
Compiling Stream Applications for Heterogeneous
Architectures

by

Amir H. Hormati

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2011

Doctoral Committee:

Associate Professor Scott Mahlke, Chair
Professor Todd M. Austin
Professor Trevor N. Mudge
Professor Dennis M. Sylvester
Rodric Rabbah, IBM T.J. Watson



c© Amir H. Hormati 2011

All Rights Reserved



To my family

ii



ACKNOWLEDGEMENTS

First, I would like to express my sincerest gratitude to my adviser Prof. Scott Mahlke.

I consider myself truly lucky to have worked with him these past years. He has shown

incredible patience, served as an excellent mentor, and provided me every opportunity to

succeed in this field.

I also owe thanks to the remaining members of my dissertationcommittee, Prof. Austin,

Prof. Mudge, Prof. Sylvester and Dr. Rodric Rabbah. They alldonated their time to

help shape this research into what it has become today. I would particularly like to thank

Rodric for his insightful comments and invaluable advice during my internships at IBM

T.J. Watson that helped me in finding an interesting researchpath.

I was lucky to be part of a research group whose members not only assisted me in-

tellectually in my research but were also a comfort during those long nights before each

deadline. Nathan Clark helped me in the first two of years of myPhD. His patience and

technical help was the reason I survived those years. Mark Woh spent a countless number

of hours discussing new ideas with me and helping me write my papers. Shuguang Feng,

Shantanu Gupta, Ganesh Dasika, and Mojtaba Mehrara also helped in proof reading the

papers and refining my ideas. Mehrzad Samadi did a great deal of work on the part of this

thesis presented in Chapter V.

iii



More importantly than the technical assistance, I would like to thank all the members of

the CCCP research group who I’ve ever shared an office with over the years for their social

support: Kevin Fan, Mike Chu, Manjunath Kudlur, Amin Ansari, Hyoun Kyu Cho, Ganesh

Dasika, Shuguang Feng, Shantanu Gupta, Po-Chun Hsu, Mojtaba Mehrara, Yongjun Park,

Hyunchul Park and Jeff Hao. You folks made coming to work a lotmore fun, and I would

never have made it through without you. I also want to thank Ganesh Dasika for letting me

beat him in Quake. Finishing a PhD without playing Quake would have not been possible.

Finally and most importantly, my family deserves major gratitude. My parents and my

sister provided their unconditional love and support through this whole process. I also want

to thank my brother who helped me all the way through middle school and high school. My

cousin, Abbas, was the reason I chose computer engineering as my major in the first place

and I want to thank him for showing me this path. And above all,I really appreciate the

love and support of my wife, Mona. Getting through the PhD program, especially in a

foreign country, would have not been possible without her.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Streaming to FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Streaming to SIMD Engines . . . . . . . . . . . . . . . . . . . . . 5
1.3 Streaming to GPUs . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Flexible Compilation for Streaming . . . . . . . . . . . . . . . . .9

II. Input Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

III. Mapping Streams to FPGAs . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 From StreamIt to Hardware . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Synthesizing a Stream Graph . . . . . . . . . . . . . . . 19
3.2.2 Synthesizing Filters . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Hardware Orchestration . . . . . . . . . . . . . . . . . 23

3.3 Stream Optimizations . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Queue Allocation . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Queue Access Fusion . . . . . . . . . . . . . . . . . . . 28
3.3.3 Flip-flop Elimination . . . . . . . . . . . . . . . . . . . 30

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

IV. SIMDization of Stream Graphs . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Macro-SIMDization . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Single-Actor SIMDization . . . . . . . . . . . . . . . . 48
4.2.2 Vertical SIMDization . . . . . . . . . . . . . . . . . . . 53
4.2.3 Horizontal SIMDization . . . . . . . . . . . . . . . . . 58
4.2.4 Architecture Support for Tape SIMDization . . . . . . . 62
4.2.5 Implementation . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Comparison To Traditional SIMDization . . . . . . . . . . . . . .70
4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

V. Portable Stream Compilation for GPUs . . . . . . . . . . . . . . . . . . 82

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 CUDA and GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 Portable Stream Compilation . . . . . . . . . . . . . . . . . . . . 90

5.3.1 Actor Reorganization and Classification . . . . . . . . . 92
5.3.2 Memory Layout and Optimization . . . . . . . . . . . . 96
5.3.3 Graph Restructuring . . . . . . . . . . . . . . . . . . . 99
5.3.4 Register Optimization . . . . . . . . . . . . . . . . . . 100
5.3.5 A Stream Compilation Example . . . . . . . . . . . . . 105

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . 106
5.4.2 Techniques Performance . . . . . . . . . . . . . . . . . 107
5.4.3 Overall performance . . . . . . . . . . . . . . . . . . . 110
5.4.4 Portability . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5 Case Study and Future Work . . . . . . . . . . . . . . . . . . . . 111
5.5.1 Black-Scholes . . . . . . . . . . . . . . . . . . . . . . 112
5.5.2 Histogram . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

VI. Flexible Compilation for Dynamic Resource Changes . . . . . . . . . . 118

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2.2 Multicore Streaming Layer . . . . . . . . . . . . . . . . 123

6.3 Compiler Framework . . . . . . . . . . . . . . . . . . . . . . . . 124

vi



6.3.1 Static Compilation . . . . . . . . . . . . . . . . . . . . 126
6.3.2 Online Adaptation . . . . . . . . . . . . . . . . . . . . 134

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

VII. Conclusion and Future Directions . . . . . . . . . . . . . . . . . . . . . 154

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

vii



LIST OF FIGURES

Figure

1.1 This figure shows a template for future heterogeneous systems. . . . . . . 2
1.2 Overview of our heterogeneous compilation system.. . . . . . . . . . . 4
2.1 A sample StreamIt program is shown on the left. The corresponding

stream graph with all the filters instantiated is shown on theright. . . . . 12
2.2 This figure shows an example stream graph and also the intermediate

code template for executing steady state schedule.Ri is the repetition
number for actori. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 (a) The specialized template used for synthesizing filters.(b) The com-
plete hardware for the stream graph shown in Figure 2.1.. . . . . . . . . 19

3.2 (a) The template used for synthesizing basic blocks. (b) Control flow
graph and partial data flow graph for theAdder filter. (c) The complete
hardware generated for theAdder filter. . . . . . . . . . . . . . . . . . . 21

3.3 (a) Template for synthesizing operations. (b) Simplified hardware struc-
ture for BB 3 in Figure 3.2b. . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Overlapped producer-consumer schedules showing maximum number of
overlapping lifetimes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 An example of access fusion using the stream program in Figure 2.1. . . . 28
3.6 Various configuration of queues used by queue access fusion optimization. 31
3.7 An example of flip-flop elimination.. . . . . . . . . . . . . . . . . . . . . 32
3.8 Figure 3.8a illustrates the speedup comparison between thehardware

designs and a 300 mW PowerPC 405 running at 300 MHZ. Figure 3.8b
shows the energy consumption of the FPGA as a fraction of PowerPC
energy use for various benchmarks.. . . . . . . . . . . . . . . . . . . . 33

3.9 Performance improvements and area savings due to differentoptimiza-
tions performed by Optimus.. . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Part (a) of this figure shows the stream graph used as a runningexample.
Part (b) shows the same stream graph after MacroSS has SIMDized it. . . 46

4.2 This figure shows how single-actor SIMDization transforms actorsD and
E into DV andDE. All the vector variables are concatenated withv at
the end. Part (a) of this figure shows the code for actorsD and E in
scalar mode. Part (b) illustrates the vectorized version ofactorsD andE. 50

viii



4.3 Part (a) of this figure shows the stream graph in Figure 4.1a after vertical
fusion ofD andE. Part (b) illustrates the vectorized code for the fused
actor,3D 2E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Part (a) shows scalar execution of actorsD andE. Part (b) shows the ex-
ecution ofD andE after performing single-actor SIMDization. Part (c)
illustrates the order that data elements are written to the tape in the main
memory fromD. The elements with the same colors are written in one
set of push operations. Part (d) is similar to (c) but for the reads in actor
E. Part (e) shows how vertical SIMDization changes the execution order
of actorsD andE. Parts (f) and (g) illustrate the order that the elements
are written to and read from the internal buffer between the inner actors
D andE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Part (a) and (b) show the graph before and after horizontal SIMDization,
respectively.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 This graph shows how 16 stride-4 tape reads in an actor are replaced
with 4 vector pops and 8 permutation instructions. . . . . . . . . . . . . 63

4.7 This code shows the address calculation in a scalar actor which is the
consumer of a vectorized actor with vector pushes.. . . . . . . . . . . . 65

4.8 This figure shows the hardware for the SAGU.. . . . . . . . . . . . . . . 66
4.9 In this graph the performance benefits of applying traditional auto-vec-

torization, macro-SIMDization, and both of them together are compared.
Part (a) shows the speedups when GCC is used as the intermediate com-
piler. Applications in part (b) are compiled with Intel Compiler (ICC). . . 71

4.10 This graph shows percent speedup due to vertical SIMDization compared
to single-actor SIMDization.. . . . . . . . . . . . . . . . . . . . . . . . 75

4.11 This graph shows how SAGU can improve the performance of a macro-
SIMDized graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.12 The performance benefit of SIMDization in case a graph is scheduled for
multi-core is shown in this graph. . . . . . . . . . . . . . . . . . . . . . 78

5.1 This graph shows the runtime of a kernel optimized for architectures with
different number of registers on a GeForce GTX 285 which has the most
number of registers. The kernel used in this graph is organized in 128
blocks each with 256 threads.. . . . . . . . . . . . . . . . . . . . . . . 83

5.2 CUDA/GPU Execution Model . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 Compilation flow in Sponge.. . . . . . . . . . . . . . . . . . . . . . . . 90
5.4 In this Figure, equations for calculating execution cyclesof both HiT and

LoT actors are shown. Equations 5.1 and 5.2 can be used for both HiT
and LoT actors. The table summarizes what each variable means. . . . . 91

5.5 This figure shows how HiT and LoT threads access their buffers. Part (a)
illustrates the memory access pattern for a sample HiT actorwith four
pops and four pushes. Part (b) shows the access pattern for a LoT actor. . 93

5.6 Part (a) shows the baseline translation for a HiT actor. How shared mem-
ory is used in a LoT actor is illustrated in part (b). In part (c) the way
Sponge generates CUDA code to divide threads as helpers and workers
is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

ix



5.7 This figure shows the memory accesses between actorsA with 2 pushes
and 8 threads andB with 8 pops and 2 threads.Wi,j(Ri,j) showsjth
memory write (read) performed byith thread running actorA (B). U
andC denote uncoalesced and coalesced. Part (a) shows the accesses in
the base case. Part (b) illustrates the same accesses when the buffer forA
is allocated such that its writes are coalesced. Part (c) shows coalesced
accesses between these two actors when they are fused as(4A)B and
executed with two threads. The number on the top left corner of each box
shows the memory address of that location.. . . . . . . . . . . . . . . . 101

5.8 Part (a) shows how prefetching is performed to improve the performance
of a kernel. Part (b) depicts the result of unrolling on the kernel in
part (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.9 Part (a) shows a stream graph with 12 unique actors. Part (b) is about
how actor classification and graph reorganization affects this graph. In
this part, shaded actor are HiT actors. Part (c) illustratesthe result of the
helper thread optimization. Part (d) depicts the same graphafter apply-
ing graph restructuring. [i, j] next to each GPU actor shows number of
threads (i) and number of blocks (j) that will run that actor. Ifi is written
asw + h, w is number of worker threads andh is the number of helper
threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.10 Effectiveness of Sponge optimization techniques on StreamIt benchmarks.108
5.11 This graph shows the stream graph of a generic stream reduction kernel.. 111
6.1 General architecture template. . . . . . . . . . . . . . . . . . . . . . . 123
6.2 General flow of the Flextream framework. . . . . . . . . . . . . . . . . 125
6.3 Overall execution flow at runtime in the case of resource changes. . . . . 126
6.4 Theoretical speedup in the absence of replication.. . . . . . . . . . . . . 127
6.5 This figure shows an example stream graph and how replicationis per-

formed. Part (a) shows the original graph and the version after replica-
tion. In part (b), the partitions before and after replication are shown. . . 128

6.6 Part (a) shows the solution of the work partitioning onto 8 cores for the
example shown in Figure 6.5a. Part (b) illustrates the solution of the
partition refinement if number of cores changes to 5. The actors shaded
in black exist in the related processors in the original solution(a) as well
as final solution(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.7 The example shown in 6.5a after stage assignment is illustrated in part
(a). The number in the gray boxes show the stage number of the actors
marked by the dashed lines. Part (b) demonstrates the execution of the
first 6 stages of the schedule found by Flextream.. . . . . . . . . . . . . 140

6.8 Different approaches to buffer allocation for a producer-consumer pair
is demonstrated in this figure. In (a), the original arrangement of buffers
before performing buffer allocation is shown. In parts (b) and (c), two
approaches that Flextream could take and their effects on the overall
schedule and memory consumption is illustrated.. . . . . . . . . . . . . 142

6.9 This graph shows performance degradation when online adaptation is
carried out using two different strategies.. . . . . . . . . . . . . . . . . 147

x



6.10 This graph illustrates the amount of time Flextream’s partition refinement
takes and compares it with the graph partitioning approach.. . . . . . . 147

6.11 Flextream overhead categorized by phases. Each bar has 4 parts, show-
ing the relative (Y-axis) and absolute (labels within the bars) times spent
in each of the static and online phases. Note that the Y-axis starts at 90%. 148

6.12 Effect of buffer allocation on benchmark throughput. For each bench-
mark, the amount of memory is increased from a minimum to a maximum
capacity. Throughput is recorded for 6 uniformly distributed memory
sizes per benchmark.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

xi



LIST OF TABLES

Table

3.1 Area and delay for different queue configurations. . . . . . . . . . . . . 36
5.1 This table shows how Sponge optimizes each benchmark differently for

two GPU targets. For each benchmark and target, the percentage of ac-
tors that are optimized by each optimization is shown.. . . . . . . . . . 109

6.1 Performance comparison between Flextream and optimal for aruntime
scenario in which number of cores varies in this order: 32, 16, 10, 6.
Each configuration runs for 250 seconds.. . . . . . . . . . . . . . . . . 150

xii



ABSTRACT

Compiling Stream Applications for Heterogeneous Architectures

by

Amir H. Hormati

Chair: Scott Mahlke

Heterogeneous processing systems have become the industrystandard in almost every seg-

ment of the computing market from servers to mobile systems.In addition to employing

shared/distributed memory processors, the current trend is to use hardware components

such as field programmable gate arrays (FPGAs), single instruction multiple data (SIMD)

engines and graphics processing units (GPUs) in heterogeneous systems.

As a result of this trend, extracting maximum performance requires compilation to

highly heterogeneous architectures that include parts with different memory and computa-

tion models. Although there has been significant amount of research on programing each of

these architectures individually, targeting a heterogeneous system without specializing an

application to each component separately is still an open problem. Besides performance,

the portability of an application between different piecesof a system and retargetability

to various heterogeneous architectures is a significant challenge for programmers. To effi-

xiii



ciently exploit the heterogeneity, it is necessary to have aprogramming model that provides

a higher-level of abstraction to the programmer and the related compilation framework.

In this thesis, we first focus on enabling a write-once programming paradigm in the con-

text of the stream programming model for various componentsof heterogeneous systems.

We mainly focus on FPGAs, SIMD engines and GPUs as these architectures will play an

important role in accelerating various parts of applications on heterogeneous systems. We

introduce several compiler optimizations that facilitateportability and retargetability while

achieving high performance. As a result of our compilation system, programmers can write

a program once and efficiently run it on different componentsof a system.

Second, we focus on an important challenge that arises in heterogeneous systems when

there are dynamic resource changes. The ability to dynamically adapt a running applica-

tion to a target architecture in the face of changes in resource availability (e.g., number

of cores, available memory or bandwidth) is crucial to a wider adoption of heterogeneous

architectures. In this work, we introduce a hybrid flexible compilation framework that fa-

cilitates dynamic adaption of applications to the changingcharacteristics of the underlying

architecture.

xiv



CHAPTER I

Introduction

Support for parallelism in hardware has greatly evolved in the past decade as a response

to the ever-increasing demand for higher performance and better power efficiency in dif-

ferent application domains. Various companies have introduced vastly different solutions

to bridge the performance and power gap that many applications are facing. These solu-

tions include shared-memory multicore systems (Intel Corei7 [43]), distributed-memory

multicore processors (IBM Cell [40]), tiled architectures(Tilera [80]) and in some cases a

combination of these (Intel Larrabee [72] and Intel Stellarton [45]). Among these solutions,

heterogeneous architectures, as shown in Figure 1.1, not only achieve higher performance

and efficiency by combining multiple cores into one die, but they are also equipped with

acceleration engines to enable more efficient parallelism support for certain application do-

mains. For example, SIMD engines (e.g., Altivec [73], Neon [6], SSE4 [42]) integrated

into multi-core systems enable more efficient data-level parallelism support for several im-

portant application domains such as multimedia, graphics,and encryption. Although ac-

celeration engines, such as SIMD units or FPGAs, are not suitable for all applications, if an

application can be tailored to efficiently exploit them, theperformance and power benefits

1



r x86�
(Core�i7,�Core�2�Duo,�…)

r ARM
(A7,�A9,�…)

.�.�.

Interconnect

AcceleratorsAcceleratorsAcceleratorsAccelerators
Shared Memory 

Processor
Shared Memory 

Processor
Shared Memory 

Processor
Shared Memory 

Processor

Distributed Memory 
Processors

Distributed Memory 
Processors

Distributed Memory 
Processors

Distributed Memory 
Processors

MemoryMemoryMemoryMemory

r FPGAs

r GPUs

rDomain�specific�

ASICs

.�.�.

r IBM�Cell

rTilera

.�.�.

MemoryMemoryMemoryMemory

Figure 1.1: This figure shows a template for future heterogeneous systems.

can often be superior to the gains from other general purposearchitecture solutions.

Programming heterogeneous architectures is an important problem that is impeding the

wider adoption of such systems. Traditional sequential programming languages are ill-

suited for heterogeneous architectures because they have asingle instruction stream and a

monolithic memory. Extracting task/pipeline/data-levelparallelism from these languages

needs extensive and often intractable compiler analysis. Using a different programming

model and compilation framework for each component of the system is also undesirable

because it limits the portability and retargetability of the program requiringeach program to

be rewritten and optimized for a specific architecture. Architecture-specific programming

models and languages, such as Verilog and CUDA [65], that target specific components,

such as FPGAs and GPUs, expose parallelism to the compiler, but in their current form fail

to provide portable code and do not present a unified model to the programmer. The main

problem with these languages is that explicitly-programmed parallelism in each application

has to be tuned for different targets based on the parametersof each hardware component

and interfacing between different parts of an application written in different architecture-

2



specific languages is non-trivial.

A higher level of programming abstraction along with intelligent static and dynamic

compiler optimizations can solve the issues of programmingheterogeneous systems while

maintaining portability and retargetability. One such abstraction is offered by the streaming

paradigm. This programming paradigm provides an extensiveset of compiler optimizations

for mapping and scheduling applications to various parallel architectures ([25, 26]). The

retargetability of streaming languages, such as StreamIt [79], has made them a good choice

for parallel system programmers. Streaming language retargetability and the resulting per-

formance benefits on multi-core systems are mainly due to having well-encapsulated con-

structs that expose the parallelism and communication without depending on the topology

or granularity of the underlying architecture. Compilers for these languages take advantage

of the high-level information available at the program level to efficiently map the exposed

parallelism to the target architecture.

Most of the work on stream compilation has so far focused on how to compile streaming

applications to homogeneous multi-core systems. However,compiling stream programs to

other important components of heterogeneous architectures, such as FPGAs, SIMD en-

gines and GPUs, is still an open question. In this thesis, we propose new techniques and

compilation frameworks for static and dynamic compilationof programs in the streaming

domain, specifically those implemented in synchronous dataflow (SDF, see Chapter II)

model, to various components of heterogeneous systems. Ourtechniques further extend

the retargetability and portability of streaming applications by enabling programmers to

write a streaming application once and efficiently run it on various parts of a system. An

overview of our system is shown in Figure 1.2. The following sections briefly explain the

3



GPU
SIMD 

Engine
FPGA

Distributed 
Memory 

Processor

Figure 1.2: Overview of our heterogeneous compilation system.

four parts of our compiler and runtime system: Optimus, Macross, Sponge and Flextream.

1.1 Streaming to FPGAs

In the world of heterogeneous systems, especially embeddedarchitectures, there are

many devices that offer increasingly powerful computing capabilities. It is predicted that

mobile computing devices with embedded processors will ultimately change the industry

much as laptops supplanted desktops as the primary commodity processing platform. How-

ever, the power and frequency concerns that plague the microprocessor industry effectively

mean architects have to find new ways to provide increasing performance since conven-

tional frequency scaling methodologies no longer apply. Asa result, there is a significant

opportunity to explore alternate architectures that can enable the next evolutionary step in

4



computing.

One significantly promising approach is to provide automatic customization of hard-

ware according to the applications they run. An application-customized architecture can of-

fer extremely high performance with very low power comparedto a more general-purpose

design. Furthermore, the increasing availability of reconfigurable field-programmable gate

arrays (FPGAs) as co-processors and processing ingredients in heterogeneous systems-on-

a-chip [1, 2, 45] means emerging architectures can offer enormous flexibility and adapt-

ability in the face of rapidly changing software standards and customer needs.

In the first part of this thesis, we introduceOptimus[37], an optimizing synthesis frame-

work for streaming applications. The main contribution of Optimus is generating hardware

by shifting the focus from micro-functional details to macro-functional ones. Specifically,

our work does not focus so much on how individual modules are synthesized (i.e., micro-

functional), but rather on how modules are composed to assemble an overall design (i.e.,

macro-functional). As a result, we can synthesize entire applications onto a hardware sub-

strate, and not just individual loops and kernels as is the case with a lot of existing work.

Thus, our work is complementary to existing work on high level synthesis while offering

new opportunities for efficient assembly of streaming applications in hardware.

1.2 Streaming to SIMD Engines

In recent years, almost every single-core or multi-core system has been equipped with

one or more single-instruction-multiple-data (SIMD) engines to enable more efficient data-

level parallelism support for several important application domains such as multimedia,

5



graphics, and encryption. SIMD engines are not the right choice for all applications, but in

cases where an application can efficiently exploit them, theperformance and power gains

can be significant. Therefore, SIMD engines like Altivec [73], Neon [6], SSE4 [42] are

now an essential part of most architectures on the market. With SIMD width expanding

in future architectures, such as Intel’s Larrabee, under-utilization of the SIMD units will

translate into a significant loss in performance and increase in power consumption.

In general, utilizing SIMD engines is preferred, even for applications where multi-core

speedup is close to the theoretical maximum, because SIMD engines can improve perfor-

mance without increasing communication overhead and memory/cache traffic. Exploiting

SIMD engines, in some cases, can achieve greater performance than multi-core while using

less area and power.

To exploit SIMD engines in streaming applications, currentstreaming compilers trans-

late the streaming languages down to an intermediate language, such C++ or Java, and then

apply vectorization1 techniques to generate SIMD-enabled code. The most common tech-

niques are hand-optimizing the code and traditional auto-SIMDization [3, 4, 64, 5, 51].

Both of these solutions have proven difficult to apply in realworld scenarios. Hand-

optimizing the binary or sequential code using architecture-specific instructions or intrinsic

functions is a time-consuming and error-prone task which results in an inflexible and un-

portable binary. Auto-vectorization is, at this stage, still impractical and far from being

able to universally utilize the various kinds of available SIMD facilities. Also, performing

SIMDization on streaming applications after intermediate-level code generation may result

in an inefficient schedule and mapping of the stream graph since the schedule is already

1In this work, we use SIMD(ize) and Vector(ize) interchangeably.

6



fixed and information that is available in the high-level stream graph is lost. Extracting this

information from the generated code is predicated on performing complex compiler analy-

sis and transformations which are impossible in some cases.In summary,the lack of global

knowledge about the program, the inability to adjust the schedule, and alsothe loss of data

flow informationare the main reasons behind inefficiency of traditional auto-vectorization

techniques in dealing with streaming applications.

To address these issues, we introduceMacroSS[36]; a streaming compiler for streaming

applications that is capable of performing macro-SIMDization on stream graphs. Macro-

SIMDization uses high-level information such as the valid set of schedules and commu-

nication patterns between actors to transform the graph structure, vectorize actors of a

streaming program, and generate intermediate code (C++ in this work). Then, it uses the

host compiler to compile the generated intermediate code tobinary for a specific target pro-

cessor. The information that is used by MacroSS is deduced from the high-level program

structure and is not available to low-level traditional compilers that are used to compile the

intermediate code. As a result, MacroSS has a broader understanding of the program struc-

ture and macro-level characteristics of the streaming application that allows the compiler

to utilize SIMD engines more efficiently.

1.3 Streaming to GPUs

Recently, heterogeneous systems that combine traditionalprocessors with powerful

GPUs have become standard in all systems ranging from servers to cell phones. GPUs

achieve their high performance and efficiency by providing amassively parallel architec-

7



ture with hundreds of in-order cores while exposing parallelism mechanisms and the mem-

ory hierarchy to the programmer. Recent works have shown that in the optimistic case,

speedups of 100-300x [67] and in the pessimistic case, speedups of 2.5x [54] have been

achieved between the most recent versions of GPUs compared to the latest processors.

Maximizing the utilization of the GPU in heterogeneous systems will be key to achieving

high performance and efficiency.

While GPUs provide an inexpensive, highly parallel system for accelerating parallel

workloads, the programming complexity posed to application developers is a significant

challenge. Graphics chip manufacturers, such as NVIDIA, have tried to alleviate the com-

plexity problem by introducing user-friendly programmingmodels, such as CUDA [65] and

OpenCL [48]. Although such programming models abstract theunderlying GPU architec-

ture by providing a unified processor model, managing the amount of on-chip memory

used per thread, the total number of threads per multiprocessor, and the pattern of off-chip

memory accesses are examples of problems that developers still need to manage in order

to maximize GPU utilization [70]. Often the programmer mustperform a tedious cycle of

performance tuning to extract the desired performance.

Another problem of developing applications in CUDA is the lack of efficient portability

between different generations of GPUs and also between the host processors and GPUs in

the system. Different NVIDIA GPUs vary in several key micro-architectural parameters

such as number of registers, maximum number of active threads, and the size of global

memory. These parameters will vary even more when newer highperformance cards, such

as NVIDIA’s Fermi [66], and future resource-constrained mobile GPUs with less resources

are released. These differences in hardware lead to a different set of optimization choices

8



for each GPU. As a result, optimization decisions for one generation of GPUs are likely to

be poor choices for another generation.

One solution to the complexity of GPU programming is to adopta higher level pro-

gramming abstraction such as the stream programming model.The higher level domain

information exposed as a result of employing the streaming programing model can guide

the compiler optimizations in generating high-quality code for GPUs. Therefore, using

stream programming model, programmers can implement theirapplication without worry-

ing about the parameters of the underlying hardware and the compiler can perform intelli-

gent optimizations to tune the available parallelism in a streaming application to a specific

GPU.

In this thesis, we introduceSponge[38], a compiler for the StreamIt language that is

capable of producing customized CUDA code for a wide range ofGPUs. Sponge consists

of stream graph optimizations to optimize the organizationof the computation graph and

an efficient CUDA code generator to express the parallelism for the target GPU. Producing

efficient CUDA code is a multi-variable optimization problem and can be difficult for soft-

ware programmers due to the unconventional organization and the interaction of computing

resources of GPUs. Sponge is equipped with a set of optimizations to handle the memory

hierarchy of GPUs and also to efficiently utilize the processing units.

1.4 Flexible Compilation for Streaming

As the number of applications that can effectively use multiple cores increases, it will

become necessary to develop strategies that can adequatelymanage the allocation of re-

9



sources between applications. Resource allocation is a challenging problem because appli-

cation behavior (and hence resource requirements) can often vary in unpredictable ways,

depending on factors that include dynamic workloads and variability in end-user scenarios.

The issue is made more challenging by the numerous heterogeneous architectural resources

that are already exposed to software (e.g., the compiler). We believe that managing the

allocation of resources effectively requires many non-trivial tradeoffs, and we introduce

Flextream [35] as a means to address this issue.

Flextream provides a compilation and runtime adaptation system for distributed mem-

ory heterogeneous systems. It is aimed at addressing the challenges described above in

the context of streaming applications. The main innovationin Flextream is anadaptive

stream graph modulo schedulingalgorithm that combines the benefits of static schedul-

ing with the advantages of dynamic adaptation. The strategyof using an adaptive hybrid

(static-dynamic) compilation approach can lead to significantly better resource utilization,

and can help deliver the promise of many-cores to end-users.

The rest of this thesis is organized as follows. The streaming model used throughout this

thesis is explained in Chapter II. Then, Optimus, our synthesizing compiler is introduced

in Chapter III. In Chapter IV, we demonstrate how streaming applications can be mapped

to SIMD engines using MacroSS compiler. Then, Chapter V explains our compilation

system, Sponge, for mapping streaming applications to GPUs. In Chapter VI, details of

static compilation and online adaptation in Flextream for adjusting the schedule of stream

programs in the presence of runtime resource changes is discussed. Finally, we conclude

in Chapter VII and talk about future steps to extend the applicability of this work for future

heterogeneous systems.

10



CHAPTER II

Input Language

We use the StreamIt [79] language as the input language to thecompiler. The empha-

sis on stream programs is self-evident as recent years have witnessed the proliferation of

streaming applications in many areas including digital signal processing, graphics, multi-

media, network processing, and encryption. There are several new streaming languages

and the area currently commands considerable attention from academia and industry. The

stream programming paradigm offers a promising approach for programming multicore ar-

chitectures. Examples of relatively new streaming languages include StreamIt, Brook [13],

CUDA [61], SPUR [89], Cg [55], Baker [16], and Spidle [19].

StreamIt is an architecture-independent programming language for high-performance

streaming applications [79]. Programs in StreamIt are represented as graphs where nodes,

calledfiltersor actorsencapsulate computation, and edges represent FIFO communication.

StreamIt is based on the synchronous dataflow (SDF) [52] model of computation. Each

filter consists of awork function that repeatedly executes when sufficient data is available

on its input FIFO (queue). The work function reads data from its input queue usingpop

operations, and writes data to its output queue usingpushoperations. The work function

11



Figure 2.1: A sample StreamIt program is shown on the left. The corresponding stream graph with
all the filters instantiated is shown on the right.

can also inspect input without removing them from the FIFO using apeekoperation. Peek

operations are critical for exposing data parallelism in sliding-window filters (e.g., FIR

filters), as they elide the need for internal filter state. StreamIt provides three hierarchical

stream primitives for composing filters into larger stream graphs:pipeline, splitjoin, and

feedback loop. A pipeline connects streams sequentially. A splitjoin specifies task or data

parallel streams that diverge from a common splitter and merge into a common joiner. A

feedback loop creates a cycle in the dataflow graph.

A simple StreamIt program and its corresponding stream graph are illustrated in Fig-

ure 2.1. This example consists of five streams:Minimal, Source, AddSplitter,

Adder, andPrinter. Minimal is a top level pipeline with three-stages. The mid-

dle stage,AddSplitter, consists of a splitter, 4 parallelAdder filters, and a joiner. The

splitter distributes data to each of its connected filters ina roundrobin fashion. EachAdder

12



Actor n

Actor 1

Actor 4

Actor 3Actor 2

(a) (b)

Figure 2.2: This figure shows an example stream graph and also the intermediate code template for
executing steady state schedule.Ri is the repetition number for actori.

receives eight data elements at a time. StreamIt allows stream graphs to be described pro-

grammatically, and affords the compiler the ability to fully elaborate the graph at compile

time by instantiating and connecting instances of the filters.

