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Abstract

Visual processing of words and numbers is a uniquely human cognitive
ability. Evidence suggests that a region in left occipitotemporal cortex, the so-called
visual word form area (VWFA), is crucially involved in this ability, particularly in the
visual recognition of words. In this dissertation, I present a methodological study
and two empirical studies to investigate the role of experience in shaping the VWFA,
to explore ways to estimate the amount of this experiential influence, and to
examine how the neural substrates of visual number recognition are different from
those of visual letter recognition.

In the first study, I develop a novel statistical method to efficiently estimate
correlation between paired spatial processes, and hence heritability in patterns of
activation in neuroimaging datasets. The results demonstrate that the proposed
method provides a better estimate of correlation and heritability than conventional
voxelwise or region of interest methods.

The second study applies this method in a monozygotic twin sample to
explore the role of unique environmental effects in shaping VWFA activation. The
results demonstrate that there are greater unique environmental effects for neural
activity associated with familiar word recognition than with unfamiliar word

recognition.
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The last study investigates whether the VWFA is also the crucial site for
visual number recognition or whether number recognition is neurally dissociable
from word recognition. I demonstrate letter-selective activation in left
occipitotemporal cortex and number-selective activation in right lateral occipital
cortex, thus establishing double dissociation. Furthermore, I show that individual
differences in the laterality of visual number activation can be explained by
individual differences in the laterality of numerical processing activation in parietal
cortex.

In sum, this dissertation investigates experiential effects on the neural
substrates of visual word and number processing. In a methodological study, I
present a more powerful statistical method to estimate correlation and heritability
in neuroimaging datasets. The findings from the two empirical studies suggest a
critical role of environment in shaping the VWFA, demonstrate a novel double
dissociation between the neural substrates of letter and number recognition, and
provide evidence that top-down influences give rise to the functional neural

organization for visual number recognition.
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Chapter 1

Introduction

1.1 The Visual Word Form Area

Research in cognitive neuroscience has identified a part of left ventral visual
cortex, the so-called visual word form area (VWFA) (Cohen, et al., 2000; McCandliss,
Cohen, & Dehaene, 2003), as the primary neural substrate for processing written
words and letters (for review see McCandliss, et al., 2003; Price & Devlin, 2003;
Schlaggar & McCandliss, 2007). Neuroimaging and electrophysiological experiments
demonstrate that the middle portion of the left occipitotemporal sulcus bordering
the fusiform gyrus and the inferior temporal gyrus exhibits greater neural activity
when processing written words compared to control stimuli (Allison, McCarthy,
Nobre, Puce, & Belger, 1994; Baker, et al., 2007; Cohen & Dehaene, 2004; Cohen, et
al., 2002; Dehaene, Le Clec'H, Poline, Le Bihan, & Cohen, 2002; Hashimoto & Sakai,
2004; Nobre, Allison, & McCarthy, 1994; Pernet, Celsis, & Demonet, 2005; Polk &
Farah, 2002; Polk, et al., 2002). Neuropsychological studies with focal lesion
patients demonstrating selective difficulty in reading letters and words support the

causal role of this area in visual word processing (Anderson, Damasio, & Damasio,



1990; Ingles & Eskes, 2008; Philipose, et al., 2007; Reuter-lorenz & Brunn, 1990;
Starrfelt, 2007).

The location of the VWFA is highly consistent across individuals and across
people using different languages. A meta-analysis reports that the peak of the VWFA
is located at approximately [-44, -58, -15] in MNI space in the right-handed
population in general and that this peak is relatively consistent across cultures with
different languages (Jobard, Crivello, & Tzourio-Mazoyer, 2003).

Although some evidence shows that subregions within VWFA show
activation in response to auditory and tactile stimuli, VWFA primarily responds to
visual word forms, suggesting that VWFA activity is largely modality specific (Cohen,
et al,, 2000; Dehaene, et al., 2002). Furthermore, the activity is invariant across
visual space and across visual features (Cohen, et al., 2000; Polk & Farah, 2002).
These findings suggest that the VWFA is involved in processing the abstract identity
of letters and letter strings in the visual modality regardless of lower-level visual
features.

One prominent model for the visual processing of letters and letter-strings is
the Local Combination Detector (LCD) model (Dehaene, Cohen, Sigman, & Vinckier,
2005). This model, developed based on the “open bigrams” scheme (Whitney, 2001),
proposes that neural encoding of letters and letter-strings is governed by the same
principles known to exist in lower-level visual cortex. According to this model, the
neurobiological basis of visual word recognition is organized in a hierarchical
fashion from a pool of neurons with relatively small feature-specific receptive fields

to a pool of neurons with relatively large feature-invariant receptive fields. For



example, the model proposes that local combination detectors encode local
orientation bars in the bilateral V1, local contours in the bilateral V2, letter shapes in
the bilateral V4, bank of abstract letter forms in V8, and finally local bigrams and
recurring substrings in the left occipitotemporal region (i.e. putative VWFA). In the
end, this model argues that words are processed by a sparsely distributed
population of neurons that encode partially redundant combinations of local
features. This model thus proposes that word-selectivity in VWFA arises from fine-
tuning of these local combination detector neurons to better encode more
frequently encountered features (e.g. letters and letter combinations) over the
course of typical development.

Many recent functional magnetic resonance imaging (fMRI) studies provide
empirical support for this model. The activation in VWFA is case invariant (Polk &
Farah, 2002), for example, showing little activation difference between TABLE and
table. VWFA also shows a posterior to anterior gradient in letter invariance
(Dehaene, et al., 2004). That is, a more posterior region of the occipitotemporal
cortex is sensitive to letter identity and its retinal location, while a more anterior
region is sensitive to the retinal location but not to letter identity. In other studies,
VWFA exhibits hierarchical organization from posterior to anterior along
orthographic regularities (Binder, Medler, Westbury, Liebenthal, & Buchanan, 2006;
Vinckier, et al., 2007). That is, VWFA activity is overall smaller in response to letter
strings with infrequent letter combinations and larger in response to letter strings

with frequent letter combinations.



1.2 What s the Role of Experience in Shaping the VWFA?

In this dissertation, [ investigate the role of experience in shaping the VWFA.
Word form recognition relies on the general visual mechanism as it makes unique
demands of processing fine-grain local features quickly and in parallel. Some
evidence suggests that this part-based recognition system is critical in reading
(Farah & Wallace, 1991). Furthermore, some recent neuroimaging studies argue
that the left occipitotemporal region serves its function as a shape processing
system in general as opposed to having its specific role for word form processing
(Ben-Shachar, Dougherty, Deutsch, & Wandell, 2007; Price & Devlin, 2003). So
perhaps the VWFA is simply a more general part-based shape processing system
that may be hardwired to some extent.

Nevertheless, reading is a relatively novel ability in evolutionary history.
Written words (and numbers) are relatively recent cultural inventions on an
evolutionary time scale that appeared only about 5,500 years ago. It was only until
very recently that the majority of humans were educated to read and write. Reading
is not shared by other species and does not develop without systematic training. It is
therefore unlikely that humans have evolved to read words via natural selection.
Thus, it seems likely that experience plays a crucial role in shaping the neural
substrates of word and number processing (Dehaene & Cohen, 2007).

Consistent with this hypothesis, developmental studies show that children
who have not yet learned to read show no evidence for VWFA in the ventral visual
cortex (Cantlon, Pinel, Dehaene, & Pelphrey, 2011; Maurer, Brem, Bucher, &

Brandeis, 2005). Furthermore, illiterate adults show negligible VWFA activation



(Dehaene, et al., 2010), which suggests that neural specialization for words is not
simply the result of maturation, but requires the experience of learning to read.
Training studies also show that VWFA activation is modulated as a result of
extensive experience with word forms. In particular, training on the visual word
form and associated phonology of an artificial language modulate the VWFA
activation in response to the artificial script (Hashimoto & Sakai, 2004; Xue, Chen,
Jin, & Dong, 2006).

While these findings are informative and important in understanding the role
of experience in shaping the VWFA, it is difficult to assess the relative contribution
of this experiential influence. Twin studies provide a direct approach to assessing
the role of genetics and environment in neural processes and representations. Using
a classical twin study design, it is possible to decompose the phenotypic variance
into parts that can be explained by genetic (e.g. general visual mechanisms) and
environmental factors (e.g. learning to visually process letters and words). However,
heritability (i.e. proportion of phenotypic variance explained by genetic effects) has
traditionally been measured for univariate, scalar traits, and it is challenging to
assess the heritability of a spatial process, such as a pattern of neural activity. In
Chapter 2, I present a novel statistical method to estimating intraclass correlation
and heritability of spatial datasets. The method involves spatial decomposition of
the neuroimaging data, and spatial variation and covariation in paired images is
captured by a dimensionally-reduced model. I report that this novel statistical
method provides a better estimator for intraclass correlation and heritability of

spatial datasets than other conventional methods.



In Chapter 3, I assess the direct contribution of unique environment in
explaining the variance of VWFA activity evoked by familiar words (e.g., in one’s
own language) and unfamiliar words (e.g., in a foreign language or in false fonts).
Previous studies have compared the response magnitudes for familiar words and
unfamiliar words in an attempt to see whether experience (associated with familiar
words) modulates VWFA activity. However, the results have been mixed. Some
studies showed greater VWFA activation for familiar words compared to unfamiliar
words (Baker, et al., 2007; Vinckier, et al., 2007), while other studies showed the
opposite (Hashimoto & Sakai, 2004; Xue, et al., 2006) or no difference (Xue &
Poldrack, 2007). Thus, it is difficult to assess the role of experience in VWFA when
only considering the magnitude of neural activation. By studying monozygotic
twins, | quantified the unique environmental effects in VWFA activity patterns
evoked by familiar (words) and unfamiliar words (false fonts). I show greater
environmental contributions to VWFA activity associated with word recognition
than false font recognition. These results overcome limitations of previous studies
that interpret data based exclusively on response magnitude, and provide more
direct evidence for environmental contributions to the neural architecture of VWFA.
In addition, I show that the unique environmental effects are modulated by different
subcomponents of reading, including orthographic, phonological, and semantic
processing. In particular, the results suggest that experience with phonological
processing in particular may exert the greatest influence in shaping the VWFA. In

sum, findings reported in Chapter 3 illustrate how the environment we experience



can make qualitative changes in the brain and may even induce neural specialization

for a cultural convention.

1.3 How is Neural Representation of Numbers Different from Words?

While the neural representation of words has been extensively investigated
in the literature, the neural representation of numbers (Arabic numerals) has
received little attention despite the fact that numbers are also predominant in our
daily lives. Numbers are especially interesting stimuli because, like letters, they are
cultural inventions that must be learned. But they are also fundamentally different
from letters in that they primarily convey meanings of quantity and order.
Supporting these ideas, behavioral studies show the visual processing of numbers is
qualitatively different from that of letters (Hamilton, Mirkin, & Polk, 2006; Jonides &
Gleitman, 1972; Polk & Farah, 1995). Thus, it is reasonable to suspect that visual
processing of letters and numbers may depend on different neural systems. So how
does the neural representation of numbers differ from the neural representation of
words?

To date, relatively little is known about the neural basis for visual number
recognition. According to the triple-code model (Dehaene, 1992; Dehaene & Cohen,
1995), numbers are represented in three different codes: an analogue magnitude
code, a verbal word frame, and a visual Arabic number form. This model proposes
that the visual Arabic number form is primarily encoded in bilateral ventral visual
cortex (Dehaene & Cohen, 1995). However, there has been little empirical support

for this hypothesis. Neuroimaging studies show greater neural activation in



response to letters compared to numbers, showing a single dissociation for letters
over numbers, in VWFA (Baker, et al., 2007; Polk, et al., 2002), but the opposite
dissociation has not been shown.

In the first part of Chapter 4, [ investigate the neural segregation between
visual processing of letters and numbers. In this experiment, participants viewed
letters and numbers while their brain activity was measured in the fMRI scanner. I
show that letter recognition is dissociable from number recognition in the left
occipitotemporal region replicating previous studies, and more importantly that
number recognition is dissociable from letter recognition in the right lateral
occipital cortex, thus establishing a double dissociation.

In the second part of Chapter 4, [ investigate the role of top-down influences
on this neural dissociation. In particular, what causes the neural specialization for
visual number recognition? I tested whether individual differences in the neural
representation for visual number recognition could be explained by individual
differences in parietal activity associated with numerical processing. Here, I show
that the lateralization of the ventral visual activity in response to numbers can be
predicted by the lateralization of numerical processing in parietal cortex. This
finding suggests that top-down influences play an important role in determining the

neural organization for number recognition.

1.4 Remarks

This is a staple dissertation that consists of three independent manuscripts.

The chapters therefore are written to stand on their own. However, all three



chapters share the general theme of exploring and investigating experiential effects
on the neural substrates of visual word and number processing. As of now, one of
the chapters (Chapter 4) is accepted for publication in the Journal of Cognitive
Neuroscience, one chapter (Chapter 2) is under review, and the other (Chapter 3) is

ready to be submitted.
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Chapter 2

Correlation and heritability in neuroimaging datasets: A spatial
decomposition approach with application to an fMRI study of twins

2.1 Introduction

In a classical twin study, the heritability of a trait is assessed by estimating
genetic and phenotypic variation based on the similarity (i.e. intraclass correlation)
of monozygotic (MZ) and dizygotic (DZ) twins. Conventionally, heritability is
measured for univariate, scalar traits (e.g. IQ, body mass index, etc.); however, there
are cases where the trait may be defined by a spatial process (e.g. a pattern of neural
activation estimated from neuroimaging studies). For example, a number of
neuroimaging studies have studied twins in order to investigate the heritability of
brain structure and function (see Blokland, et al., 2008; Brun, et al., 2009; Cote, et al.,
2007; Jahanshad, et al., 2010; Koten, et al.,, 2009; Lee, et al., 2010; Matthews, et al.,
2007; Polk, Park, Smith, & Park, 2007; Schmitt, et al.,, 2009; Thompson, et al., 2001).
These studies make structural measurements and/or estimate neural activation at
tens of thousands of data points. Even if the researcher restricts the focus of
investigation to a smaller region of interest (ROI), these regions still often include
hundreds or thousands of voxels. So how we can assess the heritability of a measure

that is multivariate and spatial in nature?
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One straightforward way is to estimate heritability at each voxel (or vertex)
separately. In this approach, images from all twins are first normalized into a
standard space. Then, genetic modeling is performed using the classical twin design
at each voxel, which provides a measure of heritability at every voxel across the
entire brain. This “voxelwise” approach has been used in many studies investigating
heritability in structural neuroimaging data (e.g. Thompson, et al., 2001). Since the
voxelwise approach ignores the spatial relationships among voxels, it does not make
the most efficient use of the information in the data. With relatively high signal-to-
noise ratio and reliability in high-resolution anatomical images, the voxelwise
approach may maintain adequate power for some structural neuroimaging studies.
But the voxelwise approach becomes more troublesome in functional neuroimaging
studies in which the data typically have much lower signal-to-noise ratio at the
voxel level (Huettel, Song, & Gregory, 2004), which may result in highly variable
estimates, particularly with smaller sample size.

One way to account for the noisy nature of functional neuroimaging data is to
restrict heritability estimation to a smaller region of interest (ROI). Except for one
study using an extended twin design that maximizes power to detect heritability
(Koten, et al., 2009), most functional neuroimaging twin studies have adopted the
“mean-ROI” approach, in which heritability estimation is based on mean intensity
values across voxels within an ROI (Blokland, et al., 2008; Cote, et al., 2007;
Matthews, et al., 2007). The mean-ROI approach estimates the heritability of a
function of the data (i.e. spatial average) and allows traditional heritability

estimation schemes for scalar-valued traits to be applied in an imaging study. If the
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ROI is functionally homogeneous, averaging intensity values within the ROI
increases the signal-to-noise ratio. However, if there are inherent spatial
correlations and inhomogeneity within the ROI (which is likely), this approach may
result in a significant loss of power (Friston, Rotshtein, Geng, Sterzer, & Henson,
2006). For example, if only a subregion of the ROI shows heritable activation, this
mean-ROI approach would show an intermediate level of heritability at a constant
level throughout the ROI. Furthermore, recent fMRI studies have demonstrated that
multivariate spatial patterns can contain unique information over and above
univariate intensity values (Haynes & Rees, 2006; Norman, Polyn, Detre, & Haxby,
2006).

Finally, it is possible to assess genetic influences on a spatially measured trait
using statistical association measures that are not directly related to heritability. For
example, Polk and colleagues (2007) considered the correlation across voxels
within each twin pair, and compared the averages of these correlations for MZ and
DZ twin pairs. This provides a quantitative assessment of familiality using a familiar
and stable statistical approach, but does not provide estimates of genetic
heritability.

In the present work, we develop a statistical method for heritability
estimation in functional neuroimaging studies of twins that addresses the main
limitation of the mean-ROI method as well as the voxelwise method. The proposed
method estimates correlation for MZ and for DZ twin pairs at each position in an ROI
(or the whole brain), which in turn are used to estimate heritability. The method for

estimating the correlation values is based on a statistical model in which the
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variation in the measured trait at each spatial position is viewed as arising from a
linear combination of spatial basis volumes. In a simulation study, we report the
feasibility of this “spatial decomposition” method and explore its relative
advantages compared to the conventional mean-ROI method and the voxelwise
method. The relative advantage of the proposed method is also examined in a real
fMRI study of a simple visuomotor task. We first assess the role of genetics in the
functional neural architecture by comparing the intraclass correlation (ICC) of
activation maps from MZ and DZ pairs. We then utilize the proposed spatial
decomposition method to estimate the heritability of neural patterns in the visual
and motor cortices by incorporating the structural equation model (SEM) approach

to estimating heritability (Neale, 1998, 2003).

