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ABSTRACT

Synthetic aperture radar (SAR) provides a means of producing high-resolution mi-

crowave images using an antenna of small size. SAR images have wide applications

in surveillance, remote sensing, and mapping of the surfaces of both the Earth and

other planets. The defining characteristic of SAR is its coherent processing of data

collected by an antenna at locations along a trajectory in space. In principle, we can

produce an image of extraordinary resolution. However, imprecise position measure-

ments associated with data collected at each location cause phase errors that, in turn,

cause the reconstructed image to suffer distortion, sometimes so severe that the image

is completely unrecognizable. Autofocus algorithms apply signal processing techniques

to restore the focused image.

This thesis focuses on the study of the SAR autofocus problem from a linear al-

gebraic perspective. We first propose a general autofocus algorithm, called Fourier-

domain Multichannel Autofocus (FMCA), that is developed based on an image sup-

port constraint. FMCA can accommodate nearly any SAR imaging scenario, whether

it be wide-angle or bistatic (transmit and receive antennas at separate locations). The

performance of FMCA is shown to be superior compared to current state-of-the-art

autofocus techniques.

Next, we recognize that at the heart of many autofocus algorithms is an optimization

problem, referred to as a constant modulus quadratic program (CMQP). Currently,

CMQP generally is solved by using an eigenvalue relaxation approach. We propose an

alternative relaxation approach based on semidefinite programming, which has recently

viii



attracted considerable attention in other signal processing applications. Preliminary

results show that the new method provides promising performance advantages at the

expense of increasing computational cost.

Lastly, we propose a novel autofocus algorithm based on maximum likelihood esti-

mation, called maximum likelihood autofocus (MLA). The main advantage of MLA is

its reliance on a rigorous statistical model rather than on somewhat heuristic reverse-

engineering arguments. We show both the analytical and experimental advantages of

MLA over existing autofocus methods.
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CHAPTER 1

Introduction

Synthetic aperture radar (SAR) is used to produce a high-resolution microwave im-

age using a small antenna. High resolution in the range direction is achieved through

traditional pulse compression, while high resolution in the cross-range direction is ob-

tained by illuminating the target from many viewing angles (called the radar’s look

angles). In one form of SAR, termed spotlight mode, the radar antenna is continuously

steered to illuminate the target with each transmitted microwave pulse. When the

same antenna is used for both transmitting and receiving, it is referred to as monos-

tatic SAR, while in bistatic SAR, spatially separated antennas are used for transmitting

and receiving. In this thesis, we will focus on spotlight mode SAR and consider both

monostatic and bistatic applications. Figure 1.1 illustrates imaging using spotlight

mode SAR where a small antenna is mounted on an aircraft and is continuously steered

to illuminate the scene of interest with each transmitted microwave pulse. In this chap-

ter, we will first briefly review the tomographic formulation of SAR, as this will serve

as the foundation for all subsequent discussions. Then we will introduce the cause and

effect of autofocus phase errors for both monosatatic and bistatic SAR systems. We

will conclude this introductory chapter with a review of existing autofocus methods

and an overview of this thesis. For some applications of SAR imaging, please refer to

[1, 2, 3].
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Figure 1.1: Example of spotlight mode monostatic SAR.

1.1 Tomographic Formulation of SAR System and

Image Formation

The collected return signal in SAR can be conveniently modeled using a tomographic

formulation, which allows us to view returned signals as data lying in the Fourier domain

of the target reflectivity, after demodulating with a copy of the transmitted signal [4].

The location of the data in the Fourier domain lies on a polar annulus and is a function

of the radar waveform parameters and the radar’s look angle, which are known to us.

Thus, image reconstruction can be obtained through the traditional polar formatting

algorithm [4, 5].

Figure 1.2 shows the ”plan view” geometry of a monostatic SAR, where the target

scene of radius L is illuminated, and the return signal is collected, by the radar traversing

a range of look angles θm : θmin ≤ θm ≤ θmax, m = 1, 2, . . . ,M . The goal is to

construct the target’s continuous complex-valued reflectivity function r(x, y) and use

its magnitude |r(x, y)| for image display. The following assumptions made throughout

this thesis are crucial to the problem formulation.

2
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Figure 1.2: Geometry of spotlight-mode monostatic SAR

1. Far-field assumption: Unless otherwise specified, we assume that the radar plat-

form operates at a standoff distance that is large compared to the target scene

diameter. Under this assumption, when the transmitted radar pulse reaches the

target, it can be well approximated by a planar wavefront.

2. Reflectivity invariance: The target reflectivity function r(x, y) is assumed to be

independent of both the look angle and the frequency of incident radiation.

From the far-field assumption, data collection at look angle, θm, can be conceptually

viewed as collecting information from the 1-D projection of r(x, y) at angle θm. This is

illustrated in Fig. 1.3. The 1-D projection function, pθm(ȳ), indexed by m is given by

pθm(ȳ) =

∫ L

−L

r(x̄ cos θm − ȳ sin θm, x̄ sin θm + ȳ cos θm) dx̄. (1.1)

In this work, we assume that the radar is transmitting a narrow-band linear FM

3
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Figure 1.3: 1-D Projection function

pulse of the form Re{s(t)} with

s(t) =

 exp
(
j(ω0t+ αt2)

)
|t| ≤ T/2

0 otherwise,

where ω0 is the carrier frequency, T is the duration of the pulse, and 2α is the FM rate.

The collected return signal is then demodulated with Re{s(t)} and −Im{s(t)}, each

delayed by the two-way travel time from the transmitter to the target to the receiver,

and low-pass filtered to remove the high-frequency term to produce a baseband signal.

The baseband signal collected from look angle θm, denoted by Pθm(Ȳ ), can be expressed

as

Pθm(Ȳ ) =

∫ ∞

∞
pθm(ȳ) e

−jȳȲ dȳ, (1.2)

which is the 1-D Fourier transform of pθm(ȳ).

Let R(Ωx,Ωy) be the 2-D Fourier transform of r(x, y). From the projection slice

theorem in tomography, Pθm(Ȳ ) is equal to R(Ωx,Ωy) evaluated along a line in Fourier

4
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Figure 1.4: Collected Fourier data for monostatic SAR

space that lies at angle θm measured from axis Ωx. The duration of the transmit-

ted pulse, T , provides a restriction on the range of frequencies over which Pθm(Ȳ ) is

acquired, and the carrier frequency ω0 causes Pθm(Ȳ ) to be offset from the origin of

Fourier space [4]. Pθm(Ȳ ) can be described as

Pθm(Ȳ ) =

 R(Ȳ cos θm, Ȳ sin θm)
2
c
(ω0 − αT ) ≤ Ȳ ≤ 2

c
(ω0 + αT )

0 otherwise.
(1.3)

It can be observed from Eqn. (1.3) that the collected Fourier data from many look angles

lie on a polar annulus as shown in Fig. 1.4. The Fourier data have frequency offset 2ω0

c

and bandwidth described by the range of look angles and the duration of the transmitted

FM signal [5]. In practice, not only do we collect data from discrete look angles, θm,

we also collect discrete samples from each of the Pθm(Ȳ ). Let Ȳ1, · · · , ȲN denote the

sample indices of Pθm(Ȳ ). In summary, we are collecting 2-D discrete samples on the

Fourier space of r(x, y) evaluated on a polar grid. Let G[m,n] denote the collected

5
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Figure 1.5: Interpolation to Cartesian grid

discrete Fourier data. Then

G[m,n] = Pθm(Ȳn). (1.4)

From G[m,n] we could reconstruct a discrete image of r(x, y), denoted by g[u, v],

using a discretized inverse Fourier transform. However, performing the straightforward

inverse Fourier transform would be computationally expensive due to the nonuniform

grid that G[m,n] lies on. In SAR imaging, a popular image reconstruction method is

to first interpolate the Fourier data from a nonuniform grid to a Cartesian grid and

then use an inverse FFT to form the final image as suggested in Fig. 1.5. In practice,

a linear interpolator is almost always used for the polar-to-Cartesian interpolation; for

example see [5]. The explanation of the feasibility of using only an offset portion of the

Fourier data for image reconstruction is provided in [6]. Other image reconstruction

methods are discussed in [7, 8, 9, 10, 11].

Next, we briefly review the tomographic formulation for a bistatic SAR. The geom-

etry of a bistatic SAR with a stationary transmitter and moving receiver is shown in

Fig. 1.6. Such a scenario is sometimes used where a high-powered transmitter stands

off in a safe location and the receiver covertly collects data to form the SAR image. It

6
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Figure 1.6: Geometry of spotlight-mode bistatic SAR

can be shown that the demodulated collected return signal Pθm(Ȳ ) also corresponds to

a radial slice at angle θm of the 2-D Fourier transform of r(x, y) [12]. In bistatic SAR,

Pθm(Ȳ ) has the form of

Pθm(Ȳ ) =

 R(Ȳ cos θm, Ȳ sin θm)
2| cos(β)|

c
(ω0 − αT ) ≤ Ȳ ≤ 2| cos(β)|

c
(ω0 + αT )

0 otherwise.

(1.5)

The collected Fourier data grid for this bistatic SAR system is shown in Fig. 1.7. As

in the monostatic case, image reconstruction can be accomplished via interpolation of

the Fourier data to a Cartesian grid, followed by an inverse FFT.

1.2 SAR Autofocus Problem

A challenge in SAR imaging is that in order to correctly (coherently) demodulate the

return signals, the two-way travel time of each radar pulse must be known accurately.

7
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Figure 1.7: Collected Fourier data grid for bistatic SAR

Let τm denote the two-way travel time for radar pulse from look angle θm. Then the

collected returned signal should be demodulated with

Re{s(t− τm)} and − Im{s(t− τm)}. (1.6)

However, inaccurate time measurements, due to imprecise knowledge of the location

of the radar or due to signals propagating through media having a spatially-varying

propagation velocity, cause an unknown delay error of εm in the demodulated signal.

Thus, in practice, the signal is demodulated with

Re{s(t− τm + εm)} and − Im{s(t− τm + εm)} (1.7)

instead. This timing delay error can be closely approximated as introducing an un-

known constant phase shift to the demodulated radar returns [5]. Since data collected

from the same look angle are associated with the same timing delay error, the phase

corruption are modeled as constant for all Fourier data collected from a fixed angle.

More specifically, let G̃[m,n] denote the collected phase corrupted Fourier data, which

8



are related to the uncorrupted Fourier data G[m,n] by

G̃[m,n] = G[m,n] ejεmω0 . (1.8)

Without loss of generality, we will denote the unknown phase as ϕ(m) = εmω0, m =

1, · · · ,M . In practice, ϕ(m) may range from highly correlated to i.i.d., depending on

the center frequency of the radar (shorter wavelengths lead to more variable ϕ(m)) the

errors in estimating the trajectory of the radar platform, and time and spatially varying

signal propagation effects. The presence of the phase errors will cause the reconstructed

image to suffer distortion resulting in a defocused image. The defocusing effect comes

from Eqn. (1.8), which has the equivalent effect of convolving the focused image with

a blurring kernel. The blurring kernel is both 2-D and spatially varying, because the

phase error in Eqn. (1.8) varies with the angular coordinate in a polar (non-Cartesian)

coordinate system. One approach to sometimes remedy this undesired effect is to

improve the physical system design, which will often result in more expensive hardware.

An alternative approach is to apply more sophisticated signal processing to the image

formation process. In particular, signal processing can be applied to automatically

remove undesired phase errors. This image restoration technique is called autofocus.

In summary, a SAR system with and without autofoucs phase corruption is depicted

in Fig. 1.8.

1.3 Related Work

The SAR autofocus problem is, in general, an ill-conditioned inverse problem. In

order for the problem to be well defined, it is common practice to impose additional

constraints either on the underlying image or the imaging system. Here, we review

previous autofocus algorithms and discuss their strengths and weaknesses.

Many algorithms have been developed for the SAR autofocus problem. Most of them

9
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Figure 1.8: Summary of SAR autofocus problem.

are for the monostatic SAR scenario, due to its wide application. Earlier autofocus

algorithms assume (explicitly or implicitly) simple models for either the underlying

image or autofocus phase errors. Inverse filtering methods produce phase estimates

by isolating the blurring kernel of a single point target from the rest of the image. A

main drawback of this approach is the difficulty of isolating point targets in a real SAR

image. Another earlier autofocus algorithm, which met with some success, is the map

drift algorithm [13, 14, 15]. Map drift is based on two assumptions: first, it assumes that

the autofocus phase error function can be completely described by a finite polynomial

expansion, and second, it assumes that the SAR is operating over a narrow range of

look angles so that the Fourier data grid is nearly Cartesian. In practice, map drift

can perform well in situations where the autofocus phase function can be adequately

described by a low-order polynomial. For situations where the SAR operates over a

wide range of look angles or when a higher-order autofocus phase function is involved,

map drift becomes considerably nonideal.

Phase gradient autofocus (PGA) is the most widely applied autofocus algorithm to

date [16]. It is based on two assumptions: the first one is that SAR operates over a

narrow range of look angles, and the second assumption, also the most crucial one, is

that the scene contains strong point targets. Unlike inverse filtering, PGA iteratively

10



combines phase error information gathered from all the point targets to produce a

more robust phase error estimate. Hypothetically, PGA can correct phase errors of any

form. In practice, it is more challenging for PGA to correct a white or rapidly varying

autofocus phase function. For more information about PGA and its extensions, please

refer to [5, 17, 18, 19, 20].

Another popular class of autofocus algorithms is called sharpness maximization

autofocus. These algorithms are based on the assumption that a focused image should

also be a sharp image. When a sharpness metric is defined, an autofocus method

can be constructed to compensate the phase errors by maximizing the sharpness of

the reconstructed image [21, 22, 23, 24, 25, 26, 27]. Popular metrics that measure

image sharpness include entropy and various powers of the image intensity [28]. These

algorithms tend to favor sparse images, such as collections of point scatterers. While the

restoration results obtained using these methods often are outstanding, the techniques

sometimes fail to produce correct restorations when the underlying scene is poorly

described by the implicitly assumed image model. Furthermore, the use of an heuristic

sharpness measure makes it hard to provide any performance guarantee.

More recently, a promising autofocus method, called multichannel autofocus (MCA),

has been developed based on the image support constraint [29]. Unlike other assump-

tions used by previous methods, the image support constraint can be enforced by the

antenna pattern in any practical system. MCA determines the phase errors through

a linear algebraic formulation by assuming a spatially limited image. MCA exhibits

superior restoring capability compared with other methods and does not depends on

characteristics of the image. One crucial assumption of MCA is that the Fourier data

grid is Cartesian, so the SAR must operate over a narrow range of look angles. It has

been found that when this assumption is violated, even slightly, MCA suffers significant

performance loss [30]. Further discussion of MCA will be provided in the next chapter.