Filters in StreamIt are self-contained, and can only accesstheir locally declared vari-

ables and fields. Hence, data exchange between filters is accomplished using explicit trans-

fers across inter-filter FIFOs (queues) using the push and pop operations. StreamIt filters

may be either stateful or stateless. In Figure 2.1, theSource filter is stateful; all the other

filters are stateless.Source is stateful because thei field carries a dependence from one

execution of the work function to the next. In addition to thework function, filters may

also define aninit function to initialize local fields.

A crucial consideration in StreamIt programs is to create a steady state schedule which

involves rate-matching of the stream graph. Rate-matchingguarantees that, in the steady

state, the number of data elements that is produced by an actor is equal to the number

of data elements its successors will consume. Rate-matching assigns a static repetition

number to each actor. In the implementation of a StreamIt schedule, an actor is enclosed

13



by afor-loop that iterates as many times as its repetition number. The steady state schedule

is a sequence of appearances of thesefor-loopsenclosed in an outer-loop whose main job

is to repeat the steady schedule. The template code in Figure2.2b shows the intermediate

code for the steady state schedule of the streaming graph shown in Figure 2.2a.

14



CHAPTER III

Mapping Streams to FPGAs

3.1 Introduction

In the world of embedded systems, there are many devices thatoffer increasingly pow-

erful computing capabilities. It is predicted that mobile computing devices with embedded

processors will ultimately change the industry much as laptops supplanted desktops as

the primary commodity processing platform. However, the power and frequency concerns

that plague the microprocessor industry effectively mean architects have to find new ways

to provide increasing performance since conventional frequency scaling methodologies no

longer apply. As a result, there is a significant opportunityto explore alternate architectures

that can enable the next evolutionary step in computing.

One significantly promising approach is to provide automatic customization of hard-

ware according to the applications they run. An application-customized architecture can of-

fer extremely high performance with very low power comparedto a more general-purpose

design. Furthermore, the increasing availability of reconfigurable field-programmable gate

arrays (FPGAs) as co-processors and processing ingredients in heterogeneous systems-on-

15



a-chip [1, 2] means emerging architectures can offer enormous flexibility and adaptability

in the face of rapidly changing software standards and customer needs.

This part of the thesis describes a methodology and a set of complementary optimiza-

tions to efficiently realize stream graphs directly in hardware. Our ultimate goal is to auto-

matically refine a high level stream program into either software or hardware. In the case

of the former, a program can run on a conventional processor or a multicore architecture.

In the case of the latter, the application is realized as an efficient customized circuit design

mapped onto FPGAs.

As previously discussed in Chapter II, We adopt a stream programming model where

applications can be naturally described as dataflow graphs where nodes embody computa-

tion and edges imply communication. Such a streaming model is attractive from a multicore

perspective because it makes the abundant parallelism inherent to streaming applications

quite explicit. As a result, compilers can more readily derive concurrent implementations

from high level applications, with relatively less effort compared to automatic paralleliza-

tion starting from imperative sequential languages such asC [77, 25, 49]. In the same way,

mapping a high-level stream program to hardware (e.g., FPGAs) becomes more practical

and productive—compared to using a hardware description language such as Verilog or

VHDL, or HDL derivatives of C such as SystemC or Handel-C—if acompiler can readily

generate efficient hardware implementations from the programs described in a streaming

language.

The idea of mapping high level programs directly into hardware is not a new one. In-

deed, there is a lot of work on automatic synthesis of hardware starting from C and its

many HDL-oriented derivatives. This work differs from mostexisting work on the topic

16



of high level synthesis (Section 3.5) by shifting the focus from micro-functional details to

macro-functional ones. Specifically, our work does not focus so much on how individual

modules are synthesized (i.e., micro-functional), but rather on how modules are composed

to assemble an overall design (i.e., macro-functional). Asa result, we can synthesize entire

applications into a hardware substrate, and not just individual loops and kernels as is the

case with a lot of existing work. Thus, our work is complementary to existing work on

high level synthesis while offering new opportunities for efficient assembly of streaming

applications in hardware.

This chapter describes Optimus, our optimizing synthesis framework for streaming ap-

plications. Optimus uses a canonical intermediate representation to describe streaming

programs. A program is comprised of interconnectedfilters, derived from the dataflow

graph representation of the program. Each filter is comprised of blocksthat contain state-

ments. The blocks are themselves interconnected based on control and dataflow depen-

dences. Our set of optimizations that deal with inter-filterdetails address macro-functional

concerns. Similarly, our micro-functional optimizationsaddress synthesis issues that arise

from dataflow dependences between blocks. The Optimus modelallows us to leverage

decades of classic compiler research studied by others in their work to generate high-

quality circuits, while also offering the ability to apply macro-functional optimizations that

are specifically targeted for streaming applications. Macro-functional optimizations, which

address how filters (modules) are assembled to implement an application tend to be tedious

and time-consuming to perform manually, and require expertise in hardware design. An

important example of a macro-functional optimization is deciding on how much buffering

to allow between a pair of communicating modules: if too little buffering is provided, then

17



throughput decreases as modules stall to send or receive data; whereas too much buffering

incurs substantial space overheads. Macro-functional optimizations require careful consid-

eration of area and performance tradeoffs to judiciously maximize application throughput

at the lowest costs.

Our results (Section 3.4) using eight streaming benchmarks, including FFT, DCT, DES,

sorting, and matrix multiplication, show that we can achieve significant performance ad-

vantages compared to an embedded processor for a fraction ofthe energy. It is not sur-

prising that a custom hardware design is better than a general-purpose processor. We also

found that Optimus-generated designs are performance-competitive and incur small area

overhead in comparison to some of the benchmarks that we alsoimplemented in Handel-C.

The primary emphasis of Optimus is on the salient macro- and micro-functional opti-

mizations for streaming programs. We use the StreamIt programming language as our input

language although other languages that embody the same streaming model are equally ap-

plicable. Optimus compiles StreamIt programs to Verilog. We then use standard synthesis

tools to generate FPGA designs. Optimus uses its own hardware models to characterize

space-time tradeoffs, and performs many optimizations including critical path balancing

and memory allocation. It is built on top of the Trimaran compiler [81], and hence it in-

herits a rich suite of ILP optimizations (for micro-functional efficiency). The compiler

also admits profile-guided optimizations to simplify circuit models for streaming applica-

tions. Profiling data provides a cheap and practical alternative to otherwise difficult and in-

tractable optimization problems. The core optimizations are described in Section 3.3, and

Section 3.2 describes our overall stream-oriented synthesis framework with both macro-

and micro-functional emphasis.

18



(a) Specialized filter template (b) Hardware structure for the example in Figure 2.1

Figure 3.1: (a) The specialized template used for synthesizing filters.(b) The complete hardware
for the stream graph shown in Figure 2.1.

3.2 From StreamIt to Hardware

Optimus is a compiler and synthesizer that takes as input a streaming application and

generates an efficient FPGA (hardware) implementation. We designed a hardware template

capable of representing fairly optimized circuits for streaming applications. The template

captures the salient properties of streaming codes, and is malleable enough that it can be

used in many different circuit designs we generate. This section details our approach using

a simple example illustrated in Figure 2.1.

3.2.1 Synthesizing a Stream Graph

Optimus uses a specialized filter template to synthesize thefilters that appear in the in-

put stream graph. The template is shown in Figure 3.1a. The template consists of five main

components: input queues, output queues, memories, the filter itself, and the controller. In-

put and output queues are used to send and receive data. The template supports an arbitrary

19



number of input and output queues to implement splitters andjoiners. Memory modules

are used to store the state for stateful filters. Each filter can be connected to several memory

components. All the memory modules are local to each filter. For each memory module,

there are dedicated read and write buses between the module and the corresponding filter.

The buses are shared between the accessors of the memory in the filter. The hardware block

implementing the filter consists of the work module and an optional init module. Both init

and work modules will be connected to a memory module in case that module needs initial-

ization. The controller makes sure that the init function gets executed only once before the

first invocation of the work function. Depending on the way that the circuit is scheduled,

the controller may have other responsibilities to orchestrate the execution.

After instantiating the template for all filters in a stream graph, the next step is to con-

nect them. This step is straightforward based on the stream graph and the way data flows

through the graph. Whenever Optimus connects the template for two filters together, it

merges their input and output queues together. In other words, those two filters will share

one FIFO queue for transferring data between them. Figure 3.1b shows the top-level hard-

ware for the stream graph in Figure 2.1. As it is illustrated,the only stateful filter with

memory components is theSource filter. TheSource filter also is the only filter with

an init component.

3.2.2 Synthesizing Filters

Each filter is organized as a control flow graph (CFG) with an overlayed data flow

graph (DFG). Basic blocks (BBs) of instructions are used as the core building units for

each filter. The template for the BBs is shown in Figure 3.2a. Each BB module has four

20



sets of input/output signals. The first set includes the control signals. All BBs have one

control inputsignal and one or morecontrol outputsignals. A control input signal will

activate a BB as long as the signal is active. A control outputsignal will be connected

to the inputs of the other BBs in order to activate them in the right order. Connecting

these control signals is done based on the edges in the corresponding CFG. The second

set of input/outputs consists of data signals which carry operand values. Optimus uses a

DFG for connecting these signals. The third set of input/output signals helps each module

to communicate with external resources such as queues, memories, and other types of IP

(intellectual property) cores. These signals provide a unified interface in which any IP core

can be connected to the hardware. The last set of signals, marked asAck in Figure 3.2a, is

meant for flow control. The Ack signals are useful when a BB cannot perform its operations

in the associated clock cycle and needs to wait one or more cycles. This mainly happens

when a BB accesses an external resource (e.g., memory) and the resource is not ready to

respond within the same cycle.

(a) Specialized BB template (b) Control and (partial) data
flow graphs for theAdder filter

(c) Hardware structure for the
Adder filter

Figure 3.2: (a) The template used for synthesizing basic blocks. (b) Control flow graph and partial
data flow graph for theAdder filter. (c) The complete hardware generated for theAdder filter.

21



Generally, each BB ends with one or more registers to store live-out data and control

signals. In the baseline design, it is assumed that all the live-out values are registered to

control the wire latency in the final design. Since all the live values are latched at the basic

block outputs, one clock cycle is needed to transfer data from one BB to its successors. In

other words, the execution of each BB takes at least one cycle.

After the hardware module for each BB is generated, Optimus will connect the modules

based on the CFG and DFG for each work or init function. Connecting the control signals

is based on the CFG. The control outputs of all BBs are connected to the control inputs

of the immediate successor BBs. In case a BB has more than one control input signal,

MUXes are used to select the right control input signal. The DFG is used for connecting

the data signals, such that the live-out signals of each BB are connected to the live-ins of

the immediate successor. MUXes are again used in case a valuecan reach a BB from two

different paths.

We will use theAdder filter as an example to clarify the main points. Figure 3.2b

shows the CFG and DFG forAdder. The solid lines show the control flow and the dashed

lines show the data flow forsum. This graph has four BBs and there is a backedge from

BB 3 to BB 2. Based on the DFG, a data signal is needed for transferring the value for the

variablesumfrom BB 1 to BB 3 through BB 2. All the control flow signals in thefigure are

connected based on the CFG for theAdder filter. Since BB 2 is the target of two branches

(the fall through from BB 1 and the loop target from BB 3), a MUXis added to its inputs

for selecting the appropriate control signal. The execution of theAdder filter will take 18

cycles (2 cycles for each of the 8 iterations, and 2 cycles forthe rest of BBs).

The only remaining task is to generate hardware to fill each BBmodule based on the

22



(a) (b)

Figure 3.3: (a) Template for synthesizing operations. (b) Simplified hardware structure for BB 3 in
Figure 3.2b.

operations of that BB. Optimus generates a function unit (FU), similar to Figure 3.3a, for

each operation. Each FU can have multiple inputs and outputsand one predicate input. If a

BB has a conditional branch operation, Optimus will generate a comparator FU to compute

thecontrol outputsignals. The data flow graph in each BB determines how the FUs should

be connected to each other. At the end of each BB, itscontrol inputsignal is used to enable

the register module. Figure 3.3b illustrates the FU and the necessary connectivities for

BB 3 of theAdder filter. This figure does not show all the details of computing control

signals and setting the Ack signal.

3.2.3 Hardware Orchestration

The final issue is the orchestration of execution for the entire streaming circuit. We

focus on two ways of scheduling the filter executions:StaticandGreedy. In a static sched-

ule, the compiler dictates the number of executions of each filter, such that it consumes all

of its input data and produces sufficient data for its consumers. In this model, the com-

piler guarantees that a filter will have a sufficient number ofinput data available. Hence

23



the execution of the filter work function will not block on reads (i.e., pops). Similarly, the

compiler also asserts that the output queue from a filter is sufficiently empty so that all the

writes (i.e., pushes) also succeed without blocking the filter. In this type of scheduling,

double buffering is used between pairs of filters to provide communication-computation

concurrency. This allows the producer and consumer to run independent of each other. The

size of each individual queue is typically set to the least common multiple of the pop rate

and push rate of the consumer and procedure filters. We refer to this form of scheduling

and FIFO sizing as “rate-matched”.

A greedy schedule takes a different approach and does not tryto statically rate-match

filters. In this approach, filters execute eagerly, and blockwhen they attempt to read from

an empty queue, or write to a full queue. Since all queue accesses are blocking in this

approach, the size of the queue throttles the execution of the stream graph. This allows

for a tradeoff between the size of the queue and the overall circuit throughput. Smaller

queues take up less area, but may not be optimal. In our benchmarks, we observed that it

is common that a queue size of one element is sufficient for correct execution that is also

as efficient as a rate-matched static scheduled. The queue sizing is further discussed in the

following section.

Optimus is capable of generating the necessary hardware forboth schedulers. This

choice has implications on the rest of the circuit in terms ofqueue sizes, power consump-

tion, execution time, and allowed hardware sharing. In thiswork, the greedy scheduler is

used for all designs. The comparison between the two schedulers is left for future work.

24



3.3 Stream Optimizations

Streaming languages allow programmers to focus on designing their applications. Specif-

ically, programmers describe their computation programmatically and algorithmically, and

do not need to commit to specific implementation details related to scheduling, buffer-

ing, synchronization, or the underlying data transport mechanisms in their target platforms.

This programming practice leads to code that is easy to maintain and port, but places a

burden on the compiler to derive high-performing implementations.

Optimus applies many of the classical optimizations used inprevious works, and intro-

duces a set of new macro-functional optimizations that specifically target streaming pro-

grams. Our compiler focus is on improving communication latency and reducing memory

storage requirements (i.e., area). Communication latencycan be optimized by sending

larger chunks of data between filters. Storage can be optimized by intelligently sizing

queues between filters, and allocating output registers to increase spatial reuse. It is not un-

common in today’s synthesis frameworks to apply many of these optimizations manually,

either directly in the source code or after the circuit is generated. This process can be time-

consuming, error-prone, and complex for large benchmarks.It also defeats the purpose of

using elegant and practical streaming languages that are attractive because they promote

productive and portable programming.

3.3.1 Queue Allocation

The queues that connect hardware filters are implemented using the SRAM structures

on the FPGA. FPGAs have limited SRAM capacity, ranging from 4KB on the low-end

25



FPGAs to 128 KB on the high-end ones. The SRAM is also used to implement the local ar-

rays and other data structures used by the filters. Thus, for large stream graphs, the SRAM

quickly becomes the bottleneck resource. The scheduling strategy used to orchestrate the

execution of the filters can significantly impact the storagerequirements. Optimus judi-

ciously calculates the size of each queue to allocate between filters in order to better utilize

the SRAM and maintain the high throughput achieved by a rate-matched static schedule.

The idea behind our approach is to recognize that a slot in thequeue may be reused

if the value that previously occupied the slot is already consumed. Thus, we can reduce

the total storage requirement for the inter-filter FIFOs if we can determine the maximum

number of overlapping lifetimes for the values exchanged between filters.

Figure 3.4: Overlapped producer-consumer schedules showing maximum number of overlapping
lifetimes.

Figure 3.4 shows the cycle-by-cycle schedule of a pair of communicating filters. Only

the push and pop operations are shown. The schedule shows allthe cycles in the steady

state executions of the producer-consumer pair. Suppose the producer pushedN items per

26



execution of its work function, and the consumer poppedM items from the queue every

time its work function executes. For the filters to be rate-matched, the producer must run its

work functionLCM(M,N)
M

times, and the consumerLCM(M,N)
N

times. We determine the max-

imum number of overlapping lifetimes by simulating the rate-matched schedule. We use

double-buffering during simulation to provide communication-computation concurrency.

The simulation needs to only cover one steady-state execution of the filters. In the case

a filter peeks at more data than it pops, an initialization schedule is run to prime all the

FIFOs.

A causally correct schedule is obtained by shifting the producer schedule to occur at

time 0, and shifting the consumer schedule down such that allpops appear at least one

cycle after their corresponding pushes. Figure 3.4 shows anexample schedule. Such a

schedule reveals the lifetime of every entry in the queue between the producer and the

consumer. The lifetime extends from the cycle at which an entry is pushed and the cycle

at which the entry is popped. The maximum number of queue entries whose lifetimes

overlap can be easily calculated from the schedule. In Figure 3.4, the maximum number of

overlapping lifetimes is 3. Setting the queue size to a valueless than this maximum will

stall the filters because one of the pushes at the producer cannot succeed as it would appear

before the pop of the previous queue entry. Conversely, setting the queue size to a value

more than this maximum would not improve the schedule. Thus,the minimum queue size

for a producer-consumer pair that retains the throughput ofthe static schedule is obtained

by calculating the maximum number of overlapping lifetimesof a rate-matched schedule.

27



(a)Adder (b) Splitter

Figure 3.5: An example of access fusion using the stream program in Figure 2.1.

3.3.2 Queue Access Fusion

A critical factor in streaming applications is sustained throughput. One of the key is-

sues that can have negative effect on the throughput of a streaming circuit is communication

latency between different filters. This issue arises from the fact that each queue or mem-

ory access, regardless of data width, takes at least one cycle. The one cycle access time

would have a direct affect on the latency of the longest path in filters. It can also limit the

filter-level parallelism in splitters and joiners. To overcome these bottlenecks, we consider

bundling similar queue accesses together to create a singlewide access usingqueue ac-

cess fusion. This is conceptually similar to creating SIMD loads and stores. Of course, to

support fused queue accesses, the basic queue structure requires modifications.

Code motion and loop unrolling are applied to find opportunities for fusing queue ac-

cesses and shortening the longest paths in a filter. Automatic SIMDization techniques use

a similar approach with one difference: the vector length isknown a priori, whereas we

can realize variable vector lengths between producer-consumer filter pairs. Loop unrolling

28



is applied to loops with queue or memory operations to exposethe operations to the code

motion phase. Optimus needs to consider area constraints while it is performing the un-

rolling because unrolling may result in area expansion and cause the design to overflow the

target FPGA. The next step, is to cluster memory and queue operations via aggressive code

motion. The end result is a several clusters of memory and queue operations with no other

intervening operations. Each cluster of operations is assigned a vector length according

to the number of operations in the cluster. Subsequently, the compiler determines a sin-

gle vector length for the filter by calculating the greatest common divisor of each cluster’s

vector length. For example, if the vector lengths of the clusters are 8, 12, and 16, then the

filter’s vector length is 4.

Figure 3.5 shows this optimization applied to a filter and a splitter from Figure 2.1.

For theAdder filter in Figure 3.5a, the loop is unrolled 4 times and a vectorlength of

4 is chosen for fusion. The loop is not fully unrolled becauseof area constraints. The

unoptimizedAdder filter will take 18 cycles to finish (assuming the value ofAddSize is

8), but the optimized one will take only 6 cycles. Figure 3.5billustrates the effectiveness

of the fusion optimization for the splitter filter. The unoptimized splitter needs 9 cycles

to read 8 data values from its input queue and push them to the input queue ofAdder1.

During these 9 cycles, the next filter in the splitjoin (Adder2) would be idle while it awaits

its input data to arrive. In this case, the access fusion optimization will reduce the filter’s

idle time to 2 cycles. The optimization in general reduces the critical path of computation

and can reduce execution time. If the optimization is successful in finding large clusters of

accesses and fusing them, it will also significantly reduce the total area of the design. If the

optimization is not successful, the loop unrolling would result in area expansion. However,

29



an intelligent compiler would reverse the unrolling when itis not profitable.

One of the restrictions imposed by the our generated hardware is that the vector length

for all accesses from a filter to a specific queue has to be the same, although vector lengths

to the same FIFO from different filters may differ. This is realized by incrementing and

decrementing read and write pointers using different constant offsets. For example, if the

read vector length is 1 and the write vector length is 8, the queue can be viewed as an 8x8

matrix with the write pointer pointing to the rows and the read pointer pointing to individual

elements of the matrix. Figure 3.6 illustrates the possibleconfigurations.

3.3.3 Flip-flop Elimination

As it was discussed in Section 3.2, all live-out data signals, including pass-through live

signals, are registered at the end of each basic block to bound wire delays. The output of

memory and queue operations cannot be registered in the block that issues those operations

because memory (and queues) needs one cycle to respond. Therefore, the results of those

operations are registered in the immediate successors of the issuing basic block, as well as

along all blocks that transmit the values along to their destinations. The CFG in Figure 3.7a

illustrates the registers added for various operands as rounded-edge rectangles attached to

the basic blocks. Note that live operands are saved at the endof each basic block regardless

of whether they are passing through or generated in that block. This register assignment

ensures that the critical path in a CFG is not greater than themaximum of delays through

the basic blocks.

Many of these flip-flops are unnecessary and can be removed without affecting the

clock speed. In order to keep the circuit functional, a subset of registers must be main-

30



Figure 3.6: Various configuration of queues used by queue access fusion optimization.

tained. There are two main situations where flip-flops cannotbe removed. First, if an

operand is both live-in and live-out along a backedge, it hasto be registered before or after

the backedge to prevent formation of a combinational loop. The second case is more com-

plex. If an operand is the result of a queue or memory read, it does not have to be registered

because the hardware for the queue and memory hold its outputas long as no other opera-

tion has changed its read status. For a read operation from a queue, a status change occurs

when another pop is issued. In a memory structure, status changes when a store writes to

the same address as a read. When the compiler can determine that no intervening pops or

read/write conflicts occurs, then it can elide the corresponding registers.

Figure 3.7 shows a sample CFG and all the data registers before and after the flip-

flop optimization. Based on the rules for flip-flop elimination and ignoring clock cycle

constraints, all the registers can be removed except X-register in BB 2 and the T-register in

BB 5. The X-Register cannot be removed because there is an interleaving pop operation

in BB 2 that can change the status of the input queue. Note thatif the control flows to the

right instead of left after BB 1, then no register is needed because there are no pop operation

along that path. The register for T also cannot be removed because T is both live-in and

live-out along the backedge going from BB 5 to itself.

An issue with flip-flop elimination is the possibility of increasing the critical path

31



(a) Sample control flow graph be-
fore flip-flop elimination

(b) After flip-flop elimination

Figure 3.7: An example of flip-flop elimination.

length. In general, Optimus tries to balance the length of the combinational paths by split-

ting the large basic blocks and adding registers to the end ofeach BB. Optimus has an

internal model of the target FPGAs to assess the latency of different combinational oper-

ations. If removing any of the registers in the flip-flop elimination optimization lengthens

the critical path, then that register is left in place.

3.4 Experiments

We compiled and simulated various applications from different domains. Our target

platform is a Xilinx Virtex-4 (XC4VLX200) FPGA [85]. ISE Foundation was used for syn-

thesizing the HDL generated by Optimus. Xilinx Xpower is used to measure the energy and

power consumption of our circuits. For comparison, we used a300 mW 300 MHZ embed-

ded PowerPC 405 processor. We compare our FPGA results to thebenchmarks compiled

and executed on the PowerPC. We use the StreamIt compiler, and the same StreamIt source

code for the benchmarks, to generate binaries that run on thePowerPC processor. Our

benchmarks are FFT (fast Fourier transform), parallel adder, bubble sort and merge sort,

32



(a) Performance Comparison (b) Energy Consumption Comparison

Figure 3.8: Figure 3.8a illustrates the speedup comparison between thehardware designs and a
300 mW PowerPC 405 running at 300 MHZ. Figure 3.8b shows the energy consumption of the
FPGA as a fraction of PowerPC energy use for various benchmarks.

integer inverse DCT (discrete cosine transform), DES (dataencryption standard), matrix

multiply and its blocked variant. In the case of DES, we used areference C implementa-

tion of the benchmark instead of the StreamIt version for thePowerPC measurements. This

is because DES performs a lot of bit-level operations, and tuned implementation can clev-

erly carry out the operations in parallel using word-wide masks. In the case of the FPGA,

we compile the StreamIt version of DES down to HDL.

Performance and Energy Consumption:Figure 3.8a shows the performance of stream-

ing hardware compared with PowerPC for various benchmarks.In this experiment, none

of the streaming-specific optimizations are used. Speedup varies from 1.1x to 58x for dif-

ferent benchmarks. Bubble sort achieves the highest speedup because it heavily exploits

pipeline-level and instruction-level parallelism. Parallel adder has the lowest speedup over

the baseline because the communication to computation ratio is high in this benchmark.

Figure 3.8b illustrates the energy consumption of the circuits generated by Optimus as a

fraction of the PowerPC energy usage. On average, these benchmarks consume 0.7x of the

33



(a) Queue Allocation Optimization (b) Queue Access Fusion Optimization

(c) Flip-flop Elimination

Figure 3.9: Performance improvements and area savings due to differentoptimizations performed
by Optimus.

PowerPC energy. The only benchmarks which use more energy onthe FPGA are parallel

adder and DES. This again happens due to large communicationto computation ratio in

case of the parallel adder. In DES, the higher energy consumption is due to the inability of

Optimus to efficiently take advantage of the bit-level parallelism in the stream graph. Con-

sidering the fact that the baseline processor is a 300mW core, these results show that the

hardware generated by the Optimus system is suitable for low-power embedded systems in

terms of both performance and energy consumption.

Queue Allocation: In the designs generated by Optimus, one of the main components

that uses the on-chip memory is the queue structure. The queue allocation optimization

34



tries to efficiently reduce the sizes of the queues without affecting the performance. The

StreamIt compiler generally uses rate matching between thefilters to calculate queue sizes.

We used the rate matched queue sizes as the baseline and show the savings due to the queue

allocation algorithm in Figure 3.9a. As shown in the figure, this optimization reduces the

queue sizes by an average of nearly 50%. Additionally, afterreducing the queue sizes to the

new values, no performance loss was observed in any of these benchmarks. These results

demonstrate that the queue allocation optimization used byOptimus is quiet effective in

saving the on-chip memory resources.

Queue Access Fusion:As discussed in Section 3.3.2, the goal of queue access fusion

is to increase the throughput of streaming circuits by fusing multiple queue operations

into a single (wider) operation. Figure 3.9b illustrates the effect of this optimization on

various benchmarks in terms of performance. We limit the maximum vector length to

8. This means that the maximum speedup achievable is 8x. As shown in the figure, the

average speedup is 3.2x, and 7.2x in the best case. In some benchmarks, no speedup

is achieved because there was not any opportunity to fuse accesses in the slowest filters.

The slowdowns are typically due to the fact that the wider queues are marginally slower

than normal queues. In order to understand the area and performance tradeoff between

different queue configurations, we synthesized three queues with the same size but different

read/write widths. As the results in Table 3.1 show, the wider queues are slightly larger than

their narrower counterparts.

Flip-flop Elimination: The goal of this optimization is to identify and eliminate redun-

dant registers such that the circuit still functions properly and the critical path length does

not change. The results of this optimization are shown in Figure 3.9c. Flip-flop elimination

35



Queue Configuration Total number of bits Number of Slices Clock (MHZ)
(read width = 128, write width = 16) 4096 70 >300
(read width = 16, write width = 16) 4096 56 >300
(read width = 16, write width = 128) 4096 95 >300

Table 3.1: Area and delay for different queue configurations

reduces flip-flop utilization by 30% and slice utilization by16%. As shown in the figure,

the improvement in flip-flop use is always greater than slice utilization. This means that

there are many slices used only for latching purposes and notfor logic computation. The

area savings due to this optimization vary based on the number of pops and loads and their

arrangement in each benchmark.

Comparison to Handel-C:We compared our generated circuits to those generated us-

ing Handel-C and its compilation tool chain. Handel-C is a variant of the C programming

language. It is aimed toward synthesizing hardware from C code. We implemented DES

and DCT in Handel-C and generated their hardware designs. The Handel-C implementa-

tions preserved the overall streaming structure of the benchmarks. Our area and perfor-

mance comparisons show that the Optimus-generated circuits are an average of 5% faster

and 66% larger. Using our stream-specific optimization, we can further improve the perfor-

mance of the Optimus-generated circuits so that they are 12xfaster, although the designs

are also 90% larger than the Handel-C designs.

There are several important factors that make the Handel-C designs inefficient in terms

of performance. First, Handel-C is not able to automatically perform the same kind of

macro-level optimizations that Optimus carries out. Second, Handel-C does not try to

balance the critical paths between flip-flops to achieve higher frequency designs. The lack

of these optimizations and transformations is the main reason the Handel-C designs lag

36



in performance compared to the Optimus-generated ones. Theoptimizations can be done

manually in the Handel-C code, but that requires more work for the programmer, and it

would obfuscate the streaming nature of the code.

In terms of area comparisons, the designs in Handel-C are more area-efficient for two

main reasons. First, Handel-C tries to utilize resources (IPs) that are unique to various

families of FPGAs. Designs generated in this way are usuallymore area-efficient. Sec-

ond, Handel-C performs some low-level netlist optimizations that improve the area by a

large factor. We believe netlist-level optimizations should be implemented in the low-level

hardware synthesis tool and not in a high-level compiler. Therefore, Optimus does not

implement any of the low-level optimizations that Handel-Cperforms to improve the area

efficiency.

3.5 Related Work

C is closely linked to the Von Neumann processor model, in which variables correspond

to memory locations and function invocations reside on stacks. C lets users manipulate

pointers to memory and to functions, which does not make sense in an FPGA circuit model.

Thus, any attempt to compile C to FPGA configurations would encounter problems that

derive purely from the C language, not from the the application itself. Several projects

have tried to address the inadequacies of C with different techniques.

As a result of an extensive amount of research in the area of high-level synthesis, re-

searchers have introduced several compiler systems and abstraction languages [41, 57, 74,

56, 32, 24, 12, 29, 28] each of which has some unique capabilities. ROCCC [28] is a C

37



to hardware compilation project whose objective is the FPGA-based acceleration of fre-

quently executed loop nests. This compiler performs extensive compile-time transforma-

tions to maximize various forms of parallelism and minimizethe number of off-FPGA

memory accesses. Circuits generated by ROCCC can be used by Optimus as IP blocks to

accelerate the execution of loop nests. Another C to hardware compiler is SPARK [29],

which takes a subset of C as input and outputs synthesizable VHDL. Its optimizations

include code motion, variable renaming, FSM state minimization, etc. Streams-C [24]

relies on a CSP model for communication between processes and can meet relatively high-

density control requirements. Researchers in academia andindustry have also designed

various high-level abstraction languages such as SA-C [59], Handel-C [14], SystemC [76],

etc., to make designing hardware systems easier for averagesoftware developers. SA-C

helps compilers exploit data reuse because of its special constructs (e.g., windows) and it

functional nature. Handel-C is a low level hardware/software construction language with C

syntax that supports behavioral descriptions and uses a CSP-style communication model.