2.2 Statistical Method

2.2.1 Overall description

The spatial data Y for each individual is modeled as a linear combination of
basis volumes X), scaled by unobserved random coefficients f8,. The X,’s represent
underlying spatial patterns for the given phenotypic trait. The ,’s have unknown
mean and variance, and unknown covariance between individuals in a twin pair, but
are independent between twin pairs. The goal is to use the model to estimate these
variance and covariance parameters, which in turn determine the correlation (or

ICC1) at each spatial point. As demonstrated below, these parameters can be

1 See Section 2.6 Appendix for the working definition of intraclass correlation.
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estimated using fixed effects regression (i.e. ordinary least-squares regression),
followed by some additional processing of the fitted regression parameters to

account for uncertainty in the fixed effects estimates.

2.2.2 Model

Let Yj represent spatial data from a given ROI (possibly the whole brain)
from the jth twin in the ith pair (i=1... n, j=1,2). For instance, Yj; can be a vectorized
representation of three-dimensional volumetric fMRI data (e.g. contrast maps,
percent signal change maps, or t-maps) as a vector of v elements where v is the size
of the ROI. Conditioning on the £,’s, the data Y;; and Yz for a single twin pair is then

modeled as a linear combination of a number of basis volumes X as follows:

/J)Oil

Y X, X, ... X 0 -
( 11)=( 0 1 P ﬁPtl +E. (1)
Y,

0 X0 X, Xp ) | Boiz

Brin
In this paper, particularly in the subsequent real data study, the basis
volumes X, were constructed from the neural activation patterns of an independent

group of subjects performing the same task. The eigenvectors obtained from a
singular value decomposition of these data were used as the basis volumes2. This
serves to focus the heritability analyses on the more variable spatial components in

the data. The coefficients, i, are viewed as random variables with unknown mean

2 Xy is an intercept volume that is created to be orthogonal to the rest of the basis volumes.
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and variance. The residual, ¢, is viewed as centered errors uncorrelated across the

voxels with constant variance across voxels.

2.2.3 Correlation Estimation

Using the model, we now estimate the voxel-level variance of Yy, var(Y.;), and
the voxel-level covariance between Yi; and Yi, cov(Y.s, Y.2). That is, var(Y.;) and
cov(Y.s, Y.2) are both vectors, with as many elements as there are voxels in the ROI.
We note that in the conventional voxelwise approach, these variance and covariance
values are estimated directly using the usual sample variance and covariance
estimators at each voxel separately. We also note that in the conventional mean-ROI
approach, the mean Yj across the entire ROl is first computed, after which variance
and covariance of the mean values are estimated. Our aim here is to use the
regression model to improve the precision of these estimates, by borrowing
information within spatial regions.

The first step is to use ordinary least squares, applied separately to each twin
pair, to predict the B, values. The model-implied variance, var(Y.;), and covariance,

cov(Y.s, Y.2), can then be estimated as follows:

Var( ) EXZ var(ﬁp 1)+0 (2)
cov Y Y EXZ cov(ﬁ aB,. 2) (3)

where X2 represents element-wise squares. Here, var(/Sp, j) and cov([y’p,l,ﬁp,z) are

bias corrected versions of the standard empirical variance and the empirical

covariance, respectively (see Section 2.6 Appendix). The residual variance (o?) can
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be estimated from the mean of the error variance across all voxels. The covariance
of residuals between pairs is assumed to be zero, and is therefore omitted in
Equation 3.

As correlation is defined by the ratio of covariance and variance, the
correlation of two spatial patterns can then be estimated by performing element-

wise divisions as follows:

C@V(Y,I,Y,z)
\/Vﬁr(Y,l) X Vér(Y,z) .

corr(Y,l,Y,z) = (4)
2.2.4 Genetic Effects and Heritability Estimation

A classical twin study asserts that the variance of a phenotype can be
decomposed into additive genetics, common environment, and unique environment
with twins that are reared together (Falconer & Mackay, 1996). The comparison
between the ICC of MZ pairs and of DZ pairs provides a quick and easy way to assess
genetic effects on the phenotypic trait. Since MZ pairs share all of their alleles while
DZ twins share 50% on average, phenotypic covariance for MZ twins should be
more similar than that of DZ twins if genes account for variation between
individuals.

While the comparison between the ICC of MZ twins and DZ twins can be a
useful tool to examine the genetic influence in the phenotypic trait, modern
covariance modeling methods provide a quantitative estimate of heritability
(Christian, Norton, Sorbel, & Williams, 1995; Neale, 2003). As described above, the
variance var(Y.;) and the sibling covariance cov(Y.s, Y.2) can be estimated using the

spatial decomposition approach. These values can then be fed into a maximum-
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likelihood model-fitting algorithm using structural equation modeling (SEM)
implemented in Mx (Neale, Boker, Xie, & Maes, 2003) in order to estimate genetic

and environmental components of phenotypic variance.

2.3 Simulation Study

2.3.1 Methods

A simulation study was conducted in order to evaluate the model-based
point estimates of the correlation parameters in terms of bias, variance, and mean
squared error. Patterns of neural activation (Yj) were simulated in a 3-D space of
512 (8x8x8) voxels from pairs (n = 10, 20, 40) of data as in Equation 1. The set of
basis volumes (Xy... Xp) was derived from the eigenvectors of the covariance matrix
of the entire voxel space. A rational quadratic covariance function with both
parameters equal to 1 was used to determine the spatial structure of the simulated
trait data. In this simulation study, we wanted to examine in particular the effect of
underspecification (i.e. a model with fewer basis volumes than what was used to
construct the full data) and overspecification (i.e. a model with more basis volumes
than what was used to construct the full data). Therefore, we arbitrarily decided to
use the first 32 eigenvectors of the covariance matrix as the spatial structure of the
trait values.

The coefficients for each these 32 basis volumes, Sy, are drawn randomly
from a bivariate normal distribution. The mean of this bivariate normal distribution

was 0, and the variance was set in a monotonically decreasing order to mimic real
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data3. The covariance of this bivariate random distribution was manipulated so that
the correlation was fixed at r. Various levels of correlation between 0 and 1 were
considered in order to examine the effect of similarity between pairs on the point
estimates. The errors (¢) were drawn from a normal distribution with mean of zero
and standard deviation of o, which was set at various values between 0 and 1.

For each case in the parameter space, simulated data were generated 500
times and the correlation was estimated for each sample using three different
methods. Firstly, the correlation was estimated using the proposed spatial
decomposition method. Here, five different types of models were used to estimate
the correlation. Note that the simulated data were generated based on 32 basis
volumes. In five different models, the first 4, the first 8, the first 16, the first 32, and
the first 64 (i.e. including all the basis volumes used in the simulated data but also
32 more basis volumes from the initial set of eigenvectors) were used, respectively,
to estimate the correlation. In the first three cases, the model is underspecified in
terms of the basis volumes, and in the last case, the model is overspecified. Secondly,
the correlation was estimated using the conventional voxelwise method. Thirdly, the
correlation was estimated using the mean-ROI approach, in which mean values of
the entire voxel space for pairs were correlated.

In all three of these methods, the mean root squared error (RMSE), root
integrated squared bias (RISB), and integrated variance (IVAR) were computed by

comparing the simulated results and the voxel-level true correlation. Given the

3 That is, the variance of the coefficients associated with pth basis volume was exponentially
decreasing defined as exp(33-p) / exp(32) x 3,000, wherep =1, 2, ... 32.
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parameters r and o and the basis volumes that went into simulating the data, the
true voxel-level correlation at each voxel can be computed from Equation 4. Then,
RMSE between the estimated correlation and the true correlation was computed at
every repetition, and the mean RMSE over 500 repetitions was computed. The
variance of the correlation estimates over 500 repetitions at each voxel was also
computed, and the integrated variance (IVAR) was measured by computing the
mean of these variance measures across all voxels. Likewise, the mean of the
correlation estimates over 500 repetitions was compared with the true correlation,

which resulted in root integrated squared bias (RISB).

2.3.2 Results

Figure 2-1 illustrates RMSE, IVAR, and RISB of the correlation estimates from
three different methods simulating data from 20 pairs*. Similar RMSE values were
observed among the results from the five different model-fitting approaches in the
spatial decomposition method. However, a closer look at RISB revealed some
systematic patterns in underspecified (P=4, 8, or 16) models. That is, RISB increased
(particularly when r was high) as the model was more underspecified, although this
reduced RISB was not visually observable after P=8. There were no visually
observable effects of overspecification at least in this parameter space. In general,
RISB remained low in the entire parameter space, which indicates that the bias

introduced when estimating the ratio between two unbiased estimates (the

4 See Figure 2-7 for results with 10 and 40 pairs.
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numerator and denominator of Equation 4) is small in the setting of this simulation

study (see Stuart & Ord, 2009).

P=4(/32) P=8(/32) P=16(/32) P=32(/32) P=64(/32) Voxelwise Mean-ROI

RMSE

RISB

IVAR

Figure 2-1 Results of the simulation study using the proposed spatial decomposition method
(columns 1-5), the voxelwise method (column 6), and the mean-ROI method (column 7) with 20
pairs. Patterns of neural activation for twin pairs were simulated with 32 basis volumes while
varying the degree of correlation between pairs (r) and the error variability (o). The estimated
correlation was compared with the true correlation, and root mean squared error (RMSE), root
integrated squared bias (RISB), and integrated variance (IVAR) were computed over the parameter
space. In the case of the spatial decomposition method, the correlation was estimated using a subset
of basis volumes (4, 8, or 16, as represented in the first three columns), all 32 basis volumes
(represented in the fourth column), and 64 basis volumes (represented in the fifth column).

The results from the voxelwise method and the mean-ROI method
demonstrate that RMSE from these two methods is larger than RMSE from the
spatial decomposition method. This increase was driven by larger RISB and IVAR in
both methods compared to the spatial decomposition method (except in the cases
when the model was extremely underspecified). There was a slight advantage of
reduced IVAR in the mean-ROI method (average IVAR across the parameter space

was 0.0294) compared to the voxelwise method (average IVAR was 0.0300). The
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mean-ROI approach resulted in much greater RISB than the voxelwise method

(particularly when o and r were high).5

2.4 Real Data Study

2.4.1 Method

Participants

Thirteen pairs of right-handed MZ twins (nine female pairs, four male pairs,
ages 18-29 with a mean age of 21.3) and eleven pairs of DZ twins (seven female
pairs, four male pairs, ages 18-23, mean age 19.9) reared together participated in
the study. Zygosity was determined by comparing seven to eight highly variable
DNA markers (D5S818, D13S317, D7S820, D16S539, vWA, THO1, TPOX, CSF1PO)
from the buccal cells of twins collected by swabbing the cheek of each participant.
DNA was amplified using the polymerase chain reaction technique. Twins in whom
all the markers matched were classified as monozygotic and twins in whom some
markers mismatched were classified as dizygotic. Additionally, data from an
independent group of nineteen subjects (12 females, ages 18-23, mean age of 19.9)

were collected.

Experimental Procedure and Data Acquisition
During a functional MRI session, participants performed a simple visuomotor

o

task. Participants were instructed to fixate on the “+” at the center of the screen.

5 See Figure 2-8 for a discussion about the bias in the mean-ROI method.
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Every 16 seconds, a circular checkerboard flickered at the rate of 8 Hz at the center
of the screen for 2 seconds, and the participants were asked to press a button once
with the right index finger as soon as they saw the flickering checkerboard. This
session lasted for five minutes.

High-resolution T1-weighted anatomical images were collected in a GE 3T
scanner using spoiled-gradient-recalled acquisition (SPGR) in axial slices parallel to
the AC/PC line with a resolution of 0.9375x0.9375x5.0 mm. Neural activity was
estimated based on the blood-oxygen level dependent (BOLD) signal using a spiral
acquisition sequence with the following parameters: TR = 2000 ms, TE = 30 ms, flip
angle = 90°, slice thickness = 5 mm, in-plane resolution = 3.75x3.75 mm, number of

slices = 30, and field of view = 24cm.

Preprocessing and Data Modeling

The functional images for each participant underwent reconstruction, slice
timing correction, and realignment as part of preprocessing. The high-resolution
anatomical image for each participant was coregistered to the mean of all functional
images. Then, the anatomical image was segmented using SPM8 (Wellcome
Department of Cognitive Neurology, London) to separate gray and white matter
voxels using the International Consortium of Brain Mapping (ICBM) tissue
probability maps, and affine normalization parameters were calculated from those
maps in standard MNI space. The functional images for each individual were then
normalized to the template space with a resolution of 3x3x3 mm and spatially

smoothed with a Gaussian kernel of 8x8x8mm.
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We followed a conventional voxel-by-voxel approach for reducing the
temporal data to a single activation map. For each participant, a general linear
model (GLM) corrected for temporal autocorrelation (using an AR(1) model) with
regressors corresponding to the experimental condition (i.e. presentation of the
flickering checkerboard) using SPM8. The resulting parameter estimates of the GLM,

henceforth referred to as the activation maps, were used in further analyses.

Regions of Interest

The regions of interest (ROIs) were defined in the left visual cortex, right
visual cortex, and the left motor cortex. The left and right visual cortices were
constructed as the union of the calcarine sulcus, lingual gyrus, and cuneus
separately in the left and the right hemisphere using the PickAtlas AAL software
toolbox (Maldjian, Laurienti, Kraft, & Burdette, 2003; Tzourio-Mazoyer, et al., 2002).
The left motor cortex was constructed as the pre-central gyrus from the same
toolbox. These three masks were resliced to match the voxel space of the functional
data. This procedure resulted in a mask with 783 voxels in the left visual cortex, 913

voxels in the right visual cortex, and 428 voxels in the left motor cortex.

Intraclass Correlation Differences

The brain activation maps within the left and the right visual cortex from an
independent group of nineteen subjects were mean-centered and underwent
singular value decomposition which resulted in nineteen eigenvectors. These

eigenvectors served as the basis volumes of the given neural pattern elicited by the
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visuomotor task within the two masks. Then, the brain activation maps from twin
participants were entered into the proposed model (Eq. 1) separately for MZ twin
pairs and DZ twin pairs. After fixed effects regression and a bias correction
procedure (see Statistical Model), the variances and covariances of the f§ values
were estimated (see Equation 2 and 3) from which the ICC for each twin group was
estimated®. The estimated error standard deviation, g, was 0.686 (left visual), 0.823
(right visual), and 0.435 (left motor) in MZ pairs and 0.547 (left visual), 0.606 (right
visual), and 0.393 (left motor) in DZ pairs.

There were no significant effects of age (8 = 0.0591, p=0.429 in the left visual
cortex; = 0.0246, p = 0.783 in the right visual cortex; 5 = 0.0883, p = 0.073 in the
left motor cortex) or sex (= 0.4200, p = 0.278 in the left visual cortex; f = 0.2668, p
= 0.566 in the right visual cortex; f = 0.2144, p = 0.410 in the left motor cortex) on
the mean activation values across all subjects, and therefore the activation maps
were not adjusted for age or sex when estimating ICC.

ICC maps of MZ and DZ pairs” were then compared by taking the difference
between the two, ICCuz — ICCpz. If there is genetic influence on the neural activation
pattern, then the difference map should be positive. Regions with positive
differences were identified, and the statistical significance of the cluster size was
computed based on a clusterwise correction for multiple comparisons (Holmes,
Blair, Watson, & Ford, 1996; Nichols & Holmes, 2002). To be specific, a simulation

was used to derive the distribution of the maximum cluster size under the null

6 ICC is truncated at zero if negative.
7 See Supplementary Figure 2-9 and Figure 2-10 for ICC maps of MZ and DZ pairs computed using the
spatial decomposition method.
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hypothesis. The null distribution, under the assumption that there is no difference
between the ICCuz and ICCpz, was constructed by permuting the zygosity label of
each twin pair (Chiang, et al,, 2008). First, a heritability map was derived from many
repetitions (10,000) while permuting the zygosity. At each repetition, clusters of
heritable regions were defined by contiguous voxels exceeding a certain magnitude
threshold (i.e. the top 95 percentile value). The volume of the largest cluster defined
at this magnitude threshold level was recorded after each repetition, and these
measures served as the null distribution of the size of the cluster at a given

threshold.

Heritability

Heritability of the neural activation pattern was estimated using a maximum-
likelihood model fitting approach via SEM (using the Mx software). Variance maps
(Eqg. 2) and covariance maps (Eq. 3) were constructed® from twins separately for MZ
and DZ pairs using the proposed spatial decomposition method. The variance and
covariance measures at each voxel were fit to a univariate AE model to estimate
additive genetic (A) and unique environmental (E) contributions to the variation in
the neural activation pattern (see Voxelwise Method below for the motivation for an
AE model). Heritability (h?) was defined as the proportion of variance from all
components (additive genetics and unique environmental, A+E) that was explained

by additive genetics (A) alone. As in the case of identifying regions showing greater

8 Conventional variance and covariance were used with appropriate bias correction instead of the
covariance and variance formula used in Fisher’s ICC.
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ICCwmz than ICCpz within the bilateral visual cortex, clusterwise correction for
multiple comparisons incorporating permutation (1,000) was used to assess

significantly heritable regions within the visual cortex.

