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ABSTRACT

Understanding and Controlling Angular Momentum Coupled Optical Waves in
Chirally-Coupled-Core(CCC) Fibers

by

Xiuquan Ma

Chair: Almantas Galvanauskas

In this dissertation a new type of fiber structure — so called Chirally-Coupled-Core

(CCC) fiber — is extensively explored. Work presented here establishes theoretical,

numerical and experimental foundations of describing optical phenomena in these

novel structures, and provides with methods and tools required to design them. CCC

fibers have been a very interesting topic of study due to their unusual symmetry

(they are helically symmetric), novel nature of wave interactions within them, and

the technological importance of their applications. We have discovered that operation

of CCC fibers is based on optical wave interactions that involve both orbital and spin

angular momentum of the propagating modes. This is the first and so far the only

known example when optical angular momentum is involved in optical interactions.

In this thesis we first show experimental evidence of multitude of optical reso-

nances that cannot be explained within the framework of conventional phase-matched

interactions. Then we show that these observations can be explained through optical-

angular momentum assisted optical interactions of optical waves in these structures.
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Based on this approach we demonstrate a primary application of CCC structures:

large core fibers that perform as effectively single mode fibers. Furthermore, we de-

velop a rigorous theoretical model starting from Maxwell equations in curvilinear

helical coordinates to describe CCC fiber properties. We show that theoretically pre-

dicted optical-resonance positions agree very well with experimental results. We also

address the ultimate core-size scaling potential of effectively -single-mode CCC fiber-

s. Due to the unusual nature of wave interactions in CCC structures all previously

known numerical beam-propagation methods appear to be unsuitable for CCC struc-

tures. In order to provide with the numerical tools necessary to design and explore

these fibers we have developed a new beam-propagation approach, which appears to

provide with accurate predictions of CCC fiber performance.
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CHAPTER I

Introduction to Chirally-Coupled-Core (CCC)

Fibers

In this chapter, we will first briefly discuss the background of optical fiber technol-

ogy and the importance of Chirally-Coupled-Core(CCC) fiber technology. We also

describe basic geometry of CCC fibers. This section ends with the outline of the

thesis structure.
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Optical Fiber Technology

Optical fibers are critically important in a wide range of applications such as

telecommunications (Kao, 2010), biomedical imaging and surgical procedures, fre-

quency standard metrology (Hall , 2006), and variety of optical sensors for a wide

range of applications, and currently are enabling revolutionary advances in new gener-

ation of scientific and industrial lasers. Optical fiber telecommunications has become

one of the most important technologies in the modern society, which was recently

been recognized by a Nobel Prize in Physics (2009) awarded to the inventor of optical

fibers for telecommunications. Optical fibers are widely used in biomedical imaging

and surgical procedures. Special type of optical fiber is also at the core of frequency-

standard metrology, significance of which also was recognized by a Nobel Prize in

2005. Optical sensors based on optical fibers are becoming ubiquitous in various

structural-mechanical, aerospace, environmental and chemical applications. Further-

more, optical fiber initiated a true revolution in laser technology due to their excellent

compactness, ruggedness, high efficiency and superior thermal properties. Recently

fiber lasers produced remarkably high optical powers with pure, diffraction-limited

beam quality, becoming highest-power lasers currently available. As such fiber lasers

are becoming the next generation technology in majority of industrial and scientific

applications.

The key advantage of optical fibers, as well as the main reason for being so broadly

used, is due to the paraxial wave guidance, which produces practically lossless light

propagation for long distances while maintaining a fixed and well-defined wavefront.

Up to now, fiber modal properties have only been controlled by tailoring the con-

finement of such guided waves. There are two methods of achieving paraxial wave

guidance: total internal reflection and photonic-crystal bandgap (Knight et al., 1998),

and each of them contributed to distinct stages of the evolution of fiber technology,

both in scientific and industrial applications. The first stage is associated with the
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initial birth of modern standard telecommunication fibers and with a fiber amplifier,

which exploits paraxial wave guidance based on the total internal reflection. The

second stage was initiated by the invention of photonic crystal fibers, in which wave

guidance is due to photonic-crystal bandgap. Here, we introduce Chirally-Coupled-

Core(CCC) fiber structures, in which guided modes can interact with each other

involving their optical angular momentum (Allen et al., 2003). Thus, as we discov-

ered, CCC fibers provide with fundamentally new degrees of freedom in controlling

modal properties of optical light propagating in optical fibers.

