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ABSTRACT

Compiling Stream Applications for Heterogeneous Architegs

by

Amir H. Hormati

Chair: Scott Mahlke

Heterogeneous processing systems have become the instiastdard in almost every seg-
ment of the computing market from servers to mobile systamsddition to employing
shared/distributed memory processors, the current trend use hardware components
such as field programmable gate arrays (FPGAS), singlauctgin multiple data (SIMD)
engines and graphics processing units (GPUSs) in heterogsrsystems.

As a result of this trend, extracting maximum performanauies compilation to
highly heterogeneous architectures that include parts aviterent memory and computa-
tion models. Although there has been significant amountsgfarch on programing each of
these architectures individually, targeting a heterogasesystem without specializing an
application to each component separately is still an opehlpm. Besides performance,
the portability of an application between different piecédsa system and retargetability

to various heterogeneous architectures is a significartiecige for programmers. To effi-
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ciently exploit the heterogeneity, it is necessary to hggegramming model that provides
a higher-level of abstraction to the programmer and theedleompilation framework.

In this thesis, we first focus on enabling a write-once progreng paradigm in the con-
text of the stream programming model for various componehketerogeneous systems.
We mainly focus on FPGAs, SIMD engines and GPUs as thesetectimies will play an
important role in accelerating various parts of appliaagion heterogeneous systems. We
introduce several compiler optimizations that facilitatetability and retargetability while
achieving high performance. As a result of our compilatigstem, programmers can write
a program once and efficiently run it on different components system.

Second, we focus on an important challenge that arises @ndggneous systems when
there are dynamic resource changes. The ability to dyndsnedapt a running applica-
tion to a target architecture in the face of changes in resoavailability (e.g., number
of cores, available memory or bandwidth) is crucial to a wiagoption of heterogeneous
architectures. In this work, we introduce a hybrid flexibtenpilation framework that fa-
cilitates dynamic adaption of applications to the changingracteristics of the underlying

architecture.
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CHAPTER|

Introduction

Support for parallelism in hardware has greatly evolvethengast decade as a response
to the ever-increasing demand for higher performance attdrijgower efficiency in dif-
ferent application domains. Various companies have inired vastly different solutions
to bridge the performance and power gap that many applitatoe facing. These solu-
tions include shared-memory multicore systems (Intel Gord3]), distributed-memory
multicore processors (IBM Cell [40]), tiled architectuddera [80]) and in some cases a
combination of these (Intel Larrabee [72] and Intel Stédlaf45]). Among these solutions,
heterogeneous architectures, as shown in Figure 1.1, hotohieve higher performance
and efficiency by combining multiple cores into one die, #ytare also equipped with
acceleration engines to enable more efficient paralleligopart for certain application do-
mains. For example, SIMD engines (e.g., Altivec [73], Nebh BSE4 [42]) integrated
into multi-core systems enable more efficient data-levelpglism support for several im-
portant application domains such as multimedia, graplaicd, encryption. Although ac-
celeration engines, such as SIMD units or FPGAs, are natldeifor all applications, if an

application can be tailored to efficiently exploit them, pge¥formance and power benefits
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Figure 1.1: This figure shows a template for future heterogeneous sgstem

can often be superior to the gains from other general purgas$eétecture solutions.
Programming heterogeneous architectures is an impontabkgm that is impeding the
wider adoption of such systems. Traditional sequentiag@mming languages are ill-
suited for heterogeneous architectures because they hsngla instruction stream and a
monolithic memory. Extracting task/pipeline/data-lepgarallelism from these languages
needs extensive and often intractable compiler analyssndJa different programming
model and compilation framework for each component of thetesy is also undesirable
because it limits the portability and retargetability of fhrogram requiringach program to
be rewritten and optimized for a specific architectubechitecture-specific programming
models and languages, such as Verilog and CUDA [65], thgetapecific components,
such as FPGAs and GPUs, expose parallelism to the compiken their current form fail
to provide portable code and do not present a unified modektptogrammer. The main
problem with these languages is that explicitly-progrardpearallelism in each application
has to be tuned for different targets based on the paranateesch hardware component

and interfacing between different parts of an applicatiaitten in different architecture-



specific languages is non-trivial.

A higher level of programming abstraction along with inggnt static and dynamic
compiler optimizations can solve the issues of programrhgtgrogeneous systems while
maintaining portability and retargetability. One suchtedogion is offered by the streaming
paradigm. This programming paradigm provides an extessivef compiler optimizations
for mapping and scheduling applications to various pdralehitectures ([25, 26]). The
retargetability of streaming languages, such as Strea@]t has made them a good choice
for parallel system programmers. Streaming languagegetability and the resulting per-
formance benefits on multi-core systems are mainly due tmbavell-encapsulated con-
structs that expose the parallelism and communicationowitdepending on the topology
or granularity of the underlying architecture. Compilesthese languages take advantage
of the high-level information available at the program leeeefficiently map the exposed
parallelism to the target architecture.

Most of the work on stream compilation has so far focused antba@ompile streaming
applications to homogeneous multi-core systems. Howewerpiling stream programs to
other important components of heterogeneous architestgsteh as FPGAs, SIMD en-
gines and GPUs, is still an open question. In this thesis, nopgse new techniques and
compilation frameworks for static and dynamic compilatadrprograms in the streaming
domain, specifically those implemented in synchronous tlata (SDF, see Chapter II)
model, to various components of heterogeneous systemsteChumiques further extend
the retargetability and portability of streaming applioas by enabling programmers to
write a streaming application once and efficiently run it @mious parts of a system. An

overview of our system is shown in Figure 1.2. The followirgtsons briefly explain the
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Figure 1.2: Overview of our heterogeneous compilation system.

four parts of our compiler and runtime system: Optimus, Masr Sponge and Flextream.

1.1 Streaming to FPGAs

In the world of heterogeneous systems, especially embedd#ttectures, there are
many devices that offer increasingly powerful computingatalities. It is predicted that
mobile computing devices with embedded processors wilnaltely change the industry
much as laptops supplanted desktops as the primary comnpoddessing platform. How-
ever, the power and frequency concerns that plague the pnazessor industry effectively
mean architects have to find new ways to provide increasinipnpeance since conven-
tional frequency scaling methodologies no longer apply.aAssult, there is a significant

opportunity to explore alternate architectures that caabknthe next evolutionary step in



computing.

One significantly promising approach is to provide automatistomization of hard-
ware according to the applications they run. An applicatastomized architecture can of-
fer extremely high performance with very low power compaied more general-purpose
design. Furthermore, the increasing availability of rdmpmable field-programmable gate
arrays (FPGAS) as co-processors and processing ingredneméterogeneous systems-on-
a-chip [1, 2, 45] means emerging architectures can offerneaos flexibility and adapt-
ability in the face of rapidly changing software standandd eustomer needs.

In the first part of this thesis, we introdu@gtimug37], an optimizing synthesis frame-
work for streaming applications. The main contribution @ttidus is generating hardware
by shifting the focus from micro-functional details to madunctional ones. Specifically,
our work does not focus so much on how individual modules an¢hesized (i.e., micro-
functional), but rather on how modules are composed to ddgseam overall design (i.e.,
macro-functional). As a result, we can synthesize entigiegtions onto a hardware sub-
strate, and not just individual loops and kernels as is tise @dth a lot of existing work.
Thus, our work is complementary to existing work on high lesyamthesis while offering

new opportunities for efficient assembly of streaming aggtions in hardware.

1.2 Streaming to SIMD Engines

In recent years, almost every single-core or multi-coréesgshas been equipped with
one or more single-instruction-multiple-data (SIMD) amgg to enable more efficient data-

level parallelism support for several important applicatdomains such as multimedia,



graphics, and encryption. SIMD engines are not the rightoghtor all applications, butin
cases where an application can efficiently exploit themp#réormance and power gains
can be significant. Therefore, SIMD engines like Altivec][/8eon [6], SSE4 [42] are
now an essential part of most architectures on the marketh BIMD width expanding
in future architectures, such as Intel's Larrabee, undiération of the SIMD units will
translate into a significant loss in performance and iner@apower consumption.

In general, utilizing SIMD engines is preferred, even foplagations where multi-core
speedup is close to the theoretical maximum, because SIMDes can improve perfor-
mance without increasing communication overhead and mgoamhe traffic. Exploiting
SIMD engines, in some cases, can achieve greater perfoentiaauc multi-core while using
less area and power.

To exploit SIMD engines in streaming applications, curtntaming compilers trans-
late the streaming languages down to an intermediate lgegsach C++ or Java, and then
apply vectorizatiohtechniques to generate SIMD-enabled code. The most comacbn t
niques are hand-optimizing the code and traditional aukdE&zation [3, 4, 64, 5, 51].
Both of these solutions have proven difficult to apply in realrld scenarios. Hand-
optimizing the binary or sequential code using architeegpecific instructions or intrinsic
functions is a time-consuming and error-prone task whisllts in an inflexible and un-
portable binary. Auto-vectorization is, at this stagel] stipractical and far from being
able to universally utilize the various kinds of availabl&® facilities. Also, performing
SIMDization on streaming applications after intermediates| code generation may result

in an inefficient schedule and mapping of the stream graptedime schedule is already

n this work, we use SIMD(ize) and Vector(ize) intercharigga



fixed and information that is available in the high-levekain graph is lost. Extracting this
information from the generated code is predicated on peifay complex compiler analy-
sis and transformations which are impossible in some casssmmarythe lack of global
knowledge about the prograttie inability to adjust the schedyland alsdhe loss of data
flow informationare the main reasons behind inefficiency of traditional aetctorization
techniques in dealing with streaming applications.

To address these issues, we introdMeeroS336]; a streaming compiler for streaming
applications that is capable of performing macro-SIMO@abn stream graphs. Macro-
SIMDization uses high-level information such as the vabtl af schedules and commu-
nication patterns between actors to transform the graplttsiie, vectorize actors of a
streaming program, and generate intermediate code (C+itsmbrk). Then, it uses the
host compiler to compile the generated intermediate codentry for a specific target pro-
cessor. The information that is used by MacroSS is deduoad fne high-level program
structure and is not available to low-level traditional golers that are used to compile the
intermediate code. As a result, MacroSS has a broader uaddisg of the program struc-
ture and macro-level characteristics of the streamingiegupdn that allows the compiler

to utilize SIMD engines more efficiently.

1.3 Streaming to GPUs

Recently, heterogeneous systems that combine traditimmoalessors with powerful
GPUs have become standard in all systems ranging from setwerell phones. GPUs

achieve their high performance and efficiency by providingassively parallel architec-



ture with hundreds of in-order cores while exposing paliahe mechanisms and the mem-
ory hierarchy to the programmer. Recent works have shownithidne optimistic case,
speedups of 100-300x [67] and in the pessimistic case, spseanf 2.5x [54] have been
achieved between the most recent versions of GPUs compartet tlatest processors.
Maximizing the utilization of the GPU in heterogeneous syt will be key to achieving
high performance and efficiency.

While GPUs provide an inexpensive, highly parallel systemdccelerating parallel
workloads, the programming complexity posed to applicatievelopers is a significant
challenge. Graphics chip manufacturers, such as NVIDI&ehaed to alleviate the com-
plexity problem by introducing user-friendly programmimgdels, such as CUDA [65] and
OpenCL [48]. Although such programming models abstracutiaerlying GPU architec-
ture by providing a unified processor model, managing theusnof on-chip memory
used per thread, the total number of threads per multipsoceand the pattern of off-chip
memory accesses are examples of problems that developlengatl to manage in order
to maximize GPU utilization [70]. Often the programmer mpetform a tedious cycle of
performance tuning to extract the desired performance.

Another problem of developing applications in CUDA is theld®f efficient portability
between different generations of GPUs and also betweenogtephocessors and GPUs in
the system. Different NVIDIA GPUs vary in several key miawehitectural parameters
such as number of registers, maximum number of active teremttl the size of global
memory. These parameters will vary even more when newergeglormance cards, such
as NVIDIAs Fermi [66], and future resource-constrainedait®GPUs with less resources

are released. These differences in hardware lead to aatitfeet of optimization choices



for each GPU. As a result, optimization decisions for oneegation of GPUs are likely to
be poor choices for another generation.

One solution to the complexity of GPU programming is to adaftigher level pro-
gramming abstraction such as the stream programming mddhe.higher level domain
information exposed as a result of employing the streamingraming model can guide
the compiler optimizations in generating high-quality eddr GPUs. Therefore, using
stream programming model, programmers can implementalpeiication without worry-
ing about the parameters of the underlying hardware andaimpiter can perform intelli-
gent optimizations to tune the available parallelism inraahing application to a specific
GPU.

In this thesis, we introducBpongg38], a compiler for the Streamlt language that is
capable of producing customized CUDA code for a wide rangéPJs. Sponge consists
of stream graph optimizations to optimize the organizatibthe computation graph and
an efficient CUDA code generator to express the parallelesrthie target GPU. Producing
efficient CUDA code is a multi-variable optimization protvie@nd can be difficult for soft-
ware programmers due to the unconventional organizatidnhaninteraction of computing
resources of GPUs. Sponge is equipped with a set of optimizato handle the memory

hierarchy of GPUs and also to efficiently utilize the proaegsinits.

1.4 Flexible Compilation for Streaming

As the number of applications that can effectively use mldtcores increases, it will

become necessary to develop strategies that can adeqoatebge the allocation of re-



sources between applications. Resource allocation isleengang problem because appli-
cation behavior (and hence resource requirements) can iy in unpredictable ways,
depending on factors that include dynamic workloads anidlvgity in end-user scenarios.
The issue is made more challenging by the numerous hetexogsmrchitectural resources
that are already exposed to software (e.g., the compileg.b@lieve that managing the
allocation of resources effectively requires many nowidtitradeoffs, and we introduce
Flextream [35] as a means to address this issue.

Flextream provides a compilation and runtime adaptatictesy for distributed mem-
ory heterogeneous systems. It is aimed at addressing thleraes described above in
the context of streaming applications. The main innovatioRlextream is aradaptive
stream graph modulo schedulirdgorithm that combines the benefits of static schedul-
ing with the advantages of dynamic adaptation. The stravégysing an adaptive hybrid
(static-dynamic) compilation approach can lead to sigaifity better resource utilization,
and can help deliver the promise of many-cores to end-users.

The rest of this thesis is organized as follows. The stregmiadel used throughout this
thesis is explained in Chapter Il. Then, Optimus, our sysittieg compiler is introduced
in Chapter Ill. In Chapter IV, we demonstrate how streamipgliaations can be mapped
to SIMD engines using MacroSS compiler. Then, Chapter V arplour compilation
system, Sponge, for mapping streaming applications to GPtU€hapter VI, details of
static compilation and online adaptation in Flextream fdjuating the schedule of stream
programs in the presence of runtime resource changes iss8sd. Finally, we conclude
in Chapter VII and talk about future steps to extend the appiliity of this work for future

heterogeneous systems.
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CHAPTER I

Input Language

We use the Streamlt [79] language as the input language tootingiler. The empha-
sis on stream programs is self-evident as recent years hiatvesaed the proliferation of
streaming applications in many areas including digitahalgprocessing, graphics, multi-
media, network processing, and encryption. There are aemew streaming languages
and the area currently commands considerable attentiomd&eademia and industry. The
stream programming paradigm offers a promising approaghrégramming multicore ar-
chitectures. Examples of relatively new streaming langsagclude Streamit, Brook [13],
CUDA [61], SPUR [89], Cg [55], Baker [16], and Spidle [19].

Streamlt is an architecture-independent programminguageg for high-performance
streaming applications [79]. Programs in Streamlt areesgmted as graphs where nodes,
calledfilters or actorsencapsulate computation, and edges represent FIFO corationi
Streamlt is based on the synchronous dataflow (SDF) [52] hafdeomputation. Each
filter consists of avork function that repeatedly executes when sufficient dataadadie
on its input FIFO (queue). The work function reads data frésririput queue usingop

operations, and writes data to its output queue upumhoperations. The work function
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void->void pipeline Minimal {
add Source();
add AddSplitter(8, 4); .
add Printer(); I I

>

void->int filter Source() { i J_
inti; +
inta[16] = {0, 1, ..., 16}; i L
init {i=0;3} :

work push 1 {
push(a[il); 1
i=(i==15)20:(i+1); i
¥} E [Round-Robin Splitter(s,s,s,s)]

b :
|

int->int splitjoin AddSplitter(int addSize, int pFactor) { ! D
split roundrobin(pFactor); !

for (int i = 0; i < pFactor; i++) ) !

add AdderFilter(addSize); !
’_I_i" Adder 1 Adder 2 Adder 3 Adder 4

i

|

join roundrobin(1);

int->int filter Adder(int addSize) {
work pop addSize push 1 {
int sum = 0;
for (int i = 0; i < addSize; i++)
sum+ = pop();

push(sum);

>

int->void filter Printer() {
work pop 1 { printin(pop()); }
]

Figure 2.1: A sample Streamlt program is shown on the left. The corredipgrstream graph with
all the filters instantiated is shown on the right.

can also inspect input without removing them from the FIF@Dgispeekoperation. Peek
operations are critical for exposing data parallelism idisg-window filters (e.g., FIR
filters), as they elide the need for internal filter statee&tnlt provides three hierarchical
stream primitives for composing filters into larger strearapips: pipeling splitjoin, and
feedback loopA pipeline connects streams sequentially. A splitjoincsipes task or data
parallel streams that diverge from a common splitter andgmerto a common joiner. A
feedback loop creates a cycle in the dataflow graph.

A simple Streamlt program and its corresponding streamlgeap illustrated in Fig-
ure 2.1. This example consists of five streanvé:ni mal , Sour ce, AddSplitter,
Adder, andPrinter. M ni mal is a top level pipeline with three-stages. The mid-
dle stageAddSpl i t t er, consists of a splitter, 4 parallalder filters, and a joiner. The

splitter distributes data to each of its connected filteesrioundrobin fashion. Eacdkdder
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Figure 2.2: This figure shows an example stream graph and also the intkateecode template for
executing steady state schedul.is the repetition number for actar

receives eight data elements at a time. Streamlt allowarstgraphs to be described pro-
grammatically, and affords the compiler the ability to yudllaborate the graph at compile
time by instantiating and connecting instances of the §lter

Filters in Streamlt are self-contained, and can only actiess locally declared vari-
ables and fields. Hence, data exchange between filters impdisbed using explicit trans-
fers across inter-filter FIFOs (queues) using the push apdperations. Streamlt filters
may be either stateful or stateless. In Figure 2.1 Ser ce filter is stateful; all the other
filters are statelesssour ce is stateful because thefield carries a dependence from one
execution of the work function to the next. In addition to therk function, filters may
also define aimit function to initialize local fields.

A crucial consideration in Streamlt programs is to createady state schedule which
involves rate-matching of the stream graph. Rate-matcuagantees that, in the steady
state, the number of data elements that is produced by aniactgual to the number
of data elements its successors will consume. Rate-matassigns a static repetition

number to each actor. In the implementation of a Streamkdule, an actor is enclosed
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by afor-loopthat iterates as many times as its repetition number. Tlaglgt&ate schedule
is a sequence of appearances of tfesdoopsenclosed in an outer-loop whose main job
is to repeat the steady schedule. The template code in Fy2ibeshows the intermediate

code for the steady state schedule of the streaming grapimshd-igure 2.2a.
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CHAPTER Il

Mapping Streams to FPGAs

3.1 Introduction

In the world of embedded systems, there are many devicesffieaincreasingly pow-
erful computing capabilities. It is predicted that mobiteputing devices with embedded
processors will ultimately change the industry much asogtsupplanted desktops as
the primary commaodity processing platform. However, thevg@oand frequency concerns
that plague the microprocessor industry effectively maahitects have to find new ways
to provide increasing performance since conventionaufeagy scaling methodologies no
longer apply. As a result, there is a significant opportutatgxplore alternate architectures
that can enable the next evolutionary step in computing.

One significantly promising approach is to provide automatistomization of hard-
ware according to the applications they run. An applicatastomized architecture can of-
fer extremely high performance with very low power compaied more general-purpose
design. Furthermore, the increasing availability of rdmpmable field-programmable gate

arrays (FPGASs) as co-processors and processing ingrednemeterogeneous systems-on-
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a-chip [1, 2] means emerging architectures can offer enosfilexibility and adaptability
in the face of rapidly changing software standards and oustmeeds.

This part of the thesis describes a methodology and a sethoplemnentary optimiza-
tions to efficiently realize stream graphs directly in haadev Our ultimate goal is to auto-
matically refine a high level stream program into eitherwaft or hardware. In the case
of the former, a program can run on a conventional processamaulticore architecture.
In the case of the latter, the application is realized as friezit customized circuit design
mapped onto FPGAs.

As previously discussed in Chapter Il, We adopt a streamrprogning model where
applications can be naturally described as dataflow graplesesnodes embody computa-
tion and edges imply communication. Such a streaming me@gdriactive from a multicore
perspective because it makes the abundant parallelismeimi® streaming applications
quite explicit. As a result, compilers can more readily dexoncurrent implementations
from high level applications, with relatively less effodrapared to automatic paralleliza-
tion starting from imperative sequential languages sudd @, 25, 49]. In the same way,
mapping a high-level stream program to hardware (e.g., §)®Acomes more practical
and productive—compared to using a hardware descriptioguiage such as Verilog or
VHDL, or HDL derivatives of C such as SystemC or Handel-C—aoanpiler can readily
generate efficient hardware implementations from the jmogrdescribed in a streaming
language.

The idea of mapping high level programs directly into handwia not a new one. In-
deed, there is a lot of work on automatic synthesis of hardvstarting from C and its

many HDL-oriented derivatives. This work differs from mestisting work on the topic
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of high level synthesis (Section 3.5) by shifting the focus micro-functional details to
macro-functional ones. Specifically, our work does not fosa much on how individual
modules are synthesized (i.e., micro-functional), buteabn how modules are composed
to assemble an overall design (i.e., macro-functional)a Assult, we can synthesize entire
applications into a hardware substrate, and not just iddadiloops and kernels as is the
case with a lot of existing work. Thus, our work is complenaentto existing work on
high level synthesis while offering new opportunities féiiceent assembly of streaming
applications in hardware.

This chapter describes Optimus, our optimizing syntheaiméwork for streaming ap-
plications. Optimus uses a canonical intermediate reptagen to describe streaming
programs. A program is comprised of interconneditdrs, derived from the dataflow
graph representation of the program. Each filter is comgrigédlocksthat contain state-
ments. The blocks are themselves interconnected basedntrolcand dataflow depen-
dences. Our set of optimizations that deal with inter-filtetails address macro-functional
concerns. Similarly, our micro-functional optimizatioaddress synthesis issues that arise
from dataflow dependences between blocks. The Optimus nadidgls us to leverage
decades of classic compiler research studied by othersein work to generate high-
quality circuits, while also offering the ability to applyaoro-functional optimizations that
are specifically targeted for streaming applications. Mdanctional optimizations, which
address how filters (modules) are assembled to implemepdication tend to be tedious
and time-consuming to perform manually, and require eigerih hardware design. An
important example of a macro-functional optimization isideang on how much buffering

to allow between a pair of communicating modules: if todditiuffering is provided, then
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throughput decreases as modules stall to send or recemevaatreas too much buffering
incurs substantial space overheads. Macro-functionahigations require careful consid-
eration of area and performance tradeoffs to judiciouslyimee application throughput
at the lowest costs.

Our results (Section 3.4) using eight streaming benchmar&siding FFT, DCT, DES,
sorting, and matrix multiplication, show that we can achisignificant performance ad-
vantages compared to an embedded processor for a fractithe @nergy. It is not sur-
prising that a custom hardware design is better than a gepenaose processor. We also
found that Optimus-generated designs are performanceetitime and incur small area
overhead in comparison to some of the benchmarks that wénaidemented in Handel-C.

The primary emphasis of Optimus is on the salient macro- aicdorflunctional opti-
mizations for streaming programs. We use the Streamlt progring language as our input
language although other languages that embody the saraengtigemodel are equally ap-
plicable. Optimus compiles Streamlit programs to Veriloge ¥hen use standard synthesis
tools to generate FPGA designs. Optimus uses its own haedwadels to characterize
space-time tradeoffs, and performs many optimizationkithicg critical path balancing
and memory allocation. It is built on top of the Trimaran colep[81], and hence it in-
herits a rich suite of ILP optimizations (for micro-funatial efficiency). The compiler
also admits profile-guided optimizations to simplify ciftconodels for streaming applica-
tions. Profiling data provides a cheap and practical altera&o otherwise difficult and in-
tractable optimization problems. The core optimizatioresdescribed in Section 3.3, and
Section 3.2 describes our overall stream-oriented syisttiesnework with both macro-

and micro-functional emphasis.

18



18]|013U0 D)

(Round -Robin Splitter(8,8,8,8)
Work

T311011UG D)

B (03 D E

O O O o

. . . Adder 1 S Adder 2 S Adder 3 S Adder 4 S

0o Ix = = = =

ﬁ E' E' E' [wore JE| ([ won | |[ won JIE| [ won

2 2 < 2

—— Filter g’

] ] =SS
Work 2| — )
: 2 [ Work 8=
[ ‘

Printer

Oo 0o Om

(a) Specialized filter template  (b) Hardware structure for the example in Figure 2.1

18]]01jU0 D)

Figure 3.1: (a) The specialized template used for synthesizing filignsThe complete hardware
for the stream graph shown in Figure 2.1.

3.2 From Streamlt to Hardware

Optimus is a compiler and synthesizer that takes as inputaratng application and
generates an efficient FPGA (hardware) implementation. &8egded a hardware template
capable of representing fairly optimized circuits for atreng applications. The template
captures the salient properties of streaming codes, andlisable enough that it can be
used in many different circuit designs we generate. This@edetails our approach using

a simple example illustrated in Figure 2.1.

3.2.1 Synthesizing a Stream Graph

Optimus uses a specialized filter template to synthesizéltbes that appear in the in-
put stream graph. The template is shown in Figure 3.1a. Thpl&ge consists of five main
components: input queues, output queues, memories, gratiielf, and the controller. In-

put and output queues are used to send and receive data.niplatie supports an arbitrary
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number of input and output queues to implement splittersjaimers. Memory modules
are used to store the state for stateful filters. Each filtebesconnected to several memory
components. All the memory modules are local to each filter.dach memory module,
there are dedicated read and write buses between the madlutbercorresponding filter.
The buses are shared between the accessors of the memayiiteth The hardware block
implementing the filter consists of the work module and amomgat init module. Both init
and work modules will be connected to a memory module in destemiodule needs initial-
ization. The controller makes sure that the init functiotsgexecuted only once before the
first invocation of the work function. Depending on the wagttthe circuit is scheduled,
the controller may have other responsibilities to orclastthe execution.