Although all these systems and abstraction languages have proved useful in various

domains, they have different shortcomings. GARP, Streams-C, and SPARK do not sup-

port accesses to two-dimensional arrays, so image processing applications must be mapped

manually. ROCCC accepts only perfectly nested and constantbound loops operating on

arrays with affine index expressions. Moreover, all arrays are assumed to be located in the

memory and no local data is allowed. The previous systems andlanguages do not support

the stream-oriented optimizations that we discuss in this work. They also do not provide

some of the constructs that are essential for stream programming such as peeking.

38



3.6 Summary

Streaming applications are important to embedded systems developers. Improving the

performance of these applications in an embedded setting istypically accomplished via

special purpose processors and ASICs that are inflexible andinvariably expensive to design.

An alternate approach is to use configurable hardware fabrics such as FPGAs that provide

a performance- and power-competitive platform for their cost. In addition, FPGAs are

increasing available as components in heterogeneous systems, and their versatility makes

them attractive platforms in a domain where software and consumer requirements change

rapidly. Unfortunately, the complexity of programming FPGAs has limited their benefits as

only system engineers with hardware design expertise are able to effectively map software

down to hardware circuits.

The goal of our work is to enable the efficient realization of streaming programs di-

rectly in hardware, when appropriate. Our Optimus compilation methodology allows for

streaming programs expressed in a high-level streaming language such as StreamIt to be

automatically refined to hardware and realized as circuits in FPGAs. The Optimus com-

piler uses a hierarchical compilation strategy that separates concerns between macro- and

micro-functional requirements. Macro-functional optimization are geared to efficiently as-

sembly filter module into larger applications. These optimizations affect space (area) and

time (throughput) characteristics of the application circuits. Our goal in this regard is to

provide the highest performance for the lowest area cost. Comparing our generated de-

signs to an industry-strength compiler shows that we are performance and area competitive

although we believe there is much more to be gained in our framework. Our results are

39



largely enabled by stream-specific considerations and optimizations. Micro-functional op-

timizations are designed to improve the efficiency of the filter modules themselves. Our

stream-aware optimization improve performance an averageof 255% and reduce the area

requirements by 16% compared to our baseline results.

40



CHAPTER IV

SIMDization of Stream Graphs

4.1 Introduction

Support for parallelism in hardware has greatly evolved in the past decade as a response

to the ever-increasing demand for higher performance and better power efficiency in dif-

ferent application domains. Various companies have introduced vastly different solutions

to bridge the performance and power gap that many applications are facing. These solu-

tions include shared-memory multicore systems (Intel Corei7 [43]), distributed-memory

multicore processors (IBM Cell [40]), tiled architectures(Tilera [80]) and in some cases

a combination of these (Intel Larrabee [72]). These architectures not only achieve higher

performance and efficiency by combining multiple cores intoone die, but they are also

equipped with one or more single-instruction-multiple-data (SIMD) engines to enable more

efficient data-level parallelism support for several important application domains such as

multimedia, graphics, and encryption. SIMD engines are notsuitable for all applications,

but if an application can be tailored to efficiently exploit them, the performance and power

benefits can often be superior to the gains from other architecture solutions. Therefore,

41



SIMD engines like Altivec [73], Neon [6], SSE4 [42] are now anessential part of most

architectures on the market. With SIMD width expanding in future architectures, such as

Intel’s Larrabee, under-utilization of the SIMD units would translate into a loss in perfor-

mance and also power consumption.

Mapping abundant parallelism of streaming applications onto multi-core provides rea-

sonable speedup for but can also experience slowdown due to inter-core communication

overhead and high memory/cache traffic. Utilizing SIMD engines is preferred, even for

applications where multi-core speedup is close to the theoretical maximum, because SIMD

engines can improve performance without increasing communication overhead and mem-

ory/cache traffic. Exploiting SIMD engines, in some cases, can achieve greater perfor-

mance than multi-core while using less area and power.

Extending the retargetability of streaming languages for multi-core systems by adding

effective SIMD support to their compilers is desirable because of the variation in char-

acteristics of SIMD accelerators between different standards, such as number of lanes,

memory interface, and scalar/vector transfers. Implementing and porting applications be-

tween different architectures can be difficult and error-prone. Therefore, efficiently vector-

izing stream programs is essential to expand their applicability as a universal programming

paradigm for current and future single/multicore architectures with various wide or narrow

SIMD units.

To exploit SIMD engines, current streaming compilers translate the streaming lan-

guages down to an intermediate language, such C++ or Java, and then apply vectoriza-

tion techniques to generate SIMD-enabled code. The most popular techniques are hand-

optimizing the code and traditional auto-SIMDization [3, 4, 64, 5, 51]. Both of these so-

42



lutions have proven difficult to apply in real world scenarios. Hand-optimizing the bi-

nary or sequential code using architecture-specific instructions or intrinsic functions is a

time-consuming and error-prone task which results in an inflexible and unportable binary.

Auto-vectorization is, at this stage, still impractical and far from being able to universally

utilize the various kinds of available SIMD facilities. Also, performing SIMDization on

streaming applications after intermediate-level code generation may result in an inefficient

schedule and mapping of the stream graph since the schedule is already fixed and informa-

tion that is available in the high-level stream graph is lost. Extracting this information from

the generated code is predicated on performing complex compiler analysis and transfor-

mations which are impossible in some cases. In summary,lack of global knowledge about

the program, inability to adjust the schedule, and alsoloss of data flow informationare

the main reasons behind inefficiency of traditional auto-vectorization techniques in dealing

with streaming applications.

In this work, we introduceMacroSS; a streaming compiler for the StreamIt language

that is capable of performing macro-SIMDization on stream graphs. Macro-SIMDization

uses high-level information such as the valid set of schedules and communication patterns

between actors to transform the graph structure, vectorizeactors of a streaming program,

and generate intermediate code (C++ in this work). Then, it uses the host compiler to

compile the generated intermediate code to binary for a specific target processor. The

information that is used by MacroSS is deduced from the high-level program structure and

is not available to low-level traditional compilers that are used to compile the intermediate

code. As a result, MacroSS has a broader understanding of theprogram structure and

macro-level characteristics of the streaming applicationthat allows the compiler to utilize

43



SIMD engines more efficiently.

MacroSS is capable of performing single-actor, vertical, and horizontal SIMDization of

actors. Single-actor SIMDization targets each SIMDizableactor separately and transforms

consecutive sequential executions of a SIMDizable actor todata-parallel executions on the

SIMD engine. Vertical SIMDization fuses a pipeline of vectorizable actors to build a larger

vectorizable actor and reduces the scalar-to-vector (packing)/vector-to-scalar (unpacking)

overhead that exists between actors. Our experiments show that vertical SIMDization is ap-

plicable in many cases and can significantly improve performance by eliminating the need

for translating back and forth between scalar and vector. Finally, horizontal SIMDization

takes a set of isomorphic task parallel actors and replaces them with one or more data paral-

lel actors. The choice of which vectorization technique to apply to a stream graph is based

on the internal target-specific cost model and the structureof the graph. After SIMDization,

MacroSS is able to generate architecture-specific intermediate code with SIMD intrinsics.

This intermediate code uses vector types and intrinsics specific to the target architecture

and can be compiled using the host compiler.

Packing of scalar values to a vector or unpacking a vector to scalar values typically

takes between a couple of cycles to tens of cycles depending on the architecture. Since

communicating data between vectorized and scalar actors orvice versa needs several pack-

ing/unpacking operations, MacroSS is equipped with two techniques to optimize this costly

communication overhead. The first technique tries to replace the packing/unpacking oper-

ations with permutation instructions in actors that, during each execution, read or write2n

elements. In the second technique, we introduce a low-overhead dynamic shuffler called

the streaming address generation unit (SAGU). This unit eliminates the need to perform

44



complicated address translations, data alignment, and packing/unpacking of data as data

crosses vector-scalar boundaries of the graph.

To summarize, in this part, we make the following contributions:

• Introduction of macro-level SIMDization techniques for streaming languages: single

actor, vertical and horizontal SIMDization. Based on thesetechniques, MacroSS

compiler for the StreamIt language is implemented.

• Hardware and permutation-based tape optimizations for reducing the overhead of

scalar-to-vector and vector-to-scalar data conversions.

• Evaluation of MacroSS on various streaming workloads from the StreamIt bench-

mark suite [79] on the Intel Core i7.

Macro-SIMDization and the related optimizations in MacroSS are explained in Section

4.2. Section 4.3 includes a brief discussion about the differences between traditional auto-

vectorization and macro-SIMDization. Experiments are shown in Section 4.4. Finally, in

Section 4.5, we discuss related works.

4.2 Macro-SIMDization

The SIMDization path in MacroSS consists of several steps tomake the streaming

graph more amenable to vectorization, tune the steady stateschedule, vectorize actors, and

perform target-specific code generation.

MacroSS is equipped with three main techniques:Single-Actor, Vertical, andHori-

zontal SIMDization. Single actor SIMDization targets each stateless actor separately. The

45



E
peek=3, pop=3, 

push=4

D
peek=2, pop=2, 

push=2

F
peek=4, pop=4, 

push=1

G
peek=4, pop=2, 

push=8

H
peek=8, pop=8, 

push=n

A
peek=n, pop=n, 

push=8

Joiner (1, 1, 1, 1)

Splitter (4, 4, 4, 4)

C0
peek=1, pop=1, 

push=1

C3
peek=1, pop=1, 

push=1

C2
peek=1, pop=1, 

push=1

C1
peek=1, pop=1, 

push=1

B1
peek=12, pop=12, 

push=3

B2
peek=12, pop=12, 

push=3

B3
peek=12, pop=12, 

push=3

B0
peek=12, pop=12, 

push=3

6

3

3

3333

1 111

4

6

4

2

1

(a)

3D 2E

B3
B2

B1

3D 2E

C3
C2

C1

HJoiner (1)

HSplitter (4)

3D 2E

3D 2E
peek=6, pop=6, 

push=8

F
peek=4, pop=4, 

push=1

G
peek=4, pop=2, 

push=8
G

peek=4, pop=2, 
push=8
G

peek=4, pop=2, 
push=8
G

peek=4, pop=2, 
push=8

H
peek=8, pop=8, 

push=n

C0
peek=1, pop=1, 

push=1

B0
peek=12, pop=12, 

push=3

A
peek=n, pop=n, 

push=8

12

1

6

8

1

2

2
2

2
2

6

6
6

6

6
H

o
rizo

n
tal S

IM
D

izatio
n

V
ertical S

IM
D

izatio
n

S
in

g
le-A

cto
r S

IM
D

izatio
n

(b)

Figure 4.1: Part (a) of this figure shows the stream graph used as a runningexample. Part (b)
shows the same stream graph after MacroSS has SIMDized it.

goal is to convert multiple (equal to SIMD-Width) consecutive executions of a SIMDizable

actor into one data-parallel execution on the target SIMD engine. Single-actor SIMDiza-

tion leaves the input and output tapes of a vectorized actor as scalar and does not convert

the tape accesses to vector since complicated shuffle operations must be introduced in the

code in case vector tape accesses are used. The scalar tapes introduce packing/unpacking

overheads in each SIMDized actor. Vertical SIMDization, which is a more optimized way

of performing single-actor SIMDization on a pipeline of vectorizable actors, reduces this

overhead. It enables MacroSS to implement vector communication between the actors of a

46



SIMDizable pipeline. Both single-actor and vertical SIMDization try to convert sequential

execution of a single actor or a pipeline of actors to data-parallel execution. The third tech-

nique, horizontal SIMDization, converts task parallelisminto data parallelism for a group

of isomorphic actors (stateful or stateless) in a stream graph. Horizontal SIMDization is

mainly beneficial in cases where a group of several isomorphic actors are placed between a

splitter and joiner and it is not possible to fuse these actors into one coarse actor to perform

vertical SIMDization. MacroSS finds the parts of a graph thatare suitable for this kind of

SIMDization and converts the eligible task-parallel actors into one or more SIMD actors.

The stream graph illustrated in Figure 4.1a is used as a running example to explain

different actions that the compiler takes to perform macro-SIMDization. This graph shows

the structure of a streaming application with 10 unique actors. Each box shows one actor

in the program. Each edge in this graph indicates a tape implemented using FIFO queues.

The text written inside each box shows how each actor interacts with its input and output

tapes. Each shaded box represents a stateful actor. On the right side of each node, the

repetition number of that node in the steady state is shown. Even though MacroSS is able

to target processors equipped with SIMD engines with any SIMD width, for the sake of

presentation, the target hardware platform to which MacroSS compiles is set to a core with

SIMD width of four 32-bit data types, and main memory line width of 128-bit. Figure 4.1b

shows how MacroSS vectorizes the streaming graph. Thesplit-joinstructure is horizontally

vectorized. The task-parallel actors between the splitterand joiner are converted to SIMD

actors and the splitter and joiner are replaced with horizontal versions. ActorsD andE are

vertically fused and SIMDized. Single-actor SIMDization is applied to actorG.

The details of how MacroSS performs SIMDization on a streaming graph are explained

47



in the following three subsections. Next, in Section 4.2.4,the way MacroSS deals with

SIMDization of tapes in the presence of architectural support is explained. Finally, Sec-

tion 4.2.5 explains the overall structure of the macro-SIMDization technique in MacroSS.

4.2.1 Single-Actor SIMDization

LetSW denote the SIMD width of the target machine. The goal of single-actor SIMDiza-

tion is to runSW consecutive executions of an actor in data-parallel fashion using the target

SIMD engine. As mentioned before, actors in a StreamIt program execute based on a steady

state schedule in which each actor is enclosed by afor-loop that iterates as many times as

its repetition number (see Figure 2.2b). Conceptually, single-actor SIMDization is similar

to vectorizing the actor’s enclosingfor-loop whose trip count is the repetition number of

the actor. Therefore, MacroSS adjusts the repetition numbers of all actors to make them

multiples ofSW before single-actor SIMDization.

MacroSS finds the smallest factor that the repetition numberof each vectorizable actor

should be multiplied by based on the following equation:

M = Max{
LCM(SW,Ri)

Ri

, ∀ SIMDizable actorAi} (4.1)

Each term of theMax function finds the smallest factor that each repetition number (Ri)

should be multiplied by to make it a multiple ofSW . After finding the minimum for

each SIMDizable actor, the largest factor is chosen and all of the repetition numbers are

scaled based on that. According to Equation (4.1), the repetition numbers of the graph in

Figure 4.1a must be scaled by 2 (=M) before SIMDization.

48



Suppose that, after this adjustment of the repetition numbers, the resulting repetition

number of an actorA is m × SW . Then, MacroSS transforms them × SW sequential

executions ofA into m sequential executions ofSW data-parallelA’s. Since several ex-

ecutions of the SIMDized actor will be running at the same time, only stateless actors are

eligible for single-actor SIMDization. This kind of SIMDization can be applied to actors

D, E, andG in the example shown in Figure 4.1a. The code in Figure 4.2 illustrates how

single-actor SIMDization is performed for actorsD andE. Ignoring the tape accesses, it

can be seen that the variables in the original actors are packed into vector variables and

computation functions are calculated on vector variables instead of scalar. Vector variables

are depicted byv suffix as intmp v[], t v andcoeff v[]. ActorsD andE originally

had repetition number of 12 and 8 and after SIMDization are executed 3 times and 2 times

since each execution of the vectorized actors is in fact 4 data-parallel executions of the

original actors.

In the single-actor vectorization, the input and output tapes of a vectorized actor are left

as scalar in two cases. First, the producer actor that fills the input tape of the vectorized

actor is not SIMDizable. Second, the producer actor is vectorizable but its push rate is dif-

ferent from the pop rate of the consumer actor. For similar reasons, applying vectorization

to the tape between the vectorized actors and its consumer isnot possible in some cases.

Therefore, the input and output tapes of a vectorized actor using single-actor SIMDization

are not vectorized and remain as scalar. In order to read or write data elements in the cor-

rect order from the scalar input or output tapes in the vectorized actor, the pops/peeks for

reading from the input tape and pushes for writing to the output tape must be done in a

scalar fashion.

49



0    for (i : 0 to 1) {
1      t = pop();
2     tmp[ i]  = t * coeff[i];
3    }
4    r0 = sqrt (tmp[0] + tmp[1]);
5    push(r0);
6    r1 = sqrt (tmp[0] - tmp[1]);
7   push(r1);

0   x0 = pop();
1   x1 = pop();
2   x2 = pop();
3   result[0] = x1 * cos(x0) + x2;
4   result[1] = x0 * cos(x1) + x2;
5   result[2] = x1 * sin(x0) + x2;
6   result[3] = x0 * sin(x1) + x2;
7   for (i : 0 to 3) 
8      push(result[i] );

D (12)

E (8)

(a)

0     for (i : 0 to 1) {
1       t_v.{3} = peek(6);
2       t_v.{2} = peek(4);
3       t_v.{1} = peek(2);
4       t_v.{0} = pop();
5       tmp_v[i] = t_v * coeff_v[i];
6     }
7     r0_v = sqrt(tmp_v[0] + tmp_v[1]);

8     rpush(r0_v.{3}, 6);
9     rpush(r0_v.{2}, 4);
10   rpush(r0_v.{1}, 2);
11   push(r0_v.{0}, 0);

12   r1_v = sqrt(tmp_v[0] – tmp_v[1]);

13   rpush(r1_v.{3}, 6);
14   rpush(r1_v.{2}, 4);
15   rpush(r1_v.{1}, 2);
16   push(r1_v.{0});

0   x0_v.{3} = peek(9);
1   x0_v.{2} = peek(6);
2   x0_v.{1} = peek(3);
3   x0_v.{0} = pop();

4   x1_v.{3} = peek(9);
5   x1_v.{2} = peek(6);
6   x1_v.{1} = peek(3);
7   x1_v.{0} = pop();

8   x2_v.{3} = peek(9);
9   x2_v.{2} = peek(6);
10  x2_v.{1}= peek(3);
11  x2_v.{0}= pop();

12  result_v[0]= x1_v* cos(x0_v) + x2_v;
13  result_v[1]= x0_v* cos(x1_v) + x2_v;
14  result_v[2]= x1_v* sin(x0_v) + x2_v;
15  result_v[3]= x0_v* sin(x1_v) + x2_v;

16  for (i : 0 to 3) {
17     rpush(result_v[i].{3}, 12);
18     rpush(result_v[i].{2}, 8);
19     rpush(result_v[i].{1}, 4);
20     push(result_v[i].{0});
21  }

DV (3)

EV (2)

(b)

Figure 4.2: This figure shows how single-actor SIMDization transforms actorsD andE into DV

andDE . All the vector variables are concatenated withv at the end. Part (a) of this figure shows
the code for actorsD andE in scalar mode. Part (b) illustrates the vectorized versionof actorsD
andE.

Lines 1-4 ofDV in Figure 4.2b show the scalar tape read accesses. After single actor

vectorization, the threepeek()s and onepop() in lines 1-4 are induced from onepop()

in the original code, line 1 ofD in Figure 4.2a. Thepeek()s andpop()s are reading

the scalar input tape for 4 (=SW ) consecutive executions of the original actor and packing

those four read elements into a vector by writing each element to a lane of a vector variable.

The accesses to theith lane of a vector variable are indicated byv.{i}. After a vector is

formed from the scalar input tape in this way, the vector willbe used for the computation

50



in the rest of the actor’s code. When the actor wants to write data to the output tape, it

unpacks the data to scalar variables and pushes them to the scalar output tape (lines 8-11

of DV in Figure 4.2b). In other words, after each read and before each write to tapes, a

SIMDized actor should perform packing and unpacking operations.

Since the tapes are left as scalar and each tape read is replaced bySW tape reads after

single-actor SIMDization, it is necessary to perform strided reads to receive the right data

element for each of theSW pops. The stride for each set ofSW reads in a SIMDized

actor is equal to the pop rate in the original actor. For example in Figure 4.2a, since the

pop rate of actorD is 2, thepop() in line 1 is converted into 4 stride-two input tape reads

as shown in lines 1-4 of Figure 4.2b. To read the scalar input tape in a non-destructive

way,peek() is used instead ofpop() for the first 3 reads, and thepop() is used only

for the last read which also adjusts the read pointer of the input tape. For the same set of

reasons, the scalar output tape is written with a stride equal to the push rate of the original

actor. In Figure 4.2b, lines 8-11 unpack vector variabler0 v and write each element to

the scalar output tape with a stride of 2, since the push rate of the original actor,D, is 2.

The first 3 writes are done usingrandom access pushoperations that do not move the write

pointer of the tape (lines 8-10 and 13-15). Random access push operation are indicated

by rpush(data, offset) in the code. The first argument ofrpush() is the data

to write and the second argument is the offset from the write pointer of the output tape to

which the data will be written. The last write of each set of writes is performed using a

normal push operation which updates the write pointer of thetape.

In Figure 4.2, only the code for thework functions ofD andE is shown and theinit

functions are omitted. Actual vectorization of an actor’sworkandinit method comprises of

51



two parts: identifying variables and constants to be vectorized in an actor and rewriting the

actor by replacing the vectorized variables with vector accesses and fixing the tape accesses.

Identifying variables and constants to be vectorized can exploit the fact that the tape reads

are the source of data for the variables used in the computation assignments inside an actor.

A variable definition (i.e.def) originating for a pop/peek is marked to be vectorized. For

other assignment statements, thedef is identified as vector if its right hand side contains all

variableuses marked as a vector. Also, a variableusethat is used with other vector variable

uses on the right hand side of a statement is marked as a vector. Similarly, constants used

with other vector variableuses are marked to be vectorized as well. For example, in line

2 of actorD in Figure 4.2a,tmp[] is identified as a vector because the right hand side

variable,t, is written to bypop in line 1. After that,coeff[] is also detected as vector

because oft on the right hand side. After identifying the variables, thestatements are

rewritten using the vector constructs. Also, the tape accesses are replaced with strided

accesses at this point.

Single-actor SIMDization is not applicable to all the actors in a stream graph. Actors

with mutable state (i.e. stateful) are excluded from single-actor SIMDization because it

is not possible to run multiple executions of them in parallel. Splitters and joiners at this

point are also excluded since they consist of only tape access operations without any sub-

stantial computation. Actors with function calls that are not supported by the SIMD engine

are not SIMDized either. Input-tape-dependent control flow(i.e. if statements with pop-

dependent conditions) or memory accesses (i.e. pop-dependent array subscripts) can also

prevent MacroSS from performing single-actor SIMDization. The way MacroSS handles

the input-tape-dependent control-flow structures or memory accesses is by switching to

52



scalar mode (unpacking) before the input-tape-dependent structure and switching back to

vector mode after the pop-dependent structure is finished (packing). MacroSS uses an in-

ternal cost model to decide if SIMDizing an actor with input-tape-dependentif or for-loop

structures is beneficial or not.

B3

C3

B2

C2

B1

C1

3D 2E
peek=6, pop=6, 

push=8

F
peek=4, pop=4, 

push=1

G
peek=4, pop=2, 

push=8

H
peek=8, pop=8, 

push=n

A
peek=n, pop=n, 

push=8

Joiner (1, 1, 1, 1)

Splitter (4, 4, 4, 4)

C0
peek=1, pop=1, 

push=1

B0
peek=12, pop=12, 

push=3

12

6

6

6

2

4

8

4

2

(a)

0    for (work_counter0: 0 to 2) {
1      for (i : 0 to 1) {
2        t_v.{3} = peek(18);
3       t_v.{2} = peek(12);
4        t_v.{1} = peek(6);
5      t_v.{0} = pop();
6        tmp_v[i ] = t_v * coeff_v[i];
7      }
8      r0_v = sqrt (tmp_v[0] + tmp_v[1]);
9      vpush(r0_v);
10     r1_v= sqrt(tmp_v[0] – tmp_v[1]);
11     vpush(r1_v);
12   }

14   for (work_counter1: 0 to 1) {
15     x0_v= vpop();
16     x1_v= vpop();
17    x2_v= vpop();

18     result_v[0] = x1_v* cos(x0_v) + x2_v;
19    result_v[1] = x0_v* cos(x1_v) + x2_v;
20     result_v[2] = x1_v* sin(x0_v) + x2_v;
21    result_v[3] = x0_v* sin(x1_v) + x2_v;

22     for (i : 0 to 3) {
23        rpush(result_v[i].{3}, 24);
24       rpush(result_v[i].{2}, 16);  
25        rpush(result_v[i].{1}, 8);
26        push(result_v[i].{0} );
27     }
28   }

[3D 2E](1)

In
ner A

ctor D
Inner A

ctor E

(b)

Figure 4.3: Part (a) of this figure shows the stream graph in Figure 4.1a after vertical fusion ofD
andE. Part (b) illustrates the vectorized code for the fused actor, 3D 2E.

4.2.2 Vertical SIMDization

Each actor vectorized by single-actor SIMDization performs packing and unpacking

at points where tape reads or writes are performed for communicating with producer and

consumer actors. The overhead introduced by the packing andunpacking operations can

negatively affect the performance gains, even resulting inslowdowns in some cases. Verti-

53



D0 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11D1

E0 E2 E3 E4 E5 E6 E7E1

(a)

D0 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11D1

E0 E2 E3 E4 E5 E6 E7E1

1
st
Execution 2

nd
Execution 3

rd
Execution

1
st
Execution 2

nd
Execution

(b)

30 21

2320 2221

1916 1817

1512 1413

118 109

74 65

1
st

Execution

2
nd

Execution

3
rd

Execution

1
st

Set of Pushes

2
nd

Set of Pushes

(c)

30 21

2320 2221

1916 1817

1512 1413

118 109

74 65

2
nd

Execution

1
st

Execution

1
st

Set of Pops/Peeks

3
rd

Set of Pops/Peeks

2
nd

Set of Pops/Peeks

(d)

D0 D2D1

E0 E1

D3 D5D4

E2 E3

D6 D8D7

E4 E5

D9 D11D10

E6 E7

3rd Iteration

2nd Iteation

1st Iteration

2nd Iteration

1st Iteration

(e)

1st Vector Push

2nd Vector Push

180 126

235 1711

224 1610

213 159

202 141

191 137
1st Execution

2nd Execution

3rd Execution

(f)

180 126

235 1711

224 1610

213 159

202 148

191 1371st Execution

2nd Execution

1st Vector Pop

3rd Vector Pop

2nd Vector Pop

(g)

Figure 4.4: Part (a) shows scalar execution of actorsD andE. Part (b) shows the execution ofD
andE after performing single-actor SIMDization. Part (c) illustrates the order that data elements
are written to the tape in the main memory fromD. The elements with the same colors are written in
one set of push operations. Part (d) is similar to (c) but for the reads in actorE. Part (e) shows how
vertical SIMDization changes the execution order of actorsD andE. Parts (f) and (g) illustrate the
order that the elements are written to and read from the internal buffer between the inner actorsD
andE.

cal SIMDization is introduced in MacroSS to overcome this problem by merging vertically

aligned vectorizable actors and reducing the number of packing and unpacking operations.

In vertical SIMDization, pipelines of vectorizable actorsare detected and transformed into

a single actor. As long as the original actors in a pipeline are vectorizable, and no actor per-

forms peek operations except the first and the last actor in the pipeline, the resulting coarse

actor is guaranteed to be SIMDizable since the transformation does not introduce state or

any other construct that may prevent SIMDization. The original actors, which are encap-

sulated in the new coarse node, are calledinner actors. Figure 4.3 shows the stream graph

after applying vertical fusion to nodesD andE and the resulting coarse actor3D 2E.

54



After vertical fusion, MacroSS adjusts the repetition numbers of all actors to guarantee

that they are all the smallest possible multiples of SIMD width, SW . This adjustment is

done in two steps. First, the repetition numbers of inner actors and the coarse actor are

changed. The repetition number of each inner actor will be its original repetition number

multiplied by M ′

SW
. M ′ is found by plugging the repetition numbers of the inner actors into

Equation (4.1). The repetition number of the coarse actors is set toSW
M ′

. This guarantees

that the repetition number of the coarse actor is set to the largest possible multiple or divisor

of SW . After doing this step for each vertically fused SIMDizableactor, MacroSS applies

Equation (4.1) to the entire graph to ensure that repetitionnumber of all SIMDizable actors,

including the coarse actor, is multiple ofSW . In general, applying this method guarantees

that the repetition vector of the graph is scaled by the smallest possible number. Using this

method, the inner actors forD andE in 3D 2E have repetition numbers of 3 and 2, while

the new node3D 2E has a repetition number of 4. The pop rate of3D 2E is set to 6,

which equals the original pop rate of the first inner actor (D) multiplied by the repetition

number of that inner actor. Similarly, the push rate of3D 2E is set to 8. Note that the total

number of times thatD andE run after the fusion is exactly equal to the number of times

before applying fusion.

The graph resulting after vertical fusion will have coarsernodes. The communication

between the inner actors of a coarse actor is done through internal buffers (i.e. arrays)

instead of global tapes. Transferring data between the inner nodes can be completely done

using vectors since packing and unpacking are needed only during tape reads (pops) and

writes (pushes) of the new coarse node at the boundaries. Themain reason behind this

is due to the change in the relative execution order ofD andE. This will be illustrated

55



shortly using an example. At this point, single-actor SIMDization can be applied to the

vertically fused actor. The code in Figure 4.3b shows how theSIMDization is applied to

the new actor. Since actor3D 2E has 6 pops and 8 pushes, the strides for accessing input

and output tapes of3D 2E are set to 6 and 8. These reads and writes from input and to

output tapes are performed, as described in Section 4.2.1, usingpeek, pop andrpush

operations at the beginning and end of3D 2E (lines 2-5 and 23-26).

The reads and writes between inner actors are handled differently. The previous scalar

tape writes ofD in lines 8-11 and 13-16 ofDV in Figure 4.2b are now written using vector

writes as shown in line 9 and 11 of Figure 4.3b. Vector variable r0 v is written to the

internal vector buffer betweeninnerD andinnerE usingvpush(r0 v). Also, the scalar

tape reads ofE in lines 0-11 ofEv of Figure 4.2b are replaced with reads from the internal

vector buffer as in lines 15-17 in3D 2E. Compared to the code generated after SIMDizing

D andE separately, the vertical SIMDization technique in MacroSSeliminates 24 unpack-

ing ([D’s repetition number] * [D’s push rate] * [SIMD width]) and 24 packing ([E’s

repetition number] * [E’s pop rate] * [SIMD width]) operations.

Figure 4.4 shows the details of how vertical SIMDization changes the execution of

a stream graph and eliminates the packing/unpacking operations between the fused inner

nodes. Part (a) of this figure shows how actorsD andE interact with each other in scalar

mode. SinceD has a push rate of 2 andE has a pop rate of 3, 12 invocations of actor

D feeds 8 invocations of actorE (Di andEi denoteith executions ofD andE, respec-

tively). In other words, every 3 consecutive executions ofD produce enough data forE to

consecutively execute 2 times. The 24 elements produced byD are written to the tape in

order and read byE in the same order. After performing single-actor SIMDization, every 4

56



consecutive invocations ofD is merged in actorDV . The first execution of this new actor is

similar to executingD0,D1,D2, andD3 in parallel as shown in Figure 4.4b. Since every 3

consecutiveDs feeds 2Es, MacroSS needs to convert the vectors to scalars before each set

of scalar strided writes to the output tape ofD and then form vectors after each set of scalar

strided reads inE to guarantee thatE is receiving its data elements in the correct order.

Parts (c) and (d) of Figure 4.4 show the order that the pushes in DV write and pops inEV

read the data elements. If the pushes inD were replaced by a vector push, then elements 0,

2, 4, and 6 would be written to the first row in memory. In that caseE will receive its input

in the wrong order.

Vertical SIMDization applied toD andE replaces these 2 actors with actor3D 2E.

