned according to

D1 =
∞∑

`=1

∑̀

m=−`

P`,m(cosϑ)eim(φR−φk)D
|`,m〉
1 (z,Mh, |kT |), (2.42)

H⊥
1 =

∞∑

`=1

∑̀

m=−`

P`,m(cosϑ)eim(φR−φk)H
⊥|`,m〉
1 (z,Mh, |kT |), (2.43)

and likewise for the higher twist fragmentation functions. All non-expanded fragmen-

tation functions depend on the variables z, Mh, |kT |, cosϑ, φR− φk, and possibly Q2

(as Q2 dependence is usually implicitly assumed)3. Alternately, the expansion could

have been done with respect to φR⊥−φk ≡ ϕ+φh−φk. The �nal result for structure

functions would then align with [35]. At high enough Q2, the di�erence between the

choice of expansion becomes negligible.

In the cross section, the real and imaginary portions of D1 are separated, and thus

it is useful to de�ne the notation

D
|`,m〉+
1 = D

|`,m〉
1 +D

|`,−m〉
1 , (2.44)

D
|`,m〉−
1 = D

|`,m〉
1 −D

|`,−m〉
1 , (2.45)

assuming m > 0. The Legendre polynomials used in Equations 2.42 and 2.43 are

P0,0 = 1, P2,0 =
1

2

(
3 cos2 ϑ− 1

)
,

P1,0 = cosϑ, P2,1 = sin 2ϑ,

P1,1 = sinϑ, P2,2 = sin2 ϑ, (2.46)

with P`,−m := P`,m.
3The Q2 evolution for TMD fragmentation functions is still an open question. Related references

include [56, 57, 58, 59].
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2.2.4 Explicit Cross Section

These new expanded fragmentation functions can be inserted into the hadronic

tensor and the cross section can be written in terms of structure functions, following

the same method as Ref. [16]. The leading twist cross section, written in terms

of structure functions, is identical to that one would obtain from Ref. [18].4 The

interpretation of the structure functions is then the only di�erence in the TMD twist-2

cross section between this work and previously published papers. This work, however,

also contains the TMD structure functions arising at twist-3, which has not been

previously available.

As was noted before, the cross section with the non-expanded fragmentation func-

tions is identical to that for single pseudo-scalar meson production. This allows one

to compute the cross section for dihadron production at any twist level, given the

pseudo-scalar cross section at the corresponding twist level. One just needs to apply

the partial wave expansion of the fragmentation functions. Note this method is much

less complicated than traditional methods, such as was employed for the collinear

case [28].

A few details need description before the presentation of the cross section. Note,

the terms of the cross section will be grouped into terms denoted σXY based on the

target and beam polarization. Speci�cally, subscripts XY correspond to the beam

(X) and target (Y ) polarization, taking the values U (unpolarized), L (longitudinally

polarized) and T (transversely polarized). The total cross section is the sum of all

terms σXY . The structure functions will likewise have subscripts XY , with the same

meaning. In a few cases the structure functions are split into those for transverse and

longitudinal virtual photon polarization. These are indicated with a subscript XY,Z,

with Z being either L or T to indicate the virtual photon polarization.
4Note, Equation C4 of Ref. [18] is missing the term proportional to cosϑ cos 2φh, which should be

accompanied by the fragmentation function H⊥
1,OL occurring in Equation 57 of the same reference.
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The depolarization factors occurring with leading twist moments are [16]

A(x, y) =
y2

2(1− ε)
=

1− y + 1
2
y2 + 1

4
γ2y2

1 + γ2

≈
(

1− y +
1

2
y2

)
, (2.47)

B(x, y) =
y2

2(1− ε)
ε =

1− y − 1
4
γ2y2

1 + γ2

≈ (1− y) , (2.48)

C(x, y) =
y2

2(1− ε)

√
1− ε2 =

y
(
1− 1

2
y
)

1 + γ2

≈ y

(
1− 1

2
y

)
, (2.49)

while the depolarization factors occurring with the next-to-leading twist moments are

V (x, y) =
y2

(1− ε)

√
2ε(1 + ε) =

2(2− y)

1 + γ2

√
1− y − 1

4
γ2y2

≈ 2 (2− y)
√

1− y, (2.50)

W (x, y) =
y2

(1− ε)

√
2ε(1− ε) =

2y

1 + γ2

√
1− y − 1

4
γ2y2

≈ 2y
√

1− y. (2.51)

The approximations hold in the high Q2 limit when one neglects all but the next-

to-leading twist. Note also, in the high Q2 limit, the expressions in Equations 2.47

through 2.51 are independent of x and only depend on y.

The cross section will be chosen to be di�erential with respect to x, y, z, Ph⊥,

φh, φS, Mh, cosϑ, and φR. The phase space factor is taken from the single hadron

phase space factor of Ref. [16], with an additional factor of 2MhPh⊥/4π to account

for the phase space of cosϑ, φR and Mh, and the fact that the cross section is chosen

di�erential with respect to the polar angles Ph⊥, φh rather than the Cartesian 2-

vector Ph⊥.
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Note, some discrepancy exists in the literature regarding the phase space factor.

For example, Ref. [15] uses s/Q4, while Ref. [16] uses 1/(xyQ2). Note,

s

Q4
=

1

xyQ2
+
M2

Q4
, (2.52)

and thus the factors agree at high Q2.

The magnitudes of the target polarization will be denoted S‖ and |S⊥|, referring
to the magnitudes of the longitudinal and transverse polarizations, as in Ref. [16].

These are the same quantities as ST and SL in Ref. [36]. The longitudinal polarization

factor for the beam will be denoted λe.

The cross section for unpolarized beam, unpolarized target, can be written as

dσUU =
α2MhPh⊥
2πxyQ2

(
1 +

γ2

2x

)

×
2∑

`=0

{
A(x, y)

∑̀
m=0

[
P`,m cos(m(φh − φR))

×
(
F

P`,m cos(m(φh−φR))
UU,T + εF

P`,m cos(m(φh−φR))
UU,L

) ]

+B(x, y)
∑̀

m=−`

P`,m cos((2−m)φh +mφR)F
P`,m cos((2−m)φh+mφR)
UU

+ V (x, y)
∑̀

m=−`

P`,m cos((1−m)φh +mφR)F
P`,m cos((1−m)φh+mφR)
UU

}
.

(2.53)
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The longitudinally polarized beam, unpolarized target moments are

dσLU =
α2MhPh⊥
2πxyQ2

(
1 +

γ2

2x

)
λe

×
2∑

`=0

{
A(x, y)

∑̀
m=1

[
P`,m sin(m(φh − φR))

×
(
F

P`,m cos(m(φh−φR))
LU,T + εF

P`,m cos(m(φh−φR))
LU,L

) ]

+W (x, y)
∑̀

m=−`

P`,m sin((1−m)φh +mφR)F
P`,m sin((1−m)φh+mφR)
LU

}
.

(2.54)

The unpolarized beam, longitudinally polarized target moments are

dσUL =
α2MhPh⊥
2πxyQ2

(
1 +

γ2

2x

)
S‖

×
{
C(x, y)

2∑

`=1

∑̀
m=1

P`,m sin(−mφh +mφR)F
P`,m sin(−mφh+mφR)
UL

+B(x, y)
2∑

`=0

∑̀

m=−`

P`,m sin((2−m)φh +mφR)F
P`,m sin((2−m)φh+mφR)
UL

+ V (x, y)
2∑

`=0

∑̀

m=−`

P`,m sin((1−m)φh +mφR)F
P`,m sin((1−m)φh+mφR)
UL

}
.

(2.55)

The longitudinally polarized beam, longitudinally polarized target moments are

dσLL =
α2MhPh⊥
2πxyQ2

(
1 +

γ2

2x

)
λeS‖

×
2∑

`=0

{
C(x, y)

∑̀
m=0

P`,m cos(m(φh − φR))F
P`,m cos(m(φh−φR))
LL

+W (x, y)
∑̀

m=−`

P`,m cos((1−m)φh +mφR)F
P`,m cos((1−m)φh+mφR)
LL

}
.

(2.56)
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The unpolarized beam, transversely polarized target moments are

dσUT =
α2MhPh⊥
2πxyQ2

(
1 +

γ2

2x

)
|S⊥|

×
2∑

`=0

∑̀

m=−`

{
A(x, y)

[
P`,m sin((m+ 1)φh −mφR − φS))

×
(
F

P`,m sin((m+1)φh−mφR−φS)
UT,T + εF

P`,m sin((m+1)φh−mφR−φS)
UT,L

) ]

+B(x, y)

[
P`,m sin((1−m)φh +mφR + φS)F

P`,m sin((1−m)φh+mφR+φS)
UT

+ P`,m sin((3−m)φh +mφR − φS)F
P`,m sin((3−m)φh+mφR−φS)
UT

]

+ V (x, y)

[
P`,m sin(−mφh +mφR + φS)F

P`,m sin(−mφh+mφR+φS)
UT

+ P`,m sin((2−m)φh +mφR − φS)F
P`,m sin((2−m)φh+mφR−φS)
UT

]}
.

(2.57)

Lastly, the longitudinally polarized beam, transversely polarized target moments are

dσLT =
α2MhPh⊥
2πxyQ2

(
1 +

γ2

2x

)
λe|S⊥|

2∑

`=0

∑̀

m=−`

{

C(x, y)P`,m cos((1−m)φh +mφR − φS))F
P`,m cos((1−m)φh+mφR−φS))
LT

+W (x, y)

[
P`,m cos(−mφh +mφR + φS)F

P`,m cos(−mφh+mφR+φS)
LT

+ P`,m cos((2−m)φh +mφR − φS)F
P`,m cos((2−m)φh+mφR−φS)
LT

]}
.

(2.58)

In contrast with the 18 structure functions introduced in Ref. [16], dihadron produc-

tion at twist-3 includes 162, exactly a factor of 9 more, as 2⊕ 1⊕ 0 has dimension 9.

However, the 18 structure functions involving a longitudinally polarized virtual pho-

ton are zero in dihadron production, just as the two single hadron structure functions

involving a longitudinally polarized virtual photon are zero. Thus it is also common
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to write that unpolarized single hadron production has 16 moments, and dihadron

production 16× 9 = 144.

2.2.5 Structure Functions

Each structure function occurring in Equations 2.53 through 2.58 has the form of

FXY = I [wfD] , (2.59)

where w is a pT , kT , φh, x, z, M , Mh dependent weight factor, f is a distribution

function and D is a fragmentation function. The labeling scheme for f and D seems

backwards, though it is given in this manner for historical reasons. Note that some

structure functions include sums of several terms of this form. The operator I is

shorthand for

I [wfD] =
∑

q

e2q

∫
d2pTd

2kT δ
2

(
pT − kT − Ph⊥

z

)
wf qDq. (2.60)

Note that the distribution and fragmentation functions have �avor indices, but that

the structure functions do not.

The weights w will be written slightly di�erent than in other sources. Typically

the weights w are written in terms of dot, cross or even wedge products of the vectors

pT , kT , P̂h⊥ [17, 16, 18]. However, this yields much more complicated expressions

than is necessary. All weights can instead be written in terms of a factor involving

possibly |pT |/M and |kT |/Mh, multiplied by a single sine or cosine function of the

involved angles. For example, the weight for the sin2 θ cos(4φh − 2φR) term in the
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unpolarized dihadron cross section is [18]

[
|kT |2 − 4

(
kT · P̂h⊥

)] [
(pT · kT )− 4

(
pT · P̂h⊥

)(
kT · P̂h⊥

)]

2MMh|kT |2

−
8
(
pT · P̂h⊥

)(
kT · P̂h⊥

)3

2MMh|kT |2 , (2.61)

which can be written as

|pT ||kT |
MMh

cos(4φh − φp − 3φk). (2.62)

Furthermore, writing in terms of dot products also hides similarities between various

moments. For instance, all the leading order, unpolarized terms involving the Boer-

Mulder's function h⊥1 have a weight of the same form,

|pT ||kT |
MMh

cos((m− 2)φh + φp + (1−m)φk), (2.63)

when written in terms of the cosine of the angles, rather than dot products. Written

as dot products, the weights have very di�erent form for each m. For example, see

Appendix C of Ref. [18]. In particular, the m in Equation 2.63 corresponds to the m

in the |l,m〉 angular momentum state of the dihadron. Thus writing in terms of sine

or cosine functions not only makes the expressions simpler, this change also highlights

deeper meanings and relationships between the structure functions.

The leading twist unpolarized beam, unpolarized target moments are

F
P`,m cos(mφh−mφR)
UU,L = 0, (2.64)

F
P`,m cos(mφh−mφR)
UU,T =





I
[
f1D

|`,0〉
1

]
m = 0,

I
[
2 cos(mφh −mφk)f1D

|`,m〉+
1

]
m > 0,

(2.65)
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F
P`,m cos((2−m)φh+mφR)
UU = −I

[ |pT ||kT |
MMh

cos
(
(m− 2)φh + φp + (1−m)φk

)

× h⊥1 H
⊥|`,m〉
1

]
, (2.66)

while the twist-3 structure functions are

F
P`,m cos((1−m)φh+mφR)
UU = −2M

Q
I
[
|kT |
Mh

cos((m− 1)φh + (1−m)φk)

×
(
xhH

⊥|`,m〉
1 +

Mh

M
f1
D̃⊥|`,m〉

z

)

+
|pT |
M

cos((m− 1)φh + φp −mφk)

×
(
xf⊥D|`,m〉

1 +
M

Mh

h⊥1
H̃ |`,m〉

z

)]
. (2.67)

The longitudinally polarized beam, unpolarized target structure functions are, at

leading twist and for ` = 1, 2 and m > 0,

F
P`,m sin(mφh−mφR)
LU,T = −I

[
2 cos(mφh −mφk)f1D

|`,m〉−
1

]
. (2.68)

The unpolarized beam, longitudinally polarized target structure functions are, at

leading twist,

F
P`,m sin((2−m)φh+mφR)
UL = −I

[ |pT ||kT |
MMh

cos
(
(m− 2)φh + φp + (1−m)φk

)

× h⊥1LH
⊥|`,m〉
1

]
, (2.69)

and additionally for ` = 1, 2 and m > 0,

F
P`,m sin(mφh−mφR)
UL = −I

[
2 cos(mφh −mφk)g1LD

|`,m〉−
1

]
. (2.70)
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The longitudinally polarized beam, longitudinally polarized target moments are, at

leading twist,

F
P`,m cos(mφh−mφR)
LL =





I
[
g1LD

|`,0〉
1

]
m = 0

I
[
2 cos(mφh −mφk)g1LD

|`,m〉+
1

]
m > 0.

(2.71)

The unpolarized beam, transversely polarized target moments are, at leading twist,

F
P`,m sin((m+1)φh−mφR−φS)
UT,L = 0 (2.72)

F
P`,m sin((m+1)φh−mφR−φS)
UT,T = −I

[ |pT |
M

cos
(
(m+ 1)φh − φp −mφk

)

×
(
f⊥1TD

|`,m〉+
1 + signum[m]g1TD

|`,m〉−
1

) ]
, (2.73)

F
P`,m sin((1−m)φh+mφR+φS)
UT = −I

[ |kT |
Mh

cos
(
(m− 1)φh − φp −mφk

)
h1H

⊥|`,m〉
1

]
,

(2.74)

F
P`,m sin((3−m)φh+mφR−φS)
UT = I

[ |pT |2|kT |
M2Mh

cos
(
(m− 3)φh + 2φp − (m− 1)φk

)

× h⊥1TH
⊥|`,m〉
1

]
. (2.75)

The longitudinally polarized beam, transversely polarized target moments are, at

leading twist,

F
P`,m cos((m+1)φh−mφR−φS)
LT = −I

[ |pT |
M

cos
(
(m+ 1)φh − φp −mφk

)

×
(
g1TD

|`,m〉+
1 + χ(m)f⊥1TD

|`,m〉−
1

) ]
. (2.76)

The twist-3 structure functions, except those for the unpolarized beam and unpo-

larized target, are not written out in terms of the distribution and fragmentation

functions, as the speci�c formula are quite complex and results are not needed in the

remainder of the dissertation.
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It is worthy to note that the collinear fragmentation functions are simply integrals

of speci�c partial waves of the TMD fragmentation functions. For example, the

dihadron fragmentation function which has received the most interest [27, 40] occurs

in the F
sin ϑ sin(φR+φS)
UT structure function, i.e. Equation 2.74 with l = 1 and m = 2.

The speci�c fragmentation function, in both notations, is given later in Equation 2.90.

Note, that the spin-�ip inherent in the Collins functions requires a one unit change

in the z-projections of angular momentum. Thus, the fragmentation function which

survives in the collinear case is the one with m = 1 such that the z-projection of the

angular momentum is zero. The l = 2, m = 1 partial wave in Equation 2.74 likewise

survives in the collinear case for the identical reason. In a similar manner, the Boer-

Mulders function also requires a spin-�ip, and thus the partial wave of the Collins

function that survives when paired with the Boer-Mulders function in Equation 2.66

are them = 2 partial waves. A necessary, but not su�cient, power counting condition

can be established. For a structure function that has a factor of (pT/M)α(kT/Mh)
β,

one must have |m| = |α + β| if the structure function is to survive in the collinear

case. Thus, the fragmentation functions in the structure functions surviving in the

collinear case are not particularly special, but re�ect the spin structure of a speci�c

pair of distribution and fragmentation functions.

2.2.6 Relations with Previous Notation

The fragmentation functions occurring in the partial wave expansion of this disser-

tation represent a change of basis with respect to the common fragmentation functions

de�ned in the literature. The relations between fragmentation functions in both no-

tations can be determined by comparing the trace identities and expansion of this

dissertation, speci�cally Equations 2.39, 2.40, 2.42, and 2.43, with the trace de�ni-

tions and expansion common in the literature, speci�cally Equations 19-21 of Ref.
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[52] and Equation 57 of Ref. [18].5 The results are

D
|0,0〉
1 = D1,OO =

(
1

4
Ds

1,OO +
3

4
Dp

1,OO

)
, (2.77)

D
|1,0〉
1 = D1,OL, (2.78)

D
|1,±1〉
1 = D1,OT ∓ |kT | |R|

M2
h

G⊥1,OT , (2.79)

D
|2,0〉
1 =

1

2
D1,LL, (2.80)

D
|2,±1〉
1 =

1

2

(
D1,LT ∓ |kT | |R|

M2
h

G⊥1,LT

)
, (2.81)

D
|2,±2〉
1 = D1,TT ∓ 1

2

|kT | |R|
M2

h

G⊥1,TT , (2.82)

for the partial waves of the unpolarized distribution function. The relations for the

combinations D|`,m〉+
1 , D|`,m〉+

1 are

D
|1,1〉+
1 = D1,OT , (2.83)

D
|1,1〉−
1 = −|kT | |R|

M2
h

G⊥1,OT , (2.84)

D
|2,1〉+
1 =

1

2
D1,LT , (2.85)

D
|2,1〉−
1 = −1

2

|kT | |R|
M2

h

G⊥1,LT , (2.86)

D
|2,2〉+
1 = D1,TT , (2.87)

D
|2,1〉−
1 = −1

2

|kT | |R|
M2

h

G⊥1,TT , (2.88)

while for the partial waves of the Collins function,

H
⊥|0,0〉
1 = H⊥

1,OO =
1

4
H⊥s

1,OO +
3

4
H⊥p

1,OO, (2.89)

H
⊥|1,1〉
1 = H⊥

1,OT +
|R|
|kT |H̄

�
1,OT =

|R|
|kT |H

�
1,OT (2.90)

5It should be noted two typographical errors exist in Equation 57 of Ref. [18]. On the line
expanding H̄�1 , the factor of cos(2φk − 2φR) should in fact be cos(φk − φR), while on the line
expanding H⊥

1 , the last symbol H�1,TT should actually be H̄�1,TT .
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H
⊥|1,0〉
1 = H⊥

1,OL, (2.91)

H
⊥|1,−1〉
1 = H⊥

1,OT , (2.92)

H
⊥|2,2〉
1 = H⊥

1,TT +
|R|
|kT |H̄

�
1,TT =

|R|
|kT |H

�
1,TT , (2.93)

H
⊥|2,1〉
1 =

1

2
H⊥

1,LT +
1

2

|R|
|kT |H̄

�
1,LT =

1

2

|R|
|kT |H

�
1,LT , (2.94)

H
⊥|2,0〉
1 =

1

2
H⊥

1,LL, (2.95)

H
⊥|2,−1〉
1 =

1

2
H⊥

1,LT , (2.96)

H
⊥|2,−2〉
1 = H⊥

1,TT . (2.97)

One point which is particularly subtle in the current literature is the di�erence

between H�1,XT , H̄
�
1,XT , and H�′1,XT , for X=O,L,T . Although the literature is not

completely consistent, the notation of Ref. [18] is perhaps the most common, wherein

the partial wave expansion and fragmentation correlator use the functions H̄�1,XT ,

with the cross section written in terms of

H�1,XT = H̄�1,XT +
|kT |
|R|H

⊥
1,XT . (2.98)

The subtle di�erence in notation is di�cult to see and already suggests that the choice

of basis for the partial wave expansion in the literature is not optimal.

Note, the multiplicity of the ` = 0 state discussed in 2.2.3 is re�ected in the old

notation in that the |0, 0〉 states of both D1 and H⊥
1 have been written as a sum of s-

and p-waves, as in Equation 2.77, 2.89, correspondingly Equations 39 and B5 of [18].

Using the above relations in notation, one can then compare the cross sections

given in this dissertation and in published papers to ensure consistency. Such a process

reveals several typographical errors in Equation C4 of Ref. [18], which can be shown

to be related to inconsistencies within that document. Speci�cally, −D1,OT , −D1,LT ,

and −D1,TT need to be respectively replaced with 2D1,OT , 2D1,LT , and 2D1,TT .
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One could likewise compare the cross section given in Ref. [28] with the above

twist-3 structure functions to fully relate the higher twist notation. Such description

is outside the scope of this dissertation, as herein it is only necessary understand the

structure of the cross section at twist-3, not interpret any higher twist moments.

2.3 Model Predictions

2.3.1 The Lund/Artru Model

Models considered in Section 2.3 are relevant for SIDIS production of mesons,

while previous portions of this chapter have considered SIDIS production of both

mesons and baryons. It will be assumed that the parton struck by the virtual photon

was a quark, rather than an anti-quark, but the conclusions follow identically for

either case. It will be further assumed that the struck quark is transversely polarized,

and thus the model predictions are related to the Collins fragmentation function.

In cross sections, the Collins function is always paired with a distribution function

involving a transversely polarized quark [16], e.g. transversity h1, Boer-Mulders h⊥1 ,

or pretzelocity h⊥1T . In at least the case of the transversity distribution function, one

can further interpret the distribution function as the being related to the probability

of the quark being the up state of transverse polarization, with the proton polarization

de�ning the quantization axis.

The Lund/Artru string model of fragmentation [30] posits that the struck quark

is initially connected with the target remnant via a gluon �ux tube, or string. The

Lund/Artru model further posits that, when the gluon �ux tube breaks, the produced

quark, anti-quark system has quantum numbers equal to that of the vacuum, 0++.

This requires that the quark and anti-quark have their spins aligned, in order to have

positive parity, and that the pair have one unit of orbital angular momentum in the

opposite direction of the spin. One can quantize the system such that there are two
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cases: the anti-quark being produced with spin aligned or anti-aligned with that of the

struck quark. From the point of view of the struck quark, i.e. facing in the direction

of the quarks momentum with the transverse polarization in the up direction, the unit

of angular momentum will cause the produced meson system to move preferentially to

the left (right) in the case the quark spins are anti-aligned (aligned). This produces a

left-right azimuthal asymmetry, with opposite signs depending on whether the anti-

quark is aligned or anti-aligned with the fragmenting quark.

2.3.2 Relation to Amplitudes

Relative to the nucleon's transverse spin, the fragmenting quark can, in general,

be in one of two spin states, though particular distribution functions may restrict the

available spin states of the fragmenting quark. The two states are taken to be up or

down, i.e.
∣∣1
2
,±1

2

〉
, and thus there are two possible diquark states with quarks anti-

aligned,
∣∣1
2
,±1

2

〉 ∣∣1
2
,∓1

2

〉
and two states with quarks aligned,

∣∣1
2
,±1

2

〉 ∣∣1
2
,±1

2

〉
. However,

the direct product basis, where the spins of both quarks are speci�cally denoted, is

not the basis in which measurable particles are diagonal. Instead, measurable hadrons

are in the direct sum basis. Physicists often write the relation as 1
2
⊗ 1

2
= 1⊕ 0. The

one spin-0 state is a pseudo-scalar meson, while three spin-1 states correspond to the

three polarizations of vector mesons: |1, 0〉 being a longitudinal vector meson, and

|1,±1〉 being the two transverse polarizations.