In summary, all of the above mentioned autofocus methods place different assump-
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tions either on the unknown phase error, underlying image or imaging scenario. The

assumption that SAR operates across a narrow range of look angles is crucial to many

autofocus algorithms and we will discuss this assumption more thoroughly in the next

chapter.

1.4 Thesis Outline and Contributions

The objective of our work is to develop a general autofocus algorithm that can

accommodate the broadest range of SAR imaging applications. The following is the

outline of this thesis and our contributions.

Chapter 2: This chapter presents a new autofocus algorithm, termed Fourier-domain

multichannel autofocus (FMCA), that is derived under a linear algebraic framework,

allowing the SAR image to be focused in a noniterative fashion. Motivated by the

mutichannel autofocus (MCA) approach, the proposed autofocus algorithm invokes

the assumption of a low-return region, which generally is provided within the antenna

sidelobes. Unlike MCA, FMCA works with the collected polar Fourier data directly

and is capable of accommodating both wide-angle monostatic SAR and bistatic SAR

scenarios. Most autofocus algorithms rely on the assumption that the radar’s range

of look angles is small so that the phase errors can be modeled as varying along only

one dimension in the spatial image. And, in some cases, implicit assumptions are made

regarding the SAR scene. Performance of such autofocus algorithms degrades if the

assumptions are not satisfied. FMCA has the advantage that it does not require prior

assumptions about the range of look angles, nor characteristics of the scene.

Chapter 3: At the heart of three state-of-the-art autofocus algorithms, namely Phase

Gradient Autofocus, Multichannel Autofocus and Fourier-domain Multichannel Autofo-

cus, is the solution to a constant modulus quadratic program (CMQP). Currently, these

algorithms solve CMQP by using an eigenvalue relaxation approach. We propose an
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alternative relaxation approach based on semidefinite programming, which has recently

attracted considerable attention in other signal processing problems. Experimental re-

sults show that our proposed methods provide promising performance advantages in

exchange for an increase in computational cost.

Chapter 4: In this chapter, we propose a bilinear parametric model for the unknown

image and the nuisance autofocus phase parameters, and derive an efficient maximum

likelihood autofocus (MLA) algorithm. In the special case of a simple image model and a

narrow range of look angles, MLA coincides with the successful multichannel autofocus

(MCA) approach. MLA can be interpreted as a generalization of MCA to a larger class

of models with a larger range of look angles. We analyze its advantages over previous

extensions of MCA in terms of identifiability conditions as well as noise sensitivity. We

demonstrate the superior performance of MLA using computer simulations for both

the correct and mismatched system models. MLA performs better than other methods

both in terms of mean squared error and visual quality of the restored image.

1.5 Notation

In this thesis, a capital boldface letter A denotes a matrix and a lower-case boldface

letter a denotes a column vector. A superscript H denotes the hermitian transpose and

† denotes the pseudo-inverse. The function vec(A) stacks the columns of matrix A to

produce a column vector. Let tr(A) denote the trace of matrix A, and Diag(a) be the

diagonal matrix with elements of vector a on the main diagonal. Let rank(A) denote

the rank of matrix A, and N (A) denote the null space of A. We write A ≽ 0 to

indicate that A is a positive semidefinite matrix. For an index set s, As(A
s) represents

the submatrix of A formed by the rows(columns) of A indexed by s. For a complex

number c, |c| represents the magnitude of c and ∠(c) represents the phase of c.
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CHAPTER 2

Fourier-domain Multichannel Autofocus

Motivated by Multichannel autofocus (MCA), Fourier-domain Multichannel Auto-

focus (FMCA) applies a subspace-based technique to the autofocus problem and con-

structs a subspace where the focused image resides. The basis of the subspace is found

from the corrupted Fourier data. By requiring that the underlying SAR image have a

region with zero or nearly-zero pixel values, and establishing the relationship between

the SAR image and the collected Fourier data, we can write a set of linear equations that

allow us to determine the phase errors directly [31, 32]. The requirement for this known

region with zero (or nearly zero) pixel values generally is satisfied by the low-return re-

gion within the sidelobes of the antenna pattern. In practice, this region is created by

acquiring the collected returned signals with sufficiently small sample spacings in both

the range and cross-range frequency coordinates, so that the reconstructed image has

coverage extending beyond the heavily illuminated portion of the target scene deter-

mined by the antenna pattern. This linear framework allows us to determine the phase

errors in a noniterative fashion, and the formulation of the reconstruction problem does

not depend on characteristics of the underlying scene. Although in our approach it is

more complicated to express the relationship between the spatial image and the auto-

focus phase errors, compared to MCA and PGA, it is this Fourier-domain observation

that allows our algorithm to accommodate wide-angle monostatic SAR and bistatic

SAR.
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The organization of this chapter is as follows. First we briefly review the MCA

framework in Section 2.1. Then we derive the FMCA framework and propose a pro-

cedure for image restoration in Section 2.2. Section 2.3 compares FMCA with MCA.

Simulation results are presented in Section 2.4. Finally, a summary of this chapter is

given in Section 2.5.

2.1 Review of Multichannel Autofocus

In this section, we introduce the fundamental assumptions and limitations of the

MCA framework, as this will help to distinguish our work from MCA. For a complete

description of MCA, please refer to [29]. MCA is based on two important assumptions:

that the image support is known, and that the SAR operates over a narrow range of

look angles. We first will elaborate on these two concepts and then show how MCA

exploits these two assumptions to compensate for the autofocus phase errors.

2.1.1 Small-angle Assumption

The assumption that the SAR operates over a narrow range of look angles, or the

small-angle assumption, for short, is crucial for many prevalent autofocus algorithms,

including PGA and MCA. Here we discuss how the small-angle assumption simplifies

the autofocus problem.

From Eqn. (1.8), each column of the actual collected Fourier data, G̃, is corrupted

by the same multiplicative phase error ejϕ(m), therefore, the phase error is essentially

a one-dimensional (1-D) function. In the following, we will show how the small-angle

assumption transforms the phase errors into a 1-D function in the spatial domain so

that with additional information on image characteristics, this 1-D phase function can

be compensated.

When the range of look angles is sufficiently small, i.e., ∆θ ≪ 1, we can observe
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from Fig. 1.4 that the collected polar formatted Fourier data lie approximately on a

Cartesian grid. Denote the collected Cartesian grid Fourier data as Gc[m,n]. By first

examining the range-compressed form of Gc where a 1-D inverse DFT is applied to each

column of Gc, i.e.,

Gc[m, v] = DFT−1
n (Gc[m,n]), (2.1)

we have

G̃c[m, v] = Gc[m, v] ejϕ(m). (2.2)

Ideally, the SAR image, g[u, v], can be formed by applying an additional 1-D inverse

DFT on each row of the range-compressed data, giving

g[u, v] = DFT−1
m (Gc[m, v]). (2.3)

However, due to the phase errors, we produce a defocused image, g̃[u, v], given as

g̃[u, v] = DFT−1
m (G̃c[m, v])

= DFT−1
m (Gc[m, v] ejϕ(m))

= g[u, v]⊗ e[u] (2.4)

where ⊗ denotes M -point circular convolution and

e[u] = DFT−1
m (ejϕ(m)). (2.5)

From Eqn. (2.4), we can see that the defocused image g̃[u, v] is essentially formed by

convolving each row of the perfectly-focused image with a common blurring kernel e[u].

Due to the all-pass property of Eqn. (2.2), there exists an inverse function for e[u],

denoted as b[u], such that

g[u, v] = g̃[u, v]⊗ b[u]. (2.6)
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This spatial 1-D phase error model is used by most autofocus algorithms. In sum-

mary, although the phase error function, ϕ(m), is one dimensional, it has a 2-D effect

on the spatial image, due to the nonuniform Fourier data grid. The small-angle as-

sumption assures the data collection is on a nearly Cartesian grid, resulting in a simple

1-D phase error blurring model for the spatial image, as in Eqn. (2.4).

2.1.2 Image Support Constraint

Image support constraint is the other important assumption that MCA relies on.

Image support constraint can be translated into requiring the underlying SAR image

to have a known region with zero or nearly-zero pixel values (low-return region). The

requirement for the known low-return region generally is satisfied by the nulls within

the sidelobes of the antenna pattern. In practice, the nulls of the antenna pattern can

be identified with extreme accuracy.

The section of terrain that is imaged by a SAR depends on the antenna footprint,

which is the region illuminated by the antenna beam with significant energy. Energy

collected from outside the antenna footprint is small. This is illustrated in Fig. 2.1.

Consequently, the low-return region can be created by acquiring the collected returned

signals with sufficiently small sample spacings in both the range and cross range di-

rections, so that the reconstructed image has coverage extending beyond the heavily

illuminated portion of the target scene determined by the antenna pattern. Note that

the low-return region can also be found from other parts of the image, for example,

a body of water which does not reflect electromagnetic waves can also be used as the

low-return region if known. However, low-return regions in the nulls of the antenna

pattern suffices for all SAR imaging applications.
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Figure 2.1: Low-return region

2.1.3 MCA Formulation

From the small-angle assumption, MCA transforms the phase errors into an 1-D

function in the spatial domain as shown in Eqn. (2.6). This can be reexpressed using

matrix notations:

g = C(g̃)b, (2.7)

where

g = vec(g) (2.8)

and

C(g̃) =



H1(g̃)

H2(g̃)

...

HN(g̃)


, Hi(g̃) =



g[1, i] g[M, i] · · · g[2, i]

g[2, i] g[1, i] · · · g[3, i]

...
...

. . .
...

g[M, i] g[M − 1, i] · · · g[1, i]


(2.9)

Low-return region corresponds to a known set of indices a such that

g
a
= [C(g̃)]a b = 0. (2.10)
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Equation (2.10) is a set of linear equation that only depends on the SAR measurements,

g̃, and MCA finds the autofocus phase compensation vector b by solving Eqn. (2.10).

2.2 FMCA Restoration Framework

The FMCA reconstruction method assumes there exists a known region in g[u, v]

with pixels having nearly zero value and relates the collected Fourier data to this con-

straint. FMCA expresses this relationship as a set of linear equations and solves for the

unknown phase errors directly.

Let Gc[k, l] be Cartesian-grid Fourier data linearly interpolated from the collected

polar Fourier data, G[m,n] (assuming G[m,n] is shifted downward to baseband), where

1 ≤ k ≤ K, 1 ≤ l ≤ L andK,L denotes the extent of coverage of the rectangular Fourier

space region to which we wish to interpolate. Using linear interpolation, the Cartesian

grid data Gc[k, l] can be expressed as.

Gc[k, l] =
∑
m,n

α(k, l,m, n)G[m,n], (2.11)

where α(k, l,m, n) are the interpolation coefficients. In this chapter, for simplicity, we

use nearest-neighbor interpolation, which means that α(k, l,m, n) = 1 when G[m,n]

is closest to Gc[k, l] and 0 otherwise. However, in principle, any linear interpolation

can be used. The image g[u, v] is reconstructed by using an inverse discrete Fourier

transform,

g[u, v] =
1

KL

∑
k,l

Gc[k, l]e
j2π(uk

K
+ vl

L ). (2.12)

The region of terrain that is imaged in SAR depends on the antenna pattern. Little

energy is collected from outside the antenna main beam. By oversampling in both

the range and cross-range directions, in principle we can produce a SAR image that

has low-value pixels at the border of the image. However, the unknown phase errors
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introduced to the collected Fourier data will have the effect of convolving the focused

image g[u, v] with an unknown 2-D blurring kernel, so that the energy of g[u, v] may be

spread across the whole image plane. Therefore, the image constructed from the phase

corrupted data G̃c[k, l] may not contain a low-return region. FMCA compensates the

phase errors by forcing the low-return region in the border of the reconstructed image

to have nearly zero value. More generally, FMCA applies even if the region known to

have low-return is not in the border of the image.

Let g[ur, vr], r = 1, 2, . . . , R be the set of pixels that are nearly zero. From Eqn.

(3.15), (3.23) and (2.12) we have

g[ur, vr] =
1

KL

∑
k,l

∑
m,n

α(k, l,m, n)G̃[m,n] e−jϕ(m)ej2π(
urk
K

+ vrl
L )

≈ 0 (2.13)

In matrix notation, (2.13) can be written as

A e−jϕϕϕ ≈ 0, (2.14)

where ϕϕϕ = [ϕ(1) ϕ(1) . . . ϕ(M)]T and A is an R by M matrix with elements

A[m, r] =
1

KL

∑
k,l

(∑
n

α(k, l,m, n)G̃[m,n]

)
ej2π(

urk
K

+ vrl
L ) (2.15)

where 1 ≤ r ≤ R, 1 ≤ m ≤ M .

Assuming that the values of g[ur, vr]’s are zero, e−jϕϕϕ must be in the null space of

A. By carefully selecting the sampling rate and having a sufficiently large low-return

region (R > M − 1), we can ensure that A has rank M − 1 and the phase correction

vector e−jϕ̂ϕϕ can be obtained by determining the vector f spanning the null space of A,

f = βe−jϕϕϕ ∈ N (A), (2.16)
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where β is an arbitrary complex constant. We retain only the angular part of f as our

phase estimate

ϕ̂ϕϕ = −∠(f). (2.17)

However, when |g[ur, vr]| ̸= 0, due to additive noise or bright reflectors in the antenna

sidelobes, we observe that A has full column rank and we cannot determine e−jϕϕϕ using

the null space of A. Although g[ur, vr] may not have a region that is truly zero, we

would like the phase estimate to produce a restored image with minimum energy in the

low-return region. In other words, we wish to have a phase estimate e−jϕ̂ϕϕmin such that

ϕ̂ϕϕmin satisfies

ϕ̂ϕϕmin = argmin
a∈RM

∥A e−ja∥2. (2.18)

Equation (2.18) is very challenging to solve, and therefore we adopt the following ap-

proximation

e−jϕ̂ϕϕmin ≈ v = argmin
a∈CM ,∥a∥2=1

∥A a∥2. (2.19)

The solution to the above problem is given by the right singular vector that corresponds

to the smallest singular value ofA. To ensure that v has the form of e−jϕϕϕ in Eqn. (2.14),

the FMCA phase estimator ϕ̂ϕϕFMCA keeps only the angular part of v, resulting in

ϕ̂ϕϕFMCA = −∠(v). (2.20)

2.3 Comparison with MCA

Since FMCA and MCA are designed for the same imaging scenario, it is interesting

to compare these autofocus approaches. We have the following result.

Theorem 2.1. As the range of viewing angles approaches zero, MCA is equivalent to

FMCA.