After vectorizing this new actor, every 4 consecutive executions of3D 2E will be merged

together as shown in Figure 4.4e. Since each invocation of this actor executes threeDs

first (for-loop in line 0 of Figure 4.3b) and then twoEs (for-loop in line 14 of Figure 4.3b),

running 4 of them in parallel will result in first running{D0, D3, D6, D9}, {D1, D4, D7,-

D10}, {D2, D5, D8, D11} and then{E0, E2, E4, E6} and{E1, E3, E5, E7}. Therefore,

because theDs are generating their outputs in the same order as theEs need them, the

scalar tape between originalD andE can be changed to vector buffers and extra pack-

ing/unpacking operations can be deleted. Figures 4.4f and 4.4g show how the reads and

writes are done between internalDs andEs. As shown, the vertical SIMDization has elim-

inated the need to perform packing and unpacking betweenD andE. In summary, vertical

fusion of vectorizable actors into a new coarse actor alwaysresults in less packing and

unpacking operations because of the execution reordering of the inner actors.

57



4.2.3 Horizontal SIMDization

As mentioned earlier, only actors without mutable state canbe SIMDized over using

single-actor and vertical SIMDization. Since an invocation of a stateful actor depends on

the previous invocation of the actor, different invocations cannot be parallelized. Due to the

same reason, the existence of a stateful actor within a pipeline of actors or an actor whose

peek rate is greater than pop rate prevents MacroSS from performing vertical SIMDization

because the actor resulting after vertical fusion will be a stateful actor.

Horizontal SIMDization is an alternative approach taken byMacroSS to vectorize a

set of task-parallel isomorphic actors when vertical and single-actor SIMDization are not

applicable or result in inefficient SIMD code. First, Horizontal SIMDization finds task-

parallel isomorphic actors by investigating eachsplit-join (i.e. a subgraph containing a

splitter and a joiner and all task-parallel actors between them). After finding the candidates,

MacroSS horizontally SIMDizesSW (SIMD Width) isomorphic actors by, conceptually,

executing them together side by side. Input (output) tapes of SW actors in a SIMDized

set are also SIMDized, making each scalar tape a lane of aSW -wide SIMDized tape.

Each actor in a SIMDized set still works on its own tape by accessing each lane of the

SIMDized tape. Horizontal SIMDization is able to vectorizestateful actors as well as

stateless actors because the state variables are kept in different vector lanes and updated

separately similar to the non-vectorized case. The repetition number of the actors involved

in this kind of SIMDization, unlike vertical and single-actor SIMDization, is not changed

and can be numbers that are not multiples ofSW .

Horizontal SIMDization mainly targets task-parallelisomorphicactors insplit-joins.

58



Two actors are called isomorphic if they have identicalworkandinit functions with similar

or different constant literals. A set ofSW isomorphic actors can be horizontally SIMDized

as long as the following conditions are true: (1) all of them have the same repetition num-

bers, (2) all of them have the samepushandpoprates, and (3) all of them are at the same

level in a set of pipelines that are children of asplit-join. ActorsB0 to B3 and alsoC0 to

C3 are considered isomorphic in Figure 4.1a.

Figure 4.5a shows asplit-join subgraph of the stream graph in Figure 4.1a in more

detail. Waves are used for depicting isomorphic actors due to the lack of space. Shaded

actorsC0 toC3 are stateful and can not be vectorized using any of the previously mentioned

techniques. Although actorsB0 to B3 are stateless, fusing each of them with theCi right

after them prevents MacroSS from performing vertical SIMDization on the fused actor.

Horizontal SIMDization can overcome this problem by forming one SIMDized actor out of

actorsB0 toB3 and another SIMDized actor out of actorsC0 toC3 as shown in Figure 4.5b.

Note that although the constants in line 6 ofBis are different in each actor, theBis are still

considered isomorphic because the constants can be vectorized together as shown in line 1

of actorBV in Figure 4.5b.

Before horizontal vectorization, each pipeline ofBi andCi actors works on a separate

set of scalar tapes highlighted by different shades in Figure 4.5a. Horizontal vectorization

SIMDizes this set of four scalar tapes into one vector tape (See Figure 4.5b).vpop() in

line 3 ofBV reads 4 data items at once from the vectorized input tape. Thelanes of this

vector tape correspond toB0, B1, B2 andB3 respectively. Similarly,vpush() in line 8

pushes 4 data items at once to the vectorized output tape. Since tapes are also vectorized,

no non-unit strided access usingpeek() orrpush() is needed. Horizontally vectorizing

59



0 work {
1  for(i: 0 to 2){
2       a0 = pop();
3       a1 = pop();
4       a2 = pop();
5       a3= pop();
6       r = (a0*a1 + a2*a3) / 5;
7       push( r ); 
8   }
9 }

0   int state[31];
1   int place_holder= 0;

2 init{
3   for(i: 0 to 31)
4 state[place_holder] = 0;
5 }

6 work {
7 push(state[place_holder]); 
8 state[place_holder] = pop();
9 place_holder++;
10 }

B0

C0

B2 B3

Splitter (4, 4, 4, 4)

C1 C2 C3

Joiner (1, 1, 1, 1)

... ... ... ...

......

... ...

0 work {
1  for(i: 0 to 2){
2       a0 = pop();
3       a1 = pop();
4       a2 = pop();
5       a3= pop();
6       r = (a0*a1 + a2*a3) / 6;
7       push( r ); 
8   }
9 }

...

... ...

...

B1

(a)

0   vector int state_v[31];
1   int place_holder= 0;

2 init{
3     vector int tmp_v= {0,0,0,0}; 
4   for(int i:  0 to 31) 
5 state_v[place_holder] = tmp_v;
6 }

7   work {
8 vpush(state_v[place_holder]); 
9 state_v[place_holder] = vpop();
10 place_holder++;
11 }

0  work {
1 vector const_v= {5, 6, 7, 8};
2    for(i: 0 to 2){
3     a0_v= vpop();
4     a1_v= vpop();
5     a2_v= vpop();
6      a3_v= vpop();
7      r_v = (a0_v*a1_v+a2_v*a3_v) / const_v;
8      vpush(r_v);
9     }
10 }

BV

CV

HSplitter (4)

HJoiner (1)

... ... ... ...

... ... ... ...

... ... ... ...

(b)

Figure 4.5: Part (a) and (b) show the graph before and after horizontal SIMDization, respectively.

tapes can greatly improve the final performance by replacingthe scalar tape accesses with

vector accesses and, therefore, better utilizing the memory bandwidth. ActorsB0 to B3,

originally had 96 pops (= [pop rates: 12]× [repetition numbers: 2]× [SIMD with: 4])

which is reduced to 24 vector pops (= [vector pop rates: 12]× [repetition number: 2] )

after SIMDization. Similarly, the number of pushes inBis decreases to 6 vector pushes

from 24 pushes, andCi’s 24 pops (pushes) drops to 6 vector pops (pushes). In general, the

number of tape accesses in the actors between a horizontallyvectorizedsplit-join structure

is always reduced by factor ofSW .

During horizontal SIMDization, MacroSS replaces the original splitter and joiner with

60



horizontal splitter (HSplitter)andhorizontal joiner (HJoiner). In a horizontally vectorized

structure, transitions between a scalar tape and vector tape occurs within the HSplitter

and HJoiner. The HSplitter reads from a scalar tape and performs packing operations and

writes them to its vectorized output tape. The HJoiner readsvector data types from its input

and converts them to scalar before writing them to its scalaroutput tape. For example, in

Figure 4.5, before SIMDization, the splitter executes 6 times and, during each execution, it

conducts 16 pops from its scalar input tape and distributes the popped values between its

scalar output tapes in a round-robin fashion using scalar push operations. After horizontal

vectorization, the new HSplitter still executes 6 times andit performs 16 pops from its

scalar input tape each time it executes. It forms 4 vectors out of the 16 data elements using

packing operations and finally does a vector push to its vector output tape. The HJoiner is

formed in a similar way, but instead of packing, it performs unpacking on the vector data it

reads from its input tape.

Horizontal vectorization of an actor’sworkandinit method comprises of two parts simi-

lar to single-actor SIMDization: identifying the vectors and rewriting the code for the actor.

First, MacroSS needs to identify variables and constants for vectorization. The destination

of pop and peek operations are marked as vector variables. Also, if the value of a constant

in an actor is different from that of a matching constant in another isomorphic actor, the

constant should be raised to a vector constant that containsthe values of a matching con-

stant ofSW actors. The vector variableconst v in line 1 ofBV in Figure 4.5b is created

from 4 different constants inB0 to B3. The identified vector variables and constants are

used as the seeds for marking the other vector variables similar to single-actor SIMDiza-

tion. After marking is done, MacroSS rewrites the horizontally SIMDizable actors using

61



the marked vectors and changes their input and output tapes to vector tapes. Finally, the

splitter and joiner in the horizontally SIMDizablesplit-join are replaced with horizontal

splitter and joiner actors.

In summary, horizontal SIMDization is different from vertical and single-actor SIMDiza-

tion in several ways. First, horizontal SIMDization can be applied only to isomorphic ac-

tors. Second, unlike other techniques used by MacroSS, it can handle stateful actors. Third,

horizontal SIMDization does not affect the latency of the graph because there is no need to

scale the repetition numbers of the actors. Finally, using horizontal vectorization, MacroSS

can transform the existing task-level parallelism among the isomorphic actors to data-level

parallelism.

4.2.4 Architecture Support for Tape SIMDization

In both single-actor and vertical SIMDization techniques,tape accesses are left as

scalar. Converting these accesses to SIMD accesses resultsin reading or writing the data

elements in an order which is different from the scalar execution. Vertical SIMDization

reduces this overhead by replacing the scalar tape accessesbetween a pipeline of SIMDiz-

able actors that are fuse-able with vector accesses to an internal buffer. In this section,

two techniques that MacroSS uses to optimize the scalar tapeaccesses are discussed. The

first technique uses a permutation based approach to target the overhead of performing

packing/unpacking whenever data is communicated between scalar and vector parts of the

stream graph. The second technique shows how MacroSS can simplify the read and write

accesses of data that moves between scalar and vector actorsin the presence of a unit called

the streaming address generation unit (SAGU).

62



15 14 13 12 7 6 5 4 3 2 1 011 10 9 8

15 13 11 9 7 5 3 1 6 4 2 014 12 10 8

15 11 7 3 13 9 5 1 12 8 4 014 10 6 2

Extract EvenExtract OddExtract EvenExtract Odd

Extract EvenExtract Odd
Extract EvenExtract Odd

Vector Pops:

Strided Vectors:

Figure 4.6: This graph shows how 16 stride-4 tape reads in an actor are replaced with 4 vector
pops and 8 permutation instructions

Permutation-based Tape Accesses:The packing/unpacking overhead exists between

scalar and vector actors, such asF andG, in the SIMDized graph in Figure 4.1b. MacroSS

optimizes these data conversions for actors whose push or pop counts are powers of 2

using two general architecture independent permutation operation:extracteven(V1, V2, R),

extractodd(V1, V2, R). Theextracteven( extractodd) operation takes two input vectors,

V 1 andV 2, and constructs a third vector,R, using even (odd) positions of the inputs. This

kind of permutation is supported by almost all SIMD standards (SSE, Altivec, Cell SPU,

Neon).

Assume an actor(A) hasXr pop accesses without any peeks. Each pop access is a load

operation followed by an add to adjust the position of the read pointer. After single-actor

vectorization onA, the stride for scalar pop accesses will beXr. For example, actorD in

Figure 4.1a originally hadXr = 2 pops and after SIMDization the stride is 2 as well. This

stride guarantees that each set of scalar pops reads the right elements from the input tape. If

a load instruction takesCr cycles, ignoring the add operations, popping the elements from

the input tape in actorAv, actorA after SIMDization, takesCr × Xr × SW cycles. The

other way that MacroSS can perform the same pop operations isto doXr vector loads, and

then perform a set of permutations to form vectors identicalto the case that the pops were

63



in strided scalar format. MacroSS finds the minimum number ofextractoddandextract -

evenoperations to shuffle the elements in the vectors after the vector pops. An example of

this is shown in Figure 4.6. Assume that MacroSS is trying to SIMDize an actor with 4 pop

operations. Instead of performing 16 strided pop/peek operations, MacroSS can generate

4 vector pops and then use 8 permutation operations (4extractevenand 4extractodd)

to form the strided pattern. This reduces the 16 scalar load operations to 4 vector load

operations and 8 permutations. We ignore the savings due to removal of address generation

operations.

In general, shuffling the elements ofXr vectors to get to the same number of vec-

tors each with elements strided at distance ofXr from the original vector needsXrlg2Xr

extractodd andextractevenoperations [63]. The same formula can be used to find the

number of permutations that are needed to replace scalar push or peek operations with their

vector equivalent. MacroSS compares the overhead of performing scalar tape accesses and

vector tape accesses to identify the cheaper solution. After finding the cheaper solution,

MacroSS transforms the tape accesses. The best solution canbe different based on the

SIMD width, tape access strides, permutation cost, and alsoread/write access latencies.

Streaming Address Generation Unit: Exploiting permutation-based tape accesses

becomes harder when the push and pop rates are not powers of two or the underlying archi-

tecture does not support the needed permutation instructions. In these scenarios, replacing

the strided scalar push or pop operations with vector versions in a vectorized actor forces

subsequent scalar consumer or producer actors to perform complex address calculations

to access the tape in the correct order. Although replacing the scalar accesses with vector

accesses reduces the number of memory accesses and address generation operations in the

64



vector actor, the overhead introduced due to additional address calculation operation in the

direct consumer or producer is non-trivial. The code in Figure 4.7 shows how the address

calculation should be performed in scalar actors that are connected to vectorized actors in

which all the pushes are replaced with vector pushes. ThePushCntis set to the push rate

of the vectorized actor. The overhead introduced by this code on the Intel Core i7 is at

best 6 cycles on top of the memory access overhead assuming multiple back-to-back pop

operations.

0   if (PushCnt - (BaseCntr-1) == 0 ) { 

1      BaseCntr = 0;

2      if (StrideCntr - (SIMD_SIZE-1) == 0) {

3         StrideCntr = 0;

4         OffsetAddr = OffsetAddr + (PushCnt << LOG2_SIMD));

5      } else { StrideCntr++; }

6   } else { BaseCntr++; }

7   OffsetValue = BaseCntr << LOG2_SIMD;

8   OffsetValue += StrideCntr;

9   OffsetValue += OffsetAddr;

10  ResultAddr = OffsetValue + BaseAddr; 

Figure 4.7: This code shows the address calculation in a scalar actor which is the consumer of a
vectorized actor with vector pushes.

To deal with this problem, we developed the Streaming Address Generation Unit (SAGU).

The SAGU is able to reduce the overhead cost of address calculation in a scalar actor that

is connected to a vectorized actor, in which all the scalar strided tape accesses are replaced

with vector version, through a special functional unit thatloads configuration data (push or

pop count) and holds internal state allowing for quick generation of the required addresses.

Figure 4.8 shows the hardware of the SAGU. Conceptually, when vector pushes (pops) oc-

cur the writes (reads) are row based but the reads (writes) have to access tape in a column-

wise order to access the data elements in correct order. TheStrideCounterpoints to the

column that needs to be accessed. TheBaseCounterregister points to the row location

65



in the current column that contains the data element needed by the actor. TheOffsetAd-

dressregister offsets theBaseAddressto the next set of vector data elements. Each scalar

pop increments theBaseCounter. After the number of pops equals to thePushCount, the

StrideCounterincrements in order to access the next column and theBaseCounteris reset.

When theStrideCounterequals theSW, theStrideCounterresets and theOffsetAddress

increments. The same operation occurs when scalar pushes are used. When designing the

SAGU, we found that the largest push/pop count for SIMD to scalar conversion across all

the kernels was 16K. With a SIMD width of 4, this allows us to use only 16-bit calculations

throughout the unit except when we add the results to the baseaddress register to generate

the effective address. Most of the operations occur in parallel making the critical path two

16-bit operations and the 64-bit base address calculation.When optimized, we find that

this unit will not be on the critical path allowing the address calculation to take the same

amount of time as other address calculation instructions.

Stride_CounterBase_Counter

Base_Address

Log2(SIMD_Width)

Pop/Push_Count

>>

Z

Mux

1

0

Mux

0

1

>>

Offset_Address

SIMD_Width - 1

Z Mux

0

+1

16-bit Calculations

64-bit Calculations

Loaded Values
Internal Registers
Architectural Constants Result Address

Z Zero Detect

Reset

Figure 4.8: This figure shows the hardware for the SAGU.

To use the SAGU, only minor modification to the ISA or hardwareneeds to be done.

Many ISAs like Intel x86 [43] and ARM [71] support multiple addressing modes which

can perform operations on multiple address registers. There are available addressing mode

66



configurations in these ISAs that we can modify to support theSAGU addressing mode.

Effectively, this would be like performing a post-increment on an address register which

would be transparent to the programmer and architecture. The alternative to this technique,

if the ISA cannot support the addressing mode, would be to addanother opcode to setup

the SAGU and to increment it. Before starting each scalar actor, we would perform a

SAGU setup and write the pop or push count. This would reset the internal counters to

0. After performing a pop or push operation, on the address register we would execute a

SAGU increment to update the value to the next memory location. This would only require

2 additional instructions to the ISA and introduce 1 extra instruction for each memory

operation in the program which would be far less than directly calculating the address.

Because of the low cost1 of the SAGU and the speed of the calculation, multiple units can

be implemented if needed with little to no overhead.

4.2.5 Implementation

MacroSS’s SIMDization algorithm can be divided into several distinct phases. In this

section, a high-level overview of these steps are given. Algorithms 1 illustrates the overall

ordering of the macro-SIMDization phases in MacroSS for vertical, horizontal SIMDiza-

tion, and tape SIMDization. The remainder of this section explains each of the phases and

their relationship to one another.

Prepass Optimizations and Scheduling:MacroSS applies a set of classic and stream-

ing optimizations and also performs scheduling before starting the macro-SIMDization.

The classic and streaming optimizations mainly improve theoverall performance of the

1Area overhead is less than 1% of the area of the Core i7. This was measured by synthesizing the
hardware model.

67



Algorithm 1 Macro SIMDization Steps
Input: Stream GraphG, Architecture DescriptionA
{Apply prepass classic and streaming optimizations and alsoperform scheduling on the graph.}

1 Prepass-Optimizations(G);
2 Prepass-Scheduling(G);

{Find the segments suitable for vertical/horizontal SIMDization.}
3 (GV , GH ) := Find-Vectorizable-Segments(G, A.CostModel);

{Adjust the repetition numbers and perform vertical SIMDization on the specified seg-
ments.}

4 Adjust-Repetition-Numbers (G);
5 Vertically-SIMDize (GV , A.CostModel);

{Perform horizontal SIMDization after vertical is finished.}
6 Horizontally-SIMDize (GH , A.CostModel);

{Apply Permutation-based optimizations and exploit SAGU.}
7 Optimize-Tapes(G, A.CostModel);

{Generate intermediate code for the specified target.}
8 Emit-Intermediate-Code (G, A);

graph. The streaming optimization in some cases result in more efficient macro-SIMDization.

For example, static parameter propagation, which propagates the values of the static read-

only variables of an actor to all of its instances, helps detection of isomorphic actors. The

steady state scheduling of the stream graph is also performed as a prepass.

Identify Vectorizable Segments:In this phase, MacroSS examines the stream graph

and finds the segments of the graph that are suitable for vertical and horizontal SIMDiza-

tion. For vertical SIMDization, MacroSS starts from a single vectorizable actor. This actor

is added to an empty pipeline of vectorizable actors. Then MacroSS examines the consumer

of that actor. If the consumer is also vectorizable and can befused with the original actor

without introducing state, it is added to the pipeline. Thisis repeated until the pipeline can

not be extended anymore. At this point, all the actors in the pipeline are marked for vertical

68



vectorization and added toGV . Identifying horizontally vectorizablesplit-joins starts by

testing the eligibility of a givensplit-join based on the definition given in Section 3.3. If a

split-join passes the eligibility test it will be added oGH .

One actor may be a member of bothGV andGH . Since MacroSS applies one form of

SIMDization to any actor, it uses its cost model to choose what type of SIMDization (ver-

tical or horizontal) is more effective for the actors that are in bothGV andGH . At the end,

MacroSS guarantees that the intersection of the setsGV andGH is empty.

Vertical SIMDization and Repetition Number Adjustment: After finding the seg-

ments suitable for horizontal and vertical SIMDization, MacroSS adjusts the repetition

numbers of the actors as described in Section 4.2.2. Then, the actual vertical vectorization

is performed. This parts fuses the pipelines of vectorizable actors (GV ) found in the pre-

vious steps and changes them to vectorizable actors. Single-actor SIMDization is done as

a special case of vertical SIMDization when a pipeline of vectorizable actor contains only

one actor.

Horizontal SIMDization: After vertical SIMDization, the steady state repetition num-

bers are finalized.Split-joins eligible for horizontal SIMDization are passed to this phase

and MacroSS changes the splitter and joiner actors to their horizontal versions. The state-

ments in the task-parallel actors between the splitter and joiner are also merged to form

vector instructions.

Tape Optimization: After vertical and horizontal vectorization, MacroSS searches for

opportunities to perform tape optimization that are discussed in Section 4.2.4. This phase

basically finds eligible set of reads or writes. Then, if it ischeaper, MacroSS replaces

them with vector read or writes plus permutation instructions. If the target architecture is

69



equipped with SAGU, MacroSS looks for cases where it can be exploited.

Code Generation:The final phase of macro-SIMDization deals with intermediate code

generation. In this phase, MacroSS maps the internal streamrepresentation to the target

specific code (C++ in this case) and uses available architecture-dependent intrinsics to bet-

ter utilize the target SIMD engines.

4.3 Comparison To Traditional SIMDization

Since MacroSS generates the intermediate code in a conventional imperative language,

such as C or C++, traditional vectorization techniques can also be a viable approach to per-

form SIMDization on streaming applications. Traditional vectorization techniques mainly

consist of inner-most loop, outer loop, and superword levelparallelism extraction [3, 4, 64,

5, 51]. In this section, we try to compare MacroSS’s graph-level SIMDization to traditional

techniques and highlight the differences.

As streaming code gets converted to imperative intermediate code, it gets harder to ex-

tract the high-level information that is available at the graph-level. As a result, performing

effective SIMDization becomes very difficult for some actors. Second, in some cases, tradi-

tional SIMDization is predicated on having complicated, carefully phase-ordered compiler

analysis that needs the code in a certain templated form.

One of the points that makes MacroSS’s SIMDization more powerful than any other

vectorization technique on intermediate codes is the ability to identify isomorphic actors

and perform horizontal SIMDization. At the graph level, MacroSS knows the relation

between the actors and can detect the task-parallel isomorphic actors by doing a graph

70



4

GCC + Auto Vectorize GCC + Macro SIMD GCC + Macro SIMD + Autovectorize

3

3.5

2

2.5

u
p

 (
x

)

1.5

2

S
p

e
e

d

0.5

1

0

(a)

3.5

ICC + Auto Vectorize ICC + Macro SIMD ICC + Macro SIMD + Autovectorize

2 5

3

2

2.5

u
p

 (
x

)

1

1.5

S
p

e
e

d

0.5

1

0

(b)

Figure 4.9: In this graph the performance benefits of applying traditional auto-vectorization,
macro-SIMDization, and both of them together are compared.Part (a) shows the speedups when
GCC is used as the intermediate compiler. Applications in part (b) are compiled with Intel Com-
piler (ICC).

traversal. Performing the same task on the intermediate code is complicated. To find the

isomorphic actors, the auto-vectorizer needs to extract the task graph and then compare the

source code for the actors. Both of extracting the task graphand matching source code can

be obfuscated by other optimizations.

The other issue that may disable auto-vectorization of the intermediate code is inability

to adjust the schedule of the task graph. One of the main partsof the schedule is the

repetition numbers. MacroSS can intelligently scale the repetition numbers as needed by

the SIMDization. Since the repetition numbers affect many parts of the generated code

such as buffer (i.e. tape) allocation, and for-loop boundaries, they are not easily possible to

adjust after generation of intermediate code.

Vertical SIMDization is another technique that MacroSS uses to perform vectorization.

Even though performing vertical fusion on selected actors is in theory possible on inter-

mediate code, it needs complex transformations and compiler analysis such as memory

aliasing analysis, loop distribution, and loop relation analysis. MacroSS does not need

71



these complex transformations and analyses since, at the graph-level, aliasing information

and the relation between across is already embedded.

Although we are not proposing any universal partitioning approach that can handle both

SIMDization and multi-core partitioning, performing vectorization on the high-level graph

makes it possible for the partitioner and mapper parts of thestreaming compiler to be able to

make SIMD-aware decisions. This can lead to finding more efficient graph partitioning and

mapping decisions. Since the intermediate code is already partitioned without considering

possibility of SIMDization, it under-performs the macro-SIMDized code even after auto-

vectorization.

In summary, MacroSS’s SIMDization techniques are more efficient than auto-vectorization

approaches because MacroSS has the ability to decide which actors are suitable for what

kind of vectorization at the graph-level, transform the graph, adjust the schedule accord-

ingly and generate permutation instructions based on actors read and write characteristics.

Performing the same tasks during auto-vectorization aftergeneration of intermediate code

is difficult.

4.4 Experiments

In this section, macro-SIMDization techniques in MacroSS are evaluated and compared

against traditional techniques to perform auto-vectorization on languages. Also, the effec-

tiveness of vertical and horizontal SIMDization is shown. The performance benefits of the

streaming address generation unit is measured and presented in this section. Finally, the

interaction between macro-SIMDization and multi-core scheduling is discussed.

72



Methodology: A set of benchmarks from the StreamIt benchmark suite [79] isused to

evaluate MacroSS. The benchmarks are compiled and evaluated on a 3.26 GHz Intel Core

i7 processor. The Intel Core i7 is used because it is equippedwith the latest version of the

SIMD engine from Intel, SSE 4.2.

MacroSS implementation is based on the StreamIt compiler. The macro-SIMDization

steps are implemented as a separate compiler backend. The output of MacroSS is C++

code. To convert the generated C++ to x86 binary, GCC 4.3 [23]and Intel Compiler (ICC)

11.1 [44] are used. Both of these compilers are capable of performing aggressive optimiza-

tions and also auto-vectorization on C++ code. ICC is considered one of the best for its ca-

pabilities in performing inner-most, outer-most loop and superword-level parallelism vec-

torization. GCC also supports auto-vectorization for x86 processors and is widely used to

compile C/C++ for Intel processors. In order to isolate the benefits of macro-SIMDization,

all the experiments are performed using only one core of the processor except in the last

experiment where we show performance benefits compared to multiple cores.

The original StreamIt backend in MacroSS is used to generatethe baseline scalar inter-

mediate C++ code. The baseline intermediate code is compiled to x86 binary using GCC

or ICC with aggressive optimization flags enabled. The auto-vectorization pass in these

compilers is used to perform traditional auto-vectorization on the generated C++ code. To

macro-SIMDize streaming applications, the new backend in MacroSS is used to generate

macro-SIMDized intermediate C++ code using target specificvector types and intrinsics.

For measuring the performance of the generated binary the performance counters on the

Intel Core i7 are exploited.

Overall Performance: The set of StreamIt benchmarks is compiled using macro-

73



SIMDization and compared against ICC’s and GCC’s auto-vectorization. ICC and GCC are

the leading auto-vectorizer compilers for Intel architectures capable of applying complex

vectorization techniques proposed in the literature. Figure 4.9 illustrates how MacroSS’s

techniques perform compared to traditional auto-vectorization techniques. Figure 4.9a

shows performance comparison between GCC’s auto-vectorized, macro-SIMDized and

auto-vectorized macro-SIMDized code. Figure 4.9b contains the same comparison for

ICC. In both cases, macro-SIMDization achieves higher performance gains compared to

auto-vectorization. On average, macro-SIMDization improves the final performance by an

additional 54% and 26% compared to GCC and ICC auto-vectorizations. Applying both

macro-SIMDization and auto-SIMDization can improve the performance by another 1.5%

and 2.2% in benchmarks compiled using GCC and ICC. The only case that traditional auto-

vectorization outperforms macro-SIMDization isFMRadioon ICC. In this special case,

ICC performs inner-loop vectorization on the main for-loopin the code which results to

aligned memory accesses but MacroSS’s macro SIMDization results in unaligned memory

accesses. It is possible to make MacroSS leave this for-loopfor inner-loop vectorizer since,

during macro-SIMDization, it knows inner loop vectorization will be more efficient in this

special case.BeamFormerandFilterBankmainly consists of several pipelines ofsplit-join

structures with isomorphic task-parallel actors. It is notpossible to collapse these pipelines

into one pipeline because they have stateful actors. Therefore, the speedups in these two

benchmarks are mainly due to horizontal vectorization. In summary, GCC shows unim-

pressive gains using auto-vectorization. Although, ICC shows fairly large gains (1.34x on

average), MacroSS’s techniques result in even larger gains(2.07x on average). Having

access to global information enables MacroSS to achieve significant speedup.

74



Effect of Vertical SIMDization: Vertical SIMDization is one of the main techniques

that MacroSS uses to perform vectorization on streaming graphs. Figure 4.10 illustrates,

the effectiveness of this type of SIMDization. In this experiment, the baseline is a stream-

ing graph macro-SIMDized with only single-actor SIMDization and compiled with GCC.

As shown in the figure, vertical SIMDization, on average, improves the performance of

the baseline by 40%.Matrix Multiply Block benefits the most because the vertical fusion

of SIMDizable actors eliminates a large number of packing/unpacking operations. With-

out vertical fusion, macro-SIMDization in this benchmark would result in significantly less

speedup then that shown in Figure 4.9a. The benefits inFilterBankandBeamFormerare

very negligible because these benchmarks are vectorized mostly using horizontal vector-

ization. InFMRadioandAudioBeamthe opportunity for performing vertical SIMDization

is very small because most of the vectorizable actors in these benchmarks are isolated from

each other and do not form a pipeline.

80

Performance Benefits of Vertical SIMDization

114%

60

70

40

50

o
v

e
m

e
n

t

30

40

%
 I

m
p

r
o

10

20

0

Figure 4.10: This graph shows percent speedup due to vertical SIMDization compared to single-
actor SIMDization.

75



Streaming Address Generation Unit: MacroSS utilizes the SAGU to eliminate the

packing/unpacking overhead and also improve memory bandwidth utilization when data is

crossing scalar and vector boundaries in a stream graph. To evaluate the benefits of the

SAGU, we use the performance counters on the Intel Core i7 to find the overheads intro-

duced by packing and unpacking operations and also scalar memory accesses. Figure 4.11

illustrates the effect of utilizing SAGU. The baseline in this graph is macro-SIMDized

code. On average, this unit can improve the final performanceof the macro-SIMDized

benchmarks by 8.1%. The performance ofMatrix Multiply andDCT are improved 22%

and 17% respectively because they perform a large number of packing/unpacking oper-

ations and scalar memory reads and writes.BeamFormershows the least improvement

because almost all the speedup in this benchmark is due to horizontal SIMDization.MP3

Decoderis also not affected by the SAGU because its computation to communication ratio

is very high and the packing/unpacking operations do not cause a substantial performance

overhead.