Voxelwise Method

ICC difference and heritability was also estimated using the conventional
voxelwise method. More specifically, ICC was computed at each voxel separately for
MZ twin pairs and DZ twin pairs?, and the difference between the resulting ICC maps
was computed. For the voxelwise estimation of heritability, variance and covariance
measures were computed at each voxel, then heritability was estimated at each
voxel initially using the ACE model in Mx. The ACE model, however, returned
negligible estimation of common environmental effect in many of the voxels (73.6%
of the voxels in the left visual ROI, 71.3% of the voxels in the right visual ROI, and
64.0% of the voxels in the left motor ROI). In addition, the observation of the ICCyuz
and ICCpz maps revealed that ICCpz was less than half of I[CCuz in the majority of
voxels. Thus, an AE model was fit for parsimony. As in the case of the spatial
decomposition method, statistical inference on the ICC difference and heritability

was made using a clusterwise correction for multiple comparisons.

Mean-ROI Method

9 See Supplementary Figure 2-11 and Figure 2-12 for ICC maps of MZ and DZ pairs computed using
the voxelwise method.
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Lastly, ICC difference and heritability were estimated using the conventional
mean-ROI method. Neural activity values were averaged across all the voxels within
each ROI, and these summary measures were used in the subsequent ICC and
heritability estimation. As in the other methods, an AE model was used for
heritability estimation, and the statistical significance of the estimates was assessed

using the permutation method.

Residual Diagnostics

The model (Eq. 1) assumes that the errors are spatially unstructured, or at
least contain no covarying information between pairs. In practice, however, it is
possible that some spatially defined covarying information is not fully captured by
the given basis volumes. This is particularly likely when the model is underspecified
as shown in the simulation study. In the data from the real study, we empirically
tested how much covarying information was left in the errors. Residual maps for
individual twins were constructed. Then the intraclass correlation of the residual
values between twins across pairs was computed at each voxel. If there is no
covarying information left in the errors, we should expect negligible correlation
across all voxels on average.

The mean residual correlation (* standard deviation) across all thirteen MZ
pairs was 0.2377 (+ 0.3013) in the left visual cortex, 0.1151 (+ 0.3033) in the right
visual cortex, and 0.1510 (* 0.2628) in the left motor cortex. The mean residual
correlation across all eleven DZ pairs was -0.0421 (+ 0.2960) in the left visual

cortex, -0.0734 (* 0.2780) in the right visual cortex, and 0.0523 (+ 0.3028) in the left
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motor cortex. Slightly positive residual correlation on average in MZ pairs indicates
that some covarying information may not have been captured by the given basis
volumes. This is empirically plausible since the basis set from nineteen singleton
participants might not contain enough spatial structure to capture all possible
similarity between siblings. Ideally, the basis volumes should be created from a
larger sample. Not being able to capture a small amount of covariance structure in
MZ pairs results in underestimation of the covariance for MZ pairs. Any significant
effects of genetics are therefore still significant; but the analysis becomes somewhat

conservative in assessing heritability.

2.4.2 Results

We first examined the activation and variability measures within the
bilateral visual cortex separately in the twins and in the independent group of
subjects. The group-level activation map constructed from a univariate one-sample
t-test across twins was moderately correlated with the group-level activation map
constructed from an independent group of nineteen subjects in all ROI's (r = 0.519
in the left visual cortex, r = 0.561 in the right visual cortex, and r = 0.507 in the left
motor cortex) (Fig. 2). The variability map constructed from a univariate standard
deviation measures across twins was also highly correlated with the variability map
constructed from an independent group of nineteen subjects in all ROI's (r = 0.793
in the left visual cortex, r = 0.784 in the right visual cortex, and r = 0.763 in the left
motor cortex) (Figure 2-2). High similarity between the activation and variability

maps from these two groups of subjects suggests that the activation maps from the
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singleton subjects can be used as a representative sample of the population of

interest.
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Figure 2-2 Density plots for the activation map and variability map computed from two
groups of subjects. Group-level one-sample t-maps and standard deviation (sd) maps were
constructed from twins in the left and right visual cortex and the left motor cortex. These maps were
then compared against the t-maps and sd-maps from the independent group of subjects. The plots
indicate the number of voxels that exhibited a specific statistical value in both groups of subjects.

Intraclass Correlation Differences

We then examined genetic influences on neural activity in the left and right
visual cortex as well as the left motor cortex using the proposed spatial
decomposition method, the voxelwise method, and the mean-ROI method. In the

spatial decomposition method, ICC’s for MZ and DZ pairs were estimated first by
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estimating volume coefficients in the model (Eqg. 1) and then by transforming the
variance and covariance of these coefficients in the basis space onto the voxel space
(Eqg. 2 to 4). Table 1 summarizes results from these three methods. Figure 2-3 shows
the ICC difference map computed using the spatial decomposition method and the
voxelwise method displaying suprathreshold clusters that exceed clusterwise
correction for multiple comparisons. The spatial decomposition approach identified
two suprathreshold clusters in the left visual cortex one suprathreshold cluster in
the right visual cortex, and one suprathreshold cluster in the left motor cortex (red
clusters in Figure 2-3). All three clusters were statistically significant in terms of

cluster size (see Table 2-1).

Table 2-1 Cluster analysis of the ICC difference map estimated from the spatial
decomposition method and the voxelwise method, and mean ICC difference value from the mean-ROI
method.

ROI

Method

Magnitude
threshold
(95
percentile)

Cluster
threshold
(p <0.05)

Cluster
sizes (p-
values)

Mean ICC
Difference
(p-value)

Left Visual
Cortex

Spatial

Decomposition

0.6206

0 voxels

36 voxels
(p=0.0020)
4 voxels
(p=0.0055)

Voxelwise

0.7998

3 voxels

23 voxels
(p=0.0023)
4 voxels
(p=0.0329)
6 voxels
(p=0.0223)
7 voxels
(p=0.0190)

Mean-ROI

0.7264
(p=0.0016),

Right
Visual

Spatial

Decomposition

0.5763

0 voxels

46
(p=0.0183)
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Cortex

Voxelwise 0.7235 28 voxels 1 voxel -
(p=0.3155)
18 voxels
(p=0.0792)
1 voxel
(p=0.3155)
26 voxels
(p=0.0536)
Mean-ROI - - - 0.5808
(p=0.0513),
Left Motor | Spatial 0.7457 0 voxels 22 -
Cortex Decomposition (p=0.0022)
Voxelwise 0.8467 2 voxels 22 -
(p=0.0021)
Mean-ROI - - - 0.8446
(p=0.0149)

The conventional voxelwise method identified four suprathreshold clusters

in the left visual cortex and one suprathreshold cluster in the left motor, all of which

were statistically significant in terms of cluster size (blue clusters in Figure 2-3).

However, it failed to find any clusters in the right visual cortex that reached

statistical significance in cluster size at the alpha level of 0.05 (Table 2-1).10 The

range of the voxelwise ICC difference measures was also more variable than the

results from the spatial decomposition method in both hemispheres (Figure 2-4).

The correlation across voxels between the results from the spatial decomposition

method and the voxelwise method was 0.7068 in the left visual cortex, 0.5714 in the

right visual cortex, and 0.6613 in the left motor cortex (Figure 2-4).

10 Examination of cluster size significance was also performed using varying magnitude threshold. In
general, clusters identified from the spatial decomposition method showed greater statistical
significance than clusters identified from the voxelwise method. See Supplementary Figure 2-13 for

further details.




@ Significant clusters from the Spatial Decomposition method
() Significant clusters from the Voxelwise method

Figure 2-3 Map of ICC difference estimated from the spatial decomposition (red) and the
voxelwise (blue) methods. Only statistically significant clusters (p < 0.05 using clusterwise correction
for multiple comparisons incorporating permutation with a magnitude threshold of 95 percentile)
are overlaid on a canonical brain in MNI space with axial slices from z = -10 to z = 50 in increments of
5 mm. The left hemisphere appears on the left for all brain images.
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Figure 2-4 Histograms of ICC difference in the left and right visual cortex estimated from the
spatial decomposition method and the voxelwise method, as well as the joint histogram of ICC
difference estimates between the two methods across the whole brain.

The mean-ROI method found a significant difference between MZ ICC and DZ
ICC in the left visual cortex (p = 0.0016) and the left motor cortex (p = 0.0149)
overall (Table 2-1). In the right visual cortex, the difference just failed to reach

significance (p = 0.0513).
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Heritability

Using the maximum-likelihood model fitting method implemented in Mx,

heritability of the neural activity was estimated using three different methods. Table

2 summarizes results from the spatial decomposition method, the voxelwise

method, and the mean-ROI method. Figure 2-5 shows the heritability map computed

using the spatial decomposition method displaying suprathreshold clusters that

exceed clusterwise correction for multiple comparisons. As in the case of the ICC

difference measure, two suprathreshold clusters were identified in the left visual

cortex, one of which was statistically significant in terms of cluster size. Additionally,

one suprathreshold cluster in the left motor cortex was statistically significant in

terms of cluster size.

Table 2-2 Cluster analysis of the heritability map estimated from the spatial decomposition
method and the voxelwise method, and mean ICC difference value from the mean-ROI method.

ROI Method Magnitude | Cluster Cluster Heritability
threshold threshold | sizes (p- (p-value)
(95 (p<0.05) | values)
percentile)
Left Visual | Spatial 0.6055 11 voxels 36 voxels -
Cortex Decomposition (p=0.028)
4 voxels
(p=0.058)
Voxelwise 0.7780 46 voxels 33 voxels -
(p=0.096)
7 voxels
(p=0.458)
Mean-ROI - - - 0.7218
(p=0.048)
Right Spatial 0.5262 70 voxels 46 voxels -
Visual Decomposition (p=0.070)
Cortex
Voxelwise 0.6570 145 voxels | 1 voxel -
(p=0.949)
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8 voxels
(p=0.831)
4 voxel
(p=0.903)
33 voxels

(p=0.556)

Mean-ROI - - 0.5551

(p=0.096)
Left Motor | Spatial 0.6509 16 voxels 22 voxels -
Cortex Decomposition (p =0.044)

Voxelwise 0.7784 31 voxels 20 voxels -
(p=0.122)
2 voxel (p =
0.571)

Mean-ROI - - - 0.7451
(p=0.123)

Heritability was also estimated using the voxelwise method. None of the
suprathreshold clusters in any of the three ROIs reached statistical significance (see
Table 2-2; no blue clusters in Figure 2-5).11 The correlation across voxels between
the results from the spatial decomposition method and the voxelwise method was
0.7437 in the left visual cortex, 0.5691 in the right visual cortex, and 0.6222 in the

left motor cortex (Figure 2-6).

11 As in the ICC difference measures, examination of the cluster size significance was also performed
using varying magnitude threshold. Clusters identified from the spatial decomposition method
showed greater statistical significance than clusters identified from the voxelwise method. See Figure
2-14 for further details.
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@ Significant clusters from the Spatial Decomposition method

@ Significant clusters from the Voxelwise method (none identified)

Figure 2-5 Map of heritability (h?) estimated from the spatial decomposition method. Only
statistically significant clusters (p < 0.05 using clusterwise correction for multiple comparisons
incorporating permutation with a magnitude threshold of 95 percentile) are overlaid on a canonical
brain in MNI space with axial slices from z =-10 to z = 50 in increments of 5 mm. None of the clusters
identified from the voxelwise method was statistically significant.
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the spatial decomposition method and the voxelwise method, as well as the joint histogram of h2
estimates between the two methods across the whole brain.

The mean-ROI method showed that the average neural activity in the left

visual cortex was significantly heritable (h? = 0.7218, p = 0.048), but no other ROI's

were shown to be heritable at the alpha level 0.05.

40



2.5 Discussion

In this work, we developed a statistical method to estimate correlation
between related subjects at each location of a spatial process. The feasibility and the
relative advantage of this spatial decomposition method over conventional methods
were demonstrated using a simulation study. Correlation estimates from the spatial
decomposition method had lower variance and bias compared to estimates from the
voxelwise or the mean-ROI approach. This discrepancy between the RMSE from the
spatial decomposition method and that from the two other conventional methods
tended to be greater as the overall noise increased. These results collectively
suggest that the spatial decomposition method has better control over noise than
the conventional methods.

Using a real fMRI dataset from a twin study, we then applied the spatial
decomposition method to assess the genetic influence and heritability of brain
activation in the primary visual and motor cortex during a simple visuomotor task.
The results from the spatial decomposition method showed greater statistical
significance, compared to the results from the voxelwise and the mean-ROI
methods, both in the measure of ICC difference and in the measure of heritability.
The left visual cortex showed greater genetic influence both in terms of magnitude
and statistical significance than the right visual cortex.

In general, ICC difference and heritability estimates from the spatial
decomposition method were less variable than the voxelwise method, as expected.
Along with the results from the simulation study, the proposed method showed

greater power in realistic settings compared to the voxelwise and mean-ROI
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approaches. The spatial decomposition method controls the noise by using spatial
basis volumes. In a way, the voxelwise method can be considered to be a special
case of the spatial decomposition method. If the number of basis volumes is equal to
the number of voxels in the ROI (e.g. imagine a basis set of an identity matrix), the
spatial decomposition method becomes identical to the voxelwise approach. On the
other hand, if a single constant map is used as a basis volume then the spatial
decomposition method is conceptually similar, although not identical, to the mean-
ROI method.

In the proposed spatial decomposition method, we used an independent set
of data to construct the basis volumes for the given neural activation pattern. Since
the basis volumes were limited to nineteen (the number of independent group of
subjects), our model could have been underspecified especially when we tried to
capture over 700 voxels in each mask. Underspecification of the model results in
bias as shown in the simulation study, although this bias is more likely to result in
bias toward zero, that results in a conservative assessment of genetic influence (see
Methods). In addition, note that our results show better detectability of heritability
in the spatial decomposition method than any other conventional methods in the

three ROIs'2. Nonetheless, an adequate construction of the basis volumes can

12 The exact same analyses were also performed in the whole brain. After heritability estimation
using an AE model and setting the magnitude threshold as the 99 percentile of the entire h? range, 81
suprathreshold clusters were identified from the voxelwise method and 8 suprathreshold clusters
were identified from the spatial decomposition method. After 200 repetitions using the permutation
scheme, the cluster size significance of the largest cluster identified from the voxelwise method was
p=0.485 and the cluster size significance of the largest cluster identified from the voxelwise method
was p=0.100. These results demonstrate that the spatial decomposition method, even though it may
be extremely underspecified to capture the spatial dependencies of the whole brain, is more
powerful than the voxelwise method.
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improve the model even further. One potential method is to use either functional
localizer data or images from orthogonal contrasts (Berman, et al., 2010; Friston, et
al,, 2006; Saxe, Brett, & Kanwisher, 2006) as independent datasets to construct the
basis volumes. This way, there is no need to collect data from independent subjects
and it will result in a much larger basis set given that modern fMRI twin studies
have a few tens, if not hundreds, of subjects.

There has been some recent advance in the heritability estimation in
diffusion tensor imaging data (Brun, et al., 2009; Jahanshad, et al., 2010; Lee, et al.,
2010) and genetic covariance estimation in structural imaging data (Schmitt, et al.,
2007). While these studies incorporate multivariate statistical analyses in
heritability estimation, our study is quite different in a number of ways. The goal of
our work is to borrow information from neighboring voxels to improve the
precision of voxelwise heritability estimates. This is particularly a critical issue in
functional neuroimaging studies, as the noise level is substantially higher than in the
structural studies. In addition recent research in functional neuroimaging has
started to emphasize the spatial and network-like nature of brain activity. Many
studies have demonstrated that information is encoded over a large number of brain
regions in a distributed and overlapping fashion (Haynes & Rees, 2006; Norman, et
al,, 2006). In addition, many studies have shown that multiple brain regions are
intrinsically organized into networks (Achard, Salvador, Whitcher, Suckling, &
Bullmore, 2006; Greicius, Krasnow, Reiss, & Menon, 2003) so that analyzing the
functional role of a particular brain region may be impossible without considering

other regions. It is therefore important to understand and consider the spatial
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dependencies in patterns of brain activation when estimating the heritability of such
patterns.

In summary, we developed a statistical method to estimate correlation and
heritability at each position in a spatial dataset. We then applied this method to
assess the influence of genetics on the pattern of neural activities evoked by a
visuomotor task. The proposed spatial decomposition method was shown to be
more efficient than the conventional voxelwise and mean-ROI methods in our
experiments. The results also showed that neural activity evoked by a simple
visuomotor task is under significant genetic influence particularly in the left visual

cortex and the left motor cortex.

2.6 Appendix

2.6.1 Fisher’sICC

Given N paired data values (Xn1, Xn2) where n=1...N, the following defines

Fisher’s ICC (Fisher, 1954):

cov(x,,,x.,) = N 1E(xn1 x)(x,, —X),

var(x,, )_m E(-xnl x)’ +E(x"2 2
cov(x,;,X.,)
ICC(X-UXQ) - m
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2.6.2 Bias correction for the plug-in estimates

The estimators we use follow standard approaches from fixed effects
modeling (Allison, 2005; Robinson, 1991; Searle, Casella, & McCulloch, 2008). The
bias correction procedure was adopted because the sample variance of the

estimated fixed effects is biased due to uncertainty in the fixed effects estimates. The

adjustment we use removes this bias. The variance and covariance (Vér( /3[,,,) and
cév( B> ﬁp,z)) of the random effects can be estimated starting from the empirical

variance and covariance of the fitted fixed effects (Var( Bp) and cov(fa’p,l,ﬁp,z)). The

empirical estimates are subject to a bias correction:

Var(/;’) = 2nl_ " En(/é, - E)z = 2n1— 1 (QB)/(QB) = 2nl_ 1 BOB

where Q is an idempotent centering matrix. Matrix Q can be constructed so

that the above equation can yield var(Bp,l), var(fa’p.z), or pooled variance Var(/ASP,,) to

be used for intraclass correlation.