Proof. When the SAR operates over exceedingly small viewing angles, the collected
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polar formatted Fourier data G̃[m,n] correspond approximately to a Cartesian format

G̃c[k, l], and G̃c[k, l] = G̃[m,n] for k = n, l = m. The polar-to-Cartesian interpolation

can be ignored and the elements of FMCA matrix A degenerate to

A[m, r] =
1

MN

∑
n

G̃[m,n]ej2π(
urm
M

+ vrn
N ). (2.21)

Without loss of generality, we assume M = N . Let WM be the M point DFT matrix

( WM [i, j] , 1√
M
e−j2π(i−1)(j−1)/M , 1 ≤ i, j ≤ M ), WM is unitary (i.e., WMWH

M = I).

We can make the following observation for the FMCA problem (2.14):

0 ≈ A e−jϕϕϕ = A WMWH
M e−jϕϕϕ = Be, (2.22)

where e = WM e−jϕϕϕ = DFT−1(e−jϕϕϕ) and B = A WM is an R by M matrix with

elements

B[m, r] = g̃[mod(ur −m,M), vr]. (2.23)

Here mod(ur −m,M) denotes (ur −m) modulo M . Comparing Eqn. (2.23) with (2.9),

we can see that the elements of B are constructed from the rows of g̃ that correspond to

the low-return constraint. Since the MCA framework can be stated as solving 0 ≈ Be

with constraints on the structure of e as shown in Section 2.1 [29], we have the desired

result.

Note that MCA also solves 0 ≈ Be by using the following approximation

ê = argmin
a∈CM ,∥a∥2=1

∥B a∥2 (2.24)

and produces the phase estimates ϕ̂ϕϕMCA by

ϕ̂ϕϕMCA = −∠(DFT(ê)). (2.25)

22



Next, we study the restoration capability of FMCA. FMCA inherits multiple prop-

erties from MCA, which we will briefly list here. The derivations are similar to those

of MCA [29].

Property 1 (Equivalence of singular values) Let A be the FMCA data matrix

formed from uncorrupted data and Ã be the FMCA data matrix formed from corrupted

data. Then the magnitudes of the singular values of A and Ã are identical.

Property 1 is easy to see, since from Eqn. (2.15) we have Ã = ADiag(ejϕϕϕ). Observe

that

ÃHÃ = AHDiag(ejϕϕϕ)HDiag(ejϕϕϕ)A = AHA, (2.26)

and thus A and Ã have singular values with the same magnitudes.

Property 2 (Equivalence of restoration) Suppose that A (or equivalently Ã) has

a distinct smallest absolute singular value. Then applying the FMCA correction filter v

and ṽ to A and Ã, respectively, produces the same magnitude restoration where v and

ṽ are the minimum right singular vector of A and Ã respectively, i.e.,

|A v| = |Ã ṽ|. (2.27)

To show Property 2, first use Property 1 and the assumption that the smallest

absolute singular value of A and Ã is distinct. We have

|Ãṽ| = |ADiag(ejϕϕϕ)ṽ|. (2.28)

Thus, v = βDiag(ejϕϕϕ)ṽ, where β is a complex scalar with |β| = 1. Then we observe

that

|Ãṽ| = |β−1ADiag(ejϕϕϕ)Diag(ejϕϕϕ)Hv| = |Av|, (2.29)

and we have the desired result.
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Property 2 shows that applying FMCA to the perfectly-focused image or any defo-

cused image produces the same restored image (we are only interested in displaying the

image magnitude). In other words, the restoration capability of FMCA does not depend

on the phase error function, unlike existing autofocus algorithms where the performance

tends to degrade when the phase errors are large and rapidly-varying. However, this

result does not imply anything about the quality of the restoration.

2.4 Simulation Results

In this section, we present simulation results for FMCA image restoration for both

monostatic and bistatic SAR scenarios. We compare the performance of FMCA with

both MCA and PGA. An antenna pattern simulated by the main lobe of a 2-D sinc

squared function was applied to the SAR images so that the border of the image had

nearly zero pixel magnitudes. The phase errors were independent and identically dis-

tributed (i.i.d.) across the cross-range coordinate and uniformly distributed between

−π and π. This phase error model is the worst case scenario and produces the most

severe defocusing effects.

2.4.1 Monostatic SAR scenario

In the monostatic SAR scenario, we studied how the range of look angles affects

the performance of various autofocus algorithms. To evaluate the performance of re-

construction, we first tested the three autofocus algorithms with images of randomly

scattered point targets. The perfectly focused image and the phase corrupted image

for a 0.01 degree range of look angles are shown in Fig. 2.2(a) and (b), respectively.

The images restored by FMCA, MCA and PGA are shown in Fig. 2.5. In this case,

the locations of the collected Fourier data closely resemble a Cartesian grid and all of

the algorithms could successfully reconstruct the image. The cross-section of the point
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Figure 2.2: Simple point target image for 0.01 degree look angle: (a) perfectly-focused
image with 2-D sinc-squared antenna pattern applied, the border of the image is as-
sumed to have low return (the cross-section of the point target inside the dotted box is
plotted in Fig. 2.8); (b) defocused image produced after applying a white phase error
function.

target inside the dotted box in Fig. 2.2(a) is plotted in Fig. 2.8(a). We can see that

all three algorithms successfully reconstructed the point target. Figure 2.6 shows the

image restoration results for the same point target image but with a 0.1 degree range

of look angles. We can see that MCA starts to break down in this case as it depends

heavily on the assumption that the collected Fourier data lie on a Cartesian grid. Note

that PGA still provides a good reconstruction. The point target cross-section compar-

ison is plotted in Fig. 2.8(b). Note that MCA has more energy diffused outside the

point target center. Figure 2.7 shows the image restoration results for a 1 degree range

of look angles. The point target cross-section comparison is plotted in Fig. 2.8(c). In

this case, the locus of the collected Fourier data can no longer be approximated by a

Cartesian grid, and MCA breaks down completely. The performance degradation of

PGA is also apparent as the range of look angles becomes wider. The performance of

FMCA remains excellent as the range of look angles increases.

Next, we show the image restoration results for a more challenging scenario. A SAR

image from Sandia National Laboratory was used as a proxy for the magnitude of a
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Figure 2.3: Real SAR image for 0.005 degree look angle: (a) perfectly-focused image
with 2-D sinc-squared antenna pattern applied, the border of the image is assumed
to have low return; (b) defocused image produced by applying a white phase error
function.

SAR scene. Again, we compare FMCA with MCA and PGA under different ranges of

look angles. The perfectly focused image and the phase corrupted image for a 0.005

degree range of look angles is shown in Fig. 2.3 and images restored by FMCA, MCA

and PGA are shown in Fig. 2.9. Due to the complexity of the real SAR image and

by considering a white phase error function, we observe some artifacts in the PGA

restoration, but otherwise PGA still produced a recognizable image. MCA performed

well in this small look angle case. Figure 2.10 shows the restoration results for a 0.05

degree look angle and Fig. 2.11 shows the restoration results for a 0.5 degree look angle.

From these simulations, we observe that while MCA slightly outperformed PGA in the

the smallest look angle case in Fig. 2.9, MCA breaks down more quickly when the

range of look angles is wider. The performance of FMCA is not affected by the range

of look angles. FMCA continued to perform well for even much wider look angles as

seen in Fig. 2.12.
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Figure 2.4: Collected Fourier data pattern for bistatic SAR: (a) example for a stationary
transmitter and a moving receiver; (b) example for a moving transmitter and a moving
receiver.

2.4.2 Bistatic SAR scenario

Here, we demonstrate the restoration capability of FMCA for bistatic SAR. We

experimented with two bistatic SAR scenarios. Scenario 1 assumed a stationary trans-

mitter and a moving receiver; scenario 2 assumed a moving transmitter and a moving

receiver with straight-line perpendicular motions. The collected Fourier data pattern

for both scenarios is shown in Fig. 2.4. Figure 2.13 shows the autofocus results for

scenario 1. Figure 2.14 shows the autofocus results for scenario 2. Notice that FMCA

successfully produced a focused image in both scenarios. (Neither MCA nor PGA can

be applied directly to the bistatic scenario.)

2.5 Chapter Summary

In this chapter, we developed a new autofocus algorithm, termed Fourier-domain

multichannel autofocus (FMCA), which can accommodate both wide-angle monostatic

SAR and bistatic SAR scenarios. FMCA was derived within a linear algebraic frame-

work, allowing the phase errors to be corrected in a noniterative fashion. FMCA requires
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prior knowledge that a region in the underlying scene has zero or nearly-zero pixel val-

ues (low-return region). In practice, a low-return region exists in the sidelobes of the

antenna pattern. The previously developed MCA approach can be viewed as a special

case of FMCA when operating at very small viewing angles. We presented computer

simulations to demonstrate the performance of FMCA compared with MCA and PGA

for various ranges of look angles, and also considered bistatic SAR scenarios.
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Figure 2.5: Autofocus for the point tar-
get image with a 0.01 degree look angle:
(a) image restored by FMCA; (b) image
restored by MCA; (c) image restored by
PGA.

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(a)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(b)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(c)

Figure 2.6: Autofocus for the point tar-
get image with a 0.1 degree look angle:
(a) image restored by FMCA; (b) image
restored by MCA; (c) image restored by
PGA.

29



10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(a)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(b)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(c)

Figure 2.7: Autofocus for the point target
image with a 1 degree look angle: (a) im-
age restored by FMCA; (b) image restored
by MCA; (c) image restored by PGA.
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Figure 2.8: Comparison of the point-
target cross-sections: (a) for 0.01 degree
look angle; (b) for 0.1 degree look angle;
(c) for 1 degree look angle.
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Figure 2.9: Autofocus for the real SAR
image with a 0.005 degree look angle: (a)
image restored by FMCA; (b) image re-
stored by MCA; (c) image restored by
PGA.
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Figure 2.10: Autofocus for the real SAR
image with a 0.05 degree look angle: (a)
image restored by FMCA; (b) image re-
stored by MCA; (c) image restored by
PGA.
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Figure 2.11: Autofocus for the real SAR
image with a 0.5 degree look angle: (a) im-
age restored by FMCA; (b) image restored
by MCA; (c) image restored by PGA.
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Figure 2.12: Autofocus for the real SAR
image with a 5 degree look angle: (a) im-
age restored by FMCA; (b) image restored
by MCA; (c) image restored by PGA.
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Figure 2.13: Bistatic SAR autofocus for a
stationary transmitter and a moving re-
ceiver: (a) perfectly-focused image; (b)
defocused image produced by applying a
white phase error function; (c) image re-
stored by FMCA.
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Figure 2.14: Bistatic SAR autofocus for
a moving transmitter and a moving re-
ceiver: (a) perfectly-focused image; (b)
defocused image produced by applying a
white phase error function; (c) image re-
stored by FMCA.
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CHAPTER 3

SAR Autofocus via Semidefinite Relaxation

At the core of the three state-of-the-art autofocus algorithms, PGA, MCA and

FMCA, is the solution to a Constant Modulus Quadratic Program (CMQP) of the

following form:

min
x∈CM

xHQx

s.t |xi| = 1 , i = 1, . . . ,M.

(3.1)

This problem is known to be NP-hard; thus, the best we can hope for is an approxima-

tion. All three algorithms use eigenvalue relaxation to approximate the original CMQP.

In this chapter, we propose an alternative approximation based on modern conic op-

timization known as semidefinite relaxation (SDR). SDR offers a compromise where it

provides a more accurate approximation to the CMQP at the cost of complicating the

underlying optimization problem.

SDR has recently been applied to many problems in communications and signal

processing [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]. Basically, SDR approximates

a quadratic problem with a convex optimization problem by first lifting the problem

to a higher dimension and then relaxing the nonconvex constraints. To the best of

our knowledge, this is the first time that SDR has been applied to the problem of

SAR autofocus. This problem formulation is similar to the discrete symbol detection

problem in communication systems, which has recently gained considerable attention

[34, 35]. However, the feasible set is a continuous constant modulus set as described in
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Eqn. (3.1) above, and is not discrete. Some theoretical results on the performance of

SDR for the continuous symbol case are given in [44, 45, 46]. Our simulation results

suggest that, combined with PGA, MCA and FMCA, SDR is a promising autofocus

technique. We note that currently solving SDR requires polynomial time and may not

be amenable to online processing. Nonetheless, there may be crucial situations where

it is imperative that an image be focused as well as possible, using computationally

intensive offline processing.

The organization of this chapter is as follows. We will briefly review the concept

of SDR in Section 3.1. Section 3.2 presents the problem formulation for PGA, MCA

and FMCA and also discusses how we can improve these existing techniques by using

SDR. Simulation results are given in Section 3.3. Finally, we summarize this chapter

in Section 3.4.

3.1 Review of Semidefinite Relaxation

In this section, we briefly review the topic of semidefinite programming (SDP) and

its application to approximate nonconvex CMQP problems. More details on SDP can

be found in [47, 48]. The SDR approximation is described in [36].

3.1.1 Semidefinite Programming

In recent years, there has been considerable progress and development of efficient

algorithms for solving a variety of optimization problems. In particular, significant

attention has been devoted to SDP, a generalization of classical linear programming to
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include linear matrix inequalities. The standard form of an SDP is [47, 48]:

min tr(QX)

s. t. tr(AiX) = bi , i = 1, . . . ,M

X ≽ 0,

(3.2)

where Q, Ai, i = 1, . . . ,M are the data parameters and X is the optimization variable.

SDP belongs to a class of problems knowns as conic optimization problems whose global

optimum can be efficiently found using standard algorithms.

The most promising technique at present to solve small-to-medium-scale SDP is the

interior-point (IP) method. There exist off-the-shelf software packages based on IP for

solving general SDP [49]. In many problems, it is more computationally efficient to use

a customized IP method tailored to the problem of interest (e.g., [35]). Unfortunately,

IP methods are not appropriate for large-scale problems, such as the ones addressed

in this thesis, because the memory and computational costs of even one IP iteration

are too high. In such scenarios, first-order methods, with simple iterations, must be

utilized [50, 51]. A classical method is the spectral bundle method developed in [52, 53].

The standard SDP involves real parameters and variables, but can be easily generalized

to account for complex values through a change of variables (e.g., [35]), or specifically

tailored complex optimization methods.

3.1.2 Constant Modulus Quadratic Programming

One promising application of SDP is in the approximation of the complex Constant

Modulus Quadratic Programming (CMQP) problem [36]. In particular, CMQP can be

written as

(CMQP ) min
x∈CM

xHQx

s.t |xi| = 1 , i = 1, . . . ,M.

(3.3)

36



It is known that CMQP is NP-hard [45, 54], and thus, for large problem sizes, the best

we can hope for is an approximation algorithm.

A natural approximation to CMQP is eigenvalue relaxation (EVR), which can be

written as

(EV R) min
x∈CM

xHQx

s.t xHx = M.