The Clebsch-Gordan coe�cients relating the two bases show that pseudo-scalar

mesons are a symmetric combination of the two anti-aligned states, while longitudinal

vector mesons correspond with the anti-symmetric combination of the two anti-aligned

states. Transversely polarized vector mesons are uniquely the two aligned states,

with no mixing. Note, as the model predictions are all relative to the struck quark

polarization, there is no di�erence between the asymmetries for the two anti-aligned

states
∣∣1
2
, 1

2

〉 ∣∣1
2
,−1

2

〉
and

∣∣1
2
,−1

2

〉 ∣∣1
2
, 1

2

〉
. Thus, the anti-symmetric combination of the
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states should yield zero asymmetry. The �nal, amplitude level, prediction is then that

the asymmetry for pseudo-scalar mesons has opposite sign to that for transversely

polarized vector mesons (for each given �avor combination), while the asymmetry for

longitudinal vector mesons is predicted to be zero. The model also predicts the sign,

in that the pseudo-scalars should prefer left and the transverse vector mesons right,

in regards to the left-right asymmetry from the point of view of the struck quark.

Note, data related to the Collins asymmetry for pions [47, 60] is in agreement with

the sign of this model.

2.3.3 Cross Section Level

To connect these amplitude level asymmetries with the Collins function, one needs

to consider the cross section level, i.e. the sum of contributing amplitudes times the

complex conjugate as shown in Figure 2.3. In other words, the Lund/Artru model

makes predictions for the individual dihadrons, but the Collins function includes pairs

of dihadrons.

Although not speci�cally developed by the Lund/Artru model, it will be assumed

that the longitudinal |1, 0〉 |1, 0〉 partial wave of the Collins function behaves as the

model predicts the amplitude-level |1, 0〉 state to behave, i.e. that it is identically zero.

Likewise, the Collins function for the two transverse partial waves |1,±1〉 |1,±1〉 are
assumed to have the oppose sign as the Collins function for pseudo-scalar meson

production.

According to the Clebsch-Gordan coe�cients, the two-dihadron (direct sum basis)

states |2,±2〉 are directly the squares of the transverse states, i.e.

|2,±2〉 ≡ |1,±1〉 |1,±1〉 . (2.99)
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Since each term in the cross section is related to a partial wave in the direct sum basis,

and since the ` = 2 state only occurs once in Equation 2.41, these partial waves have

a clear access. In particular, neglecting possible twist-4 and higher e�ects, the struc-

ture functions F P`,|m| sin((2−m)φh+mφR+φS

UT in Equations 2.57 for ` = 2, m = ±2, should

have opposite sign as the corresponding pseudo-scalar Collins moments. Addition-

ally, again neglecting twist-4 and higher e�ects, the unpolarized structure functions

F
P`,|m| sin((2−m)φh+mφR

UU in Equation 2.53 for ` = 2, m = ±2 should have opposite sign

as the Boer-Mulders moments of pseudo-scalar production.

For each of the above predictions regarding transverse vector mesons, the e�ect

could be diluted by the presence of dihadrons, not arising from vector meson decay,

yet in |2,±2〉 partial waves. This dilution is assumed to be negligible, though no

theoretical or experimental results speci�cally address this issue.

The longitudinal state |1, 0〉 |1, 0〉 is a mixture of the |2, 0〉 state and the |0, 0〉
state arising from interference between vector meson polarization states. However,

the |0, 0〉 partial wave of dihadrons not arising from vector mesons is known to be

larger than the |0, 0〉 partial wave of vector meson production. Thus it is not possible

to isolate the longitudinal |1, 0〉 |1, 0〉 state and it is not possible to test this portion

of the Lund/Artru model prediction.

2.3.4 The Gluon Radiation Model

It should be remembered that each fragmentation function (and each partial wave)

depends on the �avor of the quark which is fragmenting. A common assumption is

that the fragmentation functions for all �avors present in the observed hadron system

are equal, which are collectively denoted the �favored� fragmentation function. For

pion, ρ meson, and pion-pair production, one generally also assumes that the contri-

butions from s, s̄, and heavier quarks are negligible. In this case, the fragmentation
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functions for �avors not present in the �nal state are also assumed equal and are

denoted �disfavored� fragmentation functions.

It should be noted that the Lund/Artru model is only applicable when the struck

quark is actually present in the observed hadron system, i.e. only for favored fragmen-

tation functions. For disfavored fragmentation functions, another model is suggested

by the author, denoted the �gluon radiation model.� In this model, the struck quark

emits a gluon in such a way that most of the momentum is transferred to the gluon.

The struck quark becomes part of the remnant, and the gluon pair-produces to form

a vector diquark. In the case of pseudo-scalar meson production, the diquark must

interact further with the remnant in order to become a pseudo-scalar. In the case of

vector meson production, this diquark can directly form the vector meson, and it will

be assumed for vector meson production that further interactions with the remnant

are higher order e�ects and negligible.

In cases where the diquark does interact further with the remnant, the gluon

radiation model can be described within the paradigm of the Lund/Artru model, i.e.

by considering fragmentation in terms of a struck quark and a gluon �ux tube. In

contrast to the the Lund/Artru model, the gluon radiation model considers the case

where most of momentum of the struck quark is transferred to the pair-produced

quark anti-quark system. Rather than requiring this quark anti-quark system to

have the quantum numbers of the vacuum, the gluon radiation model has the system

hadronize into the observed �nal state and thus have the quantum numbers of the

�nal state. The portion of the gluon �ux tube between the break point and the

remnant is interpreted as an interaction between the pair produced system and the

remnant, required for pseudo-scalar production but a higher order e�ect for vector

meson production.

In both models, the anti-quark which is produced is present in the �nal state.

However, the main di�erence between the models is which quark joins the produced
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anti-quark in �nal state: in one case, the stuck quark, and in the other case, the pro-

duced quark. In this manner, the Lund/Artru model describes favored fragmentation,

and the gluon radiation model describes disfavored fragmentation.

One can then consider the relation, predicted by the gluon radiation model, be-

tween the disfavored fragmentation functions for vector meson production and the

fragmentation functions for pseudo-scalar production. Comparing the Feynman di-

agrams for both models, as in Figure 2.4, one can determine that the perturbative

portion of the gluon radiation model is present in the diagram for the Lund/Artru

model, though the speci�c quarks which form the observed hadron is di�erent in the

two cases.

Assuming that the vector meson is produced in the |1, 1〉 state, the emission of the

gluon must �ip the struck quark from the
∣∣1
2
, 1

2

〉
to

∣∣1
2
,−1

2

〉
spin states. However, this

diagram is exactly the initial part of the relevant diagram for the Lund/Artru model

for the spin anti-aligned case, i.e. the one related to pseudo-scalar production. Thus

the disfavored |2, 2〉 Collins function is expected to have opposite sign as the favored

pseudo-scalar Collins function. In a similar manner, the production of vector mesons

in the |1, 0〉 state is related to the antisymmetric combination of the spin aligned and

the spin anti-aligned cases of the Lund/Artru diagram, and thus expected to be zero.

However, it has already been discussed that predictions for the vector meson |1, 0〉
state are not experimentally accessible.

2.3.5 Summary of Model Predictions

The following summary combines the results of both models and the discussion of

amplitudes versus cross sections. The Lund/Artru model predicts that the |2, 2〉 par-
tial wave of the Collins function for SIDIS vector meson production, for quark �avors

present in the produced vector meson, has the opposite sign as the respective pseudo-

scalar Collins function. The gluon radiation model implicates that the |2, 2〉 partial
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Figure 2.4: Feynman diagrams relevant for the Lund/Artru and Gluon Radiation
models. In all panels, the quark entering from the right is the struck
quark. For the upper panels, the particles connected to the bottom of the
diagram are interactions with the target remnant. The open circle repre-
sents the non-perturbative hadronization process of the quark anti-quark
pair forming a hadron. The upper left panel represents the Lund/Artru
model and the upper right panel, the gluon radiation model. The lower
panel is the perturbative sub-diagram, common to both diagrams. The
di�erence between the Lund/Artru model and gluon radiation model is
related to which quark returns to the remnant and which enters in the
observed hadron. Note, the Artru model also requires an extra gluon
emission, related to one half of the broken gluon �ux tube.

wave of the Collins function for SIDIS vector meson production, for quark �avors not

present in the produced vector meson, also has the opposite sign as the respective

pseudo-scalar Collins function. Note, while data [47] suggests that the pseudo-scalar

favored and disfavored Collins functions are nearly equal and opposite, these models

predict that in the vector meson case the favored and disfavored Collins functions

have the same sign, for at least the |2,±2〉 moments. Although the models yield

expectations regarding the signs of certain partial waves, neither model addresses the

relative size of the |2, 2〉 versus |2,−2〉 partial waves, nor their relative size compared

with the pseudo-scalar Collins function.

44



It should be noted that the sign change of the |2, 2〉 moment for the Collins

function (based on the Lund/Artru model) is truly a prediction. In contrast, the

gluon radiation model was developed after preliminary results were �rst available,

and thus the expectations of the gluon radiation model are more explanations of

possible results rather than true predictions.

2.4 Spectator Model of Dihadron Fragmentation

The only published models for dihadron fragmentation [31, 61] are spectator mod-

els. Reference [61] is designed for a pion, proton dihadron, including the Roper reso-

nance, and is not directly applicable to the scope of this dissertation. Reference [31],

however, is designed to be directly comparable with the previously published Her-

mes dihadron result [27]. This section, Section 2.4 is an extension of the work done

in Ref. [31].

2.4.1 Fragmentation Correlation Matrix

Following Ref. [31], the X of Equation 2.2 is replaced with a single, on-shell

particle, �the spectator,� with quantum numbers equal to that of the target. Unfor-

tunately, Ref. [31] lacks three important aspects: 1) the results are all integrated over

transverse momenta, 2) the model is only for π+π− pairs, 3) the l = 2 states for the

Collins function H
⊥|l,m〉
1 are all zero. While solving the third point, i.e. developing

a model with non-zero l = 2 states for the Collins function, is outside the scope of

this dissertation, the �rst two de�ciencies are solved in this section, Section 2.4. The

TMD fragmentation functions can be computed by starting with the same fragmen-

tation correlation function but without introducing the integration over transverse

momentum. Additional �nal states can be included by modifying the vertex function

and allowing the parameters to depend on the quark �avor.
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A certain subtlety regarding the choice of usingMh orM2
h as a dependent variable

is worth a comment. When using Mh instead of M2
h , an extra factor of 2Mh must

be included. The subtlety is whether this factor is included in the de�nition of the

fragmentation functions, or is considered part of the overall phase space factor for the

cross section. In this work, the fragmentation functions are de�ned to be di�erential

with respect to Mh, and the extra factor of M2
h is included in the phase space factor

of the cross section.

The speci�c expression for the correlator in this model is given in Equation 19 of

Ref. [31]. Setting the quark mass to zero (as it done later in Ref. [31]), the correlator

is

∆q(k, Ph, R) =

{
|F s|2 e−2 k2

Λ2
s /k

(
/k − /P h +Ms

)
/k

+ |F p|2 e−2 k2

Λ2
p /k /R

(
/k − /P h +Ms

)
/R/k

+ F s∗F pe
−2 k2

Λ2
sp /k

(
/k − /P h +Ms

)
/R/k

+ F sF p∗e
−2 k2

Λ2
sp /k /R

(
/k − /P h +Ms

)
/k

}

× 1

(2π)3

1

k4
δ
(
(k − Ph)

2 −M2
s

)
e
−2

k2
T

Λ2
b , (2.100)

where Ms is the mass of the spectator, F s/p are the vertex functions, and Λs,p,sp,b

are inverse slopes for the k2 and k2
T cut-o�s. Note, this correlator has an extra k2

T -

cuto�, with inverse slope Λb, than that in Ref. [31]. The extra factor was found to be

necessary in numerical studies, and the inverse slope is given a subscript b designating

that it a�ects both s and p waves, and likewise their interference.

Implicit in Equation 2.100 is the assumption that the masses of both hadrons h1

and h2 are equal, i.e. m1 = m2. In case m1 6= m2, the dihadron propagator needs to

include additional terms. E�ectively, every /R in Equation 2.100 would be replaced

with a new quantity. Such computation is outside the scope of this dissertation, and
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thus the computations of this section, Section 2.4, are only be applicable to producing

hadrons with approximately equal mass. Thus, it will be assumed m1 = m2, and the

hadron mass is thus de�ned as m := m1.

The inverse slopes in Equation 2.100 are parametrized as

Λs,p,b = αs,p,bz
βs,p,b(1− z)γs,p,b , (2.101)

2

Λ2
sp

=
1

Λ2
s

+
1

Λ2
p

. (2.102)

The exponential form of the cuto� makes the inverses Λ−1 analogous to the b-slope

parameters in exclusive vector meson production [62], and are also related to the

variance parameter in the so called �Gaussian Ansatz� for the kT -dependence of the

fragmentation functions.

The scalar vertex function is just a constant, F s = fs, one of the parameters of

the model. The p-wave vertex function for pion-pion dihadrons is de�ned as

F p = fρ

(
M2

h −M2
ρ

)− iΓρMρ(
M2

h −M2
ρ

)2
+ Γ2

ρM
2
ρ

+ fω
(M2

h −M2
ω)− iΓωMω

(M2
h −M2

ω)
2
+ Γ2

ωM
2
ω

− if ′ω

√
λ (M2

ω,M
2
h ,m

2
π)Θ (Mω −mπ −Mh)

4πΓωM2
ω

4
√

4M2
ωm

2
π + λ (M2

ω,M
2
h ,m

2
π)
, (2.103)

λ
(
M2

ω,M
2
h ,m

2
π

)
=

[
M2

ω − (Mh +mπ)
] [
M2

ω − (Mh +mπ)
]
, (2.104)

while for kaon-kaon dihadrons it is

F p = fφ

(
M2

h −M2
φ

)− iΓφMφ(
M2

h −M2
φ

)2
+ Γ2

φM
2
φ

. (2.105)

The spectator mass Ms is assumed proportional to Mh. There are a total of 14 free

parameters thus far for pion-pion dihadrons, and two less for kaon-kaon dihadrons,

since the quark mass is �xed at zero. The parameters are speci�cally the 9 parameters
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αs,p,b, βs,p,b, γs,p,b, involved in the z dependence of the Λ slopes, the spectator mass

factor, and the couplings fs, fρ, fω, fω′ , and fφ.

Using the properties of gamma matrices, the correlator can be rewritten as

∆q(k, Ph, R) =

{
|F s|2 e−2 k2

Λ2
s

[
Msk

2 +
(
k2 − 2(k · Ph)

)
/k + k2 /P h

]

+ |F p|2 e−2 k2

Λ2
p

[
Msk

2R2 − 2k2
(
(R · k)− (R · Ph)

)
/R− k2R2 /P h

+
(
4(R · k)

(
(R · k)− (R · Ph)

)
+ 2R2(k · Ph)− k2R2

)
/k
]

+ 2Re [F s∗F p] e
−2 k2

Λ2
spMs

[
2(k ·R)/k − k2 /R

]

+ 2Im [F sF p∗] e
−2 k2

Λ2
sp

[(
k2 − 2(k · Ph)

)
/R/k + 2(R · k)/P h/k − k2 /P h /R

]

+ (F sF p∗) e
−2 k2

Λ2
sp

[
2
(
(R · k)− (R · Ph)

)
k2

]}

× 1

(2π)3

1

k4
δ
(
(k − Ph)

2 −M2
s

)
. (2.106)

Note, when applying the integral in Equation 2.100, the δ-function in of Equation

2.106 forces the on-shell condition of k2,

k2 =
z

1− z
|kT |2 +

M2
s

1− z
+
M2

h

z
, (2.107)

and introduces an extra face space factor of (2zP−h )−1. Equation 20 of Ref. [31] can

be derived from the above Equation 2.106 by integrating over d2kT and noting

d2kT = |kT |d|kT |dφk =
d|k2

T |
2

dφk. (2.108)

Equation 20 of Ref. [31] additionally replaces dφk with 2π, and has evaluated the

δ-function and thus includes the on-shell condition and extra phase space factor.
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2.4.2 Model Prediction for Fragmentation Functions

The fragmentation functions are computed according to the trace identities given

in Equations 2.39 and 2.40. Expressions for these fragmentation functions can then

be expanded in partial waves via Equations 2.42 and 2.43, to yield the functions D|l,m〉
1

and H⊥|l,m〉
1 .

Substituting Equation 2.106 into Equation 2.39 yields the model estimate

D1 =
|R|

16π2Mhk4

{
|F s|2 e−2 k2

Λ2
s

[
(1 + z)k2 − 2(k · Ph)

]

+ Re [F s∗F p] e
−2 k2

Λ2
spMs

[
4(k ·R)− zζk2

]

+ |F p|2 e−2 k2

Λ2
p

[(
4(R · k)− zζk2

)(
(R · k)− (R · Ph)

)

−R2
(
(1 + z)k2 − 2(k · Ph)

)]}
, (2.109)

dependent on z, kT , Mh, cosϑ, (φR − φk). Note that D1 can be written as

D1 = τss |F s|2 e−2 k2

Λ2
s + τspMsRe [F s∗F p] e

−2 k2

Λ2
sp + τpp |F p|2 e−2 k2

Λ2
p , (2.110)

with

τss =
|R|

16π2Mhk4

(
(1 + z)k2 − 2(k · Ph)

)
, (2.111)

τsp =
|R|

16π2Mhk4

(
4(k ·R)− zζk2

)
, (2.112)

τpp =
(
(R · k)− (R · Ph)

)
τsp −R2τs. (2.113)
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It is useful to note the following products [18]

R · Ph =
m2

1 −m2
2

2
, (2.114)

k · Ph =
M2

h

2z
+ z

k2 + |kT |2
2

, (2.115)

k ·R =
1

z
(Ph ·R) +

ζ

2
(Ph · k)− |kT ||RT | cos(φR − φk), (2.116)

P 2
h = M2

h , (2.117)

R2 =
m2

1 +m2
2

2
− M2

h

4
, (2.118)

intermediate quantities,

|RT | = |R| sinϑ, (2.119)

|R|2 =
M2

h

4
− m2

1 +m2
2

2
+

(m2
1 −m2

2)
2

4M2
h

, (2.120)

ζ =
1

Mh

(√
m2

1 + |R|2 −
√
m2

2 + |R|2 − 2|R| cosϑ

)
, (2.121)

and light cone coordinates

zk− =
2

ζ
R− = P−h , (2.122)

R+ =
1

P−h

(
m2

1 −m2
2 −

ζ

2
M2

h

)
, (2.123)

k+ =
z (|kT |2 + k2)

2P−h
, (2.124)

P+
h =

Mh

2P−h
. (2.125)

Note that R2 is the Lorentz invariant R2 := RµRµ, while |R| is the magnitude of

the spatial components of Rµ, and |RT | is the magnitude of the transverse (x, y)

components of R.
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Applying the partial wave expansion of Equation 2.42 to D1 in Equation 2.109

yields the expressions

16π2Mhk
4

|R| D
|0,0〉
1 =

(
z2|kT |2 +M2

s

1− z

)[
|F s|2 e−2 k2

Λ2
s −R2 |F p|2 e−2 k2

Λ2
p

]

+
(
ΥD

|0,0〉
1

sp

) [
Re [F s∗F p] e

−2 k2

Λ2
sp

]

+
(
ΥD

|0,0〉
1

pp

) [
|F p|2 e−2 k2

Λ2
p

]
, (2.126)

16π2Mhk
4

|R| D
|1,1〉
1 = −2Ms|R||kT |

[
Re [F s∗F p] e

−2 k2

Λ2
sp

]

+
(
ΥD

|1,1〉
1

pp

) [
|F p|2 e−2 k2

Λ2
p

]
, (2.127)

16π2Mhk
4

|R| D
|1,0〉
1 = −2

Ms|R|
zMh

(
M2

h + z2|kT |2
) [

Re [F s∗F p] e
−2 k2

Λ2
sp

]

+
(
ΥD

|1,0〉
1

pp

) [
|F p|2 e−2 k2

Λ2
p

]
, (2.128)

16π2Mhk
4

|R| D
|2,2〉
1 =

1

3
|kT |2|R|2

[
|F p|2 e−2 k2

Λ2
p

]
, (2.129)

16π2Mhk
4

|R| D
|2,1〉
1 =

2

3

|kT ||R|2
zMh

(
M2

h + z2|kT |2 +
1

2
z2k2

)[
|F p|2 e−2 k2

Λ2
p

]
,

(2.130)
16π2Mhk

4

|R| D
|2,0〉
1 =

(
2

3

|R|2
z2M2

h

(
M2

h + z2|kT |2
) (
M2

h + z2|kT |2 + z2k2
)

− 4

3
|kT |2|R|2

)[
|F p|2 e−2 k2

Λ2
p

]
. (2.131)

with D|l,−m〉
1 = D

|l,m〉
1 in this model, and Υ functions

ΥD
|0,0〉
1

sp =

(
Ms

z

) [
Mh

(
1 +

z2|kT |2
M2

h

)(√
m2

1 + |R|2 −
√
m2

2 + |R|2
)

+ 2
(
m2

1 −m2
2

)
]
, (2.132)
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ΥD
|0,0〉
1

pp =
1

4z2M2
h

((√
m2

1 + |R|2 −
√
m2

2 + |R|2
)2

+
4

3
|R|2

)(
M2

h + z2|kT |2
)

×
(
M2

h + z2|kT |2 + z2k2

)
+
m2

1 −m2
2

2z2Mh

(√
m2

1 + |R|2 −
√
m2

2 + |R|2
)

×
(
z2k2 + (5− 4z)

(
M2

h + z2|kT |2
) )

+ 2

(
1− z

z

) (
m2

1 −m2
2

)2

+
4

3
|kT |2|R|2, (2.133)

ΥD
|1,1〉
1

pp = −1

z
|kT ||R|

(
(5− 4z)

(
m2

1 −m2
2

)
+

1

Mh

(√
m2

1 + |R|2 −
√
m2

2 + |R|2
)

×
(
M2

h + z2|kT |2 +
1

2
z2k2

) )
, (2.134)

ΥD
|1,0〉
1

pp = − |R|
2z2M2

h

(
M2

h + z2|kT |2 + z2k2

)[(√
m2

1 + |R|2 −
√
m2

2 + |R|2
)

× (
M2

h + z2|kT |2
)

+ 2Mh

(
m2

1 −m2
2

)
]
. (2.135)

The Υ functions depend on the mass di�erence between the two produced hadrons

(m1 −m2), and converge to zero when the di�erence is much smaller than the other

mass scales (Mh, |R|, k). Although, earlier it was assumed m1 = m2, the above Υ

functions give a part of the needed correction for non-equal masses.

Proceeding in a similar manner for H⊥
1 , i.e. substituting Equation 2.100 into

Equation 2.40, yields the model estimate

H⊥
1 =

|R|
8π2k4

( (
k2 − 2(k · Ph)

)
R+ + 2(R · k)P+

h

− (
k2P+

h +
(
k2 − 2(k · Ph)

)
k+

) |R|
|kT | sinϑe

i(φR−φk)

)[
Im [F s∗F p] e

−2 k2

Λ2
sp

]
,

(2.136)
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again dependent on z, kT , Mh, cosϑ, (φR − φk). The partial wave expansion is

8π2k4

|R| H
⊥|0,0〉
1 =

1

2z

{
2

(
z(1− z)k2 − z2|kT |2

)(
m2

1 −m2
2

)

+Mh

(
2M2

h + z (2z − 1) k2 + 2z2|kT |2
)

×
(√

m2
1 + |R|2 −

√
m2

2 + |R|2
) }

×
[
Im [F s∗F p] e

−2 k2

Λ2
sp

]
, (2.137)

8π2k4

|R| H
⊥|1,1〉
1 = − |R||kT |

(
k2 + |kT |2

)( (
1− z2

)
k2 − z2|kT |2

)

×
[
Im [F s∗F p] e

−2 k2

Λ2
sp

]
, (2.138)

8π2k4

|R| H
⊥|1,0〉
1 =

1

z
Mh|R|

(
zk2 − 2

(
M2

h + z2(k2 + |kT |2)
) )

×
[
Im [F s∗F p] e

−2 k2

Λ2
sp

]
, (2.139)

8π2k4

|R| H
⊥|1,−1〉
1 = −M2

h |R||kT |
[
Im [F s∗F p] e

−2 k2

Λ2
sp

]
. (2.140)

Note that H⊥|0,0〉
1 is zero in the case of m1 = m2.

2.4.3 Flavor Dependence

Note that the fragmentation functions computed in Section 2.4.2 are all based on

the correlator in Equation 2.100 which has a �avor index. The �avor index is not

carried through in the subsequent equations for sake of brevity, as the fragmentation

functions for each �avor have identical form. The possible di�erence in the �avors is

re�ected in the ability to make di�erent choices for the parameter per each �avor, as

well as a possible change in sign of the 3-vector R.

In applying the model to π+π−-dihadrons, which includes SIDIS ρ0 production, it

is su�cient to use two sets of parameters, as isospin relations give that u→ π+π−X

has the same correlator as d̄ → π+π−X, d → π−π+X, ū → π−π+X. CP symmetry
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(replacing a quark with its anti-quark partner) also implies that the correlator of

s → π+π−X is equal to that for s̄ → π−π+X. Thus one has a set of parameters for

u and s, and all others �avors are either equal or equivalent up to the sign of the R.

For π+π0 production, one again has the �avors u and d̄ equivalent, and separately

d and ū are equivalent, though isospin symmetry gives no relation between u and d.

One call also posit non-zero parameters for s �avor, in which case s̄ is again related

to s by changing the sign of R. Given the parameters for π−π0 production, isospin

symmetry (equivalently CP symmetry) speci�es all the parameters for π+π0.