Chirally-Coupled-Core(CCC) Fibers

We discovered the optical angular momentum coupled optical waves in CCC fibers.

One major conclusion of this thesis is that, the eigenmodes that are propagating in

the CCC fibers are the ones carrying spin and orbital optical angular momentum.

Therefore, by controlling the modal interactions in CCC fibers, we can control the

spin and orbital angular momentum of the optical waves propagating in the CCC

fibers. This brings an entirely new degree of freedom in the optical fiber designs and

applications, and enables the potential to explore and even manipulate the angular

momentum of optical light, which would make profound impact to both the academic

research and engineering applications.

One interesting example of controlling this novel modal property is the possibility

of designing effective single-mode large-mode-area CCC fibers, which support multi-

ple modes in large diameter cores but only allow the Gaussian-like fundamental mode

to propagate. Thus, it overcomes one of the fundamental limitations of convention-

al fibers, and provides the large mode area and intrinsically good beam quality at

the same time. This can be achieved because the fundamental mode has different

modal profile and symmetric shape comparing with all the other higher order modes.

This leads to a symmetry-based modal distinction between different modes allowing

3



the implementation of structures where all modes except the fundamental one are

radiation modes and, therefore, do not propagate.

Another example is the possibility of tailoring spectral transmission to control

the nonlinear interactions of high-intensity beams propagating in such fibers, which,

depending on the conditions, could either enhance or prohibit some of the nonlinear

interactions. Stimulated Raman Scattering(SRS) and Stimulated Brillouin Scatter-

ing(SBS) are two detrimental nonlinear effects that are limiting the power scaling of

current kilo-watt high power fiber laser development. With CCC fibers, we have pro-

posed and are currently working on the suppression of both nonlinear effects, which

would make revolutionary progress in high power fiber lasers. Four-wave-mixing is an-

other nonlinear effect in fused-silica fibers with rather useful applications such as the

wavelength conversion inside the optical fibers. With CCC fibers, we also proposed

the enhancement of such effect for such applications.

More applications of CCC fiber can be found regarding its unique functionality

of controlling the optical angular momentum. It has been early recognized that elec-

tromagnetic optical waves can carry spin-angular momentum (circular polarization)

(Beth, 1936). However, only recently, attention has been paid to optical orbital angu-

lar momentum (optical vortex) (Allen et al., 1992). Since then it has found a number

of interesting applications including particle trapping and manipulation (Gahagan and

Swartzlander, Jr., 1996; Dienerowitz et al., 2008), quantum communication (Gibson

et al., 2004) and quantum computing and information encoding in multi-dimensional

quantum space (Molina-Terriza et al., 2007). Therefore, the possibility of generat-

ing and maintaining beams with stable and well-defined orbital-angular (as well as

spin-angular) momentum with CCC fibers is very intriguing.
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Geometrical Configuration of CCC Fibers

The cross section view of a fabricated CCC fiber sample is shown in Figure 1.1, and

the three-dimensional geometry (not in scale) of CCC structure is shown in Figure 1.2.

It consists of two wave-guiding cores deposited within one glass cladding, and the

two cores are placed in optical proximity to each other, so that they form a weakly

coupled waveguide system. The fabrication process of such structure is relatively

straightforward: it requires a fiber perform with both cores running straight through

it, central core being on axis and side-core off-axis. Spinning such a fiber preform

during fiber draw process using conventional fiber-preform spinning techniques will

then produce this CCC structure.

Figure 1.1: Cross-section view of CCC fiber sample with 250µm-diameter cladding,
35µm-diameter central core, 13µm-diameter side core, 0.06 central core
NA, and 0.1 side core NA. The separation between central core and side
core is 3µm, and the helix pitch of the side core is 6.1mm.
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The core in the center of the cladding referred to as “central core” runs straight

along the fiber axis, as in ordinary fibers. It is this core that serves for transmitting

or amplifying the optical signal, just as in conventional fibers. The other core is

referred to as “side core” and chirally winding around the central core following a

helical path with a constant “helix pitch Λ” and “offset Rh”. It is typically much

smaller in diameter and its primary purpose is to control modal properties of the

central core. This control is accomplished by engineering the desirable central-to-side

core modal interactions which involve angular momentum carried by each mode, and

all the interesting properties that can be obtained in a CCC fiber result from the

unusual nature of this interaction.

Figure 1.2: 3D geometry of CCC structure (not in scale).