Taking the expected value,

E(ﬁ/}Qﬁ’) = 2n1_1 tr(Q- E(Bf;”)) = tr(Q- [(X’X)‘l(f . /3’[5’])

1
2n -1

- 2n1_1 r{o(xx) ")+ an_ 1r(088) =5 1(Q(XX) ") + - pop

2n -1

Thus, the term tr(Q(X X )_102) can be subtracted from the plug-in

n p—
estimates to correct for bias.

Likewise,
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AA 1 AN (A | BN 1 oA
cov(Bufi) = (@B) (0:) = —— B/ 0.B = —— | 0/0.5B]
n-1 n-1 n-1
where n-by-2n matrices Q; and Q; represent a centering matrix. Matrices Q;
and Q2 can be constructed so that the above equation can either yield interclass

covariance or intraclass covariance.

Taking the expected value,

E( — zr(QJQZBB')) - i{o/0.(xx)" o)+ ——{0/0.p8)

1
n-1

(26) (2:5)

- 1_1 tr(Ql’Qz(Xx)“oz) +

n

Thus, the bias

1 n ,r(Q]’Qz(X')()’loz) can be subtracted from the plug-in
n—

estimates to correct for bias.
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2.7 Supplementary Figures
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Figure 2-7 Results of the simulation study using the proposed spatial decomposition method
(columns 1-5), the voxelwise method (column 6), and the mean-ROI method (column 7) with 10, 20,
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and 40 pairs. Patterns of neural activation for twin pairs were simulated with 32 basis volumes while
varying the degree of correlation between pairs (r) and the error variability (sig). The estimated
correlation was compared with the true ICC, and root mean squared error (RMSE), integrated
variance (IVAR), and root integrated squared bias (RISB) were computed over the parameter space.
In the case of the spatial decomposition method, correlation was estimated using a subset of 32 basis
volumes (4, 8, or 16, as represented in the first three columns), all 32 basis volumes (represented in
the fourth column), and 64 basis volumes (represented in the fifth column). IVAR decreased as a
function of number of pairs suggesting statistical consistency of the estimators.

Voxelwise Mean

RMSE

RISB

IVAR

Figure 2-8 Simulation of the mean-ROI method while the simulated estimates are compared
against the ROI-level true correlation. In our simulation study, the simulated correlations were
compared against the the voxel-level true correlation computed from Equations 2 to 4 with given
parameters r and o. This was based on the idea that the conventional voxelwise method estimates
correlation at the voxel level. The proposed spatial decomposition method also estimates correlation
at the voxel level. Thus, the estimands are the same between the two methods while the estimators
are different. The mean-ROI method estimates a different quantity, however. It estimates the
correlation of a function of the data (i.e. spatial average). Thus, it is in some sense more reasonable to
assess the bias of the mean-ROI estimator against the ROI-level true correlation (i.e. r in our
simulation study). This figure shows the results of the simulation study (N=20) using the voxelwise
method (comparing the simulated estimates to the voxel-level true correlation) and the mean-ROI
method (comparing the simulated estimates to the ROI-level true correlation). The bias that existed
in the mean-ROI method (as shown in Figure 2-1 and Figure 2-7) is reduced in this case, and there
are little differences between the two methods. The critical difference is more at the conceptual level
that the voxelwise method (and the spatial decomposition method) does not assume spatial
homogeneity while the mean-ROI method assumes spatial homogeneity.
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Figure 2-9 ICC estimates of MZ pairs computed using the spatial decomposition method,
arbitrarily thresholded at 0.10. The ICC were estimated separately in the three ROI's (the left and
right visual cortex and the left motor cortex) and then were overlaid on a canonical brain in MNI
space with axial slices from z = -10 to 50 mm with increments of 5 mm. The same axial slices and the
same color scale are used in Figures S4 through S6. Left hemisphere appears on the left for all brain
images.

Figure 2-10 ICC estimates of DZ pairs computed using the spatial decomposition method.
There was no suprathreshold cluster at this arbitrary threshold of 0.1.

49



Figure 2-12 ICC estimates of DZ pairs computed using the voxelwise method.
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Figure 2-13 Statistical significance of the cluster size as a function of magnitude threshold in
the estimation of ICC difference in the left visual cortex (top), the right visual cortex (middle), and the
left motor cortex (bottom). While varying the magnitude threshold from 0 to 1 in increments of 0.01,
the size of the largest suprathreshold cluster (green) was recorded and compared with the null
distribution of the maximum cluster size. The null distribution was constructed from 10,000
permutations of zygosity. These graphs demonstrate that overall the spatial decomposition method
yielded greater statistical significance (i.e. how much the green line is above the blue line) of the
largest cluster size than the voxelwise method regardless of the magnitude threshold.
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Figure 2-14 Statistical significance of the cluster size as a function of magnitude threshold in
the estimation of heritability (h?) in the left visual cortex (top), the right visual cortex (middle), and
the left motor cortex (bottom). While varying the magnitude threshold from 0 to 1 in increments of
0.01, the size of the largest suprathreshold cluster (green) was recorded and compared with the null
distribution of the maximum cluster size. The null distribution was constructed from 1,000
permutations of zygosity. These graphs demonstrate that overall the spatial decomposition method
yielded greater statistical significance (i.e. how much the green line is above the blue line) of the
largest cluster size than the voxelwise method regardless of the magnitude threshold.
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Chapter 3

Investigating environmental contributions
to the neural representation of written words

3.1 Introduction

The left lateral occipitotemporal cortex has been identified as a critical site
for the visual processing of written words. Brain imaging experiments collectively
demonstrate that the middle portion of the left occipitotemporal sulcus bordering
the fusiform gyrus and the inferior temporal gyrus exhibits greater neural activation
in response to written words compared to other control stimuli in a variety of tasks
(for review see McCandliss, Cohen, & Dehaene, 2003; Schlaggar & McCandliss,
2007). While debate over the specialization of this region for abstract word forms
exists, this region has often termed as the visual word form area (VWFA) (Cohen, et
al,, 2002).

The location of VWFA is quite consistent across individuals and cultures
(Bolger, Perfetti, & Schneider, 2005; Cohen, et al., 2002; Jobard, Crivello, & Tzourio-
Mazoyer, 2003), which suggests that some innate mechanisms play a role in the
development of this neural architecture. On the other hand, reading is a recent
development on an evolutionary time scale, it is not shared with other species, and

it does not develop without extensive experience. It is therefore unlikely that our
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brain has been genetically programmed, via natural selection, to specifically process
written words (Dehaene & Cohen, 2007; McCandliss, et al., 2003; Polk & Farah,
1998). Therefore, experience must be playing a critical role in shaping the neural
architecture for written words in the left occipitotemporal area in literate adults.

Whether and how experience shapes VWFA has been tested in a variety of
different ways in previous studies. In some studies, VWFA activation in response to
known script versus unknown script was compared (Baker, et al., 2007; Dehaene, et
al., 2010; Hashimoto & Sakai, 2004; Vinckier, et al., 2007; Xue, Chen, Jin, & Dong,
2006). If our experience with visual word forms influences the neural signature of
VWFA, then it would be natural to hypothesize differential neural activation levels
between known and unknown scripts. The results, however, have been mixed across
studies. For example, one study shows greater VWFA activation in response to
known script than unknown script (Baker, et al., 2007) while another study shows
the opposite results (Xue, et al., 2006).

Some other studies examined patterns of VWFA activation as a function of
word regularity or frequency (Binder, Medler, Westbury, Liebenthal, & Buchanan,
2006; Kronbichler, et al., 2004; Vinckier, et al.,, 2007). The idea behind these studies
is that VWFA activation will be modulated by the frequency with which we
encounter word forms. However, there is no clear consensus on the findings either.
Some studies show that VWFA activity increases as a function of orthographic
regularity (Binder, et al., 2006; Vinckier, et al., 2007) while another study shows that

VWFA activity decreases as a function of word frequency (Kronbichler, et al., 2004).
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The reasons for such inconsistent findings are largely unknown. One thing
we do know, however, is that factors such as attentional engagement, task difficulty,
and time on task play critical roles in the magnitude of neural activation in the
context of visual word form recognition (Ben-Shachar, Dougherty, Deutsch, &
Wandell, 2007; Mechelli, Humphreys, Mayall, Olson, & Price, 2000; Nobre, Allison, &
McCarthy, 1994; Starrfelt, 2007). Therefore, subtle differences in tasks and other
experimental parameters can easily influence the response magnitude and may
therefore obscure the results making it difficult to examine experience-dependent
properties in VWFA. So, how else can we empirically test the role of experience in
shaping the neural architecture for written words?

Twin studies make it possible to directly assess the amount of genetic and
environmental contributions in explaining individual differences in a trait. In
particular, monozygotic (MZ) twins make it possible to quantify the effect of unique
environmental variance. Because MZ twins reared together share all their genetic
alleles and potential common environmental effects, the correlation of the
phenotypic trait in MZ twins provides an estimate of variability explained by these
common factors (genetics and common environment) (Falconer & Mackay, 1996).
The complement of this correlation therefore provides an estimate of the variability
explained by unique environmental effects. In other words, a trait that is more
susceptible to environmental influence, making MZ twins less similar to each other,
will exhibit a smaller correlation between MZ twins than a trait that is less

susceptible to environmental influence. The unique environmental effects are
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broadly defined to include any possible prenatal experiences and epigenetic effects,
and are simply the factors that make the MZ siblings different from each other.

In the present study, we examine how the unique environment that we
experience over time influences neural activation in VWFA. We measured VWFA
activity evoked by words, pseudowords, consonant strings, and false fonts in MZ
twins. By taking MZ correlations, it is possible to quantify the proportion of the
variability in VWFA activation that can be attributed to unique environmental
effects. Assuming that the neural representation of written words is influence by
experience, we expected to find a greater environmental effect in the familiar word
condition than in the unfamiliar false fonts condition. We also tested how
environmental effects modulate subcomponents of reading. Reading involves
multiple subcomponents including visual, orthographic, phonological, and semantic
processing, but the stimulus types that we studied involve different subsets on these
processes. Processing false fonts involves visual processing, but not orthographic,
phonological, or semantic processing. Processing consonant strings involves both
visual and orthographic processing, but not phonological or semantic processing.
Processing pseudowords involves visual, orthographic, and phonological processing,
but not semantic processing. Finally, processing words involves all these
subcomponents (Pugh et al., 1996). By investigating unique environmental effects
on all four stimulus types, we expected to delineate how different subcomponents of

reading may be influenced by the environment that we experience over time.
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3.2 Methods

3.2.1 Participants

Sixteen MZ pairs (7 male pairs, ages 18-29 with median age of 22.5)
participated in the study. All participants were screened to ensure they were right-
handed, native English speakers, psychologically and physically healthy, not taking
medications with psychotropic or vascular effects, and free of any other MRI safety
contraindications. Zygosity was determined by comparing up to fifteen genetic
markers (D3S1358, THO1, D21S11, D18S51, Penta E, D55S818, D13S317, D7S820,
D16S539, CSF1PO, Penta D, vWA, D8S1179, TPOX, FGA) from the buccal cells of
twins collected by swabbing the cheek of each participant. Twins in whom all the
markers matched were classified as monozygotic. All study procedures were
reviewed and approved by the Institutional Review Boards at the University of
Texas at Dallas, the University of Texas Southwestern, and the University of
Michigan. All participants provided detailed written consent prior to their

involvement in the study.

3.2.2 Stimulus Materials

The primary goal of this study was to compare unique environmental effects
in the neural activation evoked by words and false fonts. To this end, words (WD)
were randomly chosen from the MCWord database (Medler & Binder, 2005,
MCWord: An On-Line Orthographic Database of the English Language,
http://www.neuro.mcw.edu/mcword) with word frequency ranging from 205.4 to

497.3 per million. False fonts (FF) were adapted from Vinckier et al. (2007). These
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false fonts were designed to be visually similar to upper case letters. All strings were
composed of four characters (mono-spaced type-face with 2° visual angle in height),
and only capital letters were used (see Figure 3-1).

In addition to real words and false fonts, pseudowords (PW) and consonant
strings (CS) were also included to study how subcomponents of reading are
modulated by unique environment. If orthographic, phonological, and semantic
processing trained and acquired over time make different contributions in shaping
the VWFA, then the amount of unique environmental effects should vary across
different subcomponents of reading. Pseudowords, or pronounceable nonwords,
were created from constrained trigram-based strings from the MCWord database.
Consonant strings were random combinations of consonants. Additionally, random
combinations of Arabic numbers (NB) were included, which served as a contrast

when functionally identifying the VWFA.

FEEL ZTTA
+ +
HELD TMeE
Words False Fonts
HARS PQJZ 6972
+ + +

LooD FKVS 9833

Pseudowords Consonant Strings Numbers

Figure 3-1 Examples of stimuli used in this study. Monozygotic twin participants performed
a visual matching task on pairs of real words (WD), false fonts (FF), pseudowords (PW), consonant
strings (CS), and numbers (NB), and judged whether the two items were the same or different.
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3.2.3 Procedure

The fMRI experiment consisted of five 5-minute runs with eighteen 16-sec
blocks, pseudorandomly ordered. Eighteen blocks were composed of three of each
of the five stimulus categories in addition to three blocks of fixation viewing. Each
block consisted of 8 trials (1.5 sec of presentation and 0.5 sec of inter-trial interval).
On each trial, two strings from the same stimulus category were presented 4.2°
above and below the central cross as shown in Figure 3-1. Participants judged
whether the two strings were the same or different. The correct answer was “same”
in half of all the trials. All visual stimuli were presented via E-prime (Psychology
Software Tools, Pittsburgh, PA) and displayed by a back-projection system.
Participants made responses using buttons under the right index and middle fingers

(Lumina response pad; Cedrus, San Pedro, CA).

3.2.4 Data Acquisition

Brain images were acquired with a Philips Achieva 3T whole-body scanner at
UT Southwestern using the Philips SENSE parallel acquisition technique. Functional
scans were acquired as axial slices, with a voxel size of 3.4 mm x 3.4 mm x 3.5 mm.
At each of 148 BOLD acquisitions per run, 43 axial slices were acquired (covering
the whole brain; TR = 2.0 s, TE = 25 ms). A high-resolution axial T1 MPRAGE was

acquired (voxel size 1 mm isotropic; TR = 8.27 ms, TE = 3.82 ms).

3.2.5 Activation Analysis and Inter-individual Registration
Functional data were processed using SPM5 (Wellcome Department of

Cognitive Neurology, London, UK, http://www. fil.ion.ucl.ac.uk). The functional
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images underwent slice-timing correction and realignment to the mean volume.
Then, activations in response to each stimulus (i.e. WD, FF, PW, CS, and NB) relative
to fixation were estimated using the standard general linear model (GLM) with a
high-pass filter at 128 Hz and correcting for temporal autocorrelation with an AR(1)
model. The model included separate regressors for each of the experimental
conditions in each run convolved with a canonical hemodynamic response function,
as well as six nuisance covariates modeling head translation and rotation. In order
to use independent data to define the region of interest (and construct basis
volumes) and to test the effect of interest, the neural activations were estimated
separately for odd and even runs. This procedure resulted in volumetric brain maps
of parameter estimates (beta values from the GLM) from odd and even runs for each
of the five categories in each participant.

In order to minimize the contribution of brain morphology in estimating the
similarity in brain function in twin pairs, a cortex-based inter-individual registration
technique was used by incorporating the FreeSurfer 4.5 (Martinos Center for
Biomedical Imaging, http://surfer.nmr.mgh.harvard.edu) automated reconstruction
stream. First, each participant’s T1 anatomical image was coregistered with the
mean functional image. Then, this image underwent a series of reconstruction
streams in FreeSurfer, which resulted in the identification of gray/white matter
boundaries and gyral/sulcal folding patterns. Inter-individual registration was
performed using this surface-based atlas by mapping individual cortical folding

patterns to the FreeSurfer average curvature map. This procedure allows direct

63



alignment of the anatomy instead of image intensities. The resulting surface map
consisted of 163,842 vertices on each hemisphere.

This procedure also enabled inter-individual registration of the functional
brain maps. First, individual volumetric parameter estimate maps computed from
the functional data analysis were mapped onto individual surface maps. Then, these
individual surface maps were mapped onto the FreeSurfer average surface map. The
resulting maps were surface-smoothed using a Gaussian kernel with 6mm full-

width-half-maximum.

3.2.6 Region of Interest

The VWFA was functionally constructed from the second-level random-
effects group analysis on the surface maps of WD+PW+CS > NB from even runs (p <
10-5, uncorrected; extent > 50 mm?) (Table 3-1). This contrast resulted in one
contiguous region in the left fusiform and inferior temporal area subtending 831
vertices (approximately 470 mm?2) (see Figure 3-2A). No region in the bilateral
ventral visual cortex showed greater activation in the WD condition relative to the
FF condition (p < 10-3, uncorrected; extent > 50 mm?), which prevented us from

using FF as a control stimuli to identify VWFA.

Table 3-1 Cluster results of the second-level random-effects group analysis of WD+PW+CS >
NB (p < 105, uncorrected) for defining the VWFA. No suprathreshold activation was observed in the
right hemisphere.