(3.4)

The main advantage of EVR is that the problem (EV R) has a simple closed-form

solution. Using the variational characterization of singular values, the optimal solution

to EVR is the right singular vector of Q that corresponds to the minimum singular

value. Clearly, if this eigenvector satisfies the original (CMQP ) constraints, then it is

the optimal solution to (CMQP ) as well and the relaxation is tight. Otherwise, we

can obtain an approximate solution x̃ by rounding the minimum right singular vector,

denoted by v, as

x̃ = ej∠(v). (3.5)

Recently, a more advanced relaxation scheme, SDR, has been proposed. This re-

laxation can be derived through Lagrange duality or via a lift-and-relax argument (see

exercise 5.39 in [47]). For completeness, we review the latter derivation. For this pur-

pose, we first lift the solution space of (CMQP ) from vectors to positive semidefinite

matrices to obtain

(CMQP ′) min
X∈CM×M

tr(QX)

s.t Xii = 1 , i = 1, . . . ,M

X ≽ 0

rank(X) = 1.

(3.6)

Problems (CMQP ) and (CMQP ′) are equivalent since the solution to (CMQP ′), X,

can be expressed as X = xxH with |xi| = 1, i = 1, . . . ,M . This follows because X
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is a rank-1 positive semidefinite matrix. Problem (CMQP ′) has a nonconvex feasible

set due to the rank-1 constraint and cannot be solved efficiently. Instead, we relax the

feasible set of (CMQP ′) to obtain the revised problem (SDR):

(SDR) min
X∈CM×M

tr(QX)

s.t Xii = 1 , i = 1, . . . ,M

X ≽ 0.

(3.7)

The above optimization problem is a relaxation of (CMQP ′) and is a SDP with Ai =

Diag(ei) where ei is the ith column of the identity matrix and bi = 1 for all i. Thus, it

can be efficiently solved as explained above.

Just like the EVR approach, the SDR must be complemented with an additional

rounding scheme which uses its solution to generate an approximate feasible solution

to (CMQP ). Let X̂ be the solution of (SDR). If rank(X̂) = 1, then X̂ = x̂x̂H is an

optimal solution to (CMQP ), and the (CMQP ) problem is solved exactly. Otherwise,

we can use X̂ to obtain a feasible approximate solution to (CMQP ). There are several

methods we might employ. Here we focus on the randomization method [45]. Let

X̂ = V̂V̂H where V̂ = [v̂1, . . . , v̂n] is a square-root factor of X̂. Because we relax the

rank-1 constraint for X̂, n may be greater than 1. The randomization method generates

Mrand complex gaussian vectors u1,u2, . . . ,uMrand
that are independent with zero mean

and covariance I. It then computes yi = ∠(V̂ui), i = 1, . . . ,Mrand and approximates a

feasible solution, x̃, to (CMQP ) as

x̃ = argmin
y1,...,yMrand

yH
i Qyi. (3.8)

The quality of the randomization method is discussed in [45].
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3.1.3 Approximation Quality

We now briefly discuss the approximation quality of SDR. For this purpose, we first

express (EV R) as the following equivalent SDP:

(EV ) min
X∈CM×M

tr(QX)

s.t tr(X) = M

X ≽ 0

rank(X) = 1.

(3.9)

The comparison of SDR with EVR is summarized in the following theorem.

Theorem 3.1. Let v∗p, v
∗
sdr and v∗ev represents the optimal objective function values

found for problems (CMQP ), (SDR) and (EV ), respectively. Then

v∗p ≥ v∗sdr ≥ v∗ev. (3.10)

Proof. First, we have shown that (SDR) is a relaxation of (CMQP ). This immediately

gives us

v∗p ≥ v∗sdr. (3.11)

To show the second inequality, we note that (EV ) is equivalent to the following problem:

(EV R) minX∈CM×M tr(QX)

s.t tr(X) = M

X ≽ 0.

(3.12)

This is easily proved by showing that (EV R) is both a lower bound and an upper bound

for (EV ); thus it is tight. On the other hand, (EV R) can be viewed as a relaxation of
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(SDR) by relaxing the Xii = 1, ∀i constraint to tr(X) = M , and therefore

v∗sdr ≥ (EV R) = v∗ev. (3.13)

The above result shows that in terms of objective function value, SDR is a tighter

relaxation than the natural EVR approach. However, it is important to emphasize that

these results do not provide any guarantees on the quality of the solution itself.

Another result, due to So et al. [45], provides quality assurance for approximating a

certain form of CMQP using SDR. Their result states that SDR plus randomization is

a π
4
-approximation algorithm for CMQP with Q in (3.3) that is negative semidefinite,

i.e.,

v∗p ≥ E[yHQy] ≥ π

4
v∗p, (3.14)

where y = ∠(V̂u) and u is a normally distributed complex vector. Other theoretical

studies are included in [55, 56, 57, 58].

3.2 Autofocus in Synthetic Aperture Radar

In this section we briefly review the formulation of the SAR autofocus problem

solution using the PGA, MCA and FMCA approaches. The main message of this

section is that all of these approaches lead to a CMQP problem. Previous work has

approximated this problem using the EVR approach, and we propose to enhance the

performance using the SDR technique described above.

As explained in the introduction chapter, a challenge in SAR imaging is that in

order to correctly demodulate the returned signal, the two-way travel time of the trans-

mitted signal must be known. In practice, due to unknown signal delays resulting from

inaccurate range measurements or signal propagation effects, the polar-format Fourier
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data is contaminated with unknown phase errors that cause the reconstructed image

to suffer distortion. The measurements at a given look angle suffer from the same un-

known delay, and, under a narrow-band assumption, their unknown phase is constant.

The delays, and their associated phases, change between different look angles. This

results in the following error model

G̃[m,n] = G[m,n] ejϕ(m) +W[m,n], (3.15)

where ϕ(m) ∈ R,m = 1, 2, . . . ,M are unknown phases, and W[m,n] represents additive

noise [5].

SAR reconstruction amounts to estimating the speckle image of r(x, y) given the

observations G̃. Note that even without unknown phases, SAR reconstruction produces

a speckle image that is similar to |r(x, y)| but not identical. Moreover, as the additive

noise increases, the quality of the speckle image degrades. The goal of SAR autofocus is

to recover this speckle image (and not the true reflectivity function) in the presence of

unknown phases. In this chapter, we will address this problem using a natural approach

that first estimates the unknown phases, compensates for them and finally reconstructs

the speckle image using classical techniques.

3.2.1 Phase Gradient Autofocus

PGA is the autofocus method most widely employed in practice. It is motivated by

considering a scenario where each row of g contains only a single point reflector located

at the center of the row. These reflectors are modeled as mutually i.i.d. zero-mean

complex Gaussian random variables with variance σ2
a, whereas the surrounding clutter

is represented by i.i.d. zero-mean complex Gaussian random variables with variance σ2
n.

Let G̃rc denote the range-compressed data, defined as G̃ after undergoing a 1-D inverse

Fourier transform in the n-dimension. Then, the rows of G̃rc are i.i.d. realizations of a
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zero mean complex Gaussian vector with covariance

σ2
axx

H + σ2
n I, (3.16)

where x = ejϕϕϕ is the phase vector (ϕϕϕ = [ϕ(1), ϕ(2), · · · , ϕ(M)]T ) which satisfies |xi| = 1

for i = 1, 2, · · · ,M .

PGA estimates x using a maximum likelihood approach. After simple algebraic

manipulations, the problem reduces to

(P − PGA) ejϕ̂ϕϕPGA = argmax
x:|xi|=1

xHG̃T
rc(G̃

T
rc)

Hx, (3.17)

It is easy to see that (P −PGA) is a CMQP with Q = −G̃T
rc(G̃

T
rc)

H . The original PGA

technique [16] proposed to approximate Eqn. (3.17) using EVR (see Section 3.1). In the

sequel, we will show that a better approximation can be obtained using our proposed

SDR through an increase in computational cost.

For completeness, we note that the above scheme is not the full PGA algorithm, but

is its core step. The full algorithm is an iterative technique where at each iteration the

algorithm first preprocesses the obtained phase-compensated image so that it can be

more accurately described by the assumed point target model. Then the phase errors

are estimated by using Eqn. (3.17) and a refined image is constructed. For a complete

description of the full PGA algorithm, see [5]. Also, note that in practice a simpler

PGA algorithm is commonly used where the phase difference between adjacent pulses

is estimated. This method can be shown to be a special case of the maximum-likelihood

technique presented above.
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3.2.2 Multichannel Autofocus

An alternative image model was recently proposed by Morrison et al. [29]. The

autofocus algorithm they developed is called Multichannel Autofocus (MCA). The MCA

reconstruction method assumes that there is a known region in the image that consists

of nearly zero-valued pixels, i.e., g[ur, vr] ≈ 0 for r = 1, · · · , R. This prior knowledge

can be inferred by using the low-return region of the antenna pattern [29]. Using this

knowledge and ”reverse engineering,” MCA searches for the phases that will result in

a reconstructed image with

|ĝ[ur, vr]| ≈ 0 for r = 1, · · · , R. (3.18)

For simplicity, MCA assumes that the range of look angles is small enough so that

G̃ can be well approximated by a Cartesian grid. Therefore, the polar-to-Cartesian

interpolation process can be ignored in the image reconstruction process and Eqn.

(3.18) reduces to solving

1

MN

∑
m,n

G̃[m,n] e−jϕ(m)ej2π(
urm
K

+ vrn
L ) ≈ 0 (3.19)

for ϕ(1), ϕ(1), · · · , ϕ(M) and for r = 1, 2, . . . , R. Using vector notation, the autofocus

problem reduces to finding a vector x ∈ CM such that

Ax = 0, |xi| = 1, i = 1, 2, · · · ,M, (3.20)

where A is an R by M matrix with elements

A[m, r] =
1

MN

∑
n

G̃[m,n]ej2π(
urm
M

+ vrn
N ). (3.21)
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A naive approach to this problem is to try solving this system of equations exactly. In

practice, the measurements are noisy and the approximately zero-valued pixels are not

exactly zero. Instead, requiring that the low-return region has minimum energy leads

to the following optimization problem

(P −MCA) ejϕ̂ϕϕMCA = argmin
x:|xi|=1

∥A x∥2. (3.22)

Thus, the MCA approach reduces to solving a standard CMQP with Q = AHA. In

the original MCA paper [29], an approximate solution was proposed using an EVR

approach. A better approximation can be obtained using our proposed SDR through

an increase in computational cost.

For completeness, we note that the original MCA derivation used a more general

framework with arbitrary basis functions, and worked in the spatial domain rather than

the Fourier domain. The SDR method can be applied equally well in that framework.

3.2.3 Fourier-domain Multichannel Autofocus

Only on rare occasions does SAR operate over a range of look angles spanning a small

fraction of one degree. MCA breaks down quickly as the range of look angles becomes

larger [30]. FMCA is a generalization of MCA that recognizes that the collected Fourier

data is in polar format and the interpolation process cannot be ignored. FMCA requires

that the polar-to-Cartesian interpolation be linear to preserve the linear structure of

the inverse problem. In practice, linear interpolation is almost always used, for example

see [5]. With linear interpolation, the Cartesian grided data, denoted by Gc[k, l], can

be expressed as.

Gc[k, l] =
∑
m,n

α(k, l,m, n)G[m,n], (3.23)

where α(k, l,m, n) are the interpolation coefficients. In this chapter we used a nearest-

neighbor interpolation for simplicity. Thus α(k, l,m, n) = 1 when Gp[m,n] is closest
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to Gc[k, l] and 0 otherwise. In principle, any linear interpolation can be used and

accommodated within this framework. Assuming g[ur, vr] are nearly zero, and together

with Eqn. (3.23), (3.19) and (3.15), FMCA formulates the autofocus problem as the

solution to

1

KL

∑
k,l

∑
m,n

α(k, l,m, n)G̃[m,n] e−jϕ(m)ej2π(
urk
K

+ vrl
L ) ≈ 0 (3.24)

for all r = 1, 2, . . . , R. Similar to MCA, the FMCA problem reduces to finding a vector

x such that

Bx = 0, |xi| = 1, i = 1, 2, · · · ,M (3.25)

where B is an R by M matrix with elements

B[m, r] =
1

KL

∑
k,l

(∑
n

α(k, l,m, n)G̃[m,n]

)
ej2π(

urk
K

+ vrl
L ). (3.26)

In practice, it is more reasonable to assume that the low-return region has small energy.

Therefore, FMCA attempts to solve the following optimization problem:

(P − FMCA) ejϕ̂ϕϕFMCA = argmin
x:|xi|=1

∥B x∥2. (3.27)

Thus the FMCA approach reduces to solving a standard CMQP with Q = BHB. In

the original FMCA method [59, 60], an approximate solution was proposed using an

EVR approach. In the next section, we will demonstrate that a better approximation

can be obtained using the SDR technique in exchange for an increase in computational

cost.

3.3 Simulation Results

In this section, we provide a few illustrative numerical examples showing the ad-

vantages of the SDR approach in comparison with existing autofocus algorithms, as
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measured by the MSE of the phase estimates and the SNR of the image restoration.

We examine narrow and wide ranges of look angles, as well as the bistatic scenario.

In this section we denote PGA-SDR, MCA-SDR and FMCA-SDR as the algorithms

using SDR to approximate (P −PGA) in Eqn. (3.17), (P −MCA) in Eqn. (3.22) and

(P − FMCA) in Eqn. (3.27), respectively.

3.3.1 SAR Simulator

In order to test the different algorithms, we built a SAR simulator which generated

a target complex reflectivity matrix g and its observations G̃. The amplitudes of g were

taken from a real SAR image obtained from Sandia National Laboratory, and the phases,

following [29], were chosen as i.i.d. with uniform distribution. This reflectivity matrix

was multiplied by a 2-D antenna pattern, and then a 2-D discrete Fourier transform

(DFT) was applied. The resulting Fourier matrix was then linearly interpolated to

polar coordinates described by (Fx[m,n], Fy[m,n]), m = 1, · · · ,M, n = 1, · · · ,M to

obtain the M × N polar format data G. The set m = 1 · · · ,M comprises the look

angles adopted in each simulation, and the set n = 1 · · · ,M was chosen so that the

resulting polar coordinates were circumscribed by the Cartesian grid of the reflectivity

Fourier matrix. Finally, the noisy and phase-corrupted observations G̃ were simulated

as expressed in Eqn. (3.15).

Our simulator employed two antenna patterns: a trapezoidal pattern with unit gain

over 90 percent of the image and linearly increasing attenuation to γ, 0 < γ < 1, at

the edge of the image; and a 2-D sinc-squared pattern with 95 percent of the mainlobe

covering the image. Our simulator generated a white phase error where each ϕ(m) was

independent and uniformly distributed between −π and π.

The signal-to-noise-ration (SNR) for the additive noise is defined as:

SNR = 20log10

(
1

σnMN

∑
m,n

|G̃[m,n]|

)
. (3.28)
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To evaluate the performance of various image restoration method, we used the

output SNR metric, SNRout, defined as:

SNRout = 20 log10
∥vec(g)∥2

∥(|vec(g)| − |vec(ĝ)|)∥2
, (3.29)

where ĝ is the reconstructed image. SNRout measures the pixel-wise magnitude differ-

ence between the reconstructed image ĝ and the perfectly focused image g. A higher

SNRout value corresponds roughly to a better restoration.