After instantiating the template for all filters in a streamah, the next step is to con-
nect them. This step is straightforward based on the streaphgand the way data flows
through the graph. Whenever Optimus connects the tempdatevd filters together, it
merges their input and output queues together. In othersytindse two filters will share
one FIFO queue for transferring data between them. Figlte shows the top-level hard-
ware for the stream graph in Figure 2.1. As it is illustratdel only stateful filter with
memory components is tHgour ce filter. TheSour ce filter also is the only filter with

an init component.

3.2.2 Synthesizing Filters

Each filter is organized as a control flow graph (CFG) with aerlayed data flow
graph (DFG). Basic blocks (BBs) of instructions are usedhascbre building units for

each filter. The template for the BBs is shown in Figure 3.2achEBB module has four
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sets of input/output signals. The first set includes therobstgnals. All BBs have one
control inputsignal and one or moreontrol outputsignals. A control input signal will
activate a BB as long as the signal is active. A control ougpgmal will be connected
to the inputs of the other BBs in order to activate them in ilgatrorder. Connecting
these control signals is done based on the edges in the pondiag CFG. The second
set of input/outputs consists of data signals which carsrapd values. Optimus uses a
DFG for connecting these signals. The third set of inpupousignals helps each module
to communicate with external resources such as queues, nesmnand other types of IP
(intellectual property) cores. These signals provide &eohinterface in which any IP core
can be connected to the hardware. The last set of signalkethasAckin Figure 3.2a, is
meant for flow control. The Ack signals are useful when a BBwaperform its operations
in the associated clock cycle and needs to wait one or motlesy@his mainly happens
when a BB accesses an external resource (e.g., memory) amdsthurce is not ready to

respond within the same cycle.
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(a) Specialized BB template (b) Control and (partial) data (c) Hardware structure for the
flow graphs for theddder filter ~ Adder filter

Figure 3.2: (a) The template used for synthesizing basic blocks. (bjr@idtow graph and partial
data flow graph for theddder filter. (c) The complete hardware generated for fiikder filter.
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Generally, each BB ends with one or more registers to steeedut data and control
signals. In the baseline design, it is assumed that all tieedut values are registered to
control the wire latency in the final design. Since all the Malues are latched at the basic
block outputs, one clock cycle is needed to transfer data fsne BB to its successors. In
other words, the execution of each BB takes at least one.cycle

After the hardware module for each BB is generated, Optinlis@nnect the modules
based on the CFG and DFG for each work or init function. Cotingthe control signals
is based on the CFG. The control outputs of all BBs are coedetct the control inputs
of the immediate successor BBs. In case a BB has more thanammokinput signal,
MUXes are used to select the right control input signal. Ti&Ds used for connecting
the data signals, such that the live-out signals of each BB.@annected to the live-ins of
the immediate successor. MUXes are again used in case acalueach a BB from two
different paths.

We will use theAdder filter as an example to clarify the main points. Figure 3.2b
shows the CFG and DFG fédder . The solid lines show the control flow and the dashed
lines show the data flow faum This graph has four BBs and there is a backedge from
BB 3 to BB 2. Based on the DFG, a data signal is needed for &aisf) the value for the
variablesumfrom BB 1 to BB 3 through BB 2. All the control flow signals in thigure are
connected based on the CFG for thetder filter. Since BB 2 is the target of two branches
(the fall through from BB 1 and the loop target from BB 3), a MisXadded to its inputs
for selecting the appropriate control signal. The executittheAdder filter will take 18
cycles (2 cycles for each of the 8 iterations, and 2 cyclethferest of BBs).

The only remaining task is to generate hardware to fill eacif8iule based on the
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Figure 3.3: (a) Template for synthesizing operations. (b) Simplifiedivare structure for BB 3 in
Figure 3.2b.

operations of that BB. Optimus generates a function unit)(BSunilar to Figure 3.3a, for
each operation. Each FU can have multiple inputs and ousimat®ne predicate input. If a
BB has a conditional branch operation, Optimus will gereesatomparator FU to compute
thecontrol outputsignals. The data flow graph in each BB determines how the Rbldd
be connected to each other. At the end of each BB aitdrol inputsignal is used to enable
the register module. Figure 3.3b illustrates the FU and #eessary connectivities for
BB 3 of theAdder filter. This figure does not show all the details of computiogtcol

signals and setting the Ack signal.

3.2.3 Hardware Orchestration

The final issue is the orchestration of execution for therergireaming circuit. We
focus on two ways of scheduling the filter executioBtaticandGreedy In a static sched-
ule, the compiler dictates the number of executions of edteh, fsuch that it consumes all
of its input data and produces sufficient data for its congamhn this model, the com-

piler guarantees that a filter will have a sufficient numbeimplt data available. Hence
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the execution of the filter work function will not block on @=sa(i.e., pops). Similarly, the
compiler also asserts that the output queue from a filterficmntly empty so that all the
writes (i.e., pushes) also succeed without blocking therfiltn this type of scheduling,
double buffering is used between pairs of filters to providenmunication-computation
concurrency. This allows the producer and consumer to megandent of each other. The
size of each individual queue is typically set to the leashicmn multiple of the pop rate
and push rate of the consumer and procedure filters. We etérs form of scheduling
and FIFO sizing as “rate-matched”.

A greedy schedule takes a different approach and does ntt $tatically rate-match
filters. In this approach, filters execute eagerly, and biebkn they attempt to read from
an empty queue, or write to a full queue. Since all queue seseare blocking in this
approach, the size of the queue throttles the executioneo$titeam graph. This allows
for a tradeoff between the size of the queue and the overallitithroughput. Smaller
gueues take up less area, but may not be optimal. In our bexrkbnwe observed that it
is common that a queue size of one element is sufficient forecbexecution that is also
as efficient as a rate-matched static scheduled. The quang & further discussed in the
following section.

Optimus is capable of generating the necessary hardwareotbr schedulers. This
choice has implications on the rest of the circuit in termgwéue sizes, power consump-
tion, execution time, and allowed hardware sharing. Inwuosk, the greedy scheduler is

used for all designs. The comparison between the two schexiglleft for future work.
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3.3 Stream Optimizations

Streaming languages allow programmers to focus on degjdingir applications. Specif-
ically, programmers describe their computation progratroally and algorithmically, and
do not need to commit to specific implementation detailsteeldo scheduling, buffer-
ing, synchronization, or the underlying data transportimecsms in their target platforms.
This programming practice leads to code that is easy to miai@tnd port, but places a
burden on the compiler to derive high-performing implenagions.

Optimus applies many of the classical optimizations usgaenious works, and intro-
duces a set of new macro-functional optimizations that ifipalty target streaming pro-
grams. Our compiler focus is on improving communicatioeraly and reducing memory
storage requirements (i.e., area). Communication lateacybe optimized by sending
larger chunks of data between filters. Storage can be omdniy intelligently sizing
gueues between filters, and allocating output registersctease spatial reuse. It is not un-
common in today’s synthesis frameworks to apply many ofdteggimizations manually,
either directly in the source code or after the circuit iseyated. This process can be time-
consuming, error-prone, and complex for large benchmatladso defeats the purpose of
using elegant and practical streaming languages that @eetate because they promote

productive and portable programming.

3.3.1 Queue Allocation

The queues that connect hardware filters are implementad tls¢ SRAM structures

on the FPGA. FPGAs have limited SRAM capacity, ranging fromdBlon the low-end
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FPGAs to 128 KB on the high-end ones. The SRAM is also usedpteiment the local ar-
rays and other data structures used by the filters. Thusaiige Istream graphs, the SRAM
quickly becomes the bottleneck resource. The schedulmategly used to orchestrate the
execution of the filters can significantly impact the storagguirements. Optimus judi-
ciously calculates the size of each queue to allocate betvilesr's in order to better utilize
the SRAM and maintain the high throughput achieved by ama&ched static schedule.
The idea behind our approach is to recognize that a slot imjtieeie may be reused
if the value that previously occupied the slot is alreadystoned. Thus, we can reduce
the total storage requirement for the inter-filter FIFOs & van determine the maximum

number of overlapping lifetimes for the values exchangddeéen filters.

Producer Consumer
------ push
= ﬁiﬁﬁﬁ: pop_|

push
______ push — o
------ push pop
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S S 7 N
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A

Figure 3.4: Overlapped producer-consumer schedules showing maxinuumber of overlapping

lifetimes.

Figure 3.4 shows the cycle-by-cycle schedule of a pair ofroamicating filters. Only

the push and pop operations are shown. The schedule shothke @ajcles in the steady

state executions of the producer-consumer pair. Suppesgdiducer pushedy items per
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execution of its work function, and the consumer poppédtems from the queue every
time its work function executes. For the filters to be ratdained, the producer must run its
work functionZ“MUN) times, and the consumé&F LN times. We determine the max-
imum number of overlapping lifetimes by simulating the ratatched schedule. We use
double-buffering during simulation to provide communioatcomputation concurrency.

The simulation needs to only cover one steady-state exacofithe filters. In the case

a filter peeks at more data than it pops, an initializatioredcite is run to prime all the

FIFOs.

A causally correct schedule is obtained by shifting the poed schedule to occur at
time 0, and shifting the consumer schedule down such thadogls appear at least one
cycle after their corresponding pushes. Figure 3.4 showsxample schedule. Such a
schedule reveals the lifetime of every entry in the queugvéen the producer and the
consumer. The lifetime extends from the cycle at which anyestpushed and the cycle
at which the entry is popped. The maximum number of queueesnivhose lifetimes
overlap can be easily calculated from the schedule. In Eigut, the maximum number of
overlapping lifetimes is 3. Setting the queue size to a vidas than this maximum will
stall the filters because one of the pushes at the produceotsimcceed as it would appear
before the pop of the previous queue entry. Converselyngetie queue size to a value
more than this maximum would not improve the schedule. Tthgsminimum queue size

for a producer-consumer pair that retains the throughpthestatic schedule is obtained

by calculating the maximum number of overlapping lifetinoéa rate-matched schedule.
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sum+ = pop(); Eor (int i = 0; i < addSize/4; i++)
- L
push(sum); (t1, t2, 13, t4) = popa(); Pt &)
3 sum+ = t1 + t2 + t3 + t4; t2= pop(A) push8(t1, ..., 18, B)
push(sum); t1 = pop(A)
b push(t2, B) :
3
t2=pop(A)
!
(a) Adder (b)Splitter

Figure 3.5: An example of access fusion using the stream program in &igur.

3.3.2 Queue Access Fusion

A critical factor in streaming applications is sustainewbtighput. One of the key is-
sues that can have negative effect on the throughput ofansiing circuit is communication
latency between different filters. This issue arises froeftitt that each queue or mem-
ory access, regardless of data width, takes at least one.cyble one cycle access time
would have a direct affect on the latency of the longest pafiiters. It can also limit the
filter-level parallelism in splitters and joiners. To ovenee these bottlenecks, we consider
bundling similar queue accesses together to create a sidéaccess usingueue ac-
cess fusionThis is conceptually similar to creating SIMD loads anda$o Of course, to
support fused queue accesses, the basic queue structuiresegodifications.

Code motion and loop unrolling are applied to find opporiesifor fusing queue ac-
cesses and shortening the longest paths in a filter. Autor8&8Dization techniques use
a similar approach with one difference: the vector lengtknewn a priori, whereas we

can realize variable vector lengths between producertsoasfilter pairs. Loop unrolling
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is applied to loops with queue or memory operations to exglos®perations to the code
motion phase. Optimus needs to consider area constrairiles wvis performing the un-
rolling because unrolling may result in area expansion auge the design to overflow the
target FPGA. The next step, is to cluster memory and queuabes via aggressive code
motion. The end result is a several clusters of memory andejaperations with no other
intervening operations. Each cluster of operations isgassi a vector length according
to the number of operations in the cluster. Subsequen#yctimpiler determines a sin-
gle vector length for the filter by calculating the greatesnhmon divisor of each cluster’s
vector length. For example, if the vector lengths of thetelissare 8, 12, and 16, then the
filter's vector length is 4.

Figure 3.5 shows this optimization applied to a filter and kttep from Figure 2.1.
For theAdder filter in Figure 3.5a, the loop is unrolled 4 times and a vettogth of
4 is chosen for fusion. The loop is not fully unrolled becao$area constraints. The
unoptimizedAdder filter will take 18 cycles to finish (assuming the valuefafdSi ze is
8), but the optimized one will take only 6 cycles. Figure 3iliistrates the effectiveness
of the fusion optimization for the splitter filter. The unopized splitter needs 9 cycles
to read 8 data values from its input queue and push them tothe queue ofAdder 1.
During these 9 cycles, the next filter in the splitjofdder 2) would be idle while it awaits
its input data to arrive. In this case, the access fusiomopdtion will reduce the filter's
idle time to 2 cycles. The optimization in general reducesdtitical path of computation
and can reduce execution time. If the optimization is sugfoés finding large clusters of
accesses and fusing them, it will also significantly redhegdtal area of the design. If the

optimization is not successful, the loop unrolling woulduk in area expansion. However,
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an intelligent compiler would reverse the unrolling wheisihot profitable.

One of the restrictions imposed by the our generated hasdiwdhat the vector length
for all accesses from a filter to a specific queue has to be the,sgthough vector lengths
to the same FIFO from different filters may differ. This islizad by incrementing and
decrementing read and write pointers using different @nsiffsets. For example, if the
read vector length is 1 and the write vector length is 8, theugucan be viewed as an 8x8
matrix with the write pointer pointing to the rows and thed@ainter pointing to individual

elements of the matrix. Figure 3.6 illustrates the possiblgigurations.

3.3.3 Flip-flop Elimination

As it was discussed in Section 3.2, all live-out data signatduding pass-through live
signals, are registered at the end of each basic block todoaire delays. The output of
memory and queue operations cannot be registered in thk thlatissues those operations
because memory (and queues) needs one cycle to respon@forbethe results of those
operations are registered in the immediate successorg tgghing basic block, as well as
along all blocks that transmit the values along to theiridetbns. The CFG in Figure 3.7a
illustrates the registers added for various operands aslemiedge rectangles attached to
the basic blocks. Note that live operands are saved at thefezath basic block regardless
of whether they are passing through or generated in thakbl®his register assignment
ensures that the critical path in a CFG is not greater thaméwseémum of delays through
the basic blocks.

Many of these flip-flops are unnecessary and can be removédwritffecting the

clock speed. In order to keep the circuit functional, a stibfeegisters must be main-
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Write Mult. =1 Write Mult. =1 Write Mult. = 8
Read Mult. = 8 Read Mult. =1 Read Mult. =1

Figure 3.6: Various configuration of queues used by queue access fugtonipation.

tained. There are two main situations where flip-flops catmeotemoved. First, if an
operand is both live-in and live-out along a backedge, ittbdee registered before or after
the backedge to prevent formation of a combinational lodpe Jecond case is more com-
plex. If an operand is the result of a queue or memory readgs ot have to be registered
because the hardware for the queue and memory hold its agpang as no other opera-
tion has changed its read status. For a read operation framw@ega status change occurs
when another pop is issued. In a memory structure, statugyesavhen a store writes to
the same address as a read. When the compiler can determimetimtervening pops or
read/write conflicts occurs, then it can elide the corredpanregisters.

Figure 3.7 shows a sample CFG and all the data registersebafat after the flip-
flop optimization. Based on the rules for flip-flop eliminatiand ignoring clock cycle
constraints, all the registers can be removed except Xtexgn BB 2 and the T-register in
BB 5. The X-Register cannot be removed because there is erlei@ving pop operation
in BB 2 that can change the status of the input queue. Notefttie control flows to the
rightinstead of left after BB 1, then no register is needexzhlise there are no pop operation
along that path. The register for T also cannot be removedusecT is both live-in and
live-out along the backedge going from BB 5 to itself.

An issue with flip-flop elimination is the possibility of ineasing the critical path
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X = pop( )

Y = pop() 3| A = load(mem , 0) 2| Y = pop( ) h 3| A = load(mem , 0) |

;;;.... 4 T=0

@E_ -

y
Y= Y+1 6 Y=Y+1
X=X+A X=X+A

(a) Sample control flow graph be- (b) After flip-flop elimination
fore flip-flop elimination

Figure 3.7: An example of flip-flop elimination.

length. In general, Optimus tries to balance the length @cttmbinational paths by split-
ting the large basic blocks and adding registers to the erghofi BB. Optimus has an
internal model of the target FPGASs to assess the latencyffefeint combinational oper-
ations. If removing any of the registers in the flip-flop elivaiion optimization lengthens

the critical path, then that register is left in place.

3.4 Experiments

We compiled and simulated various applications from déferdomains. Our target
platform is a Xilinx Virtex-4 (XC4VLX200) FPGA [85]. ISE Fawdation was used for syn-
thesizing the HDL generated by Optimus. Xilinx Xpower isdisemeasure the energy and
power consumption of our circuits. For comparison, we use@damwW 300 MHZ embed-
ded PowerPC 405 processor. We compare our FPGA results bettelhmarks compiled
and executed on the PowerPC. We use the StreamlIt compitethaisame Streamlt source
code for the benchmarks, to generate binaries that run oRderPC processor. Our

benchmarks are FFT (fast Fourier transform), parallel gdulébble sort and merge sort,
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Figure 3.8: Figure 3.8a illustrates the speedup comparison betweerhéndware designs and a
300 mW PowerPC 405 running at 300 MHZ. Figure 3.8b shows tleeggnconsumption of the
FPGA as a fraction of PowerPC energy use for various benckmar

integer inverse DCT (discrete cosine transform), DES (éatayption standard), matrix
multiply and its blocked variant. In the case of DES, we useefarence C implementa-
tion of the benchmark instead of the Streamlt version foRtverPC measurements. This
is because DES performs a lot of bit-level operations, anddumplementation can clev-
erly carry out the operations in parallel using word-wideskg In the case of the FPGA,
we compile the Streamlt version of DES down to HDL.

Performance and Energy Consumption:Figure 3.8a shows the performance of stream-
ing hardware compared with PowerPC for various benchmadrkgiis experiment, none
of the streaming-specific optimizations are used. Speedtps/from 1.1x to 58x for dif-
ferent benchmarks. Bubble sort achieves the highest spdssitause it heavily exploits
pipeline-level and instruction-level parallelism. P&badder has the lowest speedup over
the baseline because the communication to computatiom isatiigh in this benchmark.
Figure 3.8b illustrates the energy consumption of the dsogenerated by Optimus as a

fraction of the PowerPC energy usage. On average, thesaranks consume 0.7x of the
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Figure 3.9: Performance improvements and area savings due to diffeygirnizations performed
by Optimus.

PowerPC energy. The only benchmarks which use more enerthyeddPGA are parallel
adder and DES. This again happens due to large communidaticomputation ratio in
case of the parallel adder. In DES, the higher energy consamig due to the inability of
Optimus to efficiently take advantage of the bit-level patem in the stream graph. Con-
sidering the fact that the baseline processor is a 300mW twese results show that the
hardware generated by the Optimus system is suitable fopmmer embedded systems in
terms of both performance and energy consumption.
Queue Allocation: In the designs generated by Optimus, one of the main comp®nen

that uses the on-chip memory is the queue structure. Theecaléacation optimization
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tries to efficiently reduce the sizes of the queues witholgicihg the performance. The
Streamlt compiler generally uses rate matching betweefiltiies to calculate queue sizes.
We used the rate matched queue sizes as the baseline anchstgavings due to the queue
allocation algorithm in Figure 3.9a. As shown in the figutes toptimization reduces the
gueue sizes by an average of nearly 50%. Additionally, afgucing the queue sizes to the
new values, no performance loss was observed in any of tresmimarks. These results
demonstrate that the queue allocation optimization use@gtymus is quiet effective in
saving the on-chip memory resources.

Queue Access FusionAs discussed in Section 3.3.2, the goal of queue accessfusio
is to increase the throughput of streaming circuits by fysimultiple queue operations
into a single (wider) operation. Figure 3.9b illustrates #ifect of this optimization on
various benchmarks in terms of performance. We limit the imar vector length to
8. This means that the maximum speedup achievable is 8x. @&srshn the figure, the
average speedup is 3.2x, and 7.2x in the best case. In sonchrbarks, no speedup
is achieved because there was not any opportunity to fussses in the slowest filters.
The slowdowns are typically due to the fact that the wideruggeare marginally slower
than normal queues. In order to understand the area andparice tradeoff between
different queue configurations, we synthesized three queiih the same size but different
read/write widths. As the results in Table 3.1 show, the wileeues are slightly larger than
their narrower counterparts.

Flip-flop Elimination: The goal of this optimization is to identify and eliminatelua-
dant registers such that the circuit still functions préypand the critical path length does

not change. The results of this optimization are shown infeg@.9c. Flip-flop elimination
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Queue Configuration Total number of bits | Number of Slices | Clock (MHZ)
(read width = 128, write width = 16 4096 70 >300
(read width = 16, write width = 16) 4096 56 >300
(read width = 16, write width = 128 4096 95 >300

Table 3.1: Area and delay for different queue configurations

reduces flip-flop utilization by 30% and slice utilization b§%. As shown in the figure,

the improvement in flip-flop use is always greater than slifézation. This means that

there are many slices used only for latching purposes antbnédgic computation. The

area savings due to this optimization vary based on the nuailp@ps and loads and their
arrangement in each benchmark.

Comparison to Handel-C: We compared our generated circuits to those generated us-
ing Handel-C and its compilation tool chain. Handel-C is garat of the C programming
language. It is aimed toward synthesizing hardware from d@&c&/e implemented DES
and DCT in Handel-C and generated their hardware designs.HEmdel-C implementa-
tions preserved the overall streaming structure of the lracks. Our area and perfor-
mance comparisons show that the Optimus-generated siagtan average of 5% faster
and 66% larger. Using our stream-specific optimization, arefarther improve the perfor-
mance of the Optimus-generated circuits so that they ardals?er, although the designs
are also 90% larger than the Handel-C designs.

There are several important factors that make the Handes@us inefficient in terms
of performance. First, Handel-C is not able to automatycpéirform the same kind of
macro-level optimizations that Optimus carries out. Seg¢dtlandel-C does not try to
balance the critical paths between flip-flops to achievednftequency designs. The lack

of these optimizations and transformations is the mainaredélse Handel-C designs lag

36



in performance compared to the Optimus-generated onesogtiraizations can be done
manually in the Handel-C code, but that requires more worktie programmer, and it
would obfuscate the streaming nature of the code.

In terms of area comparisons, the designs in Handel-C are area-efficient for two
main reasons. First, Handel-C tries to utilize resourcBs)(that are unique to various
families of FPGAs. Designs generated in this way are usumatlye area-efficient. Sec-
ond, Handel-C performs some low-level netlist optimizasicghat improve the area by a
large factor. We believe netlist-level optimizations slidoe implemented in the low-level
hardware synthesis tool and not in a high-level compilerer&fore, Optimus does not
implement any of the low-level optimizations that Handeb&forms to improve the area

efficiency.

3.5 Related Work

Cis closely linked to the Von Neumann processor model, irctviariables correspond
to memory locations and function invocations reside onkstacC lets users manipulate
pointers to memory and to functions, which does not makessiaren FPGA circuit model.
Thus, any attempt to compile C to FPGA configurations woulcoenter problems that
derive purely from the C language, not from the the applicatiself. Several projects
have tried to address the inadequacies of C with differeirigues.

As a result of an extensive amount of research in the areagbtleivel synthesis, re-
searchers have introduced several compiler systems atrd@hs languages [41, 57, 74,

56, 32, 24, 12, 29, 28] each of which has some unique capabiliROCCC [28] isa C

37



to hardware compilation project whose objective is the FHfa8ed acceleration of fre-
guently executed loop nests. This compiler performs exterompile-time transforma-
tions to maximize various forms of parallelism and minimthe number of off-FPGA
memory accesses. Circuits generated by ROCCC can be useptioyud as IP blocks to
accelerate the execution of loop nests. Another C to haelsampiler is SPARK [29],
which takes a subset of C as input and outputs synthesizaBLY Its optimizations
include code motion, variable renaming, FSM state minitiora etc. Streams-C [24]
relies on a CSP model for communication between processkesaammeet relatively high-
density control requirements. Researchers in academianduodtry have also designed
various high-level abstraction languages such as SA-C FE&@jdel-C [14], SystemC [76],
etc., to make designing hardware systems easier for averdtyeare developers. SA-C
helps compilers exploit data reuse because of its speamitieects (e.g., windows) and it
functional nature. Handel-C is a low level hardware/sofer@nstruction language with C
syntax that supports behavioral descriptions and uses as§&Pcommunication model.
Although all these systems and abstraction languages hawveg useful in various
domains, they have different shortcomings. GARP, Stre@mand SPARK do not sup-
port accesses to two-dimensional arrays, so image procesgplications must be mapped
manually. ROCCC accepts only perfectly nested and conbtaumd loops operating on
arrays with affine index expressions. Moreover, all arragsaasumed to be located in the
memory and no local data is allowed. The previous systemsaagdiages do not support
the stream-oriented optimizations that we discuss in tluigkwThey also do not provide

some of the constructs that are essential for stream progragrsuch as peeking.
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3.6 Summary

Streaming applications are important to embedded systeneapers. Improving the
performance of these applications in an embedded settitypisally accomplished via
special purpose processors and ASICs that are inflexiblenaadably expensive to design.
An alternate approach is to use configurable hardware fabtich as FPGAs that provide
a performance- and power-competitive platform for theistcoln addition, FPGAs are
increasing available as components in heterogeneousrsy,saad their versatility makes
them attractive platforms in a domain where software andgorer requirements change
rapidly. Unfortunately, the complexity of programming FR&has limited their benefits as
only system engineers with hardware design expertise ded@bffectively map software
down to hardware circuits.

The goal of our work is to enable the efficient realization wéaming programs di-
rectly in hardware, when appropriate. Our Optimus comipitatnethodology allows for
streaming programs expressed in a high-level streamirgukege such as Streamit to be
automatically refined to hardware and realized as circnitSRGAs. The Optimus com-
piler uses a hierarchical compilation strategy that sépareoncerns between macro- and
micro-functional requirements. Macro-functional optmaiion are geared to efficiently as-
sembly filter module into larger applications. These opations affect space (area) and
time (throughput) characteristics of the applicationwit€ Our goal in this regard is to
provide the highest performance for the lowest area costngaoing our generated de-
signs to an industry-strength compiler shows that we arf®peance and area competitive

although we believe there is much more to be gained in ourdveork. Our results are
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largely enabled by stream-specific considerations andnagdtions. Micro-functional op-
timizations are designed to improve the efficiency of therfithodules themselves. Our
stream-aware optimization improve performance an averfg&5% and reduce the area

requirements by 16% compared to our baseline results.
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CHAPTER IV

SIMDization of Stream Graphs

4.1 Introduction

Support for parallelism in hardware has greatly evolvetiéngast decade as a response
to the ever-increasing demand for higher performance attdrijgower efficiency in dif-
ferent application domains. Various companies have inired vastly different solutions
to bridge the performance and power gap that many applitetoe facing. These solu-
tions include shared-memory multicore systems (Intel Coid3]), distributed-memory
multicore processors (IBM Cell [40)), tiled architectur@slera [80]) and in some cases
a combination of these (Intel Larrabee [72]). These archites not only achieve higher
performance and efficiency by combining multiple cores iob@ die, but they are also
equipped with one or more single-instruction-multipléad&IMD) engines to enable more
efficient data-level parallelism support for several intpot application domains such as
multimedia, graphics, and encryption. SIMD engines aresndgable for all applications,
but if an application can be tailored to efficiently expldiem, the performance and power

benefits can often be superior to the gains from other aathite solutions. Therefore,
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SIMD engines like Altivec [73], Neon [6], SSE4 [42] are now assential part of most
architectures on the market. With SIMD width expanding itufa architectures, such as
Intel’s Larrabee, under-utilization of the SIMD units wdutanslate into a loss in perfor-
mance and also power consumption.