Following Chapters in This Dissertation

In this dissertation, the CCC fiber is thoroughly explored on the following issues:

1. Experimental Characterization; 2. Physical Understanding; 3. Primary Applica-

tion; 4. Theoretical Modeling; 5. Design Scalability; 6. Numerical Simulation; 7.

Potential Application.
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In Chapter II, Experimental Characterization, Physical Understanding, and Pri-

mary Application of CCC fibers are discussed in sequence. First, the experimental

characterization of CCC reveals a physical observation that is beyond the explanation

of current standard parallel waveguide theory. Then, we discover the angular momen-

tum coupled optical waves in CCC fibers, which is the physical understanding of this

novel phenomenon. Based on this physical understanding, we explore the current

primary application: effective single-mode operation of large-mode-area CCC fibers.

In Chapter III, Theoretical Modeling is performed to provide rigorous mathemat-

ical analysis of CCC fibers. Compared with Physical Understanding discussed in

Chapter II, this chapter goes through the rigorous mathematical derivation step by

step. In the end, all the arguments in Physical Understanding would be verified by

the mathematically derived analytical expressions.

In Chapter IV, Design Scalability is discussed to demonstrate the ability of scaling

the core size for effective single-mode CCC fibers. This is one of the most important

issues we needed to solve in this thesis.

In Chapter V, regarding Numerical Simulation, a new numerical model is described

based on a new FD BPM algorithm that we had developed to describe optical wave

propagation in CCC fibers.

In Chapter VI, Potential Application and the conclusion of the entire thesis work

are presented.
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CHAPTER II

Conceptual Understanding and Experimental

Characterization of CCC Fibers

In the first half of this chapter, we start with showing the experimental observation

of quasi-phase-matching (QPM) resonances in CCC fibers transmission spectrum.

Then, we will analyze the conceptual understanding of this experimental phenomenon

with physical argument and illustrations. After that, a simple analytical formula

is presented to fit the experimental observations, though no mathematical proof is

demonstrated here. The verification of the conceptual understanding and the simple

analytical formula is also demonstrated based on an experimental measurement.

In the second half of this chapter, we will focus on the current primary application

of CCC fibers: large-mode-area effective single-mode operations. First, we will present

the solid evidence of effective single-mode operation with a 35µm-core-diameter large-

mode-area CCC fiber sample. Then, a quantitative measurement technique which

is capable of quantifying the ratio of higher order mode (HOM) over fundamental

mode is demonstrated in details. The characterization with this technique shows

that the HOM suppressions are more than 30dB/m, which means very good effective

single-mode operation. In addition, we will also demonstrate the advantage of using

large-mode-area effective single-mode CCC fibers for the high power fiber laser and

laser amplifier.
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2.1 Quasi-Phase-Matching (QPM) Resonances due to Angu-

lar Momentum Coupled Optical Waves

2.1.1 Experimentally Observed QPM Resonances

Figure 2.1: Experimentally observed transmission spectrum through CCC fiber cen-
tral core. It is obtained by launching a broad-band supercontinu-
um broadband laser source into the 35µm-diameter central core of the
1.5meter-long CCC fiber sample.

In the experimental setup shown in Figure 2.1, the experimentally-measured trans-

mission spectrum obtained by launching a supercontinuum broadband laser source

into the central core of a CCC fiber sample. For consistency, this particular fiber sam-

ple is used throughout this entire dissertation for default. It is a 1.5meter-long passive

CCC fiber with 35µm diameter and 0.06 numerical aperture (NA) central core, 13µm

diameter and 0.1 NA side core, core to core separation 3µm, and helix pitch 6.1mm.
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Figure 2.2: Spectrum of supercontinuum source coming out of Koheras “SuperK
Compact” module. Comparing with lamp and super-luminance-LED
(SLED), supercontinuum provides higher power spectrum density, and
flat and stable output all across the spectrum from 500nm to 1750nm.

The cross-section view of this particular fiber sample is shown in Chapter I.