For K+K− production, one again can use three sets of parameters, u, d, s, and

the anti-quark �avors are each related to their conjugate via changing the sign of R.

2.4.4 Numerical Results

Speci�c numerical results are computed using the TMDGen Monte Carlo generator,

described later in Section 3.2. Thus, the numeric results for the above computed

model, as well as the optimized parameter sets, are given in Section 3.2.5.
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CHAPTER III

Numerical Methods

Two essential numerical tools are covered in this chapter. First, Section 3.1 de-

scribes a smearing and acceptance correction method, while the new Monte Carlo

generator TMDGen is described in Section 3.2. A signi�cant component of TMDGen is

the inversion of the equations of Section 2.1.4, such that particle momenta can be

determined from the cross section variables. It is hoped that the TMDGen will not

only be useful for the analysis in this dissertation, but will also be useful for others

analyses at various experiments and for theorists interpreting various SIDIS results.

3.1 Acceptance and Smearing Corrections

While theoretically one is interested in the true angular distribution of the pro-

duced particles, the Hermes detector does not have a full 4π angular acceptance.

Additionally, higher order QED e�ects, brehmsstrahlung and detector resolution can

smear the values of the measured variables. Estimating the true angular moments,

given smeared data within acceptance, is the subject of this section. Note, for the

actual dihadron analysis of this dissertation, smearing e�ects are negligible. However,

the following method is applicable either with our without the presence of signi�cant

smearing. The methods described in this section, Section 3.1, are based on the au-
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thors work in Refs. [63, 64]. Furthermore, the method utilized in Ref. [65] can be

shown to be a special case of the method described in Section 3.1.2.

3.1.1 Fredholm Integral Equation

To quantitatively discuss the e�ect of acceptance and smearing, it is necessary

to introduce three quantities: p
(
x(T )

)
, the true distribution, i.e. the distribution

of the true variables, as one would measure with a perfect, 4π detector; p
(
x(R)

)
,

the reconstructed distribution or the distribution of the reconstructed variables; and

p
(
x(R)

∣∣ x(T )
)
, the conditional probability of reconstructing certain values of the vari-

ables given their true value. The D-dimensional vectors x(T ), x(R) include the D

parameters with which the cross section is di�erential. For simplicity, it is assumed

in the following section that the domain of x(T ) and x(R) are identical, though this is

not necessary for the method.

From basic laws of probability, the relationship between the densities is

p
(
x(R)

)
= η

∫
dDx(T ) p

(
x(R)

∣∣ x(T )
)
p
(
x(T )

)
, (3.1)

with

1

η
=

∫
dDx(R)dDx(T ) p

(
x(R)

∣∣ x(T )
)
p
(
x(T )

)
. (3.2)

The proportionality constant η is required to ensure that both p
(
x(R)

)
and p

(
x(T )

)

are normalized probability distributions, as it is possible that not all true data will be

reconstructed. However, the absolute normalization is not relevant for the purpose of

this dissertation, and we will focus on extracting ηp
(
x(T )

)
, a non-normalized distri-

bution. Once ηp
(
x(T )

)
is found, one can obtain p

(
x(T )

)
by enforcing normalization.
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One can interpret Equation 3.1 in terms of a smearing operator, mapping functions

of the true domain to function of the reconstructed domain,

g̃
(
x(R)

)
= S

[
g(x(T ))

]
, (3.3)

=

∫
dDx(T ) p

(
x(R)

∣∣ x(T )
)
g

(
x(T )

)
. (3.4)

Thus Equation 3.1 can be simply written as

p
(
x(R)

)
= S

[
ηp

(
x(T )

)]
. (3.5)

Note, data from the detector can be used to estimate p
(
x(R)

)
, and data from a

Monte Carlo, which includes the full simulation of the detector and all other e�ects

for which one desires to correct, can be used to estimate p
(
x(R)

∣∣ x(T )
)
. To obtain the

desired ηp
(
x(T )

)
, one needs to invert Equation 3.1. This equation, Equation 3.1, is a

Fredholm integral equation of the �rst kind, and the problem of solving for p
(
x(T )

)

belongs to the general class of inversion problems.

The inversion of Fredholm integral equations is a well studied problem, though

it has been shown to be ill-conditioned [66]. This means it is possible that slight

variations in p
(
x(R)

)
could cause drastically di�erent solutions for p

(
x(T )

)
. The

proof that the problem is ill-conditioned involves showing that the eigenfunctions

are, in general, degenerate. However, this is a worst case scenario, and the cases of

interest are not always so badly conditioned. Section 3.1.5 speci�cally considers the

e�ect of the poor conditioning within the context of the speci�c numerical method

used in this dissertation.

In some speci�c cases, smearing e�ects are found to be negligible, and one considers

p
(
x(R)

∣∣ x(T )
)
to have the form

p
(
x(R)

∣∣ x(T )
)

= δD
(
x(T ) − x(R)

)
ε
(
x(R)

)
. (3.6)
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As the δ-function removes the integral, one naively expects the solution to Equation

3.1 to be simply

ηp
(
x(T )

)
=
p
(
x(R)

)

ε (x(R))

∣∣∣∣∣
x(R)=x(T )

. (3.7)

However, one has neglected the fact that a change of variables would introduce extra

factors and one has naively assumed that the original choice of variables is the choice

leading to a factor of unity. Furthermore, in low density areas, ε may be zero (or

near zero), causing Equation 3.7 to be singular (or near singular). Thus for numeric

studies, it is generally best to represent acceptance as an an integral operator rather

than a simple distribution.

The proposed method of this section corrects for all e�ects which are included in

the data sample used to estimate p
(
x(R)

∣∣ x(T )
)
. Thus, whether or not a smearing

correction is applied depends on whether such an e�ect is included in the data set

used for estimating p
(
x(R)

∣∣ x(T )
)
. The mathematics of the correction method are,

however, the same regardless of which e�ects are included.

3.1.2 Solution Using Basis Expansion

To solve Equation 3.1, a �nite basis expansion is proposed. Let {fi(x)}N
i=0 be

a set of N basis functions, which can be assumed to be linearly independent with

respect to the L2 norm. In the context of this dissertation, the basis functions are

products of Legendre polynomials in cosϑ multiplied with sine and cosine functions,

the arguments of the sines and cosine functions being linear combinations of φh, φR,

and φS. Let the solution ηp
(
x(T )

)
and the conditional probability p

(
x(R)

∣∣ x(T )
)
be

restricted to this �nite basis,

ηp
(
x(T )

)
=

∑
i

αifi

(
x(T )

)
, (3.8)

p
(
x(R)

∣∣ x(T )
)

=
∑
i,j

Γi,jfi

(
x(R)

)
fj

(
x(T )

)
. (3.9)
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The Γ matrix, multiplied by a matrix taking into account the normalization of the

basis, is a representation of the acceptance and smearing, while α represents the �nal

�t parameters which one desires to estimate. Thus, the basis expansion allows one

to turn a di�cult integral inversion problem into a parameter estimation problem�a

much easier class of problems. Note, however, such a change does not remove the

inherent poor conditioning of the problem.

3.1.2.1 Fitting the Conditional Probability

The next step is to determine matrix Γ by minimizing the integrated squared error

(ISE),
∫
dDx(R)dDx(T )

[
p
(
x(R)

∣∣ x(T )
)−

∑
i,j

Γi,jfi(x
(R))fj(x

(T ))

]2

. (3.10)

It is helpful to de�ne

Bi,j =

∫
dDx(R)dDx(T ) p

(
x(R)

∣∣ x(T )
)
fi

(
x(R)

)
fj

(
x(T )

)
, (3.11)

Fi,j =

∫
dDx(T ) fi

(
x(T )

)
fj

(
x(T )

)
. (3.12)

Elements of the matrix F are simply the L2 overlaps between basis elements. This

implies F is symmetric, positive de�nite, and thus invertable. Elements of the matrix

B can be interpreted as the L2 overlaps between basis elements fi and smeared basis

elements S [fj]. Note that B is only symmetric in the case of symmetric smearing,

including the case of no smearing. One can show that B is positive semi-de�nite,

and the fact that B can have zero (or near zero) eigenvalues is exactly related to the

inherent ill-conditioned nature of the Fredholm equation.

Using Equations 3.11 and 3.12, one can reduce Equation 3.10 to

Tr
[
ΓFΓTF

]− 2Tr
[
ΓBT

]
+ const., (3.13)
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where the constant is meant with respect to Γ. The ISE is minimized when Γ =

F−1BF−1.

Note, ΓF = F−1B is the representation of the smearing operator restricted to

the space spanned by the basis functions. Speci�cally, given a function g(x(T )) =
∑

i βifi

(
x(T )

)
, the smeared function can be found by acting ΓF on the parameters

β, as

S
[
g

(
x(T )

)]
=

∫
dDx(T )p

(
x(R)

∣∣ x(T )
)
g

(
x(T )

)
, (3.14)

=

∫
dDx(T )

[∑
i,j

Γi,jfi

(
x(R)

)
fj

(
x(T )

)
] [∑

k

βkfk

(
x(T )

)
]
,(3.15)

=
∑

i,j,k

fi

(
x(R)

)
Γi,jβk

∫
dDx(T )fj

(
x(T )

)
fk

(
x(T )

)
, (3.16)

=
∑

i

(ΓFβ)i fi

(
x(R)

)
, (3.17)

=
∑

i

(
F−1Bβ

)
i
fi

(
x(R)

)
, (3.18)

assuming the integrals and sums are all convergent.

3.1.2.2 Fitting the True Distribution

To compute α, one again forms the ISE, this time based on Equation 3.7,

∫
dDx(R)

{
p
(
x(R)

)− S
[
ηp

(
x(T )

)] }2

. (3.19)

It is helpful to introduce the expectation value of the functions with respect to

p
(
x(R)

)
,

bi =

∫
dDx(R)p

(
x(R)

)
fi

(
x(R)

)
. (3.20)

The ISE of Equation 3.19 then reduces to

αTBTF−1Bα− 2αTBTF−1b + const. (3.21)
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The minimum occurs when

(
BTF−1B

)
α = BTF−1b. (3.22)

If
(
BTF−1B

)
is invertable, the solution for α is then

α =
(
BTF−1B

)−1
BTF−1b. (3.23)

If B is itself invertable, the solution reduces to

α = B−1b. (3.24)

In solving either of Equations 3.23 or 3.24, one typically does not directly compute

the inverse, but rather uses standard methods for solving matrix equations involving

either a QR or LU decomposition. A QR decomposition, using Householder trans-

formations, is considered the most stable method for solving for α.

An alternate derivation of Equation 3.23 can be found by computing the ISE

estimate of p
(
x(R)

)
, and then constructing the ISE. In this case, Equation 3.19 can

be written

ISE =

∫
dDx(R)

{
p
(
x(R)

)− S
[
ηp

(
x(T )

)] }2

, (3.25)

=

∫
dDx(R)

{ ∑

k

(
F−1b− F−1Bα

)
k
fk

(
x(R)

) }
, (3.26)

=
(
F−1b− F−1Bα

)T
F

(
F−1b− F−1Bα

)
, (3.27)

where the similarity with typical linear regression is more apparent. Minimizing

Equation 3.27 also results in Equation 3.23. However, this derivation makes clear the

need for the basis to be chosen such that both p
(
x(T )

)
and p

(
x(R)

)
are in the span,
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not just p
(
x(T )

)
. As p

(
x(R)

)
is not explicitly �t to the basis in the �rst derivation,

this subtlety is only apparent in the second derivation.

3.1.3 Uncertainty Calculation

For simplicity, in this section (Section 3.1.3) it will be assumed that both B and
(
BTF−1B

)
are invertable. The case they are not invertable is considered in Section

3.1.5, which details the computation of a pseudo-inverse, which can then be used in

the formulas of this section, Section 3.1.3. The principle equation used in computing

α is then

Bα = b. (3.28)

Three possible sources of uncertainty can be identi�ed: two from propagating the

uncertainty from B and b, and the third related to the inverse Hessian of the opti-

mization function, in this case the ISE. Let C(b) be the covariance matrix of b and

C
(B)
i,j;i′,j′ be the covariance 4-form of B. Also de�ne the matrix C ′(B)

C
′(B)
i,i′ =

∑

j,j′
C

(B)
i,j;i′,j′αjαj′ . (3.29)

The covariance of α, denoted C(α) can then be written as

C(α) = B−1C(b)B−T +B−1C ′(B)B−T +
(
BTF−1B

)−1
. (3.30)

The last term in Equation 3.30 is that arising from the inverse Hessian and does not

scale with statistics. In numerical studies, it has been shown that the �rst two terms

su�ciently quantify the relevant uncertainty, and that the �nal term is not meaning-

ful. Equation 3.30 followed from the standard methods of propagating uncertainty
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(i.e. covariance matrices). Note, implicit di�erentiation of Equation 3.28 is used to

�nd partial derivatives of elements of α with respect to elements of B.

3.1.4 Numerical Calculation

The matrix Γ, introduced in �tting the conditional probability, never needs to be

explicitly computed. Instead, only the matrices F and B and the vector b need be

estimated from available data. The matrix F can be computed analytically, while B

and b can be computed via Monte Carlo integration.

Given a set of data {x(R,k)}NR
k=1 drawn from p

(
x(R)

)
, i.e. the actual data from the

Hermes detector, the expectation value and covariance matrix can be estimated via

bi =
V

NR

NR∑

k=1

fi

(
x(R,k)

)
, (3.31)

(
Cb

)
j,j′ =

δj,j′

NR − 1

[
V 2

NR

NR∑

k=1

f 2
i

(
x(R,k)

)− (bi)
2

]
. (3.32)

The quantity V is the volume of the domain (assumed to be the same for both the

x(T ) and x(R) domains).

Computing B and its covariance requires careful preparation of the Monte Carlo

generator, as it is does not makes sense to discuss data drawn from a conditional

probability. However, if data is generated uniform in x(T ), then pMC

(
x(T )

)
= V −1.

One can then run this data through the simulation of the detector and the full data

reconstruction scheme, yielding data distributed according to some pMC

(
x(T ),x(R)

)
.

The conditional probability is numerically related to the joint distribution as

p
(
x(R)

∣∣ x(T )
)

=
pMC

(
x(T ),x(R)

)

pMC (x(T ))
= V pMC

(
x(T ),x(R)

)
. (3.33)
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Thus the matrix B can be written as

Bi,j = V

∫
dDx(R)dDx(T ) pMC

(
x(T ),x(R)

)
fi

(
x(R)

)
fj

(
x(T )

)
, (3.34)

where elements of B are simply expectation values of products of basis functions.

Note, that the factor of V in Equation 3.34 only a�ects the normalization of α, and

thus can be absorbed into the yet unknown normalization factor.

Given data {x(T,k),x(R,k)}NMC
k=1 drawn from a Monte Carlo prepared as described,

the matrix B and its covariance can then be computed via

Bi,j =
V 3

NMC

NMC∑

k=1

fi

(
x(R,k)

)
fj

(
x(T,k)

)
, (3.35)

(
CB

)
j,k;j′,k′ =

δj,j′δk,k′

Nε − 1

[
V 4

Nε

Nε∑

k=1

f 2
j

(
x(M,k)

)
f 2

k

(
x(T,k)

)− (Bj,k)
2

]
. (3.36)

Once the quantities B, b and their covariance are computed via Equations 3.31,

3.32, 3.35, and 3.36, the vector α and its covariance can be found via Equations 3.28

and 3.30. The largest amount of the computation time is spent in summing over the

two data samples to compute B and b, though in general the entire algorithm is quite

fast.

3.1.5 Inverting the Matrix

While naively one might choose the set of basis functions to exactly match the

modulations occurring in the cross section, one should also consider including extra

terms to capture additional acceptance e�ects, i.e. one needs to represent well both

p
(
x(T )

)
and p

(
x(R)

)
by the chosen basis. For example, one can consider including

additional terms with the same azimuthal dependence as the terms from the cross

section, but with a di�erent Legendre polynomial of cosϑ. The side e�ect of including

additional basis functions, however, is that the matrix B tends to be even more
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poorly conditioned. However, the matrix B can be poorly conditioned even without

increasing the number of basis functions.

To invert B, or to compute an estimate of a pseudo-inverse, a technique is used

which is common in dimensional reduction problems. Let N denote the dimension

of B, and let the m × m identity matrix be denoted Im, for any m > 0. Note

that B is positive semi-de�nite, and thus the eigenvalues of B are non-negative and

the eigenvectors are orthogonal. Consider the eigenvalue decomposition of B, B =

V DV T , where D is diagonal and V TV = V V T = IN .

Next, considers the n largest eigenvalues, with n chosen such that the sum of

the n largest eigenvalues equals a certain fraction of the sum of all eigenvalues. For

the case of this dissertation, the fraction is chosen to be 95%. One then de�nes V ′,

an N × n matrix whose columns are the eigenvectors corresponding to the n largest

eigenvalues, as well as D′, an n×n matrix of the n largest eigenvalues. One then has

B = V DV T ≈ V ′D′V ′T . Note that while V ′TV ′ = In, one has V ′V ′T 6= IN .

It can be shown that the matrix equation Bα = b has solution

α = V ′ (D′)−1
V ′T b, (3.37)

and thus one can use B−1 ≈ V ′ (D′)−1 V ′T as a pseudo-inverse. In practice, QR

decomposition leads to more stable estimates of α than using Equation 3.37. However,

in propagating the uncertainty, the reverse is true. In this case, utilizing the pseudo-

inverse of B is more stable than using the inverse computed from QR or any other

matrix decomposition.

3.2 The TMDGen Generator

For systematic studies, it is necessary to either generate data according to the

TMD SIDIS dihadron cross section, or to at least evaluate this cross section for given
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data points. Although Pythia [67] includes SIDIS dihadron production, no model

is included for the angular dependence. In fact, no Monte Carlo generator has been

previously available for the full angular dependence.

A limited generator, known as gmctrans [68], had been developed in FORTRAN

by other members of the Hermes collaboration. This generator only included SIDIS

single hadron production and was also restricted to the Gaussian ansatz for the pT and

kT dependence for each distribution and fragmentation function. The generator also

had several other disadvantages. Speci�cally, the program design made it di�cult to

extend to other cases, due to a large number of FORTRAN common blocks, exacer-

bated by the fact that the code was linked to a large number of other generators. The

design did also not allow for the separation from the rest of the standard Hermes

software, which is necessary for any broad use by other experiments or theorists.

For these reasons, a new generator, denoted TMDGen, has been developed. The

generator is not simply a porting of the older FORTRAN code, but a complete re-

design into an object oriented framework. Many advantages of the more modern

language, such as class inheritance, namespaces, encapsulation, and longer names al-

low for cleaner, better organized code. The library is designed to be dependent on

as few other libraries as possible and can both operate independent of the Hermes

software suite and can connect to the Hermes processes chain. Additionally, the new

TMDGen fully models the intrinsic transverse momenta, pT , kT , and places no model

assumptions on their distribution.

The new generator includes SIDIS production of identi�ed single hadrons, hadron

pairs, and vector mesons, assuming a polarized electron or positron beam and �xed,

polarized, proton target. The results of the generator can serve as input into a simu-

lation of a detector, such as by using GEANT, followed by the usual data processing

chain of an experiment.
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The remainder of this chapter is organized as follows. Section 3.2.1 describes the

basic methodology of the generator. Details regarding the computation of the track

momenta from the cross section variables are given in Section 3.2.2. Code organization

is discussed in Section 3.2.3. Section 3.2.4 describe models currently implemented in

TMDGen. Finally, Section 3.2.5 compares numerical results from TMDGen with those

from a Pythia production tuned to Hermes kinematics [69, 70, 71].

3.2.1 Methodology

The basic method of generation is the simple acceptance/rejection method. The

method is as follows. Let x denote the independent variables, and let f(x) be the

distribution from which one desires to generate data. Let g(x) be an additional

distribution from which one can already generate data, generally chosen to be uniform.

Also, let M > 0 be given such that f(x) ≤Mg(x) for all x. Let Xg be a set of data

generated from g. A data set following the distribution of f can then be determined

by rejecting data points x∗ ∈ Xg such that

f(x∗)
Mg(x∗)

≤ r, (3.38)

where r is uniformly distributed in [0, 1).

In the case of TMDGen, f of Equation 3.38 is the cross section for the given process.

The distribution g(x) is set to unity, (though this can be overwritten by de�ning a

new child class of the variable thrower class) and M is set to max f(x). As M is not

known exactly, it is estimated by randomly sampling the distribution f , i.e. the cross

section.

For single hadron production, the independent variables x are x, y, z, Ph⊥, φh,

ψ, pT , and φpT
, and for dihadron production x additionally includes Mh, cosϑ and

φR. These quantities are de�ned in Section 2.1.4, with the exception of ψ, which is
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merely the rotation angle from coordinate system Ib to Ic, or equivalently, minus the

azimuthal angle of the scattered lepton in coordinate system Ib.

In the case that the lepton beam is purely in the ẑ direction in coordinate system

Ia, i.e. coordinate systems Ia and Ib are identical, a simple relation exists between ψ

and φe2 , the azimuthal angle of the scattered lepton in coordinate system Ia. Specif-

ically ψ = −φe2 . However, allowing the beam to have any direction in coordinate

system Ia (i.e. a generic relation between systems Ia and Ib) results in a more com-

plicated expression. Note, again assuming coordinate systems Ia and Ib are identical,

and assuming very small θγ, the relation also holds that φS ≈ ψ−π/2. These relations
have been useful in debugging TMDGen and may prove useful to others debugging code

designed to link with TMDGen.

As the cross section is chosen di�erential with respect to the polar coordinates

pT , φp rather than the Cartesian pT , an additional factor of pT must be included in

the phase space. Additionally, a factor of ~2/c2 = 389.379 µbarns GeV2 is included

to convert the cross section to units of µbarns.

Note that the target polarization is given with respect to the lepton beam, with

the magnitude of transverse polarization being P⊥ and of longitudinal polarization

P‖. The cross section is chosen di�erential with respect to ψ rather than φS, to avoid

the introduction of additional phase space factor due to specifying P‖, P⊥ rather than

S‖, S⊥ [36].

To determine φS, S‖, S⊥ from the given P‖, P⊥, ψ one just needs to transform the

polarization vector from frame Ia, where P‖, P⊥ are de�ned, to frame Id, where S‖,
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S⊥ are de�ned. The speci�c rotation matrices are




S⊥ cosφS

S⊥ sinφS

−S‖




=




cos θγ 0 − sin θγ

0 1 0

sin θγ 0 cos θγ




×




cosψ − sinψ 0

sinψ cosψ 0

0 0 1







cos θe1 0 − sin θe1

0 1 0

sin θe1 0 cos θe1




×




cosφe1 sinφe1 0

− sinφe1 cosφe1 0

0 0 1







0

−P⊥

−P‖



, (3.39)

with θγ being the angle between the beam lepton's momentum and the virtual pho-

ton's momentum. Equation 3.39 reduces to Equation 4 of Ref. [36] in the case that

θe1 = 0, φe1 = 0. Multiplying the matrices in Equation 3.39 results in

S⊥ cosφS = P‖

(
cos θγ cosψ sin θe1 + sin θγ cos θe1

)

+ P⊥

(
sin θγ sin θe1 sinφe1 − cos θγ cosψ cos θe1 sinφe1

+ cos θγ sinψ cosφe1

)
, (3.40)

S⊥ sinφS = P‖

(
sinψ sin θe1

)
+ P⊥

(
sinψ cos θe1 sinφe1 − cosψ cosφe1

)
,

(3.41)
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from which S⊥, and φS can be computed, and

−S‖ = P‖

(
sin θγ cosψ sin θe1 − cos θγ cos θe1

)

+ P⊥

(
sin θγ cosψ cos θe1 sinφe1 + cos θγ sin θe1 sinφe1

− sin θγ sinψ cosφe1

)
, (3.42)

from which S‖ can be computed.

Although neitherQ2, Ph⊥, orW 2 is generated directly, the domain of the generated

variables can be restricted in order to keep these three variables within the physically

accessible range. This is done by directly computing these variables according to

Q2 = 2xyMEB, (3.43)

ν = yEB, (3.44)

W 2 = M2 + 2Mν −Q2, (3.45)

and rejecting events where these are out of a user speci�ed range.

Note that the cross section for single hadron production can be written

d6σ

dx dy dz dPh⊥ dψ
=

∫
d2pTd

2kT δ2

(
pT − kT − Ph⊥

z

)
×

d10σ

dx dy dz dψ dPh⊥ dpT dkT

, (3.46)

=

∫
d2pT

d10σ

dx dy dz dψ dPh⊥ dpT dkT

∣∣∣∣
kT =pT−Ph⊥/z

, (3.47)

and thus one can identify

d8σ

dx dy dz dψ dPh⊥ dpT

=
d10σ

dx dy dz dψ dPh⊥ dpT dkT

∣∣∣∣
kT =pT−Ph⊥/z

. (3.48)
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Similar expressions can be written for the dihadron cross section. To fully simulate the

pT and kT dependence, one can e�ectively remove the integrals from the cross section

in Section 2.2, include pT in the list of independent variables, and set kT to the value

required by the δ-function. To recover the physically realizable cross section, one

needs to use just the physically realizable variables, e�ectively performing a Monte

Carlo integration over pT .