Mapping abundant parallelism of streaming applicatiort® omulti-core provides rea-
sonable speedup for but can also experience slowdown duretecore communication
overhead and high memory/cache traffic. Utilizing SIMD e is preferred, even for
applications where multi-core speedup is close to the #tmal maximum, because SIMD
engines can improve performance without increasing conmation overhead and mem-
ory/cache traffic. Exploiting SIMD engines, in some cases) achieve greater perfor-
mance than multi-core while using less area and power.

Extending the retargetability of streaming languages faltincore systems by adding
effective SIMD support to their compilers is desirable hessaof the variation in char-
acteristics of SIMD accelerators between different stashglasuch as number of lanes,
memory interface, and scalar/vector transfers. Implemgrand porting applications be-
tween different architectures can be difficult and erramg:. Therefore, efficiently vector-
izing stream programs is essential to expand their appligahs a universal programming
paradigm for current and future single/multicore architegs with various wide or narrow
SIMD units.

To exploit SIMD engines, current streaming compilers tlatesthe streaming lan-
guages down to an intermediate language, such C++ or Jadlahan apply vectoriza-
tion techniques to generate SIMD-enabled code. The mostlaofechniques are hand-

optimizing the code and traditional auto-SIMDization [3,64, 5, 51]. Both of these so-
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lutions have proven difficult to apply in real world scenarioHand-optimizing the bi-
nary or sequential code using architecture-specific ingtms or intrinsic functions is a
time-consuming and error-prone task which results in aexitile and unportable binary.
Auto-vectorization is, at this stage, still impracticadaiar from being able to universally
utilize the various kinds of available SIMD facilities. Alsperforming SIMDization on
streaming applications after intermediate-level codeegation may result in an inefficient
schedule and mapping of the stream graph since the schedlteady fixed and informa-
tion that is available in the high-level stream graph is.I&sttracting this information from
the generated code is predicated on performing complex ibengnalysis and transfor-
mations which are impossible in some cases. In sumntaly,of global knowledge about
the program inability to adjust the scheduleand alsdoss of data flow informatioare
the main reasons behind inefficiency of traditional autotegzation techniques in dealing
with streaming applications.

In this work, we introducéMacroSS a streaming compiler for the Streamlt language
that is capable of performing macro-SIMDization on streaaphs. Macro-SIMDization
uses high-level information such as the valid set of sclesdahd communication patterns
between actors to transform the graph structure, vectext®r's of a streaming program,
and generate intermediate code (C++ in this work). Thensdésuhe host compiler to
compile the generated intermediate code to binary for aifspéarget processor. The
information that is used by MacroSS is deduced from the heght program structure and
is not available to low-level traditional compilers tha¢ arsed to compile the intermediate
code. As a result, MacroSS has a broader understanding gfrtiggam structure and

macro-level characteristics of the streaming applicatiat allows the compiler to utilize
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SIMD engines more efficiently.

MacroSS is capable of performing single-actor, verticadl Borizontal SIMDization of
actors. Single-actor SIMDization targets each SIMDizau®r separately and transforms
consecutive sequential executions of a SIMDizable actdata-parallel executions on the
SIMD engine. Vertical SIMDization fuses a pipeline of vetizable actors to build a larger
vectorizable actor and reduces the scalar-to-vector (pgikector-to-scalar (unpacking)
overhead that exists between actors. Our experiments $tabwertical SIMDization is ap-
plicable in many cases and can significantly improve peréoroe by eliminating the need
for translating back and forth between scalar and vectaorallyi, horizontal SIMDization
takes a set of isomorphic task parallel actors and replaess with one or more data paral-
lel actors. The choice of which vectorization techniquefdpla to a stream graph is based
on the internal target-specific cost model and the structilee graph. After SIMDization,
MacroSS is able to generate architecture-specific inteiateedode with SIMD intrinsics.
This intermediate code uses vector types and intrinsicsifgpéo the target architecture
and can be compiled using the host compiler.

Packing of scalar values to a vector or unpacking a vectocatas values typically
takes between a couple of cycles to tens of cycles dependirtgeoarchitecture. Since
communicating data between vectorized and scalar actois@versa needs several pack-
ing/unpacking operations, MacroSS is equipped with twhnegues to optimize this costly
communication overhead. The first technique tries to replle packing/unpacking oper-
ations with permutation instructions in actors that, dgrach execution, read or wrié
elements. In the second technique, we introduce a low-eaerlkdynamic shuffler called

the streaming address generation unit (SAGU). This unitiaktes the need to perform
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complicated address translations, data alignment, ankingdanpacking of data as data
crosses vector-scalar boundaries of the graph.

To summarize, in this part, we make the following contribo:

¢ Introduction of macro-level SIMDization techniques farestming languages: single
actor, vertical and horizontal SIMDization. Based on thesghniques, MacroSS

compiler for the Streamlt language is implemented.

e Hardware and permutation-based tape optimizations fanaiad the overhead of

scalar-to-vector and vector-to-scalar data conversions.

e Evaluation of MacroSS on various streaming workloads frbm $treamlIt bench-

mark suite [79] on the Intel Core i7.

Macro-SIMDization and the related optimizations in Macgx8e explained in Section
4.2. Section 4.3 includes a brief discussion about therdiffees between traditional auto-
vectorization and macro-SIMDization. Experiments arenshn Section 4.4. Finally, in

Section 4.5, we discuss related works.

4.2 Macro-SIMDization

The SIMDization path in MacroSS consists of several stepsaie the streaming
graph more amenable to vectorization, tune the steadysthezlule, vectorize actors, and
perform target-specific code generation.

MacroSS is equipped with three main techniqu&mgle-Actoy Vertical, and Hori-

zontal SIMDization Single actor SIMDization targets each stateless act@araggly. The
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Figure 4.1: Part (a) of this figure shows the stream graph used as a runekagnple. Part (b)
shows the same stream graph after MacroSS has SIMDized it.

goal is to convert multiple (equal to SIMD-Width) consewgatexecutions of a SIMDizable
actor into one data-parallel execution on the target SIMBirem Single-actor SIMDiza-
tion leaves the input and output tapes of a vectorized astgcalar and does not convert
the tape accesses to vector since complicated shuffle aperabust be introduced in the
code in case vector tape accesses are used. The scalamtiapeégde packing/unpacking
overheads in each SIMDized actor. Vertical SIMDizationjakhs a more optimized way
of performing single-actor SIMDization on a pipeline of t@izable actors, reduces this

overhead. It enables MacroSS to implement vector commtioicbetween the actors of a
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SIMDizable pipeline. Both single-actor and vertical SINBiion try to convert sequential
execution of a single actor or a pipeline of actors to datalfg execution. The third tech-
nique, horizontal SIMDization, converts task parallelisito data parallelism for a group
of isomorphic actors (stateful or stateless) in a strearphgraddorizontal SIMDization is
mainly beneficial in cases where a group of several isomoigtiors are placed between a
splitter and joiner and it is not possible to fuse these adtdp one coarse actor to perform
vertical SIMDization. MacroSS finds the parts of a graph #ratsuitable for this kind of
SIMDization and converts the eligible task-parallel astioto one or more SIMD actors.

The stream graph illustrated in Figure 4.1a is used as amgnexample to explain
different actions that the compiler takes to perform mea8hgiDization. This graph shows
the structure of a streaming application with 10 unique r@ct&ach box shows one actor
in the program. Each edge in this graph indicates a tape mmaiéed using FIFO queues.
The text written inside each box shows how each actor int®raith its input and output
tapes. Each shaded box represents a stateful actor. Orgtitesidle of each node, the
repetition number of that node in the steady state is showan Ehough MacroSS is able
to target processors equipped with SIMD engines with any[3Width, for the sake of
presentation, the target hardware platform to which MaSro@mpiles is set to a core with
SIMD width of four 32-bit data types, and main memory line thidf 128-bit. Figure 4.1b
shows how MacroSS vectorizes the streaming graph spliejoin structure is horizontally
vectorized. The task-parallel actors between the sphiterjoiner are converted to SIMD
actors and the splitter and joiner are replaced with hotadorersions. Actord andFE are
vertically fused and SIMDized. Single-actor SIMDizatigreipplied to actot .

The details of how MacroSS performs SIMDization on a streagraph are explained
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in the following three subsections. Next, in Section 4.2, way MacroSS deals with
SIMDization of tapes in the presence of architectural supiscexplained. Finally, Sec-

tion 4.2.5 explains the overall structure of the macro-Sikéfion technique in MacroSS.

4.2.1 Single-Actor SIMDization

Let ST denote the SIMD width of the target machine. The goal of @ragitor SIMDiza-
tion is to runSTW consecutive executions of an actor in data-parallel fash#ing the target
SIMD engine. As mentioned before, actors in a Streamlt @nogexecute based on a steady
state schedule in which each actor is enclosed foy-toop that iterates as many times as
its repetition number (see Figure 2.2b). Conceptuallyglskactor SIMDization is similar
to vectorizing the actor’s enclosirfgr-loop whose trip count is the repetition number of
the actor. Therefore, MacroSS adjusts the repetition nusniskeall actors to make them
multiples of SW before single-actor SIMDization.

MacroSS finds the smallest factor that the repetition nurabeach vectorizable actor
should be multiplied by based on the following equation:

LCM(SW, R;)

M = Max{ I

, V SIMDizable actorA; } (4.1)

Each term of theé\/ax function finds the smallest factor that each repetition neintB;)
should be multiplied by to make it a multiple 6fiV. After finding the minimum for
each SIMDizable actor, the largest factor is chosen andfdheorepetition numbers are
scaled based on that. According to Equation (4.1), the itepethumbers of the graph in

Figure 4.1a must be scaled by 2 {£) before SIMDization.

48



Suppose that, after this adjustment of the repetition nusjlibe resulting repetition
number of an actod is m x SW. Then, MacroSS transforms the x ST sequential
executions ofA into m sequential executions ¢flV data-paralleld’s. Since several ex-
ecutions of the SIMDized actor will be running at the sameetionly stateless actors are
eligible for single-actor SIMDization. This kind of SIMDation can be applied to actors
D, E, andG in the example shown in Figure 4.1a. The code in Figure 4.2tilhtes how
single-actor SIMDization is performed for actatsand E. Ignoring the tape accesses, it
can be seen that the variables in the original actors areeplaicko vector variables and
computation functions are calculated on vector variabistead of scalar. Vector variables
are depicted byv suffixasint np_v[],t v andcoef f _.v[]. ActorsD andF originally
had repetition number of 12 and 8 and after SIMDization aexeted 3 times and 2 times
since each execution of the vectorized actors is in fact 4-fgatallel executions of the
original actors.

In the single-actor vectorization, the input and outpuétapf a vectorized actor are left
as scalar in two cases. First, the producer actor that filsrtput tape of the vectorized
actor is not SIMDizable. Second, the producer actor is vegzble but its push rate is dif-
ferent from the pop rate of the consumer actor. For similasoas, applying vectorization
to the tape between the vectorized actors and its consumet {gossible in some cases.
Therefore, the input and output tapes of a vectorized adioigusingle-actor SIMDization
are not vectorized and remain as scalar. In order to readite data elements in the cor-
rect order from the scalar input or output tapes in the vexdractor, the pops/peeks for
reading from the input tape and pushes for writing to the wiutape must be done in a

scalar fashion.
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for (i:0tol){ 1
t_v.{3}= peek©); Dv (3)
t_v.{2}= peeK4);
t_v.{1}=peek?2);

t_v.{0} = pop();
tmp V[i] = t_v* coeff_yi];
}
r0_v = sqrt(tmp_v[0] + tmp V[1]);

\lmm-bwwla&

}

8 rpush(r0_v.{3}, 6);

. 1 9 rpush(rO_v.{2}, 4;
0 for (i:0101){ D (12 10 rpush(ro_v.{1}, 2;
1 t=pop(); 11 push(r0_v.{0}, 0;
2 tmgi] =t* coeff[i];
3 } 12 r1_v=sqrt(tmp V(0] —tmp_\1]);
4 0 = sqrt (tmp[0] + tmp1]); 13 rpush(rl_v.{3}, 6);
5 push(0); i
E7‘> rlsT1 (S(f)t (tmp[O] - tmp[1]); \16 pushriv0); Y,
pusn(rl); /
6 x0_v.{3} = peek?9); E 21
v (2)
1 x0 v.{2}=peek®);
g xg_v.%}i peel(?):
6 X0 = pop(): E (8? X0_v.{0} = pop();
1 x1=pop(); 4 xLv.{3}=peek9);
2 x2=pop(); o A pee:
) x1_v.{1} = peek3);
3 resul{0] = x1* coqx0) +x2; 7 x1_v.{0}= pop();
4 resul{l] = x0* coqx1) +x2; B )
5 resul{2] = x1* sin(x0) + X2, § ii;igi; EiZEZ%;
6 resul{3] = x0* sin(x1) +x2, 10 x2_v.{1)= peek3);
7 for (i:0t03) 11 x2_v.{0}=pop();
Q push(resut[i] ); / 12 result_v[0] = x1_v* cogx0_V) +X2_y
13 result_v[1]=xO0_v* cogx1_\) +x2_v
14 result_v[2]=x1_v* sin(x0_y +x2_v,
l 15 result_v[3]=x0_v* sin(x1_y) +x2_v
16 for (i: 0to 3){
17  rpush(result_v[i].{3}, 12);
18 rpush(result_v[i].{2}, 8);
19 rpush(result_v[i.{1}, 4);
20 push(result_vl[i].{0});
Nl ; J
(@) (b)

Figure 4.2: This figure shows how single-actor SIMDization transforra®es D and £ into Dy,
and Dg. All the vector variables are concatenated withat the end. Part (a) of this figure shows
the code for actord) and E in scalar mode. Part (b) illustrates the vectorized versidmactors D
and E.

Lines 1-4 of Dy, in Figure 4.2b show the scalar tape read accesses. Aftdesntpr
vectorization, the thregeek () sand ongop( ) inlines 1-4 are induced from ompmp( )
in the original code, line 1 ob in Figure 4.2a. Thegeek() s andpop() s are reading
the scalar input tape for 4 $81') consecutive executions of the original actor and packing
those four read elements into a vector by writing each el¢toenlane of a vector variable.
The accesses to thi# lane of a vector variable are indicated lw {i }. After a vector is

formed from the scalar input tape in this way, the vector ilused for the computation
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in the rest of the actor’'s code. When the actor wants to wiia do the output tape, it
unpacks the data to scalar variables and pushes them toalae satput tape (lines 8-11
of Dy in Figure 4.2b). In other words, after each read and befoch eaite to tapes, a
SIMDized actor should perform packing and unpacking opamnat

Since the tapes are left as scalar and each tape read isa@ a1V tape reads after
single-actor SIMDization, it is necessary to perform stddeads to receive the right data
element for each of th&1W pops. The stride for each set 611 reads in a SIMDized
actor is equal to the pop rate in the original actor. For eXarmpFigure 4.2a, since the
pop rate of actoD is 2, thepop() inline 1 is converted into 4 stride-two input tape reads
as shown in lines 1-4 of Figure 4.2b. To read the scalar irgque in a non-destructive
way, peek() is used instead gfop() for the first 3 reads, and thgop() is used only
for the last read which also adjusts the read pointer of thatitape. For the same set of
reasons, the scalar output tape is written with a strideléqube push rate of the original
actor. In Figure 4.2b, lines 8-11 unpack vector varialflev and write each element to
the scalar output tape with a stride of 2, since the push ffateeooriginal actor,D, is 2.
The first 3 writes are done usimgndom access pusiperations that do not move the write
pointer of the tape (lines 8-10 and 13-15). Random acceds @peration are indicated
by rpush(data, offset) inthe code. The first argument opush() is the data
to write and the second argument is the offset from the wigiatpr of the output tape to
which the data will be written. The last write of each set oftes is performed using a
normal push operation which updates the write pointer otadpe.

In Figure 4.2, only the code for theork functions of D and E' is shown and thénit

functions are omitted. Actual vectorization of an actertark andinit method comprises of
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two parts: identifying variables and constants to be vértdrin an actor and rewriting the
actor by replacing the vectorized variables with vectoeases and fixing the tape accesses.
Identifying variables and constants to be vectorized camoéxhe fact that the tape reads
are the source of data for the variables used in the compuatasisignments inside an actor.
A variable definition (i.e.def) originating for a pop/peek is marked to be vectorized. For
other assignment statements, tiedis identified as vector if its right hand side contains all
variableuses marked as a vector. Also, a variabkethat is used with other vector variable
uses on the right hand side of a statement is marked as a vectoila8y, constants used
with other vector variableises are marked to be vectorized as well. For example, in line
2 of actorD in Figure 4.2at np[ ] is identified as a vector because the right hand side
variable,t , is written to bypop in line 1. After that,coef f[] is also detected as vector
because of on the right hand side. After identifying the variables, gtatements are
rewritten using the vector constructs. Also, the tape amesare replaced with strided
accesses at this point.

Single-actor SIMDization is not applicable to all the astar a stream graph. Actors
with mutable state (i.e. stateful) are excluded from siragitor SIMDization because it
is not possible to run multiple executions of them in patal&plitters and joiners at this
point are also excluded since they consist of only tape aamesrations without any sub-
stantial computation. Actors with function calls that act supported by the SIMD engine
are not SIMDized either. Input-tape-dependent control flog if statements with pop-
dependent conditions) or memory accesses (i.e. pop-depeaday subscripts) can also
prevent MacroSS from performing single-actor SIMDizatidine way MacroSS handles

the input-tape-dependent control-flow structures or mgnaacesses is by switching to
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scalar mode (unpacking) before the input-tape-dependerttigre and switching back to
vector mode after the pop-dependent structure is finishack{pg). MacroSS uses an in-
ternal cost model to decide if SIMDizing an actor with inpape-dependeirit or for-loop

structures is beneficial or not.

v
G for (work_counter0: 0 to2) { [3D ZE](D
1 for(i:0tol){ N
2 t_v.{3} = peek(18);
3 t_v.{2} = peek12);
4 t_v.{1} = peek(6); s
B0 5 t.v{0} =pop(); 3
peek=12, pop=12, 6 tmp_V[i] =t _v* coeff V[i; N
push=3 ZBJ 7 PVl =t i g
X 8  r0_v=sqrt(tmp_v[0] +tmp V{1]); o
k—ICO » ZC;; 9  vpush(ro_v);
= J;W’hp:o]p v 10 r1_v=sqrt(tmp_\{0] —tmp_\[1]);
11 vpush(rl_v);
12 } Y,
14 for (work_counterl 0tol) {
15 x0_v=vpop(); N
16 x1_v=vpop();
3D 2E
peek=6, pop=6, 17 x2_v=vpop();
push=8
18 resut_v[0] = x1_v* cogx0_\) +x2_v
19 resut_v{1] = x0_v* cogx1_\) +x2_v _
20 resut V(2] =x1_v* sin(x0_\) +x2_V 3
F 21 resut_v[3] = x0O_v* sin(x1_\) +x2 e
peek=4, pop=4, 3 M3 =X0_v7 sin(x1_y +x2_v >g
push 22 for (i:0t03){ g
L 23 rpush(result_v[i].{3}, 24} m
peck=4, pop=2, 4 24 rpush(result_v[i].{2}, 16)
push=38 25 rpush(result_v[i].{1}, 8);
26 push(result_v[].{0});
H 2 27 '}
peek=8, pop=38, 28 } J
@ : y
(a) (b)

Figure 4.3: Part (a) of this figure shows the stream graph in Figure 4.%arafertical fusion ofD
and E. Part (b) illustrates the vectorized code for the fused ad® 2F.

4.2.2 \ertical SIMDization

Each actor vectorized by single-actor SIMDization perferpacking and unpacking
at points where tape reads or writes are performed for conwatimg with producer and
consumer actors. The overhead introduced by the packingiapacking operations can

negatively affect the performance gains, even resultirgidwdowns in some cases. Verti-
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Figure 4.4: Part (a) shows scalar execution of actasand E. Part (b) shows the execution bf
and E after performing single-actor SIMDization. Part (c) illmates the order that data elements
are written to the tape in the main memory frdm The elements with the same colors are written in
one set of push operations. Part (d) is similar to (c) but f@ teads in actoF. Part (e) shows how
vertical SIMDization changes the execution order of actorand E. Parts (f) and (g) illustrate the
order that the elements are written to and read from the imiebuffer between the inner actof
and E.

cal SIMDization is introduced in MacroSS to overcome thisigdem by merging vertically
aligned vectorizable actors and reducing the number ofipg@nd unpacking operations.
In vertical SIMDization, pipelines of vectorizable actar®e detected and transformed into
a single actor. As long as the original actors in a pipelimevactorizable, and no actor per-
forms peek operations except the first and the last actoeipiteline, the resulting coarse
actor is guaranteed to be SIMDizable since the transfoonatoes not introduce state or
any other construct that may prevent SIMDization. The aagactors, which are encap-
sulated in the new coarse node, are calieter actors Figure 4.3 shows the stream graph

after applying vertical fusion to nodds and £’ and the resulting coarse act 2F.
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After vertical fusion, MacroSS adjusts the repetition nenstof all actors to guarantee
that they are all the smallest possible multiples of SIMDtwj&b'11/. This adjustment is
done in two steps. First, the repetition numbers of inneoracand the coarse actor are
changed. The repetition number of each inner actor will @itginal repetition number
multiplied by%. M is found by plugging the repetition numbers of the inner exioto

Equation (4.1). The repetition number of the coarse acwsei toﬁg‘,’. This guarantees

that the repetition number of the coarse actor is set to tijesapossible multiple or divisor
of SW. After doing this step for each vertically fused SIMDizahlgor, MacroSS applies
Equation (4.1) to the entire graph to ensure that repetitionber of all SIMDizable actors,
including the coarse actor, is multiple 8#1. In general, applying this method guarantees
that the repetition vector of the graph is scaled by the sagfiossible number. Using this
method, the inner actors fd» andE in 3D_2FE have repetition numbers of 3 and 2, while
the new node8SD_2F has a repetition number of 4. The pop rate3df 2F is set to 6,
which equals the original pop rate of the first inner actoy (nultiplied by the repetition
number of that inner actor. Similarly, the push rat@ bf 2F is set to 8. Note that the total
number of times thab and £ run after the fusion is exactly equal to the number of times
before applying fusion.

The graph resulting after vertical fusion will have coamsedes. The communication
between the inner actors of a coarse actor is done througmaitbuffers (i.e. arrays)
instead of global tapes. Transferring data between the impges can be completely done
using vectors since packing and unpacking are needed onilygdiape reads (pops) and
writes (pushes) of the new coarse node at the boundaries.m@irereason behind this

is due to the change in the relative execution ordebadnd £. This will be illustrated
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shortly using an example. At this point, single-actor Slid&ion can be applied to the
vertically fused actor. The code in Figure 4.3b shows how3HhMDization is applied to

the new actor. Since act8iD _2F has 6 pops and 8 pushes, the strides for accessing input
and output tapes ofD_2F are set to 6 and 8. These reads and writes from input and to
output tapes are performed, as described in Section 4.2rig peek, pop andr push
operations at the beginning and end3éf 2F (lines 2-5 and 23-26).

The reads and writes between inner actors are handledatitfer The previous scalar
tape writes ofD in lines 8-11 and 13-16 aby, in Figure 4.2b are now written using vector
writes as shown in line 9 and 11 of Figure 4.3b. Vector vadalf) v is written to the
internal vector buffer betweenner D andinner £ usingvpush(r 0_v) . Also, the scalar
tape reads of’ in lines 0-11 ofE, of Figure 4.2b are replaced with reads from the internal
vector buffer as in lines 15-17 B/ _2FE. Compared to the code generated after SIMDizing
D andFE separately, the vertical SIMDization technique in Macr@B®inates 24 unpack-
ing ([D’s repetition number] * [D’s push rate] * [SIMD width]) and 24 packing &]'s
repetition number] * [E’s pop rate] * [SIMD width]) operations.

Figure 4.4 shows the details of how vertical SIMDization rofpes the execution of
a stream graph and eliminates the packing/unpacking apesabetween the fused inner
nodes. Part (a) of this figure shows how actbrand E interact with each other in scalar
mode. SinceD has a push rate of 2 andl has a pop rate of 3, 12 invocations of actor
D feeds 8 invocations of actat (D; and E; denoteit” executions ofD and E, respec-
tively). In other words, every 3 consecutive execution®gfroduce enough data faf to
consecutively execute 2 times. The 24 elements producdd ae written to the tape in

order and read by in the same order. After performing single-actor SIMDiaatievery 4
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consecutive invocations @? is merged in actopy . The first execution of this new actor is
similar to executing’0, D1, D2, andD3 in parallel as shown in Figure 4.4b. Since every 3
consecutiveDs feeds 2F's, MacroSS needs to convert the vectors to scalars befdneseaic
of scalar strided writes to the output tape/otind then form vectors after each set of scalar
strided reads iF to guarantee thak' is receiving its data elements in the correct order.
Parts (c) and (d) of Figure 4.4 show the order that the push®&s-iwrite and pops infy,
read the data elements. If the pushe®iwere replaced by a vector push, then elements 0,
2, 4, and 6 would be written to the first row in memory. In thate& will receive its input

in the wrong order.

Vertical SIMDization applied td) and E replaces these 2 actors with ac8dp 2F.
After vectorizing this new actor, every 4 consecutive exiecis of 3D _2FE will be merged
together as shown in Figure 4.4e. Since each invocationi®faitior executes threBs
first (for-loop in line O of Figure 4.3b) and then twigs (for-loop in line 14 of Figure 4.3b),
running 4 of them in parallel will result in first runnin@>0, D3, D6, D9}, { D1, D4, D7.-
D10}, {D2, D5, D8, D11} and ther{ 0, E2, K4, E6} and{ F1, E3, E5, ET7}. Therefore,
because thés are generating their outputs in the same order agitheeed them, the
scalar tape between originadl and £ can be changed to vector buffers and extra pack-
ing/unpacking operations can be deleted. Figures 4.4f adgl ghow how the reads and
writes are done between internas andE's. As shown, the vertical SIMDization has elim-
inated the need to perform packing and unpacking betwitand £. In summary, vertical
fusion of vectorizable actors into a new coarse actor alwagslts in less packing and

unpacking operations because of the execution reordefitige anner actors.
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4.2.3 Horizontal SIMDization

As mentioned earlier, only actors without mutable state lmarSIMDized over using
single-actor and vertical SIMDization. Since an invocati a stateful actor depends on
the previous invocation of the actor, different invocat@annot be parallelized. Due to the
same reason, the existence of a stateful actor within aipgef actors or an actor whose
peek rate is greater than pop rate prevents MacroSS frorarperfg vertical SIMDization
because the actor resulting after vertical fusion will béséesul actor.