The supercontinuum source is a “SuperK Compact” model from Koheras. The

supercontinuum is generated by launching a 2ns pulse duration, 24kHz reparation rate

and 200-300 milli-Watts fiber amplifier amplified 1064nm pulsed diode laser signal

into an index guiding photonic crystal fiber(PCF) which is nominal to be 10 meters

with 4.8µm diameter and 0.2 NA (at 1064nm). The small-diameter and strongly-

guiding core of this PCF fiber induces high nonlinearity and causes zero-dispersion-

wavelength shifted to be shorter than and close to signal wavelength at 1064nm. Thus,

we would have all kinds of nonlinearities in this fused silica medium. First, four-wave-

mixing originates from both sides of 1064nm and generates spectrum in proximity to

1064nm. Second, modulation-instability(MI) rises from anomalous GVD due to the

shifted zero-dispersion-wavelength, and then breaks up these nanosecond pulses into

numerous shorter pulses in picosecond scale. Then, these short pulses would generate

shorter wavelength spectrum through self-phase-modulation and self-steepening, and

generate longer wavelength spectrum through stimulated Raman scattering and self

soliton frequency shift. By controlling all kinds of fiber nonlinearity effect properly,

Koheras “SuperK Compact” module has managed to generate about 100 milli-Watts
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“flat and stable output spectrum from 500nm to 1750nm”, according to their in-house

characterization shown in Figure 2.2.

With mode-matching lens pair and nanometer-precision adjustment stage as shown

in Figure 2.1, we can launch the single transverse mode of supercontinuum light into

and only into the central core of this passive CCC fiber sample, and then receive the

supercontinuum light coming out of the central core with a single mode fiber with

cutoff wavelength around 800nm. The output of the single mode fiber is directly sent

into optical spectrum analyzer.

Main observation here is the multiple transmission dips in certain wavelength po-

sitions. Since the supercontinuum spectrum is supposed to be flat across the entire

spectrum range according to Figure 2.1, these transmission dips can only be inter-

preted as wavelength-dependent loss in the central core. Since the central core of the

CCC fiber acts like a normal fiber core, there should be no significant loss other than

negligible loss due to material scattering and absorption. Thus, the reason for those

significant wavelength-dependent loss in the central core must come from its coupling

with the lossy side core due to the curvature. Therefore, these wavelength positions

imply modal coupling resonances with phase-matching conditions.

From the standard waveguide theory (Yariv and Yeh, 2003; Huang , 1994), we

know that the modal coupling only happens at certain wavelength where the phase

matching condition is fulfilled:

∆β(λ) = βa(λ)− βb(λ) = 0, (2.1)

where βa(λ) and βb(λ) are the propagation constants for center core and side core

respectively. It is important to point out that the side core propagation constant

βb(λ) is the projection onto the axial direction, which have been lifted by the helical
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correction factor
√

1 +K2R2
h:

βb(λ) −→ βb(λ)
√

1 +K2R2
h. (2.2)

Thus, we have the wavelength-dependent center-core loss αa(λ) as:

αa(λ)|∆β(λ)=0 =⇒ αa[κab(λ), αb(λ)] > 0. (2.3)

This means that we need 2 necessary conditions to achieve significant central-core

loss at certain wavelength λab:

1. Phase-Matching Condition: ∆β(λ = λab) = 0;

2. Significant Side-Core Curvature Loss: αb(λ = λab) > 1 dB/m.

In Figure 2.1, we can see that the resonance wavelength positions λab show themselves

as: 835nm, 865nm, 910nm, 950nm, 1080nm, 1150nm, 1230nm, and 1310nm.

Knowing the fiber parameters, we can calculate the side-core wavelength-dependent

loss αb(λ), and obtain the phase matching conditions by plotting the the dispersion

curves βa(λ) and βa(λ), so we can examine if these wavelength positions fit the two

conditions. For fibers with step-index profiles, it is quite easy to obtain αb(λ), βa(λ)

and βa(λ). To calculate the curvature loss αb(λ) of step-index fiber, we can use the

analytical formula derived by D. Marcuse (Marcuse, 1975). To calculate the disper-

sion curves βa(λ) and βa(λ), we can use the analytical formula derived by D. Gloge

(Gloge, 1971). These analytical formula are accurate and fast for ideal step-index

fibers, but the practically-made optical fibers are often non-step-index ones. The 2D

and 1D index profile for this particular CCC fiber sample are shown in Figure 2.3,

which shows the index profile of this fiber sample is far away step-index profile.

For the fibers with arbitrary index profiles, the analytical formula are not accurate

anymore. It turns out that the numerical approach called Beam-Propagation-Method
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Figure 2.3: 2D and 1D arbitrary refractive index profile of the CCC fiber sample.

(BPM) algorithm can simulate the propagation of optical waves in optical fibers, and

a BPM-based mode-solving technique called “correlation method” (Feit and Fleck,

Jr., 1980) is suitable to calculate the wavelength dependent loss αb(λ) and dispersion

curves βa(λ) and βb(λ) for any arbitrary index profiles.