Coordinates (Talairach) Maximum t-value Size (mm?2)
-39.6 -42.9 -14.3 6.402 470.88
-42.0 3.0 20.7 5.648 27.59
-44.1 -32.9 -16.8 5.391 31.39
-39.7 -20.6 -17.6 5.344 10.58
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| -51.6 -40.4 7.2 | 5.241 | 7.49

In addition, another region was identified as a control region to assess
whether any differences in the unique environmental effects are unique to VWFA.
To this end, the left motor cortex was functionally defined from the group-level task-
related activity (all tasks > fixation from even runs, p < 10-5, uncorrected; extent >

50 mm?2) within the left sensorimotor cortex (see Figure 3-4A).

3.2.7 Monozygotic Twin Approach

The goal of the MZ twin analysis was to quantify the role of unique
environmental effect in explaining the total phenotypic variance of VWFA activity.
MZ twins reared together share all of their genetic alleles (A) and common
environment (C), so any difference arising between MZ twins can be attributed to
the unique environment effect (E). Thatis, P = A + C + E, and the intraclass
correlation (ICC) between MZ twins becomes the proportion of phenotypic variation
accounted for by genetics and shared environment (Var(G+C) / Var(P)). Therefore,
the complement of this MZ correlation (1 - Var(E) / Var(P)) represents the
proportion of phenotypic variance explained by the unique environmental effects.
Note that the unique environmental effect also includes variance accounted for by
measurement error, and that it is assumed in this study that this error variance is

comparable across the four conditions.

3.2.8 Parameter Estimates and MZ Correlations

As in other previous studies, activation magnitude in the VWFA in response

to various visual categories were observed. In order to do so, parameter estimates
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for the WD, FF, PW and CS conditions from odd runs within the ROI were computed
for each participant. Then, the mean parameter estimate in each condition was
computed across all participants (see Figure 3-2B).

Then, in order to quantify the effect of unique environment, the ICC between
MZ twins was computed (see Figure 3-3A). First, linear effect of age and sex was
removed from parameter estimates to remove any variance explained by these
covariates. Then, the ICC of the mean parameter estimate between MZ twins was
computed in each condition (Fisher, 1954). To enable comparison between different
correlation estimates, the computed ICC underwent Fisher’s r-to-z transformation.
MZ correlation (or ICC) reported in this paper refers to z-transformed ICC, and more
specifically, ICCwp, ICCpw, ICCcs, and ICCgr refer to ICC estimates in each of the four
conditions in subscripts.

See Section 3.5 Appendix for the same analysis using the spatial

decomposition method (Chapter 2).

3.2.9 Statistical Significance

The statistical significance of the effect of interest (e.g. whether ICCgr is
greater than ICCwp or whether there is a linear increase across the four conditions)
was tested using a permutation method. To be specific, the observed difference
value (i.e. ICCrr — ICCwp for the difference between ICCrr and ICCwp, and (3/4)xICCrr
+ (1/4)xICCcs - (1/4)xICCpw - (3/4)xICCwp for the linear contrast across the four
conditions) was first computed and recorded. Then, in a total of 10,000 repetitions,
the condition labels in each paired parameter estimates were permuted within each

pair, and the difference value was computed from each of the permuted sample. This
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permutation scheme is based on the null hypothesis that there is no difference
between the ICC’s for the WD versus the FF conditions. This procedure results in a
null distribution of 10,000 estimates of the difference value. The p-value of the
observed difference value was computed based on the proportion of the null

distribution exceeding the observed value.

3.3 Results

3.3.1 Behavioral Results

Reaction times and accuracy in response to each experimental condition
were analyzed (Table 3-2). There was a significant difference between the reaction
times across conditions tested by a within-subject ANOVA design (F2.72,84.42 =
96.320, p < 0.001, Greenhouse-Geisser corrected). A post-hoc contrast analysis
showed that this difference was mainly driven by slower RT for NB than CS (F1,31 =
9.164, p = 0.005) and slower RT for FF than NB (F131 = 204.456, p < 0.001). The
same test for accuracy showed a significant difference between the conditions (F3.00,
93.05 = 14.074, p < 0.0001, Greenhouse-Geisser corrected), and this difference was
mainly driven by lower accuracy in the false fonts condition than the other

conditions (A post-hoc contrast of FF < NB showed F131 = 27.983, p < 0.001).

Table 3-2 Behavioral results of the visual matching task for each experimental condition
performed in the scanner. Mean accuracy and median reaction time for the correct trials were
measured for each MZ twin (N=32), and the average (standard deviations in parentheses) of these
scores across subjects are reported.

Word Pseudoword | Consonant | Number False Fonts
Strings Strings
Accuracy 98.9 98.2 98.2 98.7 96.6
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(%) (1.25) (2.02) (2.16) (1.98) (2.64)
Reaction | 659.05 663.66 670.78 678.28.60 | 781.23
Time (ms) | (84.57) (85.31) (103.61) (89.18) (111.88)

3.3.2 Response Magnitude

Many previous studies have compared neural response magnitude evoked by
familiar words to unfamiliar words (e.g., foreign words or false fonts) in VWFA (Fig.
2A). In order to directly compare our results to these previous studies, mean
activation levels in the ROIs were computed as shown in Figure 3-2B. There was a
significant difference in the response magnitude across the four experimental
conditions in the VWFA (F1.92,59.63 = 23.455, p < 0.001, Greenhouse-Geisser corrected
within-subject ANOVA). This effect was driven by relatively smaller response
magnitude in the CS condition (F1,31 = 103.391, p < 0.001). There was no difference
across the WD, PW, and FF conditions (F1.30,4034 = 1.116, p = 0.314, Greenhouse-
Geisser corrected within-subject ANOVA).

Smaller response magnitude in the CS condition compared to the WD and PW
conditions is consistent with previous studies showing hierarchical organization of
VWFA (Vinckier, et al., 2007) and sensitivity to bigram frequency (Binder, et al.,
2006). However, comparable response magnitude in the FF condition compared to
the WD and PW conditions is different from the previous study that used the same
set of false font stimuli (Vinckier, et al., 2007). This nonsignificant difference
between VWFA activity evoked by words and false fonts is somewhat consistent
with a previous study showing negligible difference between a familiar script and

unfamiliar script (Xue & Poldrack, 2007).
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N

Parameter Estimate
N

WD PW CS FF

«I_. ) VWFA

P

Figure 3-2 The region of interest and the mean response magnitude. A. The visual word form
area (VWFA) is shown in a yellow boundary on an inflated surface of the ventral view of the left
cerebral cortex. This region was defined from the second-level random-effects analysis (p < 105,
uncorrected; extent > 50 mm?) of the contrast WD + PW + CS > NB from the even runs. (A: anterior;

P: posterior; M: medial; L: lateral) B. Mean response magnitude in the VWFA from the odd runs. Error
bars represent standard error across all participants.

3.3.3 Unique Environmental Effects in VWFA

ICC estimates between MZ twins’ VWFA activation are shown in Figure 3-3A.
There was a monotonic increase in ICC across the four conditions, with the smallest
in ICCwp and the greatest in ICCrr. The difference between ICCrr and ICCwp was
statistically significant (p = 0.029). This pattern is consistent with our primary
hypothesis of greater unique environmental effects in the neural activity associated
with familiar real word processing than unfamiliar false font processing in VWFA.

A linear contrast across the four conditions was also statistically significant
(p = 0.011), consistent with the idea that unique environmental effects in VWFA are
modulated by orthographic, phonological and semantic processing. In a post-hoc

analysis, we also examined stepwise differences across the four conditions. The
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difference between ICCwp and ICCpw was 0.023 (p = 0.426), between ICCpw and ICCcs
was 0.188 (p = 0.080), and between ICCcs and ICCrr was 0.036 (p = 0.394). These
results suggest that perhaps the unique environmental effect is most associated
with the phonological information embedded in orthographic stimuli.

The scatter plots of the parameter estimates between MZ twins shown in
Figure 3-3B show a much tighter correlation between MZ activation in the FF
condition than in the WD condition as well as a monotonic trend toward tighter
correlation across the conditions. Note also that these effects in ICC estimates

cannot be explained by the effects of response magnitude (see Figure 3-2B).

A B WD PW
Q © 0% o
c © 800 o
s 1 06 %
E (@)
o
o
O 05 - 2 CS FF
a NE o o)
2 SE o foYe)
© Su 8 o] o8 o)
o 58 O %‘@O Dg 0
= Fr IR}
£ 0 45 | ©
. . . . =7
WD PW CS FF =2 0 2

MZ1 Standardized
Parameter Estimate

Figure 3-3 Z-transformed ICC estimates in the VWFA. A. The difference between ICCwp and
ICCrr (p = 0.029) and the linear contrast across the four conditions (p = 0.011) was statistically
significant. The difference between ICCpw and ICC¢s was marginally significant (p = 0.080). B. The
scatter plots of the standardized parameter estimates between MZ twins.
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3.3.4 ICCin the Left Motor Cortex

In addition, we examined whether greater environmental effects in WD
condition compared to the FF condition and the linear contrast effects are unique to
the VWFA. We selected the left motor cortex as a control region to compare such
effects (Figure 3-4A), because we expected little difference between the
experimental conditions but robust activation in all conditions. There was a
significant linear trend in the mean response magnitude in the left motor cortex as
shown in Figure 4B (F1,31 = 5.973, p = 0.020). However, there was no significant
difference between ICCrr and ICCwp in the left motor cortex (p = 0.180) and no

significant linear contrast in the ICC across the four conditions (p = 0.069) (Figure 3-

4C).
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Figure 3-4 The left motor cortex serving as a control region. A. The left motor cortex was
functionally defined from the group-level task-related activity (all tasks > fixation from even runs, p <
10-5, uncorrected; extent > 50 mm2) within the left sensorimotor cortex. B. Mean response
magnitude in the left motor cortex from the odd runs. C. Z-transformed ICC estimates in the left
motor cortex.

71



3.4 Discussion

In this study, we investigated how the environment that we experience
influences the functional organization of the visual word form area (VWFA). Neural
activations in response to words and false fonts were measured in monozygotic
twins, and the proportion of phenotypic variability explained by unique
environmental effects was estimated. The results showed greater unique
environmental contributions to the variability of the neural activity evoked by
words than false fonts, confirming the idea that the development of VWFA must be
partially experientially driven. More importantly, there was a linear gradient of
unique environmental effects across the four experimental conditions, i.e. greater
effects of unique environment on words than pseudowords, on pseudowords than
consonant strings, and on consonant strings than false fonts. Thus, the present
findings support the idea that the VWFA is shaped by our experience with different
subcomponents of reading over the course of development. The MZ twin correlation
approach provides a unique way to investigate the role of
experiential /environmental effects, which overcomes the limitations of previous
studies based exclusively on mean activation magnitude.

There are two influential theoretical claims regarding the role of experience
in shaping the neural architecture for written words. One theory proposes that the
neurons in the left occipitotemporal region, with genetic predispositions for
processing fine-grain visual features, become tuned to encode abstract
representations of visual word forms (Dehaene & Cohen, 2007, 2011), thus termed

the “visual word form area” (VWFA) (Cohen, et al.,, 2000). Another theory argues
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that neurons in this occipitotemporal region become responsive to words (and
possibly to other stimuli as well) due to unique top-down feedback connections
from phonological and semantic processing areas (Price & Devlin, 2003, 2011).
While the underlying mechanism for the development of the so-called VWFA is
explained differently in the two theories, there are some common predictions that
they make regarding the neural response in VWFA evoked by various types of
orthographic stimuli.

One of the predictions regarding experience-dependent properties in VWFA
is that the neural response will be greater when viewing known script than
unknown script. This simple prediction has been tested in many previous studies
using various stimuli and tasks. The results to date, however, have been somewhat
mixed. One study demonstrated greater left occipitotemporal activation for native
words compared to foreign words (Baker, et al.,, 2007), while another study
demonstrated greater activation for foreign words compared to native words (Xue,
et al.,, 2006). Another study found a non-significant difference between the two (Xue
& Poldrack, 2007), and yet another reported that false fonts activated more than
random letter sequences but less than real words in this region (Vinckier, et al.,
2007). Lastly, one study showed greater activation for foreign words than native
words in the more lateral region of the occipitotemporal cortex but the opposite
pattern in the more medial region (Hashimoto & Sakai, 2004). Collectively, these
studies report differences in the response magnitude for native words versus

foreign words and false fonts, supporting the idea that experience leads to changes
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in the neural architecture of the VWFA. However, the direction of this effect is
inconsistent across studies.

Inconsistent results across studies are also apparent in studies that examine
VWEFA as a function of the frequency with which we encounter orthographic stimuli.
Binder et al. (2006) found that the putative VWFA region is sensitive to bigram
frequency showing greater activation in response to letter strings with more
frequent bigrams. Vinckier et al. (2007) also found that this region is hierarchically
organized showing greater activation in response to more orthographically regular
letter strings. On the other hand, Kronbichler et al. (2004) found decreasing putative
VWFA activation as a function of increasing word frequency even while the bigram
frequency was controlled for.

In this study, we used an alternative approach to investigating the role of
experience in a monozygotic twin study. Monozygotic twins (MZ) provide ways to
quantify the role of unique environment in explaining differences between
individuals. MZ twins are genetically identical, so it is unique environmental factors
that make MZ twins different from one another. Greater MZ correlation in the false
font condition than in the word condition suggests that environment plays a
significantly stronger role in shaping the VWFA activation in response to words than
false fonts. Furthermore, this effect was specific to the VWFA: a control region in the
motor cortex showed no evidence for such an ICC difference between words and
false fonts.

We also found a monotically increasing influence of unique environmental

effects from false fonts to consonant strings, then to pseudowords and words in the
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VWEFA. This linear contrast across the four conditions suggests that there are greater
unique environmental contributions as more subcomponents of reading are
involved. This linear contrast, however, is mainly driven by the difference between
ICCpw and ICCcs, which suggests that individual experience with phonological
processing may be the most important experiential factor in shaping the VWFA.
Nonsignificant differences between ICCcs and ICCrr and between ICCwp and ICCpw
suggest that individual experiences in orthographic and semantic processing may
not be as important in shaping the VWFA.

The unique role of subcomponents of reading has been tested in previous
training studies (Hashimoto & Sakai, 2004; Xue, et al., 2006). Xue et al. (2006)
studied how visual, phonological, and semantic training on an artificial language
influence the putative VWFA activity. They found that VWFA activity decreased after
visual training but increased after phonological training. Hashimoto & Sakai (2004)
trained subjects to match an artificial symbol with a sound that could either be a
speech sound or a nonspeech sound. They found that VWFA activity selectively
increased in the speech condition, suggesting that associated phonological
processing drives the development of VWFA. Our findings are consistent with these
previous studies showing the relative importance of experience with phonological
information in shaping the VWFA. Furthermore, our results show an effect of long-
term experience overcoming the limited interpretations of the training studies. In
addition, our results show a full range of experiential effects from false fonts to

words.
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Because reading is an acquired skill, we argue that there is no genetic
advantage in processing one type of orthographic stimuli versus another. Imagine a
person who has absolutely no knowledge about English letters (or any other similar
Roman letters). It would be very difficult for him/her, if not impossible, to tell
whether an item presented in our experiment is a word, pseudoword, consonant
string, or a string of false fonts. Thus, any difference in MZ correlation observed in
our study can be attributed to differences in environmental effects on the four
conditions. Importantly, the observed differences among MZ correlations cannot be
explained by overall response magnitude effects (Fig. 2B). This study, therefore,
provides a unique way to investigate environmental effects on neural activity,
overcoming limitations in previous studies where interpretations are based
exclusively on response magnitude.

The present findings provide direct evidence for environmental
contributions to the neural representations of written words. These results
overcome limitations of previous studies that interpret data based exclusively on
response magnitude. In addition, our results suggest that phonological processing
may have the largest contribution in shaping the neural representation of words in
the VWFA. In sum, they illustrate how the environment we experience can make
qualitative changes in the brain and may even induce neural specialization for a

cultural convention.
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3.5 Appendix

3.5.1 Voxel-level MZ Correlation

While the MZ correlations can be estimated from the mean activation values
within the region of interest as presented in the main section of this study, this
mean-ROI method imposes a strong assumption of spatial homogeneity. If this
assumption is not met, then the estimate may result in bias (see Chapter 2). In
addition, the mean-ROI method prevents us from identifying a possible correlated
subregion within the ROI. One way to overcome these limitations in the mean-ROI
analysis is to use the novel statistical method that is introduced in Chapter 2. This
spatial decomposition method allows us to efficiently estimate a correlation
between patterns of neural activity, by incorporating information about spatial
patterns inherent in the neural activity.

Intraclass correlation (ICC) maps of neural activity in response to WD, FF,
PW, and CS between MZ twins were estimated by applying this spatial
decomposition approach (Chapter 2). First, the basis volumes were derived from the
task-related neural activation patterns (all conditions > fixation) estimated from the
even runs. This procedure resulted in a matrix of 831 vertices by 33 (= 32 subjects +
1 intercept) images of neural activation patterns. Then, the eigenvectors of its
covariance matrix served as the basis volumes.

Using these basis volumes, the spatial decomposition method was used to
estimate the ICC of the activation patterns estimated from odd runs of WD, FF, PW,
and CS conditions, with linear effects of age and sex removed. This procedure

resulted in an ICC map of WD (ICCwnp), FF (ICCgr), PW (ICCpw), and CS (ICCcs) in two
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separate ROIs (the VWFA and the left motor cortex). Then, Fisher’s r-to-z
transformation was applied to these ICC maps for comparisons between different

ICC estimates.