3.2.2 Computation of Track Momenta

Once the independent variables, those denoted as x in preceding paragraphs, are

generated, it is necessary to invert the usual relations, Section 2.1.4, to determine the

momentum of the scattered electron and produced mesons. First the electron and

virtual photon momenta are determined, followed by the momentum of the center

of mass of the produced hadron system, and �nally, for dihadrons, the momenta of

measured particles.

3.2.2.1 Angles of the Scattered Electron

Using the de�nitions of the variables, Section 2.1.4, the energy and polar angle

of the scattered electron in the frame/coordinate system Ib, equivalently coordinate

systems Ic, is

E ′ = (1− y)EB, (3.49)

cos θe2 = 1− Q2

2(1− y)EB

= 1− xy

1− y

M

EB

. (3.50)

One can equivalently write

cos θe2 = 1− γ2y2

2(1− y)
, (3.51)

sin θe2 = ± y

1− y
γ

√
1− y − γ2y2

4
. (3.52)
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Note, a relation between θe2 and θγ can be show, speci�cally

sin θγ =
(1− y)EB√
ν2 +Q2

sin θe2 , (3.53)

=
E ′

|q| sin θe2 . (3.54)

Numerically, one computes θe2 from Equation 3.50 and θγ from Equation 3.53.

The momenta of the scattered lepton in coordinate system Ic has magnitude and

direction given by Equations 3.49 and 3.50, with the azimuthal angle being zero. To

determine the momenta in Ia, one just needs to apply the necessary transformations

between these coordinate systems.

3.2.2.2 Angles of the Meson System

The energy of the produced hadron system can be computed by inversion of the

kinematic variable de�nitions, and the momentum then directly follows from the

mass, speci�cally

Eh = yzEB, (3.55)

Ph =
√
E2

h −M2
h . (3.56)

In coordinate system Id, the momentum of the produced hadron system has polar

and azimuthal angles θγh, φh. Note, the angle θγh was de�ned in Equation 2.32. A

rotation about ŷ of θγ followed by a rotation about ẑ′ of −φe2 moves a vector from

this coordinate system to system Ia. Using vector and matrix notation, one can then

write

P̂
(Ia)
h

(
θ

(Ia)
h , φ

(Ia)
h

)
= Rbz′(−φe2)Rby(θγ)P̂

(Id)
h

(
θ

(I)
γh , φh

)
, (3.57)

from which the quantities θ(Ia)
h , φ(Ia)

h can be determined.
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It is also necessary to determine boost P (Id)
h to frame IIa to compute other di-

hadron variables. In frame Id, the four momentum is

(
P

(Id)
h

)µ

=
[
Eh, Ph sin θ

(I)
γh cosφh, Ph sin θ

(I)
γh sinφh, Ph cos θ

(I)
γh

]
, (3.58)

noting that Eh, Ph is de�ned in frame I, i.e Eh ≡ E
(I)
h , Ph ≡ P

(I)
h . The boost

parameters from I to II are

γ =
ν +M

W
, γβz =

|q|
W
. (3.59)

In frame IIa the x and y components are unchanged, while the energy and z compo-

nents are

E
(II)
h =

ν +M

W
Eh − |q|

W
Ph cos θ

(I)
γh , (3.60)

P
(IIa)
h,z =

ν +M

W
Ph cos θ

(I)
γh −

|q|
W
Eh. (3.61)

The magnitude of the three momentum in this frame is then

P
(II)
h =

√
P 2

h⊥ +
(
P

(IIa)
h,z

)2

. (3.62)

For other equations following, it is useful to note the light cone coordinates P+
h and

P−h in IIb and IIc are

P±h =
1√
2

(
E

(II)
h ± P

(II)
h

)
, (3.63)

=
1√
2

(
ν +M ∓ |q|

W

) (
zν ± Ph cos θ

(I)
γh

)
, (3.64)

(3.65)

One also has the relation that 2P+
h P

−
h = M2

h .
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3.2.2.3 Angles of the Decay Products

For single pseudo-scalar meson production, the hadron system is purely the sin-

gle meson, and the previous subsections are enough to determine all the measured

momenta based on the cross section variables. For dihadron production, one needs

to yet determine the momenta of the two measured hadrons. Computationally, one

transforms Rµ from reference frame IIIa, where it can be written directly, to frame

Ia. Then knowing Rµ and P µ
h , one can compute P µ

1 and P µ
2 . The four vector Rµ

in frame IIIa can be written as a function of angles ϑ, φR, and the relevant masses,

as [18]

Rµ =

[
m2

1 −m2
2

2Mh

, |R| cosφR sinϑ, |R| sinφR sinϑ, |R| cosϑ

]
, (3.66)

with

|R|2 =
M2

h

4
− m2

1 +m2
2

2
+

(m2
1 −m2

2)
2

4M2
h

. (3.67)

It should be noted that the Lorentz invariant R2 := RµRµ has the value

R2 =
m2

1 +m2
2

2
− M2

h

4
. (3.68)

One can boost to frame IIb via boost parameters

γ =
E

(II)
h

Mh

, γβz = −P
(II)
h

Mh

. (3.69)

The rotation matrix from frames IIb to IIa can best be expressed as functions of

the Cartesian three momenta P
(IIa)
h . The matrix represents a rotation about the x

axis, such that Ph is in the y-z plane, followed by a rotation about the y axis. The
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matrix can be written as

R(IIb→IIa) =




P
(IIa)
h,z

P
(IIa)
h,xz

−P
(IIa)
h,x P

(IIa)
h,y

P
(IIa)
h,xz P

(IIa)
h

P
(IIa)
h,x

P
(IIa)
h

0
P

(IIa)
h,xz

P
(IIa)
h

P
(IIa)
h,y

P
(IIa)
h

−P
(IIa)
h,x

P
(IIa)
h,xz

−P
(IIa)
h,y P

(IIa)
h,z

P
(IIa)
h,xz P

(IIa)
h

P
(IIa)
h,z

P
(IIa)
h




, (3.70)

with

P
(IIa)
h,xz =

√(
P

(IIa)
h,x

)2

+
(
P

(IIa)
h,z

)2

. (3.71)

To boost to Id, one simply changes the sign of βz in Equation 3.59. One can

then transform Rµ from Id to Ia with the same rotation matrices as those given in

Equation 3.57. Once Rµ and P µ
h are determined, one can then determine P µ

1 , P µ
2

according to

P µ
1 =

1

2
Ph +Rµ, (3.72)

P µ
2 =

1

2
Ph −Rµ. (3.73)

3.2.3 Code Organization

One of the guiding principles in writing the generator, besides including the nec-

essary cross sections, is to allow a very general framework that can be updated and

improved with the least disturbance to the existing code. The generator is written

in C++ and uses object orient design capabilities to assist in this goal. Each major

task or task category is associated with a parent class, such as throwing the depen-

dent variables, evaluating a distribution or fragmentation function, and evaluating a

term of the cross section or the entire cross section. Specialization is accomplished

by de�ning child classes. For example, there exists a child class of the distribution

function class for each implemented model, while for the cross section class, there
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exists separate child classes for pseudo-scalar and dihadron production. Generaliz-

ing TMDGen to related TMD processes, such as in proton-proton collisions or in e-p

collider, would only require de�ning additional child classes where needed.

In a few cases, specializations are not provided by children class, but rather by

de�ning additional output functions. For example, the main controlling TMDGen class

includes functions for each possible output type, current choices include ROOT [72]

and DAD/ADAMO [73]. The use of preproccessor #define and #ifdef allow one to

select which output options are compiled into the code, and users from additional

experiments need only to de�ne an extra function, detailing how to output to their

format, and disable ROOT and/or DAD/ADAMO by unde�ning the necessary macros.

3.2.4 Implemented Models

A variety of models are available for both distribution and fragmentation func-

tions, with full lists given in Tables 3.1 and 3.2. Note that some of the f1 models are

duplicated by allowing access to the LHAPDF library. However, use of LHAPDF re-

quires the user to have installed this library, while the other f1 functions are provided

within the TMDGen package. To minimize dependencies on other libraries, access to

(and thus dependence on) the LHAPDF libraries can be turned o� via a compile time

option. All other distribution and fragmentation models are fully packaged within

TMDGen.

3.2.5 Comparison with Other Generators

In this section, 1D distributions of each of the 5D kinematic variables from both

Pythia and TMDGen are compared. The GRV98 model [77] is used for the unpolarized

f1 distribution function, and the spectator model is used for the unpolarized D
|0,0〉
1

fragmentation function. The spectator model fragmentation function parameter sets

for the pion and kaon-pair dihadrons under consideration are chosen (by hand) to
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Distribution Functions Model Identi�er
f1 CTEQ [74]
f1 LHAPDF [75]
f1 BCR08 [76]
f1 GRV98 [77]
g1 GRSV2000 [78]

f1T , h⊥1T , h1 Torino Group [79, 80, 81, 82, 83]
f1, g1, g1L, g1T , f1T , h1, h⊥1 , h⊥1T Pavia Spectator Model [31]

Table 3.1: Models of distribution function available in TMDGen.

Frag. Functions Final State Model Identi�er
D1 pseudo-scalar fDSS [84, 85]
D1 pseudo-scalar Kretzer [86]

D1, H⊥
1 dihadron Spectator Model (Section 2.4)

D1, H⊥
1 dihadron Set given partial wave proportional

to any other partial wave

Table 3.2: Models of fragmentation function available in TMDGen.

match the given Pythia distributions, while the Pythia distributions have been op-

timized to match Hermes kinematics. The actual values of the parameters for the

spectator model are given in Table 3.3. As the speci�c choices were obtained by

hand, it is possible that a more optimal set of parameters may exist. Note, the given

models poorly constrain the pT , kT distributions, meaning that it is possible to have

the measurable variables match fairly well for various choices of parameters, yet with

drastically di�erent 〈p2
T 〉, 〈z2k2

T 〉 values.
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ππ K+K−

Parameter u, d̄, d, ū u, ū d, d̄ s, s̄

αs 3.0 4.5 4.5 4.5
βs -0.751 -0.125 -0.125 -0.125
γs -0.193 -0.6 -0.6 -0.6
αp 7.0 0.0 0.0 4.5
βp -0.75 0.0 0.0 -1.125
γp -0.193 0.0 0.0 -0.6
αk 0.9 1.3 1.3 1.3
βk 0.125 0.6 0.6 0.6
γk -0.6 -0.8 -0.8 -0.8
Ms 1.5 3.0 3.0 3.0
fs 500.0 500.0 200.0 500.0

fρ, fφ 150.0 0.0 0.0 350.0
fω 0.63
fω′ 150.0

Table 3.3: Parameter sets for spectator model of dihadron production. Parameters for
the strange quark �avor in ππ production are set to zero. The quantities fω

and fω′ are not relevant for K+K− production, and thus the corresponding
entries in the above table are intentionally left blank.

The comparisons for the dihadrons related to the ρ-triplet and φ mesons are given

in Figures 3.2 through 3.4. The plots are made within the kinematic region

Q2 > 1 GeV4/c2, W 2 > 10 GeV2/c4,

0.023 < x < 0.4, 0.2 < y < 0.95,

0.2 < z < 0.8, 0.05 < Ph⊥ < 1.6 GeV/c,

with Mh < 1.6 GeV/c2 for the ππ dihadrons and Mh < 1.05 GeV/c2 for the K+K−

dihadrons.

In general, the 1D comparisons are quite close, except perhaps the x distribution.

This discrepancy in the x distribution is related to the �avor balance, and in par-
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ticular, the �avor dependence of f1, which is not a parameter being adjusted. Note,

the full 5D distribution shows some deviations from Pythia, but Pythia also fails

to match the full multivariate distribution seen in Hermes data. The multivariate

di�erences between TMDGen and Pythia are more clearly observed when comparing

within acceptance. Although the 1D plots match in 4π acceptance, they no longer

match as well within acceptance.

For the TMDGen generator, one can also plot the magnitude of the intrinsic trans-

verse momenta, pT = |pT | and kT = |kT |. It is common to consider the distribution

of zkT rather than that of kT . The resulting TMDGen distributions are given in Figure

3.5. Note that, for all dihadrons, it is required that pT ≈ zkT in order to obtain a

narrow Ph⊥ distribution. Likewise, the narrowness of the Ph⊥ distribution shows that

all dihadron subprocesses have similar pT and kT dependence.
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Figure 3.1: Comparison of 1D kinematic distributions from TMDGen and Pythia, in
4π, for π+π0 dihadrons. Listing the rows from top to bottom, and within
each row from left to right, the panels are respectively the x, y, z, Ph⊥,
and Mh distributions. TMDGen data is designated with blue circles, and
Pythia data designated with red open squares.

80



x
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

N
o

rm
al

iz
ed

 C
o

u
n

ts

0

0.02

0.04

0.06

0.08

0.1
TMDGen

s
Pythia, w/o K

y
0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
o

rm
al

iz
ed

 C
o

u
n

ts

0

0.005

0.01

0.015

0.02

0.025

TMDGen

s
Pythia, w/o K

z
0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
o

rm
al

iz
ed

 C
o

u
n

ts

0

0.01

0.02

0.03

0.04

0.05

0.06
TMDGen

s
Pythia, w/o K

hP
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
o

rm
al

iz
ed

 C
o

u
n

ts

0

0.01

0.02

0.03

0.04

0.05
TMDGen

s
Pythia, w/o K

hM
0.4 0.6 0.8 1 1.2 1.4 1.6

N
o

rm
al

iz
ed

 C
o

u
n

ts

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
TMDGen

s
Pythia, w/o K

Figure 3.2: Comparison of 1D kinematic distributions from TMDGen and Pythia, in
4π, for π+π− dihadrons. Panels and markers are as in Figure 3.1.
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Figure 3.3: Comparison of 1D kinematic distributions from TMDGen and Pythia, in
4π, for π−π0 dihadrons. Panels and markers are as in Figure 3.1.
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Figure 3.4: Comparison of 1D kinematic distributions from TMDGen and Pythia, in
4π, for K+K− dihadrons. Panels and markers are as in Figure 3.1.
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Figure 3.5: The pT and zkT distributions from TMDGen for all four dihadrons. Clock-
wise from upper left, the panels are for π+π0, π−π0, K+K−, and π+π−.
The distribution for pT is shown in blue circles, while zkT is shown in red
open squares.
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CHAPTER IV

Analysis

4.1 Experimental Setup

The Hermes spectrometer was located at the Hera storage ring from 1995

through 2007. Hermes utilized only the lepton storage ring, with the lepton beam

incident on a �xed gas target, while the other experiments at the Hera ring used

either just the proton storage ring (Hera-B) or both the proton and lepton rings

(H1and Zeus). Hera was located at the Deutsches Electronen Synchotron (DESY)

laboratory in Hamburg, Germany. In June of 2007, the Hera ring and the three

experiments still utilizing the ring (H1, Zeus, and Hermes) were decommissioned.

At this time Petra, the injection ring used to �ll Hera, began being used for other

purposes.

4.1.1 The Spectrometer

The Hermes spectrometer consisted of a large number of di�erent subsystems,

with the upper portion being nearly perfectly symmetric with the lower portion. A

schematic drawing, applicable for the 2002-2005 running period, is shown in Fig-

ure 4.1. Details of various components of the spectrometer can be found in many

sources, with most complete technical reference being Ref. [87]. Many Hermes PhD
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Figure 4.1: Schematic drawing of the 2002-2005 setup of the Hermes spectrometer.
Taken from Ref. [87].

dissertations also include detailed descriptions, e.g. [60, 88, 89, 38]. The components

most relevant for this analysis are discussed in the following paragraphs.

The Target The target consists of a gas �lled cell [90], the cell being an open ended

tube within the lepton beam pipe. During 2002-2005, the cell was 40 cm long and

had an elliptical cross section of 29 mm × 9 mm. The target cell could be �lled with

a variety of gases, including H2, D2, 3He, N2, Xe and Kr, with the heavier gases being

used near the end of the lepton �ll. The cell was accompanied by a pump system

to ensure the gas did not disperse into the lepton beam pipe, and the cell was also

continuously fed by an atomic beam source (ABS). The ABS utilized radio frequency

transitions between certain hyper�ne states to produce atoms with polarized nuclei

and unpolarized electrons. During 2002-2005, the nuclei were polarized transverse to

the direction of the incoming lepton beam [91], while in other years the nuclei were

either unpolarized or longitudinally polarized.
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Hodoscopes Three scintillating hodoscopes are present [92], identi�ed as H0, H1

and H2 in Figure 4.1. The three hodoscopes are made of paddles 1 cm thick and 9 cm

wide and are connected to photomultiplier tubes. The paddles are also overlapped 2-3

mm to increase e�ciency. H0 serves to veto particles originating from Hera's proton

beam. The H1 and H2 hodoscopes are used for time of �ight information. This, in

turn, can be combined with the momentum determination from the tracking systems

to compute the particle's mass, and therefore determine its identi�cation. Further-

more, 11 mm of lead is installed in front of H2 to aid in lepton/hadron separation.

The lead causes the lepton to shower, and thus leptons tend to deposit signi�cantly

more energy than hadrons. For this reason, H2 is also called the preshower.

Transition Radiation Detector (TRD) The TRD is designed to discriminate

between hadrons and leptons and consists of a 6 cm thick 2D matrix of dielectric

�bers. Electrons and positrons produce transition radiation which is measured in

proportional wire chambers. Pions also interact with the TRD through ionization,

though the amount energy deposited is much higher for leptons than for hadrons.

Calorimeter The electromagnetic calorimeter is designed to measure the energy of

electrons, positrons and photons. It consists of 840 lead-glass blocks (420 per detector

half) which are 9 cm square in cross section and 50 cm (18 radiation lengths) long.

As hadrons do not deposit much energy in the calorimeter, the energy deposited,

divided by the momentum determined by the tracking systems, can be used to dis-

tinguish leptons and hadrons. The calorimeter is also able to determine the position

of photons to about 0.5 cm [93]. Combining information from the TRD, preshower

and calorimeter allows a lepton-hadron separation e�ciency of about 98%, with a

contamination rate less than 2%.
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Ring Imaging �erenkov Detector The RICH is a dual radiator ring imaging

�erenkov Detector [94] and is designed to determine whether given hadrons are pions,

kaons, or protons. The two (dual) radiators are a wall of silica aerogel tiles and a

gas radiator volume of C4F10. The speed of light in the radiators is greater than the

typical speed of the particles, and thus a cone of �erenkov light is produced. This

light is re�ected by mirrors and detected by photomultiplier tubes. The opening angle

of the cone can be detected with a resolution of about 7.2 mrad. The distributions

of opening angle versus momenta for each particle type to not overlap over most

of the momentum range, which allows determination of the particle identi�cation.

Unfortunately, at low momentum the distributions begin to overlap, thus impeding

proper identi�cation. Kaons and protons cannot be distinguished from each other if

the momentum is below 2 GeV/c, and particle identi�cation is not reliable for tracks

with momenta below 1 GeV/c. An event level identi�cation procedure (EVT) was

also developed in 2007 [38], which superseded the next best algorithm, which is based

on direct ray tracing (DRT) [95]. The EVT algorithm is particularly advantageous

when the �erenkov rings from more than one particle overlap.

DIS Trigger Although not a speci�c hardware component, an e�cient trigger sys-

tem is utilized to decide which events to store. While a given event is being stored, the

detector cannot take new data, thus causing some dead time. One trigger, trigger 21

or the DIS trigger, requires coincident signals from the two forward hodoscopes (H1

and H2) and an energy deposition above a certain threshold in two adjacent columns

of the calorimeter. This trigger serves to identify candidate deep inelastic scattering

events through the detection of a high energy scattered lepton.
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4.1.2 Further Considerations

During portions of the 2002-2005 running period, the Hermes target chamber

was �lled with transversely polarized hydrogen with an average polarization of around

75%. For this reason, these years are known as the transverse target running period.

The lepton beam was longitudinally polarized, with an average polarization of about

85%. The beam energy was 27.6 GeV/c2. The lepton beam consisted of positrons

during 2002-2004 and of electrons in 2005.

During the transverse target running period, a transverse target magnet was ad-

ditionally installed. This magnet de�nes the quantization axis for the target po-

larization and also increased the relaxation time of the polarization. However, the

transverse target magnet was not included in the previously existing reconstruction

code, and two transverse magnet correction methods were implemented [96]. Later,

careful measurements of the �eld map were taken, and a new tracking code, denoted

HTC, incorporated all magnetic �elds and an advanced event level vertex �nding al-

gorithm. The analysis presented in this document utilizes the HTC procedure, while

Ref. [27] utilized the transverse magnet correction codes. The HTC algorithm deter-

mines a common vertex, given several tracks assumed to originate from a common

vertex. The algorithm also provides a measure of the probability that all tracks did

indeed originate from the common vertex, as well as the individual probability for

each given track having originated from the vertex.

The lepton beam energy has been found to vary slightly over time. However, a

correction method has been determined, based on the frequency and o�set of the radio

frequency cavities of the Hera accelerator. The fractional shift in energy between

the actual E and nominal E0 beam energy is

E − E0

E0

= − 1

α

δf

f
, (4.1)
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Year R.F. Freq. R.F. O�set
2002 500 260
2003 500 260
2004 500 300
2005 500 360

Table 4.1: Values used for the beam energy correction.

with α = 4.7× 10−4, and with f and δf being the frequency and o�set values for the

radio frequency cavities. The speci�c values of f and δf are given in Table 4.1.

4.2 Data Selection Requirements

Analyzable, polarized hydrogen runs are selected using the standard Hermes

burst lists. As a sanity check, the target type and polarization state are also checked

for each event. All tracks are required to be �long,� i.e. to reach the back portion of

the spectrometer, as well as to �ag trigger 21, the DIS trigger. Leptons are identi�ed

according to the sum of PID variables 3 and 5 being positive, while hadrons are

associated with negative values of this sum. The sum is related to a combined analysis

of four hardware components, including the RICH, the TRD (transition radiation

detector), preshower and calorimeter. Tracks with an absolute value of this sum

being larger than 100 are also rejected, as these values are considered spurious. Note

that photons are identi�ed as clusters in the calorimeter without associated charged

tracks and are distinct from neutrons due to the energy deposited.

It is also required that the event vertex, as determined by the HTC tracking

algorithm, be within ±20 cm of the center of the target, corresponding roughly to

the target length. A cleaner lepton sample is obtained by requiring the sum of PID

variables 3 and 5 be greater than unity for leptons. For π+π− and K+K− dihadrons,

it is required that the two hadron tracks have opposite charge. Hadronic identi�cation

is accomplished with the EVT method, or DRT if EVT fails. The lepton momentum
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Physical Object Cut
Front �eld clamp |Xoff + 172.0 tan θX | < 31 cm

Vertical lower limit (septum plate) |Yoff + 181.0 tan θY | < −7 cm
Rear �eld clamp |Yoff + 383.0 tan θY | < 54 cm

Rear clamp |Xpos + 108.0Xsl| < 100 cm
|Ypos + 108.0Ysl| < 54 cm

Calorimeter |Xpos + 463.0Xsl| < 175 cm
30 < |Ypos + 108.0Ysl| < 108 cm

Table 4.2: Fiducial volume cuts for charged particle tracks.

is required to be less than the beam energy. The momentum of pions is required to

be within 1 to 15 GeV/c, and for kaons 2 to 15 GeV/c. The upper hadron momentum

cut is to avoid spurious data, while the lower hadron momentum cut is required for

clean RICH identi�cation. The individual HTC track probabilities are also required

to be greater than 0.01, while the overall HTC vertex probability is required to be

greater than 10−5. To reduce background, a minimum value of 0.8 GeV/c2 for the

corrected cluster energy is also enforced, with the cluster energy correction described

in Section 4.2.1. A data quality bit mask of 0x427ffffd is used. This incorporates

a large number of common data quality parameters, with each bit being de�ned in

detail in Ref. [97].

Each track is also required to be within the standard Hermes �ducial volume.

For charged particle tracks, one de�nes tan θX and tan θY as the tangent of the angles

between the track momentum and the x̂ and ŷ axes in the Hermes coordinate

system, system Ia. The �ducial volume cuts depend on these angles, as well as the x

and y o�sets, slopes, and positions, (Xoff , Yoff , Xsl, Ysl, Xpos, Ypos) as given in the

Hermes production �les. The speci�c cuts are given in Table 4.2.

For energy clusters in the calorimeter without charged tracks, such as those caused

by photons, a di�erent set of �ducial volume cuts are used. In this case, the cuts are

based on the X and Y positions of the clusters, with the speci�c cuts given in Table
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Physical Object Cut
Calorimeter |X| < 125 cm

33 < |Y | < 105 cm

Table 4.3: Fiducial volume cuts for trackless calorimeter clusters.

4.3. The cuts are designed to ensure the clusters are not too near the edges of the

calorimeter.

In addition to the above selection requirements related to data quality and track

reconstruction, restrictions are also placed on the relevant kinematic variables. Specif-

ically, it is required that

Q2 > 1 GeV2/c4, 0.023 < x < 0.4,

W 2 > 10 GeV2/c4, 0.2 < y < 0.95,

0.05 < Ph⊥ < 1.6 GeV/c, 0.2 < z < 0.8.