The wavelength-dependent loss αb(λ) for side-core LP11 mode and LP21 mode are

shown in Figure 2.4a. The point A≈815nm and the point B≈1070nm are the wave-

length positions where the significant side-core loss starts to appear for each mode.

By comparing with the experimental transmission spectrum shown in Figure 2.4c, we

can conclude that the lossy dips at 835nm, 865nm, 910nm, and 950nm are from side-

core lossy mode LP21, and the lossy dips at 1080nm, 1150nm, 1230nm, and 1310nm

are from side-core lossy mode LP11.

The wavelength-dependent dispersion curves for side-core LP11 mode and LP21

mode are shown in Figure 2.4b. Whereas, instead of propagation constants βa(λ)

and βb(λ), we choose more convenient effective refractive index neff,a(λ) = βa(λ)/k0

and neff,b(λ) = βb(λ)/k0. The purple line represents the central-core LP01 modal

dispersion, the blue and the red one represents the side-core LP21 and LP11 modal

dispersion. We can see that the two crossing wavelength positions (810nm and 1230n-

m) are the only two phase-matching conditions in this wavelength range. Since 810nm

corresponds to negligible side core loss, it is not expected to appear as a transmission

dip. Therefore, we only expect to see one resonances: 1230nm.
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Figure 2.4: The side modal loss and phase-matching wavelength positions compared
with supercontinuum transmission spectrum.

14



By comparing Figure 2.4b and 2.4c, we can see 1230nm is certainly there, but the

experimental observation shows more phase matching conditions than we predicted

based on the standard waveguide theory. It means that, regarding how to determine

the phase-matching condition in CCC fibers, there must be something beyond the

standard waveguide theory.

Here, the surprising fact is the phase matching condition occurs when the two

modes are propagating at different phase velocities (phase velocity is equivalent to

propagation constant). From the momentum conservation point of view, the linear

translational momentum is not conserved. Therefore, we can call these extra reso-

nances as “Quasi-Phase-Matching” (QPM) conditions.

By takeing a close look at the multiple resonances in transmission spectrum, we

can see that the extra resonances are equally separated by a propagation constant

difference ∆β = K, which happens to be the rotation rate of the CCC helical struc-

ture. It simply means that the phase-mismatch ∆β is somehow compensated by the

rotation of the CCC structure K. From the momentum conservation point of view,

the linear translational momentum mismatch must be compensated by some other

momentum associated with the rotation of the CCC structure. It turns out that the

coupling between central core and side core in CCC fiber involves the angular mo-

mentum of optical waves and the eigenmodes of CCC fiber are the ones with orbital

angular momentum l~ and spin optical angular momentum s~.

2.1.2 Conceptual Understanding of QPM Resonances

From the fact that the standard waveguide theory predicts less coupling resonances

than the experimentally-observed ones in the CCC structure, we would know that

something important is missing. Indeed, it is the most fundamental physical feature

of the side core: the helical-translational symmetry.

The helical-translational symmetry in CCC fibers is a lower degree of symmetry
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Figure 2.5: Picture of Spin Optical Angular Momentum: The vector direction of the
modal field is rotating and propagating at the same time.

compared with the cylindrical symmetry in traditional cylindrically symmetric fibers.

For the cylindrical symmetry of traditional fiber cores, we have independent rotational

symmetry and linear translational symmetry. In other words, the left-handed helix

and the right-handed helix are degenerate in cylindrical symmetry. But they are not

degenerate anymore in helical symmetry, or to say the degeneracy is broken.

For the helical-translational symmetry, the rotational symmetry and linear trans-

lational symmetry are coupled: the symmetry would require the physical quantity to

rotate (rotational symmetry) and propagate (linear translational symmetry) at the

same time, just like a helix. Correspondingly, the eigenmodes carrying such symme-

try would require its electromagnetic field (as a physical quantity) to do exactly the

same: rotate and propagate at the same time. So this naturally leads to the conclu-

sion that the eigenmodes of CCC structure with helical translational symmetry are

the ones carrying spin and orbital angular momentum.

When the direction of modal field is rotating and propagating at the same time,

we call it spin angular momentum (SAM), which is essentially the circular polarized

light. The spin momentum that a photon could carry is s~, and s could only be +1

or -1. It simply corresponds to right-handed and left-handed circular polarized light.

It is mathematically described by an angular-dependent unit vector ês:

ês = êx + jsêy = r̂ejsθ, (2.4)

where r̂ is the radius vector, and θ is the azimuthal angle in the transverse plane.
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Figure 2.6: Picture of Orbital Optical Angular Momentum: The amplitude distribu-
tion of the modal field is rotating and propagating at the same time.