Horizontal SIMDization is an alternative approach takenMbgcroSS to vectorize a
set of task-parallel isomorphic actors when vertical amgjlst-actor SIMDization are not
applicable or result in inefficient SIMD code. First, Hontal SIMDization finds task-
parallel isomorphic actors by investigating eagdlit-join (i.e. a subgraph containing a
splitter and a joiner and all task-parallel actors betwdemt). After finding the candidates,
MacroSS horizontally SIMDizesW (SIMD Width) isomorphic actors by, conceptually,
executing them together side by side. Input (output) tapesl actors in a SIMDized
set are also SIMDized, making each scalar tape a lane $ifawide SIMDized tape.
Each actor in a SIMDized set still works on its own tape by ast®y each lane of the
SIMDized tape. Horizontal SIMDization is able to vectoriggteful actors as well as
stateless actors because the state variables are keptaredifvector lanes and updated
separately similar to the non-vectorized case. The répetiumber of the actors involved
in this kind of SIMDization, unlike vertical and single-actSIMDization, is not changed
and can be numbers that are not multipleS'of .

Horizontal SIMDization mainly targets task-parallsbmorphicactors insplit-joins.
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Two actors are called isomorphic if they have identigatk andinit functions with similar

or different constant literals. A set 6fi1” isomorphic actors can be horizontally SIMDized
as long as the following conditions are true: (1) all of theawédnthe same repetition num-

bers, (2) all of them have the sarpashandpoprates, and (3) all of them are at the same
level in a set of pipelines that are children o$galit-join. Actors B, to B3 and alsaC) to

(5 are considered isomorphic in Figure 4.1a.

Figure 4.5a shows aplit-join subgraph of the stream graph in Figure 4.1a in more
detail. Waves are used for depicting isomorphic actors dube lack of space. Shaded
actorsCy to (5 are stateful and can not be vectorized using any of the pusljianentioned
techniques. Although actoi8, to B; are stateless, fusing each of them with &eight
after them prevents MacroSS from performing vertical SikHdion on the fused actor.
Horizontal SIMDization can overcome this problem by forgnone SIMDized actor out of
actorsB, to B; and another SIMDized actor out of actarsto C3 as shown in Figure 4.5b.
Note that although the constants in line 6i)E are different in each actor, tligs are still
considered isomorphic because the constants can be wectdogether as shown in line 1
of actor By in Figure 4.5b.

Before horizontal vectorization, each pipelinefandC; actors works on a separate
set of scalar tapes highlighted by different shades in eigusa. Horizontal vectorization
SIMDizes this set of four scalar tapes into one vector tage (Hgure 4.5b)vpop() in
line 3 of By reads 4 data items at once from the vectorized input tape.lares of this
vector tape correspond 18,, B, B, and B; respectively. Similarlyypush() inline 8
pushes 4 data items at once to the vectorized output tapee &ipes are also vectorized,

no non-unit strided access usipgek() orr push() is needed. Horizontally vectorizing
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Splitter (4, 4, 4,4)

:

:

0 work{ Bo) (0 work{ B,
1 for(i: 0 to 2){ 1 for(i: 0 to 2){
2 a0=pop(); 2 a0=pop();
3 al=pop(); 3 al=pop();
4 a2=pop(); 4 a2=pop();
5 a3=pop(); 5 a3=pop();
6 r=@0*al+a2*a3)/5; 6 r=@0*al+a2*a3)/6;
7  push(r); 7  push(r);
8 } 8 }
9} ; D J
0 intstatd31]; Co)
1 intplace_holder O;
2 initf
3 for(i: 0 to 31)
4 state[place_holderk 0; 222 C
5
6 work {
7 push(state[place_holden}
8 state[place_holderk pop();
9 place_holdef+;
10} J

:

(@)

HSplitter (4)

(0 work {

@@m\:mmbwwn—‘

By
vector const_\= {5, 6, 7, 8};
for(: 0 to 2){
a0_v=vpop();
al_v=vpop();
a2_v=vpop();
a3_v=vpop();
r_v=(a0_v*al_v+a2_v*a3 )/ const_y
vpush(r_v);
}
} J

/0 vectorint state_y31]; Cy
1 intplace_holder 0O;

2 init{

3 vectorinttmp_v={0,0,0,0};

4  for(inti: Oto 31)

5 state_v[place_holder¥ tmp_y
6

7 work {

8 vpush(state_v[place_holde}]
9 state_v[place_holderk vpop();
10 place_holdef+;

L1} /

Figure 4.5: Part (a) and (b) show the graph before and after horizontéIBization, respectively.

tapes can greatly improve the final performance by replatiagcalar tape accesses with

vector accesses and, therefore, better utilizing the metmandwidth. ActorsB, to Bs,

originally had 96 pops (= [pop rates: 12] [repetition numbers: 2k [SIMD with: 4])

which is reduced to 24 vector pops (= [vector pop rates: . Zlepetition number: 2] )

after SIMDization. Similarly, the number of pushes/iis decreases to 6 vector pushes

from 24 pushes, and;’s 24 pops (pushes) drops to 6 vector pops (pushes). In detiera

number of tape accesses in the actors between a horizovealigrizedsplit-join structure

is always reduced by factor 6fi1/.

During horizontal SIMDization, MacroSS replaces the araisplitter and joiner with



horizontal splitter (HSplitterandhorizontal joiner (HJoiner) In a horizontally vectorized
structure, transitions between a scalar tape and vecterdapurs within the HSplitter
and HJoiner. The HSplitter reads from a scalar tape and pesfpacking operations and
writes them to its vectorized output tape. The HJoiner readsor data types from its input
and converts them to scalar before writing them to its scaligput tape. For example, in
Figure 4.5, before SIMDization, the splitter executes Gesrand, during each execution, it
conducts 16 pops from its scalar input tape and distribitegopped values between its
scalar output tapes in a round-robin fashion using scalsin pperations. After horizontal
vectorization, the new HSpilitter still executes 6 times #&ngerforms 16 pops from its
scalar input tape each time it executes. It forms 4 vectarsfihe 16 data elements using
packing operations and finally does a vector push to its vexttput tape. The HJoiner is
formed in a similar way, but instead of packing, it performpacking on the vector data it
reads from its input tape.

Horizontal vectorization of an actowgork andinit method comprises of two parts simi-
lar to single-actor SIMDization: identifying the vectorscarewriting the code for the actor.
First, MacroSS needs to identify variables and constamtgdctorization. The destination
of pop and peek operations are marked as vector variables, Akthe value of a constant
in an actor is different from that of a matching constant intaer isomorphic actor, the
constant should be raised to a vector constant that cortaeengalues of a matching con-
stant of SV actors. The vector variabteonst _v in line 1 of By in Figure 4.5b is created
from 4 different constants if, to B;. The identified vector variables and constants are
used as the seeds for marking the other vector variabletasitaisingle-actor SIMDiza-

tion. After marking is done, MacroSS rewrites the horizdpt&8IMDizable actors using
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the marked vectors and changes their input and output tapesctor tapes. Finally, the
splitter and joiner in the horizontally SIMDizabkplit-join are replaced with horizontal
splitter and joiner actors.

In summary, horizontal SIMDization is different from vexai and single-actor SIMDiza-
tion in several ways. First, horizontal SIMDization can Ippleed only to isomorphic ac-
tors. Second, unlike other techniques used by MacroSS) thaadle stateful actors. Third,
horizontal SIMDization does not affect the latency of thegr because there is no need to
scale the repetition numbers of the actors. Finally, usorigbntal vectorization, MacroSS
can transform the existing task-level parallelism amormgsbmorphic actors to data-level

parallelism.

4.2.4 Architecture Support for Tape SIMDization

In both single-actor and vertical SIMDization techniqueape accesses are left as
scalar. Converting these accesses to SIMD accesses riestdtsling or writing the data
elements in an order which is different from the scalar etienu Vertical SIMDization
reduces this overhead by replacing the scalar tape acdestye=en a pipeline of SIMDiz-
able actors that are fuse-able with vector accesses to emattbuffer. In this section,
two technigues that MacroSS uses to optimize the scalaraeqesses are discussed. The
first technigue uses a permutation based approach to tdngeivierhead of performing
packing/unpacking whenever data is communicated betwesdarsand vector parts of the
stream graph. The second technique shows how MacroSS califgithe read and write
accesses of data that moves between scalar and vectoriadt@resence of a unit called

the streaming address generation unit (SAGU).
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Vector Pops:
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Figure 4.6: This graph shows how 16 stride-4 tape reads in an actor aréaceu with 4 vector
pops and 8 permutation instructions

Strided Vectors:

Permutation-based Tape AccessesThe packing/unpacking overhead exists between
scalar and vector actors, suchfasndG, in the SIMDized graph in Figure 4.1b. MacroSS
optimizes these data conversions for actors whose pushmrc@ants are powers of 2
using two general architecture independent permutatienatipnextracteven(V1l, V2, R),
extractodd(V1, V2, R)Theextracteven( extractodd) operation takes two input vectors,
V1 andV2, and constructs a third vectadk, using even (odd) positions of the inputs. This
kind of permutation is supported by almost all SIMD standa(SISE, Altivec, Cell SPU,
Neon).

Assume an actor() has.X, pop accesses without any peeks. Each pop access is a load
operation followed by an add to adjust the position of thelneainter. After single-actor
vectorization on4, the stride for scalar pop accesses will¥g For example, actob in
Figure 4.1a originally had,, = 2 pops and after SIMDization the stride is 2 as well. This
stride guarantees that each set of scalar pops reads thelagtents from the input tape. If
a load instruction take§', cycles, ignoring the add operations, popping the elemeaois f
the input tape in actod,, actor A after SIMDization, take€’, x X, x SW cycles. The
other way that MacroSS can perform the same pop operatidosi®X, vector loads, and

then perform a set of permutations to form vectors identwahe case that the pops were
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in strided scalar format. MacroSS finds the minimum numbextfactodd andextract-
evenoperations to shuffle the elements in the vectors after tb®wpops. An example of
this is shown in Figure 4.6. Assume that MacroSS is tryinglld[Hze an actor with 4 pop
operations. Instead of performing 16 strided pop/peekaifmers, MacroSS can generate
4 vector pops and then use 8 permutation operatiorex{gctevenand 4extractodd)

to form the strided pattern. This reduces the 16 scalar Igetadions to 4 vector load
operations and 8 permutations. We ignore the savings desrtoval of address generation
operations.

In general, shuffling the elements &f,. vectors to get to the same number of vec-
tors each with elements strided at distanceXpffrom the original vector needs, /g, X,
extractodd and extractevenoperations [63]. The same formula can be used to find the
number of permutations that are needed to replace scalaiopypeek operations with their
vector equivalent. MacroSS compares the overhead of peirigrscalar tape accesses and
vector tape accesses to identify the cheaper solution.r Aftding the cheaper solution,
MacroSS transforms the tape accesses. The best solutiobecdifferent based on the
SIMD width, tape access strides, permutation cost, andrats/write access latencies.

Streaming Address Generation Unit: Exploiting permutation-based tape accesses
becomes harder when the push and pop rates are not powes of tine underlying archi-
tecture does not support the needed permutation instnsctla these scenarios, replacing
the strided scalar push or pop operations with vector vessio a vectorized actor forces
subsequent scalar consumer or producer actors to perfampler address calculations
to access the tape in the correct order. Although replatiagtalar accesses with vector

accesses reduces the number of memory accesses and a@desdign operations in the
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vector actor, the overhead introduced due to additionalesddcalculation operation in the
direct consumer or producer is non-trivial. The code in Fegdt7 shows how the address
calculation should be performed in scalar actors that ane@cted to vectorized actors in
which all the pushes are replaced with vector pushes.PidshCnts set to the push rate
of the vectorized actor. The overhead introduced by thisamd the Intel Core i7 is at

best 6 cycles on top of the memory access overhead assumitiglenback-to-back pop

operations.
( if (PushCnt - (BaseCntr-1) == 0 ) { j
1 BaseCntr = 0;
2 if (StrideCntr - (SIMD SIZE-1) == 0) {
3 StrideCntr = 0;
4 OffsetAddr = OffsetAddr + (PushCnt << LOG2 SIMD)) ;
5 } else { StrideCntr++; }

6 } else { BaseCntr++; }

7 OffsetValue = BaseCntr << LOG2 SIMD;

8 OffsetValue += StrideCntr;

] OffsetValue += OffsetAddr;

Q ResultAddr = OffsetValue + BaseAddr; j

Figure 4.7: This code shows the address calculation in a scalar actockvis the consumer of a
vectorized actor with vector pushes.

To deal with this problem, we developed the Streaming Add@eneration Unit (SAGU).
The SAGU is able to reduce the overhead cost of address atfmuin a scalar actor that
is connected to a vectorized actor, in which all the scatatedd tape accesses are replaced
with vector version, through a special functional unit tle@ids configuration data (push or
pop count) and holds internal state allowing for quick gatien of the required addresses.
Figure 4.8 shows the hardware of the SAGU. Conceptuallynwieetor pushes (pops) oc-
cur the writes (reads) are row based but the reads (write®)loeaccess tape in a column-
wise order to access the data elements in correct order.Sirite Counterpoints to the

column that needs to be accessed. BlaseCounterregister points to the row location
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in the current column that contains the data element neegéaebactor. TheOffsetAd-
dressregister offsets thBaseAddresdo the next set of vector data elements. Each scalar
pop increments thBaseCounter After the number of pops equals to tRashCount the
Stride Counterincrements in order to access the next column and#s=Counteris reset.
When theStride Counterequals theSW the Stride Counterresets and th©ffsetAddress
increments. The same operation occurs when scalar pushesed. When designing the
SAGU, we found that the largest push/pop count for SIMD tdasczonversion across all
the kernels was 16K. With a SIMD width of 4, this allows us te osly 16-bit calculations
throughout the unit except when we add the results to the dddwess register to generate
the effective address. Most of the operations occur in f@malaking the critical path two
16-bit operations and the 64-bit base address calculaiidhnen optimized, we find that
this unit will not be on the critical path allowing the addse=alculation to take the same
amount of time as other address calculation instructions.

e

| Stride_County

SIMD_Width - 1

A
| Log2(SIMD_Width) }—> >>

=]
16-bit Calculations

TeabitCaloulations | ~——

[ Loaded Values . Zero Detect
gr:sr:ﬂzlcsﬁgllsctifstants 5D Reset Result Address

Figure 4.8: This figure shows the hardware for the SAGU.

To use the SAGU, only minor modification to the ISA or hardwaeeds to be done.
Many ISAs like Intel x86 [43] and ARM [71] support multiple daessing modes which

can perform operations on multiple address registers.eléer available addressing mode
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configurations in these ISAs that we can modify to support3A&U addressing mode.
Effectively, this would be like performing a post-increrh@m an address register which
would be transparent to the programmer and architecture alternative to this technique,
if the ISA cannot support the addressing mode, would be toaaadher opcode to setup
the SAGU and to increment it. Before starting each scalasragte would perform a

SAGU setup and write the pop or push count. This would reseirternal counters to

0. After performing a pop or push operation, on the addregister we would execute a
SAGU increment to update the value to the next memory logaiitis would only require

2 additional instructions to the ISA and introduce 1 extrstrnction for each memory
operation in the program which would be far less than diyectliculating the address.
Because of the low co'sbf the SAGU and the speed of the calculation, multiple urais ¢

be implemented if needed with little to no overhead.

4.2.5 Implementation

MacroSS’s SIMDization algorithm can be divided into seVeiatinct phases. In this
section, a high-level overview of these steps are givenodigms 1 illustrates the overall
ordering of the macro-SIMDization phases in MacroSS fotieal, horizontal SIMDiza-
tion, and tape SIMDization. The remainder of this sectioplaxs each of the phases and
their relationship to one another.

Prepass Optimizations and SchedulingMacroSS applies a set of classic and stream-
ing optimizations and also performs scheduling beforetiatathe macro-SIMDization.

The classic and streaming optimizations mainly improvedberall performance of the

1Area overhead is less than 1% of the area of the Core i7. Thismeasured by synthesizing the
hardware model.
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Algorithm 1 Macro SIMDization Steps
Input: Stream Grapl®, Architecture Descriptior\
{Apply prepass classic and streaming optimizations andegorm scheduling on the gragh.
1 Prepass-Optimizations(G);
2 Prepass-SchedulingG);

{Find the segments suitable for vertical/horizontal S|\VdDian.}
3 (Gv, Gg) = Find-Vectorizable-SegmentéG, A.CostMode

{Adjust the repetition numbers and perform vertical SIMBima on the specified seg-
ments}

4 Adjust-Repetition-Numbers (G);

5 Vertically-SIMDize (Gy, A.CostModel

{Perform horizontal SIMDization after vertical is finishgd.
6 Horizontally-SIMDize (Gy, A.CostModeé}

{Apply Permutation-based optimizations and exploit SAGU.
7 Optimize-Tapes(G, A.CostModet

{Generate intermediate code for the specified tayget.
8 Emit-Intermediate-Code (G, A);

graph. The streaming optimization in some cases result ne fficient macro-SIMDization.
For example, static parameter propagation, which propaght values of the static read-
only variables of an actor to all of its instances, helps céia of isomorphic actors. The
steady state scheduling of the stream graph is also pertbasa prepass.

Identify Vectorizable Segments:In this phase, MacroSS examines the stream graph
and finds the segments of the graph that are suitable focakand horizontal SIMDiza-
tion. For vertical SIMDization, MacroSS starts from a segéctorizable actor. This actor
is added to an empty pipeline of vectorizable actors. ThearbBS examines the consumer
of that actor. If the consumer is also vectorizable and cafused with the original actor
without introducing state, it is added to the pipeline. Tikisepeated until the pipeline can

not be extended anymore. At this point, all the actors in thelme are marked for vertical
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vectorization and added Gy . Identifying horizontally vectorizablsplit-joins starts by
testing the eligibility of a giversplit-join based on the definition given in Section 3.3. If a
split-join passes the eligibility test it will be added®,.

One actor may be a member of baity andG . Since MacroSS applies one form of
SIMDization to any actor, it uses its cost model to choosetwygee of SIMDization (ver-
tical or horizontal) is more effective for the actors that ar bothGGy, andG . At the end,
MacroSS guarantees that the intersection of theGegtandG g is empty.

Vertical SIMDization and Repetition Number Adjustment: After finding the seg-
ments suitable for horizontal and vertical SIMDization, @SS adjusts the repetition
numbers of the actors as described in Section 4.2.2. Themctinal vertical vectorization
is performed. This parts fuses the pipelines of vectorzalgtors (/) found in the pre-
vious steps and changes them to vectorizable actors. Suegpe SIMDization is done as
a special case of vertical SIMDization when a pipeline oftegzable actor contains only
one actor.

Horizontal SIMDization: After vertical SIMDization, the steady state repetitiommu
bers are finalizedSplit-joins eligible for horizontal SIMDization are passed to this sha
and MacroSS changes the splitter and joiner actors to teizdntal versions. The state-
ments in the task-parallel actors between the splitter amaj are also merged to form
vector instructions.

Tape Optimization: After vertical and horizontal vectorization, MacroSS sbas for
opportunities to perform tape optimization that are disedsin Section 4.2.4. This phase
basically finds eligible set of reads or writes. Then, if itciseaper, MacroSS replaces

them with vector read or writes plus permutation instrutsiolf the target architecture is
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equipped with SAGU, MacroSS looks for cases where it can piodzd.

Code Generation: The final phase of macro-SIMDization deals with intermezl@ide
generation. In this phase, MacroSS maps the internal strepresentation to the target
specific code (C++ in this case) and uses available arcbhreeciependent intrinsics to bet-

ter utilize the target SIMD engines.

4.3 Comparison To Traditional SIMDization

Since MacroSS generates the intermediate code in a coamahimperative language,
such as C or C++, traditional vectorization techniques ¢smlae a viable approach to per-
form SIMDization on streaming applications. Traditionaktorization techniques mainly
consist of inner-most loop, outer loop, and superword Ipaehllelism extraction [3, 4, 64,
5, 51]. In this section, we try to compare MacroSS’s grapiell§IMDization to traditional
techniques and highlight the differences.

As streaming code gets converted to imperative intermediade, it gets harder to ex-
tract the high-level information that is available at thagrt-level. As a result, performing
effective SIMDization becomes very difficult for some astofecond, in some cases, tradi-
tional SIMDization is predicated on having complicatedgetally phase-ordered compiler
analysis that needs the code in a certain templated form.

One of the points that makes MacroSS’s SIMDization more pawéhan any other
vectorization technique on intermediate codes is thetghoi identify isomorphic actors
and perform horizontal SIMDization. At the graph level, Ma8S knows the relation

between the actors and can detect the task-parallel isdncoggtors by doing a graph
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Figure 4.9: In this graph the performance benefits of applying tradiloauto-vectorization,
macro-SIMDization, and both of them together are compareatt (a) shows the speedups when
GCC is used as the intermediate compiler. Applications irt il§ are compiled with Intel Com-
piler (ICC).

traversal. Performing the same task on the intermediate isodomplicated. To find the
isomorphic actors, the auto-vectorizer needs to extradiatbk graph and then compare the
source code for the actors. Both of extracting the task gasmplhmatching source code can
be obfuscated by other optimizations.

The other issue that may disable auto-vectorization ofritexinediate code is inability
to adjust the schedule of the task graph. One of the main périse schedule is the
repetition numbers. MacroSS can intelligently scale tipetiion numbers as needed by
the SIMDization. Since the repetition numbers affect maagtgpof the generated code
such as buffer (i.e. tape) allocation, and for-loop boudathey are not easily possible to
adjust after generation of intermediate code.

Vertical SIMDization is another technique that MacroSSsuseperform vectorization.
Even though performing vertical fusion on selected actsris itheory possible on inter-
mediate code, it needs complex transformations and comguilalysis such as memory

aliasing analysis, loop distribution, and loop relatioralgeis. MacroSS does not need
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these complex transformations and analyses since, ataipé-gevel, aliasing information
and the relation between across is already embedded.

Although we are not proposing any universal partitioningrapch that can handle both
SIMDization and multi-core partitioning, performing veadization on the high-level graph
makes it possible for the partitioner and mapper parts atiteaming compiler to be able to
make SIMD-aware decisions. This can lead to finding moreieffigraph partitioning and
mapping decisions. Since the intermediate code is alreaditipned without considering
possibility of SIMDization, it under-performs the macrivibized code even after auto-
vectorization.

In summary, MacroSS’s SIMDization techniques are moreieffithan auto-vectorization
approaches because MacroSS has the ability to decide wtiictsare suitable for what
kind of vectorization at the graph-level, transform thepiraadjust the schedule accord-
ingly and generate permutation instructions based onsotad and write characteristics.
Performing the same tasks during auto-vectorization gieeration of intermediate code

is difficult.

4.4 Experiments

In this section, macro-SIMDization techniques in Macro&Sewvaluated and compared
against traditional techniques to perform auto-vectdioreon languages. Also, the effec-
tiveness of vertical and horizontal SIMDization is showheTperformance benefits of the
streaming address generation unit is measured and prddarttas section. Finally, the

interaction between macro-SIMDization and multi-coreezhifling is discussed.
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Methodology: A set of benchmarks from the StreamlIt benchmark suite [79%&x to
evaluate MacroSS. The benchmarks are compiled and evdloata 3.26 GHz Intel Core
i7 processor. The Intel Core i7 is used because it is equippidhe latest version of the
SIMD engine from Intel, SSE 4.2.

MacroSS implementation is based on the StreamlIt compilee. fhacro-SIMDization
steps are implemented as a separate compiler backend. Tjha ofi MacroSS is C++
code. To convert the generated C++ to x86 binary, GCC 4.3488]Intel Compiler (ICC)
11.1 [44] are used. Both of these compilers are capable @dpeing aggressive optimiza-
tions and also auto-vectorization on C++ code. ICC is cansidi one of the best for its ca-
pabilities in performing inner-most, outer-most loop angerword-level parallelism vec-
torization. GCC also supports auto-vectorization for x86cpssors and is widely used to
compile C/C++ for Intel processors. In order to isolate theddits of macro-SIMDization,
all the experiments are performed using only one core of thegssor except in the last
experiment where we show performance benefits comparedItplawgores.

The original Streamlt backend in MacroSS is used to genénatbaseline scalar inter-
mediate C++ code. The baseline intermediate code is cothyuilg86 binary using GCC
or ICC with aggressive optimization flags enabled. The asittorization pass in these
compilers is used to perform traditional auto-vectoratbn the generated C++ code. To
macro-SIMDize streaming applications, the new backend &efdSS is used to generate
macro-SIMDized intermediate C++ code using target speedator types and intrinsics.
For measuring the performance of the generated binary tHerpgnce counters on the
Intel Core i7 are exploited.

Overall Performance: The set of Streamlt benchmarks is compiled using macro-
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SIMDization and compared against ICC’s and GCC'’s autoerezdtion. ICC and GCC are
the leading auto-vectorizer compilers for Intel archibees capable of applying complex
vectorization techniques proposed in the literature. Egu9 illustrates how MacroSS’s
techniques perform compared to traditional auto-vecabion techniques. Figure 4.9a
shows performance comparison between GCC’s auto-veethrimacro-SIMDized and
auto-vectorized macro-SIMDized code. Figure 4.9b costdire same comparison for
ICC. In both cases, macro-SIMDization achieves highergoerdnce gains compared to
auto-vectorization. On average, macro-SIMDization invesothe final performance by an
additional 54% and 26% compared to GCC and ICC auto-veetiooizs. Applying both
macro-SIMDization and auto-SIMDization can improve thef@enance by another 1.5%
and 2.2% in benchmarks compiled using GCC and ICC. The osky tteat traditional auto-
vectorization outperforms macro-SIMDizationkEMRadioon ICC. In this special case,
ICC performs inner-loop vectorization on the main for-ldophe code which results to
aligned memory accesses but MacroSS’s macro SIMDizatguiteein unaligned memory
accesses. Itis possible to make MacroSS leave this forfmapner-loop vectorizer since,
during macro-SIMDization, it knows inner loop vectorizatiwill be more efficient in this
special caseBeamFormerandFilterBankmainly consists of several pipelinessylit-join
structures with isomorphic task-parallel actors. It ispassible to collapse these pipelines
into one pipeline because they have stateful actors. Tdrerethe speedups in these two
benchmarks are mainly due to horizontal vectorization. ummary, GCC shows unim-
pressive gains using auto-vectorization. Although, ICGwahfairly large gains (1.34x on
average), MacroSS’s techniques result in even larger d2i03x on average). Having

access to global information enables MacroSS to achievéfisignt speedup.
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Effect of Vertical SIMDization: Vertical SIMDization is one of the main techniques
that MacroSS uses to perform vectorization on streaminghgraFigure 4.10 illustrates,
the effectiveness of this type of SIMDization. In this expent, the baseline is a stream-
ing graph macro-SIMDized with only single-actor SIMDizatiand compiled with GCC.
As shown in the figure, vertical SIMDization, on average, lioyes the performance of
the baseline by 40%Matrix Multiply Block benefits the most because the vertical fusion
of SIMDizable actors eliminates a large number of packingacking operations. With-
out vertical fusion, macro-SIMDization in this benchmarbuwid result in significantly less
speedup then that shown in Figure 4.9a. The benefiflterBank and BeamFormerare
very negligible because these benchmarks are vectorizetlynsing horizontal vector-
ization. InFMRadioandAudioBeanthe opportunity for performing vertical SIMDization
is very small because most of the vectorizable actors iretheachmarks are isolated from

each other and do not form a pipeline.