3.5.2 ICC Difference Between WD and FF

We first tested whether any region within a particular ROI showed
significantly greater ICCrr than ICCwp. Statistical significance of this effect was
computed using a permutation method incorporating a clusterwise correction for
multiple comparisons (Holmes, Blair, Watson, & Ford, 1996; Nichols & Holmes,
2002). In this method, a magnitude threshold is first determined, and the size of the
suprathreshold clusters undergoes the statistical significance test.

To be specific, the observed difference map (i.e. ICCrr - ICCwp) was first
computed and recorded. Then, in order to set a magnitude threshold, we computed
a z-score map of this difference map using a permutation scheme. In a total of
10,000 repetitions, the condition labels in each paired patterns were permuted
within each pair, and the difference map was computed from each of the permuted
sample. This permutation scheme is based on the null hypothesis that there is no
difference between the ICC’s for the WD versus the FF conditions. This procedure
results in a null distribution of 10,000 estimates in each vertex. Then, the observed
difference map was divided by the standard deviation of this null distribution, which
resulted in a z-score map of the effect of interest (i.e. ICCrr — ICCwp). Among all the
vertices that resulted in p < 0.05 (z > 1.645), the median difference value was set as
the magnitude threshold. For instance, the resulting magnitude threshold was 0.188

in the VWFA. Note that if none of the vertices exceed z > 1.645 in the z-score map of
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the effect of interest, then no magnitude threshold is set, which in turn simply
means that the effect of interest is not statistically significant.

Using the magnitude threshold, a clusterwise correction for multiple
comparisons was performed in order to test whether the size of any of the
suprathreshold clusters was statistically significant. For example, there was one
suprathreshold cluster (169 vertices) in the VWFA. The null distribution of the
cluster size in these ROIs was constructed by recording the size of the largest
suprathreshold cluster (under the identical magnitude threshold setting) from the
difference maps of the permuted sample. The p-values of the size of the
suprathreshold clusters from the observed difference map were computed based on

the proportion of the null distribution exceeding the observed sizes.

3.5.3 Linear Contrast of ICC

While our primary hypothesis was that ICCrr is greater than ICCwp, we also
tested how ICCpw and ICCcs are different from ICCrr and ICCwp. Previous studies
have suggested that the acquisition of phonological and semantic knowledge about
words may be critical in the development of VWFA (Hashimoto & Sakai, 2004; Xue,
et al,, 2006). The PW condition lacks semantics relative to the WD condition, and the
CS condition further lacks phonology relative to the PW condition. Thus, if the
acquisition of phonology and semantics over the course of schooling affects VWFA
activation, then we should expect ICCpw to be greater than ICCwp, and ICCcs to be
greater than [CCpw but smaller than ICCrr.

We therefore tested for a significant linear contrast over the four conditions.

First, a linear contrast map was constructed from a weighted average of the four ICC
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maps (i.e. (3/4)xICCpr + (1/4)xICCcs - (1/4)xICCpw - (3/4)xICCwp). Then, using a
clusterwise correction for multiple comparisons procedure and a permutation
scheme, we tested whether any of the suprathreshold clusters (exceeding a
magnitude threshold derived from the z-score map) were statistically significant in

size.

3.5.4 ICCinthe VWFA

ICC estimates between MZ twins’ neural activation in the VWFA are shown in
Figure 3-5A. Visually, ICCrr was greater than [CCwp, particularly in the middle
portion of the VWFA, consistent with our primary hypothesis that there exists more
environmental effects in the neural activity associated with real word processing
than false fonts processing in VWFA. Numerically, the difference map (ICCgr - ICCwp,
Figure 3-5B) resulted in a significant cluster in the center of the VWFA (p = 0.0481).

Additionally, we tested whether there was a significant linear relationship
among ICC estimates of the four conditions. A linear contrast map (Figure 3-5C)

indeed resulted in a significant cluster in the center of the VWFA (p = 0.0378).
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Figure 3-5 ICC maps in the VWFA. A. Topographic maps of ICCwp, [CCpw, ICCcs, and ICCgr
within the VWFA. B. ICC difference map between the WD and FF conditions. The suprathreshold
cluster (magnitude threshold = 0.188, cluster size = 169 vertices) was statistically significant in size
(p = 0.0481). C. The linear contrast map among all conditions. The suprathreshold cluster (magnitude
threshold = 0.163, cluster size = 218 vertices) was statistically significant in size (p = 0.0378) as well.
The color bars in all topographic figures represent an r-to-z transformed ICC estimate.
Suprathreshold cluster is identified in a thick black boundary.

3.5.5 ICCin the left motor cortex

In addition, we examined whether greater environmental effects in WD
condition compared to the FF condition and the linear contrast effects are unique to
the VWFA. In the left motor cortex (Figure 3-6), none of these effects were

statistically significant (p > 0.2046 in the difference map and p > 0.1345 in the linear

contrast map).
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Figure 3-6 ICC maps in the left motor cortex derived from the spatial decomposition method.
A. Topographic maps of ICCwp, ICCpw, ICC¢s, and ICCgr within the left motor cortex. B. ICC difference
map between the WD and FF conditions. This difference map had a magnitude threshold of 0.069,
which resulted in four suprathreshold clusters (10, 65, 366, and 1978 vertices). None of them was
statistically significant in size (p > 0.2046). C. The linear contrast map among all conditions. This map
had a magnitude threshold of 0.079, which resulted in three suprathreshold clusters (35, 395, and
1934 vertices). None of them was statistically significant in size (p > 0.1345).

3.5.6 Mean-ROI vs. Spatial Decomposition Methods

In Chapter 2, [ described several relative advantage of the spatial
decomposition method compared to the mean-ROI method. First, the spatial
decomposition method relaxes the assumption of spatial homogeneity, so it enables
us to identify correlated subregion within the ROI. Second, if this assumption is
highly violated, then the mean-ROI method is likely to result in biased estimates. In

investigating the MZ correlations in the VWFA in this Chapter, however, the
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performance of the spatial decomposition method and the mean-ROI method was
comparable. That is, both methods were able to detect significant MZ correlations in
VWFA. That is, incorporating the spatial decomposition method did not add much
value to the more conventional mean-ROI method. This may have been due to the
special characteristics of the ROI in the current study. It is possible that this
relatively small ROI is somewhat spatially homogeneous. So, relaxation of this
assumption at a cost of slight conservative bias in the spatial decomposition method

perhaps did not result in overall advantage of this novel method.
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Chapter 4

Neural dissociation of number from letter recognition
and its relationship to parietal numerical processing

4.1 Introduction

Despite the fact that letters and numbers are cultural inventions and the
distinction between them is physically arbitrary, the visual recognition of letters is
dissociable from the visual recognition of numbers. This dissociation of letter
recognition from number recognition has been found in behavioral studies
(Hamilton, Mirkin, & Polk, 2006; Jonides & Gleitman, 1972; Polk & Farah, 1995),
neuropsychological studies (Anderson, Damasio, & Damasio, 1990; Ingles & Eskes,
2008; Starrfelt, 2007), electrophysiological studies (Allison, McCarthy, Nobre, Puce,
& Belger, 1994; Wong, Gauthier, Woroch, DeBuse, & Curran, 2005), and
neuroimaging studies (Flowers et al., 2004; James, James, Jobard, Wong, & Gauthier,
2005; Joseph, Cerullo, Farley, Steinmetz, & Mier, 2006; Pernet, Celsis, & Demonet,
2005; Polk & Farah, 1998; Polk et al., 2002; Puce, Allison, Asgari, Gore, & McCarthy,
1996). These findings are significant because letters and numbers are arbitrary
symbols and the distinction between them is simply a cultural convention. If they

are processed differently at both behavioral and neural levels, it suggests that early
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schooling experiences can lead to qualitative changes in neurocognitive
architecture.

Nevertheless, inferring that two tasks depend on separate underlying
processes based on single or one-way dissociations is problematic (Shallice, 1988).
For example, if task A is harder than task B, then brain damage might selectively
impair task A even if the two tasks depend on the same neural substrates. Similarly,
if task A produces greater breadth or more areas of activation than task B in a
neuroimaging experiment, it might merely reflect the fact that task A is more
demanding, not that the tasks depend on dissociable neural systems.

Ideally then, one would like to demonstrate that number recognition is also
dissociable from letter recognition, thereby establishing a double dissociation and
undermining alternative hypotheses. Some electrophysiological studies have found
number-specific responses from specific inferotemporal electrodes (Allison et al.,
1994; Roux, Lubrano, Lauwers-Cances, Giussani, & Demonet, 2008) consistent with
the hypothesis that number recognition is dissociable from letter recognition, but
evidence from patient studies and neuroimaging is scarce. Although patients with
numerical processing deficits (acalculia) are commonly reported, we know of no
reports of patients with a specific deficit in the visual recognition of numbers
relative to letters and words (but see the following reports for descriptions of
patients with deficits in the verbal production of number names: Cipolotti,
Warrington, & Butterworth, 1995; Marangolo, Nasti, & Zorzi, 2004). And very few
neuroimaging studies have directly contrasted the visual recognition of numbers

with the recognition of letters. Polk et al. (2002) attempted to do so, but only
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reported significant activation for numbers in three subjects, and no significant
activation was reported at the group level. In Experiment 1, we use new procedures
and study a larger group of subjects to examine directly the neural dissociation of
number recognition from letter recognition.

If letter and number recognition rely (at least in part) on different neural
systems, a natural question is why. Dehaene and colleagues’ neuronal recycling
hypothesis proposes that acquired functions like letter and number recognition
exploit and reorganize evolutionarily older neural circuits originally performing
similar functions (Dehaene & Cohen, 2007). According to this view, one of the
reasons that the so-called visual word form area (VWFA) tends to develop in left
occipitotemporal cortex is because this area has relatively direct connections to and
from anterior language processing sites in the left hemisphere (McCandliss, Cohen,
& Dehaene, 2003).

A recent electroencephalogram (EEG) study has provided indirect support
for this hypothesis (Cai, Lavidor, Brysbaert, Paulignan, & Nazir, 2008). While it has
been known that VWFA lies in the left inferior temporal region in most right-handed
subjects (Cohen et al., 2002), Cai et al. (2008) tested its lateralization in left-handed
subjects in whom anterior language processing regions are commonly right-
lateralized. Four of the nine left-handed subjects showed right-lateralized frontal
activity in a verb generation task, and these four subjects also exhibited stronger
right-sided negativity in inferior temporal sites. Based on these results, they argued
that the localization of word recognition in ventral visual cortex depends on the

localization of spoken language processes in frontal cortex.
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Following this reasoning, we hypothesized that the location of cortical areas
involved in visual number recognition might depend on the location of cortical areas
involved in higher-order numerical processing in parietal cortex. Specifically,
participants whose higher-order numerical processing is more right-lateralized in
parietal cortex would also tend to exhibit more right-lateralized number recognition
in ventral visual cortex, and vice versa. We tested these predictions in Experiment 2
by measuring neural activity in response to higher-order numerical processing tasks
(addition, subtraction, counting) in the same participants. We then investigated
whether the lateralization of this higher-order numerical processing activity
correlated with the lateralization of lower-order number recognition activity in

ventral visual cortex.

4.2 Experiment1

4.2.1 Methods

Participants. 20 healthy young adults (ages 18-29 with mean of 23.4; 9
males) participated in the study. All participants were screened to ensure they were
right-handed, native English speakers, psychologically and physically healthy, not
taking medications with psychotropic or vascular effects, and free of any other MRI
safety contraindications. All study procedures were reviewed and approved by the
Institutional Review Boards at the University of Texas at Dallas, the University of
Texas Southwestern, and the University of Michigan, All participants provided

detailed written consent prior to their involvement in the study.
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Stimulus Materials. Five types of stimuli were created for use in the study. All

five types consisted of two strings, 4.2° above and below the central cross (examples

are shown in Figure 4-1). Participants made a “same/different” judgment on each

pair of strings. The primary stimuli of interest were letter consonant strings and

number strings. All strings were composed of four letters/numbers (mono-spaced

type-face with 2° visual angle in height), and only capital letters were used. Three

other types of stimuli—words, pseudowords, and false fonts (adapted from Vinckier

et al.,, 2007)—were included, although the focus of this study was on consonant and

number strings. Pseudowords (pronounceable nonwords) were created with

constrained trigram-based strings (Medler & Binder, 2005, MCWord: An On-Line

Orthographic Database of the English Language.

http://www.neuro.mcw.edu/mcword/), and real words with mean word frequency

of 323.6 per million (ranging from 205.4 to 497.3) were included.

PQJZ
+ 6972
FKVS + FEEL
9833 + HARS
HELD + SIIR
+
Letters L00D AT
Numbers
Words
Pseudowords
False Fonts

Figure 4-1 Examples of stimuli used in Experiment 1. Participants performed a visual
matching task and judged whether the two items are same or different.

Procedure. The task consisted of five 5-minute runs with eighteen 16-sec

blocks, pseudorandomly ordered (three for each of the five categories in addition to
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three blocks of fixation). Each block consisted of 8 trials (1.5 sec of presentation and
0.5 sec of inter-trial interval) in which participants made a same/different judgment
on each pair of strings. The correct answer was “same” in half of all the trials. All
visual stimuli were presented via E-prime (Psychology Software Tools, Pittsburgh,
PA) and displayed by a back-projection system. Participants made responses using
buttons under the right index and middle fingers (Lumina response pad; Cedrus, San
Pedro, CA).

Data Acquisition. Brain images were acquired with a Philips Achieva 3T
whole-body scanner at UT Southwestern using the Philips SENSE parallel
acquisition technique. Functional scans were acquired as axial slices, with a voxel
size of 3.4 mm x 3.4 mm x 3.5 mm. At each of 148 BOLD acquisitions per run, 43
axial slices were acquired (covering the whole brain; TR = 2.0 s, TE = 25 ms). A high-
resolution axial T1 MPRAGE was acquired primarily to facilitate group registration
(voxel size 1 mm isotropic; TR = 8.27 ms, TE = 3.82 ms).

Activation Analysis. Data were preprocessed using SPM5 (Wellcome
Department of Cognitive Neurology, London, UK, www. fil.ion.ucl.ac.uk). Functional
images underwent slice-timing correction and realignment to the mean volume.
Each participant’s T1 anatomical image was coregistered with the functional images
and then segmented into gray matter, white matter, and cerebral spinal fluid. The
gray matter was normalized into the default gray matter probability template in
standard MNI (Montreal Neurological Institute) space, and the acquired
normalization parameters were used to normalize the functional images for each

individual with a spatial resolution of 3 mm x 3 mm x 3 mm.
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Activations in response to each stimulus type (numbers, letters, words,
pseudowords, false fonts) in contrast to fixation were estimated using the standard
general linear model (GLM) with a high-pass filter at 128 Hz and correcting for
temporal autocorrelation with an AR(1) model. The model included separate
regressors for each of the experimental conditions convolved with a canonical
hemodynamic response function, as well as six nuisance covariates modeling head
translation and rotation. In each subject, “letter-preferred activation” was defined
by contrasting consonant strings to number strings, and “number-preferred
activation” was defined by contrasting number strings to consonant strings. These
contrast maps from each subject were then entered into a second-level random
effects group analysis in order to identify letter- and number-preferred activity at
the group level (see Figure 4-3).

Laterality Analysis. To assess laterality for letter-preferred activity, we first
created a region of interest (ROI) based on the letter-preferred (letter vs. number)
group activation map within a bilateral anatomical mask including the fusiform,
inferior and middle temporal, and inferior occipital gyri (defined using Pick-Atlas
toolbox, http://www.fmri.wfubmc.edu/cms/software). The activation map was
thresholded at a relatively lenient threshold (p < 0.05, extent > 20 voxels) within the
anatomical mask to accommodate individual differences in the location of letter-
preferred activation in individual participants. This approach yielded 216 voxels all
of which were in left ventral visual cortex. Finally, we added all the corresponding

216 voxels in the right hemisphere (flipping the sign of the x-coordinates) in order
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to make this ROl symmetric. This bilateral ROI constructed from the group-level
letter-preferred activation map is referred to as the visual letter ROI.

We applied the same procedure to create a visual number ROI. The number-
preferred (number vs. letter) group activation yielded 343 voxels within the same
anatomical mask, all in the right ventral visual cortex. We then added the 343
corresponding voxels from the left hemisphere to create the visual number ROL

We then computed laterality indices for each individual participant’s letter-
preferred activity in the visual letter ROI and number-preferred activity in the visual
number ROI using a threshold-independent laterality index that was computed
following Suarez et al. (2009). This approach was validated to be more robust and
unambiguous compared to threshold-dependent methods in a study determining
language dominance validated against the intracarotid amytal test (Suarez et al.,
2009). In this method, histograms of the number of voxels with positive t-values
were generated separately in the left and the right hemisphere of each bilateral ROI.
These histograms were multiplied by a weighting function defined as t? (as
suggested by Suarez et al,, 2009), and areas under the each of the weighted
histograms were computed. Then, the laterality index (LI) was computed using the
conventional ratio LI = (Q. - Qr) / (QL + Qr), where Q. denotes the area under the
weighted histograms from the left hemisphere and Qr denotes the same area from
the right hemisphere. An LI of 1 indicates complete left hemisphere dominance, and

an LI of -1 indicates complete right hemisphere dominance.
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4.2.2 Results

Behavioral Results. Accuracy on the visual matching task was above 95% for

all conditions (Table 4-1). Reaction time for the letter (consonant strings) condition

was slightly faster than for the number condition (t19 = 2.007, p < 0.059, paired t-

test). The reaction times for the three orthographic conditions (real words,

pseudowords, and consonant strings) did not show any significant difference (p >

0.220 for the three paired t-tests). Reaction time to the false fonts was the slowest of

all the conditions (t19 = 11.602, p < 0.001 for the contrast of false fonts versus all

other conditions).