Multicore and Macro-SIMDization: Implementing a scheduler to decide how to par-

tition a stream graph between multiple cores and also use theSIMD engines is a non-trivial

task. Partitioning and mapping decisions taken by a naive multi-core scheduler may re-

duce the SIMD opportunities. In this section, we show conservatively estimated numbers

on how a simple SIMD-aware multi-core scheduler/partitioner performs. The scheduler

we use in this experiment first performs multi-core partitioning and then performs macro-

SIMDization. This approach reduces the opportunities for performing vertical fusion and

also horizontal SIMDization. If multi-core partitioning removes most of the benefits of the

SIMDization and the scheduler has to choose between SIMDization and multi-core execu-

76



25

Performance Benefits of SAGU

20

15

o
v

e
m

e
n

t
10

%
 I

m
p

r
o

5

0

Figure 4.11: This graph shows how SAGU can improve the performance of a macro-SIMDized
graph.

tion, it always chooses SIMDization because it reduces memory/cache traffic and commu-

nication overhead between the cores. Since the multi-core scheduler does not consider the

possible benefits of vertical fusion and horizontal SIMDization in several benchmarks, the

performance benefits of SIMDization is reduced compared to Figure 4.9. Therefore, these

numbers are conservative estimates of the performance of a SIMD-aware multi-core sched-

uler. As shown in Figure 4.12, the performance benefits of 4-core execution is within 5%

of macro-SIMDized 2-core execution. Exploiting the SIMD engines increases the speedup

from 1.28x to 2.03x in 2-core schedule and from 1.85x to 3.17xin 4-core schedule. For

Matrix Multiply andMatrix Multiply Block, the scheduler prefers to only use the SIMD en-

gines because multi-core partitioning, in this case, leadsto high inter-core communication

overhead.

77



1.5

2

2.5

3

3.5

4

4.5

S
p

e
e

d
u

p
 (

x
)

2 Cores 4 Cores 2 Cores + Macro SIMD 4 Cores + Macro SIMD

0

0.5

1

Figure 4.12: The performance benefit of SIMDization in case a graph is scheduled for multi-core
is shown in this graph.

4.5 Related Work

There is a large body of literature that deals with exploiting parallelism in streaming

languages for better performance [79, 13, 16]. The most relevant works include stream

graph refinements to extract coarse-grain task-level, data-level and pipeline parallelism and

map them onto multi-core architectures [26, 25]. Authors in[49] applied modulo schedul-

ing to task graphs for maximizing pipeline parallelism alsoon multi-core architectures.

Our work is distinctively different from and complementaryto these previous works in its

ability to exploit SIMD parallelism and generate SIMD enabled codes for various archi-

tectures. Vertical SIMDization focuses on fine-grain SIMD parallelism, while horizontal

SIMDization transforms task-level parallelism to SIMD parallelism.

Auto-vectorization and SIMD code generation were studied extensively in the litera-

ture. The seminal work of Allen and Kennedy on the Parallel Fortran Converter [3, 4] set

the grounds for most of the work on auto-vectorization that followed. For targeting a variety

78



of SIMD architectures and solving severe problems that arise, specifically data alignments

and permutations, a large number of studies has been conducted [84, 69, 63, 62, 51, 20].

All these techniques can be applied to the generated intermediate code of streaming ap-

plications. However, our work is unique in that vectorization is applied on a higher level

of representation of the program, which enables us to utilize global information such as

execution rates of actors and exposed data communications for generating better vector-

ized codes. In contrast to focusing on local structures likeloop nests and basic blocks,

our macro-SIMDization leverages the streaming applications’ static characteristics, such

as static schedules and pre-defined data access patterns.

There has been recent work [60] on generating efficient permutation instructions based

on StreamIt, but for only one specific SIMD device (VIRAM). MacroSS provides efficient

SIMDization for streaming applications which is flexible and portable enough to be applied

to a variety of SIMD architectures.

Vectorizing computations that access non-unit stride datamotivated the development of

the SIMdD (Single Instructions on Multiple disjoint Data) model and SIMdD architectures,

such as the IBM eLite DSP[58]. Such architectures better support non-consecutive data

accesses via vector pointer hardware. Tuned for streaming applications in which non-unit

strides are statically known and fixed for the entire execution of an actor, our architectural

support, SAGU, is simpler and entails smaller overheads than what is available in general

SIMdD architectures.

79



4.6 Summary

As SIMD-enabled multi-core systems become ubiquitous, it is critical for program-

ming languages and compilers to be able to flexibly target both the SIMD and multi-core

aspects of these architectures. Several retargetable streaming languages, such as StreamIt,

have been proposed to exploit parallelism across the cores.These languages apply tradi-

tional auto-vectorization to the imperative intermediatecode (e.g. C/C++) to target SIMD

engines. In many cases, applying auto-vectorization to thegenerated intermediate code

results in under-utilization of SIMD engines because much of the high-level information

available in the streaming application, such as data-flow information and the set of valid

schedules, is not used by the auto-vectorizer.

In this work, we introduce macro-SIMDization: a technique for vectorizing stream

graphs using the high-level information available in streaming programs. A new compila-

tion system, MacroSS, is developed to show the benefits of macro-SIMDization compared

to traditional SIMDization techniques. MacroSS utilizes three new techniques to achieve

high utilization of the SIMD engines: single-actor, vertical, and horizontal SIMDization.

Architectural support for tape optimizations, using general permutation operations and a

streaming address generation unit (SAGU) is also discussedas a part of this work.

Our results show that MacroSS is capable of improving the performance of streaming

applications by an average of 54% and 26% compared to auto-vectorizers in GCC and Intel

compiler, respectively. In the experiments, we also evaluated how the SAGU can improve

the performance on average by an additional 8.1% by eliminating packing/unpacking op-

erations between scalar and vector actors. Finally, we showthe performance benefits of

80



macro-SIMDization in the presence of a naive multi-core scheduler for streaming appli-

cations. Even with a naive multi-core scheduler, we estimate that we can achieve better

performance than a 4-core Intel Core i7 on only 2-cores usingSIMD. The results indicate

that performing macro-SIMDization can significantly improve the performance of stream-

ing applications and extend their retargetability by making them more suitable for SIMD

programming.

81



CHAPTER V

Portable Stream Compilation for GPUs

5.1 Introduction

Among the multitude of vastly different solutions offered by hardware companies,

graphics processing units (GPUs) have been shown to providesignificant performance,

power efficiency and cost benefits for general purpose computing in highly parallel com-

puting domains. Recently, heterogeneous systems that combine traditional processors with

powerful GPUs have become standard in all systems ranging from servers to cell phones.

GPUs achieve their high performance and efficiency by providing a massively parallel ar-

chitecture with hundreds of in-order cores while exposing parallelism mechanisms and the

memory hierarchy to the programmer. Recent works have shownthat in the optimistic

case, speedups of 100-300x [67] and in the pessimistic case,speedups of 2.5x [54] have

been achieved between the most recent versions of GPUs compared to the latest processors.

Maximizing the utilization of the GPU in heterogeneous systems will be key to achieving

high performance and efficiency.

While GPUs provide an inexpensive, highly parallel system for accelerating parallel

82



workloads, the programming complexity posed to application developers is a significant

challenge. Developing applications to utilize the massivecompute power and memory

bandwidth requires a thorough understanding of the algorithm and details of the under-

lying architecture. Graphics chip manufacturers, such as NVIDIA, have tried to allevi-

ate the complexity problem by introducing user-friendly programming models, such as

CUDA [65]. Although CUDA and other similar programming models abstract the under-

lying GPU architecture by providing a unified processor model, managing the amount of

on-chip memory used per thread, the total number of threads per multiprocessor, and the

pattern of off-chip memory accesses are examples of problems that developers still need to

manage in order to maximize GPU utilization [70]. Often the programmer must perform a

tedious cycle of performance tuning to extract the desired performance.

48
32

16

8

150

200

250

300

350

400

T
im

e 
(m

s)

High

Performance
Desktop Mobile

64

0

50

100

150

Number of Registers Per Thread 

optimized for

GeForce 8400 GS

optimized for

GeForce GTX 285

Figure 5.1: This graph shows the runtime of a kernel optimized for architectures with different
number of registers on a GeForce GTX 285 which has the most number of registers. The kernel used
in this graph is organized in 128 blocks each with 256 threads.

Another problem of developing applications in CUDA is the lack of efficient portability

between different generations of GPUs and also between the host processors and GPUs in

83



the system. Different NVIDIA GPUs vary in several key micro-architectural parameters

such as number of registers, maximum number of active threads, and the size of global

memory. These parameters will vary even more when newer highperformance cards, such

as NVIDIA’s Fermi [66], and future resource-constrained mobile GPUs with less resources

are released. These differences in hardware lead to a different set of optimization choices

for each GPU. As a result, optimization decisions for one generation of GPUs are likely

to be poor choices for another generation. An example of thisis shown in Figure 5.1.

This figure shows a CUDA kernel that requires 78 registers perthread, running with 128

blocks of 256 threads per block on an NVIDIA GeForce GTX 285. This graph shows

how the runtime (lower is better) would change if the benchmark was optimized for GPU

architectures with less than 16K registers available on each streaming multiprocessor of

the GTX 285. For example, if this kernel is compiled for GeForce 8400 GS, it will use

32 registers per thread since there are 8K registers available for the 256 threads in each

block on that architecture. Data elements that do not fit in the smaller register file will be

spilled to the slower parts of the memory hierarchy causing performance degradation. In

short, CUDA code must be separately customized for each target GPU as the choice of

optimizations for peak performance is typically sensitiveto the hardware configuration.

One solution to the GPU programming complexity is to adopt a higher level program-

ming abstraction similar to the stream programming model. The streaming model provides

an extensive set of compiler optimizations for mapping and scheduling applications to var-

ious homogeneous and heterogeneous architectures ([25, 26, 49]). The retargetability of

streaming languages, such as StreamIt [79], has made them anexcellent choice for paral-

lel system programmers in shared/distributed memory and tiled architectures. Streaming

84



language retargetability and performance benefits on heterogeneous systems are mainly a

result of having well-encapsulated constructs that exposeparallelism and communication

without depending on the topology or granularity of the underlying architecture.

GPUs are important drivers for current and future heterogeneous systems, therefore

extending the applicability of streaming languages to GPUsis advantageous for several

reasons. First, streaming, which expresses programs at a higher level than CUDA, enables

optimizing and porting to different generations of GPUs andbetween different topologies

of CPUs and GPUs. Second, exposed communication in streaming programs help the com-

piler to efficiently map data transfers onto different memory hierarchies. Finally, streaming

applications can be tailored for any number of cores and devices by performing graph re-

structurings such as horizontal or vertical fusion or fission of actors.

In this work, we introduceSponge, a streaming compiler for the StreamIt language that

is capable of automatically producing customized CUDA codefor a wide range of GPUs.

Sponge consists of stream graph optimizations to optimize the organization of the compu-

tation graph and an efficient CUDA code generator to express the parallelism for the target

GPU. Producing efficient CUDA code is a multi-variable optimization problem and can be

difficult for software programmers due to the unconventional organization and the interac-

tion of computing resources of GPUs. Sponge is equipped witha set of optimizations to

handle the memory hierarchy and also to efficiently utilize the processing units.

The Stream-to-CUDA compilation in Sponge consists of four steps. First, Sponge per-

forms graph reorganization and modification on the stream graph and also classifies actors

based on their memory traffic. The classification information is used throughout all the

phases of the compilation. Second, memory layout optimizations are performed. These

85



optimizations are designed to enable efficient utilizationof the memory bandwidth. In this

phase, Sponge decides if actors should use the faster but smaller on-chip memories or the

slower but larger off-chip memory on the GPU. Also, techniques such ashelper threadsand

bank conflict resolutionin the context of StreamIt are introduced to increase the efficiency

of memory accesses. The third compilation phase deals with actor size granularity of each

thread. In this step, based on the classification information from step one, Sponge tries to

create larger threads by fusing producer/consumer actors in order to reduce communica-

tion and kernel call overheads. Finally, software prefetching and loop unrolling are used

to exploit unused registers to decrease loop control code overhead and increase memory

bandwidth utilization.

In summary, this part makes the following contributions:

• Extending applicability and portability of synchronous data-flow languages, specifi-

cally StreamIt, to GPUs.

• Streaming-specific optimizations for CUDA and generic CUDAoptimizations for

streaming applications.

• Discussion of the limitations of StreamIt as a GPU programming language.

The rest of this chapter is organized as follows. In Section 5.1, the stream programming

model, the input language (StreamIt), and the CUDA programming model are discussed.

Portable stream compilation in Sponge and its optimizations are explained in Section 5.3.

Experiments are shown in Section 5.4. A comparison between two hand-optimized CUDA

benchmarks and their StreamIt implementation is done in Section 5.5. Related works are

discussed in Section 5.6. Finally, Section 5.7 contains thesummary.

86



Per-thread
Register

Grid 1 (kernel 1)

Grid 0 (kernel 0)

Per-app
Device Global 

Memory

Grid 
Sequence

__device__ int GlobalVar

Per-block
Shared Memory

Block

__shared__ int SharedVar

int RegisterVar

Per-thread
Local Memory

Thread

int LocalVarArray[10]

Figure 5.2: CUDA/GPU Execution Model

5.2 CUDA and GPUs

The CUDA programming model is a multi-threaded SIMD model that enables imple-

mentation of general purpose programs on heterogeneous GPU/CPU systems. There are

two different device types in CUDA: the Host processor and the GPU. A CUDA program

consists of a host code segment that contains the sequentialsections of the program, which

is run on the CPU, and a parallel code segment which is launched from the host onto one

or more GPU devices. Data-level parallelism (DLP) and thread-level parallelism (TLP) are

handled differently in these systems. DLP is converted intoTLP and executed onto the

GPU devices, while TLP is handled by executing multiple kernels on different GPU de-

vices launched by the host processor. The threading and memory abstraction of the CUDA

model is shown in Figure 5.2.

The threading abstraction in CUDA consists of three levels of hierarchy. The basic

87



block of work is a singlethread. A group of threads executing the same code are combined

together to form athread blockor simply ablock. Together, these thread blocks combine

to form the parallel segments calledgrids where each grid is scheduled onto a GPU at a

time. Threads within a thread block are synchronized together through a barrier operation

( syncthreads()). However, there is no explicit software or hardware support for syn-

chronization across thread blocks. Synchronization between thread blocks is performed

through the global memory of the GPU, and the barriers neededfor synchronization are

handled by the host processor. Thread blocks communicate byexecuting separate kernels

on the GPU.

The memory abstraction in CUDA consists of multiple levels of hierarchy. The low-

est level of memory isregisters, which are on-chip memories private to a single thread.

The next level of memory isshared memory, which is an on-chip memory shared only

by threads within the same thread block. Access latency to both the registers and shared

memory is extremely low. The next level of memory islocal memory, which is an off-chip

memory private to a single thread. Local memory is mainly used as spill memory for local

arrays. Mapping arrays to shared memory instead of spillingto local memory can provide

much better performance. Finally, the last level of memory is global memory, which is an

off-chip memory that is accessible to all threads in the grid. This memory is used primarily

to stream data in and out of the GPU from the host processor. The latency for off-chip

memory is 100-150x more than that for on-chip memories. Two other memory levels exist

on-chip called thetexture memoryandconstant memory. Texture memory is accessible

through special built-in texture functions and constant memory is accessible to all threads

in the grid.

88



The CUDA programming model is an abstraction layer to accessGPUs. NVIDIA GPUs

use a single instruction multiple thread (SIMT) model of execution where multiple thread

blocks are mapped to streaming multiprocessors (SM). Each SM contains a number of

processing elements called Streaming Processors (SP). A thread executes on a single SP.

Threads in a block are executed in smaller execution groups of threads calledwarps. All

threads in a warp share one program counter and execute the same instructions. If con-

ditional branches within a warp take different paths, called control path divergence, the

warp will execute each branch path serially, stalling the other paths until all the paths are

complete. Such control path divergences severely degrade the performance.

Because off-chip global memory access is very slow, GPUs supportcoalesced memory

accesses. Coalescing memory accesses allows one bulk memory requestfrom multiple

threads in a half-warp to be sent to global memory instead of multiple separate requests.

In order to coalesce memory accesses, three general restrictions apply: each thread in a

half-warp must access successive addresses in order of the thread number, the memory

accesses can only be 32, 64, or 128-bit, and all the addressesmust be aligned to either 64,

128 or 256-byte boundaries. Effective memory bandwidth is an order of magnitude lower

using non-coalesced memory accesses which further signifies the importance of memory

coalescing for achieving high performance.

In modern GPUs, such as NVIDIA GTX 285, there are 30 SMs each with 8 SPs. Each

SM processes warp sizes of 32 threads. The memory sizes for this GPU are: 16K of

registers per SM, 16KB divided into 16 banks of shared memoryper SM, and 2GB of

global memory shared across all threads in the GPU.

We use the StreamIt programming language to implement streaming programs. StreamIt

89



is an architecture-independent streaming language based on SDF. The language allows a

programmer to algorithmically describe the computationalgraph. In StreamIt, actors are

known as filters. Filters can be organized hierarchically into pipelines(i.e., sequential

composition),split-joins(i.e., parallel composition), andfeedback loops(i.e., cyclic com-

position). StreamIt is a convenient language for describing streaming algorithms, and its

accompanying static compilation technology makes it suitable for our work.

5.3 Portable Stream Compilation

Sponge takes StreamIt programs as its input and generates GPU-specific CUDA code.

Each actor in the StreamIt graph is converted to a CUDA kernelrunning with some number

of threads and blocks. By performing portable stream compilation, Sponge decides how

many threads and blocks to assign to the CUDA kernel generated for each actor. The input

buffer size of the first actor,Ai, in the graph determines how many times that actor has

to run (Ri). As a result,Ri is changed toRi divided by the multiplication of number of

threads and blocks assigned to the actor. We call the resultnumber of iterationsfor actor

Reorganization and 
Classification

Memory Layout

Graph 
Restructuri ng

Register 
Optimization

Shared/Global 
Memory

Helper Threads

Bank Conflict 
Resolution

Software Prefetching

Loop Unrolling

StreamIt

CUDA

Figure 5.3: Compilation flow in Sponge.

90



ActiveWarpsPerSM =
ThreadsPerBlock × ActiveBlocksPerSM

THREADS PER WARP
(5.1)

Iterations =
InputBufferSize

Pop × ThreadsPerBlock × Blocks
(5.2)

ThreadsPerBlockLoT =
SHARED MEMORY SIZE

(Pop + Push)
(5.3)

ExecCyclesLoT =
CompInsts × COMP INST ISSUE DELAY

NUMBER SM
×

ThreadsPerBlockLoT × Iterations

ActiveWarpsPerSM
(5.4)

ThreadsPerBlockHiT = MAX THREAD PER BLOCK (5.5)

MemCycles = (UncoalMemInsts + CoalMemInsts/COAL FACTOR)

×MEMORY DELAY + MEM INST ISSUE DELAY (5.6)

ExecCyclesHiT =
MemCycles

NUMBER SM
×

ThreadsPerBlockHiT × Iterations

ActiveWarpsPerSM
(5.7)

Name Description
SHARED MEMORY SIZE Size of shared memory on GPU
THREADS PER WARP Number of threads in each warp
NUMBER SMs Number of streaming processor on GPU
MAX THREAD PER BLOCK Max number of threads allowed per block
MEMORY DELAY Number of cycles to access global memory
COAL FACTOR Max number of memory accesses that can be coalesced
MEM INST ISSUE DELAY Number of cycles to issue a memory instruction
COMP INST ISSUE DELAY Number of cycles to issue a compute instruction
pop, push push and pop rate of an actor
InputBufferSize Size of input buffer for an actor
ThreadsPerBlock Number of threads in one block
Blocks Number of blocks on the GPU
Iterations Number of iterations to run an actor on the GPU
ActiveBlocksPerSM Blocks active on one SM
(Un)CoalMemInsts (Un)Coalesced instructions in one actor

Figure 5.4: In this Figure, equations for calculating execution cyclesof both HiT and LoT actors
are shown. Equations 5.1 and 5.2 can be used for both HiT and LoT actors. The table summarizes
what each variable means.

Ai.

Portable stream compilation inSpongeconsists of four main steps as shown in Fig-

ure 5.3. In the first phase, Sponge reads a StreamIt program and performsActor Reor-

ganization and Classificationin which simple graph reorganization is done and actors are

classified into two categories:High-Traffic (HiT) and Low-Traffic (LoT). The classification

information is used throughout all the phases of the compilation flow. The second phase

deals with theMemory Layout and Optimizationof each actor. This step decides if an actor

uses shared or global memory, eliminates shared memory bankconflicts and also improves

memory performance by introducingHelper Threadsto better utilize the unused processors

and bring the data needed by an actor into shared memory faster. This compilation step is

91



crucial to achieving better performance since memory bandwidth can be a limiting fac-

tor on GPUs. The third phase performsGraph Restructuringby changing the granularity

of the kernels and vertically fusing actors based on classification results. After graph re-

structuring, the compiler reiterates from the beginning ofthe compilation flow, treating the

post-fused stream graph as the input until no more graph restructuring is possible. Finally,

Register Optimizationtries to utilize unused registers on each SM by employing software

prefetching and also by unrollingfor loops in each kernel.

5.3.1 Actor Reorganization and Classification

As mentioned in Section 5.2, GPUs are built for data-level parallelism and are not

suitable for task-level parallelism and global synchronization. Therefore,splitter-joiner

structures will not perform well on the GPU since each joinerintroduces a synchronization

point. First, Sponge collapsessplitter-joiners to one actor in cases that the actors between

thesplitter andjoiner are stateless and equivalent. This will remove thesplitter andjoiner

actors and replace the structure with a single actor. In cases where it is not possible to

collapse asplitter-joiner structure to one actor, Sponge treats thesplitter and joiner as

special actors with more than one input and output. Based on the type and weights of the

splitterandjoiner actors, Sponge decides to allocate their input and output buffers in shared

memory or global memory.

Sponge excludes stateful actors from being executed on the GPU and runs them on the

host CPU. This is because only one instance of a stateful actor can be active and data-

parallelism is not applicable to these actors. Host to GPU and GPU to host transfers are

inserted before and after stateful actors, if necessary.

92



Thread 63Thread 62Thread 1Thread 0

Pop =4 
Push =4

Pop =4 
Push =4

Pop =4 
Push =4

Pop =4 
Push =4

25525425325225125024924876543210Global 
Memory

Global 
Memory

25525425325225125024924876543210

...

...

...

(a)

Thread 3Thread 2Thread 1Thread 0

1514131211109876543210Shared 
Memory

1514131211109876543210Shared 
Memory

Shared to 
Global

Shared to 
Global

Shared to 
Global

Shared to 
Global

Pop =4 
Push =4

Pop =4 
Push =4

Pop =4 
Push =4

Pop =4 
Push =4

Global to 
Shared

Global to 
Shared

Global to 
Shared

Global to 
Shared

Global 
Memory

Global 
Memory

1514131211109876543210

1514131211109876543210

(b)

Figure 5.5: This figure shows how HiT and LoT threads access their buffers. Part (a) illustrates the
memory access pattern for a sample HiT actor with four pops and four pushes. Part (b) shows the
access pattern for a LoT actor.

Next, Sponge classifies actors assigned to the GPU as either High-Traffic (HiT) or Low-

Traffic (LoT). HiT actors have a large number of memory accesses. These actors perform

better on a GPU if their buffers are mapped to global memory rather than shared memory

because mapping the buffers to shared memory will result in having too few threads and

under-utilizing the processors and the available memory bandwidth. LoT actors, on the

other hand, are mostly computation dominated and if mapped to shared memory will have

a reasonable number of threads to utilize the GPU.

In order to determine if an actor is a LoT or HiT, Sponge estimates execution cycles

of an actor for both global memory (HiT) and shared memory (LoT) mappings, based

on Equations 5.1-5.7 in Figure 5.4. For each actor, Sponge treats that actor as both HiT

and LoT and calculates the corresponding execution cycles (ExecCyclesLoT , ExecCycle-

sHiT ). The two numbers show if that actor is suitable to be treatedas a LoT or HiT actor. If

ExecCyclesHiT is smaller thanExecCyclesLoT for an actor, that actor will perform better

if its buffer is mapped to global memory. Otherwise, it will be classified as a LoT actor for

which both shared and global memory will be used to help with coalescing of data accesses.

In the equations for LoT actors, number of threads per block (ThreadsPerBlock) is

93



determined by the size of shared memory(SHARED MEMORY SIZE 1) and the

number of pushes and pops. Threads per block defines the number of active warps per

SM (ActiveWarpsPerSM) and the number of iterations based on Equations 5.1 and 5.2.

Finally, the execution cycle of a LoT actor is estimated depending on the number of com-

pute instructions and the distribution of threads in the GPU(Equation 5.4).

Execution time of HiT actors is calculated based on their memory access time because

these actors are mapped to global memory and have a large number of global memory

reads and writes. Equations 5.5-5.7 show how execution timeestimation is done based on

the number of coalesced and uncoalesced memory accesses. Unlike shared memory, the

size of global memory does not limit the number of threads. Therefore, the number of

threads per block for HiT actors can be equal to the maximum number of threads allowed

in each block (MAX THREAD PER BLOCK).

In this section, memory layout and optimization techniquesused in Sponge are dis-

cussed. First, the way shared memory is utilized for LoT actors is explained. Second,

helper threads, a technique that Sponge uses to reduce global memory access time of ac-

tors, is discussed. Finally, shared bank conflict resolution in Sponge is explained.

5.3.1.1 Shared/Global Memory

To deal with high-latency memory access issues, Sponge usesthe classification infor-

mation calculated in the previous phase and tries to alleviate the problem by coalescing the

buffer accesses or overlapping a large number of uncoalesced buffer accesses to amortize

the cost. As discussed earlier, HiT actors will be mapped to global memory and LoT actors

1Variables with all capital characters show GPU-specific parameters

94



will use the shared memory. The kernel generated for these actors will have a large num-

ber of threads, each accessing its own buffer sequentially in global memory. The memory

accesses will not be coalesced because the accesses of consecutive threads are not consecu-

tive in the memory. Since the number of threads is large, the overhead of memory accesses

will be hidden by the execution of many threads. Figure 5.5a illustrates how a HiT actor

with four pops and four pushes accesses global memory. Sincethe addresses generated

by the first pop operations of the threads are not consecutivein the memory, they are not

coalesced.

LoT actors, unlike HiT actors, have a higher compute to memory ratio. Therefore,

a LoT actor can use shared memory and have a large number of threads. As shown in

Figure 5.5b, threads of a LoT kernel in a block can use coalesced memory accesses to copy

their input (output) buffer to (from) shared memory from (to) global memory. To do so,

the threads of a block work as a group and bring parts of data that belong to other threads

as well as part of their own data. In this way, consecutive threads’ accesses to shared

memory will be to consecutive locations and will get coalesced. Since all of the data is

in shared memory, all threads in a block will have access to it. Figure 5.6 shows how the

CUDA code needs to be changed to utilize shared memory in LoT actors. In the baseline

form (Figure 5.6a) the input and output buffers are allocated in global memory and the work

function directly accesses global memory. If shared memoryis used, then twofor loops are

added before and after the work function to copy the data in and out of shared memory, as

shown in Figure 5.6b. The addresses for the memory reads and writes in thesefor loops are

set based on theThreadID, and the number of pushes and pops. Before and after the two

newfor loops,L1, L2, barriers (synchthreads) are necessary because, as mentioned earlier,

95



For number of iterations

Begin Kernel <<<Blocks, Threads>>>:

End Kernel

Work

(a)

For number of iterations

For number of pops

For number of pushs

Shared Memory Global Memory

Shared Memory Global Memory

syncthreads

syncthreads

L1

L2

End Kernel

Begin Kernel <<<Blocks, Threads>>>:

Work

(b)

For number of iterations

Shared Memory Global Memory
Shared Memory Global Memory

Shared Memory Global Memory

Shared Memory Global Memory

syncthreads

syncthreads

If helper threads

If helper threads

If worker threads

L1

L2

L3

End Kernel

Begin Kernel <<< Blo cks, Threads + Helper >>>:

Work

(c)

Figure 5.6: Part (a) shows the baseline translation for a HiT actor. How shared memory is used
in a LoT actor is illustrated in part (b). In part (c) the way Sponge generates CUDA code to divide
threads as helpers and workers is shown.

each thread does not fetch all of its own data and has to wait for other threads in the block

to finish their data-fetch phase.

5.3.2 Memory Layout and Optimization

Memory hierarchy in GPUs is significantly different from both conventional shared

memory and distributed memory systems. As mentioned in Section 5.2, efficient use of

96



global memory, shared memory and registers on GPUs is crucial to obtain high perfor-

mance. Coalescing accesses to global memory can greatly reduce memory access over-

heads, but it will not be possible without careful memory layout. Utilizing shared memory,

which is significantly faster than global memory, is also very beneficial. Due to its limited

size, shared memory can restrict the number of threads and degrade the performance. In

this section, techniques used for memory layout and optimization in Sponge are discussed.

5.3.2.1 Helper Threads

The first optimization of this phase is to usehelper threads to fetch data for theworker

threads. In cases where there are not enough threads to efficiently utilize all the SMs

for LoT kernels or a HiT actor has a fair number of threads whenit is treated as a LoT

actor (mapped to shared memory), Sponge uses helper threadsto reduce the buffer (i.e.

memory) accesses of each thread (push and pop rate). Each helper thread aids some worker

threads to bring their data to shared memory in a coalesced way.

Figure 5.6c shows how the CUDA code is modified. Based on the thread IDs, Sponge

generates the helper and worker threads. Helper threads arein charge of handling the data

accesses and worker threads are in charge of the computation. In order to avoid control flow

divergence, the thread assignment is performed such that the helper and worker threads

form complete warps. If the number of worker threads are lessthan the warp size, then the

helper threads are placed in the first set of warps and the worker threads form the last warp.

This is done by predicating out the work function for the helper threads and the memory

accessfor loops for the worker functions. Theif statement in Figure 5.6c does this based

on threadID. This technique works because control flow divergence negatively affects the

97



performance within one warp but not across warps.

Sponge estimates number of instructions that helper threads will add to each thread and

also takes into account the parallelism between the helper and worker threads to calculate

how beneficial helper thread optimization will be for both LoT and HiT threads. As il-

lustrated in Figure 5.6c, Sponge counts the time it takes to run L1, L2, andL3 sections

and estimates the total execution time based on the equations in Figure 5.4. If the total

execution time using helper threads is reduced, Sponge generates CUDA code using them.

5.3.2.2 Bank Conflict Resolution

Shared memory bank conflict is another source of bottleneck in GPU systems. For

example, whenever threads of a kernel access their input buffer in shared memory with:

data = buffer[baseAddress+ s ∗ threadId];

threadsthreadId andthreadId+ n access the same bank whenevern is a multiple of

m/d (m is the number of memory banks) whered is the greatest common divisor of m and

s. As a consequence, there will be no bank conflicts only if halfthe warp size is less than

or equal tom/d. For current NVIDIA devices, this translates to no bank conflict only if

d is equal to 1, or in other words, only ifs is odd sincem is a power of two (16 for GTX

285 [65]). In the StreamIt code,s is the number of pops. To makes odd, if the number

of pops is even, Sponge artificially changes the pop rate of anactor by incrementing the

pops by one. In this way, an actor with2k pops will use2k + 1 entries in the memory

98



and the buffers get shifted in the memory. Removing bank conflicts greatly improves the

performance of some of the benchmarks. The same technique can be applied for pushes.

5.3.3 Graph Restructuring

In this part, Sponge vertically fuses some actors to improveperformance by increasing

coalesced memory accesses, removing kernel call overhead,and also increasing instruc-

tion overlap. Fusion is not beneficial in all cases because itcan increase the memory traf-

fic (push + pop) of a pair of LoT actors and reduce the number of threads (Equation 5.3).

For HiT actors, fusion may increase the memory traffic as a result of register spilling.

The main benefit of fusing HiT actors is replacing uncoalesced memory accesses at

the end of the first actor and at the beginning of the second actor with coalesced accesses.

The memory accesses become coalesced because the two actorswithin the fused actor are

rate matched. Therefore, the first actor can write to the internal buffer using coalesced

memory writes and the second actor can read the same data withcoalesced memory reads.