Performance Benefits ofVertical SIMDization
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Figure 4.10: This graph shows percent speedup due to vertical SIMDizatampared to single-
actor SIMDization.
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Streaming Address Generation Unit: MacroSS utilizes the SAGU to eliminate the
packing/unpacking overhead and also improve memory battbwitilization when data is
crossing scalar and vector boundaries in a stream graphvaloage the benefits of the
SAGU, we use the performance counters on the Intel Core ihtbthie overheads intro-
duced by packing and unpacking operations and also scalapbmeaccesses. Figure 4.11
illustrates the effect of utilizing SAGU. The baseline instlygraph is macro-SIMDized
code. On average, this unit can improve the final performafidcee macro-SIMDized
benchmarks by 8.1%. The performanceMutrix Multiply andDCT are improved 22%
and 17% respectively because they perform a large numbeadaking/unpacking oper-
ations and scalar memory reads and writBeamFormershows the least improvement
because almost all the speedup in this benchmark is due iwohtal SIMDization.MP3
Decoderis also not affected by the SAGU because its computationmaoenication ratio
is very high and the packing/unpacking operations do nate€ausubstantial performance
overhead.

Multicore and Macro-SIMDization: Implementing a scheduler to decide how to par-
tition a stream graph between multiple cores and also ussIMP engines is a non-trivial
task. Partitioning and mapping decisions taken by a naiviidtwre scheduler may re-
duce the SIMD opportunities. In this section, we show coregarely estimated numbers
on how a simple SIMD-aware multi-core scheduler/partgioperforms. The scheduler
we use in this experiment first performs multi-core pantitng and then performs macro-
SIMDization. This approach reduces the opportunities #fgrming vertical fusion and
also horizontal SIMDization. If multi-core partitioningmoves most of the benefits of the

SIMDization and the scheduler has to choose between SIMiDizand multi-core execu-
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Figure 4.11: This graph shows how SAGU can improve the performance of aor®iMDized
graph.

tion, it always chooses SIMDization because it reduces nmgiceche traffic and commu-
nication overhead between the cores. Since the multi-atredsiler does not consider the
possible benefits of vertical fusion and horizontal SIMBi@ain several benchmarks, the
performance benefits of SIMDization is reduced comparedgorE 4.9. Therefore, these
numbers are conservative estimates of the performancel®MR-8ware multi-core sched-
uler. As shown in Figure 4.12, the performance benefits adré-execution is within 5%
of macro-SIMDized 2-core execution. Exploiting the SIMDOgeres increases the speedup
from 1.28x to 2.03x in 2-core schedule and from 1.85x to 3.ib74-core schedule. For
Matrix Multiply andMatrix Multiply Block the scheduler prefers to only use the SIMD en-
gines because multi-core partitioning, in this case, léadsgh inter-core communication

overhead.
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Figure 4.12: The performance benefit of SIMDization in case a graph isdidied for multi-core
is shown in this graph.

45 Related Work

There is a large body of literature that deals with explgitparallelism in streaming
languages for better performance [79, 13, 16]. The mosvaateworks include stream
graph refinements to extract coarse-grain task-level;ldat and pipeline parallelism and
map them onto multi-core architectures [26, 25]. Authorgl®] applied modulo schedul-
ing to task graphs for maximizing pipeline parallelism atso multi-core architectures.
Our work is distinctively different from and complementaoythese previous works in its
ability to exploit SIMD parallelism and generate SIMD ereblcodes for various archi-
tectures. Vertical SIMDization focuses on fine-grain SIM&radlelism, while horizontal
SIMDization transforms task-level parallelism to SIMD akelism.

Auto-vectorization and SIMD code generation were studigéresively in the litera-
ture. The seminal work of Allen and Kennedy on the Paralleti&a Converter [3, 4] set

the grounds for most of the work on auto-vectorization thlbéved. For targeting a variety
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of SIMD architectures and solving severe problems thaeaspecifically data alignments
and permutations, a large number of studies has been caud8zt, 69, 63, 62, 51, 20].
All these techniques can be applied to the generated intbateecode of streaming ap-
plications. However, our work is unique in that vectorinatis applied on a higher level
of representation of the program, which enables us to atiilobal information such as
execution rates of actors and exposed data communicatorgeherating better vector-
ized codes. In contrast to focusing on local structures lbkg nests and basic blocks,
our macro-SIMDization leverages the streaming applicatistatic characteristics, such
as static schedules and pre-defined data access patterns.

There has been recent work [60] on generating efficient petion instructions based
on Streamlt, but for only one specific SIMD device (VIRAM). BtaSS provides efficient
SIMDization for streaming applications which is flexibledgmortable enough to be applied
to a variety of SIMD architectures.

Vectorizing computations that access non-unit stride aettivated the development of
the SIMdD (Single Instructions on Multiple disjoint Datapdel and SIMdD architectures,
such as the IBM eLite DSP[58]. Such architectures bettepesdmon-consecutive data
accesses via vector pointer hardware. Tuned for streanpiplgcations in which non-unit
strides are statically known and fixed for the entire executif an actor, our architectural
support, SAGU, is simpler and entails smaller overheads Wizat is available in general

SIMdD architectures.
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4.6 Summary

As SIMD-enabled multi-core systems become ubiquitouss itritical for program-
ming languages and compilers to be able to flexibly targdt bo¢ SIMD and multi-core
aspects of these architectures. Several retargetabéerstrg languages, such as Streamlt,
have been proposed to exploit parallelism across the cdiesse languages apply tradi-
tional auto-vectorization to the imperative intermedictee (e.g. C/C++) to target SIMD
engines. In many cases, applying auto-vectorization togreerated intermediate code
results in under-utilization of SIMD engines because muicthe high-level information
available in the streaming application, such as data-fldarmation and the set of valid
schedules, is not used by the auto-vectorizer.

In this work, we introduce macro-SIMDization: a techniqwe ¥ectorizing stream
graphs using the high-level information available in stne®y programs. A new compila-
tion system, MacroSS, is developed to show the benefits ofo¥aldVIDization compared
to traditional SIMDization techniques. MacroSS utilizasste new techniques to achieve
high utilization of the SIMD engines: single-actor, vealicand horizontal SIMDization.
Architectural support for tape optimizations, using gah@ermutation operations and a
streaming address generation unit (SAGU) is also discussedoart of this work.

Our results show that MacroSS is capable of improving théop@ance of streaming
applications by an average of 54% and 26% compared to aagtorizers in GCC and Intel
compiler, respectively. In the experiments, we also evellihow the SAGU can improve
the performance on average by an additional 8.1% by elimmggtacking/unpacking op-

erations between scalar and vector actors. Finally, we gshevwperformance benefits of
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macro-SIMDization in the presence of a naive multi-coreesither for streaming appli-
cations. Even with a naive multi-core scheduler, we esentlaat we can achieve better
performance than a 4-core Intel Core i7 on only 2-cores uSiMp. The results indicate
that performing macro-SIMDization can significantly impeahe performance of stream-
ing applications and extend their retargetability by mgkiinem more suitable for SIMD

programming.
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CHAPTER YV

Portable Stream Compilation for GPUs

5.1 Introduction

Among the multitude of vastly different solutions offeregl bardware companies,
graphics processing units (GPUs) have been shown to preiphéficant performance,
power efficiency and cost benefits for general purpose camgpirt highly parallel com-
puting domains. Recently, heterogeneous systems thatioenraditional processors with
powerful GPUs have become standard in all systems rangamg $ervers to cell phones.
GPUs achieve their high performance and efficiency by progid massively parallel ar-
chitecture with hundreds of in-order cores while exposiagfielism mechanisms and the
memory hierarchy to the programmer. Recent works have shibatmin the optimistic
case, speedups of 100-300x [67] and in the pessimistic sasedups of 2.5x [54] have
been achieved between the most recent versions of GPUs cedrtpahe latest processors.
Maximizing the utilization of the GPU in heterogeneous sy will be key to achieving
high performance and efficiency.

While GPUs provide an inexpensive, highly parallel systemdccelerating parallel
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workloads, the programming complexity posed to applicatievelopers is a significant
challenge. Developing applications to utilize the massempute power and memory
bandwidth requires a thorough understanding of the algoriand details of the under-
lying architecture. Graphics chip manufacturers, such YtDINA, have tried to allevi-

ate the complexity problem by introducing user-friendlpgmamming models, such as
CUDA [65]. Although CUDA and other similar programming mdslabstract the under-
lying GPU architecture by providing a unified processor nhog&naging the amount of
on-chip memory used per thread, the total number of threadsnpltiprocessor, and the
pattern of off-chip memory accesses are examples of prabileat developers still need to
manage in order to maximize GPU utilization [70]. Often thegzammer must perform a

tedious cycle of performance tuning to extract the desiertbpmance.
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Figure 5.1: This graph shows the runtime of a kernel optimized for aechitres with different
number of registers on a GeForce GTX 285 which has the mogbawuoh registers. The kernel used
in this graph is organized in 128 blocks each with 256 threads

Another problem of developing applications in CUDA is thedaf efficient portability

between different generations of GPUs and also betweenogtephocessors and GPUs in
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the system. Different NVIDIA GPUs vary in several key miagehitectural parameters
such as number of registers, maximum number of active teremttl the size of global
memory. These parameters will vary even more when newergeglormance cards, such
as NVIDIAs Fermi [66], and future resource-constrainedait®GPUs with less resources
are released. These differences in hardware lead to adtiffeet of optimization choices
for each GPU. As a result, optimization decisions for oneegation of GPUs are likely
to be poor choices for another generation. An example ofigh&own in Figure 5.1.
This figure shows a CUDA kernel that requires 78 registerghrerad, running with 128
blocks of 256 threads per block on an NVIDIA GeForce GTX 285%isTgraph shows
how the runtime (lower is better) would change if the benctkmeaas optimized for GPU
architectures with less than 16K registers available om eieaming multiprocessor of
the GTX 285. For example, if this kernel is compiled for GefeoB8400 GS, it will use
32 registers per thread since there are 8K registers alailabthe 256 threads in each
block on that architecture. Data elements that do not fit énstimaller register file will be
spilled to the slower parts of the memory hierarchy causergopmance degradation. In
short, CUDA code must be separately customized for eaclett&&U as the choice of
optimizations for peak performance is typically sensitv¢he hardware configuration.
One solution to the GPU programming complexity is to adopighér level program-
ming abstraction similar to the stream programming modeé& Jtreaming model provides
an extensive set of compiler optimizations for mapping ateeduling applications to var-
ious homogeneous and heterogeneous architectures ([289P6 The retargetability of
streaming languages, such as Streamlt [79], has made thexcahent choice for paral-

lel system programmers in shared/distributed memory ded &rchitectures. Streaming
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language retargetability and performance benefits on dg@eous systems are mainly a
result of having well-encapsulated constructs that expasallelism and communication
without depending on the topology or granularity of the uhdeg architecture.

GPUs are important drivers for current and future heteregas systems, therefore
extending the applicability of streaming languages to GRlUsdvantageous for several
reasons. First, streaming, which expresses programs gharlevel than CUDA, enables
optimizing and porting to different generations of GPUs aptiveen different topologies
of CPUs and GPUs. Second, exposed communication in strggrograms help the com-
piler to efficiently map data transfers onto different meyrfuerarchies. Finally, streaming
applications can be tailored for any number of cores andcdevby performing graph re-
structurings such as horizontal or vertical fusion or fissdbactors.

In this work, we introduc&pongea streaming compiler for the Streamlit language that
is capable of automatically producing customized CUDA cfudea wide range of GPUSs.
Sponge consists of stream graph optimizations to optinnieetganization of the compu-
tation graph and an efficient CUDA code generator to exptesparallelism for the target
GPU. Producing efficient CUDA code is a multi-variable opsation problem and can be
difficult for software programmers due to the unconventi@nganization and the interac-
tion of computing resources of GPUs. Sponge is equipped avitht of optimizations to
handle the memory hierarchy and also to efficiently utillze processing units.

The Stream-to-CUDA compilation in Sponge consists of faaps. First, Sponge per-
forms graph reorganization and modification on the streaplgand also classifies actors
based on their memory traffic. The classification informati® used throughout all the

phases of the compilation. Second, memory layout optinuaatare performed. These
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optimizations are designed to enable efficient utilizabbthe memory bandwidth. In this
phase, Sponge decides if actors should use the faster bliésorachip memories or the
slower but larger off-chip memory on the GPU. Also, techeisjauch akelper threadsind
bank conflict resolutioim the context of Streamlt are introduced to increase theieffcy

of memory accesses. The third compilation phase deals witi size granularity of each
thread. In this step, based on the classification informédtiam step one, Sponge tries to
create larger threads by fusing producer/consumer acatavsdier to reduce communica-
tion and kernel call overheads. Finally, software prefietgland loop unrolling are used
to exploit unused registers to decrease loop control coéehead and increase memory
bandwidth utilization.

In summary, this part makes the following contributions:

e Extending applicability and portability of synchronougsatlow languages, specifi-

cally Streamilt, to GPUs.

e Streaming-specific optimizations for CUDA and generic CUDgtimizations for

streaming applications.

e Discussion of the limitations of Streamlt as a GPU progranghanguage.

The rest of this chapter is organized as follows. In Sectidn the stream programming
model, the input language (Streamlt), and the CUDA progrargrmodel are discussed.
Portable stream compilation in Sponge and its optimizateme explained in Section 5.3.
Experiments are shown in Section 5.4. A comparison betweemand-optimized CUDA

benchmarks and their Streamlt implementation is done iti®@eb.5. Related works are

discussed in Section 5.6. Finally, Section 5.7 containstimemary.
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Figure 5.2: CUDA/GPU Execution Model

5.2 CUDA and GPUs

The CUDA programming model is a multi-threaded SIMD modeit thnables imple-
mentation of general purpose programs on heterogeneougCGPRUsystems. There are
two different device types in CUDA: the Host processor arel@PU. A CUDA program
consists of a host code segment that contains the sequesdtadns of the program, which
is run on the CPU, and a parallel code segment which is lauhithen the host onto one
or more GPU devices. Data-level parallelism (DLP) and tthiesel parallelism (TLP) are
handled differently in these systems. DLP is converted irit® and executed onto the
GPU devices, while TLP is handled by executing multiple késron different GPU de-
vices launched by the host processor. The threading and rgeahstraction of the CUDA
model is shown in Figure 5.2.

The threading abstraction in CUDA consists of three levélkierarchy. The basic
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block of work is a singlehread A group of threads executing the same code are combined
together to form dhread blockor simply ablock Together, these thread blocks combine
to form the parallel segments callgdids where each grid is scheduled onto a GPU at a
time. Threads within a thread block are synchronized tagdtirough a barrier operation
(__syncthreads()). However, there is no explicit software or hardware supfmrsyn-
chronization across thread blocks. Synchronization betwtbread blocks is performed
through the global memory of the GPU, and the barriers neéateslynchronization are
handled by the host processor. Thread blocks communicagedmuting separate kernels
on the GPU.

The memory abstraction in CUDA consists of multiple levdihierarchy. The low-
est level of memory isegisters which are on-chip memories private to a single thread.
The next level of memory ishared memorywhich is an on-chip memory shared only
by threads within the same thread block. Access latency tio the registers and shared
memory is extremely low. The next level of memoryasal memorywhich is an off-chip
memory private to a single thread. Local memory is mainlydusespill memory for local
arrays. Mapping arrays to shared memory instead of spilbrigcal memory can provide
much better performance. Finally, the last level of memeylobal memorywhich is an
off-chip memory that is accessible to all threads in the.gFisis memory is used primarily
to stream data in and out of the GPU from the host processae. Iatency for off-chip
memory is 100-150x more than that for on-chip memories. Tihelomemory levels exist
on-chip called théexture memorynd constant memory Texture memory is accessible
through special built-in texture functions and constantmogy is accessible to all threads

in the grid.
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The CUDA programming model is an abstraction layer to acG#3ds. NVIDIA GPUs
use a single instruction multiple thread (SIMT) model of @ten where multiple thread
blocks are mapped to streaming multiprocessors (SM). Edtlc@tains a number of
processing elements called Streaming Processors (SPyeAdtlexecutes on a single SP.
Threads in a block are executed in smaller execution grotifg@ads calledvarps All
threads in a warp share one program counter and executertteeisatructions. If con-
ditional branches within a warp take different paths, chtentrol path divergencethe
warp will execute each branch path serially, stalling tHeeopaths until all the paths are
complete. Such control path divergences severely deghadeerformance.

Because off-chip global memory access is very slow, GPUp@tipoalesced memory
accesses Coalescing memory accesses allows one bulk memory refoestmultiple
threads in a half-warp to be sent to global memory insteadufiphe separate requests.
In order to coalesce memory accesses, three general tiesisiapply: each thread in a
half-warp must access successive addresses in order dirdedtnumber, the memory
accesses can only be 32, 64, or 128-bit, and all the addressstde aligned to either 64,
128 or 256-byte boundaries. Effective memory bandwidtmismer of magnitude lower
using non-coalesced memory accesses which further sigtiifeeimportance of memory
coalescing for achieving high performance.

In modern GPUs, such as NVIDIA GTX 285, there are 30 SMs eatih 86Ps. Each
SM processes warp sizes of 32 threads. The memory sizesi$oGPU are: 16K of
registers per SM, 16KB divided into 16 banks of shared menperySM, and 2GB of
global memory shared across all threads in the GPU.

We use the Streamlt programming language to implementsinggprograms. Streamlt

89



is an architecture-independent streaming language bas&D6&. The language allows a
programmer to algorithmically describe the computatiaraph. In Streamlt, actors are
known as filters. Filters can be organized hierarchicaltp pipelines(i.e., sequential
composition) split-joins (i.e., parallel composition), anféedback loop§.e., cyclic com-
position). Streamlt is a convenient language for desagilsineaming algorithms, and its

accompanying static compilation technology makes it sletéor our work.

5.3 Portable Stream Compilation

Sponge takes Streamlt programs as its input and generatésgdeific CUDA code.
Each actor in the Streamlt graph is converted to a CUDA ketmeling with some number
of threads and blocks. By performing portable stream caatipih, Sponge decides how
many threads and blocks to assign to the CUDA kernel gertefateeach actor. The input
buffer size of the first actord;, in the graph determines how many times that actor has
to run (R;). As a result,R; is changed tak; divided by the multiplication of number of

threads and blocks assigned to the actor. We call the nesalber of iterationgor actor
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Figure 5.3: Compilation flow in Sponge.
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ThreadsPerBlock X ActiveBlocksPerSM
ActiveWarpsPerSM = (5.1)
THREADS_PER.WARP

InputBuf ferSize
Iterations = (5.2)
Pop X ThreadsPerBlock X Blocks

SHARED_MEMORY_SIZE
ThreadsPerBlocky,7 = (5.3)
(Pop + Push)

Complnsts x COMP_INST_ISSUE_DELAY ThreadsPerBlocky,,r X Iterations

ExecCycles = X 5.4
yeresLor NUMBER. SM ActiveW arpsPerSM 64
ThreadsPerBlock ;T MAX_THREAD_PER_BLOCK (5.5)
MemCycles = (UncoalMemlInsts + CoalMemInsts/COAL_.FACTOR)
XMEMORY_DELAY + MEM_INST_ISSUE_DELAY (5.6)
MemCycles ThreadsPerBlockg; X Iterations
ExzecCyclesyg,7 = X (5.7)
NUMBER.-SM ActiveWarpsPerSM
Name Description
SHARED_MEMORY_SIZE Size of shared memory on GPU

THREADS_PER_-W ARP Number of threads in each warp
NUMBER_SMs Number of streaming processor on GPU
MAX_THRFEAD_PER_BLOCK Max number of threads allowed per block
MEMORY_DELAY Number of cycles to access global memory

COAL_FACTOR

Max number of memory accesses that can be coal

MEM_INST_.ISSUE_DELAY

Number of cycles to issue a memory instruction

COMP_INST_ISSUE_DELAY

Number of cycles to issue a compute instruction

pop, push push and pop rate of an actor

InputBuf ferSize Size of input buffer for an actor
ThreadsPerBlock Number of threads in one block

Blocks Number of blocks on the GPU

Iterations Number of iterations to run an actor on the GPU
ActiveBlocksPerSM Blocks active on one SM
(Un)CoalMemlInsts (Un)Coalesced instructions in one actor

Figure 5.4: In this Figure, equations for calculating execution cyotddoth HiT and LoT actors
are shown. Equations 5.1 and 5.2 can be used for both HIiT afiddctors. The table summarizes
what each variable means.

A;.

Portable stream compilation iBpongeconsists of four main steps as shown in Fig-
ure 5.3. In the first phase, Sponge reads a Streamlt progrdnpenformsActor Reor-
ganization and Classificatiom which simple graph reorganization is done and actors are
classified into two categoriestigh-Traffic (HiT) and Low-Traffic (LoT)The classification
information is used throughout all the phases of the cortipiiglow. The second phase
deals with thevlemory Layout and Optimizatiaf each actor. This step decides if an actor
uses shared or global memory, eliminates shared memorydumenflicts and also improves
memory performance by introduciitglper Threadso better utilize the unused processors

and bring the data needed by an actor into shared memory.fasie compilation step is
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crucial to achieving better performance since memory badithwcan be a limiting fac-
tor on GPUs. The third phase perfort@saph Restructurindpy changing the granularity
of the kernels and vertically fusing actors based on clasgiéin results. After graph re-
structuring, the compiler reiterates from the beginninthefcompilation flow, treating the
post-fused stream graph as the input until no more graphruasting is possible. Finally,
Register Optimizatiotries to utilize unused registers on each SM by employing\sot

prefetching and also by unrollirfgr loops in each kernel.

5.3.1 Actor Reorganization and Classification

As mentioned in Section 5.2, GPUs are built for data-levehlpelism and are not
suitable for task-level parallelism and global synchratian. Thereforesplitter-joiner
structures will not perform well on the GPU since each join&oduces a synchronization
point. First, Sponge collapssslitter-joiners to one actor in cases that the actors between
thesplitter andjoiner are stateless and equivalent. This will removedpktter andjoiner
actors and replace the structure with a single actor. Inscagere it is not possible to
collapse asplitter-joiner structure to one actor, Sponge treats $ipéitter and joiner as
special actors with more than one input and output. Baseti®type and weights of the
splitterandjoiner actors, Sponge decides to allocate their input and outgigrisun shared
memory or global memory.

Sponge excludes stateful actors from being executed onRtedhd runs them on the
host CPU. This is because only one instance of a statefut aato be active and data-
parallelism is not applicable to these actors. Host to GPd)@RU to host transfers are

inserted before and after stateful actors, if necessary.
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Next, Sponge classifies actors assigned to the GPU as eiidjierTraffic (HiT) or Low-
Traffic (LoT). HIiT actors have a large number of memory acess3 hese actors perform
better on a GPU if their buffers are mapped to global memadterahan shared memory
because mapping the buffers to shared memory will resulauing too few threads and
under-utilizing the processors and the available memondwadth. LoT actors, on the
other hand, are mostly computation dominated and if mappstidred memory will have
a reasonable number of threads to utilize the GPU.

In order to determine if an actor is a LoT or HiT, Sponge estamaxecution cycles
of an actor for both global memory (HIiT) and shared memoryT(Lmappings, based
on Equations 5.1-5.7 in Figure 5.4. For each actor, Sporeggstithat actor as both HIT
and LoT and calculates the corresponding execution cyélesdCyclesr, ExecCycle-
spir)- The two numbers show if that actor is suitable to be treasea LoT or HiT actor. If
ExecCyclesy;r is smaller tharExecCyclesy,r for an actor, that actor will perform better
if its buffer is mapped to global memory. Otherwise, it widl blassified as a LoT actor for
which both shared and global memory will be used to help watidescing of data accesses.

In the equations for LoT actors, number of threads per bl@@k-éadsPer Block) is
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determined by the size of shared memSH(ARED_ MEMORY _ SIZE ') and the
number of pushes and pops. Threads per block defines the nahhetive warps per

SM (ActiveW arpsPerSM) and the number of iterations based on Equations 5.1 and 5.2.
Finally, the execution cycle of a LoT actor is estimated aelpeg on the number of com-
pute instructions and the distribution of threads in the GB@uation 5.4).

Execution time of HIT actors is calculated based on their wrgraccess time because
these actors are mapped to global memory and have a largeenwhilobal memory
reads and writes. Equations 5.5-5.7 show how executionéstimation is done based on
the number of coalesced and uncoalesced memory accessise ¢hared memory, the
size of global memory does not limit the number of threadser&fore, the number of
threads per block for HIiT actors can be equal to the maximumbau of threads allowed
in each block /AX_THRFEAD_PER_BLOCK).

In this section, memory layout and optimization techniqused in Sponge are dis-
cussed. First, the way shared memory is utilized for LoT raci® explained. Second,
helper threads, a technique that Sponge uses to reducd gieb@ory access time of ac-

tors, is discussed. Finally, shared bank conflict resauticSponge is explained.

5.3.1.1 Shared/Global Memory

To deal with high-latency memory access issues, Spongethisetassification infor-
mation calculated in the previous phase and tries to alietee problem by coalescing the
buffer accesses or overlapping a large number of uncoaldsdéer accesses to amortize

the cost. As discussed earlier, HIiT actors will be mappeddba memory and LoT actors

Lvariables with all capital characters show GPU-specifi@paaters
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will use the shared memory. The kernel generated for thasesawill have a large num-
ber of threads, each accessing its own buffer sequentratijobal memory. The memory
accesses will not be coalesced because the accesses afutivestareads are not consecu-
tive in the memory. Since the number of threads is large, Wieeh@ad of memory accesses
will be hidden by the execution of many threads. Figure Slbatrates how a HIiT actor
with four pops and four pushes accesses global memory. $wecaddresses generated
by the first pop operations of the threads are not consecutitree memory, they are not
coalesced.