(4.2)

As the theory is applicable in the high Q2 limit, it is required that Q2 > 1. The lower

limit on W 2 is to ensure the event is di�ractive. Radiative e�ects become much more

prominent at higher y, and thus y is limited below 0.95. Many Hermes analyses use

a more conservative upper y-cut of 0.85. Justi�cation that this analysis can use a

higher threshold without incurring signi�cant radiative e�ects is based on the studies

in Section 5.1. The lower limit on Ph⊥ is to ensure good resolution in φh, as φh

is ill-de�ned in the limit of Ph⊥ going to zero. The lower limit on z is to ensure

the produced hadron comes from the struck quark (i.e., the current fragmentation

region) rather than being a target remnant (i.e., the target fragmentation region).

The upper limit in z is related to the exclusive vector meson background, and is

further discussed in Section 4.5.4. The other requirements Equation 4.2 that are

not speci�cally mentioned in this paragraph do not limit the data signi�cantly, but

instead are used to consistently de�ne the domain of the cross section.
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Var. Bin Edges
x 0.023 0.04 0.055 0.085 0.40
y 0.20 0.60 0.70 0.80 0.95
z 0.20 0.34 0.44 0.56 0.80

Ph⊥
[
GeV/c

]
0.05 0.30 0.50 0.75 1.6

Table 4.4: Bin edges for the kinematic variables.

Dihadron Mh Bin Edges [GeV/c2]
ππ 0.279 0.450 0.640 0.900 1.600

K+K− 0.987 1.012 1.028 1.050

Table 4.5: Bin edges for the invariant mass Mh.

Fits are preformed in either 1D bins, in Mh, or in 2D binning, Mh versus one of

x, y, z, Ph⊥. The �tting functions are parametric with respect to only the angular

variables, and the �t parameters represent integrals over the given kinematic bins.

More details regarding �tting is given in Section 4.4. The speci�c kinematic bins are

given in Table 4.4, while Table 4.5 lists the bins in Mh. The lower limits on Mh are

based on the production threshold for pion and kaon-pairs. The upper limit on Mh

for pion-pairs are to provide a consistent integration range, while for kaon-pairs, it

is to identify an appropriate sideband region with invariant mass Mh in the range

just above the upper edge of the the φ meson peak. A signi�cant amount of data

for pure SIDIS kaon-pair production exists above the 1.05 GeV/c2 threshold, but this

data has yet been analyzed. For pion-pairs, one can identify in Table 4.5 two bins

in the invariant mass region below the ρ meson mass peak and one bin above the ρ

meson mass peak, while for kaon-pairs, bins are provided for the φ meson peak and

one sideband region on either side.
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4.2.1 Reconstruction of Neutral Pions

Neutral pions decay nearly immediately, and so the decay vertex, within detector

resolution, is identical to the primary vertex. The neutral pions decay into two

photons with a branching ration of greater than 98.8% [37]. Photons are identi�ed

in the detector as energy clusters in the calorimeter with no accompanying charged

particle track. As the calorimeter is calibrated for leptonic clusters, the measured

energy needs to be multiplied by a given factor for photonic clusters. For Hermes

data, the factor is 0.97. For Pythia Monte Carlo data, the energy correction factor

is 0.9255, while for TMDGen data the factor is 0.95. Note, the calibration of the

calorimeter energy for photonic clusters is a known issue with the current Hermes

productions, and is being investigated by the collaboration. Thus, some analyzers

have used more complex energy correction factors, and the exact choice is still open.

The given factors have been chosen to optimize the mean π0 mass.

Assuming the two photons come from an single parent, the mass of the parent

can be computed according to [88]

Mγγ = 2
√
Eγ1Eγ2 sin

θγγ

2
, (4.3)

with Eγ1 , Eγ2 the energies of the two photons and θγγ the angle between the photons'

momenta, in the Hermes coordinate system (Ia).

To determine the angle between the two photons, it is necessary to determine, for

each cluster, the spatial distance between the location of the primary vertex and the

center of the cluster in the calorimeter. The x and y position of the cluster are given

in the standard Hermes data �les, and the tracking methods provide the location

of the vertex. Note, that the x and y position of the vertex is not used, as the

magnitude of these positions is much smaller than other distances in this calculation.

Also, historically, the x and y positions were not available in all tracking methods or
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Figure 4.2: Invariant mass of the two photon system among π+γγ (left panel) and
π−γγ (right panel) events from the full Hermes data set. A �t is pro-
vided, using a Gaussian distribution plus a linear background. The total
�t line is drawn in black, while the individual Gaussian and background
portions are drawn in red and blue, respectively. The gray shaded region,
from 0.115 < Mγγ < 0.155 GeV/c2, is de�ned as the π0 mass window.

were not considered reliable. It is not possible to determine exactly the z-position

of the center of the cluster. Studies performed by other Hermes analyzers suggest

using the value of 734 cm for photons which interact with the preshower (which is

the case for the majority of photons in the kinematic region of interest), and a value

of 747.5 cm for those that do not. Other studies have shown that the results for the

invariant mass spectrum are not very sensitive to the choice of z-vertex.

Figure 4.2 shows the invariant mass of the two photon systemMγγ for the Hermes

data set, within acceptance. No di�erence is seen in the Mγγ distribution in the

positron and electron data samples, and so Figure 4.2 is the combined data set.

Note, the peak position, and uncertainty from the �t, are 136.43± 0.08 MeV/c2 and

136.42 ± 0.09 MeV/c2, respectively, for the π+γγ and π−γγ data sets. This is quite

close to the accepted pion mass of 139.6 MeV/c2 [37]. The Gaussian σ values are,

respectively, 11.88 ± 0.08 MeV/c2 and 12.06 ± 0.09 MeV/c2, re�ecting the detector

resolution in determining the π0 mass.

Comparisons of the Mγγ distribution between data and Monte Carlo are provided

in Figure 4.3. The main di�erence between data and Monte Carlo is the is non-

resonant γγ pair background, due to both combinatorics and other processes.
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Figure 4.3: Comparison of theMγγ distribution for π+γγ (left panel) and π−γγ (right
panel) events for Hermes, Pythia, and TMDGen data within acceptance.
Data from the TMDGen generator is shown in blue circles, Pythia with red
open squares, and Hermes with purple triangles.

Based on Figure 4.2, π0 events are identi�ed by 0.115 < Mγγ < 0.115 GeV/c2.

The background fractions, based on the �ts included in Figure 4.2, are 26.1% and

25.1%, respectively, among π+π0 and π+π− candidate events. Discussion regarding

correcting for this background is found in Section 4.5.1.

4.2.2 Vector Meson Reconstruction

The vector mesons also decay before moving any measurable distance and can be

identi�ed by a resonant peak in the spectrum of the invariant mass of the produced

hadron system. Non-SIDIS processes can also be present within the kinematic range,

speci�cally exclusive vector meson and exclusive hadron pair production. Section

4.5.3 further discusses these non-SIDIS backgrounds.

Even within SIDIS production, a number of subprocesses contribute to the di-

hadron process. The Pythia prediction of the Mh spectrum for several contributing

processes is given in Figure 4.4. The processes contributing to the π±π0 spectrum are

very similar to each other. These processes are also similar to those contributing to

the π+π− distribution, with the exception that the π+π− distribution also includes

contributions from η, η′ and K0,S. The K+K− spectrum includes purely resonant φ
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Figure 4.4: Pythia prediction of processes contributing to the dihadron invariant
mass spectrum. Clock-wise from upper left, the panels are for π+π0,
π+π−, K+K−, and π−π0 dihadrons. Black data points are Hermes data,
2002-2005, and a few select subprocesses are as indicated. In particular,
the vector meson channel is indicated in red. Note the ρ meson peak near
0.770 GeV/c2 and the φ meson peak near 1.02 GeV/c2.

mesons and non-resonant kaons pairs, without the variety of additional subprocesses

seen in the pion-pair distributions.

Figure 4.5 shows Hermes data �t to a Breit-Wigner distribution plus a linear

background. The relative fraction of the vector meson signal versus other dihadron

processes, along with possible extraction of the vector meson signal, is discussed in

Section 4.5.4.

4.3 Kinematic Distributions in Acceptance

In Section 3.2.5, the Pythia and TMDGen Monte Carlo generators were compared

within prefect 4π acceptance and with no radiative corrections (the Born level for the

hard quark, virtual-photon vertex). One can also compare the Monte Carlo generators
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Figure 4.5: Dihadron invariant mass spectrum from Hermes data. Clock-wise from
upper left, the panels are for π+π0, π+π−, K+K−, and π−π0 dihadrons.
Hermes data is shown with black data points, with the �t shown in blue,
and the Breit-Wigner and linear background functions separately drawn
in red and cyan, respectively. The mass bin including the vector meson
peak is indicated with vertical brown dash-dotted lines.

within acceptance. For the Pythia generator, radiative e�ects are also included using

RadGen [98]. However, radiative e�ects have not yet been implemented in TMDGen.

The comparison is again given in 1D projections for each of the kinematic vari-

ables, Mh, x, y, z, Ph⊥, as well as the cosϑ distribution. These distributions are

shown in Figures 4.6, 4.7, 4.8, and 4.9 for π+π0, π+π−, π−π0, and K+K− dihadrons,

respectively. For the dihadrons involving neutral pions, the two photon invariant

massMγγ was already compared in Figure 4.3. The TMDGen generator was set to have

all angular distributions turned o� for the kinematic plots in Figures 4.6 through 4.9.

Thus, the cosϑ distributions show exactly the e�ect of acceptance on the distribution

of this variable.
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Figure 4.6: Comparison of kinematic variables for Hermes, Pythia, and TMDGen for
π+π0 dihadron data within acceptance. The panels, clock-wise from upper
left, are the x, y, Ph⊥, cosϑ, Mh, and z distributions. Data from the
TMDGen generator is shown in blue circles, Pythia with red open squares,
and Hermes with purple triangles.
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Figure 4.7: Comparison of kinematic variables for Hermes, Pythia, and TMDGen for
π+π− dihadron data within acceptance. Panels and markers are the same
as in Figure 4.6.
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Figure 4.8: Comparison of kinematic variables for Hermes, Pythia, and TMDGen for
π−π0 dihadron data within acceptance. Panels and markers are the same
as in Figure 4.6.
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Figure 4.9: Comparison of kinematic variables for Hermes, Pythia, and TMDGen for
K+K− dihadron data within acceptance. Panels and markers are the
same as in Figure 4.6.
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4.4 Fitting Details

4.4.1 Fitting Functions

In cases where no acceptance correction is applied, a basic maximum likelihood

estimate (MLE) is performed to determine the �t parameters. Speci�cally, the Hybrid

S.J. routine [99, 100], as provided in the GNU General Scienti�c Library (GSL) [101]

is used to �nd the roots of the �rst derivative of the MLE objective function. In cases

where acceptance correction is applied, the ISE method of Section 3.1 is used.

In most cases, the �t function is chosen to include all of the unpolarized moments,

including twist-3, as well as the Sivers and Collins transverse target moments. This

equals 24 unpolarized moments (including the constant term) as well as 18 polarized

moments, for a total of 42 moments. The �t function in this case can be speci�cally

written as

f(cosϑ, φh, φR, φS) =
2∑

`=0

[ ∑̀
m=0

a
|`,m〉
1 P`,m cos(mφh −mφR)

+
∑̀

m=−`

(
a
|`,m〉
2 P`,m cos((2−m)φh +mφR)

+ a
|`,m〉
3 P`,m cos((1−m)φh +mφR)

+ b
|`,m〉
1 P`,m sin((m+ 1)φh −mφR − φS)

+ b
|`,m〉
2 P`,m sin((1−m)φh +mφR + φS)

)]
. (4.4)

When applying the acceptance correction, one can consider including additional

cosϑ dependence while including all the same azimuthal moments as in Equation 4.4.

Among the Legendre polynomials up to ` = 2, there are �ve linearly independent

functions. Allowing each azimuthal moment of Equation 4.4 to occur with each of

the possible Legendre functions results in 115 moments. Speci�cally, the �t function
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can be written as

f(cosϑ, φh, φR, φS) =
2∑

m=0

(
a

(m)
1 · F (m)

)
cos(mφh −mφR)

+
2∑

m=−2

( (
a

(m)
2 · F

)
cos((2−m)φh +mφR)

+
(
a

(m)
3 · F

)
cos((1−m)φh +mφR)

+
(
b

(m)
1 · F

)
sin((m+ 1)φh −mφR − φS)

+
(
b

(m)
2 · F

)
sin((1−m)φh +mφR + φS)

)
, (4.5)

with a
(m)
i · F (m) shorthand for

a
(m)
i · F (m) =





a
(m)
i1 + a

(m)
i2 cosϑ+ a

(m)
i3

1
2
(3 cosϑ2 − 1)

+ a
(m)
i4 sinϑ+ a

(m)
i5 sin 2ϑ m = 0, 1

a
(m)
i1 + a

(m)
i2 cosϑ+ a

(m)
i3 sin2 ϑ

+ a
(m)
i4 sinϑ+ a

(m)
i5 sin 2ϑ m = 2

, (4.6)

and equivalently for b
(m)
i . Note the only di�erence between F (m) for m = 0, 1 and

m = 2 is in the third component, where P2,0 is replaced with P2,2, since among P0,0,

P2,2 and P2,0, there are only two linearly independent functions. The pair P0,0, P2,0 is

chosen in most cases, except when the azimuthal moment occurs in the cross section

with a factor of P2,2.

The target polarization is not considered accurate on an event level, but the o�cial

average over certain running periods is considered accurate. The average values 〈P⊥〉,
per larger data sample, as provided by the target group within Hermes, are used.

The �ts are performed without explicitly using the factor of 〈P⊥〉. One must then

divide the results by 〈P⊥〉. For plots in this chapter, the results have not been divided
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Year 〈P⊥〉
2002-2004 0.753± 0.050

2005 0.706± 0.065

2002-2005 0.723± 0.059

Table 4.6: Average target polarization per running period.

by 〈P⊥〉, although results have been divided by this factor for all �gures in Chapters V

and VI as well as Appendices B and C. A table of the average target polarization

per running period is given in Table 4.6. Note, the target group has also published

polarization factors per certain sets of runs. These values have not been used, as the

yearly and multi-yearly averages of Table 4.6 have been used instead. The uncertainty

due to the target polarization results in a 7.3% scale uncertainty, which is indicated

on each of the �nal result plots in Chapter VI and Appendix C.

Note, that using P⊥ instead of S⊥ introduces a small mixing between the unpolar-

ized lepton and longitudinally polarized lepton terms in the cross section. However,

Monte Carlo studies show that the maximum deviation between P⊥ and S⊥ is about

S⊥ = 0.97P⊥. Given the size of the moments extracted in this dissertation, and con-

sidering that the data sample is approximately beam balanced, this mixing e�ect is

considered negligible.

4.4.2 Veri�cation of Acceptance Correction

Given the complexity of the �t functions and acceptance correction, it is necessary

to verify with what accuracy the various moments can be extracted, and in particular,

to select which moments are su�ciently accurate to be included in the �nal results.

Details concerning the precision of the correction method is further considered in

Section 5.1. Note, this study is denoted �Challenge A,� to contrast to the similar

study in Section 5.1, which is denoted �Challenge B.�
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Data Set π+π0 π+π− π−π0 K+K−

Proto 156k 386k 158k 400k
4π 972k 972k 971k 494k
Monte Carlo 347k 1.2M 737k 799k
Hermes 53k 259k 40k 2k

Table 4.7: Table of relevant statistics for Challenge A. The various data sets are
described in the text.

A large sample of TMDGen data was generated with no angular dependence, both in

4π and with running through the full detector simulation and data processing chain.

Angular dependence can then be introduced by weighting the events. This method,

that of generating with no angular dependence, allows for the greatest �exibility

with the data set. The weights are computed for each event by evaluating the cross

section using TMDGen, using the experimentally accessible cross section variables and

integrating over pT . Table 4.7 includes a comparison of the amount of statistics in

the actual Hermes data with the amount used in this Study.

There data sets are relevant in this study. The �rst, denoted proto-data, includes

the simulation of the detector as well as the data processing chain, and also includes

weights to induce angular dependence. The proto-data takes the place of the actual

Hermes data for this study. The second data set, denoted 4π data, representing the

true distribution. No detector simulation is used, though weights are used to induce

the same angular distribution as is induced in the proto-data. The third data set

is the Monte Carlo data, that which is used for estimating the joint distribution in

the acceptance correction method. All of the data, proto, 4π and Monte Carlo are

in fact generated with the TMDGenMonte Carlo generator for Challenge A. Note, the

proto and Monte Carlo data both include a full simulation of the detector and data

processing chain, and are identical except for the additional weights present in for the

proto-data. To avoid introducing other e�ects into this study, all data for this study

is generated with a positron beam.
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The model for the unpolarized moments are based on distribution and fragmen-

tation functions. Speci�cally, GRV98 [77] is used for f1 and the Torino group's

parametrization is used for h⊥1 [80]. The fragmentation functions used are those

computed in Section 2.4 of this dissertation. Only the twist-2 unpolarized moments

are included, as the twist-3 unpolarized |0, 0〉 term breaks positivity, due to the pT

and Q2 range of the data sample. This is related to the fact that the Q2 values for

the data set are not as large as those for which one would ideally hope.

Using the available distribution and fragmentation functions for the transverse

target moments results in moments that are extremely small. For the purpose of

the studies in this section, Section 4.4.2, and for the later study in Section 5.1, some

of the systematic e�ects could be masked by using too small of moments. Thus,

instead of using distribution and fragmentation functions for the polarized moments,

a simple model for the moments is chosen. The Sivers and Collins moments are set

proportional to the f1D
|0,0〉
1 term, with the proportionality constant having the form

a
(
1− bx ln(x)

)
zα(1− z)β

(
1 + bMMh + cMM

2
h

)
. (4.7)

The speci�c values for the parameters a, bx, α, β, bM , cM are given in Tables 4.8

and 4.9. Note, the variation in the a parameter over di�erent partial waves was chosen

so that when the data is �t, the �t parameters all have about the same magnitude.

An alternate form to that in Equation 4.7 was also considered, which included Ph⊥

dependence. However, this other form was di�cult to tune, as it often broke positivity

at high values of Ph⊥. Thus, only the form in Equation 4.7 is used.

Given 4π data and data reconstructed in acceptance, both with the given model

induced, one can then compare the results of �tting each sample. The acceptance

correction method of Section 3.1 is applied to the reconstructed data, and the results

are denoted the �acceptance plus correction� results. For data in 4π, an MLE �t
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Sivers Collins
Parameter ` 6= 2 ` = 2 ` 6= 2 ` = 2

bx -0.75 -0.75 0.75 0.75
α -1.0 2.0 2.0 -1.0
β -1.0 2.0 2.0 -1.0

bM , ππ 0.1 0.1 1.0 1.0
cM , ππ -0.3 -0.3 0.0 0.0

bM , K+K− 10.0 -10.0 1.0 0.0
cM , K+K− -10.0 10.0 1.0 0.0

Table 4.8: Parameters used for the polarized moments, excluding the parameter a.
Note, di�erent values of bM and cM are used for pion-pair and kaon-pair
dihadrons, due to the di�erent mass ranges involved.

Partial Wave a

|0, 0〉 -0.05
|0, 1〉 0.05
|2, 0〉 -0.06
|2,±1〉 -0.04
|2,±2〉 -0.02

Table 4.9: Values of the parameter a used for the polarized moments. The same
values are used for both Sivers and Collins moments.

is preformed, and the results from this �t are denoted the 4π results. Both �tting

functions, Equation 4.4 and 4.5, were initially considered for �tting the data in accep-

tance, though the 42 parameter �t, Equation 4.4, was found to produce better results.

Also, to solve Bα = b, both a QR decomposition using Householder transformations

and the eigenvalue method of Section 3.1.5 were attempted, in both cases using the

relevant algorithms from the GSL package [101]. In both cases, the eigenvalue method

was used to compute B−1, used in propagating uncertainties. The QR decomposition

yielded more accurate and precise results.

Plots showing the full results for all �t parameters are not shown, as this would

require over 160 pages of plots. For the kinematic dependencies, the Collins |2, 2〉 mo-
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ment is chosen as representative. Plots comparing the 4π results with the acceptance

plus correction results, 2D binning, are shown in Figures 4.10 through 4.13, for each

dihadron type. In all but a few kinematic bins, the acceptance correction method is

able to accurately reconstruct the moment. Note, this challenge was also repeated

with the kinematic region reduced to avoid some of the problem areas, speci�cally

the lowest y and z bins were removed and the maximum value of Mh for pion-pairs

was set to 1.2 GeV/c2. Reducing the kinematic domain did not improve the compar-

ison but did signi�cantly reduced the amount of statistics. For this reason, the full

kinematic domain as de�ned in Section 4.2 is used.

Figure 4.14 includes the comparison of the 4π and acceptance plus correction

results for pion-pair dihadrons, considering binning just in invariance mass. In this

case, the Collins |1, 1〉 moment, the same moment as that analyzed in Ref. [27],

and the Collins |2,±2〉 moments are chosen as representative. Figure 4.15 similarly

compares 4π and acceptance plus correction results for the 1D mass binning, except

that the Sivers |0, 0〉 and |2,±2〉 moments are chosen as representative. Again, the

selected moments are generally reconstructed well. Note the particularly small scale

on Figure 4.14.

To determine the overall e�ectiveness in reconstructing each of the moments from

data within acceptance, a χ2/ndf statistic is computed for each moment. The χ2/ndf

is computed by comparing the 4π versus acceptance plus correction results, varying

over all bins within a speci�c binning choice. For example, the χ2/ndf for the Mh-x

binning is computed by determining the individual χ2 values between the two results

per each of the sixteen bins, and then taking the average value. The procedure is then

repeated for each choice of 2D binning, as well as for the one choice of 1D binning

considered. Results for each dihadron type are given in Appendix A, due to the

four tables being somewhat lengthy. Speci�cally, the χ2/ndf statistics are given in

Tables A.1 through A.4.
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Figure 4.10: Comparison of 4π versus acceptance plus correction moments using
TMDGen data for π+π0 dihadrons, with kinematic dependencies, for the
Collins |2, 2〉 moment. The results for the MLE �t to data in 4π are
shown with black �lled circles, while the moments from the acceptance
correction �t to data within acceptance are shown with red open circles.
The upper row of panels is for the lowest Mh bin, with each row of pan-
els being for the next higher Mh bin. From left to right, the columns of
panels represent binning with respect x, y, z, and Ph⊥. Note, each row
represents an independent data sample, while each column is a di�erent
binning of the same sample.
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Figure 4.11: Comparison of 4π versus acceptance plus correction moments using
TMDGen data for π+π− dihadrons, with kinematic dependencies, for the
Collins |2, 2〉moment. Panels and markers are the same as in Figure 4.10.
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Figure 4.12: Comparison of 4π versus acceptance plus correction moments using
TMDGen data for π−π0 dihadrons, with kinematic dependencies, for the
Collins |2, 2〉moment. Panels and markers are the same as in Figure 4.10.
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Figure 4.13: Comparison of 4π versus acceptance plus correction moments using
TMDGen data for K+K− dihadrons, with kinematic dependencies, for
the Collins |2, 2〉 moment. Panels and markers are the same as in Fig-
ure 4.10.

Several trends in the data can be noticed among the χ2/ndf statistic for all three of

the pion-pair dihadrons. In particular, the |2,±2〉 moments tend to be reconstructed

most accurately. Note, the the |2,±2〉 moments occur with a sin2 cosϑ modulation,

making them most sensitive to data with small values of | cosϑ|. This is exactly

the region where the acceptance is best. Although the cosϑ distributions for the

π±π0 dihadrons in Figures 4.6 and 4.8 would suggest the optimal acceptance is near

cosϑ = 0.5, one must also consider the e�ect of symmetry. Since the sin2 cosϑ is

symmetric under the exchange of the sign of cosϑ, one must consider the acceptance

of the symmetrized cosϑ distribution, which does have the highest acceptance near
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Figure 4.14: Comparison of 4π versus corrected moments using TMDGen data for pion-
pair dihadrons, without kinematic dependencies. Each column repre-
sents a di�erent dihadron, speci�cally, from left to right, the π+π0, π+π−,
and π−π0 dihadrons. The rows of panels, represent di�erent moments,
and are, from top to bottom, the |1, 1〉, |2,−2〉 and |2, 2〉 Collins mo-
ments. The distribution in 4π is shown with black �lled circles, while
the moments in acceptance plus correction are shown with red open
circles.
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K+K− dihadrons, without kinematic dependencies. The panels, from
left to right, are the |1,−1〉, |2, 2〉 and |2,−2〉 Sivers moments. The dis-
tribution in 4π is shown with black �lled circles, while the moments in
acceptance plus correction are shown with red open circles.

small values of | cosϑ|. For π+π− dihadrons, the acceptance in cosϑ is symmetric,

and Figure 4.7 shows that the acceptance is greatest near small values of | cosϑ|.
The |1,±1〉 moments also tend to be reconstructed well for the pion-pair di-

hadrons, except in the 1D binning for a few cases. As the acceptance can depend

on all variables, one generally expects 1D binning to yield worse results than higher

dimensional binning. Note, these |1,±1〉 moments occur with a sinϑ modulation, and

the general shape of sinϑ is quite similar to that for sin2 ϑ. Thus the |1,±1〉 moments

are reconstructed well for the same reasons as that for the |2, 2〉 moments.