The demonstration of SAM is shown in Figure 2.5. It illustrates the physical

picture of SAM: the direction vector of the electric field rotates and propagates at

the same time. The evolution of the unit vector described in Eq.(2.4) can be simply

obtained by multiplying an propagation phase term ejβz, so we can have direction

angle as a function of the propagation distance z:

ϕ(z) = sθ − βz. (2.5)

Simply plotting this function, we can have the 3D plot in Figure 2.5.

When the scalar distribution of the modal field is rotating and propagating at

the same time, we call it orbital angular momentum (OAM), which is also called

as optical vortex. Unlike SAM, the quantum number OAM could be zero and any

positive and negative integers, and it can be described as e±jlθ, where l = 0, 1, 2....

The demonstration of OAM is shown in Figure 2.6. It illustrates the physical

picture of OAM: the phase front of the electric field rotates and propagates at the same

time. Similarly, by multiplying a propagation phase term ejβz, the phase evolution of

the electric field carrying OAM become a function of propagation distance z:

ψ(z) = lθ − βz. (2.6)

By plotting this function, we can have the phase front evolution shown in Figure 2.6.

In Chapter III, a full mathematical derivation will be given to quantitatively
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Figure 2.7: Intuitive and physical understanding of QPM.

explain the QPM conditions. Here, not with any mathematics but with a more

intuitive and physical picture, we can use LP-modes carrying OAM to find out why

the eigenmodes of CCC structure are the ones with optical angular momentum and

how the QPM would happen. In order to do so, we take central core fundamental

mode LP01 and side core LP11 mode for example. We can notice that there is a direct

connection between the OAM quantum number l and the mode number |l| of LP|l|x

mode. Thus, the LP01 mode carries OAM with l = 0, and the mode LP11 carries OAM

with l = ±1. By plotting their phase front evolution under two different scenarios

in Figure 2.7, we can intuitively understand the relation between the QPM condition

and optical angular momentum.

In Figure 2.7a, phase velocities are completely matched between central and side

modes. It means we should see the same modal field phase front (scalar distribution)

after every optical cycle. With exaggeration, we can consider the positions a1, a2,

a3, a4, a5, and a6 are 6 sequential snapshots in time domain for 6 successive optical

cycles. With identical phase velocity between central and side modes, the modal field

distributions are exactly the same for each position, but the overlap integrals between
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two modal field are varying:

I =

∫ [
Ra(x, y) · e−jβaz

]∗ · [Rb(x, y) · cos(Kz) · e−jβbz
]
dxdy,

=

∫
Ra(x, y)

∗Rb(x, y) cos(Kz)dxdy, When βa − βb = 0, (2.7)

This indicates that, even though the phase velocity is identical, the relative phase

difference between two modes is still changing with propagation due to the relative

rotation between central and side core. By definition, we do not have actual phase

matching under this scenario.

In Figure 2.7b, phase velocities are not matched between central and side modes.

However, we can make the phase velocity difference βa − βb right equal to angular

rotation velocity of side core helix K. Similarly, we can plot the modal field at

6 sequential snapshots of positions b1, b2, b3, b4, b5, and b6 during 6 successive

optical cycles. We can see that, when the modal field distribution of the side core

mode LP11 is carrying OAM of +~ or −~, the modes could actually have the constant

overlap integrals and phase matching condition:

I =

∫ [
Ra(x, y) · e−jβaz

]∗ · [Rb(x, y) · e−jKz · e−jβbz
]
dxdy,

=

∫
Ra(x, y)

∗Rb(x, y)dxdy, When βa − βb = K, (2.8)

The physical pictures in Figure 2.7 are not the whole story. The actual interaction

between two modal fields includes not only the scalar field distribution (OAM) but

also the vector field direction (SAM) as well. However, from this intuitive analysis,

we can conclude:

1. CCC eigenmodes should be the ones with angular momentum;

2. QPM is achieved through angular momentum compensation.

19



2.1.3 Analytical Formula for CCC QPM Resonances

It turns out we can use a very simple analytical formula to predict and explain

every resonance dips on the transmission spectrum of CCC fibers:

∆β = β|l1|x1 − β|l2|x2 ·
√
1 +K2R2 +∆m ·K = 0, (2.9)

where β|l1|x1 and β|l1|x1 are the propagation constants for LP|l1|x1 mode in the central

core and LP|l2|x2 mode in the side core respectively, and the so called QPM number

∆m takes every value in the following combinations:

∆m = ∆l +∆s, ∆l = ±|l1| ± |l2|, ∆s = 0,±1,±2. (2.10)

We can name this simple but powerful analytical formula as “QPM formula”.