LoT actors, unlike HiT actors, have a higher compute to mgmatio. Therefore,
a LoT actor can use shared memory and have a large numbereafdgir As shown in
Figure 5.5b, threads of a LoT kernel in a block can use coatestemory accesses to copy
their input (output) buffer to (from) shared memory from)(tdobal memory. To do so,
the threads of a block work as a group and bring parts of datebéslong to other threads
as well as part of their own data. In this way, consecutivedalls’ accesses to shared
memory will be to consecutive locations and will get coaéescSince all of the data is
in shared memory, all threads in a block will have access tbigure 5.6 shows how the
CUDA code needs to be changed to utilize shared memory in lctdra In the baseline
form (Figure 5.6a) the input and output buffers are allod&teglobal memory and the work
function directly accesses global memory. If shared mensanged, then twéor loops are
added before and after the work function to copy the data dhoart of shared memory, as
shown in Figure 5.6b. The addresses for the memory reads iatied W thesdor loops are
set based on thEhreadl D, and the number of pushes and pops. Before and after the two

newfor loops, L, L, barriers $§ynchthreadsare necessary because, as mentioned eatrlier,
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Figure 5.6: Part (a) shows the baseline translation for a HiT actor. Hdvaed memory is used

in a LoT actor is illustrated in part (b). In part (c) the way &pge generates CUDA code to divide
threads as helpers and workers is shown.

each thread does not fetch all of its own data and has to wadtther threads in the block

to finish their data-fetch phase.

5.3.2 Memory Layout and Optimization

Memory hierarchy in GPUs is significantly different from hatonventional shared

memory and distributed memory systems. As mentioned ini@eét2, efficient use of
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global memory, shared memory and registers on GPUs is tnaci@btain high perfor-
mance. Coalescing accesses to global memory can greatlgagedemory access over-
heads, but it will not be possible without careful memoryolaty Utilizing shared memory,
which is significantly faster than global memory, is alsopMeeneficial. Due to its limited
size, shared memory can restrict the number of threads agrddkethe performance. In

this section, technigues used for memory layout and opétiua in Sponge are discussed.

5.3.2.1 Helper Threads

The first optimization of this phase is to us@per threads to fetch data for theorker
threads. In cases where there are not enough threads temtfiicutilize all the SMs
for LoT kernels or a HiT actor has a fair number of threads wites treated as a LoT
actor (mapped to shared memory), Sponge uses helper thieaglduce the buffer (i.e.
memory) accesses of each thread (push and pop rate). Epen trebad aids some worker
threads to bring their data to shared memory in a coalescgd wa

Figure 5.6¢ shows how the CUDA code is modified. Based on tleathlDs, Sponge
generates the helper and worker threads. Helper threads emarge of handling the data
accesses and worker threads are in charge of the computistiomer to avoid control flow
divergence, the thread assignment is performed such tbatdiper and worker threads
form complete warps. If the number of worker threads aretless the warp size, then the
helper threads are placed in the first set of warps and theavtitkeads form the last warp.
This is done by predicating out the work function for the leelfhreads and the memory
accesdor loops for the worker functions. Thié statement in Figure 5.6¢ does this based

onthreadl D. This technique works because control flow divergence inaggaffects the
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performance within one warp but not across warps.

Sponge estimates humber of instructions that helper tenedidadd to each thread and
also takes into account the parallelism between the helpenarker threads to calculate
how beneficial helper thread optimization will be for bothTLand HIT threads. As il-
lustrated in Figure 5.6¢, Sponge counts the time it takesimolx, Lo, and L3 sections
and estimates the total execution time based on the eqgsatidrigure 5.4. If the total

execution time using helper threads is reduced, SpongeajeseCUDA code using them.

5.3.2.2 Bank Conflict Resolution

Shared memory bank conflict is another source of bottlened&RU systems. For

example, whenever threads of a kernel access their inpigrbofshared memory with:

data = buffer[baseAddress + s threadld;

threadghreadld andthreadld + n access the same bank whenevés a multiple of
m/d (m is the number of memory banks) whetés the greatest common divisor of m and
s. As a consequence, there will be no bank conflicts only if tredfwarp size is less than
or equal tom/d. For current NVIDIA devices, this translates to no bank donfinly if
d is equal to 1, or in other words, onlydfis odd sincen is a power of two (16 for GTX
285 [65]). In the Streamlt code,is the number of pops. To makeodd, if the number
of pops is even, Sponge artificially changes the pop rate @fcéor by incrementing the

pops by one. In this way, an actor withk pops will use2k + 1 entries in the memory
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and the buffers get shifted in the memory. Removing bank mpafyjreatly improves the

performance of some of the benchmarks. The same techniguzecapplied for pushes.

5.3.3 Graph Restructuring

In this part, Sponge vertically fuses some actors to impparéormance by increasing
coalesced memory accesses, removing kernel call overaeddalso increasing instruc-
tion overlap. Fusion is not beneficial in all cases becausantincrease the memory traf-
fic (push + pop) of a pair of LoT actors and reduce the numbehrefaids (Equation 5.3).
For HIT actors, fusion may increase the memory traffic as altresregister spilling.

The main benefit of fusing HiT actors is replacing uncoaldstemory accesses at
the end of the first actor and at the beginning of the secorat aith coalesced accesses.
The memory accesses become coalesced because the twonatttorshe fused actor are
rate matched. Therefore, the first actor can write to thernalebuffer using coalesced
memory writes and the second actor can read the same dateoaigtsced memory reads.
Figure 5.7 illustrates how fusion can lead to coalescing efrrory accesses in a simple
GPU that has warp size of four and can coalesce two memorgsesento one. In this
figure, the memory accesses between actofproducer with 2 pushes running with 8
threads) and3 (consumer with 8 pops running with 2 threads) are shown,; is jth
push by theth thread ofA, and Ry, ,,, is themth pop of thekth thread ofB. Figure 5.7a
shows how writes and reads are performed between thesas attive case of no fusion.
In this case each thread serially writes and reads from globanory which results in all
uncoalesced accesses (markedyIf the buffer allocation forA is changed such that its

memory accesses can be coalesced (markéd jgs shown in Figure 5.7b, the accesses of
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threads running3 will still be uncoalesced. Figure 5.7c shows the accesstgetmternal
buffer betweenA and B after fusion is performed. The new act¢tA) B, runs with two
threads. Since there are 8 pushes and pops betwéeand B all the accesses will be
coalesced, as shown in Figure 5.7c.

For the LoT actors, global memory accesses are alreadysoealevith the help of
shared memory. These accesses happen irfdnmoops before and after the work func-
tion. Similar to the HiT case, the accesses between the tWaakctors become coalesced.
Therefore, the resulting LoT actor does not need to use dmaeenory anymore. This will
result in elimination of a large number of complex addressutations andor loop control
instructions.

Sponge uses its cost estimation equations to decide ifguspair of actors is beneficial
or not. For a candidate pair, Sponge calculates the numbmrctds for both cases where
the resulting actor is HiT or LoT. If in either case the exémutime is less than the sum of

the original actors’ execution times, fusion is performed.

5.3.4 Register Optimization

Registers on GPUs are a precious resource. Efficiently ubmgegisters can greatly
improve performance. In this section, two optimizatiorattBponge performs to increase
register utilization are discussed.

5.3.4.1 Software Prefetch

To better tolerate long memory access latency, the CUDAathingg model allows some

warps to make progress while others wait for their memorgsgcesults. This mechanism
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Figure 5.7: This figure shows the memory accesses between a¢tatith 2 pushes and 8 threads
and B with 8 pops and 2 thread$V; ;(R; ;) showsjth memory write (read) performed iy thread
running actorA (B). U and C denote uncoalesced and coalesced. Part (a) shows the ascess
the base case. Part (b) illustrates the same accesses whdmuffer for A is allocated such that
its writes are coalesced. Part (c) shows coalesced accdsst@seen these two actors when they
are fused ag4A) B and executed with two threads. The number on the top lefecaheach box
shows the memory address of that location.

is not effective in some cases where all threads are waibinth&ir memory access results.
This case happens if all threads have very few independstitiotions between memory
access instructions and the use of the accessed data.cRiedeis a technique that some
CUDA programs use to overlap fetching data from global mgnhariteration: + 1 of an
actor with compute instructions in iteratiefy utilizing the available registers.

Figure 5.8a shows how software prefetching can be done fordators. Before the
mainfor loop, the first batch of data (for iteration 1) is loaded into régis (L;). Once
L, has started, the data is moved from registers into sharecbnye#t this point, threads

have to wait for the shared memory transfers to finish befurg tan progress because that
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data is needed for computation after this point. After akk#us are done moving the data to
shared memory, they pass the barrier synchronization pothbegin to load the next batch
of data into registers. The key is that the work function doatsneed the data from these
memory accesses and overlapping of compute and memorysasoesn happen. Lodp,

has to be wrapped in dh statement because the last iteration of the kernel doesaeat n
to prefetch any data. Thi§ statement does not introduce branch divergence sinceeall th

threads take the same path at this point.
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Figure 5.8: Part (a) shows how prefetching is performed to improve thvéopmance of a kernel.
Part (b) depicts the result of unrolling on the kernel in péaj.
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One possible downside of this technique is that using aufditiregisters for prefetching
can reduce the number of blocks that can run oA &h However, prefetching is beneficial
if it significantly reduces the amount of time each threadsvar global memory accesses.
Since different classes of NVIDIA GPUs are equipped witliedldnt number of registers,
Sponge tunes this optimization for each GPU target. If perfiog prefetching for the
whole buffer introduces register spill or reduce the nundfezoncurrent blocks, Sponge

tunes the prefetching optimization by applying it to onlyaction of the input buffer.

5.3.4.2 Loop Unrolling

Instruction processing bandwidth on the processing cofesiment CUDA graphics
engines can negatively affect the performance of an actddréss calculation and loop
control instructions can become important if an actor haallsnumber of computation
instructions. In other words, these type of instructiortsodiuce overhead and prevent a
kernel from utilizing the peak performance of a GPU. Loopalinrg is one way to reduce
the overhead. This optimization can also increase thetezgisilization by unrolling loops
that use registers. The degree of unrolling depends on thawuof registers the kernel
uses and also the number of registers that are availableedaRtU. Since different classes
of GPUs are equipped with different number of registers pért8indly applying unrolling
to thefor-loops in a kernel may worsen the performance.

An example of the unrolling is shown in Figure 5.8b. Therefawe potentialfor loops
in a typical LOT actor generated by Sponge, as shown in Figi®, 2 for transferring data
to and from global memory, 2 for prefetching and 1 for the wikction. Depending on

the number of registers available on the target GPU and 8teuction mix of the kernel,
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Sponge decides to perform loop unrolling on toeloops.

Figure 5.8b shows how the unrolling is applied to all fiee loops to both remove
thefor loop overheads and also increase the register utilization.isnettample, unrolling
factor of two is applied to thevork function. As shown in Figure 5.8a, lodp is unrolled
to U;. Because the work function is unrolled two times, all theespondindor loops now
appear twice except,. ReplicatingL, two times will result in having twaf statements.
To remove the conditional branch instruction overheadsélte/o replicatedior loops are

merged intdJs.

[512 ,128] [512 ,128]

[256+256,128]
[256 ,128]

[256+256 ,128]

(512 128] [512 ,128]

[512 ,128]

(256 ,128] [256+256 ,128]

[32+256 ,128]

[512 ,128]

G
pop=1, push=1
H
pop=8, push=0

(d)

@) (b)

Figure 5.9: Part (a) shows a stream graph with 12 unique actors. Part ébalhout how actor
classification and graph reorganization affects this grafththis part, shaded actor are HiT actors.
Part (c) illustrates the result of the helper thread optiatian. Part (d) depicts the same graph
after applying graph restructuring.i| j] next to each GPU actor shows number of threadsa6d
number of blocksj) that will run that actor. Ifi is written asw + h, w is number of worker threads
andh is the number of helper threads.
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5.3.5 A Stream Compilation Example

In this section, a running example, as shown in Figure 5.8séx to better illustrate
how the optimizations affect the streaming graph. The bagphgin Figure 5.9a has 12
unique actors two of which are insplitter-joiner structure. Each box shows one actor in
the program. Each edge in this graph indicates a tape impiaeaising FIFO queues.
The text written inside each box shows how each actor interaith its input and output
tapes. All the actors are stateless exa@ptThis actor as well as the sourcé)(and the
sink (H) actors are mapped to the host processor.

In the classification phase, Sponge will remove the $piitters andjoiners and replace
all the copies of” and F with one of each. This is done because GPUs do not support task
level parallelism and thminer will introduce synchronization overhead. After this, asto
are classified as HiT and LoT based on their memory traffic @ancputation instructions.
LoT actors use shared memory but HiT actors operate on giobalory. In the example,
actorsD and F' are identified as HIiT actors (shown with a darker color) #hd” and £
as LoT actors. i j] next to each GPU actor shows number of threaylsiid number of
blocks () that will run that actor. For the LoT actors, the number ottds depends on
the size of shared memory and the memory usage of the actodiFactors, the number
of threads is always equal to the maximum number of threddwedl per block because
global memory is significantly larger than the actors’ meyrfootprint.

Next, helper threads are used to fetch data from global mgto@hared memory more
efficiently. After applying this, the number of threads faTactors will increase but HiT

actors will be running with less threads because they hausddhe shared memory. In the
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example, as shown in Figure 5.9c, except addprevery actor benefits from using helper
threads. If the number of threads for an actor is writtew ash, thenw shows the number
of worker threads anfl shows number of helper threads assigned to that actor.

Finally, graph restructuring is performed on the graph and eesult several actors get
fused together. Figure 5.9d shows the result of fusion aed th-applying classification
and helper thread optimization. ActBrand(C' are fused together in a LoT actor and actors

D, E, andF" are classified as a HIiT actor.

5.4 Experiments

In this section Sponge’s optimization techniques are etatliand compared with two

alternative approaches:

1. GPU baseline: All stateless actors of the benchmarks apped to the GPU utiliz-
ing the maximum number of threads support®tdA X _THREAD_PER_BLOCK).
In this technique, all of the actors are compiled as HiT actB8tateful actors as well

as source and sink actors are mapped to the host processor.

2. CPU baseline: All the actors are executed sequentialtheCPU.

5.4.1 Methodology

A set of benchmarks from the Streamlt suite [79] are used &uate Sponge. The
benchmarks are compiled and evaluated on a system corgar8&Hz Intel Core 2 Ex-
treme CPU with 6GB of RAM and a GeForce GTX 285 GPU with 2GB DRfRbal mem-

ory. Sponge compilation phases are implemented as a canbpitéend to the Streamit
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compiler. Sponge generates customized CUDA code whichngded using NVIDIA
nvcc 3.1 for execution on the GPU. GCC 4.1 is used to gendrate86 binary for execu-

tion on the host processor.

5.4.2 Techniques Performance

In this section, we try to compare the Sponge optimizatichrié&ues to the GPU base-
line and highlight the effectiveness of each optimizatiigure 5.10a shows how Sponge-
generated CUDA code performs and shows the performanceofaach optimization
technique. On average, Sponge improves the performanceky8mpared to the GPU
baseline.

The first optimization, shared/global memory, which dig@etors into two categories
LoT and HiT, is one of the most beneficial Sponge techniqugsuding shared memory,
Sponge is able to coalesce all the memory accesses in Loiisatiterefore performance
of benchmarks containing LoT actors will significantly iease. As shown in the Fig-
ure 5.10a, Matrix Multiply Block benefits the most because this benchmark has several
LoT actors. As a result, most of the actordMiatrix Multiply Block have coalesced mem-
ory accesses. In some benchmarks, suchiasggram little benefit is seen using this
optimization because most actors are HiT actors.

Prefetching and unrolling are two other optimizationssthated in Figure 5.10a. These
optimizations, collectively, contribute to 3.1% of thedbaverage speedup. Prefetching
technique is used only for LoT actors and is useful mostlyppli@ations with many LoT
actors such aklerge sortandBitonic. Unrolling allows Sponge to utilize unused registers

and reduce the number of instructions. This technique caease the performance of LoT
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actors that use few registerBCT, Merge Sort Radix andBitonic have such actors and

unrolling can increase their performance.
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(a) Performance breakdown of Sponge optimizations in
comparison to the baseline CUDA code, both running
on the GPU.
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(b) Speedup of Sponge optimized code in comparison to
the host CPU with and without data transfer overhead.

Figure 5.10: Effectiveness of Sponge optimization techniques on Stréamchmarks.

Another effective optimization in Sponge is employing felthreads. As described in
the previous sections, helper threads can reduce the eéxedtime of both LoT and HIiT

actors with two exceptions:

e LoT actors with many threads: In this case, it is not possibleun more threads
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GTX 285

DCT

MM

MM Block

Bitonic

Batcher

Radix

Merge Sort

Comp Count

Vect Add

Histogram

Shared

66.7

62.5

100

100

100

100

100

33.3

Prefetch

0

12.5

40.7

0

0

13

0

Unrolling

50

375

50.7

100

100

63.2

33.3

Helping Threads

50

25

0.7

0

0

0

0

Tesla C2050

Shared

100

87.5

100

100

100

100

33.3

Prefetch

0

12.5

15

0

100

100

66.7

Unrolling

50

50

34.4

100

0

0

0

Helping Threads

50

25

0.7

0

0

0

33.3

Table 5.1: This table shows how Sponge optimizes each benchmarlediffefor two GPU targets.
For each benchmark and target, the percentage of actorsatebptimized by each optimization is

shown.

to help the worker threads. Reducing the number of workesaitis would decrease

performance.

e HiT actors with few threads: To utilize helper threads, Hetaas would be converted
into LoT actors, which have less threads because of thedthsihared memory size.
Though transferring data to shared memory improves menmenfgppnance, too few
worker threads can become a bottleneck, under-utiliziegsts and decreasing the

overall performance.

As shown in Figure 5.10a, helper thread optimization eiffett increases the perfor-
mance ofDCT, FFT, Matrix multiply andMerge sort For exampleddCT has multiple HIT
actors with a large number of worker threads. In this casalescing data accesses using
shared memory provides enough performance gain that rgtinéactors with less threads
will not result in slowdown. On average, helper threads Gbutes to 16% of the total
average speedup compared to the GPU baseline.

Graph restructuring decreases the overhead of kernelh&nghand uncoalesced mem-
ory accesses. As discussed in Section 5.3.3, there are sm®e where fusing two actors
may result in degraded performance. Since two actors thdtiaed must execute together,

the number of threads that the resulting actor can run wikbgthan the number of threads
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created by running each actor separately. Because theti@datthreads can decrease the
performance, Sponge intelligently decides whether or oatse this optimization. Sev-
eral benchmarks, such &-T, have large pipelines of actors that are all fused together
by Sponge. Graph restructuring provides a large portioh@fspeedup for these types of
benchmarks. SincBatcherandVector Addhave only one actor, fusion cannot increase
their performance. IMerge Sort the opportunity for performing fusion is minimal be-
cause most of the actors in this benchmark are isolated femh ether and do not form a

pipeline.

5.4.3 Overall performance

Figure 5.10b presents the speedup of Sponge’s generated @pjlications against
the CPU baseline, both with and without the data transfeg tetween the GPU and CPU.
On average, Sponge achieves about 20x speedup compareching@ach benchmark
completely on the CPU. The only case that the CPU baselingedorms Sponge igector
Addincluding the data transfer overhead. In this special dhgsenemory to compute ratio
in Vector Addis very high. Although the GPU can execute Wextor Addactor 10x faster
than CPU, the overhead of transferring the data betweenasteand GPU global memory

decreases the overall performance.
5.4.4 Portability

Quantifying portability is inherently a hard problem. Taoshhow Sponge solves the
portability issue, we show how it optimizes each benchmaiferéntly for two GPUs,

Tesla C2050 and GeForce GTX 285. The C2050 is based on the NdIBIA architec-

ture (Fermi) which has 48KB of shared memory, 32K registas420 streaming proces-
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sors, providing Sponge with more resources to exploit. &kl shows how Sponge makes
different decisions based on the target architecture. fehig illustrates the percentage of
actors in each benchmark optimized using various optinazatin Sponge. As shown in
Table 5.1, Sponge is able to classify more actors as LoT satuad utilize the larger shared
memory in C2050. The number of registers also affects hown@p@erforms unrolling
and prefetching for each target. In general, Sponge adspismpilation strategy based on
the characteristics of the GPU target without any source ecoddification or programmer

involvement.

5.5 Case Study and Future Work

Sponge is designed to reduce the performance gap betweematidally generated
CUDA programs and hand-optimized ones. In this section taadhoptimized CUDA
programs from the NVIDIA SDK are analyzed to highlight th@sens for performance

differences between Sponge-generated and hand-optit@Gid&d\ code.

Joiner

Figure 5.11: This graph shows the stream graph of a generic stream reatu&ernel.
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5.5.1 Black-Scholes

TheBlack-Scholealgorithm is a differential equation that can predict hoe ¥alue of
an option changes. This equation reads five parameters freimput data and computes
the price for an option call and an option put and writes thHasevalues to the output.
In the code generated by Sponge for GTX 285 GPU, there is amykernel that pops
five memory element from the input and calculates the outpdtmushes two results to
the output buffer. This actor is classified as an LoT actoreré&fore, Sponge uses shared
memory to coalesce all the buffer accesses in that actohelhéand-optimized code, only
one kernel is launched as well, but each parameter is placeddifferent array. The
kernel has five input arrays and two output arrays. By usirgtédthnique, all threads are
able to read data from each input array and write data to eafubarray consecutively
allowing all memory accesses to be coalesced. Coalesdiagcaisses without using shared
memory reduces the number of instructions in the hand-opgdnversion. As a result, the
performance of the hand-written program is 1.3x better yaonge’s generated code.

This input/output buffer re-mapping is not currently doneSponge because Streamlt
does not support actors with multi-inputs and multi-ougtteams. All input and output
streams between Streamlt actors are through a single shaffst between the actors.
Future work will try to represent these multiple input/auttgtreams in Streamlt so the

compiler can detect such cases and improve memory layo@Rais.

5.5.2 Histogram

The histogrambenchmark computes the distribution of pixel intensitiéhin an im-

age. Histogramis implemented using a technique called stream reductibighws com-
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mon in many GPU applications. Each phase of stream reductiooves some elements
of input data, performs computation on them, and sends ghdtseas a new input to the
next phase. Thhistogrambenchmark has several phases. In the first phase, the inut da
array is divided into fixed size blocks. In the second phasebahistogram for each block
is computed. In the final phase, all the sub-histograms diated into a single histogram.

A Streamlt graph of stream reduction is shown in Figure 5THe number of actors
in these type of benchmarks is data-size dependent, theref® the size of the input data
grows, the number of phases increases and the overheadohlag the kernels becomes
dominant. Sponge can fuse all of these phases togetherd@inti actor would have a
largepoprate. Since thg@op rate of this actor is very large, it is not possible to use the
limited shared memory to coalesce its memory accesses.tlncases, the large number
of kernels and the uncoalesced memory accesses resultreddagegperformance.

In the hand-optimized CUDA implementation, there is onle dernel for all of the
phases of the reduction but the number of threads that dactbalavork in each phase is
different. As a result, the hand-written CUDA histogram tfemark outperforms Sponge’s
generate CUDA code by 5x.

We would like to enhance the performance of Sponge in thie tfpgoenchmarks by
detecting the stream reduction subgraph in the compilergpldcing them with one spe-

cialized stream reduction kernel that mimics the behavioh® hand-optimized CUDA.

5.6 Related Work

The most common language GPU programmers use to write CURDI& "C for

CUDA” (C with NVIDIA extensions and certain restrictionsYuning these C like pro-
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grams is highly challenging because managing the amounh-@hgp memory used per

thread, the total number of threads per multiprocessortlagattern of off-chip memory

accesses are some of the problems that developer need ¢onsahually to achieve good

performance [70]. To alleviate this burden, recent stuleesbeen done to automatically
manage these parameters in CUDA programs.

One study, closely related to Sponge, is the optimizing denmtroduced by Udupa
et al. [82]. They compile stream programs for GPUs usingrs pipelining techniques.
In the software pipelining approach, different actors frdifferent iterations are simulta-
neously processed. Their technique, though promisings dog perform well on GPUs
because it exploits task-level parallelism and is not ablexploit the massive amount of
data-level parallelism power of GPUs. There has been raverk [86] on GPU compila-
tion for memory optimization and parallelism managemeiie hput to this compiler is a
naive GPU kernel function and their compiler analyzes thdecand generates optimized
CUDA code. This work is distinctively different from this wobecause Sponge is able to
exploit the information in the high level stream graph andgren kernel-level optimiza-
tions specific to Streamlt, such as graph restructuring tlaewl apply lower optimizations
, such as memory and thread hierarchy management.

CUDA-Lite [87] is another compilation framework that takesive GPU kernel func-
tions as input and tries to coalesce all memory accessesiby sisared memory. Pro-
grammers need to provide annotations describing certaipgpties of data structures and
code regions designated for GPU execution. Our work is diffebecause Sponge does
not need any annotations. Sponge also uses shared memaglé¢s@e memory accesses

and can maximize the utilization of various resources on §RuUCch as registers. Another
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difference is that when the size of shared memory limits thenlver of worker threads,
Sponge is able to insert helper threads to accelerate theféraing of data between global
and shared memory. hiCUDA [31] is a high level directive liasempiler framework for
CUDA programming where programmers need to insert direstto define the bound-
aries of the kernel function into sequential C code. Anotherk in the area of automatic
CUDA generation is [53]. The Authors in this work generatéirofzed CUDA programs
from OpenMP programs. They do not use shared memory in theipder for coalescing
memory accesses. Hong et al. [34] propose an analyticabnpesihce model for GPUs
that compilers can use to predict the behavior of their ggrdrcode. Fung et al. [22] re-
group threads into new warps to minimize the number of dimetrgvarps. Chen et al. [15]
use communication and computation threads to overlap ttaeed@hange of the boundary
nodes between adjacent thread blocks. This is fundamewiiffirent from what Sponge
achieves using helper threads by performing parallel prisileg of data.

MCUDA [75] tries to compile CUDA programs for a conventiorsdlared memory
architecture. MCUDA can be used to increase the performahiraditional shared mem-
ory parallel systems using CUDA optimization techniquesthwhe stream programming
model, it is possible to use architecture specific optinmzetfor a wide range of architec-
tures. Researchers have already proposed ways to map amizegtynchronous data-flow
languages to SIMD engines [36], distributed shared memgstems [49], and also field
programmable gate arrays [37].