Table 4-1 Behavioral results of the visual matching task for each experimental condition
performed in the scanner (N=20). Mean accuracy and median reaction time for the correct trials
were measured for each subject, and the average (standard deviations in parentheses) of these
scores across subjects are reported.

Word Pseudoword Consonant Number False Fonts
Strings Strings
Accuracy 98.9 97.9 98.1 99.0 96.2
(%) (1.20) (1.85) (1.70) (1.29) (2.91)
Reaction 679.30 679.65 691.00 712.60 801.75
Time (ms) (91.21) (95.16) (111.49) (98.68) (111.02)

Letter > Fixation

Number > Fixation

Figure 4-2 Group-level (N=20) activation maps of letters and numbers relative to fixation,
thresholded at p < 0.001 (uncorrected) with extent greater than 20 voxels, overlaid on to a 3D
inflated surface using Caret PALS atlas (http://brainvis.wustl.edu/wiki/index.php/Caret:About) for

visualization.
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Letter- and Number-Preferred Activation. Both the letter and number

conditions showed greater BOLD response compared to the fixation condition in

various regions including the bilateral ventral visual cortex and the left

sensorimotor cortex (Figure 4-2). Moreover, when the letter condition and the

number condition were contrasted directly, letters activated an area in left ventral

visual cortex more than numbers while numbers activated an area in right ventral

visual cortex more than letters at the group level (Figure 4-3). The left mid-fusiform

and inferior temporal area and the left angular gyrus were the only two regions that

passed the cluster-level threshold in the letter-preferred (letter vs. number)

activation map, and the right lateral occipital area was the only region that passed

the threshold in the number-preferred (number vs. letter) activation map (Table

4-2).

Table 4-2 Statistics on the clusters of letter-preferred activation (letter vs. number) and
number-preferred activation (number vs. letter) surviving the threshold of p < 0.005 and extent
greater than 20. The peak z-scores and coordinates (in MNI space) are reported with the voxelwise
uncorrected p-value and cluster-level corrected p-value.

Z-score (t- Coordinates (x, | p (cluster-level | p (voxelwise

score) y, Z in mm) corrected) uncorrected)
Letter > 4.60 (6.36) -57 -28 28 <0.001 2.11x10¢
Number

4.12 (5.33) -36-37 -23 0.005 1.91x10-5

3.81 (4.75) 24 -43 58 0.328 0.005

3.47 (4.16) 51-25 34 0.118 0.002

3.32(3.92) 32034 0.721 0.016
Number > 3.65 (4.47) 48 -73 -2 0.010 7.12x10°
Letter
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® Letter > Number
@® Number > Letter

Figure 4-3 Letter- and number-preferred activation maps. Letters in contrast to numbers
activated the left mid-fusiform/inferior temporal area (p = 0.005, cluster-level correction for multiple
comparisons) while numbers in contrast to letters activated the right lateral occipital area (p =
0.010). Complete coordinates of clusters are reported in Table 4-2. For visualization, these group-
level functional maps (p < 0.005, cluster extent > 20 voxels) were overlaid on to a 3D inflated surface
as in Figure 4-2.

Examination of the letter- and number-preferred activation at the individual
subject level confirmed this overall pattern identified in the group-level results.
With a relatively strict threshold for multiple comparisons correction (FDR, q <
0.05), fourteen subjects exhibited a significant dissociation between letter and
number recognition within the pre-specified anatomical ventral visual mask (either
significant letter-preferred activation, significant number-preferred activation, or
both). Of the fourteen, seven showed significant activation for letter compared with
number recognition, and all seven had more voxels activated in the left hemisphere
than in the right hemisphere. Ten of the fourteen subjects showed significant
activation for number compared with letter recognition, and nine of the ten had
more voxels activated in the right hemisphere. With a more lenient threshold (p <
0.001, uncorrected), all twenty subjects showed a significant dissociation (of any

kind) between letter and number recognition within the anatomical mask.
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Seventeen subjects exhibited letter-preferred activation, and fourteen of the
seventeen had more voxels activated in the left hemisphere than in the right
hemisphere. Fifteen subjects exhibited number-preferred activation, and twelve of
these subjects showed more voxels activated in the right hemisphere than in the left
hemisphere. These results collectively suggest that dissociation is observable on an
individual level, and that individuals typically show more activation in the left visual
cortex for letters and more activation in the right visual cortex for numbers. More
quantitative measures of laterality are reported below in the Laterality Analysis

section.

Response magnitude at [-36 -37 -23] Response magnitude at [48 -73 -2]

2.5 2.5
% 2 % 2 |
= | £ |
u"j 1.5 I u‘ﬁ 1.5 |
5 | | 8 | |
2 | ' THEm
o o
£ 05 ]—I_\ & 05

0 0

WD PW L N WD PW L N

Figure 4-4 Average of the mean beta-values within the 5-mm spherical ROI around the peaks
in the visual letter area and the visual number area. The error bar denotes standard error of the
mean across 20 subjects (WD: word; PW: pseudoword; L: letter; N: number).

Additionally, we examined the pattern of activation in response to other
types of orthographic stimuli (i.e. pseudowords, real words). A 5-mm spherical ROI
was constructed around the peak in the visual letter ROI [-36 -37 -23] and the peak
in the visual number ROI [48 -73 2] and the average of the mean beta-values across

subjects within these spheres was compared across conditions (Figure 4-4). In the
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visual letter sphere, there was a linear increase in the beta-values from consonant
strings to pseudowords to real words (F1,19 = 16.006, p = 0.001, repeated-measures
ANOVA with linear contrast). This pattern of activation in the left ventral visual area
is consistent with previous findings demonstrating hierarchical organization in the
VWFA (Vinckier et al., 2007). In the visual number sphere, no such pattern was
observed; this area showed greater BOLD response to numbers than to both
pseudowords (t19 = 5.858, p < 0.001, paired t-test) and real words (t19 = 7.431, p <
0.001, paired t-test). Responses to false fonts in these ROIs were also examined. Like
the previous report (Vinckier et al., 2007), false fonts activated more than letters
and numbers in both the posterior letter area (t19 = 6.558, p < 0.001) and the
posterior number area (t19 = 6.662, p < 0.001) perhaps they were more demanding
and required significantly more time to process.

Laterality Analysis. As can be seen in Figure 4-3, letter-preferred activity was
left lateralized while number-preferred activity was right lateralized at the group
level. This pattern was quantitatively confirmed at the individual level by the
laterality analysis in which letter-preferred activity was left-lateralized across
subjects on average (laterality index (LI) = 0.715 + 0.329, mean and standard
deviation) and number-preferred activity was right-lateralized across subjects on
average (LI =-0.544 * 0.305). Positive LI represents left lateralization and negative
LI represents right lateralization. However, as indicated by the standard deviations,
these laterality indices varied across subjects. The letter-preferred activity LI
ranged from 0.451 to 0.987 (excluding one outlier who had a LI =-0.486, see Figure

4-7 subpanel), and the number-preferred activity LI ranged from -0.984 to 0.118.
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The letter activity LI and the number activity LI were not correlated (r=-0.124,p =
0.614), suggesting that laterality of letter and number recognition are likely to be

independent.

4.2.3 Discussion

In Experiment 1, we confirmed a left-lateralized ventral visual area that
responded significantly more to letters than numbers, replicating previous studies
(Baker et al., 2007; James et al., 2005; Polk & Farah, 1998; Polk et al., 2002; Reinke,
Fernandes, Schwindt, O'Craven, & Grady, 2008). More importantly, we also
identified a right-lateralized ventral visual area that responded significantly more to
numbers compared to letters. Together, these results constitute a double
dissociation between letter and number recognition and provide perhaps the
strongest evidence to date that letter and number recognition, at least in part, rely
on different neural systems.

While number-preferred activation was strongly right-lateralized in the
group analysis, there were substantial individual differences in the laterality of
individual participants. What factors might influence the lateralization of number
recognition in the brain? One hypothesis is that lateralization depends on patterns
of neural connectivity. For example, Cai et al. (2008) found that the laterality of
ventral visual activity in response to visual word recognition correlated with the
laterality of frontal activity for spoken language (which varied in left- and right-
handers). They argued that this finding was due to the important functional

connections between written and spoken language.

99



Following this reasoning, in Experiment 2 we investigated whether a similar
mechanism might be at work in the lateralization of number recognition.
Specifically, we tested the hypothesis that the lateralization of number recognition
might be significantly correlated with the lateralization of higher-order numerical
processing (addition, subtraction, counting) which is known to depend on parietal

cortex.

4.3 Experiment 2

4.3.1 Methods

Participants. The same 20 healthy young adults (ages 18-29) that
participated in Experiment 1 also participated in Experiment 2 within the same
fMRI session.

Stimulus Materials and Procedure. There were four types of stimuli used to
perform different simple mathematical judgments (examples are shown in Figure
4-5). The number-matching stimuli were comprised of two arrays—one on the left
and the other on the right of an equal sign. The items within the two arrays varied in
numerosity (from one to four) and shape (triangles, squares or circles). Participants
viewed each trial and were asked to make a numerosity judgment, determining
whether the number of items in the left array matched the number on the right
(regardless of shape). The same stimuli were used for the shape-matching blocks
and participants judged whether the left and right arrays contained the same shapes

(regardless of numerosity). The only difference between shape and numerosity
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stimuli was that an “S” appeared above the equal sign for shape-matching trials and

an “N” appeared above the equal sign for number-matching trial.

LR e

HE m o

Number-Matching |

Shape-Matching |

Addition |

Subtraction

Figure 4-5 Examples of stimuli used in Experiment 2. Participants performed simple
numerical tasks on sets of dot arrays differing in numerosity and in shape. They judged whether the
numerical operation was correct or not.

Similar stimuli elicited addition and subtraction operations from
participants. In addition blocks, participants viewed stimuli consisting of three
arrays. On the left were two arrays with a plus sign in the middle, followed by an
equal sign and a third array on the right. Participants judged whether the
numerosity of stimuli on the right of the equal sign was the same as the sum of the
numerosities on the left. The subtraction blocks were similar except that the plus
sign was replaced with a minus sign and participants judged whether the
numerosity of stimuli on the right was the same as the difference of the
numerosities on the left.

This task consisted of five five-minute runs with twenty 16-sec blocks,
pseudorandomly ordered (four for each of the four categories in addition to four
fixation blocks). Each block was preceded by a 2-sec instruction screen in which the

name of the task was displayed on the screen so that the participants could prepare
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for the upcoming block. The task was self-paced within each block, and the correct
answer was “yes” in half of all the trials.

Data Acquisition. Functional scans were acquired as axial slices, with a faster
acquisition (TR = 1.5 s, TE = 25 ms) compared to Experiment 1. This resulted in 246
BOLD repetitions per run with 33 axial slices. Because of the narrowed slice range,
cerebellums of some participants were not fully imaged. Other data acquisition
parameters were identical to that of Experiment 1.

Activation Analysis. As in Experiment 1, functional images underwent slice-
timing correction, realignment, coregistration, segmentation, and normalization as
part of preprocessing. The functional images were then modeled using a GLM as in
Experiment 1, which included separate regressors for each of the experimental
conditions convolved with a canonical hemodynamic response function, as well as
six nuisance covariates modeling head translation and rotation. An additional
covariate was included to model the 2 sec instructions at the beginning of each
experimental block. The contrast maps for numerical processing (addition,
subtraction, and number matching vs. shape matching) from each subject were
entered into a second-level random effects group analysis in order to estimate
neural activity for numerical processing at the group level (see Figure 4-6).

Co-lateralization Analysis. In order to test the hypothesis of co-lateralization
of the visual number activity with the parietal activity for numerical processing, we
first defined a parietal ROI associated with numerical operations. Similar to the
approach used in Experiment 1, we contrasted an aggregate of the three numerical

operations conditions (addition, subtraction, and number matching) with the shape
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matching condition at the group level (p < 0.05, extent > 20 voxels) within a bilateral
mask of the superior and inferior parietal cortex. The area isolated from the contrast
consisted of 617 voxels in left parietal cortex and 451 voxels in right parietal cortex.
The ROI was then defined bilaterally to include the voxels in the opposite
hemisphere by flipping the x-coordinates. This bilateral ROI is referred to as the
parietal numerical ROI.

In each individual subject, the t-values associated with numerical processing
(addition, subtraction, number matching versus the shape-matching condition) in
this parietal numerical ROI were used to compute the LI for that subject (see
Methods in Experiment 1 for precise methods). The LI for this parietal numerical
activity was then correlated with both the LI for the visual letter activity and the
visual number activity.

Laterality Analysis in Individualized ROIs. In order to ensure that co-
lateralization results are not an artifact of ROIs defined from the group map, co-
lateralization analysis was also performed with neural activities within the ROI's
defined at the level of individual subjects. In each subject, the visual letter ROI,
visual number ROI, and the parietal numerical ROI were defined by each subject’s
own letter-preferred, number-preferred, and numerical processing activation maps
(using a lenient threshold of p < 0.05), respectively, within pre-specified anatomical
regions (identical to the anatomical masks used in the group-level ROI approach).
Then, all the suprathreshold voxels and their opposite hemisphere homologues

(flipping x-coordinates) were identified as the individualized ROlIs.

103



4.3.2 Results

Behavioral Results. Accuracy on the numerical tasks was above 90% for all

conditions. Reaction times were the fastest for the shape-matching condition

followed by the number-matching condition, addition, and subtraction (Table 4-3).

2 NI

Figure 4-6 Neural activity for numerical processing in the whole brain. Group-level (N=20)
activation map of the [addition + subtraction + number matching > shape matching] contrast was
displayed on to a 3D inflated surface for visualization as in Figure 2 (p < 0.001, cluster extent > 20

voxels).

Table 4-3 Behavioral results of the numerical tasks performed in the scanner (N=20). Mean
accuracy and reaction time for the correct trials were measured for each subject, and the average

(standard deviations in parentheses) of these scores across subjects are reported.

Number- Shape- Addition Subtraction
matching matching
Accuracy 96.1 95.5 94.8 92.6
(%) (2.94) (3.21) (3.97) (4.99)
Reaction 796.88 684.02 1054.88 1252.62
Time (ms) | (94.87) (89.01) (177.36) (210.53)

Co-lateralization Analysis. The primary purpose of Experiment 2 was to test

whether lateralization of number recognition in ventral visual cortex is related to

lateralization of higher-level numerical processing in parietal cortex. More
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specifically, we correlated the visual number LI (as well as the visual letter LI) from
Experiment 1 with the parietal numerical LI from Experiment 2. First, we observed
individual differences in the lateralization of higher-level numerical processing in
parietal cortex. Across subjects, the parietal numerical LI ranged from -0.510 to
0.365 with a median of -0.184. Positive LI represents left lateralization and negative
LI represents right lateralization. As hypothesized, the visual number LI, defined
from the ROIs constructed at the group level, was significantly correlated with the
parietal numerical LI (r = 0.782, p < 0.001; Figure 4-7). That is, subjects who
exhibited greater right laterality for visual number processing in the ventral visual
cortex exhibited greater right laterality for numerical processing in the parietal
area. On the other hand, the visual letter LI showed non-significant correlation with
the parietal numerical area LI (r =-0.315, p = 0.189). The results were qualitatively
the same when the LIs were computed from the ROIs constructed at the individual
level: the parietal numerical LI, ranging from -0.489 to 0.293 with a median of -
0.139, was significantly correlated with the visual number LI (r = 0.643, p = 0.002)

but not with the visual letter LI (r =-0.041, p = 0.854).
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Figure 4-7 Co-lateralization of the visual number area LI and the parietal numerical area LI,
in which ROIs were defined from a group-level activation map. The main panel shows the scatter plot
between the visual number area LI and the parietal numerical area LI (r = 0.782, p < 0.001). The
smaller sub-panel shows how the visual letter area LI is related to the parietal numerical area LI (r =
-0.315, p = 0.189). Positive LI represents left lateralization and negative LI represents right
lateralization. In the sub-panel, one outlying subject was excluded from the calculation of the
correlation coefficients.

One might speculate that visual number activity and parietal numerical
activity are primarily right-lateralized in which case variations in the neural
activities on the right hemisphere alone could produce such co-lateralization results.
However, further analysis showed that there was negligible correlation between the
LI measure and the associated Qr measure in the visual number ROI (r=0.0512, p =
0.830) and the parietal numerical ROI (r=-0.131, p = 0.580), suggesting that the
variance in LI measures cannot be explained solely by the amount of activity in the
right hemisphere. Moreover, Qg in the visual number LI calculation showed no

correlation with Qg in the parietal numerical LI calculation (r = 0.093, p = 0.695),
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suggesting that the variability in the right hemisphere activity alone does not
explain the present co-lateralization results. Additionally, the visual number LI
controlling for the reaction time for number matching and the parietal numerical LI
controlling for the reaction time for numerical tasks were correlated with each
other (r=0.704, p = 0.001), suggesting that the present co-lateralization results still
hold even with RT effects excluded.