3.3.2 Reconstruction Experiments
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Figure 3.1: Mean Square Error of the FMCA and FMCA-SDR phase estimation (with
Mrand = 50, , 100, 200, 500 number of randomization).

Before we show the results for the image restoration, we first compare the MSE of

the phase error estimates produced by FMCA and FMCA-SDR with different number

of randomizations (Mrand=50,100,200,500). The simulation settings are as follows. This

simulation assumed a narrow range of look angles scenario, so MCA is equal to FMCA
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Figure 3.2: Example of MCA-SDR restoration using an actual size image of 2385 by
1557: (a) perfectly focused image, where a 2-D sinc-squared antenna pattern is applied;
(b) defocused image produced by applying a white phase error function; (c) image
restored by MCA-SDR.

in this case. We used Fig. 3.3 (a) as the input image and applied a rectangular antenna

pattern. The rectangular antenna pattern has unit gain over most of the image and

linearly attenuates at the edge of the image. The image is corrupted by a white phase

error function. The Monte-Carlo simulation result is shown in Fig. 3.1. From the

plot, we see that FMCA-SDR always outperforms FMCA. Furthermore, increasing

the number of randomizations in FMCA-SDR does not improve the performance by

much. For this particular simulation, the reconstructed image was noticeably blurry

for SNR¡10dB.

Now we demonstrate the performance of image restoration using SDR. We first

compare image restoration using PGA-SDR and PGA. This is shown in Fig. 3.3.

Figure 3.3 (a) is the focused image with added noise SNR = 5 dB. Figure 3.3 (b) shows

the image corrupted by a smooth phase error function, (c) shows the image restored by

PGA-SDR and (d) shows the image restored by PGA.

Next, we test image restoration under the MCA/FMCA framework. In the case of

small look angles, the collected Fourier data is well approximated as lying on a Cartesian

grid and FMCA is equivalent to MCA. Thus, in this part we only present the simulation
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Figure 3.3: Comparison of PGA-SDR and PGA image restoration: (a) perfectly focused
image with added complex gaussian noise (SNR = 5 dB); (b) defocused image produced
by applying a smooth phase error function; (c) PGA-SDR restoration (SNRout = 5.06
dB); (d) PGA restoration (SNRout = 4.53 dB).

results for MCA-SDR and MCA. Figure 3.2 presents an experiment using an actual size

SAR image (2385 by 1557). Figure 3.2(a) shows the uncorrupted image where a 2-D

sinc-squared antenna pattern is applied. The field of view equals 95 percent of the

mainlobe of the sinc-squared antenna pattern, i.e., the image is cropped within the

nulls of the antenna pattern, so that there is a very large (but not infinite) attenuation

at the edges of the image. Figure 3.2(b) shows a defocused image produced by applying

a white phase error function. The problem size for this simulation is M = 1557.

After obtaining a solution for (SDR) using the spectral-bundle method, MCA-SDR
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used randomization with Mrand = 200 to find the phase estimates and reconstruct the

image. The MCA-SDR restoration is shown in Fig. 3.2(c).

The goal of the next simulation was to evaluate the robustness of MCA-SDR with

respect to the low-return assumption. We used the focused image in Fig. 3.8(a) with

a trapezoidal antenna pattern applied. The trapezoidal antenna pattern had an at-

tenuation of γ = 10−0.5 at the edge of the image. The defocused image is shown in

Fig. 3.8(b). The MCA reconstruction using SDR is presented in Fig. 3.8(c), and the

reconstruction using EVR is shown in Fig. 3.8(d). It is clear that SDR produced a

better visual result. This improvement is also apparent in the output SNR where EVR

resulted in 5.65dB and SDR in 8.43dB. The comparison of SNRout between EVR and

SDR as a function of varying attenuation γ in the low-return region is shown in Fig.

3.4.
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Figure 3.4: Comparison of MCA-SDR and MCA-EVR image restoration, measured by
SNRout, as a function of attenuation γ in the low-return region.

Figure 3.9 compares the performance of MCA-SDR with existing autofocus tech-

niques. Figure 3.9(a) shows a perfectly focused image with a rectangular antenna pat-

tern applied (the gain at the edge is 10−4 in this experiment). To model system noise,

a complex gaussian noise with signal-to-noise-ratio SNR equal to 40 dB was added to
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the defocused image. The defocused image formed with white phase error corruption

is shown in Fig. 3.9(b). Figure 3.9(c) shows the MCA-SDR restoration assuming the

first two and last two column to be the low-return region. The restoration of MCA is

shown in Fig. 3.9(d) with the same low-return region assumption in part (c). Image

restored by sharpness maximizing autofocus algorithm using entropy metric is shown

in Fig. 3.9(e). And the PGA restoration is shown in Fig. 3.9(f).
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Figure 3.5: Comparison of MCA-SDR with existing autofocus approaches.

Figure 3.5 presents results of a Marte Carlo simulation comparing MCA-SDR with

existing autofocus algorithms under varying levels of additive noise in the uncorrupted

image. Ten trials were conducted for each SNR level, where in each trial a noisy focused

image was first generated and then the defocused image was formed by applying a white

phase corruption. Four autofocus algorithms (MCA-SDR, MCA, PGA, Sharpness-

maximization) were applied to each defocused image and the result is evaluated by

SNRout. Plot of the average SNRout verses different SNR is shown in Fig. 3.5. The plot

shows that at high input SNR (SNR > 10 dB), MCA-SDR outperformed MCA and

other autofocus methods.

When the range of look angles is wide ( > 3 degree) only FMCA is capable of
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producing a focused image while MCA and PGA methods breaks down due to the fact

that the phase error can no longer be approximated by an 1-D function as shown in

(2.4). Thus, in the next part we only show the result of FMCA when compared with

SDR approach. In the FMCA simulation, we adopted the following scenario: the SAR

collected data over 36 degree look angles, the radar transmitted 1500 pulses (M = 1500)

and the receiver provided 800 samples per single pulse (N = 800). This simulation

used the focused image in Fig. 3.10(a), a white phase error function (defocused image

shown in Fig. 3.10(b)), a 2-D sinc-squared antenna pattern, and input SNR with value

14.2 dB. The FMCA reconstruction using SDR is presented in Fig. 3.10(c) and the

reconstruction using EVR is shown in Fig. 3.10(d). As before, it is easy to see the

visual image enhancement due to the use of SDR. In order to demonstrate the effect of

input SNR on restoration quality, Fig. 3.6 presents the output versus input SNRs for a

50 by 50 ”toy” image collected on a polar grid with a 2 degree range of look angles. As

expected, at high input SNR both EVR and SDR succeed in estimating the unknown

phases, but the advantage of SDR is significant in cases with medium input SNR where

the low-return region assumption is inexact.
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Figure 3.6: Comparison of FMCA-SDR and FMCA-EVR image restoration, measured
by SNRout.
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We also report the results of an additional FMCA simulation conducted for a bistatic

SAR system. We considered a bistatic SAR scenario where a moving transmitter and

a moving receiver traverse a straight-line trajectory, perpendicular to each other. The

specific parameters were as follows: 2000 transmitted linear FM pulses (bandwidth

to center frequency ratio equal to 0.7027) over a 55.31 degree range of look angles.

The receiver collected reflected signals over a 44.71 degree range of look angles. The

collected Fourier data pattern for this bistatic SAR scenario is shown in Fig. 3.7. The
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500
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700

800

Figure 3.7: Collected Fourier data pattern for Bistatic SAR.

focused image with a 2-D sinc-squared antenna pattern applied and input SNR equal

to 50dB is shown in Fig. 3.11 (a). The defocused image, corrupted by a white phase

error, is shown in Fig. 3.11 (b). The images restored by FMCA-SDR and FMCA-EVR

are shown in Fig. 3.11 (c) and Fig. 3.11 (d), respectively. Here too, the advantage of

SDR over EVR is apparent.

In all of the simulations reported above we implemented SDR via the bundle method

[52]. To give a rough idea of its computational cost, the run time for the EVR simulation

with Fig. 3.10(a) as input required less than 30 minutes on a HP Z200 (Quad 2.66 GHz)

PC with 8GB of RAM, while SDR required about 24 hours.
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Figure 3.8: Experiments evaluating the robustness of MCA-SDR and MCA as a func-
tion of the attenuation in the low-return region: (a) perfectly focused image, where a
trapezoidal antenna pattern is applied; (b) defocused image produced by applying a
white phase error function; (c) image restored by MCA-SDR (SNRout = 8.43 dB); (d)
image restored by MCA-EVR (SNRout = 5.65 dB).

3.4 Chapter Summary

In this chapter, we proposed to use semidefinite relaxation (SDR) to improve three

state-of-the-art SAR autofocus algorithms, namely Phase Gradient Autofocus (PGA),

Multichannel Autofocus (MCA) and Fourier-domain Multichannel Autofocus (FMCA).

We first recognized that, although PGA, MCA and FMCA are developed based on

different models and assumptions, they all attempt to find a solution to a constant
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modulus quadratic program (CMQP). CMQP is known to be NP-hard. PGA, MCA

and FMCA all, either implicitly or explicitly, use eigenvalue relaxation to approximate

the CMQP. We proposed to use SDR to approximate the CMQP arising in each of the

three algorithms. Experimental results showed that SDR provided promising image

restoration advantages over existing methods, especially for MCA and FMCA. Although

solving autofocus problem using the new method is more computationally expensive,

there may be crucial situations where it is imperative that an image be focused as well

as possible, using computationally intensive off-line processing.
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Figure 3.9: Comparison of MCA-SDR with existing autofocus approaches: (a) perfectly
focused image with added complex gaussian noise (SNR = 40 dB) and applied square
antenna pattern; (b) defocused image produced by applying a white phase error func-
tion; (c) MCA-SDR restoration (SNRout = 30.80 dB); (d) MCA restoration (SNRout =
20.40 dB); (e) Sharp-maximization restoration (SNRout = 5.49 dB); (f) PGA restoration
(SNRout = 5.84 dB).
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Figure 3.10: Image restoration of FMCA-SDR and FMCA-EVR for wide-angle SAR
autofocus: (a) perfectly focused image with added complex gaussian noise and applied
2-D sinc-squared antenna pattern; (b) defocused image produced by applying a white
phase error function; (c) FMCA-SDR restoration (SNRout = 3.87 dB); (d) FMCA-EVR
restoration (SNRout = 3.88 dB).
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Figure 3.11: Comparison of FMCA-SDR and FMCA for bistatic SAR autofocus: (a)
perfectly focused image with added complex Gaussian noise and applied 2-D sinc-
squared antenna pattern; (b) defocused image produced by applying a white phase
error function; (c) FMCA-SDR restoration (SNRout = 4.88 dB); (d) FMCA restoration
(SNRout = 3.16 dB).
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CHAPTER 4

SAR Autofocus based on a Bilinear Model

In this chapter, we propose a novel autofocus reconstruction algorithm that is based

on a bilinear parametric model. Following [61, 62, 63, 64], we consider a standard linear

model for the reflectivity function using a finite vector θθθ of unknown parameters. On

the other hand, similar to [29, 59, 60], we propose a linear model for the SAR acquisition

system involving a vector of unknown phase distortions γγγ. Together, we obtain a bilinear

model involving the unknown parameters {θθθ,γγγ} contaminated by additive noise. We

analyze the conditions for identifiability and solvability of the problem in the noiseless

case, and then derive a novel maximum likelihood autofocus (MLA) method to deal

with noisy observations.

MLA can be interpreted as a generalization of MCA to a larger class of models and

a wider range of look angles. In the simplest setting, namely an impulse reflectivity

model with a known support constraint and a small range of look angles, MCA coincides

with MLA. However, our results show that MCA’s FMCA extension is suboptimal in

comparison with MLA. The latter requires weaker identifiability conditions, and small

error analysis reveals that it is significantly less sensitive to noise. Furthermore, MLA

is more general from the standpoint that it does not require the existence of a prior

low-return region. In some sense, FMCA may be considered more robust as it does not

rely on any explicit parametric reflectivity model. However, the numerical simulation

results presented in [59, 60] are based on a special case of our model, and we present
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numerical evidence that MLA is superior to FMCA also under mismatched models.

From a computational cost perspective, MCA, FMCA and MLA are very similar. At

their core, is the solution to a constant modulus quadratic program (CMQP) and can

be approximated by methods discussed in Chapter 3.

The organization of this chapter is as follows. In Section 4.1 we introduce the

proposed bilinear problem formulation. In Section 4.2, we discuss the conditions for

perfect reconstruction in the noiseless case. In Section 4.3, we derive MLA and discuss

its implementation. In Section 4.4, we compare MLA with FMCA through their small

error analysis. Simulation results are presented in Section 4.5 and concluding remarks

are provided in Section 4.6.

4.1 Problem Formulation

In this section, we present a parametric bilinear model for the SAR autofocus prob-

lem.

4.1.1 SAR Reflectivity Function Model

SAR systems image a continuous target reflectivity function denoted by r(x, y).

Most reconstruction methods assume a finite parametric model for r(x, y). This para-

metric model can be mathematically described as

r(x, y) =
D∑
i=1

θi hi(x, y). (4.1)

where θθθ = [θ1, · · · , θD]T is a complex valued parameter vector of dimension D and

hi(x, y) for i = 1, · · · , D are known complex valued functions. Common physical models

that can be characterized by Eqn. (4.1) include:

(A) Impulse model: r(x, y) is decomposed into D resolution cells, each with size dx×dy,
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where dx and dy are two known constants determined by the SAR radar specification.

Any two point reflectors within a resolution cell cannot be well-resolved. With this

framework, one way of approximating a SAR system is to use a discrete model where

a single complex number is assigned to each resolution cell. This complex number,

denoted by θi, represents the sum of the point reflectors’ reflectivities within a resolution

cell and can be simply viewed as an impulse located at the center of the cell. This leads

to the following definition:

hi(x, y) = δ (x− ui dx, y − vi dy) , (4.2)

where δ(·) denotes the standard dirac delta function, and ui and vi are the spatial

indices for the ith resolution cell.

(B) Sampling model: In this model, θθθ represents discrete samples of r(x, y), and the

hi(x, y) represent the sampling kernel. A typical assumption in this model is a band-

limited reflectivity function which involves a finite number of parameters. Previous

works that use this model include [61, 62, 63].

(C) Discrete speckle model: In this model, SAR imaging is viewed as a statistical inverse

problem and it is recognized that it is possible to reconstruct only a speckle version of

r(x, y). Here, Eqn. (4.1) can be interpreted as an approximate model for the speckle

image [5, 6].