In this QPM formula, the “QPM number ∆m” is the key to render multiple QPM

resonances. The initial idea of determining the QPM number ∆m for this formula

originates from the analogy to Quantum Mechanics. Indeed, the difference in total

angular momentum should come from the summation of the difference in OAM and

the difference in SAM:

∆m = (l1 − l2) + (s1 − s2). (2.11)

As has been pointed out, OAM quantum number is linked to the mode number of

LP-modes l1,2 = ±|l1,2|. However, regarding SAM quantum number, we have to take

0 into account s1,2 = ±1, 0, which is generally not true for the spin of photons, but

it makes the QPM formula fit the experimental observation very well. Until now

we have characterized more than a dozen of different CCC samples, and the QPM

formula always gives good agreement with experimental observation. In the next

chapter, we will give the thorough and step-by-step proof of this QPM formula from
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Figure 2.8: The QPM resonances explained by Eq. 2.9.
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the first principle. Here, we take it as an imperial formula, and see how it fits the

experimental observations.

Let’s take the same transmission spectrum for example. The QPM formula pre-

dicts that LP01 and LP11 gives QPM number ∆m =−3, −2, −1, 0, +1, +2, +3.

Then, we can plot these resonance positions as red dash lines in Figure 2.8b. Thus,

the resonances at 1080nm, 1150nm, 1230nm, and 1310nm correspond to the QPM

number ∆m = −2,−1, 0,+1. The resonance ∆m = −3 designated by C-D line is

invisible due to its negligible loss (comparing with point B in Figure 2.8a), which

means that the light is bouncing back and forth between central and side core.

The QPM formula also predicts that LP01 and LP21 give QPM number ∆m =

−4,−3,−2,−1, 0,+1,+2,+3,+4. Similarly, we can plot these resonance positions

as blue dash lines in Figure 2.8b. Thus, the resonances at 835nm, 865nm, 910nm,

and 950nm correspond to the QPM number ∆m = +1,+2,+3,+4, and all the other

resonances are invisible due to negligible loss (comparing with pointA in Figure 2.8a).

Figure 2.9: Detection of Lossless Resonance.

The wavelength positions predicted by this QPM formula in Eq.(2.9) fit the exper-

imental observation very well. However, it is more convincing if we could detect the

invisible resonance at the predicted wavelength position. In Figure 2.9, the detection

of the C-D line is around 1026nm, where the phase matching condition couples the

light from central core to the side core. It fits the prediction by QPM formula as well.
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2.1.4 Measurement of Orbital Angular Momentum

In the previous sections, we have argued that the coupling between the central

and side core in CCC fiber involves the angular momentum of optical waves and the

eigenmodes of CCC fiber are the ones with orbital angular momentum l~ and spin

optical angular momentum s~. Nevertheless, the analysis and proof presented above

are kind of “indirect”. Therefore, we need more direct evidence to demonstrate the

angular momentum coupled optical waves in the CCC fibers. Here, we are going to

demonstrate the direct measurement of orbital angular momentum which is carried

by the eigenmodes of CCC fibers.

The experiment setup for measuring the orbital angular momentum of CCC eigen-

modes is shown in Figure 2.10. The laser source in this setup is an “Toptica DL

Pro” model with external cavity diode laser configuration. It can provide a narrow

linewidth of less than 100KHz and a broad tunable range from 980nm to 1080nm. The

grating spectrometer is used to monitor the wavelength of the tunable laser source.

In the last section, we have demonstrated that there is an invisible resonance

around 1026nm, where the light is coupling forth and back between central and side

Figure 2.10: Experimental Setup for Measuring the Orbital Angular Momentum of
CCC Eigenmodes.
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Figure 2.11: Measuring the Orbital Angular Momentum of CCC Eigenmodes.

core without any significant loss. During this detection, we have observed that the side

core exhibits a ring-like intensity distribution as shown in Figure 2.9, and this ring-like

intensity shape is consistent with the intensity pattern of the modes carrying non-

zero orbital angular momentum. The QPM formula predicts that the orbital angular

momentum of this resonance should be l = ±1. Let’s use the setup in Figure 2.10 to

verify the quantum number is l = ±1.