The |`, 0〉 moments are most sensitive to data with large values of | cosϑ|. This is
precisely where the acceptance most severely reduces the data for pion-pair dihadrons,

with the acceptance approaching zero as | cosϑ| goes to one. Thus, the |`, 0〉 moments

are all reconstructed poorly for pion-pair dihadrons. Additionally, the π±π0 dihadrons

have a strong asymmetry in their acceptance, with much worse acceptance for negative

values of cosϑ. This is a re�ection that the acceptance for low momentum neutral

pions is worse than the acceptance for low momentum charged pions, or speci�cally

that the minimum photon cluster energy requirement removes more low momentum

neutral pions than the minimum RICH momentum requirement removes charged

pions. For π±π0 dihadrons, one would expect the strong asymmetry in the acceptance
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versus cosϑ would make reconstruction of the odd moments |1, 0〉, |2,±1〉 di�cult.

While the |1, 0〉 moments, which have no azimuthal dependence, are reconstructed

quite poorly, the other odd moments are reconstructed fairly well�most likely due

to their additional azimuthal dependence.

For the K+K− dihadrons, there are no clear trends in the χ2/ndf statistics, Ta-

ble A.4. This is mainly due to the signi�cantly di�erent acceptance in cosϑ, as can

be seen from the cosϑ distribution in Figure 4.9. The kaon mass being larger than

the pion mass causes the RICH momentum cuts have a much less signi�cant e�ect.

For this reason, the χ2/ndf. statistics for all moments are much better for K+K−

dihadrons than for any of the pion-pair dihadrons. Note, though, the worst moments

are still some of the |`, 0〉 moments, as with pion-pair dihadrons.

For the main motivation of this dissertation, the moments of most interest are the

|1, 1〉 and |2,±2〉 Collins moments for pion-pair dihadrons and the |0, 0〉 and |2,±2〉
Sivers moments for K+K− dihadrons. Fortunately, the data is sensitive to these

moments, and all of these moments can be reconstructed quite well using the given

acceptance correction method. For the pion-pair dihadrons, all of the |2,±2〉 and

|1,±1〉 Sivers and Collins moments can be reconstructed well, and thus these will be

the moments for which results are given in Chapter VI. For the K+K− dihadrons,

at this point, all moments will be considered, though this will be reconsidered once

the full systematic uncertainties are determined in Chapter V.

4.5 Processes and Backgrounds

4.5.1 Non-resonant Photon Pairs

As noted in the discussion regarding Figure 4.2 in Section 4.2.1, there exists a

sizable amount of non-resonant photon pairs within the π0 mass window. As no

models exist for any asymmetry present in the non-resonant sample, the only possible
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π+γγ π−γγ

Year L P H L P H
2002 516 4214 592 384 3250 445
2003 299 2330 351 253 1865 250
2004 1660 14338 1903 1287 11209 1450
2005 4009 32274 4634 2884 24256 3314
Total 6484 53156 7480 4808 40580 5459

Table 4.10: Table of statistics within di�erent two-photon invariant mass regions. L,
P, and H indicate low-sideband, peak, and high-sideband regions, de�ned
as 0.075 < Mγγ < 0.095 GeV/c2, 0.115 < Mγγ < 0.155 GeV/c2, and
0.175 < Mγγ < 0.195 GeV/c2, respectively.

method is to �t data from the sidebands and interpolate an e�ective asymmetry in

the peak region. However, the statistics are somewhat limited, as shown in Table

4.10.

Data from theMγγ sideband regions, de�ned in the caption to Table 4.10, for both

π+γγ and π−γγ events, were �t using the acceptance correction method of Section 3.1

for both. The same Monte Carlo data is used for correcting data in the sidebands as

for the data in the peak, since the TMDGen generator does not include any non-resonant

photon pairs, and thus includes no sideband regions.

As a representative moment, the results for the |2, 2〉 Collins moments versus Mh,

for π±γγ events, are shown in Figure 4.16. The kinematic dependencies for the |2, 2〉
moment, just for π+γγ events, is shown in Figure 4.17. The e�ect of the correction

is generally small: the central values are only slightly shifted, and the uncertainties

are slightly increased. This correction is assumed e�ective, and no further systematic

uncertainty is assigned for non-resonant photon pairs.

4.5.2 Charge Symmetric Background

A number of processes produce electron-positron pairs, with one of the produced

leptons mimicking the scattered electron from the SIDIS process. These processes are
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Figure 4.16: Comparison of the |2, 2〉 Collins moment versus Mh within three Mγγ

regions. Left panel is for π+γγ events; right panel is for π−γγ events.
Results from the lower sideband region are given with blue inverted tri-
angles, from the higher sideband region with black upright triangles, and
with red �lled squares for data from the π0 peak region. The corrected
peak values are given with red, open squares.

denoted the charge symmetric background, since they produce electrons and positrons

symmetrically. The dominant processes are quasi-real photo-production of π0 mesons

in the target gas and the interaction of particles with the collimator. A number of

Hermes analyses found it necessary to correct for this background, the biggest e�ect

being seen in the low x and low Q2 data used in the F2 structure function analysis

[102]. The correction has been also used in the exclusive ρ SDME and transverse

target moment analysis [103].

In this analysis, the charge symmetric background fraction is quite low, as shown

in Table 4.11. As the acceptance-correction �tting method is linear, it is su�cient

to separately �t the like and unlike sign data, and then make the appropriate linear

combination post-�tting. This is in contrast to using MLE, where �tting with negative

weights is not numerically identical to weighting the results of two separate �ts.

Data from the 2002-2005 running period, for the three pion-pair dihadrons and

with the apparent scattered lepton having opposite charge as the beam (the unlike-

sign data), have been �t using the acceptance correction method of Section 3.1. The

statistics for unlike-charge lepton and K+K− dihadrons are too low to allow �tting.
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Figure 4.17: Comparison of the kinematic dependence of the |2, 2〉 Collins moment
within three Mγγ regions. Data is for π−γγ events. The markers are the
same as in Figure 4.16, and the panels are the same as for Figure 4.10.
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Year π+π0 π+π− π−π0 K+K−

2002 222 5.0% 827 3.8% 145 4.3% 2 1.1%
2003 120 4.9% 477 3.9% 74 3.8% 1 1.0%
2004 762 5.0% 2849 3.9% 487 4.2% 4 0.7%
2005 1608 4.7% 7346 4.5% 1667 6.4% 18 1.4%
Total 2712 4.9% 11499 4.3% 2373 5.5% 25 1.2%

Table 4.11: Data statistics for lepton charge unlike beam lepton charge, separated by
year and dihadron type. For each year and dihadron, the total amount of
statistics is given, in addition to the background fraction those statistics
represent.

Due to the low background fraction (1.2%) and low statistics, this background is

considered negligible for K+K− dihadrons. The results of �tting the unlike-sign data

are mostly consistent with zero and have very high uncertainties, especially for the

kinematic dependencies. As a representative moment, the |2, 2〉 Collins moment for

all three pion are given in Figure 4.18, for 1D binning in Mh. As a representative

�gure for the kinematic dependencies, Figure 4.19 shows the results with kinematic

dependence, again for the |2, 2〉 moment, but only for π+π0 dihadron data. Based

on the results of the �ts for the pion-pair dihadrons, it can be seen that there is not

enough data to accurately estimate the background signal. Furthermore, due to the

small background fraction, this background most likely has negligible e�ect on the

�nal results. Thus, no correction and no systematic uncertainty is assigned for this

background.

4.5.3 Exclusive Background

For interpretation of the results in terms of distribution and fragmentation func-

tions, it is essential that the dihadrons are produced semi-inclusively and not exclu-

sively. Speci�cally, this means that it is required that other particles are present in

the �nal state. When other particles are produced, they take some of the available

energy, thus reducing the fractional energy z of the produced hadron system.
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Figure 4.18: Comparison of the |2, 2〉 Collins moment versusMh for like versus unlike
lepton sign. The panels, from left to right, are for π+π0, π+π−, and
π−π0 dihadron events. Black squares are for lepton with like sign as the
lepton beam, red open circles for unlike sign.

One can remove much of the exclusive vector meson process from the data sam-

ple by restricting the range of z and/or the missing mass MX . The missing mass

is computed by considering the missing momenta and energy, i.e. the di�erence be-

tween known input and the considered outgoing particles, and computing the e�ective

mass. In a previous publication [27], both MX and z cuts were employed, though the

following study shows that both cuts are not needed.

Figure 4.20 shows the missing mass MX versus z distribution for each of the

four dihadrons considered. The data sample is Pythia with a positron beam. No

signi�cant di�erence is seen when using Pythia data with an electron beam. Lines

are drawn on the plots at several choices of cuts, corresponding to those cuts listed

in Table 4.12. The actual background fractions are also included in Table 4.12. The

extra MX cut is shown not to improve the background fraction, and thus a cut of

z < 0.8 is su�cient.

Unlike the charge symmetric background, there exists no model independent cor-

rection method. There also exists no results for exclusive vector meson production

in the correct kinematic domain. Thus, one cannot correct for the background using

negative weights nor is it possible to estimate a systematic uncertainty. However, the

background fraction is quite small. Most exclusive ρ0 SDMEs for a transversely polar-
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Figure 4.19: Comparison of the π+π0 dihadron |2, 2〉 Collins moment, with kinematic
dependencies, for like versus unlike lepton sign. Markers are as in 4.18,
and the panels are the same as for Figure 4.10. Some data points, which
brake positivity, are not shown.

ized target and unpolarized beam tend to be quite small, with the largest (in absolute

magnitude) being 0.11 and all but one SDME less than than 0.07 in magnitude [103].

Thus one would expect the exclusive ρ0 mesons can contribute no more than 0.004

to the polarized moments studied in this dissertation. The charged ρ SDMEs have

not been so well studied, but one can expect the relative size of the SDMEs to be

comparable. Thus, the exclusive background fraction can be seen to have negligible

e�ect on the �nal results, and no systematic uncertainty is needed.
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Figure 4.20: Distribution of missing mass MX versus z for Pythia positron data.
Panels represent data from each of the four dihadrons. Speci�cally, clock-
wise from upper-left, π+π0, π+π−, K+K−, and π−π0. Lines are drawn
at each of z = 0.7, z = 0.8, z = 0.9, MX = 1.5 GeV/c2, and MX = 2.0
GeV/c2.

Cut π+π0 π+π− π−π0 K+K−

z < 0.7 1903 0.5% 14204 3.0% 1316 1.0% 3363 2.5%
z < 0.8 2128 0.5% 15391 3.6% 1421 1.4% 3852 3.3%
z < 0.9 2247 0.6% 16315 4.7% 1502 1.7% 4200 4.5%
MX < 1.5 2253 0.7% 16470 5.4% 1510 2.0% 4222 4.7%
MX < 2.0 2163 0.6% 15620 4.2% 1443 1.5% 3896 3.8%

MX < 1.5 and z < 0.8 2128 0.5% 15386 3.6% 1420 1.4% 3850 3.4%
MX < 2.0 and z < 0.8 2109 0.5% 15229 3.7% 1410 1.3% 3778 3.4%

Table 4.12: Statistics and background fraction for exclusive production verses select
MX and z cuts and dihadron type, from Pythia positron data.

123



Dihadron Est. VM Stats. Bkg. Frac.
π+π0 5497 68.5%
π+π− 10846 85.4%
π−π0 2774 77.9%
K+K− 700 31.9%

Table 4.13: Table of the vector meson fraction within the resonant mass peak. Data
is computed from the Breit-Wigner plus background �t of Hermes data,
as shown in Figure 4.5.

4.5.4 Vector Meson Fraction

As discussed in Section 2.1.1, the SIDIS dihadron process includes many sub-

processes. When one considers pure SIDIS vector meson production, these other

subprocesses are considered background. In Figure 4.5, the invariant mass distribu-

tions are �t with a Breit-Wigner distribution plus a linear background, to estimate

the amount of vector mesons. The estimated statistics and background fractions are

given in Table 4.13.

Note though, in many cases it is not meaningful to discuss separating the vector

meson signal from the other processes, especially when considering the interference

between these processes. Additionally, the fraction of vector mesons and other di-

hadron subprocesses to each partial wave is unknown and cannot be estimated within

the current theory. Thus, although the angular integrated background fractions is

given in Table 4.13, it is unknown how much the other subprocesses contribute to

the ` = 2 sector nor how this contribution varies with Mh.

4.6 Comparison with Published Results

As a consistency check, one can perform a MLE �t of the π+π− data to compare

with Ref. [27]. The MLE �t is preformed with no corrections, using the older data

productions, and using the cuts, binning, and extraction methods of Ref. [27]. Note,
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Figure 4.21: Comparison of uncorrected moments with previously published results.
Data is for π+π− pairs. For full description of the �tting method, see
the text of this document. Published results are from Ref. [27].

the �tting method of Ref. [27] involved a binned χ2-�t and anti-symmetrized in cosϑ.

The �tting method used therein also �xed the value of the unpolarized P2,0(cosϑ) to

some number b, and then scans over various possible values of b. For comparison, a

MLE �t is used with the functional form of

f(cosϑ, φR, φS) = 1 + a1 sinϑ sin(φR + φS) + a2 sin 2ϑ sin(φR + φS), (4.8)

where the unpolarized terms have been set to zero.

The idea for this comparison is a consistency check between the previous and

current analyses, rather than a full repetition of the previous analysis. Note though,

since so much of the analysis procedure is di�erent between this analysis and the

publication, this can serve only as a rough comparison.

The results of the MLE �t compared with the results of Ref. [27] are plotted in

Figure 4.21. Only statistical uncertainty is shown. The central values are in good

agreement. However, the uncertainties for the MLE �t tend to be smaller than those

for the published results, by a factor of about 75%. Within the coarseness of this

comparison, the agreement is quite good.
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CHAPTER V

Systematic Uncertainty Studies

This chapter details the estimation of the various sources of systematic uncer-

tainty, with the exception of those already determined (in Chapter IV) to be negli-

gible. Three sources of systematic e�ects are considered in this chapter: 1) residual

smearing and acceptance e�ects after the acceptance correction, 2) variations be-

tween experimental setup between the 2002-2004 (positron beam) and 2005 (electron

beam), and 3) uncertainty in the hadron identi�cation procedure. The full results,

comparing all sources of systematic uncertainty, are given in Appendix B, including

all moments, dihadrons, and binning options for which �nal result are presented in

Chapter VI and Appendix C.

Note, in all studies in this chapter using Hermes data, the target polarization has

been removed from the �t parameters and the acceptance correction method of �tting

from Section 3.1 has been applied. However, the non-resonant photon pair background

is not taken into account in any �gures or in the estimate of the uncertainty, as the

e�ect upon the uncertainty estimation would be negligible.

5.1 Smearing and Acceptance

In Section 4.4.2, a model was introduced into TMDGen data, both in 4π and within

acceptance. The comparison of the acceptance corrected and 4π moments is used
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Data Set π+π0 π+π− π−π0 K+K−

Reconstructed Pythia (proto) 358k 2.7M 294k 26k
4π Pythia 2.3M 2.4M 1.8M 330k
TMDGen for Acc. Cor. (Monte Carlo) 503k 1.6M 895k 1.2M
Hermes 53k 259k 40k 2k

Table 5.1: Table of relevant statistics for Challenge B. The various data sets are
described in the text.

to determine which moments can be reliably extracted within acceptance, with the

study being denoted �Challenge A.� In this section, the same model used in Section

4.4.2 is induced into Pythia data using the same procedure, i.e. by using TMDGen

to evaluate the cross section and introducing weights. The reconstructed Pythia

sample, i.e. the sample within acceptance, also has radiative e�ects included, via the

subroutine RadGen [98]. Thus, this comparison shows which moments can be reliably

extracted with both smearing and acceptance e�ects modifying the data sample, and

is denoted �Challenge B.� Table 5.1 compares the amount of statistics for the Hermes

data set versus the data sets used in this study. Note, the reconstructed Pythia data

includes data from both beam charges, while the TMDGen data used for the acceptance

correction (for Challenge B) is only for positron beam. No signi�cant di�erence has

been shown by changing the beam charge for the Monte Carlo data used in the

acceptance correction.

The moments versus invariant mass are shown in Figures 5.1 and 5.2, for pion-

pair and K+K− dihadrons, respectively. The comparison is generally quite good,

with the worst moments, among those plotted, being the |1, 1〉 Collins moment for

π±π0 dihadrons and the |1,−1〉 Sivers moment for K+K− dihadrons. In this section,

Section 5.1, the kinematic dependencies are not shown for sake of brevity. The sys-

tematic uncertainty estimated by this study, however, is shown versus the 2D binning

in Appendix B.
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Figure 5.1: Comparison of 4π versus corrected moments using Pythia data for pion-
pair dihadrons, without kinematic dependencies. Each column represents
a di�erent dihadron type, speci�cally, from left to right, π+π0, π+π−, and
π−π0 dihadrons. The rows of panels represent di�erent moments, and are,
from top to bottom, the |1, 1〉, |2,−2〉 and |2, 2〉 Collins moments. The
distribution in 4π is shown with black �lled circles, while the moments in
acceptance plus correction are shown with red open circles.
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Figure 5.2: Comparison of 4π versus corrected moments using Pythia data forK+K−

dihadrons, without kinematic dependencies. The upper left panel is in-
tentionally left blank. The other panels on the top row, from left to right,
are the |0, 0〉, |1, 1〉 and |1,−1〉 Sivers moments. The panels on the second
row are, from left to right, are the |2, 2〉, |2, 1〉, |2,−1〉 and |2, 2〉 Sivers
moments. As with Figure 5.1, the distribution in 4π is shown with black
�lled circles, while the moments in acceptance plus correction are shown
with red open circles.

To obtain an overall idea of how well the moments compare between the 4π results

and acceptance plus correction results, the χ2/ndf statistic per moment and set of

binning is again computed, as it was in Section 4.4.2. The χ2/ndf statistics results,

for each dihadron type, are given in Appendix A, Tables A.5 through A.8. For pion-

pair dihadrons, the general trends observed in the study of Section 4.4.2 (�Challenge

A�) are again observed in this study. The moments of most interest, the |2,±2〉 and
|1, 1〉 Collins moments, are still reconstructed fairly well.

It is worth noting that, for most moments, the 1D binning results tend to have

χ2/ndf statistics similar to the 2D binning results. This is an indication that the

kinematic dependence of the smearing and acceptance e�ects is not overly strong.

In other analysis where the kinematic dependence of the smearing and acceptance is

signi�cant, such as in Ref. [65], even 2D binning is insu�cient and one must bin in all

kinematic variables. The |1, 1〉 Collins moments for π±π0 dihadrons, however, do have
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χ2/ndf statistics that are signi�cantly worse for the 1D binning than the 2D binning.

The kinematic dependence of these moments (not shown) contain small systematic

shifts, similar to the results for 1D binning shown in Figure 5.1. The di�erence in

χ2/ndf between binning options for the π±π0 dihadron |1, 1〉 Collins moments is more

a re�ection of the higher uncertainty in the 2D binning, rather than a re�ection of a

di�erence in accuracy.

For K+K− dihadrons, the |1, 0〉 moments are shown to be quite poor, and the

|2, 0〉 moments are also much higher than the other moments. Since the statistics for

the K+K− study were much smaller, a lower threshold for the χ2/ndf statistic should

be chosen than for pion-pair dihadrons. This is due to the fact that higher statisti-

cal uncertainty will mask systematic di�erences, and the χ2/ndf values will appear

smaller due to the larger uncertainty on the moments being compared. Therefore,

the results for all but the |1, 0〉 and |2, 0〉 partial waves will be considered in the

�nal results, though it remains to be seen which moments will have small enough

uncertainty to be meaningful.

5.2 Year dependence

The Hermes data sample, as well as the TMDGen Monte Carlo data used in the ac-

ceptance correction, includes data from both beam charges, in roughly equal amounts.

For instance, roughly 60% of the Hermes dihadron data was collected with an elec-

tron beam, and the remainder with a positron beam. Among the Hermes collabora-

tion, uncertainties due to the di�erences between the two running periods (positron,

2002-2004, and electron, 2005) are historically called year dependent systematic un-

certainties. However, �beam-charge� dependent rather than �year dependent� might

have been a better choice, as the data samples in 2002 and 2003 are too small to

consider individually and are instead included with the 2004 data. Although the

SIDIS process is invariant with respect to beam charge, many systematic e�ects are
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not, most notably the beam position, o�set, and slope, as well as the curvature of the

beam through the target region.

Two systematic issues must be addressed. First, one must determine if there is any

systematic e�ect due to �tting the data samples simultaneously rather than �tting

separately and then combining the results. Determining whether a systematic e�ect is

present, and the size of the resulting systematic uncertainty, shall be denoted �Study

1.� In order to determine an e�ect, the source of such an e�ect would have to be

included in simulations of the detector for the two running conditions.

The second study, denoted �Study 2,� is then to determine whether there is a resid-

ual di�erence between the electron and positron sub-samples which is not accounted

for in the detector simulation or data processing chain. Study 2 is accomplished by

checking the consistency between the results for �tting electron and positron data

separately, each corrected with the TMDGen data of the respective beam charge.

5.2.1 Year Dependent Study 1

In this study, the results for a combined �t of the electron and positron Hermes

sub-samples, using combined electron and positron TMDGen data for correcting the

acceptance, is compared with �tting and correcting the sub-samples separately and

forming the appropriate linear combination. In all cases, the acceptance correction �t

of Section 3.1 is used for �tting and correcting the data. Tables of χ2/ndf statistics

are computed, similar to those in Challenge A and B, and are listed in Appendix A.

In general, the results for both methods are very consistent, except for certain

moments already shown to be unstable in previous studies. These unstable moments

tend to be the |`, 0〉moments for all dihadrons and the |2,−1〉 Sivers moments for π±π0

dihadrons. Based on these results, it appears that all known systematic di�erences

between the running periods (included in the detector simulation) have either been
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corrected in the data processing chain or are negligible. Thus, one can use an electron-

positron combined �t, and no systematic uncertainty is assigned thus far.

5.2.2 Year Dependent Study 2

In this study, the results for the positron beam (2002-2004) and electron beam

(2005) data samples, are checked for consistency. A comparison of the results per

Mh bin, for both lepton charge samples as well as the combined sample, is given in

Figures 5.3 and 5.4. For pion-pair dihadrons, there are only a few bins where there are

signi�cant di�erences between the sub-samples. For K+K− dihadrons, there appear

to be some systematic trends, though with only three bins, it is di�cult to say whether

the inconsistency is due to a larger trend or localized to certain individual bins.

Again, χ2/ndf statistics are computed for each binning set and are provided in

Appendix A. For Study 2, the χ2/ndf values are slightly larger than one would

hope. While some of the moments of interest have χ2/ndf values near unity, several

moments also have χ2/ndf values in the range of 2.0 to 4.0, implying about a variation

comparable to about 1.5 standard deviations of a one dimensional Gaussian variable.

This is close enough to be purely statistical �uctuations, though this could also be

indicative of some systematic e�ect. Note, the possible systematic e�ect would have

to be one not previously observed at Hermes, as a large number of other Hermes

analyses have also investigated possible systematic di�erences between these running

periods, and known e�ects for these years have been incorporated in the the simulation

and data processing chain. All other observables considered in this analysis, such as

the 1D projects of the distribution of relevant variables, positions of mass peaks,

etc., show no signi�cant di�erence between the two running periods. Note also, the

overall statistic provided in Tables A.13 through A.16 is quite good, though the most

extreme moments are not considered in the overall. As no other indication exists of a

yet unknown systematic di�erence between the positron and electron data samples,
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Figure 5.3: Comparison of select Hermes results versus lepton beam charge for pion-
pair dihadrons, 1D binning. The rows, from top to bottom, represent the
results for the |1, 1〉, |2,−2〉, and |2, 2〉 Collins moments. The columns,
from left to right, are for dihadron types π+π0, π+π−, and π−π0, respec-
tively. The blue circles are for positron beam, the red open squares are
for electron beam, and the black triangles are results for the combined
sample.
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Figure 5.4: Comparison of select Hermes results versus lepton beam charge for
K+K− dihadrons, 1D binning. The panels represent various partial waves
of the Sivers moments, and are arranged identical to Figure 5.2. As with
Figure 5.3, the blue circles are for positron beam, the red open squares
are for electron beam, and the black triangles are results for the combined
sample.

except that of the χ2/ndf values for a few moments are in the range of 2.0 to 4.0, the

conclusion is that the discrepancy is mostly statistical.

An uncertainty is assigned, per each moment and per each bin, by �rst determining

the value of the assigned uncertainty that would reduce the χ2 value between the two

sub-samples to unity. Since the discrepancy is assumed to be mostly statistical, this

uncertainty is then divided by a factor of two. In the case that the χ2 value is less

than one, no systematic uncertainty is assigned. Given that the results for the two

sub-samples, electron and positron, are respectively Ae ± δAe and Ap ± δAp, the

uncertainty δAyear is computed according to

δAyear =
1

4

√
(Ae − Ap)

2 − δ2Ae − δ2Ap. (5.1)

Note the factor of one quarter is the product of the extra factor of one half times the

factor of one half arising from the fact that the uncertainty is being added to both

samples. In the case that the squared di�erence is much larger than the sum of the
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variances, the resulting uncertainty is approximately one quarter of the magnitude of

the di�erence, i.e. |Ae−Ap|/4. The results for this systematic uncertainty are shown

in comparison with the other systematic uncertainties in Appendix B.