(D) Additional prior information: Additional linear constraints may be incorporated

into the model if prior information about the underlying scene is known. For example,

previous work assumed knowledge of a zero (or low) valued region in the underlying

scene [29, 59, 60]. Such information corresponds to elements in θθθ with known zero

values. Alternatively, this can be translated into a linear model of reduced dimension

(smaller value of D).
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4.1.2 SAR Acquisition Model

Under the far-field assumption and using a narrow-band transmitted waveform, the

collected SAR data, denoted by G[m,n], can be modeled as the Fourier transform

of r(x, y) evaluated at non-uniform frequency locations (Fx[m,n], Fy[m,n]) for m =

1, · · · ,M and n = 1, · · · , N :

G[m,n] =

∫ ∫
r(x, y)e−j2π

(
Fx[m,n]x+Fy [m,n] y

)
dxdy. (4.3)

Substituting Eqn. (4.3) back into our parametric model for the reflectivity function

yields

G[m,n] =
∑
i

θi

∫ ∫
hi(x, y) e

−j2π
(
Fx[m,n]x+Fy [m,n] y

)
dxdy. (4.4)

Using vector notation

g = vec(G), (4.5)

there is a simple linear relation between θθθ and g which can be expressed as

g = Lθθθ (4.6)

where L is a MN ×D matrix with elements:

L[k, l] =

∫ ∫
hi(x, y) e

−j2π(Fx[a,b]x+Fy [a,b] y)dxdy,

a = ⌊l/N⌋, b = mod(l, N), i = ⌊k/V ⌋ · V +mod(k, V ) (4.7)

where ⌊·⌋ denotes ”integer part of,” and mod(l, N) denotes ”l modulo N .”

Conventional SAR reconstruction amounts to inversion of this linear transformation

to reconstruct θθθ as

θ̂θθ = L†g. (4.8)
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In the special case of model (A) and when SAR operates across a narrow range of

look angles, Fx, Fy can be well approximated as a Cartesian grid, thus the matrix

L is simply a DFT matrix and inversion is performed using an efficient Fast Fourier

Transform (FFT) [29]. Otherwise, it is common to approximate this pseudo-inversion

via interpolation to a uniform Cartesian grid, followed by FFT.

The above SAR model is too idealistic for practical systems. We now extend the

model and introduce signal distortion and noise. Specifically, a more realistic observa-

tion model is

G̃[m,n] = G[m,n] ejϕ[m,n] +N[m,n] (4.9)

where ϕ[m,n] are autofocus phase distortions and N[m,n] represents additive noise.

The phase distortions result from inaccurate range measurements or unknown signal

propagation delays. The polar-format Fourier data is contaminated with unknown

phase errors that cause the reconstructed image to suffer distortion. The measurements

at a given look angle suffer from the same unknown delay, and, under a narrow-band

assumption, this corresponds to an unknown phase. The delays, and their associated

phases, change between different look angles. Thus, following [5], we let

ϕ[m,n] = ϕ(m), m = 1, · · · ,M. (4.10)

In addition, without loss of generality, we define

ϕ(M) = 0 (4.11)

and focus on estimating ϕ(1), · · · , ϕ(M − 1), as we are only interested in the phase

differences (PGA in [20] is also based on this approach). The additive noise samples

N[m,n] are assumed to be independent, zero mean, complex normal random variables

with variance σ2
n.
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In vector notation, we obtain the following model

g̃ = R(γγγ)Lθθθ + n, (4.12)

where γγγ = [ejϕϕϕ; 1], n = vec(N) and

R(γγγ) = Diag
([

γ1, . . . , γ1︸ ︷︷ ︸
N terms

, . . . , γM−1, . . . , γM−1︸ ︷︷ ︸
N terms

, 1, . . . , 1︸ ︷︷ ︸
N terms

])
. (4.13)

Define Γ as the space where γγγ lies, i.e.,

Γ = {γγγ : γM = 1, |γi| = 1, i = 1, · · · ,M − 1}, (4.14)

Then the SAR autofocus problem can be summarized as: Find θθθ (and the nuisance

parameters γγγ ∈ Γ) using the observations g̃.

For completeness, we note that a more accurate problem formulation would treat

the magnitudes and phases of the complex variables separately. Specifically, other

work models the magnitudes and phases of the reflectivity function differently [65], but

our goal is only to reconstruct the magnitude information for display [6]. For simplicity

and tractability, we use a joint model and estimate both magnitude and phase together.

Future work will pursue the more advanced formulation.

4.2 Noiseless Case

The autofocus problem is difficult due to the nonlinear coupling between the un-

known reflectivity parameters θθθ and the unknown autofocus phases ϕϕϕ. Even if we

parameterize the phases via γγγ (rather than the more complicated ϕϕϕ characterization),

there is a bilinear coupling between θθθ and γγγ. Therefore, in order to understand when

can this coupling be resolved, we begin by considering the problem in the noiseless case,
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i.e., n = 0.

4.2.1 Perfect Reconstruction

Theorem 4.1. In the noiseless case and when L has full column rank, perfect recon-

struction of γγγ and θθθ from g̃ is possible if and only if there is a unique vector γ̂γγ such

that

γ̂γγ ∈ Γ ∩N
(
(I− LL†)Ỹ

)
(4.15)

where

Ỹ =



g̃1...N 0 · · · 0

0 g̃N+1...2N · · · 0

...
...

. . .
...

0 0 · · · g̃MN−N+1...MN


. (4.16)

In this case, γ̂γγ = γγγ and

θθθ = L†R(γ̂γγ)−1g̃. (4.17)

Proof. Our first step is to decouple γγγ and θθθ from Eqn. (4.12). This is done by first

recognizing that when L has full column rank, we can write

θθθ = L†R(γγγ)−1g̃. (4.18)

Substituting Eqn. (4.18) back into Eqn. (4.12), we have

(
I−R(γγγ)LL†R(γγγ)−1

)
g̃ = 0 (4.19)

or (
I− LL†

)
R(γγγ)−1g̃ = 0. (4.20)
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We can rewrite Eqn. (4.20) to explicitly bring out γγγ as

(
I− LL†) Ỹγγγ = 0 (4.21)

where Ỹ is defined in Eqn. (4.16). Together with the requirement γ̂ ∈ Γ this yields the

required condition.

In practice, our noiseless autofocus algorithm takes Ỹ as an input and searches for

γ̂ that satisfies Eqn. (4.15). This search is difficult due to the nonconvex set Γ. We

propose to relax it, and choose γ̂ as any properly normalized vector in N
(
(I−LL†)Ỹ

)
rounded to Γ.

4.2.2 Comparison to Previous Methods

We now compare Theorem 4.1 with its competing MCA and FMCA methods. The

latter are also based on the noiseless model

g̃ = R(γγγ)Lθθθ, (4.22)

and it is a priori known that some of the elements of θθθ are zero valued, i.e.,

θθθa = 0, (4.23)

where a is a known set of indices. FMCA searches for a vector γ̂γγ ∈ Γ such that the

reconstruction satisfies Eqn. (4.23), i.e.,

[L†R(γ̂γγ)−1g̃]a = 0. (4.24)
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In terms of Ỹ and Γ, the condition for the perfect reconstruction of Eqn. (4.22) is

equivalent to requiring a unique vector γ̂γγ such that

γ̂γγ ∈ Γ ∩N ([L†]aỸ). (4.25)

In our proposed parametric model, the prior information of the set a corresponds to

a reduced model. More specifically, let ā denote the complement of a so that a ∩ ā =

∅, a ∪ ā = {1, · · · , D}, and we can partition L into

L = [Lā La]. (4.26)

This gives us the effective model

g̃ = R(γγγ)Lāθθθā. (4.27)

Its necessary and sufficient reconstruction condition is a unique vector satisfying

γ̂γγ ∈ Γ ∩N
(
(I− [Lā][Lā]†)Ỹ

)
. (4.28)

The following theorem compares these conditions in the noiseless case.

Theorem 4.2. If L is full column rank (as required for reconstruction in the focused

case) then

N
(
(I− [Lā][Lā]†)Ỹ

)
⊂ N ([L†]aỸ). (4.29)

If L is also invertible, then conditions (4.25) and (4.28) are equivalent since

N
(
(I− [Lā][Lā]†)Ỹ

)
= N ([L†]aỸ). (4.30)

Proof. First, let s ∈ N
(
(I − [Lā][Lā]†)Ỹ

)
so that

(
I − Lā[Lā]†

)
Ỹs = 0. This implies
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that Ỹs is in the column space of Lā and therefore there exists a vector z such that

Ỹs = Lāz = L[z;0]. We have

[L†]aỸs = [L†]aL[z;0] = [L†L[z;0]]a = [z;0]a = 0, (4.31)

so s ∈ N ([L†]aỸ) and we have the desired result.

On the other hand, assume L is also invertible, so that L† = L−1. Let v ∈

N ([L−1]aỸ) and θθθ′ = L−1Ỹv. Since [L−1]aỸv = 0, we have θθθ′a = 0 and Ỹv = Lāθθθ′ā.

Now, we have

(
I− [Lā][Lā]†

)
Ỹv = Ỹv − Lā([Lā]H [Lā])−1[Lā]HỸv

= Lāθθθ′ā − Lā([Lā]HLā)−1[Lā]HLāθθθ′ā

= 0, (4.32)

so v ∈ N
(
(I− [Lā][Lā]†)Ỹ

)
.

Thus, MCA is optimal in the noiseless case in the sense that it is equivalent to

Theorem 4.1. Indeed, in MCA the matrix L is a square, invertible and unitary DFT

matrix. On the other hand, its generalization to non-square matrices via FMCA is sub-

optimal and requires a condition which is too strong. Therefore, we interpret Theorem

4.1 as the correct extension of MCA to non-square matrices and generalized parametric

models with or without low-return regions.

4.3 Maximum Likelihood Estimation

The previous section addressed conditions and methods for perfect reconstruction

in the noiseless case. In practice, the measurements are also corrupted by additive noise
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as expressed in Eqn. (4.12). We now assume that the conditions in Theorem 4.1 hold

so that the problem is solvable and we extend the previous results to the noisy case

based on a maximum likelihood (ML) framework.

ML is the classical statistical method for estimating deterministic unknown param-

eters. In the presence of Gaussian noise (e.g. thermal receiver noise), the method

reduces to nonlinear least-squares estimation. Its main advantage is that it is known to

minimize the mean squared error among all unbiased estimators in low noise conditions,

i.e., small error analysis shows that ML attains the Cramer-Rao bound (CRB) on the

estimation error. Specifically, we define the MLA estimator as the solution to

[γ̂γγML , θ̂θθML] = argmin
γγγ∈Γ,θθθ

∥∥∥g̃ −R(γγγ)Lθθθ
∥∥∥2

= argmin
γγγ∈Γ,θθθ

∥∥R−1(γγγ)g̃ − Lθθθ
∥∥2 , (4.33)

where we have used the invariance of the norm to unitary transformation. Now, we can

easily solve for θ̂θθML

θ̂θθML = L†R−1(γγγ)g̃. (4.34)

Substitute Eqn. (4.34) back into Eqn. (4.33), we have

γ̂γγML = argmin
γγγ∈Γ

∥∥(I− LL†)R−1(γγγ)g̃
∥∥2 (4.35)

= argmin
γγγ∈Γ

∥∥∥(I− LL†) Ỹγγγ
∥∥∥2 (4.36)

where we have used the notation in Eqn. (4.16). As discussed in Chapter 3, this

problem is a constant modulus quadratic programming (CMQP), which is generally

NP-hard, but can be approximated well under suitable conditions.

69



4.3.1 Comparison to Previous Methods

The previous MCA and FMCA methods also recognized that the measurements

may be noisy and proposed to approximate Eqn. (4.24) via minimizing the energy in

the low-return region of the reconstructed image, i.e.,

γ̂γγFMCA = argmin
γγγ∈Γ

∥∥[L†]aR
−1(γγγ)g̃

∥∥2
= argmin

γγγ∈Γ

∥∥∥[L†]aỸγγγ
∥∥∥2 . (4.37)

Similar to MLA, this is a NP-hard CMQP optimization problem, but can be approxi-

mated using methods discussed in Chapter 3.

Comparing Eqn. (4.36) with the reduced model Lā to Eqn. (4.37), it is easy to

see the similarity between MLA and FMCA. However, it is interesting to note the

different interpretations: FMCA uses the Euclidean norm in an attempt to minimize

energy, whereas MLA chooses this norm due to the Gaussian noise. In this sense, MLA

is easier to generalize to other scenarios involving different noise characteristics, e.g.,

correlated noise or non-Gaussian noise. In principle, the MLA methodology can also be

applied to other more complicated parametric models as proposed in [66, 67, 68, 69].

4.4 Small Error Analysis

In this section, we provide small error analysis for the FMCA and MLA methods.

We define the real-valued parameter vector as

ξξξ = [ϕϕϕ, Re{θθθT}, Im{θθθT}]T , (4.38)

where ϕϕϕ = [ϕ(1), · · · , ϕ(M − 1)]T are the autofocus phases (recall that we assumed

ϕ(M) = 0). We denote by subscripts TRUE, ML and FMCA the true parameters,
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their MLA estimates and their FMCA, MCA estimates, respectively. For simplicity, we

parameterize the unknown phases using ϕϕϕ instead of γγγ. Furthermore, we concentrate

on estimating the autofocus phase errors, ϕϕϕ, while treating θθθ as nuisance parameters.

We begin with the discussion of the fundamental performance bound for the param-

eter estimation under Eqn. (4.12). The Cramer Rao bound (CRB) is a classical lower

bound on the MSE of estimated parameters generated by any unbiased estimator. The

CRB for the variance of the estimation error for ξξξ under the Gaussian model described

by Eqn. (4.12) is as follows [70]:

For any unbiased estimator ξ̂i,

var[ξ̂i − ξi] ≥ [F−1(ξξξ)]ii, (4.39)

where F(ξ) is the Fisher information (FI) matrix described by

F(ξξξ) =
2

σ2
n

Re
{
J(ξξξTRUE)

HJ(ξξξTRUE)
}
. (4.40)

where J(ξξξ) is the Jacobian matrix defined as

J(ξξξTRUE) =
[
jY2Diag

(
ejϕϕϕTRUE

)
, R

(
[ejϕϕϕTRUE ; 1]

)
L, jR

(
[ejϕϕϕTRUE ; 1]

)
L
]
, (4.41)

with

Y =



ejϕTRUE (1) g1...N 0 · · · 0

0 ejϕTRUE (2) gN+1...2N · · · 0

...
...

. . .
...

0 0 · · · gMN−N+1...MN


, (4.42)

and Y2 is a matrix comprising the first to the (M − 1)th columns of Y.