Figure 5.7 illustrates how fusion can lead to coalescing of memory accesses in a simple

GPU that has warp size of four and can coalesce two memory accesses into one. In this

figure, the memory accesses between actorsA (producer with 2 pushes running with 8

threads) andB (consumer with 8 pops running with 2 threads) are shown.Wi,j is jth

push by theith thread ofA, andRk,m is themth pop of thekth thread ofB. Figure 5.7a

shows how writes and reads are performed between these actors in the case of no fusion.

In this case each thread serially writes and reads from global memory which results in all

uncoalesced accesses (marked byU). If the buffer allocation forA is changed such that its

memory accesses can be coalesced (marked byC), as shown in Figure 5.7b, the accesses of

99



threads runningB will still be uncoalesced. Figure 5.7c shows the accesses tothe internal

buffer betweenA andB after fusion is performed. The new actor,(4A)B, runs with two

threads. Since there are 8 pushes and pops between4A andB all the accesses will be

coalesced, as shown in Figure 5.7c.

For the LoT actors, global memory accesses are already coalesced with the help of

shared memory. These accesses happen in twofor loops before and after the work func-

tion. Similar to the HiT case, the accesses between the two LoT actors become coalesced.

Therefore, the resulting LoT actor does not need to use shared memory anymore. This will

result in elimination of a large number of complex address calculations andfor loopcontrol

instructions.

Sponge uses its cost estimation equations to decide if fusing a pair of actors is beneficial

or not. For a candidate pair, Sponge calculates the number ofcycles for both cases where

the resulting actor is HiT or LoT. If in either case the execution time is less than the sum of

the original actors’ execution times, fusion is performed.

5.3.4 Register Optimization

Registers on GPUs are a precious resource. Efficiently usingthe registers can greatly

improve performance. In this section, two optimizations that Sponge performs to increase

register utilization are discussed.

5.3.4.1 Software Prefetch

To better tolerate long memory access latency, the CUDA threading model allows some

warps to make progress while others wait for their memory access results. This mechanism

100



3
W2,2=>R1,4

0
W1,1=>R1,1

2
W2,1=>R1,3

1
W1,2=>R1,2

7
W4,2=>R1,8

4
W3,1=>R1,5

6
W4,1=>R1,7

5
W3,2=>R1,6

11
W6,2=>R2,4

8
W5,1=>R2,1

10
W6,1=>R2,3

9
W5,2=>R2,2

15
W8,2=>R2,8

12
W7,1=>R2,5

14
W8,1=>R2,7

13
W7,2=>R2,6

UUUU UUUU

UUUU UUUU

(a)

3
W1,4=>R1,7

0
W1,1=>R1,1

2
W1,3=>R1,5

1
W2,1=>R1,3

7
W4,2=>R1,8

4
W1,2=>R1,2

6
W3,2=>R1,6

5
W2,2=>R1,4

11
W8,1=>R2,7

8
W5,1=>R2,1

10
W7,1=>R2,5

9
W6,1=>R2,3

15
W8,2=>R2,8

12
W5,2=>R2,2

14
W7,2=>R2,6

13
W6,2=>R2,4

C

CCCC

CCC

UUUU

UUUU

(b)

3
W2,2=>R2,2

0
W1,1=>R1,1

2
W1,2=>R1,2

1
W2,1=>R2,1

7
W2,4=>R2,4

4
W1,3=>R1,3

6
W1,4=>R1,4

5
W2,3=>R2,3

11
W2,6=>R2,6

8
W1,5=>R1,5

10
W1,6=>R1,6

9
W2,5=>R2,5

15
W2,8=>R2,8

12
W1,7=>R1,7

14
W1,8=>R1,8

13
W2,7=>R2,7

C CCC C CCC

C CCC C CCC

(c)

Figure 5.7: This figure shows the memory accesses between actorsA with 2 pushes and 8 threads
andB with 8 pops and 2 threads.Wi,j(Ri,j) showsjth memory write (read) performed byith thread
running actorA (B). U andC denote uncoalesced and coalesced. Part (a) shows the accesses in
the base case. Part (b) illustrates the same accesses when the buffer forA is allocated such that
its writes are coalesced. Part (c) shows coalesced accessesbetween these two actors when they
are fused as(4A)B and executed with two threads. The number on the top left corner of each box
shows the memory address of that location.

is not effective in some cases where all threads are waiting for their memory access results.

This case happens if all threads have very few independent instructions between memory

access instructions and the use of the accessed data. Prefetching is a technique that some

CUDA programs use to overlap fetching data from global memory for iterationi+ 1 of an

actor with compute instructions in iterationi by utilizing the available registers.

Figure 5.8a shows how software prefetching can be done for LoT actors. Before the

main for loop, the first batch of data (for iteration 1) is loaded into registers (L1). Once

L2 has started, the data is moved from registers into shared memory. At this point, threads

have to wait for the shared memory transfers to finish before they can progress because that

101



data is needed for computation after this point. After all threads are done moving the data to

shared memory, they pass the barrier synchronization pointand begin to load the next batch

of data into registers. The key is that the work function doesnot need the data from these

memory accesses and overlapping of compute and memory accesses can happen. LoopL4

has to be wrapped in anif statement because the last iteration of the kernel does not need

to prefetch any data. Thisif statement does not introduce branch divergence since all the

threads take the same path at this point.

L2

For number of iterations

syncthreads

syncthreads

Registers Global Memory

Shared Memory Registers

Shared Memory Global Memory

For number of pops

For number of pops

For number of pops

For number of pushs

L1 Registers Global Memory

L3

L4

L5

Begin Kernel <<<Blocks, Threads>>>:

End Kernel

If not the last iteration

C1

Work

(a)

U2

For number of iterations/2

syncthreads

syncthreads

Shared Memory Reg

Shared Memory Reg

Reg Global Memory

Reg Global Memory

U3

U4

U1

Begin Kernel <<<Blocks, Threads>>>:

End Kernel

Work

Shared Memory Reg

Shared Memory Reg
U5

syncthreads

Work

If not the last iteration

Shared Memory Global Memory

Shared Memory Global Memory
U7

syncthreads

Shared Memory Global Memory

Shared Memory Global Memory

Reg

Reg

Global Memory

Global Memory

U6

(b)

Figure 5.8: Part (a) shows how prefetching is performed to improve the performance of a kernel.
Part (b) depicts the result of unrolling on the kernel in part(a).

102



One possible downside of this technique is that using additional registers for prefetching

can reduce the number of blocks that can run on anSM . However, prefetching is beneficial

if it significantly reduces the amount of time each thread waits for global memory accesses.

Since different classes of NVIDIA GPUs are equipped with different number of registers,

Sponge tunes this optimization for each GPU target. If performing prefetching for the

whole buffer introduces register spill or reduce the numberof concurrent blocks, Sponge

tunes the prefetching optimization by applying it to only a fraction of the input buffer.

5.3.4.2 Loop Unrolling

Instruction processing bandwidth on the processing cores of current CUDA graphics

engines can negatively affect the performance of an actor. Address calculation and loop

control instructions can become important if an actor has small number of computation

instructions. In other words, these type of instructions introduce overhead and prevent a

kernel from utilizing the peak performance of a GPU. Loop unrolling is one way to reduce

the overhead. This optimization can also increase the register utilization by unrolling loops

that use registers. The degree of unrolling depends on the number of registers the kernel

uses and also the number of registers that are available on the GPU. Since different classes

of GPUs are equipped with different number of registers per SM, blindly applying unrolling

to thefor-loops in a kernel may worsen the performance.

An example of the unrolling is shown in Figure 5.8b. There arefive potentialfor loops

in a typical LoT actor generated by Sponge, as shown in Figure5.8a, 2 for transferring data

to and from global memory, 2 for prefetching and 1 for the workfunction. Depending on

the number of registers available on the target GPU and the instruction mix of the kernel,

103



Sponge decides to perform loop unrolling on thefor loops.

Figure 5.8b shows how the unrolling is applied to all fivefor loops to both remove

the for loop overheads and also increase the register utilization. In this example, unrolling

factor of two is applied to thework function. As shown in Figure 5.8a, loopL1 is unrolled

toU1. Because the work function is unrolled two times, all the correspondingfor loops now

appear twice exceptL4. ReplicatingL4 two times will result in having twoif statements.

To remove the conditional branch instruction overhead, these two replicatedfor loops are

merged intoU6.

C
pop=8, push=8

H
pop=8, push=0

Spli tter 

A
pop=0, push=8

C
pop=8, push=8

C
pop=8, push=8

C
pop=8, push=8

C
pop=8, push=8

C
pop=8, push=8

C
pop=8, push=8

C
pop=8, push=8

joiner 

Splitter 

E
pop=8, push=8

E
pop=8, push=8

E
pop=8, push=8

E
pop=8, push=8

joiner 

G
pop=1, push=1

B
pop=2, push=2

D
pop=256, push=256

F
pop=64, push=64

(a)

[512 ,128]

[512 ,128]

[256 ,128]

[512 ,128]

[256 ,128]

GPU 
To 

Host

Host 
To 

GPU

H
pop=8, push=0

A
pop=0, push=8

C
pop=8, push=8

B
pop=2, push=2

D
pop=256, push=256

E
pop=8, push=8

F
pop=64, push=64

G
pop=1, push=1

(b)

H
pop=8, push=0

A
pop=0, push=8

[512 ,128]

GPU 
To 

Host

Host 
To 

GPU

[32+256 ,128]

[256+256 ,128]

[512 ,128]

[256+256,128]
C

pop=8, push=8

B
pop=2, push=2

D
pop=256, push=256

E
pop=8, push=8

F
pop=64, push=64

G
pop=1, push=1

(c)

H
pop=8, push=0

A
pop=0, push=8

[256+256 ,128]

[512 ,128]

GPU 
To 

Host

Host 
To 

GPU

D 32E 4F
pop=256, push=256

4B C
pop=8, push=8

G
pop=1, push=1

(d)

Figure 5.9: Part (a) shows a stream graph with 12 unique actors. Part (b) is about how actor
classification and graph reorganization affects this graph. In this part, shaded actor are HiT actors.
Part (c) illustrates the result of the helper thread optimization. Part (d) depicts the same graph
after applying graph restructuring. [i, j] next to each GPU actor shows number of threads (i) and
number of blocks (j) that will run that actor. Ifi is written asw+h, w is number of worker threads
andh is the number of helper threads.

104



5.3.5 A Stream Compilation Example

In this section, a running example, as shown in Figure 5.9, isused to better illustrate

how the optimizations affect the streaming graph. The base graph in Figure 5.9a has 12

unique actors two of which are in asplitter-joinerstructure. Each box shows one actor in

the program. Each edge in this graph indicates a tape implemented using FIFO queues.

The text written inside each box shows how each actor interacts with its input and output

tapes. All the actors are stateless exceptG. This actor as well as the source (A) and the

sink (H) actors are mapped to the host processor.

In the classification phase, Sponge will remove the twosplitters andjoiners and replace

all the copies ofC andE with one of each. This is done because GPUs do not support task

level parallelism and thejoiner will introduce synchronization overhead. After this, actors

are classified as HiT and LoT based on their memory traffic and computation instructions.

LoT actors use shared memory but HiT actors operate on globalmemory. In the example,

actorsD andF are identified as HiT actors (shown with a darker color) andB, C andE

as LoT actors. [i, j] next to each GPU actor shows number of threads (i) and number of

blocks (j) that will run that actor. For the LoT actors, the number of threads depends on

the size of shared memory and the memory usage of the actor. For HiT actors, the number

of threads is always equal to the maximum number of threads allowed per block because

global memory is significantly larger than the actors’ memory footprint.

Next, helper threads are used to fetch data from global memory to shared memory more

efficiently. After applying this, the number of threads for LoT actors will increase but HiT

actors will be running with less threads because they have touse the shared memory. In the

105



example, as shown in Figure 5.9c, except actorD, every actor benefits from using helper

threads. If the number of threads for an actor is written asw+h, thenw shows the number

of worker threads andh shows number of helper threads assigned to that actor.

Finally, graph restructuring is performed on the graph and as a result several actors get

fused together. Figure 5.9d shows the result of fusion and then re-applying classification

and helper thread optimization. ActorB andC are fused together in a LoT actor and actors

D, E, andF are classified as a HiT actor.

5.4 Experiments

In this section Sponge’s optimization techniques are evaluated and compared with two

alternative approaches:

1. GPU baseline: All stateless actors of the benchmarks are mapped to the GPU utiliz-

ing the maximum number of threads supported (MAX THREAD PER BLOCK).

In this technique, all of the actors are compiled as HiT actors. Stateful actors as well

as source and sink actors are mapped to the host processor.

2. CPU baseline: All the actors are executed sequentially onthe CPU.

5.4.1 Methodology

A set of benchmarks from the StreamIt suite [79] are used to evaluate Sponge. The

benchmarks are compiled and evaluated on a system containing a 3GHz Intel Core 2 Ex-

treme CPU with 6GB of RAM and a GeForce GTX 285 GPU with 2GB DDR3global mem-

ory. Sponge compilation phases are implemented as a compiler backend to the StreamIt

106



compiler. Sponge generates customized CUDA code which is compiled using NVIDIA

nvcc 3.1 for execution on the GPU. GCC 4.1 is used to generate the x86 binary for execu-

tion on the host processor.

5.4.2 Techniques Performance

In this section, we try to compare the Sponge optimization techniques to the GPU base-

line and highlight the effectiveness of each optimization.Figure 5.10a shows how Sponge-

generated CUDA code performs and shows the performance gainof each optimization

technique. On average, Sponge improves the performance by 3.2x compared to the GPU

baseline.

The first optimization, shared/global memory, which divides actors into two categories

LoT and HiT, is one of the most beneficial Sponge techniques. By using shared memory,

Sponge is able to coalesce all the memory accesses in LoT actors, therefore performance

of benchmarks containing LoT actors will significantly increase. As shown in the Fig-

ure 5.10a, Matrix Multiply Block benefits the most because this benchmark has several

LoT actors. As a result, most of the actors inMatrix Multiply Blockhave coalesced mem-

ory accesses. In some benchmarks, such asHistogram, little benefit is seen using this

optimization because most actors are HiT actors.

Prefetching and unrolling are two other optimizations illustrated in Figure 5.10a. These

optimizations, collectively, contribute to 3.1% of the total average speedup. Prefetching

technique is used only for LoT actors and is useful mostly in applications with many LoT

actors such asMerge sortandBitonic. Unrolling allows Sponge to utilize unused registers

and reduce the number of instructions. This technique can increase the performance of LoT

107



actors that use few registers.DCT, Merge Sort, Radix, andBitonic have such actors and

unrolling can increase their performance.

0

1

2

3

4

5

6

7

S
p

ee
d

u
p

(x
)

Shared/Global Prefetch/ Unrolling Helper Threads Graph Restructuring

G-Mean: 2.89

H-Mean: 2.52

(a) Performance breakdown of Sponge optimizations in
comparison to the baseline CUDA code, both running
on the GPU.

0

5

10

15

20

25

30

35

40

45

50

S
p

ee
d

u
p

(x
)

With transfer Without Transfer

G-Mean: 7.8  

H-Mean: 4.7

G-Mean: 20.1  

H-Mean: 17.2

(b) Speedup of Sponge optimized code in comparison to
the host CPU with and without data transfer overhead.

Figure 5.10: Effectiveness of Sponge optimization techniques on StreamIt benchmarks.

Another effective optimization in Sponge is employing helper threads. As described in

the previous sections, helper threads can reduce the execution time of both LoT and HiT

actors with two exceptions:

• LoT actors with many threads: In this case, it is not possibleto run more threads

108



GTX 285
DCT FFT MM MM Block Bitonic Batcher Radix Merge Sort Comp Count Vect Add Histogram

Shared 66.7 66.7 62.5 80 100 100 100 100 100 100 33.3
Prefetch 0 4.2 12.5 0 40.7 0 0 34.8 13 0 0
Unrolling 50 70.8 37.5 80 50.7 100 100 30.4 63.2 0 33.3
Helping Threads 50 16.7 25 20 0.7 0 0 52.1 0 0 0

Tesla C2050
Shared 100 100 87.5 93.3 100 100 100 100 100 100 33.3
Prefetch 0 41.7 12.5 6.7 1.5 0 100 0 100 0 66.7
Unrolling 50 33.3 50 60 34.4 100 0 0 0 0 0
Helping Threads 50 0 25 6.7 0.7 0 0 0 0 0 33.3

Table 5.1: This table shows how Sponge optimizes each benchmark differently for two GPU targets.
For each benchmark and target, the percentage of actors thatare optimized by each optimization is
shown.

to help the worker threads. Reducing the number of worker threads would decrease

performance.

• HiT actors with few threads: To utilize helper threads, HiT actors would be converted

into LoT actors, which have less threads because of the limited shared memory size.

Though transferring data to shared memory improves memory performance, too few

worker threads can become a bottleneck, under-utilizing the SMs and decreasing the

overall performance.

As shown in Figure 5.10a, helper thread optimization effectively increases the perfor-

mance ofDCT, FFT, Matrix multiplyandMerge sort. For exampleDCT has multiple HiT

actors with a large number of worker threads. In this case, coalescing data accesses using

shared memory provides enough performance gain that running the actors with less threads

will not result in slowdown. On average, helper threads contributes to 16% of the total

average speedup compared to the GPU baseline.

Graph restructuring decreases the overhead of kernel launching and uncoalesced mem-

ory accesses. As discussed in Section 5.3.3, there are some cases where fusing two actors

may result in degraded performance. Since two actors that are fused must execute together,

the number of threads that the resulting actor can run will beless than the number of threads

109



created by running each actor separately. Because the reduction of threads can decrease the

performance, Sponge intelligently decides whether or not to use this optimization. Sev-

eral benchmarks, such asFFT, have large pipelines of actors that are all fused together

by Sponge. Graph restructuring provides a large portion of the speedup for these types of

benchmarks. SinceBatcherandVector Addhave only one actor, fusion cannot increase

their performance. InMerge Sort, the opportunity for performing fusion is minimal be-

cause most of the actors in this benchmark are isolated from each other and do not form a

pipeline.

5.4.3 Overall performance

Figure 5.10b presents the speedup of Sponge’s generated CUDA applications against

the CPU baseline, both with and without the data transfer time between the GPU and CPU.

On average, Sponge achieves about 20x speedup compared to running each benchmark

completely on the CPU. The only case that the CPU baseline outperforms Sponge isVector

Add including the data transfer overhead. In this special case,the memory to compute ratio

in Vector Addis very high. Although the GPU can execute theVector Addactor 10x faster

than CPU, the overhead of transferring the data between the host and GPU global memory

decreases the overall performance.

5.4.4 Portability

Quantifying portability is inherently a hard problem. To show how Sponge solves the

portability issue, we show how it optimizes each benchmark differently for two GPUs,

Tesla C2050 and GeForce GTX 285. The C2050 is based on the newer NVIDIA architec-

ture (Fermi) which has 48KB of shared memory, 32K registers and 420 streaming proces-

110



sors, providing Sponge with more resources to exploit. Table 5.1 shows how Sponge makes

different decisions based on the target architecture. Thistable illustrates the percentage of

actors in each benchmark optimized using various optimizations in Sponge. As shown in

Table 5.1, Sponge is able to classify more actors as LoT actors and utilize the larger shared

memory in C2050. The number of registers also affects how Sponge performs unrolling

and prefetching for each target. In general, Sponge adopts its compilation strategy based on

the characteristics of the GPU target without any source code modification or programmer

involvement.

5.5 Case Study and Future Work

Sponge is designed to reduce the performance gap between automatically generated

CUDA programs and hand-optimized ones. In this section two hand-optimized CUDA

programs from the NVIDIA SDK are analyzed to highlight the reasons for performance

differences between Sponge-generated and hand-optimizedCUDA code.

1514131211109876543210

A
pop=2, push=1

A
pop=2, push=1

A
pop=2, push=1

A
pop=2, push=1

A
pop=2, push=1

A
pop=2, push=1

A
pop=2, push=1

A
pop=2, push=1

joiner joiner joiner joiner 

B
pop=2, push=1

B
pop=2, push=1

B
pop=2, push=1

B
pop=2, push=1

joiner joiner 

C
pop=2, push=1

C
pop=2, push=1

joiner 

D
pop=2, push=1

0

Figure 5.11: This graph shows the stream graph of a generic stream reduction kernel.

111



5.5.1 Black-Scholes

TheBlack-Scholesalgorithm is a differential equation that can predict how the value of

an option changes. This equation reads five parameters from the input data and computes

the price for an option call and an option put and writes thesetwo values to the output.

In the code generated by Sponge for GTX 285 GPU, there is only one kernel that pops

five memory element from the input and calculates the output and pushes two results to

the output buffer. This actor is classified as an LoT actor. Therefore, Sponge uses shared

memory to coalesce all the buffer accesses in that actor. In the hand-optimized code, only

one kernel is launched as well, but each parameter is placed in a different array. The

kernel has five input arrays and two output arrays. By using this technique, all threads are

able to read data from each input array and write data to each output array consecutively

allowing all memory accesses to be coalesced. Coalescing all accesses without using shared

memory reduces the number of instructions in the hand-optimized version. As a result, the

performance of the hand-written program is 1.3x better thanSponge’s generated code.

This input/output buffer re-mapping is not currently done in Sponge because StreamIt

does not support actors with multi-inputs and multi-outputs streams. All input and output

streams between StreamIt actors are through a single sharedbuffer between the actors.

Future work will try to represent these multiple input/output streams in StreamIt so the

compiler can detect such cases and improve memory layout forGPUs.

5.5.2 Histogram

Thehistogrambenchmark computes the distribution of pixel intensities within an im-

age.Histogramis implemented using a technique called stream reduction, which is com-

112



mon in many GPU applications. Each phase of stream reductionremoves some elements

of input data, performs computation on them, and sends the results as a new input to the

next phase. Thehistogrambenchmark has several phases. In the first phase, the input data

array is divided into fixed size blocks. In the second phase, asub-histogram for each block

is computed. In the final phase, all the sub-histograms are collated into a single histogram.

A StreamIt graph of stream reduction is shown in Figure 5.11.The number of actors

in these type of benchmarks is data-size dependent, therefore, as the size of the input data

grows, the number of phases increases and the overhead of launching the kernels becomes

dominant. Sponge can fuse all of these phases together but the final actor would have a

largepop rate. Since thepop rate of this actor is very large, it is not possible to use the

limited shared memory to coalesce its memory accesses. In both cases, the large number

of kernels and the uncoalesced memory accesses result in degraded performance.

In the hand-optimized CUDA implementation, there is only one kernel for all of the

phases of the reduction but the number of threads that do the actual work in each phase is

different. As a result, the hand-written CUDA histogram benchmark outperforms Sponge’s

generate CUDA code by 5x.

We would like to enhance the performance of Sponge in this type of benchmarks by

detecting the stream reduction subgraph in the compiler andreplacing them with one spe-

cialized stream reduction kernel that mimics the behavior of the hand-optimized CUDA.

5.6 Related Work

The most common language GPU programmers use to write CUDA code is ”C for

CUDA” (C with NVIDIA extensions and certain restrictions).Tuning these C like pro-

113



grams is highly challenging because managing the amount of on-chip memory used per

thread, the total number of threads per multiprocessor, andthe pattern of off-chip memory

accesses are some of the problems that developer need to solve manually to achieve good

performance [70]. To alleviate this burden, recent studieshas been done to automatically

manage these parameters in CUDA programs.

One study, closely related to Sponge, is the optimizing compiler introduced by Udupa

et al. [82]. They compile stream programs for GPUs using software pipelining techniques.

In the software pipelining approach, different actors fromdifferent iterations are simulta-

neously processed. Their technique, though promising, does not perform well on GPUs

because it exploits task-level parallelism and is not able to exploit the massive amount of

data-level parallelism power of GPUs. There has been recentwork [86] on GPU compila-

tion for memory optimization and parallelism management. The input to this compiler is a

naive GPU kernel function and their compiler analyzes the code and generates optimized

CUDA code. This work is distinctively different from this work because Sponge is able to

exploit the information in the high level stream graph and perform kernel-level optimiza-

tions specific to StreamIt, such as graph restructuring, andthen apply lower optimizations

, such as memory and thread hierarchy management.

CUDA-Lite [87] is another compilation framework that takesnaive GPU kernel func-

tions as input and tries to coalesce all memory accesses by using shared memory. Pro-

grammers need to provide annotations describing certain properties of data structures and

code regions designated for GPU execution. Our work is different because Sponge does

not need any annotations. Sponge also uses shared memory to coalesce memory accesses

and can maximize the utilization of various resources on GPUs, such as registers. Another

114



difference is that when the size of shared memory limits the number of worker threads,

Sponge is able to insert helper threads to accelerate the transferring of data between global

and shared memory. hiCUDA [31] is a high level directive based compiler framework for

CUDA programming where programmers need to insert directives to define the bound-

aries of the kernel function into sequential C code. Anotherwork in the area of automatic

CUDA generation is [53]. The Authors in this work generate optimized CUDA programs

from OpenMP programs. They do not use shared memory in their compiler for coalescing

memory accesses. Hong et al. [34] propose an analytical performance model for GPUs

that compilers can use to predict the behavior of their generated code. Fung et al. [22] re-

group threads into new warps to minimize the number of divergent warps. Chen et al. [15]

use communication and computation threads to overlap the data exchange of the boundary

nodes between adjacent thread blocks. This is fundamentally different from what Sponge

achieves using helper threads by performing parallel prefetching of data.

MCUDA [75] tries to compile CUDA programs for a conventionalshared memory

architecture. MCUDA can be used to increase the performanceof traditional shared mem-

ory parallel systems using CUDA optimization techniques. With the stream programming

model, it is possible to use architecture specific optimizations for a wide range of architec-

tures. Researchers have already proposed ways to map and optimize synchronous data-flow

languages to SIMD engines [36], distributed shared memory systems [49], and also field

programmable gate arrays [37].

Performing runtime re-compilation of GPU binaries for adapting code to different tar-

gets is another approach that can provide portability across GPUs. OpenCL [48] is one

the approaches taken by industry to achieve portability. Webelieve OpenCL in its current

115



form suffers from the same inefficiencies as CUDA and does notprovide an architecture

independent solution.

There is a large body of literature that deals with exploiting parallelism in streaming

codes for better performance. The most recent and relevant works include compilation of

new streaming languages such as StreamIt, Brook [13], Sequoia [21], and Cg [55] to multi-

cores or data-parallel architectures. For example, Gordonet al. [26] and [25] perform

stream graph refinements to statically determine the best mapping of a StreamIt program

to a multi-core CPU. Liao et al. applies classic affine partitioning techniques to exploit the

properties of stream operators [83]. There is also a rich history of scheduling and resource

allocation techniques developed in Ptolemy that make fundamental contributions to stream-

scheduling (e.g., [68, 30]). In a recent work [78], the authors talk about the usefulness of

different features of StreamIt to a wide range of streaming applications. Several works,

such as [35], propose techniques to dynamically recompile streaming application based

on availability of resources in heterogeneous system. Sponge can be a complementary

addition to these works as GPUs are becoming a commodity in heterogeneous systems.

5.7 Summary

Heterogeneous systems, where sequential work is done on traditional processors and

parallelizable work is offloaded to a specialized computingengine, will be ubiquitous in the

future. Among the different solutions that can take advantage of this parallelism, GPUs are

the most popular solution and have been shown to provide significant performance, power

efficiency and cost benefits for general purpose computing inhighly-parallel computing

domains. GPUs achieve their high performance and efficiencyby providing a massively

116



parallel architecture with hundreds of in-order cores and exposing parallelism mechanism

and also the memory hierarchy to the programmer. One key to maximizing the perfor-

mance in these future heterogeneous systems will be to efficiently utilize not only the host

processor, but also the GPU.

While GPUs provide a very desirable target platform for accelerating parallel work-

loads, their programming complexity poses a significant challenge to application develop-

ers. Languages, such as CUDA, alleviate the complexity problem to some extent but fail at

abstracting the underlying GPU architecture. Therefore, managing the amount of on-chip

memory used per thread, the total number of threads per multiprocessor, and the pattern

of off-chip memory accesses are problems that developers still need to manage in order to

maximize GPU utilization.

In this work, we propose Sponge; a streaming compiler for theStreamIt language that

is capable of performing an array of optimizations on streamgraphs and generate efficient

CUDA code for GPUs. Optimizations in Sponge facilitate a write-once software paradigm

where programmers can rely on the compiler to automaticallycreate customized CUDA

for a wide variety of GPU targets. The optimizations in Sponge improve the performance

compared to naive CUDA implementations by an average of 3.2x. Finally, as a case study,

we compare the performance and implementation of two hand-optimized CUDA bench-

marks, Black-Scholes and Histogram. For Black-Scholes, Sponge is able to achieve within

30% of the performance of the hand-optimized CUDA code. Future work on Sponge will

improve automatic detection of certain memory layout characteristics and stream graph

representations that are currently not supported.

117



CHAPTER VI

Flexible Compilation for Dynamic Resource Changes

6.1 Introduction

Many-core processors provide a lot of flexibility in that they can potentially speed up the

execution of individual applications (because of increased parallelism), while also having

the ability to run many applications at the same time. As the number of applications that can

effectively use multiple cores increases, it will become necessary to develop strategies that

can adequately manage the allocation of resources between applications. Resource allo-

cation is a challenging problem because application behavior (and hence resource require-

ments) can often vary in unpredictable ways, depending on factors that include dynamic

workloads and variability in end-user scenarios. The issueis made more challenging by

the numerous heterogeneous architectural resources that are already exposed to software

(e.g., the compiler). We believe that managing the allocation of resources effectively re-

quires many non-trivial tradeoffs, and we introduce Flextream as a means to address this

issue.

Specifically, we address the issue of provisioning an individual application to run on a

heterogeneous architecture under varying configurations of resource allotments. In doing

118



so, applications are able to efficiently and effectively adapt, at runtime, to changes in the

number and kind of resources at their disposal. For example,consider a mobile device that

serves as a multimedia player and an internet browser. If theuser is running only one of the

two applications, then that application can potentially exploit all of the available resources

in the device. However, as soon as the user also starts browsing the web, the resources

available for the media player must change to accommodate the new application. If either

of the applications is not properly provisioned to run on a varying number of resources, the

end-user experience will almost surely be a poor one.

Static compilation approaches, in general, can generate high-quality resource alloca-

tions offline. However, such solutions are often sensitive to runtime variations in resource

availability. In other words, any change in the underlying architecture’s parameters, such

as available on-chip memory or the number of cores, will result in an inefficient execution

of a statically scheduled application in the best case, or code that can not execute in the

worst case.

One potential solution to this problem is to compile alternative versions of an appli-

cation, and to dynamically switch between versions according to the resources that are

available in the architecture. For example, the media application running on an 8-core de-

vice can be provisioned to run on either 1, 2, 4, or 8 cores. Theobvious deficiencies of

this approach are three fold. First, this strategy can lead to large amounts of code bloat.

Second, it may be impractical to statically consider a high number of architectural configu-

rations. Lastly, the application may have to execute an inefficient fail-safe implementation

(e.g., sequential) if the runtime scenario yields a set of resources that was not statically

considered.

119



An alternative solution is dynamic compilation, where the application is repeatedly

compiled at runtime when resources change—this can arise ifthe number of available

cores, or the amount of memory that is available, or the available bandwidth varies. This is

a promising approach because it can continuously adapt to changes in resource availability,

if only the costs of compilation and adaptation can be made low enough to be practical. In

order to keep the costs of compilation down, the runtime compiler is likely to be limited

to a small set of optimizations. Furthermore, if we considerall of the resource ingredients

that can vary at runtime, it will be quite challenging to engineer an efficient solution that

addresses all of them well.