5.3 Hadronic Identi�cation Procedure

Two methods exist for using the EVT algorithm for determining the particle iden-

ti�cation of each hadron. One method is to simply assign each hadron the most likely

identi�cation. The other method is to consider the conditional probability of assign-

ing a certain particle identi�cation given the true identi�cation. This conditional

probability has been traditionally called the P -matrix among the Hermes collabora-

tion. The second method is then to use the inverse of the P -matrix to assign a weight,

interpreted as the probability that the given track is a certain type. Theoretical jus-

ti�cation is given in Ref. [38], with the governing equation being a Fredholm integral

equation, similar to that in Section 3.1. This second proposed method is denoted

as RICH unfolding, as inverting a conditional probability statement has traditionally

been denoted unfolding.

Neither method, a priori, is necessarily more accurate. Thus, both methods are

considered, and half the magnitude of the di�erence in the results for each method

is taken as the systematic uncertainty due to the hadronic identi�cation procedure.

Results from both methods, for select moments versus Mh, are shown in Figures

5.5 and 5.6. No signi�cant di�erence between the methods is apparent, though the

RICH unfolding method has slightly larger uncertainty. Note, the RICH unfolding

results include the requirement that the absolute value of the weight is less than 5, to

remove tracks with unreasonably high weights. The simpler method, without RICH

unfolding, is the one used through this dissertation, and is, speci�cally, the method

used for the �nal results.
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Figure 5.5: Comparison of select Hermes results versus hadron identi�cation method
for pion-pair dihadrons, 1D binning. The panels are arranged as in Figure
5.3. The black circles use the method of assigning the most likely particle
type, while the red squares use the RICH unfolding method.

This estimates of the uncertainty due to hadronic identi�cation is shown in com-

parison with the other sources of systematic uncertainty in Appendix B. In general,

this uncertainty is negligible in comparison with the other sources considered, though

this was not known before conducting this study.
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Figure 5.6: Comparison of select Hermes results versus hadron identi�cation method
for K+K− dihadrons, 1D binning. The panels are arranged as in Figure
5.2. As with Figure 5.5, the black circles use the method of assigning the
most likely particle type, while the red squares use the RICH unfolding
method.
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CHAPTER VI

Results and Conclusions

6.1 Results

Results for the Collins |1, 1〉, |2,−2〉, and |2, 2〉 moments of pion-pair dihadron

production are presented and discussed in Sections 6.1.1 and 6.1.2. Results for the

Sivers moments of K+K− production, for all partial waves except |1, 0〉 and |2, 0〉, are
presented and discussed in Section 6.1.3. Results for several additional moments, for

all dihadron types considered, are given in Appendix C. The results in the appendix

are considered stable, but their interpretation is more relevant in the context of a

global �t rather than in the discussion of individual plots. Note, all result plots have a

7.3% scale uncertainty, indicated on each plot, due to uncertainty in the measurement

of the target polarization.

6.1.1 Collins |2, ±2〉 Moments for Pion-Pair Dihadrons

The Collins |1, 1〉, |2,−2〉, and |2, 2〉 moments are shown versus invariant mass

in Figure 6.1. One generally assumes that no hadron pairs are in the |2, 2〉 partial
wave except those resulting from a vector meson decay. Thus, one would expect

non-zero moments only in the Mh bin which includes the vector meson peak. Even

within the mass bin including the vector meson peak, the moments are expected to

be small, as the cross section for the SIDIS vector meson subprocess represents a
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Figure 6.1: Final Results versus Mh for the Collins |1, 1〉, |2,−2〉, and |2, 2〉 moments
for pion-pair dihadrons. Statistical uncertainties are demarcated by the
horizontal error bar, and the combined statistical and systematic uncer-
tainties are indicated by the full error bar. The panels, from left to right,
are for the |1, 1〉, |2,−2〉, and |2, 2〉 partial waves.

fairly small portion of the total dihadron cross section. The results in Figure 6.1

support these expectations. Furthermore, in agreement with both the Lund/Artru

and gluon radiation models, the |2, 2〉 moments are small but non-zero (within the

Mh bin containing the ρ-mass peak), while the |2,−2〉 moments are consistent with

zero.

The kinematic dependencies for the |2,−2〉 moment are shown in Figure 6.2. It

is important to note that the moments are consistent with zero across all kinematic

bins. Thus, the prior observation�that results for the |2,−2〉 moments in Figure 6.2

are consistent with zero�is not due to a cancellation of signi�cantly positive and

negative regions, but is generally true in all kinematic bins. This is again consistent

with the Lund/Artru and gluon radiation models.

The kinematic dependencies for the |2, 2〉 moment are shown in Figure 6.3. Within

the uncertainties, no strong kinematic dependencies can be observed. The variation

with each kinematic variable rarely changes the sign of the moment with statistical

signi�cance. A slight increase with Ph⊥ is generally observable, though, given the

uncertainties, the results are also consistent with other possibilities.
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In order to connect the given results with implications of the Lund/Artru and

gluon radiation models, it is necessary to relate the disfavored and favored frag-

mentation functions with the observed dihadrons. To accomplish this, one generally

assumes u quark dominance, i.e. one assumes that the cross section is dominated by

scattering o� u quarks, with the total contributions from other �avors being much

smaller. The TMDGen models used in Chapters IV and V predict that u quark scatter-

ing accounts for just under 70% of the cross section for all three pion-pair dihadrons.

The u quark dominance assumption implies that the π+ and ρ+ results are mainly

due to favored fragmentation functions, while π− and ρ− results are primarily due to

disfavored fragmentation functions. Results for π0 are generally considered (and con-

sistent with) the average of the results for π+ and π−. The Collins |2,±2〉 moments

for ρ0 production is more complex, possibly involving both the favored and disfavored

fragmentation functions of ρ± production. Note, the given models and results both

indicate that the moments for ρ0 are not equal with the average of ρ+ and ρ−.

In order to test the Lund/Artru and gluon radiation models, a naive method to

extract the vector meson signal has has been implemented. One de�nes the Mh bin

containing the vector meson peak as the peak Mh bin. A simple linear interpolation,

using the two bins on either side of the peak Mh bin, is used to determine the non-

vector meson signal in the peakMh bin. It is also assumed that the moments represent

the value at the average Mh of the given bin. Using the background fractions of

Table 4.13, one can then estimate the vector meson signal. This is a particularly naive

method, as it neglects shifts in the average kinematics betweenMh bins. However, the

size of the uncertainties on the �nal results, especially when considering the kinematic

dependencies, are high enough not to merit a more complicated procedure. Kinematic

dependencies are also found to be not large, thus this naive method is su�cient.

The results of isolating the vector meson signal is shown in Figure 6.4. For their

interpretation, let us assume u quark dominance and that the pion results are as in
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Ref. [47]. The Lund/Artru model predicts the results for ρ+ to be negative and the

results for ρ0 to be consistent with zero. The gluon radiation model implies the results

for ρ− to also be negative and of comparable size to those for ρ+. The magnitude of

the moments are also expected to increase with x and Ph⊥, based on the pion results,

though the uncertainties on the kinematic dependencies are too large to con�rm or

invalidate these expectations. Furthermore, the Lund/Artru and gluon radiation

models focus on the overall sign of the moments, allowing for di�erent kinematic

dependencies between the pseudo-scalar and dihadron results.

In general, the uncertainties are slightly higher than desirable, given the apparent

size of the moments. However, the basic conclusions of the Lund/Artru model and

the gluon radiation model regarding the sign of the SIDIS |2, 2〉 moments are observed

in the data.

6.1.2 Collins |1, 1〉 Moments for Pion-Pair Dihadrons

The Collins |1, 1〉 moment for pion-pair dihadrons is of theoretical interest as it

allows collinear access to the transversity distribution function h1. Results versus

invariant mass are in Figure 6.1, left panel, while the kinematic dependencies are

shown in Figure 6.6.

The results for π+π− dihadrons are an updated version of the results in Ref. [27].

The results of Figures 6.1 and 6.6 include an acceptance correction, use of the angle

φR rather than φR⊥, and involve a di�erent �tting procedure and function. Although

the binning is slightly di�erent, the comparison is quite close, as shown in Figure

6.5. When comparing the results versus Mh, the bins outside the mass peak are very

consistent. The bin containing the ρ0 mass peak has results di�ering by about one to

two standard deviations, though part of the e�ect can be related to the narrower bin in

this analysis. This discrepancy is also seen when comparing the x and z dependencies

within this Mh region near the ρ meson mass peak. Some hoped that the improved
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results would yield moments two or three times larger, thus reducing the discrepancy

between previous Hermes results [27] and Compass results [40]. Although the |1, 1〉
moment in the peak is larger than in Ref. [27], it is questionable whether this increase

is not enough to recover the di�erence.

The kinematic dependence of the moments between this analysis and Ref. [27] are

somewhat di�erent. While both support larger values of the moments for medium

values of x, the results herein indicate a decrease of the moment with increasing z, a

feature not present in Ref. [27]. The results of Ref. [27] also tend to be much more

noisy than the results presented here.

As with the |2, 2〉 moments, the π+π− results are not the average of the π±π0

results, as one might expect from naive isospin invariance. The π+π0 and π−π0

moments are, in general, quite similar and opposite in sign to the π+π− results.

There is no indication among any of the pion-pair dihadrons of a sign change of the

fragmentation function across the ρ meson peak, as suggested in Refs. [104, 105].

6.1.3 Sivers Moments for K+K− Dihadrons

The currently theory is quite vague regarding predictions forK+K− dihadrons and

possible implications of the results. Unfortunately, the data is statistically limited,

not allowing a determination of the x dependence. Without the x dependence, little

can be said regarding the Sivers function.

It is worth noting, however, that no clear signal is observed within the middle Mh

bin, which contains the φ meson peak. The background fraction is fairly low, on the

order of one third, and so a signal will not be masked nearly as strongly as in the pion-

pair dihadron case. The only indication of a di�erence between the central Mh bin

versus the exterior Mh bins is for the |0, 0〉 partial wave, which includes contributions

from both longitudinal φ mesons and non-resonant kaon pairs. Unfortunately, this

data set can neither con�rm nor exclude a non-zero Sivers function for strange quarks.
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Figure 6.2: Final Results for the Collins |2,−2〉 moments for pion-pair dihadrons,
including kinematic dependencies. The panels are arranged as for other
kinematic plots, with the addition of a column on the left for the 1D Mh

results. Additional columns, from left to right, represent binning with
respect x, y, z, and Ph⊥, per each Mh bin. The upper row of panels is for
the lowest Mh bin, with each row of panels being for the next higher Mh

bin. Blue circles indicate π+π0 dihadrons, red inverted triangles indicate
π+π− dihadrons, and upright purple triangles indicate π−π0 dihadrons.
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Figure 6.3: Final Results for the Collins |2, 2〉 moments for pion-pair dihadrons, in-
cluding kinematic dependencies. Panels and markers are arranged as in
Figure 6.2.
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Figure 6.4: Final Results for the Collins |2,±2〉 moments for ρ mesons, including
kinematic dependencies. Columns of and markers are arranged as in
Figure 6.2. The top row indicates the |2,−2〉 moments, and the bottom
row the |2, 2〉 moments.
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6.2 Conclusions

This dissertation has focused on the TMD analysis of select transverse target

moments of SIDIS dihadron production. The main motivation has been to test the

Lund/Artru model of fragmentation, investigate the gluon shower model, and provide

measurements related to the strange quark �avor of the Sivers function, with the side

bene�t of improving the Hermes results for collinear access to transversity.

Several theoretical advancements have been described, including a new partial

wave expansion of the cross section and the computation of the next-to-leading twist

dihadron cross section. This has allowed the quanti�cation of the connection between

the Collins moment of pseudo-scalar meson production and the several Collins-like

moments in dihadron production, and organizes the complexity of the many moments

occurring in the dihadron cross section. Speci�c predictions of the Lund/Artru model,

related to moments of the cross section, have been determined, and a new gluon radi-

ation fragmentation model has been put forth. Additionally, a new spectator model

calculation for dihadron TMD fragmentation functions has also been completed.

A TMD Monte Carlo generator, TMDGen, has been written, which includes polar-

ized SIDIS pseudo-scalar and dihadron production. Although TMDGen was written

for this analysis, the generator was designed with the expansion to additional anal-

ysis and experiments in mind. TMDGen also includes a full simulation of the intrinsic

transverse momenta, pT and kT .

The analysis of the transverse target moments for SIDIS dihadron production

from Hermes data is also presented, speci�cally for π+π0, π+π−, π−π0, and K+K−

dihadrons. A new acceptance correction method has been proposed and tested, and

relevant systematic uncertainties have been estimated.

The results for the Collins |2,±2〉 moments for pion-pair dihadrons are in agree-

ment with expectations. The Collins |2,−2〉 moment seems everywhere consistent

with zero, as expected from the struck quark being in the positive transverse polar-
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ization state. A signal is seen for the |2, 2〉 moment in the ρ peak mass bin, while the

results in other mass bins are consistent with zero.

Additionally, the signs of the |2, 2〉 partial waves for ρ+ and ρ− production are

consistent with the Lund/Artru and gluon radiation models, given the previous π±

results. The uncertainties are too large to allow a good comparison regarding the

kinematic dependencies, though the models are mainly concerned with the sign of

the moments, not the full kinematic dependence.

The results for the Collins |1, 1〉 moment for π+π− dihadrons is generally in agree-

ment with Ref. [27], though the results of this document are much less noisy. Some

kinematic dependence is now observable, which was masked by noise in the previous

result. Although predictions are not available for the results for the π±π0 dihadrons,

the results for π+π0 are similar to those for π−π0, and both tend to be of the opposite

sign as the π+π− results. These trends were also observed in the |2, 2〉 moments: that

the |1, 1〉 is similar is not surprising.

Note, neither the fragmentation functions computed in Chapter II, nor those in

Ref. [31], can be used as model predictions for π±π0 dihadrons, since they involve

some parameters that need to be �t with data. However, the presented results allow

such a �t for π±π0 dihadrons, as has been previously done for π+π− dihadrons [40].

The �t of Ref. [40] for π+π− dihadron results should also be repeated with the newer

data set, though it seems the newer results of in this dissertation will not reconcile

the di�erences between the Hermes and Compass results.

With regard to the Sivers moments forK+K− dihadrons, no clear indication exists

that the signal for the φ meson production subprocess is di�erent than that for non-

resonant kaon-pair dihadron production. These results are consistent with the gluons

having either relatively small, or possibly zero, orbital angular momentum.

The main goals and motivation of this dissertation have been accomplished, with

the results generally in agreement with expectations. This dissertation represents the

149



�rst transverse momentum dependent analysis of polarized SIDIS dihadron produc-

tion. It is hoped that future analyses and experiments will utilize the theoretical

developments provided herein and improve upon these results. Already, an analysis

is in progress at Je�erson Laboratory, regarding collinear SIDIS dihadron production

with a longitudinally polarized beam and unpolarized target [106], though the possi-

bilities for a TMD analysis and for other polarization states are existent. Collinear

analyses are also in progress, or have been completed, at Phoenix and Compass, and

transverse momentum dependent analyses could be conducted at these experiments

in the future. The Belle collaboration has released results for collinear dihadron

fragmentation, occurring in electron positron annihilation, and it is hoped they will

also consider transverse momentum dependent dihadron fragmentation. The most in-

formation might yet come from future experiments, such as the proposed electron ion

collider. However, each incremental step will continue to further our understanding

of hadronic structure and the fragmentation process, today and in the future.
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APPENDIX A

Additional Tables

Two studies have been discussed in this dissertation wherein a model is induced

in a data set with a perfect 4π detector as well as in a data set within acceptance,

within acceptance meaning the data has been through a full simulation of theHermes

detector and has been reconstructed by the usual data processing chain. In Section

4.4.2, the data is generated by TMDGen, while in Section 5.1, the data is generated by

Pythia, with the reconstructed data also including radiative e�ects.

For both studies, a χ2/ndf per transverse target moment is computed, averaged

over all bins within each choice of binning, as described in Section 4.4.2. As these

tables are somewhat lengthy, they have been placed in this appendix rather than

within the respective chapters. Results relevant for Section 4.4.2 are given in Table

A.1 through Table A.4 and are denoted �Challenge A Results.� Results relevant for

Section 5.1 are given in Table A.5 through Table A.8 and are denoted �Challenge B

Results.�

Two additional studies, denoted �Year Dependence Study 1� and �Year Depen-

dence Study 2� are discussed in Section 5.2. Study 1 includes the comparison of

�tting the positron (2002-2004) and electron (2005) data simultaneously versus �t-

ting each data separately and forming the appropriate linear combination of the

152



results. Tables of χ2/ndf statistics, in the same format as those for Challenge A and

B, are given in Table A.9 through Table A.12, Year Dependence Study 2 tests for

consistency between the separate �ts of the positron and electron data, and tables of

χ2/ndf statistics are given in Table A.13 through Table A.16.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 24.262 7.933 7.442 26.445 11.041
Sivers |1,−1〉 4.130 1.798 1.501 1.423 1.368
Sivers |1, 0〉 32.172 40.630 17.661 50.027 11.113
Sivers |1, 1〉 2.105 1.335 1.259 0.842 1.038
Sivers |2,−2〉 2.267 1.055 1.516 1.505 1.073
Sivers |2,−1〉 1.558 3.525 3.379 7.401 4.048
Sivers |2, 0〉 206.813 63.409 59.620 201.947 65.524
Sivers |2, 1〉 3.309 2.847 3.466 30.484 4.804
Sivers |2, 2〉 1.851 1.047 1.668 0.785 1.426
Collins |0, 0〉 11.510 6.359 4.172 15.407 7.394
Collins |1,−1〉 1.947 1.501 1.109 0.610 1.487
Collins |1, 0〉 67.696 63.585 19.607 15.370 25.493
Collins |1, 1〉 5.863 1.851 1.835 1.423 2.025
Collins |2,−2〉 0.392 1.108 1.012 1.041 0.393
Collins |2,−1〉 2.708 2.208 3.038 21.793 1.687
Collins |2, 0〉 49.310 33.906 18.686 125.888 18.458
Collins |2, 1〉 5.632 2.865 1.766 8.277 3.025
Collins |2, 2〉 3.906 1.857 1.157 1.787 1.854

Table A.1: Table of χ2/ndf statistics per Sivers and Collins moments for π+π0 di-
hadrons, Challenge A. The χ2/ndf is computed over the various bins, for
each di�erent choice of binning. The number of degrees of freedom is 3
for the 1D Mh binning and 15 for each of the 2D binning options.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 8.332 2.922 2.410 3.141 3.348
Sivers |1,−1〉 1.377 1.215 1.209 0.797 1.650
Sivers |1, 0〉 3.672 13.696 6.074 24.869 4.027
Sivers |1, 1〉 3.885 1.535 1.459 0.600 2.031
Sivers |2,−2〉 4.464 1.763 2.455 1.407 1.991
Sivers |2,−1〉 4.221 2.746 5.739 1.213 1.529
Sivers |2, 0〉 17.283 13.656 16.336 10.363 8.876
Sivers |2, 1〉 9.009 2.495 7.246 2.522 2.905
Sivers |2, 2〉 5.555 2.251 1.558 1.069 1.922
Collins |0, 0〉 0.597 1.297 2.691 2.121 1.671
Collins |1,−1〉 1.534 1.045 1.032 1.090 0.666
Collins |1, 0〉 3.332 7.135 3.347 10.184 4.462
Collins |1, 1〉 1.852 1.149 1.722 1.915 1.610
Collins |2,−2〉 1.796 0.709 0.547 1.265 1.020
Collins |2,−1〉 2.012 0.965 2.373 1.427 1.437
Collins |2, 0〉 6.309 9.775 22.394 8.380 10.849
Collins |2, 1〉 2.372 1.702 2.285 5.366 2.044
Collins |2, 2〉 0.681 0.547 1.293 0.965 1.067

Table A.2: Table of χ2/ndf statistics per Sivers and Collins moments for π+π− di-
hadrons, Challenge A. See caption for Table A.1.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 18.911 7.036 8.475 15.532 4.144
Sivers |1,−1〉 1.200 1.152 1.677 1.247 1.819
Sivers |1, 0〉 23.597 20.808 17.314 35.048 42.272
Sivers |1, 1〉 2.678 1.058 1.423 1.194 2.728
Sivers |2,−2〉 2.819 1.554 1.405 0.920 1.849
Sivers |2,−1〉 18.069 6.053 6.073 6.626 5.915
Sivers |2, 0〉 171.745 91.661 53.056 104.607 49.063
Sivers |2, 1〉 9.204 3.040 3.794 3.380 2.215
Sivers |2, 2〉 4.381 1.090 1.326 0.844 1.954
Collins |0, 0〉 40.907 10.621 12.926 32.680 15.072
Collins |1,−1〉 1.305 1.411 0.893 1.178 0.537
Collins |1, 0〉 116.182 71.356 45.478 67.321 32.063
Collins |1, 1〉 2.167 1.806 0.983 0.592 1.051
Collins |2,−2〉 1.160 1.515 1.116 1.194 0.995
Collins |2,−1〉 8.307 4.052 3.649 10.863 2.406
Collins |2, 0〉 164.146 38.817 56.540 143.452 98.096
Collins |2, 1〉 3.287 2.363 2.969 3.225 2.572
Collins |2, 2〉 1.107 0.558 0.909 1.289 0.888

Table A.3: Table of χ2/ndf statistics per Sivers and Collins moments for π−π0 di-
hadrons, Challenge A. See caption for Table A.1.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 2.893 0.879 0.753 0.773 0.773
Sivers |1,−1〉 1.426 0.638 1.887 0.384 0.956
Sivers |1, 0〉 0.966 2.479 2.814 3.826 1.314
Sivers |1, 1〉 0.424 0.766 0.739 0.484 0.585
Sivers |2,−2〉 2.557 1.629 4.248 2.167 1.543
Sivers |2,−1〉 6.033 1.530 3.755 0.862 1.931
Sivers |2, 0〉 10.648 6.473 5.043 5.731 5.742
Sivers |2, 1〉 4.680 1.571 2.500 0.526 1.000
Sivers |2, 2〉 7.071 2.336 5.544 0.960 1.402
Collins |0, 0〉 1.982 1.436 1.168 0.954 0.439
Collins |1,−1〉 2.345 0.806 0.955 0.743 0.757
Collins |1, 0〉 2.110 4.455 2.847 1.814 1.585
Collins |1, 1〉 0.282 0.686 0.596 0.338 0.481
Collins |2,−2〉 0.603 0.594 1.744 0.560 0.529
Collins |2,−1〉 2.109 1.656 1.686 0.803 1.311
Collins |2, 0〉 0.785 1.816 2.229 1.304 2.237
Collins |2, 1〉 1.681 0.406 1.861 1.357 1.419
Collins |2, 2〉 2.914 0.789 1.397 1.742 1.341

Table A.4: Table of χ2/ndf statistics per Sivers and Collins moments for K+K−

dihadrons, Challenge A. See caption for Table A.1. Note, the number of
degrees of freedom for K+K− dihadrons is 2 for the 1D Mh binning and
11 for each of the 2D binning options.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 10.257 6.154 5.898 6.199 6.886
Sivers |1,−1〉 8.649 2.064 1.872 2.681 3.024
Sivers |1, 0〉 38.928 48.047 27.105 59.303 16.620
Sivers |1, 1〉 1.072 1.729 2.029 1.393 1.549
Sivers |2,−2〉 8.710 1.312 2.256 1.948 2.242
Sivers |2,−1〉 14.156 7.346 5.586 11.712 5.233
Sivers |2, 0〉 191.392 81.096 46.959 106.730 80.811
Sivers |2, 1〉 9.984 1.987 6.877 4.140 4.155
Sivers |2, 2〉 1.746 0.987 0.993 1.409 1.403
Collins |0, 0〉 12.917 5.923 9.475 24.251 6.392
Collins |1,−1〉 0.806 1.851 1.135 2.099 2.088
Collins |1, 0〉 47.455 31.840 37.332 45.703 20.431
Collins |1, 1〉 16.554 2.497 3.843 4.319 3.131
Collins |2,−2〉 0.605 1.011 0.465 0.569 1.363
Collins |2,−1〉 12.480 2.694 2.772 14.441 3.673
Collins |2, 0〉 33.781 32.088 28.132 174.760 16.624
Collins |2, 1〉 3.693 2.127 2.664 10.043 1.161
Collins |2, 2〉 1.596 0.740 1.227 1.364 1.048