Performing runtime re-compilation of GPU binaries for atitagp code to different tar-
gets is another approach that can provide portability ac@BUs. OpenCL [48] is one

the approaches taken by industry to achieve portability.bdleeve OpenCL in its current

115



form suffers from the same inefficiencies as CUDA and doegprmtide an architecture
independent solution.

There is a large body of literature that deals with explgitparallelism in streaming
codes for better performance. The most recent and relevanksvinclude compilation of
new streaming languages such as Streamlt, Brook [13], $&{f(d, and Cg [55] to multi-
cores or data-parallel architectures. For example, Goedaad. [26] and [25] perform
stream graph refinements to statically determine the begpmg@ of a Streamlt program
to a multi-core CPU. Liao et al. applies classic affine parting techniques to exploit the
properties of stream operators [83]. There is also a ricdtohyi®f scheduling and resource
allocation techniques developed in Ptolemy that make fonestdial contributions to stream-
scheduling (e.g., [68, 30]). In a recent work [78], the aushtalk about the usefulness of
different features of Streamit to a wide range of streamipiglieations. Several works,
such as [35], propose techniques to dynamically recompigaming application based
on availability of resources in heterogeneous system. gpa@an be a complementary

addition to these works as GPUs are becoming a commodityterdgeneous systems.

5.7 Summary

Heterogeneous systems, where sequential work is done ditidrel processors and
parallelizable work is offloaded to a specialized compugéingine, will be ubiquitous in the
future. Among the different solutions that can take advgat this parallelism, GPUs are
the most popular solution and have been shown to providéfisigmt performance, power
efficiency and cost benefits for general purpose computingghly-parallel computing

domains. GPUs achieve their high performance and efficibygyroviding a massively

116



parallel architecture with hundreds of in-order cores atfmbsing parallelism mechanism
and also the memory hierarchy to the programmer. One key tonmiang the perfor-
mance in these future heterogeneous systems will be toegifigiutilize not only the host
processor, but also the GPU.

While GPUs provide a very desirable target platform for éexeging parallel work-
loads, their programming complexity poses a significantlehge to application develop-
ers. Languages, such as CUDA, alleviate the complexitylprolbo some extent but fail at
abstracting the underlying GPU architecture. Therefor@aging the amount of on-chip
memory used per thread, the total number of threads perpmdessor, and the pattern
of off-chip memory accesses are problems that developénsestd to manage in order to
maximize GPU utilization.

In this work, we propose Sponge; a streaming compiler foiStneamlt language that
is capable of performing an array of optimizations on strg@aphs and generate efficient
CUDA code for GPUs. Optimizations in Sponge facilitate at@#once software paradigm
where programmers can rely on the compiler to automaticathate customized CUDA
for a wide variety of GPU targets. The optimizations in Spoirgprove the performance
compared to naive CUDA implementations by an average of. Fwally, as a case study,
we compare the performance and implementation of two hatidhzed CUDA bench-
marks, Black-Scholes and Histogram. For Black-Scholesn§g is able to achieve within
30% of the performance of the hand-optimized CUDA code. ifeuivork on Sponge will
improve automatic detection of certain memory layout ctirstics and stream graph

representations that are currently not supported.
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CHAPTER VI

Flexible Compilation for Dynamic Resource Changes

6.1 Introduction

Many-core processors provide a lot of flexibility in thatyloan potentially speed up the
execution of individual applications (because of incregsarallelism), while also having
the ability to run many applications at the same time. As tivalper of applications that can
effectively use multiple cores increases, it will becomeassary to develop strategies that
can adequately manage the allocation of resources betvpptications. Resource allo-
cation is a challenging problem because application beh&nd hence resource require-
ments) can often vary in unpredictable ways, depending diorfa that include dynamic
workloads and variability in end-user scenarios. The igsusade more challenging by
the numerous heterogeneous architectural resourcesrthatraady exposed to software
(e.g., the compiler). We believe that managing the allocatif resources effectively re-
guires many non-trivial tradeoffs, and we introduce Fleatn as a means to address this
issue.

Specifically, we address the issue of provisioning an imdial application to run on a

heterogeneous architecture under varying configuratibnssource allotments. In doing
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so, applications are able to efficiently and effectively@gdat runtime, to changes in the
number and kind of resources at their disposal. For exaropiesider a mobile device that
serves as a multimedia player and an internet browser. ligkeis running only one of the
two applications, then that application can potentiallglek all of the available resources
in the device. However, as soon as the user also starts brgpws web, the resources
available for the media player must change to accommodatedtv application. If either
of the applications is not properly provisioned to run on gyway number of resources, the
end-user experience will almost surely be a poor one.

Static compilation approaches, in general, can genergteduality resource alloca-
tions offline. However, such solutions are often sensitiveintime variations in resource
availability. In other words, any change in the underlyimghdtecture’s parameters, such
as available on-chip memory or the number of cores, willlteswan inefficient execution
of a statically scheduled application in the best case, dedbat can not execute in the
worst case.

One potential solution to this problem is to compile altéxeaversions of an appli-
cation, and to dynamically switch between versions acogrdo the resources that are
available in the architecture. For example, the media eafitin running on an 8-core de-
vice can be provisioned to run on either 1, 2, 4, or 8 cores. diweous deficiencies of
this approach are three fold. First, this strategy can leddrge amounts of code bloat.
Second, it may be impractical to statically consider a higimher of architectural configu-
rations. Lastly, the application may have to execute arficieft fail-safe implementation
(e.q., sequential) if the runtime scenario yields a set sbueces that was not statically

considered.
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An alternative solution is dynamic compilation, where thpplecation is repeatedly
compiled at runtime when resources change—this can arigeeihumber of available
cores, or the amount of memory that is available, or the alvlElbandwidth varies. This is
a promising approach because it can continuously adaptitges in resource availability,
if only the costs of compilation and adaptation can be madeeloough to be practical. In
order to keep the costs of compilation down, the runtime atanfs likely to be limited
to a small set of optimizations. Furthermore, if we consaleof the resource ingredients
that can vary at runtime, it will be quite challenging to evegr an efficient solution that
addresses all of them well.

In this work, we propose a compilation and runtime adaptasigstem called Flex-
tream. It is aimed at addressing the challenges descrilmaab the context of streaming
applications. In Flextream, a streaming application igesented as a graph, where the
nodes encapsulate computation, and the edges betweendesdebe dataflow. A stream
program (graph) is mapped to a many-core heterogeneousegtane by assigning nodes
to cores, and dataflow to communication channels betweeas ¢erg., DMA transfers be-
tween cores, or between main and local memories). The maovation in Flextream is
anadaptive stream graph modulo scheduladgorithm that combines the benefits of static
scheduling with the advantages of dynamic adaptation. 3in&egy, of using an adap-
tive hybrid (static-dynamic) compilation approach, caed¢o significantly better resource
utilization, and can help deliver the promise of many-caoesnd-users.

Flextream consists of two main components. The first pafop®es static compila-
tion of an application to a virtualized multicore systemngsheuristics for controlling the

amount of parallelism in the graph, and an integer lineagamming (ILP) formulation
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to find the optimal mapping of nodes to resources (i.e., wankifponing). The second

part consists of a light-weight online (dynamic) adaptasgstem that modifies the active
schedule based on the available resources in the arcligeclynamic adaptation con-
sists of several phases including finding a new processagrasent, stage assignment,
and buffer allocation. The online phases are designed tgbhteweight and yet produce

efficient results.

In this chapter, we mainly focus on heterogeneous systenfsdistributed memory
similar to the IBM Cell [33] processor. Using the proposeaniework, an application
is statically compiled for a configuration of the architeetwith the greatest number of
resources which may include processing elements, on-¢bipge and bandwidth. This
results in high-quality solutions for a specific configurati The dynamic light-weight
layer uses the result of the static compilation as a hint toktyidiscover an efficient so-
lution for the new system configuration. Our experimentsastitat assisting the online
adaptation phase with a static solution reduces runtimeheael and greatly improves the
guality of the solutions that the online phase discoversr &proach eschews the need
for recompilation when resources change, and thus enabfegase developers to pro-
duce adaptive and high-quality streaming applicationse dhline adaptation phase uses
a technique similar to [88] (called Multicore Streaming bapr MSL) to stop the current
schedule and distribute the new schedule between the grrsesMore details about this
technique are mentioned in Section 6.2.2.

This work makes the following contributions:

¢ An efficient framework for adaptive compilation of streagagpplications to hetero-
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geneous multicore systems is proposed.

e A parallelism-tuning heuristic coupled with a scalable kyoartitioning based on ILP
formulation is proposed to find a static software pipelineldesiuling for streaming

applications.

e Highly efficient dynamic work redistribution and buffer @tlation algorithms are
introduced to adapt the software pipelined schedule dyceiiyito efficiently exploit

the capabilities of the target platform.

The rest of the chapter is organized as follows. In Secti@ntbe target architecture,
input language, and multicore streaming layer are discusBleen, the static compilation
and online adaptation layer of Flextream are discussed atid®e6.3. Finally, in Sec-
tion 6.4, the framework is evaluated. Section 6.5 discusse® of the related works that

motivated this system.

6.2 Background

6.2.1 Architecture

The compilation target in this chapter is a streaming menmoujticore architecture
where on-chip memory structures are addressed as local memd are explicitly man-
aged. Such architecture provides the compiler with a greal of flexibility in terms of
orchestrating code and data locality, and managing congation granularity, frequency,
and latency.

The target system is similar to the Cell processor in ternts@high-level architecture.

It consists of a more powerful master processor and seMakad processing elements. The
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Figure 6.1: General architecture template

master processor is similar to the PowerPC core in the Cellgmsor running at 2GHZ
with 32KB L1 and 1MB L2 cache. Each slave core contains a loeahory for instruction
and data, calledbcal store and a memory flow control (MFC) unit which can perform
DMA operations to and from the local stores independent efdtres. The slave cores
can only access the local store, so any sharing of data hasgerformed through explicit
DMA operations. The ability to perform asynchronous DMA mgi®ns allows overlap
of computation and communication, and is leveraged foriefficsoftware pipelining of
stream graphs. The multicore system used during static itatop (Section 6.3.1) is
similar to the processor in Figure 6.1 and has 32 slave c@resactual physical processor
used during online adaptation (Section 6.3.2) also hasaime sarchitectural template but

the number of slave cores varies in each experiment from 2.to 3

6.2.2 Multicore Streaming Layer

We use the runtime system introduced in [88] to dynamicalinage resource alloca-
tions. The runtime system, called thaulticore streaming layer (MSLyupports loading
and unloading of computation (e.g., streaming actors) &ferdnt cores, allocating local
and global buffers, and managing DMA transfers for orclaisty communication. The
MSL also consists of a set of commands that the online adaptsystem can use to mi-

grate from one schedule to another by moving computationdsst cores, allocating new

123



buffers in different regions of local or global memory, amdos.

In our implementation of the MSL, the master processor gagasrthe commands that
are necessary for adapting an extant schedule. These calerasnsent to the slave pro-
cessors through memory mapped registers called mailbd&assh slave processor runs a
very light-weight manager that is able to receive the conasdnom its input mailbox,
decode the instructions, and act on them. Based on the codsntre slave processors
can allocate buffers in their local stores, setup DMA trarsfand run code for a desired
duration. The overhead of delivering the commands variesrding to the size of the
command and the latency of mailbox transfers. The resudtsate presented in this chap-
ter show that we achieve a very low overhead when adaptingsource changes. This
work does not detail the design of the command system. Tleedstied reader is referred

to [88] and [46].
6.3 Compiler Framework

This section describes our method for scheduling a streaphgsnto a heterogeneous
streaming multicore system. The objective is to obtain aimakthroughput adaptive
modulo schedule of the stream graph, taking computatiomiconication overheads and
memory requirements into account. The structure of thetfFdar compilation framework
is shown in Figure 6.2. The compilation is divided into twparate phases, static compi-
lation and online(dynamic) adaptation. In the next twoisest, the details of the static and
online phases are discussed.

Before talking about details of the compilation steps, important to understand how

an application compiled by Flextream behaves at runtimberface of dynamic resource
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changes. Figure 6.3 shows an example runtime scenario.cAtgant during the execu-
tion, only one schedule is active. Execution starts withedulel. If some of the currently-
used resources become unavailable or new resources beoegneam online reschedule
becomes necessary. The new schedule is markedHeylule2 in the figure. The process
of migrating fromschedulel to schedule2 consists of three main parts. First, the online
adaptation phase has to generate the new schedule and #ssamgdVSL commands using
the solution found by static phase. Second, the currentistbéas to be stopped(drained).
The latency of this case is directly related to the numbetagfes in the module schedule
and the work of the maximally loaded processor. Third, theegated commands have to
be sent to the active processors. In the experiments setti@woverhead of each of these

phases and also the performance of a full runtime scenaidiscussed.
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Figure 6.3: Overall execution flow at runtime in the case of resource gkan

6.3.1 Static Compilation

The static phase’s goal is to find an optimal schedule for tualized member of a
family of streaming multicore processors while considgriandwidth, storage and the
processing capabilities of the system. This phase con#i$tg major sub-phases shown
in Figure 6.2. First, a prepass replication is performedhmnstream graph to adjust the
amount of parallelism for the target system by replicatiogpes. Second, an ILP formu-
lation is used to optimally partition the work between thevsl cores of the target system.
The virtualized system used in this phase is generally thst powerful processor of a
streaming multicore family. For example, if a streaminglaggpion should be compiled
for the IBM cell processor family with 4, 8, or 16 processoimMocal store size of 128KB
or 256KB, the 16 processor version with 256KB is chosen awitthgalized system. Se-
lecting the virtualized system in this manner, increasedtiedom of the next phases to
find a high quality schedule in case the program is ported tdhan configuration with a
more limited set of resources or the availability of the teses changes at runtime.

Compared to [49], Flextream’s static phase takes a diffempproach toward static
modulo scheduling. The static phase consists of a sepdegtecsperform replication in-

stead of integrating it with the ILP formulation. This grigatproves the scalability of the
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ILP formulation and enables the inclusion of other cruc@istraints about memory allo-
cation and data transfer overheads. Ignoring these factorhave a significant negative

impact on the runtime performance in systems with low-badtiwinterconnects.

6.3.1.1 Prepass Replication

Figure 6.4 shows the theoretical speedup possible for af setroodified stream pro-
grams for 2 to 64 processors. The actors present in the pnogea-conceived stream graph
are assigned to processors in an optimal fashion such thataiximal load (work) on any
processor is minimized. Speedup is calculated by dividnegsingle processor runtime by
the load on the maximally loaded processor. The progranumeceived stream graph has

ample parallelism that can be exploited on up to 8 procesdtegond 8 processors, the

speedup begins to level off.
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Figure 6.4: Theoretical speedup in the absence of replication.

Most benchmarks just do not have enough actors to span akgsors. For example,
fft has onlyl7 actors in its stream graph, therefore no speedup is podsdylend 17

processors. Another reason for the speedup limitatioreislrk is not evenly distributed
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across the actors. Even though the computation has bednrgplmultiple actors, the
programmer has no accurate idea how long an actor’s workibmwill take to execute on

a processor when coding the function. This leads to lesghgoaih 16 or more processors.
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Figure 6.5: This figure shows an example stream graph and how replicaéiperformed. Part (a)
shows the original graph and the version after replicatidn. part (b), the partitions before and
after replication are shown.

Most of the stream benchmarks are completely statelessail@ctors are data par-
allel [25]. In fact, onlynpeg2 has actors that are stateful. Data parallel actors can be
replicated any number of times without changing the meaafrige program. Replicating
data parallel actors not only allows work to span more prames it also allows work to be
evenly distributed across processors by making the lang@isisible unit of work smaller.

To provide the next phases of the compilation flow with ampleartunity to efficiently

utilize the target system’s capabilities, a prepass rapia is performed on the stream

graph. Algorithm 2 shows the general steps of this phase nfdie task is to heuristically
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replicate larger actors based on an estimate of the optirod partitioning of the current
graph. Maximally replicating the larger actors may not glsveesult in the best solution
for the next phase. Excessive replication of actors is awdigcouraged, because that
increases split/join overhead and overall code size. Towregraph partitioning on the
original stream graph is used to estimate the solution ofubiek partitioning phase. The
number of requested patrtitions is set to the number of psacesn the virtualized target
processor.

Graph partitioning is fairly fast and produces a reasonesiienate of the optimal work
distribution of the stream graph for the virtualized targgstem without considering low-
level constraints such as memory size, interconnect bafidwetc.. Each resulting parti-
tion corresponds to one of the cores in the multicore systiems solution approximately
reflects the quality of the optimal solution if the currermeaim graph is used. Next, the
replication algorithm tries to balance the partitions bylieating the largest actor in the
partition with the maximum amount of work and moving the neplicas to the parti-
tion with minimum work. This process is repeated until thior&detween the maximum
workload and minimum workload is less than the balance fagpecified as an input to
the algorithm or no more replication is possible. The whiled in Algorithm 2 performs
the partition balancing task. Lines 8-10 check the degrembélance between partitions.
Lines 14-16 determine how many replicas of the actor salefttan the largest partition
should be created.

An example of the prepass replication algorithm is shownigufe 6.5. In this exam-
ple, the virtualized target system has 8 cores. The origjregh, shown in the left part of

Figure 6.5a, has only 6 nodes and clearly will not efficienidg all 8 cores. The replica-
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Algorithm 2 Prepass Replication Algorithm

Input: G:(V, E), #virtualProcessorsbalanceFactor
1 partitions<— partiti ona aph(G, #virtualProcessons
2 while true do

3 SortPartitionsByvei ght (partitions);
{ Find partitions with max and min weight}.
4  repeat
5 maxPartition<— Next Maxwei ght Par ti ti on(partitions);
6 until maxPartitionhas a dividable node
7  minPartition< M npParti ti onvei ght (partitions);
{ Check the overall balance of the partitiohs.
8 if (vei ght (maxPartitior) < wei ght ( MinPartition) « balanceFactoy then
9 Finish;
10 endif
{Find an actor in the max partition that can be replicgted.
11 repeat
12 actor < Next Lar gest Fi | t er (MaxPartitior);
13 until (actorcan be replicated)
{ Find out how many times the actor should be replicgted.
14  replicationFactor< verk(actor) / (wei gnt (maxPartitior) - vei ght (MminPartition));
15 replicationFactor< wax(replicationFactor 2);
16 newkFilters[ ] < spiit (actor, replicationFactoy;
{Modify the min and max partition}.
17  addTo(minPartition newFilters[1]);
18  Rremoverr on{maxPartition actor);
19  addTo(maxPartition newFilters[2..replicationFactorj;
20 end while
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tion algorithm performs an initial graph partitioning ondlstream graph and then tries to
replicate nodes and balance the partitions. Bdance factoffor this example is setto 1.5.
Figure 6.5b shows the partitions before and after repboatht the end, the ratio between
maximum weight (P1) and minimum wight (P2) is 1.3. The modifieaph is illustrated in

the right part of Figure 6.5a.

6.3.1.2 Work Partitioning

Consider a dataflow graphi = (V, E) corresponding to a stream program. et =
N be the number of actors. Let the basic repetition vector, béherer; specifies the num-
ber of timesy; is executed in the steady state. The rest of the section &ssyugxecutions
of v; as the basic schedulable unit. GivBrprocessors, a software pipeline needs some as-
signment of the actors and data transfer operations to twepsors. The throughput of the
software pipeline is determined by the load on the maxinaliyled processor. For each
actor and DMA transfer in the stream graph, the following fofnulation finds a valid as-
signment based on the computational power of processandwhdth of the interconnect,
and amount of on-chip memory.

In the formulation, maximization of throughput is the mainextive. We borrow the
terminology from operation centric modulo scheduling used¢ompiler backends, and
use the term Initiation Interval (I) to denote the inverdehe throughput. A set of 0-1
integer variables is introduced to find the processor asség for actors and data transfer

operations. These variable are explained below:

e a;; = {0,1}: Indicates if actor i is running on processor j
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e b,;,; = {0,1} : This variable will be 1 if connected actors (producer-const) i,

andi, are both assigned to processor j

Assuming that there are actors in the stream graph amd processors in the target
system, is betweerf) and(n — 1) andj is betweerD and(m — 1). A set of constraints
are designed to find a valid actor and DMA assignment under angrbandwidth and
performance characteristics of the target system. Thewiollg constraint ensures that

each actor is assigned to exactly one processor.
P
7=0

Theb,,;,; indicator variables serve two purposes. First, they ar@essary to ensure
that a DMA transfer is not introduced between two connecteéora if they are on the same
processor. Second, tihevariables help in buffer allocation constraints becausesthe of
the buffers between a pair of connected actors varies bas&then they start execution
and whether they are on the same processor. The followingalities are used for setting

theb variables.

bii,j < a;,; Vconnected actor paiig,io (6.2)
a;,; ¥ connected actor paits,i,

biyiaj

bii,j > @i, +a;,; —1 ¥ connected actor paiig,is

The throughput is decided based on the workload of the malyinmaded processor

which is the maximum of the computation workload and the ttatasfer workload across
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all processors. In the schedule, it is always assumed teddkhA transfer between a pair
of connected actors is located on the processor on whichdsgndtion actor is running.

The following two inequalities denote the relation betweddrand the workload of each

processor.
N
=0
|E
> ((aiyj = biyinj) X Dyyiy) < I1 Vj (6.4)

(i1 i2)
W; in Equation 6.3 indicates the work estimate of agton processoy. D;,;, show the
data transfer cost between a pair of connected a¢tandi,. Equation 6.4 uses,;, to
ensure that a DMA transfer between actors is only added yf #éine assigned to different
processors.

As it will be discussed later, the amount buffering betwega tonnected actors de-
pends on both where they are running and what stage they.aB#nce stage assignment
is a phase of the online adaptation layer, the ILP formutatian only have an estimate
of the actual memory consumption of the current mapping. Gtaia this estimate, it is
assumed that two connected actors will be in consecutigestathey are not on the same
processor; otherwise, they are in the same stage. Base@ oedhits of the stage assign-
ment phase, this is a practical overestimate of the actdtdrusage. The following set of
inequalities is added to the formation for the purpose ofdsullocation.

|E|
(Z)[(Qailj + 20,5 — 3biyiy5) X Buf f(ir,i2)] < Memj, Vj (6.5)
i i

For each pair of connected actarsandi, and a processat, there are four possible values
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for a; ; anda,,;. In each of these cases, the amount of necessary buffeffiegsdiEqua-
tion 6.5 is an estimate of the actual memory requirementi@ec6.3.2.2 and 6.3.2.3 talks
about the mechanics of buffer allocation at runtime in marid

Figure 6.6a illustrates the result of the ILP-based workif@ning on the graph shown
in Figure 6.5a. Since the cores in our system are able tonpe@MAs and run computa-
tion at the same time, the workload of each processor wouttidenaximum of the com-
putation and data transfer workloads. The Il of this systedetermined by the maximally
loaded processor, PO. Comparing the achieved Il of 184 \Wwitsingle core performance
of the graph (sum of all the weights in the original graph)esds that a 6.8x speedup is

achieved on 8 cores.

6.3.2 Online Adaptation

After static compilation is performed, the generated coale loe efficiently executed
on a system that matches the virtual specification used gitin static compilation. As
mentioned before, due to the desire for porting softwar@iwitnembers of a streaming
multicore family and also for efficiently tolerating resoaravailability changes at runtime,
online adaptation is crucial for software developers. s section, we talk about various
phases of the light-weight online adaptation layer in trextfeam framework.

Online adaptation, is mainly designed to perform lightgi®iadaptation of modulo
scheduling solutions at runtime for the current active guration. As shown in Figure 6.2,
this part consists of three main stepgytition RefinementStage AssignmenandBuffer
Allocation The first step tries to change the mapping of actors to psocsdbased on the

number of available processors to rebalance work assignamehmemory consumption
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Algorithm 3 Algorithm for Partition Refinement

Input: processorMap(processor:actorfJ¥physicalProcessors
Output: newProcessorMap
{Assign one workload from the current processor map to eaghigdl processgr
1 sort ByNunber O Fi | t er sAscendi ng(processorMap
2 for i < 1to#physicalProcessomo
3  (processor:actor[])<— RenmoveNext Pai r (processorMajy
4  addTo(NewProcessorMa{processor:actor(]);
5 end for

{Prioritize the remaining actors and the chosen processikioanls
6 remainingFilters < a1 riltersin(processorMajp
7 sortFiltersByWi ght Ascendi ng(remainingFilterg;
8 SortByWrkAssi gnment Descendi ng(neWProcessorMa)p

{Distribute the remaining actors between the chosen processkloadg
9 weightThreshold«— Tot al Remai ni ngvei ght (remainingFilters) / #physicalProcessors
10 repeat
11  actor < RenmoveNext Fi |l ter (remainingFilters;
12 currentWeighk— wei ght (actor);
13  addTo(currentList actor);
14 if (currentWeight> weightThresholpthen

15 ProcesSOR— Next Physi cal Processor (NewProcessorMap
16 AddTo(NewProcessorMapprocessor:currentLigt

17 a ear (CurrentLis);

18 currentWeight— 0;

19 endif

20 until remainingFiltersis not empty
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on each core. The solution specifies how actor executiorevarapped across processors
(in space). The stage assignment step determines how thatexe are overlapped in
time by specifying the starting order of the actors and DMAke last step of the online

adaptation, buffer allocation, tries to efficiently fit thefters in the available storage units.

6.3.2.1 Partition Refinement

The virtual multicore system used in static compilatiorivggs a superset of the actual
physical system meaning that it has more cores, more metory,Therefore, the runtime
configuration, which Flextream has to target, will alwayséanore limited resources.
Partition refinement is a general step that, at runtime,stine actor-processor mapping
to the real configuration of the system. The algorithm disedshere for performing the
refinement concentrates only on the computation workloadagh core in a streaming
multicore system, but the heuristics can be extended taatéor memory and bandwidth.

Assume that the virtualized system hadlave cores (number of virtual cores) and the
real system has: cores (number of physical coresju is less tham because the real
system is a less powerful member of the multicore family ane®f the cores in system
with n cores have to be used to perform more critical tasks. The oigective here is to
reassign the actors ta cores with low overhead at runtime.

As shown in Algorithm 3, the general idea is to choas@rocessor assignments from
the originaln assignments created by the static phase. Then, take alttibis &n the(n —
m) remaining partitions and try to evenly distribute them tesgwthe chosem partitions.
Since solving this problem based on another ILP formulatoigraph partitioning will

have significant overhead at runtime, a heuristic-basectbaph is taken.
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In the algorithm, lines 1-5 choose thework assignments with the least number of ac-
tors from the originah. The reason the assignments with least number of actorfiase
firstis to increase the freedom of the second phase of thetigoto evenly distribute the
remaining actors. Then, in lines 6-8, the remaining actadstaem chosen assignments
are prioritized. The remaining actors are all put in onedistl sorted by work estimate
(weight) in ascending order. The chosen assignments ateddosised on the total weight
of each assignment in descending order. Line 9 calculatélseiideal situation, what frac-
tion of the remaining actors will go to each of the chosengassaents. Lines 10-20 walk
through the remaining actors(sorted by ascending weiglitpasigns them to the currently
chosen processors(sorted by descending weight) base@ avetght threshold calculated
inline 9.