It is a well known result that the maximum likelihood based estimator MLA attains
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the CRB for ξξξ estimation at small noise. Since FMCA and MCA only sought to estimate

ϕϕϕ and provide no performance guarantee for the θθθ estimates, we only analyze the MSE

for the MLA, FMCA and MCA phase estimator. Let ϕ̂ϕϕML ∈ RM−1 denote the MLA

phase estimates for ϕ(1), · · · , ϕ(M − 1), we can easily obtain the following:

E

[(
ϕ̂ϕϕML − ϕTRUE

)(
ϕ̂ϕϕML − ϕTRUE

)T]
≈ [F−1(ξξξ)]1:M−1, 1:M−1, (4.43)

which is the top left part of the inverse FI matrix. For completeness, a short derivation

of Eqn. (4.43) is included in the appendix.

Next, we analyze the MSE of the FMCA and MCA phase estimates. Recall that

the FMCA and MCA estimator solves the following nonlinear least-equares problem,

ϕ̂ϕϕFMCA = argmin
ϕϕϕ∈RM−1

∥f(ϕϕϕ)∥2 (4.44)

where

f(ϕϕϕ) = [L†]a

(
Ỹ [e−jϕϕϕ; 1]

)
. (4.45)

Its small error analysis consists of approximating f(ϕϕϕ) by a first-order Taylor series

expansion about the true parameters,

f(ϕϕϕ) ≈ f(ϕϕϕTRUE) + J̃f (ϕϕϕTRUE)(ϕϕϕ− ϕϕϕTRUE), (4.46)

where

J̃f (ϕϕϕTRUE) = −j [L†]aỸ2 Diag
(
e−jϕϕϕTRUE

)
(4.47)

is the Jacobian matrix and Ỹ2 is a matrix comprising the first to the (M−1)th columns

of Ỹ. Consequently, the estimate (4.44) is approximated by

ϕ̂ϕϕFMCA ≈ argmin
ϕϕϕ∈RM

∥q+ J̃f (ϕϕϕTRUE)ϕϕϕ∥2, (4.48)
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where

q = [L†]aỸ [e−jϕϕϕTRUE ; 1]− J̃f (ϕϕϕTRUE)ϕϕϕTRUE

= [L†]aR
(
[e−jϕϕϕTRUE ; 1]

)
g̃ − J̃f (ϕϕϕTRUE)ϕϕϕTRUE . (4.49)

Since q and J̃f (ϕϕϕTRUE) are complex-valued and ϕϕϕ is real-valued, the solution is

ϕ̂ϕϕFMCA ≈ −
[
Re
{
J̃H
f (ϕϕϕTRUE)J̃f (ϕϕϕTRUE)

}]−1

Re{J̃H
f (ϕϕϕTRUE)q}. (4.50)

Substituting Eqn. (4.49) into Eqn. (4.50) yields

ϕ̂ϕϕFMCA − ϕ̂ϕϕTRUE = −A−1b, (4.51)

where

A = Re
{
J̃H
f (ϕϕϕTRUE)J̃f (ϕϕϕTRUE)

}
(4.52)

b = Re
{
J̃H
f (ϕϕϕTRUE)[L

†]aR
(
[e−jϕϕϕTRUE ; 1]

)
g̃
}
. (4.53)

Next, we will try to simplify Eqn. (4.51). First, by explicitly writing out the signal

term and the random noise term for Ỹ:

Ỹ = Y +W, (4.54)

where

W ==



n1...N 0 · · · 0

0 nN+1...2N · · · 0

...
...

. . .
...

0 0 · · · nMN−N+1...MN


, (4.55)
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and observing that the low-return region constraint ensures that

[L†]aR
(
[e−jϕϕϕTRUE ; 1]

)
g = 0, (4.56)

equation (4.51) is reduced to

ϕ̂ϕϕFMCA − ϕϕϕTRUE ≈ −
[
Re
{
Jf (ϕϕϕTRUE)

HJf (ϕϕϕTRUE)
}]−1

(JY + JW)T L W, (4.57)

where

W =

 Re{W [e−jϕϕϕTRUE ; 1]}

Im{W [e−jϕϕϕTRUE ; 1]}


L =

 Re{[L†]a} −Im{[L†]a}

Im{[L†]a} Re{[L†]a}


JY =

 Re{−j [L†]aY2 Diag
(
e−jϕϕϕTRUE

)
}

Im{−j [L†]aY2 Diag
(
e−jϕϕϕTRUE

)
}


JW =

 Re{−j [L†]aW2 Diag
(
e−jϕϕϕTRUE

)
}

Im{−j [L†]aW2 Diag
(
e−jϕϕϕTRUE

)
}

 , (4.58)

and W2 is the first to (M − 1)th columns of W. By ignoring the second order noise

term, Eqn. (4.57) can be further approximated as

ϕ̂ϕϕFMCA − ϕϕϕTRUE ≈ −
[
Re
{
Jf (ϕϕϕTRUE)

HJf (ϕϕϕTRUE)
}]−1

JT
YL W. (4.59)

Next step is to simplify the inverse matrix term in Eqn. (4.59) where it can be
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expressed as:

[
Re
{
Jf (ϕϕϕTRUE)

HJf (ϕϕϕTRUE)
}]−1

=
[
Re
{
JH
YJY

}
+Re

{
JH
YJW + JH

WJY + JH
WJW

} ]−1

, (4.60)

where

JY = −j [L†]aY2 Diag
(
e−jϕϕϕTRUE

)
JW = −j [L†]aW2 Diag

(
e−jϕϕϕTRUE

)
. (4.61)

Since we are assuming small noise for the MSE analysis, i.e., small W, it is well known

that Eqn. (4.60) can be approximated by the following:

[
Re
{
Jf (ϕϕϕTRUE)

HJf (ϕϕϕTRUE)
}]−1

≈
[
Re
{
JH
YJY

} ]−1

−
([

Re
{
JH
YJY

} ]−1

·[
Re
{
JH
YJW + JH

WJY + JH
WJW

} ][
Re
{
JH
YJY

} ]−1
)
. (4.62)

By further approximate Eqn. (4.59) using Eqn. (4.62) and ignoring second order noise

term, we obtain

ϕ̂ϕϕFMCA − ϕϕϕTRUE ≈
[
Re
{
JH
YJY

} ]−1

JT
YL W. (4.63)
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And finally, we have

E

[(
ϕ̂ϕϕFMCA − ϕϕϕTRUE

)(
ϕ̂ϕϕFMCA − ϕϕϕTRUE

)T]
≈ E

[[
Re
{
JH
YJY

} ]−1

JT
YL W WTLTJY

[
Re
{
JH
YJY

} ]−1
]

=
[
Re
{
JH
YJY

} ]−1

JT
YL E

[
W WT

]
LTJY

[
Re
{
JH
YJY

} ]−1

=
σ2
n

2
·
[
Re
{
JH
YJY

} ]−1

JT
YL LTJY

[
Re
{
JH
YJY

} ]−1

. (4.64)

Now, we can compare the MSE of MLA phase estimation in Eqn. (4.43), which is

also the CRB, with the MSE of FMCA phase estimation in Eqn. (4.64). The errors

are plotted in Fig. 4.1 where it is easy to see that FMCA is significantly more sensitive

to noise. We validated this small error analysis using Monte-Carlo simulation of the

estimators. The setup for this simulation was: θθθ was a D = 100 dimensional random

uniformly distributed complex vector, ϕϕϕ was independent and uniformly distributed

between −π and π except for ϕM = 0. Sampling matrix L was generated by using an

imaging scenario where the SAR operated across a 1 degree look angle and transmitted

15 pulses (M = 15). The receiver provided 15 samples per single pulse (N = 15). We

applied a rectangular antenna pattern on θθθ so that it was known a priori that θa = 0

for a = {1, · · · , 10, 91, · · · , 100}. The additive noise was complex gaussian with signal-

to-noise-ration (SNR) defined as

SNR = 20log10

(
1

σnMN

∑
m,n

|G̃[m,n]|

)
. (4.65)

The experimental results plotted in Fig. 4.1 used SDR to solve both the MLA and

FMCA phase estimation problems described by Eqn. (4.36) and Eqn. (4.37), respec-

tively.
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Figure 4.1: MSE for MLA phase estimation compared with FMCA and MCA phase
estimation under small noise (y axis shows 1

M−1

∑
i(ϕ̂(i)− ϕTRUE(i))

2).

4.5 Simulation Results

In this section, we present numerical results to illustrate the advantages of our

proposed methods in realistic SAR systems.

4.5.1 SAR Simulator

In order to test the different algorithms, we built a SAR simulator based on the

bilinear model described in Section 4.1. The amplitudes of θθθ were taken from actual

SAR images, whereas the phases of θθθ were independently generated according to to a

uniform distribution between −π and π (not to be confused with the autofocus phase

error). We adopted the impulse model with dx = dy = 1 for our simulation. The

nuisance autofocus phases were also independently generated according to a uniform

distribution. Note that this distribution is known to be the most challenging phase

corruption. Subsequent figures present the magnitude of the complex reconstructed

reflectivity functions (which are the magnitudes of θθθ in the impulse model).
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4.5.2 Performance of MLA

First we start with showing the full strength of MLA by comparing it with PGA

and sharpness-maximization methods. Hereafter, MLA was implemented with SDR

using the interior-point method developed in [35]. A SAR image, shown in Fig. 4.2(a),

was obtained from Sandia National Laboratory. We examined two scenarios: in the

first scenario, the hypothetical SAR operated across a 0.2 degree look angle which falls

into the small-angle category; in the second scenario, the SAR radar operated across

a 2 degree look angle. For both scenarios the radar transmitted 50 pulses (M = 50)

and the receiver provided 50 samples per single pulse (N = 50). No prior information

about the image was used by the MLA estimator, i.e., MLA considered the image to

be arbitrary. For the sharpness maximization method, we used negative entropy as the

sharpness metric. The perfectly focused image with additive noise of SNR=10dB is

shown in Fig. 4.2(a). Because no low-return region can be found, FMCA can not be

applied here. Phase corrupted image is shown 4.2(b).

Image restoration for the first scenario is shown in Fig. 4.4. The MLA reconstructed

image for SNR=10dB is shown in Fig. 4.4(a) with a phase MSE of 0.0108. The

MLA reconstructed image for SNR=5dB is shown in Fig. 4.4(b) with a phase MSE of

0.0771. The PGA image restoration for SNR=10dB and SNR=5dB are shown in Figs.

4.4(c) and (d), respectively. The sharpness maximization method image restoration for

SNR=10dB and SNR=5dB are shown in Figs. 4.4(e) and (f) with phase MSE 0.8837

and 0.9153, respectively. Note that, since PGA only produces a reconstructed image,

no phase MSE is computed.

Image restoration for the second scenario is shown in Fig. 4.5. The MLA recon-

structed image for SNR=10dB is shown in Fig. 4.5(a) with a phase MSE of 0.0148. The

MLA reconstructed image for SNR=5dB is shown in Fig. 4.5(b) with a phase MSE of

0.1728. The PGA image restoration for SNR=10dB and SNR=5dB are shown in Figs.

4.5(c) and (d), respectively. The sharpness maximization method image restoration for
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SNR=10dB and SNR=5dB are shown in Figs. 4.5(e) and (f) with phase MSE 0.7815

and 0.9346, respectively.
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Figure 4.2: SAR image with SNR=10dB: (a) Focused image; (b) defocused image using
an i.i.d. phase error.

4.5.3 Comparison of MLA with FMCA

In the next set of experiments, we compared MLA with FMCA. We adopted a

SAR scenario with a wide range of look angles, which is more challenging than the

narrow range of look angles considered earlier. We used a SAR image obtained from

the MSTAR SAR database [71]. The focused image is shown in Fig. 4.6(a). We

applied a rectangular antenna pattern to the image so that the first and last column

were zero, i.e., a known index set a that indexes the low-return region was known a

priori to FMCA so that θa = 0. For MLA, the set a effectively reduced the dimension

for θθθ. Note that knowledge of the antenna pattern (low-return region) is required only

by FMCA, not MLA. We adopted an imaging scenario where the radar was collecting

data across 6 degrees and the radar transmitted 80 pulses (M = 80) and the receiver

provided 80 samples per single pulse (N = 80). The phase corrupted image is shown

in Fig. 4.6(b). The images restored by MLA for SNR=10dB and SNR=5dB are shown

in Figs. 4.6(c) and (d) with phase MSE equal to 0.3697 and 0.5521, respectively. The
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Figure 4.3: Phase MSE of MLA compared with FMCA and CRB.

images restored by FMCA for SNR=10dB and SNR=5dB are shown in Figs. 4.6(e)

and (f) with phase MSE equal to 0.6690 and 0.8723, respectively.

Next, Figure 4.3 shows a Monte-Carlo simulation for the phase MSE of MLA com-

pared with FMCA and the Cramer-Rao bound (CRB). A 10× 10 toy image was used

in this part of the simulations with SAR collecting data across 10 degree look angles

and the radar transmitted 15 pulses (M = 15) and the receiver provided 15 samples

per single pulse (N = 15).

4.5.4 Robustness Against Model Mismatching

In this last set of experiments, we examine the robustness of MLA against model

mismatching. MLA is derived from the proposed parametric model and we have an-

alytically and experimentally demonstrated its advantages under the proposed model.

However, FMCA does not explicitly assume such a model and it is important to inves-

tigate the performance of MLA when there is a model mismatch. We continue with a

similar setup and the estimators are implemented as before. However, the SAR simu-

lator no longer uses the naive impulse basis functions in (4.2) but replaces them with

80



more realistic functions:

hi(x, y) = k (x− ui, y − vi) . (4.66)

This has the effect of further corrupting the collected Fourier data in the following way:

G′[m,n] = G[m,n] ·K(Fx[m,n], Fy[m,n]), (4.67)

where G′ denote the actual collected data and K denotes the Fourier transform of the

kernel function k. The autofocus algorithms are not aware of this setup and mistakenly

compute L using the model in (4.2).

First, we adopted a rectangular kernel

k(x, y) =

 1 , |x| < 1 and |y| < 1

0 , otherwise
. (4.68)

This illustrates a model where there is a constant reflectivity within a resolution cell

instead of an impulse located at the center of the cell. The focused image formed using

the exact model and mismatched model is shown in Figs. 4.7(a) and (b), respectively.

The image restored by MLA and FMCA for the model mismatched image are shown

in Figs. 4.7(c) and (d), respectively. The autofocus phase error was an i.i.d. function

and SNR=5dB.

Second, we adopted a 2-D Gaussian kernel with

k(x, y) = e
−
(

x2

2
+ y2

2

)
, (4.69)

This illustrates a model where the sum of reflectivity within a resolution cell also affects

neighboring cells. The focused image formed by the exact and mismatched models are

shown in Figs. 4.8(a) and (b), respectively. The image restored by MLA and FMCA

for the model mismatched data are shown in Figs. 4.8(c) and (d), respectively. The
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autofocus phase error was an i.i.d. function and SNR=5dB.