In this work, we propose a compilation and runtime adaptation system called Flex-

tream. It is aimed at addressing the challenges described above in the context of streaming

applications. In Flextream, a streaming application is represented as a graph, where the

nodes encapsulate computation, and the edges between nodesdescribe dataflow. A stream

program (graph) is mapped to a many-core heterogeneous architecture by assigning nodes

to cores, and dataflow to communication channels between cores (e.g., DMA transfers be-

tween cores, or between main and local memories). The main innovation in Flextream is

anadaptive stream graph modulo schedulingalgorithm that combines the benefits of static

scheduling with the advantages of dynamic adaptation. Thisstrategy, of using an adap-

tive hybrid (static-dynamic) compilation approach, can lead to significantly better resource

utilization, and can help deliver the promise of many-coresto end-users.

Flextream consists of two main components. The first part performs static compila-

tion of an application to a virtualized multicore system using heuristics for controlling the

amount of parallelism in the graph, and an integer linear programming (ILP) formulation

120



to find the optimal mapping of nodes to resources (i.e., work partitioning). The second

part consists of a light-weight online (dynamic) adaptation system that modifies the active

schedule based on the available resources in the architecture. Dynamic adaptation con-

sists of several phases including finding a new processor assignment, stage assignment,

and buffer allocation. The online phases are designed to be light-weight and yet produce

efficient results.

In this chapter, we mainly focus on heterogeneous systems with distributed memory

similar to the IBM Cell [33] processor. Using the proposed framework, an application

is statically compiled for a configuration of the architecture with the greatest number of

resources which may include processing elements, on-chip storage and bandwidth. This

results in high-quality solutions for a specific configuration. The dynamic light-weight

layer uses the result of the static compilation as a hint to quickly discover an efficient so-

lution for the new system configuration. Our experiments show that assisting the online

adaptation phase with a static solution reduces runtime overhead and greatly improves the

quality of the solutions that the online phase discovers. Our approach eschews the need

for recompilation when resources change, and thus enables software developers to pro-

duce adaptive and high-quality streaming applications. The online adaptation phase uses

a technique similar to [88] (called Multicore Streaming Layer or MSL) to stop the current

schedule and distribute the new schedule between the processors. More details about this

technique are mentioned in Section 6.2.2.

This work makes the following contributions:

• An efficient framework for adaptive compilation of streaming applications to hetero-

121



geneous multicore systems is proposed.

• A parallelism-tuning heuristic coupled with a scalable work partitioning based on ILP

formulation is proposed to find a static software pipelined scheduling for streaming

applications.

• Highly efficient dynamic work redistribution and buffer allocation algorithms are

introduced to adapt the software pipelined schedule dynamically to efficiently exploit

the capabilities of the target platform.

The rest of the chapter is organized as follows. In Section 6.2, the target architecture,

input language, and multicore streaming layer are discussed. Then, the static compilation

and online adaptation layer of Flextream are discussed in Section 6.3. Finally, in Sec-

tion 6.4, the framework is evaluated. Section 6.5 discussessome of the related works that

motivated this system.

6.2 Background

6.2.1 Architecture

The compilation target in this chapter is a streaming memorymulticore architecture

where on-chip memory structures are addressed as local memory and are explicitly man-

aged. Such architecture provides the compiler with a great deal of flexibility in terms of

orchestrating code and data locality, and managing communication granularity, frequency,

and latency.

The target system is similar to the Cell processor in terms ofthe high-level architecture.

It consists of a more powerful master processor and several slave processing elements. The

122



Figure 6.1: General architecture template

master processor is similar to the PowerPC core in the Cell processor running at 2GHZ

with 32KB L1 and 1MB L2 cache. Each slave core contains a localmemory for instruction

and data, calledlocal store, and a memory flow control (MFC) unit which can perform

DMA operations to and from the local stores independent of the cores. The slave cores

can only access the local store, so any sharing of data has to be performed through explicit

DMA operations. The ability to perform asynchronous DMA operations allows overlap

of computation and communication, and is leveraged for efficient software pipelining of

stream graphs. The multicore system used during static compilation (Section 6.3.1) is

similar to the processor in Figure 6.1 and has 32 slave cores.The actual physical processor

used during online adaptation (Section 6.3.2) also has the same architectural template but

the number of slave cores varies in each experiment from 2 to 32.

6.2.2 Multicore Streaming Layer

We use the runtime system introduced in [88] to dynamically manage resource alloca-

tions. The runtime system, called themulticore streaming layer (MSL), supports loading

and unloading of computation (e.g., streaming actors) on different cores, allocating local

and global buffers, and managing DMA transfers for orchestrating communication. The

MSL also consists of a set of commands that the online adaptation system can use to mi-

grate from one schedule to another by moving computation between cores, allocating new

123



buffers in different regions of local or global memory, and so on.

In our implementation of the MSL, the master processor generates the commands that

are necessary for adapting an extant schedule. These commands are sent to the slave pro-

cessors through memory mapped registers called mailboxes.Each slave processor runs a

very light-weight manager that is able to receive the commands from its input mailbox,

decode the instructions, and act on them. Based on the commands, the slave processors

can allocate buffers in their local stores, setup DMA transfers and run code for a desired

duration. The overhead of delivering the commands varies according to the size of the

command and the latency of mailbox transfers. The results that are presented in this chap-

ter show that we achieve a very low overhead when adapting to resource changes. This

work does not detail the design of the command system. The interested reader is referred

to [88] and [46].

6.3 Compiler Framework

This section describes our method for scheduling a stream graph onto a heterogeneous

streaming multicore system. The objective is to obtain a maximal throughput adaptive

modulo schedule of the stream graph, taking computation/communication overheads and

memory requirements into account. The structure of the Flextream compilation framework

is shown in Figure 6.2. The compilation is divided into two separate phases, static compi-

lation and online(dynamic) adaptation. In the next two sections, the details of the static and

online phases are discussed.

Before talking about details of the compilation steps, it isimportant to understand how

an application compiled by Flextream behaves at runtime in the face of dynamic resource

124



Figure 6.2: General flow of the Flextream framework

changes. Figure 6.3 shows an example runtime scenario. At each point during the execu-

tion, only one schedule is active. Execution starts withschedule1. If some of the currently-

used resources become unavailable or new resources become free, an online reschedule

becomes necessary. The new schedule is marked byschedule2 in the figure. The process

of migrating fromschedule1 to schedule2 consists of three main parts. First, the online

adaptation phase has to generate the new schedule and the necessary MSL commands using

the solution found by static phase. Second, the current schedule has to be stopped(drained).

The latency of this case is directly related to the number of stages in the module schedule

and the work of the maximally loaded processor. Third, the generated commands have to

be sent to the active processors. In the experiments section, the overhead of each of these

phases and also the performance of a full runtime scenario are discussed.

125



Figure 6.3: Overall execution flow at runtime in the case of resource changes.

6.3.1 Static Compilation

The static phase’s goal is to find an optimal schedule for a virtualized member of a

family of streaming multicore processors while considering bandwidth, storage and the

processing capabilities of the system. This phase consistsof two major sub-phases shown

in Figure 6.2. First, a prepass replication is performed on the stream graph to adjust the

amount of parallelism for the target system by replicating actors. Second, an ILP formu-

lation is used to optimally partition the work between the slave cores of the target system.

The virtualized system used in this phase is generally the most powerful processor of a

streaming multicore family. For example, if a streaming application should be compiled

for the IBM cell processor family with 4, 8, or 16 processors with local store size of 128KB

or 256KB, the 16 processor version with 256KB is chosen as thevirtualized system. Se-

lecting the virtualized system in this manner, increases the freedom of the next phases to

find a high quality schedule in case the program is ported to another configuration with a

more limited set of resources or the availability of the resources changes at runtime.

Compared to [49], Flextream’s static phase takes a different approach toward static

modulo scheduling. The static phase consists of a separate step to perform replication in-

stead of integrating it with the ILP formulation. This greatly improves the scalability of the

126



ILP formulation and enables the inclusion of other crucial constraints about memory allo-

cation and data transfer overheads. Ignoring these factorscan have a significant negative

impact on the runtime performance in systems with low-bandwidth interconnects.

6.3.1.1 Prepass Replication

Figure 6.4 shows the theoretical speedup possible for a set of unmodified stream pro-

grams for 2 to 64 processors. The actors present in the programmer-conceived stream graph

are assigned to processors in an optimal fashion such that the maximal load (work) on any

processor is minimized. Speedup is calculated by dividing the single processor runtime by

the load on the maximally loaded processor. The programmer-conceived stream graph has

ample parallelism that can be exploited on up to 8 processors. Beyond 8 processors, the

speedup begins to level off.

Figure 6.4: Theoretical speedup in the absence of replication.

Most benchmarks just do not have enough actors to span all processors. For example,

fft has only17 actors in its stream graph, therefore no speedup is possiblebeyond 17

processors. Another reason for the speedup limitation is that work is not evenly distributed

127



across the actors. Even though the computation has been split into multiple actors, the

programmer has no accurate idea how long an actor’s work function will take to execute on

a processor when coding the function. This leads to less scaling on 16 or more processors.

(a) (b)

Figure 6.5: This figure shows an example stream graph and how replicationis performed. Part (a)
shows the original graph and the version after replication.In part (b), the partitions before and
after replication are shown.

Most of the stream benchmarks are completely stateless, i.e., all actors are data par-

allel [25]. In fact, onlympeg2 has actors that are stateful. Data parallel actors can be

replicated any number of times without changing the meaningof the program. Replicating

data parallel actors not only allows work to span more processors, it also allows work to be

evenly distributed across processors by making the largestindivisible unit of work smaller.

To provide the next phases of the compilation flow with ample opportunity to efficiently

utilize the target system’s capabilities, a prepass replication is performed on the stream

graph. Algorithm 2 shows the general steps of this phase. Themain task is to heuristically

128



replicate larger actors based on an estimate of the optimal work partitioning of the current

graph. Maximally replicating the larger actors may not always result in the best solution

for the next phase. Excessive replication of actors is always discouraged, because that

increases split/join overhead and overall code size. Therefore, graph partitioning on the

original stream graph is used to estimate the solution of thework partitioning phase. The

number of requested partitions is set to the number of processors in the virtualized target

processor.

Graph partitioning is fairly fast and produces a reasonableestimate of the optimal work

distribution of the stream graph for the virtualized targetsystem without considering low-

level constraints such as memory size, interconnect bandwidth, etc.. Each resulting parti-

tion corresponds to one of the cores in the multicore system.This solution approximately

reflects the quality of the optimal solution if the current stream graph is used. Next, the

replication algorithm tries to balance the partitions by replicating the largest actor in the

partition with the maximum amount of work and moving the new replicas to the parti-

tion with minimum work. This process is repeated until the ratio between the maximum

workload and minimum workload is less than the balance factor specified as an input to

the algorithm or no more replication is possible. The while loop in Algorithm 2 performs

the partition balancing task. Lines 8-10 check the degree ofimbalance between partitions.

Lines 14-16 determine how many replicas of the actor selected from the largest partition

should be created.

An example of the prepass replication algorithm is shown in Figure 6.5. In this exam-

ple, the virtualized target system has 8 cores. The originalgraph, shown in the left part of

Figure 6.5a, has only 6 nodes and clearly will not efficientlyuse all 8 cores. The replica-

129



Algorithm 2 Prepass Replication Algorithm

Input: G:(V, E), #virtualProcessors, balanceFactor
1 partitions← PartitionGraph(G, #virtualProcessors);
2 while true do
3 SortPartitionsByWeight(partitions);

{ Find partitions with max and min weights.}
4 repeat
5 maxPartition← NextMaxWeightPartition(partitions);
6 until maxPartitionhas a dividable node
7 minPartition← MinPartitionWeight(partitions);

{ Check the overall balance of the partitions.}
8 if (Weight(maxPartition) < Weight( minPartition) ∗ balanceFactor) then
9 Finish;

10 end if

{Find an actor in the max partition that can be replicated.}
11 repeat
12 actor← NextLargestFilter(maxPartition);
13 until (actor can be replicated)

{ Find out how many times the actor should be replicated.}
14 replicationFactor← Work(actor) / (Weight(maxPartition) - Weight(minPartition));
15 replicationFactor← Max(replicationFactor, 2);
16 newFilters[ ]← Split(actor, replicationFactor);

{Modify the min and max partitions.}
17 AddTo(minPartition, newFilters[1]);
18 RemoveFrom(maxPartition, actor);
19 AddTo(maxPartition, newFilters[2..replicationFactor]);
20 end while

130



tion algorithm performs an initial graph partitioning on this stream graph and then tries to

replicate nodes and balance the partitions. Thebalance factorfor this example is set to 1.5.

Figure 6.5b shows the partitions before and after replication. At the end, the ratio between

maximum weight (P1) and minimum wight (P2) is 1.3. The modified graph is illustrated in

the right part of Figure 6.5a.

6.3.1.2 Work Partitioning

Consider a dataflow graphG = (V,E) corresponding to a stream program. Let|V | =

N be the number of actors. Let the basic repetition vector ber, whereri specifies the num-

ber of timesvi is executed in the steady state. The rest of the section assumesri executions

of vi as the basic schedulable unit. GivenP processors, a software pipeline needs some as-

signment of the actors and data transfer operations to the processors. The throughput of the

software pipeline is determined by the load on the maximallyloaded processor. For each

actor and DMA transfer in the stream graph, the following ILPformulation finds a valid as-

signment based on the computational power of processors, bandwidth of the interconnect,

and amount of on-chip memory.

In the formulation, maximization of throughput is the main objective. We borrow the

terminology from operation centric modulo scheduling usedin compiler backends, and

use the term Initiation Interval (II) to denote the inverse of the throughput. A set of 0-1

integer variables is introduced to find the processor assignment for actors and data transfer

operations. These variable are explained below:

• aij = {0, 1}: Indicates if actor i is running on processor j

131



• bi1i2j = {0, 1} : This variable will be 1 if connected actors (producer-consumer) i1

andi2 are both assigned to processor j

Assuming that there aren actors in the stream graph andm processors in the target

system,i is between0 and(n − 1) andj is between0 and(m − 1). A set of constraints

are designed to find a valid actor and DMA assignment under memory, bandwidth and

performance characteristics of the target system. The following constraint ensures that

each actor is assigned to exactly one processor.

P∑

j=0

aij = 1, ∀i (6.1)

The bi1i2j indicator variables serve two purposes. First, they are necessary to ensure

that a DMA transfer is not introduced between two connected actors if they are on the same

processor. Second, theb variables help in buffer allocation constraints because the size of

the buffers between a pair of connected actors varies based on when they start execution

and whether they are on the same processor. The following inequalities are used for setting

theb variables.

bi1i2j ≤ ai1j ∀ connected actor pairsi1,i2 (6.2)

bi1i2j ≤ ai2j ∀ connected actor pairsi1,i2

bi1i2j ≥ ai2j + ai1j − 1 ∀ connected actor pairsi1,i2

The throughput is decided based on the workload of the maximally loaded processor

which is the maximum of the computation workload and the datatransfer workload across

132



all processors. In the schedule, it is always assumed that the DMA transfer between a pair

of connected actors is located on the processor on which the destination actor is running.

The following two inequalities denote the relation betweenII and the workload of each

processor.

N∑

i=0

(aij ×Wi) ≤ II ∀j (6.3)

|E|∑

(i1 i2)

((ai2j − bi1i2j)×Di1i2) ≤ II ∀j (6.4)

Wi in Equation 6.3 indicates the work estimate of actori on processorj. Di1i2 show the

data transfer cost between a pair of connected actorsi1 andi2. Equation 6.4 usesbi1i2 to

ensure that a DMA transfer between actors is only added if they are assigned to different

processors.

As it will be discussed later, the amount buffering between two connected actors de-

pends on both where they are running and what stage they are in. Since stage assignment

is a phase of the online adaptation layer, the ILP formulation can only have an estimate

of the actual memory consumption of the current mapping. To obtain this estimate, it is

assumed that two connected actors will be in consecutive stages if they are not on the same

processor; otherwise, they are in the same stage. Based on the results of the stage assign-

ment phase, this is a practical overestimate of the actual buffer usage. The following set of

inequalities is added to the formation for the purpose of buffer allocation.

|E|∑

(i1,i2)

[(2ai1j + 2ai2j − 3bi1i2j)×Buff(i1, i2)] ≤Memj , ∀j (6.5)

For each pair of connected actorsi1 andi2 and a processorj, there are four possible values

133



for ai1j andai2j . In each of these cases, the amount of necessary buffering differs. Equa-

tion 6.5 is an estimate of the actual memory requirement. Sections 6.3.2.2 and 6.3.2.3 talks

about the mechanics of buffer allocation at runtime in more detail.

Figure 6.6a illustrates the result of the ILP-based work partitioning on the graph shown

in Figure 6.5a. Since the cores in our system are able to perform DMAs and run computa-

tion at the same time, the workload of each processor would bethe maximum of the com-

putation and data transfer workloads. The II of this system is determined by the maximally

loaded processor, P0. Comparing the achieved II of 184 with the single core performance

of the graph (sum of all the weights in the original graph) reveals that a 6.8x speedup is

achieved on 8 cores.

6.3.2 Online Adaptation

After static compilation is performed, the generated code can be efficiently executed

on a system that matches the virtual specification used during the static compilation. As

mentioned before, due to the desire for porting software within members of a streaming

multicore family and also for efficiently tolerating resource availability changes at runtime,

online adaptation is crucial for software developers. In this section, we talk about various

phases of the light-weight online adaptation layer in the Flextream framework.

Online adaptation, is mainly designed to perform light-weight adaptation of modulo

scheduling solutions at runtime for the current active configuration. As shown in Figure 6.2,

this part consists of three main steps,Partition Refinement, Stage Assignment, andBuffer

Allocation. The first step tries to change the mapping of actors to processors based on the

number of available processors to rebalance work assignment and memory consumption

134



Algorithm 3 Algorithm for Partition Refinement

Input: processorMap(processor:actor[]), #physicalProcessors
Output: newProcessorMap
{Assign one workload from the current processor map to each physical processor}

1 SortByNumberOfFiltersAscending(processorMap)
2 for i ← 1 to #physicalProcessorsdo
3 (processor:actor[])← RemoveNextPair(processorMap);
4 AddTo(newProcessorMap, (processor:actor[]));
5 end for

{Prioritize the remaining actors and the chosen processor workloads}
6 remainingFilters← AllFiltersIn(processorMap);
7 SortFiltersByWeightAscending(remainingFilters);
8 SortByWorkAssignmentDescending(newProcessorMap);

{Distribute the remaining actors between the chosen processor workloads}
9 weightThreshold← TotalRemainingWeight(remainingFilters) / #physicalProcessors;

10 repeat
11 actor← RemoveNextFilter(remainingFilters);
12 currentWeight← Weight(actor);
13 AddTo(currentList, actor);
14 if (currentWeight> weightThreshold) then
15 processor← NextPhysicalProcessor(newProcessorMap);
16 AddTo(newProcessorMap, processor:currentList);
17 Clear(currentList);
18 currentWeight← 0;
19 end if
20 until remainingFiltersis not empty

135



on each core. The solution specifies how actor executions areoverlapped across processors

(in space). The stage assignment step determines how the executions are overlapped in

time by specifying the starting order of the actors and DMAs.The last step of the online

adaptation, buffer allocation, tries to efficiently fit the buffers in the available storage units.

6.3.2.1 Partition Refinement

The virtual multicore system used in static compilation is always a superset of the actual

physical system meaning that it has more cores, more memory,etc.. Therefore, the runtime

configuration, which Flextream has to target, will always have more limited resources.

Partition refinement is a general step that, at runtime, tunes the actor-processor mapping

to the real configuration of the system. The algorithm discussed here for performing the

refinement concentrates only on the computation workload ofeach core in a streaming

multicore system, but the heuristics can be extended to account for memory and bandwidth.

Assume that the virtualized system hadn slave cores (number of virtual cores) and the

real system hasm cores (number of physical cores).m is less thann because the real

system is a less powerful member of the multicore family or some of the cores in system

with n cores have to be used to perform more critical tasks. The mainobjective here is to

reassign the actors tom cores with low overhead at runtime.

As shown in Algorithm 3, the general idea is to choosem processor assignments from

the originaln assignments created by the static phase. Then, take all the actors in the(n−

m) remaining partitions and try to evenly distribute them between the chosenm partitions.

Since solving this problem based on another ILP formulationor graph partitioning will

have significant overhead at runtime, a heuristic-based approach is taken.

136



In the algorithm, lines 1-5 choose them work assignments with the least number of ac-

tors from the originaln. The reason the assignments with least number of actors are chosen

first is to increase the freedom of the second phase of the algorithm to evenly distribute the

remaining actors. Then, in lines 6-8, the remaining actors and them chosen assignments

are prioritized. The remaining actors are all put in one listand sorted by work estimate

(weight) in ascending order. The chosen assignments are sorted based on the total weight

of each assignment in descending order. Line 9 calculates, in the ideal situation, what frac-

tion of the remaining actors will go to each of the chosen assignments. Lines 10-20 walk

through the remaining actors(sorted by ascending weight) and assigns them to the currently

chosen processors(sorted by descending weight) based on the weight threshold calculated

in line 9.

Figure 6.6b shows the refinement solution for the example in Figure 6.5a when the

number of cores is reduced from eight to five. In this figure, the five processors are the

processors that are chosen from the original work assignment shown in Figure 6.6a. The

highlighted nodes denote the nodes that were originally assigned to these processors. The

rest of the nodes are mapped to these processors as a result ofthe refinement pass. The text

above each processor shows the name of the processor in the original work assignment,

and the computation workload followed by the data transfer workload. In the new work

assignment, the II is 289 determined by P3. The optimal static solution for the 5-core

problem will have II of 283 which is about 3% faster than the solution shown here.

Although the algorithm in this section ignores memory requirements, it is sufficient to

modify the heuristics used here to consider memory requirements of the assignments. Pri-

oritization of the remaining nodes after the initial selection can be done based on an affinity

137



(a)

(b)

Figure 6.6: Part (a) shows the solution of the work partitioning onto 8 cores for the example shown
in Figure 6.5a. Part (b) illustrates the solution of the partition refinement if number of cores changes
to 5. The actors shaded in black exist in the related processors in the original solution(a) as well as
final solution(b).

function that estimates the extra necessary memory if a nodeis added to a chosen processor.

This type of priority function helps to keep the memory usageof each assignment under

control.

6.3.2.2 Stage Assignment

The processor assignment obtained by the method described in the previous section

provides only partial information for a software pipeline.Namely, it specifies how actor

executions are overlapped across processors, but it does not specify how they are over-

lapped in time. The only goal of the processor assignment step is to load balance, therefore

138



it assigns actors to different processors without taking any data precedence constraints into

consideration. An actor assigned to a processor could have its producer assigned to a dif-

ferent processor, and have its consumer assigned to yet another processor. To honor data

dependence constraints and still realize the throughput obtained from processor assign-

ment, the actor executions corresponding to a single iteration of the entire stream graph

are grouped intostages. Within a single processor, no stages areactiveat the beginning

of execution. During the initial few iterations, stages areactivated sequentially, thus filling

up the pipeline and enabling executions of data dependent actors belonging to earlier itera-

tions concurrently with actors from later iterations. In steady state, all stages are active on a

processor, thus realizing the throughput obtained from processor assignment. The pipeline

is drained by deactivating stages during the final few iterations.

Algorithm 4 Actor Stage Assignment Algorithm

Input: G:(V, E), processorMap(processor:actor[])
Output: actorStageMap(actor:int)

1 for all (actorf1 in G in topological order)do
2 maxStage← 0; flag← false;
3 for all actorf2 in parentsf1 do
4 if (Stage(actorStageMap, f2)≥maxStage) then
5 maxStage← Stage(actorStageMap, f2);
6 if (Processor(processorMap,f1) != Processor(processorMap,f2)) then
7 flag← true;
8 end if
9 end if

10 end for
11 if (flag) then
12 stage←maxStage+ 2;
13 else
14 stage←maxStage;
15 end if
16 AddTo(actorStageMap, f1:stage)
17 end for

The main goal of the stage assignment step is to overlap all data communication (DMAs)

139



(a) (b)

Figure 6.7: The example shown in 6.5a after stage assignment is illustrated in part (a). The num-
ber in the gray boxes show the stage number of the actors marked by the dashed lines. Part (b)
demonstrates the execution of the first 6 stages of the schedule found by Flextream.

between actors. To achieve this, the stage assignment step considers the DMAs as schedu-

lable units. To honor data dependences and ensure DMAs can beoverlapped with actor

executions, certain properties are enforced on the stage numbers of actors. Consider a

stream graphG = (V,E). The stage to which an actori is assigned is denoted bySi. In

addition, the processor to whichi is assigned is denoted bypi. The following rules enforce

data dependence and ensure DMA overlap.

• (i1, i2) ∈ E ⇒ Si2 ≥ Si1 , i.e., the stage number of a consuming actor should come

after the producing actor. This is to preserve data dependence.

• If (i1, i2) ∈ E andpi1 6= pi2 , then a DMA operation has to be performed to transfer

the data frompi1 to pi2 . The DMA operation is given a separate stage numberSDMA.

140



The inequalitySi1 < SDMA < Si2 is enforced between the stages of the different ac-

tors and the DMA operation. The DMA operation is separated from the producer by

at least one stage, and similarly, the consumer is separatedfrom the DMA operation

by one stage. This ensures decoupling, and allows the overlap of the producer and

the DMA, as well as the DMA and the consumer.

As shown in Algorithm 4, a topological traversal of the stream graph is necessary to

assign stages to actors. For each actor, the maximum stage ofits parents is found and a

flag is set if the parent with maximum stage is not on the same processor as the actor. This

part of the algorithm is done in lines 3-10. For each actor, ifthe parent with maximum

stage number is on a different processor, there will be a two stage gap between the parent

and the child. Otherwise the child actor can be placed in the same stage as the parent

with maximum stage (lines 11-16). The result of the stage assignment is illustrated in

Figure 6.7a. There are total of 18 stages in this schedule. One interesting point in this

figure is that actorsD0 andD1 are not in the same stage. This is becauseD1 is located

on the same processor asS1. This figure does not show the stages for DMA operations

for the sake of figure readability. Figure 6.7b shows how the schedule runs based on the

work assignment and stage assignment. In this figure, DMAs are shown as shaded boxes.

This figure demonstrates how stage assignment specifies the ordering between actors in

time and work partitioning (and partition refinement) determines actor-to-processor (space)

assignment.

141



(a) (b) (c)

Figure 6.8: Different approaches to buffer allocation for a producer-consumer pair is demonstrated
in this figure. In (a), the original arrangement of buffers before performing buffer allocation is
shown. In parts (b) and (c), two approaches that Flextream could take and their effects on the
overall schedule and memory consumption is illustrated.

6.3.2.3 Buffer Allocation

Buffer allocation tries to efficiently fit the storage requirements of the schedule, found

by the previous phases, into the available memory units. In the software pipelined schedule,

connected actors communicate through a set of buffers. The number of necessary buffers

for a producer-consumer pair varies depending on the time they start (stage mapping). In

this section, the set of buffers between a producer-consumer pair is called abuffer group.

Based on its stage number, a producer actor could be executedmultiple times before one

of its consumers is ever executed. The number of buffers in a buffer group needed to store

the output of a producer (actor or DMA operation) assigned tostageSp feeding a con-

sumer(actor to DMA operation) on stageSc can be calculated asSc−Sp+1. For example,

in Figure 6.7b, the number of buffers necessary between actor S0 and DMA operation

S0-C1 is 2 because they are in stages 4 and 5, respectively. All the phases before buffer al-

location assume that the buffers between a producer actor and a DMA operation are stored

in the local memoryof the processor on which the producer is running. Symmetrically, the

142



Algorithm 5 Buffer Allocation Algorithm

Input: procMap(processor:actor[]), stageMap(actor:int)
{Compute memory usage per local store based on work and stage assignment}

1 memoryUsage[processor:long]← Update(procMap, stageMap);

{Find the processors that their local store needs spilling}
2 (victimProcs[], nonVictimProcs[])← FindVictims(memoryUsage);
3 SortByWorkLoadDescending(victimProcs);

{Find victim buffers}
4 for all Processorp in victimProcsdo
5 savings= 0;
6 BufferGroupbuffs[] = BufferGroups(p);
7 SortBySpillSizeDescending(buffs);
8 for all BufferGroupbg in buffsdo
9 savings← savings+ SpillSize(bg);

10 if (memoryUsage[p] - savings¡ LocalStoreSize(p)) then
11 break;
12 end if
13 add(victimBuffers, bg);
14 end for
15 end for

{Find target location for the victim buffers and fix the schedule}
16 for all BufferGroupbg in victimBuffersdo
17 target= findTarget(bg, memoryUsage, nonVictimProcs);
18 MoveBufferTo(bg, target);
19 newDMA[] = CreatNewDMA(bg);
20 UpdateStageMap(newDMA);
21 Update(memoryUsage);
22 end for

buffers between a DMA operation and a consuming actor are stored on the local store of

the consuming processor.

In the work partitioning, partition refinement and stage assignment, it is assumed that

all the buffer groups will fit in the local stores of the cores on which the corresponding

actors are running. Therefore all the DMAs are from local store to local store. In some

situations, based on the stage map and amount of buffering that is needed between a pair of

143



actors, the local store may not be large enough to fit all the buffers. In those cases, in order

to have a schedule that can actually run on the target system,some of the buffer groups

have to be spilled to other local stores that have empty spaceor main memory. Spilling

buffer groups will result in changes in the schedule. Basically, after moving a buffer group

to another storage unit, new DMAs have to be added to the schedule. These DMAs are

needed to ship the data between the local store of the processors on which the related actor

is running and the new memory unit. The addition of the DMAs can increase the workload

of the processors resulting in an increase of II. Since the cost of a DMA to and from main

memory is significantly higher than the cost of a transfer between local stores, it is desirable

to first exploit the free space in the local stores before utilizing the main memory.

The buffer allocation algorithm is shown in Algorithm 5. First, the memory usage of the

current schedule is calculated based on the processor and stage assignments (Line 1). Then,

the list of victim (overcommitted) processors is formed. This list contains all processors

that exceed the size of their local stores (Line 2) and is sorted in descending order by the

amount of work that is assigned to each processor (Line 3). The victim processors are

given the chance to make use of other local stores with priority given to processors with

more work. It is more beneficial to spill the buffers into the processors with more work

first, because these spilled buffers are more likely to fit in other processors’ local stores,

resulting in less DMA overhead. Then, in lines 4 to 15, the list of buffer groups that do not

fit in the corresponding local stores is extracted. This parttries to spill as few buffer groups

as possible (by spilling the largest ones first) to reduce theoverhead of DMA transfers.

At the end(lines 16-22), the algorithm goes through the selected buffer groups and tries to

move them to other local stores first and then main memory. After finding the target (local

144



store, main memory), for each spilled buffer group, new DMAsare added to the schedule

and the current stage assignment is updated.

The function,UpdateStageMap, in line 20 of Algorithm 5 can take two different ap-

proaches for updating the stage assignment and adding the new DMAs. These approaches

are illustrated in Figure 6.8. The first part of the figure shows the stage and processor as-

signment for a pair of actors. ActorsA andB are mappedP1 andP2 and start at stages

0 and 5. A DMA located onP2 in stage 3 transfers data betweenA andB. The buffer

groups and their placement before running the buffer allocation are shown in Figure 6.8a.

Assume that out of the 4 buffers in buffer group 1 (BG1), 2 will not fit in P1’s local store.

P3 is a candidate for spilling in this buffer group. In Figure 6.8b, the first possible solution

to buffer allocation is shown. In this case, the buffer groupis moved toP3’s local store and

a new DMA is added toP1 in stage 0. The original DMA betweenP1 andP2 is modified

to read fromP3’s local store. The number of buffers onP1’s local store is reduced to 1.