Figure 6.6b shows the refinement solution for the exampleignrgé 6.5a when the
number of cores is reduced from eight to five. In this figure, fikie processors are the
processors that are chosen from the original work assighefwn in Figure 6.6a. The
highlighted nodes denote the nodes that were originalligasd to these processors. The
rest of the nodes are mapped to these processors as a rakeltefinement pass. The text
above each processor shows the name of the processor inigireabwork assignment,
and the computation workload followed by the data transferkiead. In the new work
assignment, the Il is 289 determined by P3. The optimalcsttiution for the 5-core
problem will have Il of 283 which is about 3% faster than thiison shown here.

Although the algorithm in this section ignores memory regpuients, it is sufficient to
modify the heuristics used here to consider memory req@rgsof the assignments. Pri-

oritization of the remaining nodes after the initial selectcan be done based on an affinity

137



PO: 184563 Pl:141.5:21 P2:171.5:132 P3:141.5:21
) )

@@ o)
\@/\@/ /\/

P4:151.5:21 PS5:163:22 P6:173:46 (P7: 159.5 : 173\
OO @0 || 3
L AN /A AN )

(@)
P1:283:42 P3:280:86  P4:2745:63

60 [ gg}

P5:260.5:193 P6: 173 : 46

o)

N\ [

(b)

Figure 6.6: Part (a) shows the solution of the work partitioning onto 8asofor the example shown
in Figure 6.5a. Part (b) illustrates the solution of the padn refinement if number of cores changes
to 5. The actors shaded in black exist in the related proaessdhe original solution(a) as well as
final solution(b).

function that estimates the extra necessary memory if aisatiled to a chosen processor.
This type of priority function helps to keep the memory usafeach assignment under

control.
6.3.2.2 Stage Assignment

The processor assignment obtained by the method descnbk iprevious section
provides only partial information for a software pipelinldamely, it specifies how actor

executions are overlapped across processors, but it daegpeafy how they are over-

lapped in time. The only goal of the processor assignmeptist® load balance, therefore
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it assigns actors to different processors without takingdata precedence constraints into
consideration. An actor assigned to a processor could hayeaducer assigned to a dif-
ferent processor, and have its consumer assigned to ydiearmicessor. To honor data
dependence constraints and still realize the throughpiatireddd from processor assign-
ment, the actor executions corresponding to a single iteratf the entire stream graph
are grouped intstages Within a single processor, no stages aotiveat the beginning

of execution. During the initial few iterations, stages acéivated sequentially, thus filling
up the pipeline and enabling executions of data dependasduelonging to earlier itera-
tions concurrently with actors from later iterations. leady state, all stages are active on a
processor, thus realizing the throughput obtained froncgssor assignment. The pipeline

is drained by deactivating stages during the final few itenst

Algorithm 4 Actor Stage Assignment Algorithm

Input: G:(V, E), processorMap(processor:actor[])
Output: actorStageMafactor:int)

1 for all (actorflin Gin topological orderyo

2 maxStage— O; flag « false

3 for all actorf2in parents1 do
4 if (stage(actorStageMapf2) > maxStaggthen
5 maxStage— st age(actorStageMapf2);
6 if (Processor (processorMapfl) != processor (processorMap?)) then
7 flag < true;
8 end if
9 end if
10 end for
11 if (flag) then
12 stage<— maxStage- 2;
13 else
14 stage<— maxStagp
15 endif
16 AddTo(actorStageMapfl:stagg
17 end for

The main goal of the stage assignment step is to overlaptalodanmunication (DMAS)
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Figure 6.7: The example shown in 6.5a after stage assignment is iltestrim part (a). The num-
ber in the gray boxes show the stage number of the actors mhdnkehe dashed lines. Part (b)
demonstrates the execution of the first 6 stages of the sehfedund by Flextream.

between actors. To achieve this, the stage assignmenta@tspers the DMAs as schedu-
lable units. To honor data dependences and ensure DMAs cawdbapped with actor
executions, certain properties are enforced on the stagwens of actors. Consider a
stream grapl = (V, E)). The stage to which an actois assigned is denoted I8}. In
addition, the processor to whichs assigned is denoted Ipy. The following rules enforce

data dependence and ensure DMA overlap.

e (i,i0) € E = S;, > S;, i.e., the stage number of a consuming actor should come

after the producing actor. This is to preserve data depe@den

e If (i1,i2) € F andp;, # p;,, then a DMA operation has to be performed to transfer

the data fronp;, to p,,. The DMA operation is given a separate stage nunbgy 4.
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The inequalityS;, < Spara < S;, is enforced between the stages of the different ac-
tors and the DMA operation. The DMA operation is separatethfthe producer by
at least one stage, and similarly, the consumer is sepdratedhe DMA operation
by one stage. This ensures decoupling, and allows the @veflthe producer and

the DMA, as well as the DMA and the consumer.

As shown in Algorithm 4, a topological traversal of the stregraph is necessary to
assign stages to actors. For each actor, the maximum statgeparents is found and a
flag is set if the parent with maximum stage is not on the samegssor as the actor. This
part of the algorithm is done in lines 3-10. For each actothéf parent with maximum
stage number is on a different processor, there will be a tagesgap between the parent
and the child. Otherwise the child actor can be placed in #messtage as the parent
with maximum stage (lines 11-16). The result of the stagégyasent is illustrated in
Figure 6.7a. There are total of 18 stages in this schedules iftrresting point in this
figure is that actor90 and D1 are not in the same stage. This is becalideis located
on the same processor 8%. This figure does not show the stages for DMA operations
for the sake of figure readability. Figure 6.7b shows how ttteedule runs based on the
work assignment and stage assignment. In this figure, DMAslaown as shaded boxes.
This figure demonstrates how stage assignment specifiegdiberg between actors in
time and work partitioning (and partition refinement) deteres actor-to-processor (space)

assignment.
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BG1-Spill

Figure 6.8: Different approaches to buffer allocation for a producemsumer pair is demonstrated
in this figure. In (a), the original arrangement of buffersfdme performing buffer allocation is
shown. In parts (b) and (c), two approaches that Flextreamladtdake and their effects on the
overall schedule and memory consumption is illustrated.

6.3.2.3 Buffer Allocation

Buffer allocation tries to efficiently fit the storage reanrents of the schedule, found
by the previous phases, into the available memory unithdisoftware pipelined schedule,
connected actors communicate through a set of buffers. Tihiar of necessary buffers
for a producer-consumer pair varies depending on the time start (stage mapping). In
this section, the set of buffers between a producer-conspaieis called auffer group
Based on its stage number, a producer actor could be executégle times before one
of its consumers is ever executed. The number of buffers ufferlogroup needed to store
the output of a producer (actor or DMA operation) assignedtégesS, feeding a con-
sumer(actor to DMA operation) on stagecan be calculated & — S, + 1. For example,
in Figure 6.7b, the number of buffers necessary betweernr &tand DMA operation
S0-C'1is 2 because they are in stages 4 and 5, respectively. Alltasgs before buffer al-
location assume that the buffers between a producer aatice BMA operation are stored

in thelocal memoryof the processor on which the producer is running. Symnadlyiche
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Algorithm 5 Buffer Allocation Algorithm

Input: procMap(processor:actor[})stageMagactor:int)
{Compute memory usage per local store based on work and stsig@@en}
1 memoryUsage[processor:long} wdat e(procMap stageMap;

{Find the processors that their local store needs spjlling
2 (victimProcs][], nonVictimProcs[) < Fi ndvi cti ms(memoryUsage
3 sort Bywr kLoadDescendi ng(ViCtimProcy;

{Find victim bufferg
4 for all Processop in victimProcsdo
5 savings=0;
6 BufferGroupbuffs[] = Buf f er & oups(p);
7  sortBySpill Si zeDescendi ng(buff9);
8 for all BufferGroupbgin buffsdo
9 savings«— savingst spi | 1 si ze(bg);

10 if (memoryUsad@] - savingsj Local storesi ze(p)) then
11 break;

12 end if

13 add(victimBuffers bg);

14  end for

15 end for

{Find target location for the victim buffers and fix the schiegiu
16 for all BufferGroupbgin victimBuffersdo
17 target=tindTarget (bg, memoryUsagenonVictimProcy
18  mvesufferTo(bg, targed;
19 newDMA][] = o eat NewnvA(bQ);
20  Updat est ageMap(NEWDMA);
21  wdate(memoryUsage
22 end for

buffers between a DMA operation and a consuming actor aredtan the local store of
the consuming processor.

In the work partitioning, partition refinement and stage@s®ent, it is assumed that
all the buffer groups will fit in the local stores of the coras which the corresponding
actors are running. Therefore all the DMAs are from locatesto local store. In some

situations, based on the stage map and amount of bufferatgstheeded between a pair of
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actors, the local store may not be large enough to fit all tHietsu In those cases, in order
to have a schedule that can actually run on the target systeme of the buffer groups
have to be spilled to other local stores that have empty spacgin memory. Spilling
buffer groups will result in changes in the schedule. Bdlsicafter moving a buffer group
to another storage unit, new DMAs have to be added to the stdhedhese DMASs are
needed to ship the data between the local store of the prarsess which the related actor
is running and the new memory unit. The addition of the DMAS icecrease the workload
of the processors resulting in an increase of Il. Since tis¢ @oa DMA to and from main
memory is significantly higher than the cost of a transfewieeh local stores, it is desirable
to first exploit the free space in the local stores beforézirid) the main memory.

The buffer allocation algorithm is shown in Algorithm 5. $tirthe memory usage of the
current schedule is calculated based on the processoragelatsignments (Line 1). Then,
the list of victim (overcommitted) processors is formed.isTlist contains all processors
that exceed the size of their local stores (Line 2) and isedlart descending order by the
amount of work that is assigned to each processor (Line 3e Vittim processors are
given the chance to make use of other local stores with pyigiven to processors with
more work. It is more beneficial to spill the buffers into th@gessors with more work
first, because these spilled buffers are more likely to fittlreo processors’ local stores,
resulting in less DMA overhead. Then, in lines 4 to 15, thediduffer groups that do not
fitin the corresponding local stores is extracted. This s to spill as few buffer groups
as possible (by spilling the largest ones first) to reduceotlerhead of DMA transfers.
At the end(lines 16-22), the algorithm goes through thecsetebuffer groups and tries to

move them to other local stores first and then main memonrerAiftding the target (local
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store, main memory), for each spilled buffer group, new DM#e added to the schedule
and the current stage assignment is updated.

The function,UpdateStageMapin line 20 of Algorithm 5 can take two different ap-
proaches for updating the stage assignment and addingwhBk&s. These approaches
are illustrated in Figure 6.8. The first part of the figure shdke stage and processor as-
signment for a pair of actors. Actors and B are mapped’1 and P2 and start at stages
0 and 5. A DMA located onP2 in stage 3 transfers data betwedrand B. The buffer
groups and their placement before running the buffer afiocaare shown in Figure 6.8a.
Assume that out of the 4 buffers in buffer groupA(1), 2 will not fit in P1’s local store.
P3is a candidate for spilling in this buffer group. In Figur86, the first possible solution
to buffer allocation is shown. In this case, the buffer greaumoved toP3’s local store and
a new DMA is added td’1 in stage 0. The original DMA betweef1 and P2 is modified
to read fromP3’s local store. The number of buffers dril’s local store is reduced to 1.
Since the new DMA (betweeR1 and P3) is in stage 0 and there is only 1 buffer between
this DMA and A, the DMA has to run sequentially aftdris done, increasing the workload
of P1. The second approach, shown in Figure 6.8c, tries to placadiv DMA (between
P1 andP3) 2 stage afted’s stage (1 in this example). In this case, the number of buffe
needed inP3 decreases to 3, but 1 more buffer from buffer group 1 remair#slis local
store. The benefit of this approach is that the new DMA can leewted in parallel with
A, eliminating the possibility of increasing the workload®tf. Each of these approaches
has its own benefit(memory usage vs. performance) and ttiertaifocation algorithm
chooses between them based on the size of the local storescakidad of each victim

processaor.
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6.4 Experiments

We evaluated Flextream using a heterogeneous multicordation that we have built.
We also leveraged the Streamlt compiler as a starting poimtrfplementing our heuristics
and used Metis [47] for graph partitioning. For the evalmatnd results, we simulated a
multicore system with 32 slave cores and one master coremBster core is similar to a
PowerPC processor running at 2GHZ with a 32KB L1 and a 1MB Léhea Each slave
core includes a local store for instructions and data, andrmony flow control (MFC) unit
that performs DMA operations to and from the local storegpwhdent of the slave cores.

Performance Comparison: We first compare the performance achieved using Flex-
tream to that achieved using online whole-program graphitipening. The graph parti-
tioner uses the work estimate of the actors as the node vgeightl the communication
costs as the edge weights. We perform prepass replicatiomoth approaches. In this
experiment, we measure the performance degradation cayssther strategy, compared
to the optimal schedule. We use benchmarks drawn from tlea®it benchmark suite.
Each benchmark is run 31 times, and in eachIrun i < 32, the total number of proces-
sors starts at 32 cores, and is subsequently reduced to kesmahber of cores equal to
7. The average slowdown per benchmark is shown in Figure 8extrEam is 9% worse
than then the performance achieved using an optimal sobdaoluti 8% better than applying
graph partitioning at runtime. The main reason for Flextrsgperformance edge is that

Flextream leverages the optimal scheduling solution fdunthe static compilation phase.

Figure 6.10 compares the average time that Flextream'gipantefinement step needs

to generate a new processor mapping to the time taken by déipé giartitioning approach.
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Performance Comparison
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Figure 6.9: This graph shows performance degradation when online adigptis carried out using
two different strategies.

On average, Flextream’s approach is 50%(3ms) faster tieegréph partitioning approach.
The results suggest that Flextream is a superior strateggptutitioning, considering that
the scheduling solutions are derived faster and yield bp#gormance. It is also worthy
to note that the runtime overheads are likely to be very mghe absence of good starting
solutions. The combination of static compilation (ILP anmdpgass fission) and dynamic
adaptation is an attractive combination that combines #reefits of static and dynamic
paradigms.

Dynamic Approach Time Comparison

OFlextream Refinement Approach
B Graph Partitioner Approach

Time (ms)
(=)}
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Figure 6.10: This graph illustrates the amount of time Flextream’s ganti refinement takes and
compares it with the graph partitioning approach.

Overhead: We measured the overhead associated with each Flextrease.plfrég-
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ure 6.11 illustrates the relative and absolute values ofithes taken by each phase. We
exclude from this graph the time taken to perform work parting since it can take sev-
eral minutes for the work partitioning to find a valid ILP stitun. Each of the bars in
the figure include a label that represents the absolute immi(liseconds) taken by that
phase. The prepass replication requires 1283ms and idisagrily longer than the time
taken by the other 8nlinephases (notice that the Y-axis starts at 90%). Among tha@enli
phases, stage assignment is the longest, followed by lalffeation and work refinement.
Most of the overhead for stage assignment is due to the tgmallatraversal of the graph.
The results indicate that the time spent in prepass rejaité proportional to the size of
the application (graph). Overall, this experiment supptie hypothesis that performing

online adaptation using Flextream is an efficient endeavor.

Overhead Comparison

O Prepass Replication @ Work Refinement Time [ Stage Assignment Time ™ Buffer Allocation Time
1.00

0.95 3735 4588

1283

Fraction of Time Allocated

0.94 1117 705 887 695
0.93 274 403
301
0.92 2.3
0.91
-

bitonic  dct des fft filter ~ fm  matrix mpeg2 serpent tde average
bank mult.

Figure 6.11: Flextream overhead categorized by phases. Each bar hastd, ghliowing the relative
(Y-axis) and absolute (labels within the bars) times spergach of the static and online phases.
Note that the Y-axis starts at 90%.

Buffer Allocation: Buffer allocation is the last Flextream phase. This steplead to

new DMA requests and can increase the processor workloadferBllocation attempts
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to maximize the use of the local store in order to avoid the llatencies associated with
accessing main memory. The graph in Figure 6.12 shows h@aofitimization impacts
overall performance. For this experiment the number of @gsors is changed at runtime
from 32 cores to 8. We gradually decrease the size of the ktoak, starting atvhx
Memwhich is large enough to ensure that no spilling occurs. €Rpgeriment shows the
effectiveness of the buffer allocation algorithm in usimgdl stores. As expected, the
performance degrades when the size of the local store iseedThe buffer allocator uses
the local stores until it exhausts their capacity, at whicmpit has only one recourse, and
that is to use main memory. For some benchmarks, reducinip¢héstore capacity has
negligible impact (e.g.npeg?2) because new DMA requests are added to the processors
that have less work according to the original schedule fedbaffer allocation). In other
words, the overhead of the new DMA operations do not incrédassize of the maximum

workload.

A Full Runtime Scenario: We also carried out an experiment to demonstrate how
Flextream might perform in a real scenario where resouredadility changes multiple
times at runtime. Each time the the number of available canesges, a new schedule is
generated using the online adaptation mechanism. Thetesdhadule is drained and the
new schedule is communicated to the slave processors i@mgtlticore stream layer (see
section 6.2.2). The adaptation overhead therefore is theafuhe time taken by each of
these steps. Among all of the benchmarks, the maximum oadrtoe sending commands

is 11 micro seconds. This assumes the overhead for sendihgemnmand is 20 cycles.
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Effect of Buffer Allocation on Performance
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Figure 6.12: Effect of buffer allocation on benchmark throughput. Foclehenchmark, the amount
of memory is increased from a minimum to a maximum capacityoughput is recorded for 6
uniformly distributed memory sizes per benchmark.

Drain(ms) | Adaptation(ms)| 1K sec-Flextream| 1K sec-Static

bitonic sort 6.14 89.42 350M 356M
dct 0.79 42.80 380M 452 M
des 32.39 113.80 148 M 150 M

fft 2.37 142.95 222 M 230 M
filter bank 0.44 142.95 448 M 490 M
fm 2.16 65.71 133 M 143 M
matrix mult. 3.07 37.19 62 M 71M
mpeg2 4619 43 156 K 177K
serpent 81.11 79.09 52M 54 M
tde 780 66.08 12M 1.3M

Table 6.1: Performance comparison between Flextream and optimal fourdime scenario in
which number of cores varies in this order: 32, 16, 10, 6. Eemhfiguration runs for 250 seconds.

Table 6.1 compares the performance of our approach withhiarétical optimal in a
scenario where the number of available cores at runtimeggsainom 32 to 16, then to 10,
and finally to 6. We assume each configuration runs for 250m&ks;dor a total processing
time of 1000 seconds. The theoretical optimal solution,dach runtime configuration,
uses a schedule found by the static phase. The first columvsghe total time needed to
drain the schedules. The overhead of the online adaptatisimown in the second column.

The last two columns show how many iterations of each streaphgcan be executed
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using Flextream versus the optimal approaches. The ladjgéstence between the last
two columns occurs imct which loses 16% of its throughput when using Flextream.
The best performing benchmarks et oni ¢ sort andser pent, losing only 3% of
their throughput compared to optimal. Overall, these tesuaiply that solutions found by

Flextream, in real execution scenarios, can perform closiedoretical optimal solutions.

6.5 Related Work

There is a large body of literature that deals with explgitparallelism in streaming
codes for better performance. The most recent and relevankisvinclude compilation of
new streaming languages such as Streamit, Brook, Streaen@IC, and Cg to multicores
or data-parallel architectures. For example, Gordon dRél. and [25] perform stream
graph refinements to statically determine the best mapgiagtreamIt program to a mul-
ticore similar to the one we consider in this chapter. Kudlnod Mahlke apply modulo
scheduling to an unrefined stream graph to maximize througd®]. Liao et al. apply
classic affine partitioning techniques to exploit propesf stream operators [83]. There is
also a rich history of scheduling and resource allocatichrigues developed in Ptolemy
that make fundamental contributions to stream-sched(ery, [68, 30]). Flextream is
unique relative to these past contributions in its abilitglynamically adapt a static sched-
ule and resource allocation to changes in available res@inaintime. Viewed in this way,
Flextream is complimentary to some static scheduling teeglas, and can be applied more
generally as long as we can extract a graph-representdttbe etreaming computation.

In contrast to static compilation techniques, there areralany existing ideas related to

compilation for multicores. In [27], the authors dynamigahap an abstract representation
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of a stream program [50] to threads that can execute in pamaila general purpose mul-
tiprocessor. In CellSs [8], computation is expressed astioms that may be composed to
form a dataflow graph. A runtime scheduler treats this graghe same way a superscalar
processor treats operations, and schedules these fusciida the Cell cores as soon as
their inputs are ready. In [11], the authors describe aniegidn-specific parallelization
strategy that they applied manually. They were able to tdagevarious configurations of
the Cell architecture, which varied the number of cores rhezonfiguration. Our work
is distinctly different from these works in that we use aistabmpile-time schedule to
automatically perform dynamic optimizations that lead ésvrand efficient resource allo-
cations.

Adaptive compilation to a virtualized system is not an efyimew idea. Recent ex-
amples include Veal [18] and Liquid SIMD [17]. The authorghese works take similar
approaches to the one in this work but in very different dora#han the one we address in
this work. In [18], adaptive loop modulo scheduling is penfied for a virtualized loop ac-
celerator system. The authors in [17] propose hybrid caatipih techniques for mapping

a vectorizable program to SIMD engines that have differector lengths.

6.6 Summary

In this work, we focus on the increasingly important areatofaaming computing and
introduce Flextream as a flexible compilation framework tizan dynamically adapt appli-
cations to the changing characteristics of the underlymbitecture. This is an important
contribution as software developers grapple with the tetH#i parallelism in a rapidly

changing architecture landscape. The main innovationertFdam is an adaptive stream
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graph modulo scheduling algorithm that combines the benefistatic scheduling with
the advantages of dynamic adaptation. Our results indibateFlextream’s approach can
achieve high-performance resource allocations that atéman average of 9% compared

the optimal solutions with low overhead.
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CHAPTER VII

Conclusion and Future Directions

With the end of frequency scaling, industry has moved itsi$dcom sequential single-
cores to parallel architectures. In the face of a limited @obudget, homogeneous parallel
systems are not sufficient to meet the performance demandsiotis future application
domains. As a result, there has been significant emphasistmdrademia and indus-
try on heterogeneous parallel architectures. These sgstéfer a considerable degree of
specialization of the hardware resources based on the naigalications.

Programming heterogeneous systems is more challengindptita single-core and ho-
mogeneous multi-core systems because of the heterogeh#iy available parallelism. In
these systems, a programmer not only needs to worry abaatcért parallelism but also
has to worry about the heterogeneity of the components ofystem and their respec-
tive memory and computation models. Therefore, tradilige@eral purpose sequential
programming models, such as C++ and Java, do not providagheset of abstractions
necessary to program future heterogeneous systems.

In this work, we focused on utilizing several key componeafitiiture heterogeneous

systems, such as FPGAs, SIMD engines and GPUs, using tlaengtige program model.
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Each of these components provide an efficient way to exea@rtaic classes of applica-
tions. For example, applications with bit-level parabeti, such as encryption, are suitable
for FPGAs. Since each of these platforms have their unique afgrogramming, we
investigated how streaming paradigm can be used to impleareapplication once and
target it to all these systems using intelligent compildiropzations.

We also investigated how to dynamically adapt streamingjegdpons to the availability
of runtime resources. This is an important issue when malt@pplications are running on
a heterogeneous systems and they have different resoupgieer@ents. It is impossible
to statically prepare for all the possible scenarios that arese at runtime. Therefore, we
propose a light-weight system to perform dynamic adapiat@sed on static compilation
results.

As a whole, this dissertation demonstrates how a domaioHgpapproach, such as
streaming, provides enough high-level information to tfag¢ic compiler and runtime sys-
tem such that they can tailor each domain-specific apphicain this case streaming appli-
cations, to various targets of a heterogeneous system.

Finally, we propose to extend this work in the following ditiens:

Extending The Streaming Framework: Previous research has shown the benefits
of synchronous dataflow languages as a tool to program mailé-systems. Despite its

benefits, SDFs are not widely adopted by major industry ptafge several reasons:

¢ Integration of streaming with other object oriented largpsis a an issue that makes
application development using streaming models a contpliceask. There will al-

ways be parts of any real-life application that do not fit ie gtreaming model.
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Implementing such components in such a model is not only emnsoime but also
results in poor performance and efficiency. Therefore, deoto facilitate the use
of streaming models for real applications, it is necessargeimantically integrate
streaming and imperative programming languages. In a dridieguage, program-
mers can decide if a part of an application fits in the stregnmodel supported
by the language or the general purpose features of the alojectted language are
more suitable. Several new projects have already startidsidirection [39, 7]. We

believe this is a promising approach to enable wider adopifstreaming.

e Another obstacle to wider use of SDFs is their completecstatim. SDFs have static
communication rates and also a static graph structureoAgth these features enable
more aggressive static compiler optimizations, they liim& scope of SDFs. There
are already dataflow models that relax some of the constrtiiat SDFs impose on
the applications such as Cyclo-Static [10] and Parametigliezdata flow [9] models.
Building static and dynamic compilation systems aroundntioee relaxed forms of

streaming is another way to extend the applicability ofastring.

Extending The Domain-Specific Approach: This work shows that if an application
can be efficiently implemented using a synchronous data floget) then the compiler is
able to perform aggressive optimizations to tailor the magibn for various components
of a heterogeneous systems. The main reason behind thisiltgpa that domain-specific
information, such as communication patterns, is exposetieéacompiler. The domain
knowledge helps the compiler to carry out several domaeti§ip optimizations that are

impossible for a general purpose compiler to perform. Weelbe] in order to utilize fu-
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ture parallel systems, this domain specific approach shoeileixtended to domains other
than streaming. In this way, compilers can perform more eggve optimizations using

the domain information that is exposed by the programmeso Ah such a programming

framework, programmers are isolated from the low-levehidtetf the underlying architec-

ture and therefore can write portable applications.

There are two main challenges in extending our approachtr diomains:

e The first challenge is to identify what other domains will bele@ly used in future
applications. Clearly, streaming is not suitable for cowgthe entire application
domain. Other domain-specific extensions and models aeseary to gain benefits
for parts of the application domain that do not fit in the stneay model. Solving
this challenge requires understanding and collaboratiitiy domain experts about
the future performance requirement in each domain and fypegithe domains at

the right granularity.

e The second challenge is to formally formulate each domaast of a unified pro-
gramming language. It is impractical to present each doinagnseparate language
since an application may consist of parts in different dereaind implementing one
application using more than one language is a cumbersorke &snantically in-
tegrating all the domains in one language is a non-trivisk tahich requires more

research.
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