From the above simulations we can see that MLA can outperform FMCA even when

there is model mismatching.

4.6 Chapter Summary

In this Chapter, we considered the problem of SAR autofocus based on a bilinear

parametric model. We derived the MLA framework and compared it to previous meth-

ods. Under simplistic conditions, MLA coincides with the successful MCA technique.

In more realistic conditions, MLA outperforms FMCA, and is applicable to a broader

class of scenarios.

4.7 Appendix

Here we will analyze the MSE for the MLA estimator in the small noise case. Recall

from Eqn. (4.33) that the MLA estimator is the following

ξ̂ξξML = argmin
ξξξ∈[R2D+M−1]

∥∥m(ξξξ)
∥∥
2

(4.70)

where

m(ξξξ) = R(γγγTRUE)LθθθTRUE −R(γγγ)Lθθθ + n. (4.71)

Assuming small noise and approximate m(ξξξ) by first order Taylor expansion around

ξξξTRUE :

m(ξξξ) ≈ m(ξξξTRUE) + J(ξξξTRUE)(ξξξ − ξξξTRUE) (4.72)
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where J(ξξξTRUE) is the Jacobian matrix described by equation (4.47). Using Eqn. (4.72),

the MLA estimator can be approximated by

ξ̂ξξML ≈ argmin
ξξξ∈[R2D+M−1]

∥y + J(ξξξTRUE)ξξξ∥2

= −J†(ξξξTRUE) y (4.73)

where

y = m(ξξξTRUE)− J(ξξξTRUE)ξξξTRUE . (4.74)

Substitute Eqn. (4.74) back into Eqn. (4.73) and we have

ξ̂ξξML − ξξξTRUE ≈ −J†(ξξξTRUE)m(ξξξTRUE)

⇒ξ̂ξξML − ξξξTRUE ≈ −J†(ξξξTRUE)
(
R(γγγTRUE)LθθθTRUE −R(γγγTRUE)LθθθTRUE + n

)
.

⇒ξ̂ξξML − ξξξTRUE ≈ −J†(ξξξTRUE) n. (4.75)

First step is to transform the complex number MSE expression in Eqn. (4.75) into

a real number expression. Let

J(ξξξ) =

 Re{J(ξξξ)}

Im{J(ξξξ)}

 , n =

 Re{n}

Im{n}

 (4.76)

and we have

E

[(
ξ̂ξξML − ξξξTRUE

)(
ξ̂ξξML − ξξξTRUE

)T]
≈ E

[
J†(ξξξTRUE)nn

TJ†(ξξξTRUE)
T
]

≈ J†(ξξξTRUE)E
[
nnT

]
J†(ξξξTRUE)

T (4.77)
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Since

E
[
Re{n}Re{n}T

]
= E

[
Im{n}Im{n}T

]
=

σ2
n

2
· I

E
[
Re{n}Im{n}T

]
= E

[
Im{n}Re{n}T

]
= 0, (4.78)

equation (4.77) is qual to

E

[(
ξ̂ξξML − ξξξTRUE

)(
ξ̂ξξML − ξξξTRUE

)T]
σ2
n

2
· ≈

[
J(ξξξTRUE)

TJ(ξξξTRUE)
]†
J(ξξξTRUE)

TJ(ξξξTRUE)[J(ξξξTRUE)
TJ(ξξξTRUE)]

† (4.79)

From problem formulation, J(ξξξTRUE)
TJ(ξξξTRUE) is non-singular. Thus,

[
J(ξξξTRUE)

TJ(ξξξTRUE)
]†

=
[
J(ξξξTRUE)

TJ(ξξξTRUE)
]−1

. (4.80)

Equation (4.79) continues as

E

[(
ξ̂ξξML − ξξξTRUE

)(
ξ̂ξξML − ξξξTRUE

)T]
≈ σ2

n

2
·
[
J(ξξξTRUE)

TJ(ξξξTRUE)
]−1

. (4.81)

Note that

J(ξξξTRUE)
TJ(ξξξTRUE) = Re

{
J(ξξξTRUE)

HJ(ξξξTRUE)
}
, (4.82)

and we have the following desired expression for the MLA phase MSE

E

[(
ξ̂ξξML − ξξξTRUE

)(
ξ̂ξξML − ξξξTRUE

)T]
≈ σ2

n

2
·
[
Re
{
J(ξξξTRUE)

HJ(ξξξTRUE)
}]−1

. (4.83)

Since

ϕ̂ϕϕML − ϕϕϕTRUE = D
(
ξ̂ξξML − ξξξTRUE

)
(4.84)
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where

D =

 IM−1 0

0 0

 , (4.85)

we have

E

[(
ϕ̂ϕϕML − ϕϕϕTRUE

)(
ϕ̂ϕϕML − ϕϕϕTRUE

)T]
≈ σ2

n

2
·D
[
Re
{
J(ξξξTRUE)

HJ(ξξξTRUE)
}]−1

D

=
σ2
n

2
·
[
Re
{
J(ξξξTRUE)

HJ(ξξξTRUE)
}]−1

1:M−1,1:M−1

(4.86)
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Figure 4.4: Image restoration for 0.2 degree look angle: (a) MLA restoration
for SNR=10dB (phase MSE=0.0108); (b) MLA restoration for SNR=5dB (phase
MSE=0.0771); (c) PGA restoration for SNR=10dB; (d) PGA restoration for SNR=5dB;
(e) Sharpness maximization restoration for SNR=10dB (phase MSE=0.8837); (f)
Sharpness maximization restoration for SNR=5dB (phase MSE=0.9153).

86



5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(a)

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(b)

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(c)

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(d)

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(e)

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(f)

Figure 4.5: Image restoration for 2 degree look angle: (a) MLA restoration
for SNR=10dB (phase MSE=0.0148); (b) MLA restoration for SNR=5dB (phase
MSE=0.1728); (c) PGA restoration for SNR=10dB; (d) PGA restoration for SNR=5dB;
(e) Sharpness maximization restoration for SNR=10dB (phase MSE=0.7815); (f)
Sharpness maximization restoration for SNR=5dB (phase MSE=0.9346).
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Figure 4.6: Image restoration using MLA and FMCA: (a) Focused image with
SNR=5dB; (b) corrupted image using an i.i.d. phase error function and SNR=5dB;
(c) MLA restoration for SNR=10dB (phase MSE=0.3697); (d) MLA restoration
for SNR=5dB (phase MSE=0.5521); (e) FMCA restoration for SNR=10dB (phase
MSE=0.6690); (f) FMCA restoration for SNR=5dB (phase MSE=0.8723).

88



5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(a)

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(b)

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(c)

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(d)

Figure 4.7: Model mismatching using rectangular kernel (SNR=5dB): (a) Focused im-
age using exact model; (b) Focused image using mismatched model; (c) MLA restoration
(phase MSE=0.2973); (d) FMCA restoration (phase MSE=0.8572).

89



5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(a)

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(b)

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(c)

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(d)

Figure 4.8: Model mismatching using gaussian kernel (SNR=5dB): (a) Focused image
using exact model; (b) Focused image using mismatched model; (c) MLA restoration
(phase MSE=0.3205); (d) FMCA restoration (phase MSE=0.7237).
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CHAPTER 5

Conclusion and Future Research

In this chapter, we conclude this thesis by summarizing our contributions and

proposing future research directions.

5.1 Summary of Contributions

This thesis addressed the autofocus problem in spotlight-mode synthetic aperture

radar imaging. The autofocus problem arises from the unavoidable demodulation timing

errors in the radar receiver, which comes from inaccurate range measurements or signal

propagation effects. The timing errors add phase distortions to the acquired Fourier

data, which cause the reconstructed image to suffer distortion, sometimes so severe that

the image is completely unrecognizable. The goal is to apply signal processing tech-

niques to compensate for the imperfections of a physical system that would otherwise

require expensive hardware improvements. For this purpose, we studied the autofocus

problem using a linear algebraic framework. A linear model can be used to accurately

characterize a SAR system and autofocus problem when we assume invariance of re-

flectivity and the transmission of a narrow bandwidth signal. This encompasses a high

resolution version of SAR imaging that operates with a high center frequency (often 10

GHz or above). In such scenarios, the autofocus problem becomes extremely important,

because a timing error corresponding to even a small fraction of a wavelength can cause
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the reconstructed image to suffer severe distortion.

SAR autofocus is in general an ill-conditioned inverse problem. In order for the

problem to be well defined, previous autofocus methods imposed, either implicitly or

explicitly, additional constraints on the underlying image or the imaging system. The

small-angle assumption has been at the core of many previous autofocus methods,

which presumes the range of look angles of the SAR is sufficiently small. Our first

contribution was to extend the successful MCA method to accommodate both the

wide-angle monostatic SAR and bistatic SAR scenarios. We called this new autofocus

algorithm the Fourier-domain multichannel autofocus (FMCA) method. FMCA was

derived within a linear algebraic framework, allowing the phase errors to be corrected in

a noniterative fashion. FMCA requires prior knowledge that a region in the underlying

scene has zero or nearly-zero pixel values (low-return region). In practice, a low-return

region exists in the sidelobes of the antenna pattern. The previously developed MCA

approach can be viewed as a special case of FMCA when operating with a very small

range of viewing angles.

Our second contribution was to recognize that at the heart of many state-of-the-art

autofocus algorithms, including FMCA, is the solution to a constant modulus quadratic

program (CMQP). CMQP is known to be NP-hard and previous methods all, either

implicitly or explicitly, use eigenvalue relaxation (EVR) to approximate the CMQP.

EVR has low computational cost but is very sensitive to noise. We proposed the use

of semidefinite relaxation (SDR) to approximate the CMQP. SDR provides a tighter

approximation to CMQP than does EVR, but at the cost of higher computational cost.

However, there may be crucial situations where it is imperative that an image be focused

as well as possible, using computationally intensive off-line processing. SDR recently

has been applied to many problems in communications and signal processing, but this

is the first time that SDR has been applied to the problem of SAR autofocus.

Our last contribution was the study of the autofocus problem using a bilinear para-
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metric model. We analyzed the conditions for identifiability and solvability of the

problem in the noiseless case, and then derived a novel maximum likelihood autofocus

(MLA) method to deal with noisy observations. Under small-angle assumption, MLA

coincides with the MCA technique. Under more realistic conditions, MLA outperforms

FMCA, and is applicable to a broader class of scenarios. The main advantages of MLA,

when compared to previous methods, is its reliance on a rigorous statistical model and

its optimality within this setting.

5.2 Future Research Directions

As future research, we propose three directions that are direct extensions of our

current work.

5.2.1 System Identification of MLA

A question remains to be answered regarding the identifiability of the bilinear sys-

tem describing the SAR autofocus problem, shown in equation (4.12), in the noiseless

case. Recall that MCA, FMCA and MLA phase estimation all can be expressed as the

following CMQP:

ϕ̂ϕϕ = argmin
γγγ∈Γ

∥Aγγγ∥2 , (5.1)

where

A =
(
I− LL†) Ỹ (5.2)

for MLA and

A = [L†]aỸ (5.3)

for MCA and FMCA. The original MCA and FMCA developments require rank(A) =

M − 1 to ensure the problem has a unique solution. However, due to the restricted
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solution space Γ, having rank equal to M − 1 is only a sufficient condition. Moreover,

we find that the rank M − 1 condition is often too strong in many practical situations.

This motivates us to study when the condition (4.15) in theorem 4.1 will be satisfied.

5.2.2 Modeling of Reflectivity Function

An additional direction for future work concerns the use of a more detailed reflec-

tivity function model. Since we are only interested in recovering the magnitude of the

reflectivity function for display, a more pertinent formulation would model the ampli-

tudes and the phases of this function separately as done in [65]. In summary, the model

of a radar scene is based on the fact that the received radar returns are the superpo-

sitions of the reflectors in the underlying target scene. For a typical SAR system, the

image resolving capability is determined once the system specification is set. That is,

depending on the SAR system specification, we can decompose the target scene into

resolution cells where any two point reflectors within a resolution cell cannot be well-

resolved. The SAR system collects a single backscatter coefficient for each resolution

cell; denote this complex coefficient as θ[u, v]. To simplify the problem formulation, we

assume that θ[u, v] depends only on scatterers within cell (u, v).

From the above discussion, θ[u, v] can be expressed as

θ[u, v] =
∑

l∈cell(u,v)

ale
jφl (5.4)

where al represents the energy reflected from scatterer l and φl is the total phase

shift of scatterer l due to reflection and the signal propagation delay. By introducing

assumptions such as independence of the φl and the presence of many scatterers within

a resolution cell it can be justified that θ[u, v] is well modeled as a circular symmetric

Gaussian random variable. The magnitude of θ[u, v] will have a Rayleigh distribution

and the squared magnitude |θ[u, v]|2 will have an exponential distribution, whereas the
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phase of θ[u, v] will be distributed uniformly on [−π, π]. Using this model, we can study

how to estimate the amplitudes and the phases of the reflectivity function separately.

5.2.3 Computational Issues of MLA

An important research direction for future work involves reduction of the compu-

tational cost of MLA. From a practical point of view, implementing MLA as in (4.35)

would be very expensive computationally. The bottleneck of the computation is evalu-

ation of the pseudo-inverse of L, L†, which then relies on the factorization of L using

singular value decomposition (SVD). The number of computations to compute the SVD

of L (a MN ×D matrix) is on the order of O(MND2 +D3) [72], which scales poorly

with image size. We would like to address the computational issue of the pseudo-inverse

of L. Here we propose one possible way to simplify the computation of L† by using

approximation. We borrow an idea from previous autofocus methods and approximate

L† using polar-to-Cartesian interpolation and FFT. The advantage of using this ap-

proach is that we can have control over the tradeoff between accuracy and complexity.

One extreme, we can choose the interpolation coefficients to perform L† exactly. More

specifically, we can express L† as the identity

L† = WHWL†, (5.5)

where W denotes a MN point DFT matrix, and choose the interpolation coefficients as

the realization of WL†. At the other extreme, we can choose the interpolation matrix

to be the identity matrix, in which case we only need to perform an FFT, in which

case the computational cost is reduced to O(D logD). Of course, we do not expect

good performance in this example. Another possibility is to use conventional SAR

processing with a spatially-invariant interpolation kernel (e.g. sinc kernel) with the k

nearest points. This interpolator would need MN time to find the k nearest points
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and an additional k time to calculate the interpolation coefficients, thus a total cost of

O(DMNk +D logD). We can choose k to control the tradeoff between accuracy and

complexity.

It is important to emphasize that the computation of L† is data independent and

only depends on the system specification. In other words, we only need to precompute

L† once for every system setup and use it for all subsequent image formation. We would

like to study other computationally efficient methods for solving or approximating the

pseudo-inverse operation.
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