Note that the parietal activity was first defined by contrasting neural activity
for all numerical tasks (addition, subtraction, and number-matching) versus a
control task (shape-matching). We tested if the co-lateralization of the visual
number activity and the parietal numerical activity would hold true for each of the
numerical tasks. That is, within the bilateral ROI (both defined at the group-level
and at the individual level) the laterality of each individual’s parietal activity was
computed from other contrasts, namely, addition versus shape-matching,
subtraction versus shape-matching, and number-matching versus shape-matching.
The visual number LI showed strong positive correlations with all of the parietal
activity LIs defined within the group-based ROI (addition vs. shape-matching LI, r =
0.680, p < 0.001; subtraction vs. shape-matching LI, r = 0.712, p < 0.001; number-
matching vs. shape-matching LI, r = 0.420, p = 0.065) and within individual spherical
ROIs (addition vs. shape-matching LI, r = 0.622, p < 0.001; subtraction vs. shape-
matching LI, r = 0.589, p = 0.010; number-matching vs. shape-matching LI, r = 0.481,

p =0.038).
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4.3.3 Discussion

In Experiment 2, we asked whether individual differences in the laterality of
visual number activity could be explained by individual differences in the laterality
of parietal numerical activity. We found that they could. The co-lateralization
analysis showed that subjects with more right-lateralized visual number-preferred
activity had more right-lateralized parietal numerical activity. These results cannot
be explained by task-independent hemispheric dominance since the visual letter LI
was not correlated with the parietal numerical LI (r=-0.315, p = 0.189, ROI defined
at the group level; r =-0.041, p = 0.854, ROI defined at the individual level) nor by
the variability in right-hemisphere activity alone. Moreover, the co-lateralization
results still held when the effects of reaction time were removed. We also verified
that the results held true for parietal activity defined from different contrasts
(addition, subtraction, or counting), suggesting that the co-lateralization of the
visual number activity and the parietal numerical activity generalizes across
numerical processes. In addition, there was no significant correlation between the
letter activity LI and the number activity LI in the visual cortex suggesting that the
development of letter and number recognition may be driven by independent
sources.

We found that numerical activity in both parietal and ventral visual cortex
was somewhat right-lateralized in most participants, but some previous studies
have reported left-lateralized activity for some numerical tasks. One potential
explanation for this discrepancy is based on the triple code model of number

processing (Dehaene, 1992; Dehaene & Cohen, 1995). According to that model,
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numerical tasks that make high demands on verbal processes, such as retrieving
memorized multiplication tables, elicit activation primarily in left perisylvian areas
(e.g. Chochon et al,, 1999; Prado et al,, 2011). On the other hand, tasks that put more
demands on analog magnitude representations, such as approximate arithmetic,
subtraction, number comparison, or even passive adaptation, rely more on bilateral
parietal cortex (Chochon et al.,, 1999; Dehaene et al., 1999; Eger et al., 2009; Piazza
et al.,, 2004; Prado et al,, 2011). Our task was designed to make few demands on
verbal fact retrieval. Although our task involved addition and subtraction, we
reasoned that calculation of non-symbolic numbers in small ranges relies more on
analog magnitude representations. These kinds of tasks can be performed by
nonhuman primates (Hauser et al., 1996; Rumbaugh et al., 1987), preverbal infants
(Wynn, 1992), preschool children (Barth et al., 2005), brain-damaged patients with
impaired exact calculation (Lemer et al., 2003), and adults in cultures without large
number words (Pica et al.,, 2004) and therefore presumably do not rely on verbal
processes. Therefore, the results of our experiment should be considered in the
context of other studies that report more bilateral or even right lateralized (see e.g.
Chochon et al,, 1999 and Prado et al., 2011) activations for number processing.

An interesting avenue for future research would be to investigate how visual
number-preferred activity may be functionally related to different aspects of
numerical processing. Since processing of approximate quantity and magnitude
serves as a basis of numerical processing (Dehaene et al. 1999), it would be natural
to expect a tight functional relationship between approximate numerical processing

and number-preferred activity in visual cortex. However, it is also true that humans
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typically learn number symbols with extensive schooling on exact number
processing and arithmetic. So, one may also hypothesize a close relationship

between exact numerical processing and number-preferred activity in visual cortex.

4.4 General Discussion

In this study, we investigated the neural representation underlying the visual
recognition of letters and numbers by directly contrasting neural activation patterns
elicited by letters and numbers. In Experiment 1, we found letter-preferred activity
in left occipitotemporal cortex and number-preferred activity in right
occipitotemporal cortex at the group level (Figure 4-3). In Experiment 2, we
demonstrated that individual differences in the cerebral lateralization of number-
preferred activity in visual cortex could be explained by individual differences in the
lateralization of numerical processing in parietal cortex (Figure 4-7).

Left-lateralized letter-preferred activity in ventral visual cortex is consistent
with reports showing robust and reproducible neural activation in left
occipitotemporal cortex in response to words and letters (Cohen et al., 2000;
Petersen, Fox, Snyder, & Raichle, 1990; Polk & Farah, 1998; Polk et al., 2002; Puce et
al,, 1996). What is more novel in the results from Experiment 1 is the neural
dissociation of numbers from letters: the number vs. letter contrast produced
significant activation in right lateral occipital cortex at the group level. The
identification of this neural double dissociation and the right-lateralized number-
preferred activity are important for at least three reasons. First, the double

dissociation rules out alternative explanations that assume that the observed letter-
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preferred or number-preferred neural activity is an artifact of difficulty or effort.
Second, the neural dissociation between letters and numbers is consistent with
previously reported behavioral double dissociations (Hamilton et al., 2006; Jonides
& Gleitman, 1972), providing further evidence of experience-dependent changes in
the neural architecture underlying visual recognition. Third, the fact that number-
preferred activity was localized in the right occipitotemporal region is problematic
for the “interhemispheric differences hypothesis” which assumes that letter and
word recognition are localized in the left hemisphere due to that hemisphere’s
superiority in processing fine-grained and local visual features (see Robertson &
Lamb, 1991 for review). That hypothesis would predict that numbers should also be
processed primarily in the left hemisphere given that they also involve processing
fine-grained and local visual features.

We also observed individual differences in the lateralization of neural
representations for visual and numerical processing, which is a topic that has not
yet received much attention. A few studies have reported different patterns of
functional cerebral asymmetries between right- and left-handed subjects in the
domain of vision. For example, as described in the Introduction, Cai et al. (2008)
studied the relationship between cerebral lateralization of VWFA and anterior
language processing sites in right- and left-handed subjects. A recent neuroimaging
study has also reported that cerebral lateralization for the fusiform face area and
the extrastriate body area was coupled with handedness (Willems, Peelen, &

Hagoort, 2010). Of course, all of our participants were right-handed, so the
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individual differences in lateralization that we observed cannot be attributed to
differences in handedness.

The visual processing of numbers has also received relatively little attention
in the literature. Besides a previous study by Polk et al. (2002), Arabic digits have
typically been used as control stimuli when looking for letter- and word-specific
neural activity (Baker et al., 2007; James et al., 2005; Reinke et al., 2008) or have
been compared with verbal numerals when looking for notation effects in number
processing (Dehaene, 1996; Pinel, Dehaene, Riviere, & LeBihan, 2001; Pinel et al.,
1999). Here, we extended the work by Polk et al. (2002) and found significant
neural activation in response to numbers compared to letters in right visual cortex.

The observed neural dissociation between letters and numbers is
noteworthy given that the distinction between letters and numbers is culturally
defined and in some sense arbitrary. How might such a dissociation emerge? Polk &
Farah (1995, 1998) proposed a bottom-up model based on a co-occurrence
hypothesis. According to this model, letter and number recognition become
differentiated because letters tend to co-occur with letters (and number with
numbers) in the environment. Correlation-based learning mechanisms in the brain
are assumed to pick up on these co-occurrence patterns to lead to neural
segregation (Polk & Farah, 1995). While this purely bottom-up hypothesis is
plausible for the neural dissociation of letters and numbers, it does not predict why
the visual word form area consistently forms in the left hemisphere rather than the

right (or why number recognition tends to be right lateralized).
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According to the neuronal recycling hypothesis (Dehaene & Cohen, 2007),
one of the reasons that VWFA tends to develop in left occipitotemporal cortex is
because this area has relatively direct connections to and from anterior language
processing sites in the left hemisphere (McCandliss et al., 2003). Consistent with this
view, the pattern of activation in VWFA is closely related to components of
language-related functions. For instance, it is invariant to letter case (Dehaene et al,,
2004; Dehaene et al,, 2001; Polk & Farah, 2002) and is greater when the
orthographic stimuli are familiar to subjects than when they are unfamiliar (i.e.
Hebrew to Hebrew readers versus to non-Hebrew readers) (Baker et al., 2007).
Activation in VWFA is hierarchically organized so that the strength of activation
increases with orthographic regularities (Vinckier et al., 2007) and bigram
frequency (Binder, Medler, Westbury, Liebenthal, & Buchanan, 2006). As noted, it
has been shown that VWFA is right lateralized in a subsample of left-handed
subjects who showed right-lateralized language sites (Cai, Lavidor, Brysbaert,
Paulignan, & Nazir, 2008).

Our findings support another aspect of this hypothesis in the numerical
cognition framework. We found that individual differences in the lateralization of
numerical processing in the parietal cortex predicted the lateralization of the visual
Arabic number form processing in visual cortex. These results are consistent with
the hypothesis that top-down influences from the parietal numerical activity play an
important role in the neural localization of number recognition in ventral visual
cortex. An alternative explanation is that right-lateralized activity in ventral visual

cortex influences the laterality of parietal activity for higher-order number
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processing (or that a third factor influences the lateralization in both ventral visual
and parietal cortex). Given that the processing of numbers may be evolutionarily
older than reading (Brannon & Terrace, 1998; Butterworth, Reeve, Reynolds, &
Lloyd, 2008; Gallistel & Gelman, 1992; Pica, Lemer, Izard, & Dehaene, 2004) and that
numerical competence develops prior to recognizing symbols for numbers (Gebuis,
Herfs, Kenemans, de Haan, & van der Smagt, 2009; Wynn, 1992; Xu & Spelke, 2000),
we prefer the hypothesis that parietal organization influences ventral visual
processes top-down. Our data do not rule out the alternatives however.

To conclude, the current findings demonstrate a neural double dissociation
between letter and number recognition and suggest that top-down influences play

an important role in experience-dependent neural reorganization.
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Chapter 5

Conclusion

This dissertation investigates experiential effects on the neural basis of visual
word and number processing. Visual representations of words and numbers are
cultural inventions that appeared only very recently on an evolutionary time scale.
Furthermore, other species do not read words and numbers. So, while generic visual
mechanisms might be hardwired to some extent, our unique ability to process
words and numbers is likely to be a result of extensive experience during
development. Therefore, investigating the neural basis of the visual processing of
words and numbers provides a window into answering an interesting question
about experience-dependent properties in the functional organization of the human
brain. In this last Chapter, I present a summary of the dissertation and provide

future directions to investigate this matter further.

5.1 Summary

In this dissertation, answers to a series of scientific questions are reported in
one methodological study (Chapter 2) and two empirical studies (Chapters 3 and 4).
First, in Chapter 2, I developed a novel statistical method that can estimate

intraclass correlation and heritability measures in each point in spatial data. Both a
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simulation study and a real data study suggest that the proposed spatial
decomposition method provides a better estimate of correlation and heritability in a
spatial dataset than conventional methods such as a voxelwise method or a mean-
ROI (region of interest) method. The motivation for this novel statistical method is
to allow a trade-off between bias and variance. By introducing a somewhat
restricted set of basis volumes, the method is able to effectively estimate the
correlation and heritability captured by these basis volumes. As a result, the
estimation typically has lower variance at a cost of a slight increase in conservative
bias compared to the voxelwise method. By having better control of variance, the
proposed method was able to detect significantly heritable regions even with a
modest sample size in the real data study in Chapter 2. One limitation of the spatial
decomposition method compared to the voxelwise method is that the scope of
investigation, in terms of spatial dependencies, is limited to a region of interest.
Therefore, the selection of the region of interest that adequately captures the
cognitive process of interest would be an important issue to consider.

Compared to the mean-ROI approach, this novel technique allows us to
capture correlated/heritable subregions within the region of interest. This is an
important advance because the assumption of spatial homogeneity within an ROI
(which the mean-ROI method assumes) is often violated in fMRI studies.

In Chapter 3, [ used this method to investigate how the environment we
experience influences the visual word form area (VWFA). While previous studies
have shown inconsistent results as to whether VWFA activation is greater for

familiar words or unfamiliar words, a monozygotic (MZ) twin study in this Chapter
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provided a clearer way of quantifying the environmental effects. The results showed
greater unique environmental effects for neural activity associated with familiar
word recognition than neural activity associated with unfamiliar word recognition.
In addition, the unique environmental contribution was the greatest in the word
recognition condition, where orthography, phonology, and semantics are fully
embedded. The pseudoword condition, which does not involve semantic processing,
showed exhibited a slightly smaller unique environmental contribution compared to
the word condition. The consonant strings condition, which further removes the
need for phonological processing, showed a much smaller unique environmental
contribution. This pattern suggests that experience-based phonological processing
may make the largest contribution in shaping VWFA.

Unique environmental effects are broadly defined in this study, including any
prenatal experiences or epigenetic changes. In short, this effect is what makes
monozygotic twins different from one another. Thus, the present findings support
the idea that the VWFA is shaped by how each of us uniquely encounters
orthographic stimuli in the environment over the course of development. The
present findings incorporating a twin study provide direct evidence for
environmental contributions to the neural representations of written words,
suggest the relative importance of phonological processing in shaping VWFA, and
overcome the limitations of previous studies based exclusively on the mean
response magnitude.

In Chapter 4, | asked whether the neural representation of letters and

numbers is doubly dissociated and what might be the underlying reasons for such a
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dissociation. I report that letter recognition uniquely activates the left
occipitotemporal region while number recognition uniquely activates the right
lateral occipital region, thus establishing a double dissociation. Considering the fact
that letters and numbers are physically arbitrary and culturally defined, these
results suggest that early schooling experiences can lead to qualitative changes in
neurocognitive architecture. In the second part of Chapter 4, I tested whether the
number-preferred activation in right lateral occipital cortex can be explained by the
localization of higher-order numerical processes. I found that individual differences
in the laterality of visual number activation could be explained by individual
differences in the laterality of numerical processing in parietal cortex. These results
suggest that the emergence of neural segregation between letter and number
recognition may be due to top-down influences from higher-level cognitive

functions.

5.2 Future Directions

While the findings in this dissertation provide a better understanding of
experiential effects on the neural substrates of visual word and number recognition,
many related interesting questions immediately follow. In Chapter 4, I investigated
the functional relationship between number processing in ventral visual cortex and
parietal cortex by correlating a measure of cerebral laterality. While this approach
provides indirect evidence for functional connections between the two sites, a
stronger form of functional connectivity can be measured from a within subject

functional connectivity analysis such as time-series correlation analysis,
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psychophysiological interactions, or dynamic causal modeling (Biswal, Yetkin,
Haughton, & Hyde, 1995; Friston, et al., 1997; Friston, Harrison, & Penny, 2003).
Unfortunately, these types of analyses were not directly applicable to the current
data due to the nature of the experimental design. An experimental modulation (e.g.
less attentional state versus more attentional state) is typically necessary to run
these models. In addition, by identifying individual’s prefrontal and superior
temporal language processing sites in addition to the parietal numerical processing
sites, one should be able to test whether functional connections involved in word
and number recognition show double dissociation.

There is some evidence that two types of higher-order numerical processing
exist—an approximate numerosity system and an exact calculation system
(Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999). The numerical processing task
used in Chapter 4 did not make a strong distinction between the two systems.
Therefore, it is unknown whether the emergence of number-preferred neural
activation in the right lateral occipital area is related to a more fundamental
approximate numerosity processing system or is related to learning of exact
calculation during development.

Investigating the developmental trajectory of the neural systems involved in
word and number processing is another important topic for future study. When
during development do the neural representations for letters and numbers doubly
dissociate in the visual cortex? Does this neural trajectory lead or follow the
behavioral double dissociation between letters and numbers (i.e. the categorical

effect between letters and numbers shown by Jonides & Gleitman, 1972)? Can the
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location of the neural site for letter and number recognition in the visual cortex be
predicted based on top-down connections from prefrontal language and parietal
numerical processing sites, perhaps even before children learn to read?

There are also many ways to further explore the potential of the novel
statistical method introduced in Chapter 2. One way is to investigate ways to better
construct the basis volumes. In a practical setting when the basis volumes are
limited in number, the extent of the spatial variation that can be captured well is
certainly limited. Therefore, finding ways to capture spatial dependencies more
efficiently would be an important improvement. Also, intraclass correlation is a
useful measure to assess the reliability of a measure. Thus, applying this novel
statistical method to the context of neuroimaging reliability (e.g., Specht, Willmes,
Shah, & Jancke, 2003) would be an important contribution to the field.

While Chapter 3 explored the amount of unique environmental effects in
VWFA in response to familiar words and unfamiliar words, the absence of dizygotic
twins and a relatively small sample size prevented me from assessing the genetic
influence. With both monozygotic and dizygotic twins reared together, it is possible
to decompose the phenotypic variance into the additive genetic effects, common
environmental effects and the unique environmental effects. Being able to estimate
the heritability of VWFA activity in response to various visual stimuli would shed
light on the role of genetics in shaping the VWFA. At the same time, by comparing
genetic and environmental effects in VWFA activation in different age groups, one
would be able to answer questions about the role of genetics and environment

across the developmental trajectory (e.g., Byrne, et al., 2005). For example, based on
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my results showing strong experiential role on VWFA activity, I predict that children
who have not yet learned to read should exhibit more genetic effects in VWFA

activity than children or adults who have gained knowledge about words.
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