Table A.5: Table of χ2/ndf statistics per Sivers and Collins moments for π+π0 di-
hadrons, Challenge B. See caption for Table A.1.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 8.150 2.759 4.746 4.965 16.288
Sivers |1,−1〉 4.021 2.722 1.655 2.871 2.283
Sivers |1, 0〉 14.778 8.770 11.368 27.578 7.217
Sivers |1, 1〉 4.613 1.152 2.238 2.515 1.831
Sivers |2,−2〉 8.545 1.821 3.128 1.812 3.992
Sivers |2,−1〉 15.639 2.840 4.841 4.418 13.097
Sivers |2, 0〉 21.056 8.615 21.184 17.354 20.621
Sivers |2, 1〉 0.230 1.640 2.964 1.078 7.262
Sivers |2, 2〉 0.496 0.797 1.442 1.794 1.469
Collins |0, 0〉 6.811 3.382 4.183 2.828 11.761
Collins |1,−1〉 2.905 1.208 1.176 1.628 1.368
Collins |1, 0〉 13.143 2.759 12.866 7.086 9.756
Collins |1, 1〉 2.002 2.266 0.952 1.823 1.131
Collins |2,−2〉 0.471 1.314 1.254 0.717 0.876
Collins |2,−1〉 5.851 1.984 4.245 0.818 3.332
Collins |2, 0〉 22.087 10.313 7.726 26.236 17.176
Collins |2, 1〉 11.138 3.387 1.891 2.985 7.727
Collins |2, 2〉 4.056 1.806 2.383 1.803 1.948

Table A.6: Table of χ2/ndf statistics per Sivers and Collins moments for π+π− di-
hadrons, Challenge B. See caption for Table A.1.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 25.319 8.626 8.475 20.388 7.444
Sivers |1,−1〉 6.011 2.119 2.794 1.246 1.993
Sivers |1, 0〉 8.677 31.761 16.525 25.274 16.724
Sivers |1, 1〉 1.572 0.666 1.667 1.881 0.814
Sivers |2,−2〉 4.522 0.572 1.364 1.402 1.925
Sivers |2,−1〉 9.338 5.064 6.190 13.393 6.561
Sivers |2, 0〉 139.563 41.736 49.833 163.535 66.695
Sivers |2, 1〉 4.105 2.379 2.771 11.088 5.461
Sivers |2, 2〉 1.546 0.989 1.995 1.513 1.683
Collins |0, 0〉 23.867 7.926 11.397 13.055 7.601
Collins |1,−1〉 0.793 1.354 2.126 1.734 1.947
Collins |1, 0〉 7.822 11.987 19.515 43.712 20.314
Collins |1, 1〉 10.736 2.290 4.205 2.273 4.068
Collins |2,−2〉 1.255 0.955 1.003 1.081 1.957
Collins |2,−1〉 1.238 1.324 1.183 2.410 2.824
Collins |2, 0〉 51.900 30.394 96.140 75.190 41.508
Collins |2, 1〉 4.916 2.660 3.965 5.619 2.545
Collins |2, 2〉 0.834 1.055 0.822 1.023 1.211

Table A.7: Table of χ2/ndf statistics per Sivers and Collins moments for π−π0 di-
hadrons, Challenge B. See caption for Table A.1.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 1.979 0.813 0.662 1.038 0.991
Sivers |1,−1〉 0.354 0.259 0.616 0.607 0.673
Sivers |1, 0〉 47.171 15.372 18.166 16.839 16.269
Sivers |1, 1〉 1.138 0.880 1.161 0.953 0.991
Sivers |2,−2〉 0.328 1.353 0.941 1.578 0.852
Sivers |2,−1〉 1.936 1.207 2.272 1.416 2.074
Sivers |2, 0〉 5.350 7.257 9.452 4.908 26.442
Sivers |2, 1〉 0.443 1.412 0.838 3.130 1.239
Sivers |2, 2〉 0.398 0.904 1.379 1.751 1.415
Collins |0, 0〉 1.032 0.719 0.944 1.465 0.652
Collins |1,−1〉 1.364 1.242 1.042 1.342 1.327
Collins |1, 0〉 27.877 10.402 7.462 8.711 7.011
Collins |1, 1〉 3.638 1.385 0.774 1.678 1.330
Collins |2,−2〉 1.015 0.929 1.948 1.399 0.786
Collins |2,−1〉 0.385 1.355 0.655 1.401 1.694
Collins |2, 0〉 2.305 7.375 6.560 6.966 5.846
Collins |2, 1〉 0.429 1.592 1.212 1.053 1.550
Collins |2, 2〉 1.011 2.119 1.801 0.436 0.546

Table A.8: Table of χ2/ndf statistics per Sivers and Collins moments for K+K−

dihadrons, Challenge B. See caption for Table A.1.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 0.377 0.188 0.104 0.995 0.206
Sivers |1,−1〉 0.292 0.061 0.062 0.301 0.067
Sivers |1, 0〉 1.522 1.801 1.214 3.540 1.037
Sivers |1, 1〉 0.131 0.028 0.036 0.148 0.035
Sivers |2,−2〉 0.083 0.014 0.019 0.149 0.065
Sivers |2,−1〉 2.475 0.598 0.498 2.323 0.686
Sivers |2, 0〉 4.789 2.588 0.985 3.675 3.804
Sivers |2, 1〉 0.142 0.048 0.040 0.543 0.098
Sivers |2, 2〉 0.015 0.018 0.010 0.044 0.022
Collins |0, 0〉 0.073 0.147 0.060 0.163 0.102
Collins |1,−1〉 0.042 0.026 0.012 0.020 0.018
Collins |1, 0〉 5.567 3.441 2.799 2.629 5.550
Collins |1, 1〉 0.052 0.021 0.026 0.059 0.017
Collins |2,−2〉 0.039 0.011 0.026 0.022 0.020
Collins |2,−1〉 0.021 0.027 0.023 0.192 0.037
Collins |2, 0〉 0.595 1.113 0.574 3.365 1.958
Collins |2, 1〉 0.068 0.058 0.029 0.198 0.036
Collins |2, 2〉 0.041 0.013 0.019 0.059 0.016

Overall
(
χ2

Mh
/ndf < 9

)
0.690 0.533 0.342 0.963 0.720

Table A.9: Table of χ2/ndf statistics per Sivers and Collins moments for π+π0 di-
hadrons, Study 1. See caption for Table A.1. An overall χ2/ndf is pro-
vided for each binning option, though only moments with a χ2/ndf < 9
for the 1D Mh binning is included in the overall statistic.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 0.319 0.062 0.096 0.094 0.108
Sivers |1,−1〉 13.728 2.750 2.433 4.484 3.031
Sivers |1, 0〉 27.803 7.201 6.789 11.875 6.472
Sivers |1, 1〉 0.214 0.025 0.039 0.108 0.057
Sivers |2,−2〉 0.031 0.017 0.023 0.011 0.028
Sivers |2,−1〉 0.118 0.024 0.073 0.031 0.066
Sivers |2, 0〉 0.344 0.529 1.668 1.009 1.209
Sivers |2, 1〉 0.062 0.032 0.029 0.037 0.050
Sivers |2, 2〉 0.005 0.011 0.016 0.011 0.005
Collins |0, 0〉 0.035 0.040 0.059 0.088 0.055
Collins |1,−1〉 0.022 0.017 0.024 0.014 0.025
Collins |1, 0〉 0.242 0.132 0.958 0.084 1.382
Collins |1, 1〉 0.049 0.020 0.038 0.013 0.019
Collins |2,−2〉 0.009 0.008 0.008 0.016 0.008
Collins |2,−1〉 0.010 0.025 0.017 0.037 0.017
Collins |2, 0〉 1.125 0.812 1.237 0.468 1.497
Collins |2, 1〉 0.045 0.031 0.059 0.254 0.056
Collins |2, 2〉 0.037 0.013 0.012 0.017 0.018

Overall
(
χ2

Mh
/ndf < 9

)
0.127 0.106 0.256 0.135 0.271

Table A.10: Table of χ2/ndf statistics per Sivers and Collins moments for π+π− di-
hadrons, Study 1. See caption for Tables A.1 and A.9.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 0.983 0.281 0.231 0.254 0.402
Sivers |1,−1〉 0.083 0.028 0.020 0.082 0.052
Sivers |1, 0〉 5.886 2.682 2.082 3.432 1.528
Sivers |1, 1〉 0.023 0.039 0.021 0.025 0.032
Sivers |2,−2〉 0.045 0.018 0.016 0.063 0.024
Sivers |2,−1〉 3.393 0.520 0.630 2.250 1.054
Sivers |2, 0〉 7.528 3.138 2.946 2.354 1.849
Sivers |2, 1〉 0.084 0.058 0.049 0.273 0.064
Sivers |2, 2〉 0.021 0.019 0.014 0.020 0.023
Collins |0, 0〉 0.151 0.093 0.076 0.178 0.154
Collins |1,−1〉 0.041 0.021 0.018 0.032 0.027
Collins |1, 0〉 0.749 2.155 0.744 1.135 1.638
Collins |1, 1〉 0.081 0.026 0.026 0.038 0.031
Collins |2,−2〉 0.039 0.017 0.017 0.015 0.020
Collins |2,−1〉 0.050 0.049 0.048 0.055 0.021
Collins |2, 0〉 1.699 1.076 0.718 1.647 1.508
Collins |2, 1〉 0.018 0.021 0.033 0.224 0.041
Collins |2, 2〉 0.014 0.007 0.014 0.010 0.022

Overall
(
χ2

Mh
/ndf < 9

)
0.883 0.536 0.403 0.632 0.444

Table A.11: Table of χ2/ndf statistics per Sivers and Collins moments for π−π0 di-
hadrons, Study 1. See caption for Tables A.1 and A.9.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 0.014 0.010 0.018 0.008 0.007
Sivers |1,−1〉 0.010 0.003 0.015 0.004 0.007
Sivers |1, 0〉 0.360 0.154 0.238 0.142 0.067
Sivers |1, 1〉 0.017 0.008 0.014 0.014 0.006
Sivers |2,−2〉 0.003 0.011 0.023 0.016 0.015
Sivers |2,−1〉 0.022 0.016 0.034 0.020 0.025
Sivers |2, 0〉 0.005 0.104 0.927 0.462 0.146
Sivers |2, 1〉 0.018 0.019 0.067 0.009 0.009
Sivers |2, 2〉 0.027 0.028 0.023 0.015 0.010
Collins |0, 0〉 0.015 0.018 0.036 0.010 0.013
Collins |1,−1〉 0.015 0.017 0.007 0.011 0.010
Collins |1, 0〉 0.017 0.027 0.022 0.057 0.029
Collins |1, 1〉 0.022 0.009 0.007 0.014 0.008
Collins |2,−2〉 0.013 0.009 0.013 0.013 0.012
Collins |2,−1〉 0.005 0.012 0.023 0.016 0.009
Collins |2, 0〉 0.067 0.055 0.093 0.073 0.042
Collins |2, 1〉 0.037 0.022 0.037 0.016 0.013
Collins |2, 2〉 0.043 0.023 0.044 0.044 0.037

Overall
(
χ2

Mh
/ndf < 9

)
0.027 0.028 0.084 0.048 0.024

Table A.12: Table of χ2/ndf statistics per Sivers and Collins moments for K+K−

dihadrons, Study 1. See caption for Tables A.1 and A.9.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 17.591 7.096 7.334 2.969 10.694
Sivers |1,−1〉 0.051 0.404 0.597 0.288 0.466
Sivers |1, 0〉 40.876 52.202 52.818 25.205 40.600
Sivers |1, 1〉 0.495 0.637 1.323 0.865 1.033
Sivers |2,−2〉 2.103 0.613 0.541 0.546 1.103
Sivers |2,−1〉 15.068 3.275 5.699 4.385 4.765
Sivers |2, 0〉 91.219 81.814 74.223 32.666 105.408
Sivers |2, 1〉 2.320 2.824 2.776 1.372 3.607
Sivers |2, 2〉 0.535 0.514 0.335 0.256 0.810
Collins |0, 0〉 5.401 5.215 4.460 2.854 8.523
Collins |1,−1〉 0.263 0.776 0.653 0.863 0.431
Collins |1, 0〉 13.891 45.293 51.312 21.691 23.983
Collins |1, 1〉 1.291 0.770 0.803 0.551 0.669
Collins |2,−2〉 1.019 0.529 0.518 0.469 0.603
Collins |2,−1〉 4.734 2.183 1.942 2.593 2.850
Collins |2, 0〉 29.137 45.527 39.443 25.770 60.356
Collins |2, 1〉 1.594 1.324 2.896 1.296 3.115
Collins |2, 2〉 1.291 0.601 0.656 0.712 1.126

Overall
(
χ2

Mh
/ndf < 9

)
1.347 1.287 1.374 0.995 1.911

Table A.13: Table of χ2/ndf statistics per Sivers and Collins moments for π+π0 di-
hadrons, Study 2. See caption for Tables A.1 and A.9.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 41.586 9.109 7.231 6.785 18.924
Sivers |1,−1〉 0.963 0.514 0.761 0.516 0.840
Sivers |1, 0〉 58.949 30.940 17.729 14.455 39.386
Sivers |1, 1〉 1.622 0.846 0.644 0.363 0.873
Sivers |2,−2〉 2.927 0.895 0.678 0.804 1.505
Sivers |2,−1〉 7.955 3.291 4.217 1.250 6.070
Sivers |2, 0〉 83.691 66.833 39.826 72.668 69.292
Sivers |2, 1〉 1.996 1.100 1.042 1.560 2.063
Sivers |2, 2〉 1.504 0.702 0.361 0.567 0.702
Collins |0, 0〉 2.268 1.162 2.205 2.826 4.764
Collins |1,−1〉 0.906 0.528 0.627 0.284 0.532
Collins |1, 0〉 18.955 15.265 6.044 7.677 31.230
Collins |1, 1〉 0.582 0.326 0.354 0.374 0.455
Collins |2,−2〉 1.416 0.767 0.508 0.688 0.890
Collins |2,−1〉 1.111 1.147 1.216 0.891 1.609
Collins |2, 0〉 43.253 9.824 48.356 20.935 69.267
Collins |2, 1〉 2.829 1.676 2.668 3.247 2.377
Collins |2, 2〉 2.260 0.526 0.618 0.747 0.895

Overall
(
χ2

Mh
/ndf < 9

)
1.667 0.977 1.152 1.023 1.708

Table A.14: Table of χ2/ndf statistics per Sivers and Collins moments for π+π− di-
hadrons, Study 2. See caption for Tables A.1 and A.9.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 5.263 4.155 4.285 6.431 3.446
Sivers |1,−1〉 0.227 1.306 1.478 0.630 0.965
Sivers |1, 0〉 22.580 37.623 51.008 45.214 38.451
Sivers |1, 1〉 0.995 0.981 0.695 0.927 0.767
Sivers |2,−2〉 0.645 0.204 0.558 0.606 0.617
Sivers |2,−1〉 9.440 3.033 7.027 6.847 3.200
Sivers |2, 0〉 61.082 59.477 68.170 55.123 67.931
Sivers |2, 1〉 1.050 1.046 1.786 2.792 1.371
Sivers |2, 2〉 0.424 0.539 0.520 0.321 0.675
Collins |0, 0〉 3.232 2.697 3.634 3.501 4.339
Collins |1,−1〉 1.163 0.819 1.073 0.902 0.551
Collins |1, 0〉 248.022 62.586 77.125 67.778 55.059
Collins |1, 1〉 3.889 1.141 1.447 1.472 1.491
Collins |2,−2〉 0.181 0.353 0.257 0.736 0.469
Collins |2,−1〉 2.268 1.126 1.686 2.792 1.720
Collins |2, 0〉 24.163 24.670 33.925 32.875 59.468
Collins |2, 1〉 0.495 0.747 1.234 3.651 0.913
Collins |2, 2〉 1.305 0.627 0.368 0.467 0.563

Overall
(
χ2

Mh
/ndf < 9

)
1.243 1.141 1.378 1.828 1.296

Table A.15: Table of χ2/ndf statistics per Sivers and Collins moments for π−π0 di-
hadrons, Study 2. See caption for Tables A.1 and A.9.
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χ2/ndf per Binning Option
Moment Mh Mh-x Mh-y Mh-z Mh-Ph⊥

Sivers |0, 0〉 2.973 0.565 0.468 0.744 0.653
Sivers |1,−1〉 0.099 0.272 0.261 0.320 0.353
Sivers |1, 0〉 2.607 2.309 8.390 3.821 4.250
Sivers |1, 1〉 0.218 0.270 0.223 0.593 0.285
Sivers |2,−2〉 2.244 0.562 1.019 0.661 0.661
Sivers |2,−1〉 0.065 0.339 0.423 0.101 0.422
Sivers |2, 0〉 6.515 6.963 16.789 4.085 4.315
Sivers |2, 1〉 2.297 0.457 0.702 0.697 0.500
Sivers |2, 2〉 0.349 0.362 0.571 0.419 0.124
Collins |0, 0〉 0.473 0.252 0.161 0.280 0.256
Collins |1,−1〉 0.340 0.267 0.546 0.619 0.303
Collins |1, 0〉 0.310 1.438 3.035 0.976 2.499
Collins |1, 1〉 0.471 0.125 0.500 0.375 0.193
Collins |2,−2〉 0.240 0.191 0.182 0.412 0.166
Collins |2,−1〉 1.893 0.442 0.375 0.633 0.453
Collins |2, 0〉 0.907 2.554 1.764 1.680 1.873
Collins |2, 1〉 0.559 0.249 0.463 0.263 0.324
Collins |2, 2〉 0.625 0.251 0.665 0.414 0.531

Overall
(
χ2

Mh
/ndf < 9

)
0.875 0.914 1.869 0.875 0.929

Table A.16: Table of χ2/ndf statistics per Sivers and Collins moments for K+K−

dihadrons, Study 2. See caption for Tables A.1 and A.9.
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APPENDIX B

Kinematic Dependence of Systematic Uncertainties

Chapter V documents the estimation of three sources of systematic uncertainty,

speci�cally uncertainty due to smearing and acceptance, year dependence (beam

charge dependence), and the hadronic identi�cation procedure. The full compari-

son of the contributions towards the total systematic uncertainty is contained in the

�gures in this appendix, at least for all moments for which �nal results are presented.

The results for K+K− dihadrons are given in Figures B.1 and B.2. As the �nal

results for K+K− are only given with respect to the 1D Mh binning, only the 1D

binning systematics are shown in this appendix. The results for pion-pair dihadrons

are given in Figures B.3 through B.26. Note, for pion-pair dihadrons, the results for

the 1D and all 2D binning choices are shown on the same plot.

In general, the uncertainty related to the hadronic identi�cation procedure is much

smaller than the other systematic uncertainties in almost every case. The systematic

uncertainty is generally dominated by the smearing/acceptance uncertainty, though

there are many exceptions.
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Smearing/Acceptance
Year dependence
Hadron Identificiation
Total
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Figure B.1: Comparison of sources of systematic uncertainty for the Sivers moments
for K+K− dihadrons. The panels are arranged as in Figure 5.2. The up-
per left panel is intentionally left blank. The other panels on the top row
are, from left to right, the |0, 0〉, |1, 1〉 and |1,−1〉 Sivers moments. The
panels on the second row are, from left to right, the |2, 2〉, |2, 1〉, |2,−1〉
and |2, 2〉 Sivers moments. The blue circles are for the uncertainty due to
smearing and acceptance, the red squares for the year dependence, and
the purple, upright triangles for the hadronic identi�cation procedure.
The total systematic uncertainty is shown with black, inverted triangles.
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Figure B.2: Comparison of sources of systematic uncertainty for the Collins moments
for K+K− dihadrons. The markers are the same as in Figure B.1, as
are the arrangement of the partial waves. Note, however, these are the
Collins moments while Figure B.1 presents the Sivers moments.
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Smearing/Acceptance
Year dependence
Hadron Identificiation
Total
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Figure B.3: Comparison of sources of systematic uncertainty for the |1,−1〉 Sivers
moments for π+π0 dihadrons. The panels are as in Figure 4.10, except
the results versus Mh are given in a new column on the far left. The
markers are as in Figure B.1.
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Figure B.4: Comparison of sources of systematic uncertainty for the |1, 1〉 Sivers mo-
ments for π+π0 dihadrons. Markers and panels are as in Figure B.3.
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Smearing/Acceptance
Year dependence
Hadron Identificiation
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Figure B.5: Comparison of sources of systematic uncertainty for the |2,−2〉 Sivers
moments for π+π0 dihadrons. Markers and panels are as in Figure B.3.
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Figure B.6: Comparison of sources of systematic uncertainty for the |2, 2〉 Sivers mo-
ments for π+π0 dihadrons. Markers and panels are as in Figure B.3.
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Smearing/Acceptance
Year dependence
Hadron Identificiation
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Figure B.7: Comparison of sources of systematic uncertainty for the |1,−1〉 Collins
moments for π+π0 dihadrons. Markers and panels are as in Figure B.3.

Smearing/Acceptance
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Figure B.8: Comparison of sources of systematic uncertainty for the |1, 1〉 Collins
moments for π+π0 dihadrons. Markers and panels are as in Figure B.3.
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Year dependence
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Figure B.9: Comparison of sources of systematic uncertainty for the |2,−2〉 Collins
moments for π+π0 dihadrons. Markers and panels are as in Figure B.3.
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Figure B.10: Comparison of sources of systematic uncertainty for the |2, 2〉 Collins
moments for π+π0 dihadrons. Markers and panels are as in Figure B.3.
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Year dependence
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Figure B.11: Comparison of sources of systematic uncertainty for the |1,−1〉 Sivers
moments for π+π− dihadrons. Markers and panels are as in Figure B.3.
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Figure B.12: Comparison of sources of systematic uncertainty for the |1, 1〉 Sivers
moments for π+π− dihadrons. Markers and panels are as in Figure B.3.
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Figure B.13: Comparison of sources of systematic uncertainty for the |2,−2〉 Sivers
moments for π+π− dihadrons. Markers and panels are as in Figure B.3.
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Figure B.14: Comparison of sources of systematic uncertainty for the |2, 2〉 Sivers
moments for π+π− dihadrons. Markers and panels are as in Figure B.3.
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Figure B.15: Comparison of sources of systematic uncertainty for the |1,−1〉 Collins
moments for π+π− dihadrons. Markers and panels are as in Figure B.3.
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Figure B.16: Comparison of sources of systematic uncertainty for the |1, 1〉 Collins
moments for π+π− dihadrons. Markers and panels are as in Figure B.3.
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Figure B.17: Comparison of sources of systematic uncertainty for the |2,−2〉 Collins
moments for π+π− dihadrons. Markers and panels are as in Figure B.3.
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Figure B.18: Comparison of sources of systematic uncertainty for the |2, 2〉 Collins
moments for π+π− dihadrons. Markers and panels are as in Figure B.3.
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Figure B.19: Comparison of sources of systematic uncertainty for the |1,−1〉 Sivers
moments for π−π0 dihadrons. Markers and panels are as in Figure B.3.
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Figure B.20: Comparison of sources of systematic uncertainty for the |1, 1〉 Sivers
moments for π−π0 dihadrons. Markers and panels are as in Figure B.3.
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Figure B.21: Comparison of sources of systematic uncertainty for the |2,−2〉 Sivers
moments for π−π0 dihadrons. Markers and panels are as in Figure B.3.
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Figure B.22: Comparison of sources of systematic uncertainty for the |2, 2〉 Sivers
moments for π−π0 dihadrons. Markers and panels are as in Figure B.3.
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Figure B.23: Comparison of sources of systematic uncertainty for the |1,−1〉 Collins
moments for π−π0 dihadrons. Markers and panels are as in Figure B.3.
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Figure B.24: Comparison of sources of systematic uncertainty for the |1, 1〉 Collins
moments for π−π0 dihadrons. Markers and panels are as in Figure B.3.
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Figure B.25: Comparison of sources of systematic uncertainty for the |2,−2〉 Collins
moments for π−π0 dihadrons. Markers and panels are as in Figure B.3.
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Figure B.26: Comparison of sources of systematic uncertainty for the |2, 2〉 Collins
moments for π−π0 dihadrons. Markers and panels are as in Figure B.3.
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APPENDIX C

Additional Results

The moments of most theoretical interest are presented and discussed in Chap-

ter VI. Additional moments, for all dihadron types considered, are provided in this

appendix. Speci�cally, the Collins |1,−1〉 moment and Sivers |1,±1〉 and |2,±2〉
moments for pion-pair dihadrons are presented in Figures C.1 through C.5. Collins

moments for K+K− dihadron production are also provided in Figure C.6. As de-

scribed in Chapter VI, these results are considered stable but their interpretation is

more relevant in the context of a global �t rather than in the discussion of individual

plots.
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Figure C.1: Final Results for the Sivers |1,−1〉 moments for pion-pair dihadrons,
including kinematic dependencies. Panels and markers are arranged as
in Figure 6.2.
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Figure C.2: Final Results for the Sivers |1, 1〉 moments for pion-pair dihadrons, in-
cluding kinematic dependencies. Panels and markers are arranged as in
Figure 6.2.
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Figure C.3: Final Results for the Sivers |2,−2〉 moments for pion-pair dihadrons,
including kinematic dependencies. Panels and markers are arranged as
in Figure 6.2.
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Figure C.4: Final Results for the Sivers |2, 2〉 moments for pion-pair dihadrons, in-
cluding kinematic dependencies. Panels and markers are arranged as in
Figure 6.2.
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Figure C.5: Final Results for the Collins |1,−1〉 moments for pion-pair dihadrons,
including kinematic dependencies. Panels and markers are arranged as
in Figure 6.2.
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