Since the new DMA (betweenP1 andP3) is in stage 0 and there is only 1 buffer between

this DMA andA, the DMA has to run sequentially afterA is done, increasing the workload

of P1. The second approach, shown in Figure 6.8c, tries to place the new DMA (between

P1 andP3) 2 stage afterA’s stage (1 in this example). In this case, the number of buffers

needed inP3 decreases to 3, but 1 more buffer from buffer group 1 remains in P1’s local

store. The benefit of this approach is that the new DMA can be executed in parallel with

A, eliminating the possibility of increasing the workload ofP1. Each of these approaches

has its own benefit(memory usage vs. performance) and the buffer allocation algorithm

chooses between them based on the size of the local stores andworkload of each victim

processor.

145



6.4 Experiments

We evaluated Flextream using a heterogeneous multicore simulator that we have built.

We also leveraged the StreamIt compiler as a starting point for implementing our heuristics

and used Metis [47] for graph partitioning. For the evaluation and results, we simulated a

multicore system with 32 slave cores and one master core. Themaster core is similar to a

PowerPC processor running at 2GHZ with a 32KB L1 and a 1MB L2 cache. Each slave

core includes a local store for instructions and data, and a memory flow control (MFC) unit

that performs DMA operations to and from the local stores independent of the slave cores.

Performance Comparison: We first compare the performance achieved using Flex-

tream to that achieved using online whole-program graph partitioning. The graph parti-

tioner uses the work estimate of the actors as the node weights, and the communication

costs as the edge weights. We perform prepass replication for both approaches. In this

experiment, we measure the performance degradation causedby either strategy, compared

to the optimal schedule. We use benchmarks drawn from the StreamIt benchmark suite.

Each benchmark is run 31 times, and in each run1 < i ≤ 32, the total number of proces-

sors starts at 32 cores, and is subsequently reduced to a smaller number of cores equal to

i. The average slowdown per benchmark is shown in Figure 6.9. Flextream is 9% worse

than then the performance achieved using an optimal schedule, but 8% better than applying

graph partitioning at runtime. The main reason for Flextream’s performance edge is that

Flextream leverages the optimal scheduling solution foundby the static compilation phase.

Figure 6.10 compares the average time that Flextream’s partition refinement step needs

to generate a new processor mapping to the time taken by the graph partitioning approach.

146



Figure 6.9: This graph shows performance degradation when online adaptation is carried out using
two different strategies.

On average, Flextream’s approach is 50%(3ms) faster than the graph partitioning approach.

The results suggest that Flextream is a superior strategy torepartitioning, considering that

the scheduling solutions are derived faster and yield better performance. It is also worthy

to note that the runtime overheads are likely to be very high in the absence of good starting

solutions. The combination of static compilation (ILP and prepass fission) and dynamic

adaptation is an attractive combination that combines the benefits of static and dynamic

paradigms.

Figure 6.10: This graph illustrates the amount of time Flextream’s partition refinement takes and
compares it with the graph partitioning approach.

Overhead: We measured the overhead associated with each Flextream phase. Fig-

147



ure 6.11 illustrates the relative and absolute values of thetimes taken by each phase. We

exclude from this graph the time taken to perform work partitioning since it can take sev-

eral minutes for the work partitioning to find a valid ILP solution. Each of the bars in

the figure include a label that represents the absolute time (in milliseconds) taken by that

phase. The prepass replication requires 1283ms and is significantly longer than the time

taken by the other 3onlinephases (notice that the Y-axis starts at 90%). Among the online

phases, stage assignment is the longest, followed by bufferallocation and work refinement.

Most of the overhead for stage assignment is due to the topological traversal of the graph.

The results indicate that the time spent in prepass replication is proportional to the size of

the application (graph). Overall, this experiment supports the hypothesis that performing

online adaptation using Flextream is an efficient endeavor.

Figure 6.11: Flextream overhead categorized by phases. Each bar has 4 parts, showing the relative
(Y-axis) and absolute (labels within the bars) times spent in each of the static and online phases.
Note that the Y-axis starts at 90%.

Buffer Allocation: Buffer allocation is the last Flextream phase. This step canlead to

new DMA requests and can increase the processor workloads. Buffer allocation attempts

148



to maximize the use of the local store in order to avoid the long latencies associated with

accessing main memory. The graph in Figure 6.12 shows how this optimization impacts

overall performance. For this experiment the number of processors is changed at runtime

from 32 cores to 8. We gradually decrease the size of the localstore, starting atMax

Mem which is large enough to ensure that no spilling occurs. Thisexperiment shows the

effectiveness of the buffer allocation algorithm in using local stores. As expected, the

performance degrades when the size of the local store is reduced. The buffer allocator uses

the local stores until it exhausts their capacity, at which point it has only one recourse, and

that is to use main memory. For some benchmarks, reducing thelocal store capacity has

negligible impact (e.g.,mpeg2) because new DMA requests are added to the processors

that have less work according to the original schedule (before buffer allocation). In other

words, the overhead of the new DMA operations do not increasethe size of the maximum

workload.

A Full Runtime Scenario: We also carried out an experiment to demonstrate how

Flextream might perform in a real scenario where resource availability changes multiple

times at runtime. Each time the the number of available coreschanges, a new schedule is

generated using the online adaptation mechanism. The extant schedule is drained and the

new schedule is communicated to the slave processors using the multicore stream layer (see

section 6.2.2). The adaptation overhead therefore is the sum of the time taken by each of

these steps. Among all of the benchmarks, the maximum overhead for sending commands

is 11 micro seconds. This assumes the overhead for sending each command is 20 cycles.

149



Figure 6.12: Effect of buffer allocation on benchmark throughput. For each benchmark, the amount
of memory is increased from a minimum to a maximum capacity. Throughput is recorded for 6
uniformly distributed memory sizes per benchmark.

Drain(ms) Adaptation(ms) 1K sec-Flextream 1K sec-Static
bitonic sort 6.14 89.42 350M 356M

dct 0.79 42.80 380 M 452 M
des 32.39 113.80 148 M 150 M
fft 2.37 142.95 222 M 230 M

filter bank 0.44 142.95 448 M 490 M
fm 2.16 65.71 133 M 143 M

matrix mult. 3.07 37.19 62 M 71 M
mpeg2 4619 43 156 K 177 K
serpent 81.11 79.09 52 M 54 M

tde 780 66.08 1.2 M 1.3 M

Table 6.1: Performance comparison between Flextream and optimal for aruntime scenario in
which number of cores varies in this order: 32, 16, 10, 6. Eachconfiguration runs for 250 seconds.

Table 6.1 compares the performance of our approach with the theoretical optimal in a

scenario where the number of available cores at runtime changes from 32 to 16, then to 10,

and finally to 6. We assume each configuration runs for 250 seconds, for a total processing

time of 1000 seconds. The theoretical optimal solution, foreach runtime configuration,

uses a schedule found by the static phase. The first column shows the total time needed to

drain the schedules. The overhead of the online adaptation is shown in the second column.

The last two columns show how many iterations of each stream graph can be executed

150



using Flextream versus the optimal approaches. The largestdifference between the last

two columns occurs indct which loses 16% of its throughput when using Flextream.

The best performing benchmarks arebitonic sort andserpent, losing only 3% of

their throughput compared to optimal. Overall, these results imply that solutions found by

Flextream, in real execution scenarios, can perform close to theoretical optimal solutions.

6.5 Related Work

There is a large body of literature that deals with exploiting parallelism in streaming

codes for better performance. The most recent and relevant works include compilation of

new streaming languages such as StreamIt, Brook, StreamC/KernelC, and Cg to multicores

or data-parallel architectures. For example, Gordon et al.[26] and [25] perform stream

graph refinements to statically determine the best mapping of a StreamIt program to a mul-

ticore similar to the one we consider in this chapter. Kudlurand Mahlke apply modulo

scheduling to an unrefined stream graph to maximize throughput [49]. Liao et al. apply

classic affine partitioning techniques to exploit properties of stream operators [83]. There is

also a rich history of scheduling and resource allocation techniques developed in Ptolemy

that make fundamental contributions to stream-scheduling(e.g., [68, 30]). Flextream is

unique relative to these past contributions in its ability to dynamically adapt a static sched-

ule and resource allocation to changes in available resource at runtime. Viewed in this way,

Flextream is complimentary to some static scheduling techniques, and can be applied more

generally as long as we can extract a graph-representation of the streaming computation.

In contrast to static compilation techniques, there are also many existing ideas related to

compilation for multicores. In [27], the authors dynamically map an abstract representation

151



of a stream program [50] to threads that can execute in parallel on a general purpose mul-

tiprocessor. In CellSs [8], computation is expressed as functions that may be composed to

form a dataflow graph. A runtime scheduler treats this graph in the same way a superscalar

processor treats operations, and schedules these functions onto the Cell cores as soon as

their inputs are ready. In [11], the authors describe an application-specific parallelization

strategy that they applied manually. They were able to target for various configurations of

the Cell architecture, which varied the number of cores in each configuration. Our work

is distinctly different from these works in that we use a static compile-time schedule to

automatically perform dynamic optimizations that lead to new and efficient resource allo-

cations.

Adaptive compilation to a virtualized system is not an entirely new idea. Recent ex-

amples include Veal [18] and Liquid SIMD [17]. The authors inthese works take similar

approaches to the one in this work but in very different domains than the one we address in

this work. In [18], adaptive loop modulo scheduling is performed for a virtualized loop ac-

celerator system. The authors in [17] propose hybrid compilation techniques for mapping

a vectorizable program to SIMD engines that have different vector lengths.

6.6 Summary

In this work, we focus on the increasingly important area of streaming computing and

introduce Flextream as a flexible compilation framework that can dynamically adapt appli-

cations to the changing characteristics of the underlying architecture. This is an important

contribution as software developers grapple with the details of parallelism in a rapidly

changing architecture landscape. The main innovation in Flextream is an adaptive stream

152



graph modulo scheduling algorithm that combines the benefits of static scheduling with

the advantages of dynamic adaptation. Our results indicatethat Flextream’s approach can

achieve high-performance resource allocations that are within an average of 9% compared

the optimal solutions with low overhead.

153



CHAPTER VII

Conclusion and Future Directions

With the end of frequency scaling, industry has moved its focus from sequential single-

cores to parallel architectures. In the face of a limited power budget, homogeneous parallel

systems are not sufficient to meet the performance demands ofvarious future application

domains. As a result, there has been significant emphasis in both academia and indus-

try on heterogeneous parallel architectures. These systems offer a considerable degree of

specialization of the hardware resources based on the mix ofapplications.

Programming heterogeneous systems is more challenging than both single-core and ho-

mogeneous multi-core systems because of the heterogeneityof the available parallelism. In

these systems, a programmer not only needs to worry about extracting parallelism but also

has to worry about the heterogeneity of the components of thesystem and their respec-

tive memory and computation models. Therefore, traditional general purpose sequential

programming models, such as C++ and Java, do not provide the right set of abstractions

necessary to program future heterogeneous systems.

In this work, we focused on utilizing several key componentsof future heterogeneous

systems, such as FPGAs, SIMD engines and GPUs, using the streaming program model.

154



Each of these components provide an efficient way to execute certain classes of applica-

tions. For example, applications with bit-level parallelism, such as encryption, are suitable

for FPGAs. Since each of these platforms have their unique way of programming, we

investigated how streaming paradigm can be used to implement an application once and

target it to all these systems using intelligent compiler optimizations.

We also investigated how to dynamically adapt streaming applications to the availability

of runtime resources. This is an important issue when multiple applications are running on

a heterogeneous systems and they have different resource requirements. It is impossible

to statically prepare for all the possible scenarios that may arise at runtime. Therefore, we

propose a light-weight system to perform dynamic adaptation based on static compilation

results.

As a whole, this dissertation demonstrates how a domain-specific approach, such as

streaming, provides enough high-level information to the static compiler and runtime sys-

tem such that they can tailor each domain-specific application, in this case streaming appli-

cations, to various targets of a heterogeneous system.

Finally, we propose to extend this work in the following directions:

Extending The Streaming Framework: Previous research has shown the benefits

of synchronous dataflow languages as a tool to program multi-core systems. Despite its

benefits, SDFs are not widely adopted by major industry players for several reasons:

• Integration of streaming with other object oriented languages is a an issue that makes

application development using streaming models a complicated task. There will al-

ways be parts of any real-life application that do not fit in the streaming model.

155



Implementing such components in such a model is not only cumbersome but also

results in poor performance and efficiency. Therefore, in order to facilitate the use

of streaming models for real applications, it is necessary to semantically integrate

streaming and imperative programming languages. In a unified language, program-

mers can decide if a part of an application fits in the streaming model supported

by the language or the general purpose features of the objectoriented language are

more suitable. Several new projects have already started inthis direction [39, 7]. We

believe this is a promising approach to enable wider adoption of streaming.

• Another obstacle to wider use of SDFs is their complete static form. SDFs have static

communication rates and also a static graph structure. Although these features enable

more aggressive static compiler optimizations, they limitthe scope of SDFs. There

are already dataflow models that relax some of the constraints that SDFs impose on

the applications such as Cyclo-Static [10] and Parameterizable data flow [9] models.

Building static and dynamic compilation systems around themore relaxed forms of

streaming is another way to extend the applicability of streaming.

Extending The Domain-Specific Approach: This work shows that if an application

can be efficiently implemented using a synchronous data flow model, then the compiler is

able to perform aggressive optimizations to tailor the application for various components

of a heterogeneous systems. The main reason behind this capability is that domain-specific

information, such as communication patterns, is exposed tothe compiler. The domain

knowledge helps the compiler to carry out several domain-specific optimizations that are

impossible for a general purpose compiler to perform. We believe, in order to utilize fu-

156



ture parallel systems, this domain specific approach shouldbe extended to domains other

than streaming. In this way, compilers can perform more aggressive optimizations using

the domain information that is exposed by the programmer. Also, in such a programming

framework, programmers are isolated from the low-level details of the underlying architec-

ture and therefore can write portable applications.

There are two main challenges in extending our approach to other domains:

• The first challenge is to identify what other domains will be widely used in future

applications. Clearly, streaming is not suitable for covering the entire application

domain. Other domain-specific extensions and models are necessary to gain benefits

for parts of the application domain that do not fit in the streaming model. Solving

this challenge requires understanding and collaborating with domain experts about

the future performance requirement in each domain and specifying the domains at

the right granularity.

• The second challenge is to formally formulate each domain asa part of a unified pro-

gramming language. It is impractical to present each domainin a separate language

since an application may consist of parts in different domains and implementing one

application using more than one language is a cumbersome task. Semantically in-

tegrating all the domains in one language is a non-trivial task which requires more

research.

157



BIBLIOGRAPHY

158



BIBLIOGRAPHY

[1] AMD torrenza architecture, 2008. http://enterprise.amd.com/us-en/AMD-

Business/Technology-Home/Torrenza.aspx.

[2] Intel quickassist technology, 2008. http://www.intel.com/technology/platforms/qu-

ickassist/index.htm.

[3] R. Allen and K. Kennedy. Pfc: A program to convert fortranto parallel form. Tech-

nical Report 82-6, Dept. of Math. Sciences., Rice University, Mar. 1982.

[4] R. Allen and K. Kennedy. Automatic translation of fortran programs to vector form.

ACM Transactions on Programming Languages and Systems, 9(4):491–542, 1987.

[5] R. Allen and K. Kennedy. Optimizing compilers for modern architectures: A

dependence-based approach. Morgan Kaufmann Publishers Inc., 2002.

[6] ARM Ltd. ARM Neon, 2009. http://www.arm.com/miscPDFs/6629.pdf.

[7] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah. Lime: a java-compatible and

synthesizable language for heterogeneous architectures.In Proceedings of the OOP-

SLA’10, pages 89–108, 2010.

159



[8] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta. CellSs: a programming model

for the cell be architecture.Proceedings of the 2006 ACM/IEEE conference on Su-

percomputing, 00(1):5, 2006.

[9] B. Bhattacharya, S. S. Bhattacharyya, and S. Member. Parameterized dataflow mod-

eling for dsp systems.IEEE Transactions on Signal Processing, 49:2408–2421, 2001.

[10] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cyclo-static data flow.

IEEE International Conference on Acoustics Speech and Signal Processing, 5:3255–

3258, 1995.

[11] F. Blagojevic, D. S. Nikolopoulos, A. Stamatakis, and C. D. Antonopoulos. Dynamic

multigrain parallelization on the cell broadband engine. In Proc. of the 12th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages

90–100, New York, NY, USA, 2007. ACM Press.

[12] K. Bondalapati et al. DEFACTO: A design environment foradaptive computing tech-

nology. InProc. of the Reconfigurable Architectures Workshop, pages 570–578, Apr.

1999.

[13] I. Buck et al. Brook for GPUs: Stream computing on graphics hardware. ACM

Transactions on Graphics, 23(3):777–786, Aug. 2004.

[14] Celoxica. Handel-C language overview, 1996. http://www.celoxica.com.

[15] J. Chen, Z. Huang, F. Su, J.-K. Peir, J. Ho, and L. Peng. Weak execution ordering - ex-

ploiting iterative methods on many-core gpus. InProc. of the 2010 IEEE Symposium

on Performance Analysis of Systems and Software, pages 154–163, 2010.

160



[16] M. Chen, X. Li, R. Lian, J. Lin, L. Liu, T. Liu, and R. Ju. Shangri-la: Achieving

high performance from compiled network applications whileenabling ease of pro-

gramming. InProc. of the ’05 Conference on Programming Language Design and

Implementation, pages 224–236, June 2005.

[17] N. Clark et al. Liquid SIMD: Abstracting SIMD hardware using lightweight dynamic

mapping. InProc. of the 13th International Symposium on High-Performance Com-

puter Architecture, pages 216–227, 2007.

[18] N. Clark, A. Hormati, and S. Mahlke. VEAL: Virtualized execution accelerator for

loops. InProc. of the 35th Annual International Symposium on Computer Architec-

ture, pages 389–400, June 2008.

[19] C. Consel et al. Spidle: A DSL approach to specifying streaming applications. In

Proc. of the2ndIntl. Conference on Generative Programming and Component Engi-

neering, pages 1–17, 2003.

[20] A. E. Eichenberger, P. Wu, and K. O’Brien. Vectorization for simd architectures with

alignment constraints. InProc. of the ’04 Conference on Programming Language

Design and Implementation, pages 82–93, 2004.

[21] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park, M. Erez,

M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan. Sequoia: programming the memory

hierarchy. InProceedings of the 2006 ACM/IEEE conference on Supercomputing,

page 83, 2006.

[22] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt. Dynamic warp formation and

161



scheduling for efficient GPU control flow. InProc. of the 40th Annual International

Symposium on Microarchitecture, pages 407–420, 2007.

[23] GNU Compiler Collection. Gcc 4.3.2, 2008. http://gcc.gnu.org/gcc-4.3/.

[24] M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski. Stream-oriented FPGA com-

puting in the Streams-C high level language. InProc. of the 8th IEEE Symposium on

Field-Programmable Custom Computing Machines, pages 49–56, Apr. 2000.

[25] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained task, data,

and pipeline parallelism in stream programs. In14th International Conference on

Architectural Support for Programming Languages and Operating Systems, pages

151–162, 2006.

[26] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli,A. A. Lamb, C. Leger,

J. Wong, H. Hoffmann, D. Maze, and S. Amarasinghe. A stream compiler for

communication-exposed architectures. InTenth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, pages 291–

303, Oct. 2002.

[27] J. Gummaraju and M. Rosenblum. Stream programming on general-purpose pro-

cessors. InProc. of the 38th Annual International Symposium on Microarchitecture,

pages 343–354, Washington, DC, USA, 2005. IEEE Computer Society.

[28] Z. Guo, B. Buyukkurt, W. Najjar, and K. Vissers. Optimized generation of data-path

from c codes for fpgas. InProc. of the 2005 Design, Automation and Test in Europe,

pages 112–117, Washington, DC, USA, 2005. IEEE Computer Society.

162



[29] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. SPARK: A high-level synthesis frame-

work for applying parallelizing compiler transformations. In Proc. of the 2003 Inter-

national Conference on VLSI Design, pages 461–466, Jan. 2003.

[30] S. Ha and E. A. Lee. Compile-time scheduling and assignment of data-flow pro-

gram graphs with data-dependent iteration.IEEE Transactions on Computers,

40(11):1225–1238, 1991.

[31] T. Han and T. Abdelrahman. hicuda: High-level gpgpu programming. IEEE Trans-

actions on Parallel and Distributed Systems, (99):1–1, 2010.

[32] J. R. Hauser and J. Wawrzynek. GARP: A MIPS processor with a reconfigurable

coprocessor. InProc. of the 5th IEEE Symposium on Field-Programmable Custom

Computing Machines, pages 12–21, Apr. 1997.

[33] H. P. Hofstee. Power efficient processor design and the Cell processor. InProc. of the

11th International Symposium on High-Performance Computer Architecture, pages

258–262, Feb. 2005.

[34] S. Hong and H. Kim. An analytical model for a gpu architecture with memory-level

and thread-level parallelism awareness. InProc. of the 36th Annual International

Symposium on Computer Architecture, pages 152–163, 2009.

[35] A. Hormati, Y. Choi, M. Kudlur, R. Rabbah, T. Mudge, and S. Mahlke. Flextream:

Adaptive compilation of streaming applications for heterogeneous architectures. In

Proc. of the 18th International Conference on Parallel Architectures and Compilation

Techniques, pages 214–223, 2009.

163



[36] A. Hormati, Y. Choi, M. Woh, M. Kudlur, R. Rabbah, T. Mudge, and S. Mahlke.

Macross: Macro-simdization of streaming applications. In18th International Confer-

ence on Architectural Support for Programming Languages and Operating Systems,

pages 285–296, 2010.

[37] A. Hormati, M. Kudlur, D. Bacon, S. Mahlke, and R. Rabbah. Optimus: Efficient

realization of streaming applications on FPGAs. InProc. of the 2008 International

Conference on Compilers, Architecture, and Synthesis for Embedded Systems, pages

41–50, Oct. 2008.

[38] A. Hormati, M. Samadi, M. Woh, T. Mudge, and S. Mahlke. Sponge: Portable stream

programming on graphics engines. In19th International Conference on Architectural

Support for Programming Languages and Operating Systems, 2011.

[39] S. S. Huang, A. Hormati, D. F. Bacon, and R. Rabbah. Liquid metal: Object-oriented

programming across the hardware/software boundary. Inecoop08, pages 76–103,

2008.

[40] IBM. Cell Broadband Engine Architecture, Mar. 2006.

[41] Impulse-CoDeveloper. http://www.impulsec.com/.

[42] Intel. Intel sse4, 2006. http://download.intel.com/technology/architecture/new-

instructions-paper.pdf.

[43] Intel. Intel Core i7, 2008. http://www.intel.com/products/processor/corei7/index.htm.

[44] Intel. Intel compiler, 2009. software.intel.com/en-us/intel-compilers/.

164



[45] Intel. Intel stellarton, configurable intel atom-based processor, 2010.

http://newsroom.intel.com/docs/DOC-1512.

[46] F. Karim, A. Mellan, A. Nguyen, U. Aydonat, and T. Abdelrahman. A multilevel com-

puting architecture for embedded multimedia applications. IEEE Micro, 24(3):56–66,

2004.

[47] G. Karypis and V. Kumar.Metis: A Software Package for Paritioning Unstructured

Graphs, Partitioning Meshes and Computing Fill-Reducing Orderings of Sparce Ma-

trices. University of Minnesota, Sept. 1998.

[48] KHRONOS Group. OpenCL - the open standard for parallel programming of hetero-

geneous systems, 2010.

[49] M. Kudlur and S. Mahlke. Orchestrating the execution ofstream programs on mul-

ticore platforms. InProc. of the ’08 Conference on Programming Language Design

and Implementation, pages 114–124, June 2008.

[50] F. Labonte, P. Mattson, W. Thies, I. Buck, C. Kozyrakis,and M. Horowitz. The

stream virtual machine. InProc. of the 13th International Conference on Parallel

Architectures and Compilation Techniques, pages 267–277, 2004.

[51] S. Larsen and S. Amarasinghe. Exploiting superword level parallelism with multi-

media instruction sets. InProc. of the ’00 Conference on Programming Language

Design and Implementation, pages 145–156, June 2000.

[52] E. Lee and D. Messerschmitt. Synchronous data flow.Proceedings of the IEEE,

75(9):1235–1245, 1987.

165



[53] S. Lee, S.-J. Min, and R. Eigenmann. Openmp to gpgpu: a compiler framework for

automatic translation and optimization. InProc. of the 14th ACM SIGPLAN Sympo-

sium on Principles and Practice of Parallel Programming, pages 101–110, 2009.

[54] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish,

M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey. Debunk-

ing the 100x GPU vs. CPU myth: an evaluation of throughput computing on CPU and

GPU. InProc. of the 37th Annual International Symposium on Computer Architec-

ture, pages 451–460, 2010.

[55] W. Mark, R. Glanville, K. Akeley, and J. Kilgard. Cg: A system for programming

graphics hardware in a C-like language. InProc. of the30thInternational Conference

on Computer Graphics and Interactive Techniques, pages 893–907, July 2003.

[56] O. Mencer, H. Hubert, M. Morf, and M. J. Flynn. Stream: Object-oriented program-

ming of stream architectures using pam-blox. pages 595–604, London, UK, 2000.

Springer-Verlag.

[57] Mentor. Catapult C. http://www.mentor.com/products/esl/highlevel synthesis/cata-

pult synthesis/.

[58] J. H. Moreno, V. Zyuban, U. Shvadron, F. D. Neeser, J. H. Derby, M. S. Ware,

K. Kailas, A. Zaks, A. Geva, S. Ben-David, S. W. Asaad, T. W. Fox, D. Lit-

trell, M. Biberstein, D. Naishlos, and H. Hunter. An innovative low-power high-

performance programmable signal processor for digital communications.IBM Jour-

nal of Research and Development, 47(2-3):299–326, 2003.

166



[59] W. A. Najjar, W. Bohm, B. A. Draper, J. Hammes, R. Rinker,J. R. Beveridge,

M. Chawathe, and C. Ross. High-level language abstraction for reconfigurable com-

puting. IEEE Computer, 36(8):63–69, 2003.

[60] M. Narayanan and K. A. Yelick. Generating permutation instructions from a high-

level description. Technical Report UCB/CSD-03-1287, EECS Department, Univer-

sity of California, Berkeley, Jan. 2003.

[61] J. Nickolls and I. Buck. NVIDIA CUDA software and GPU parallel computing ar-

chitecture. InMicroprocessor Forum, May 2007.

[62] D. Nuzman and R. Henderson. Multi-platform auto-vectorization. In Proc. of the

2006 International Symposium on Code Generation and Optimization, pages 281–

294, 2006.

[63] D. Nuzman, I. Rosen, and A. Zaks. Auto-vectorization ofinterleaved data for simd.

In Proc. of the ’06 Conference on Programming Language Design and Implementa-

tion, pages 132–142, 2006.

[64] D. Nuzman and A. Zaks. Outer-loop vectorization - revisited for short simd archi-

tectures. InProc. of the 17th International Conference on Parallel Architectures and

Compilation Techniques, pages 2–11, 2008.

[65] NVIDIA. CUDA Programming Guide, June 2007.

http://developer.download.nvidia.com/compute/cuda.

[66] NVIDIA. Fermi: Nvidias next generation cuda compute architecture,

167



2009. http://www.nvidia.com/content/PDF/fermiwhite papers/NVIDIAFermi -

ComputeArchitectureWhitepaper.pdf.

[67] NVIDIA. Gpus are only up to 14 times faster than cpus saysintel,

2010. http://blogs.nvidia.com/ntersect/2010/06/gpus-are-only-up-to-14-times-faster-

than-cpus-says-intel.html.

[68] J. L. Pino, S. S. Bhattacharyya, and E. A. Lee. A hierarchical multiprocessor

scheduling framework for synchronous dataflow graphs. Technical Report UCB/ERL

M95/36, University of California, Berkeley, May 1995.

[69] G. Ren, P. Wu, and D. Padua. Optimizing data permutations for simd devices. In

Proc. of the ’06 Conference on Programming Language Design and Implementation,

pages 118–131, 2006.

[70] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W. mei

W. Hwu. Optimization principles and application performance evaluation of a multi-

threaded gpu using cuda. InProc. of the 13th ACM SIGPLAN Symposium on Princi-

ples and Practice of Parallel Programming, pages 73–82, 2008.

[71] D. Seal.ARM Architecture Reference Manual. Addison-Wesley, London, UK, 2000.

[72] L. Seiler et al. Larrabee: a many-core x86 architecturefor visual computing.ACM

Transactions on Graphics, 27(3):1–15, 2008.

[73] F. Semiconductor. Altivec, 2009. www.freescale.com/altivec.

168



[74] S. Sirowy, G. Stitt, and F. Vahid. C is for circuits: capturing fpga circuits as sequential

code for portability. pages 117–126, New York, NY, USA, 2008. ACM.

[75] J. A. Stratton, S. S. Stone, and W.-M. W. Hwu. Mcuda: An efficient implementation

of cuda kernels for multi-core cpus. InProc. of the 13th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, pages 16–30, 2008.

[76] SystemC-Consortuim. SystemC language overview, 2000. http://www.systemc.org.

[77] M. Taylor et al. Evaluation of the Raw microprocessor: An exposed-wire-delay ar-

chitecture for ILP and streams. InProc. of the 31st Annual International Symposium

on Computer Architecture, pages 2–13, June 2004.

[78] W. Thies and S. Amarasinghe. An empirical characterization of stream programs and

its implications for language and compiler design. InProc. of the 19th International

Conference on Parallel Architectures and Compilation Techniques, page To Appear,

2010.

[79] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A language for stream-

ing applications. InProc. of the 2002 International Conference on Compiler Con-

struction, pages 179–196, 2002.

[80] Tilera. Tile64 processor - product brief, 2008. http://www.tilera.com/pdf/.

[81] Trimaran. An infrastructure for research in ILP, 2000.http://www.trimaran.org/.

[82] A. Udupa, R. Govindarajan, and M. J. Thazhuthaveetil. Software pipelined execution

169



of stream programs on gpus. InProc. of the 2009 International Symposium on Code

Generation and Optimization, pages 200–209, 2009.

[83] S. wei Liao, Z. Du, G. Wu, and G.-Y. Lueh. Data and computation transformations

for brook streaming applications on multiprocessors.Proc. of the 2006 International

Symposium on Code Generation and Optimization, 0(1):196–207, 2006.

[84] P. Wu, A. E. Eichenberger, and A. Wang. Efficient simd code generation for runtime

alignment and length conversion. InProc. of the 2005 International Symposium on

Code Generation and Optimization, pages 153–164, 2005.

[85] Xilinx. Virtex-4 data sheets, 2004. http://www.xilinx.com/support/documentation/v-

irtex-4.htm.

[86] Y. Yang, P. Xiang, J. Kong, and H. Zhou. A gpgpu compiler for memory optimiza-

tion and parallelism management. InProc. of the ’10 Conference on Programming

Language Design and Implementation, pages 86–97, 2010.

[87] S. zee Ueng, M. Lathara, S. S. Baghsorkhi, and W. mei W. Hwu. Cuda-lite: Reduc-

ing gpu programming complexity. InProc. of the 21st Workshop on Languages and

Compilers for Parallel Computing, pages 1–15, 2008.

[88] D. Zhang, Q. J. Li, R. Rabbah, and S. Amarasinghe. A lightweight streaming layer

for multicore execution.ACM SIGARCH Computer Architecture News, 36(2):18–27,

2008.

[89] D. Zhang, Z. Li, H. Song, and L. Liu. A programming model for an embedded me-

dia processing architecture. InProc. of the5thInternational Symposium on Systems,

170



Architectures, Modeling, and Simulation, volume 3553 ofLecture Notes in Computer

Science, pages 251–261, July 2005.

171