First, we tune the wavelength close to 1026nm to capture the resonance and ring-

like side mode. Second, we couple the narrow linewidth signal into single mode fiber

and then collimate the output out of the single mode fiber. Thus, we obtain a nearly-

perfect plane wave after the single mode fiber. Then, we couple most of the signal

into the CCC sample. After that, we let the signal from the side core ring-like mode

interfere with the plane wave signal. The interference pattern is shown in Figure 2.11.

By counting the misaligned number of interference fringes, we can know the quantum

number of the orbital angular moment is ±1 (Marrucci et al., 2006), and it agrees

with the prediction by QPM formula.
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2.2 Effective Single-Mode Operation of CCC Fibers

2.2.1 Demonstration of Effective Single-Mode CCC

The same fiber sample that we have been exploring throughout this chapter is

an effective single-mode CCC fiber. The center core of this fiber sample supports at

least 5 different LP-modes, which are from lower-order to higher-order: LP01, LP11,

LP21, LP02, LP31. However, only the fundamental mode LP01 can propagate along

this CCC fiber. We can call this kind of fiber as effective single-mode fiber.

Actually, the transmission spectrum of this particular fiber sample has implied

that it is an effective single-mode CCC fiber. In Figure 2.12, we show the simulated

transmission spectrum for each of 5 supported modes in this fiber sample: red solid

curve is for LP01, blue dash curve is for LP11, green dash curve is for LP21, cyan dash

curve is for LP02, and purple dash curve is for LP31. We can see that all the other

modes except LP01 have large loss across the whole spectrum. Thus, when optimizing

the power transmission, we automatically optimize the excitation of fundamental

mode LP01 at the launching end of the fiber. Even though there will be some small

amount of other modes that get excited at the launching end, they will get stripped out

of the central core by the large loss. Therefore, the transmission spectrum obtained

at the output end of this fiber sample should only belong to the fundamental mode

LP01. Indeed, the red solid curve of simulated LP01 transmission spectrum gives good

correspondence with experimental observed transmission spectrum.

The tool we use to obtain the simulation in Figure 2.12 is a self-developed nu-

merical algorithm. In the next chapter, we will see that the multiple resonances

designated by QPM number ∆m = ∆l+∆s correspond to different physical origins.

More specifically, the resonances with ∆s = 0 correspond to the coupling induced by

scalar refractive index perturbations. Similarly, ∆s = ±2 correspond to the linear

birefringence perturbations induced by linear stress, and ∆s = ±1 correspond to the
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Figure 2.12: Explanation of CCC fiber single mode operation with FISTS simulation.
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torsional birefringence perturbations induced by twist torsion. Thus, we need a tool

that has the ability to simulate the optical fiber with twist torsion and linear stress.

Up to date, there are no existing numerical method that has this ability and eligible

speed. Therefore, we developed a numerical program called FISTS (FIber Simulator

with Torsion and Stress), which is a BPM-based algorithm that has both the ability

and eligible speed. Chapter V will be dedicated to discuss FISTS and other related

simulation tools.

Figure 2.13: Measurement Setup for Characterizing The Performance of CCC Effec-
tive Single-Mode Operation.

To characterize the performance of CCC effective single-mode operation, we need

measurement setup in Figure 2.13. The broadband source is sent into the fiber sample,

and the signal out of the fiber sample is sent into the single mode fiber connected

to an OSA. A flip mirror at the input setup gives us the flexibility to use either

supercontinuum signal or ASE signal as broadband source. Another flip mirror at

the output setup provides the flexibility to image the beam onto the CCD camera.

If the fiber sample supports multiple modes, we would observe spectrum beating

on the OSA due to the modal dispersion. If the fiber sample supports a single mode,

then the spectrum beating pattern would disappear. More details about this spectrum
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Figure 2.14: Single mode operation of CCC fibers compared with traditional LMA
fibers.

beating pattern is discussed in the later section. Here, we apply this characterization

to a 1.5-meter sample of this particular CCC fiber sample and a 2-meter 30um-

diameter-core large mode area (LMA) fiber. The performances of both fiber samples

are shown side by side in Figure 2.14.

For LMA fibers (see Figure 2.14b), even the optimum launching position (“0 off”)

gives the spectrum beating pattern (red curve). This optimum launching position

is obtained by maximizing the power launched into the fiber sample. When the

launching position is away off the optimum launching position, the higher order modes

are more and more excited, and the spectrum pattern gets deeper and deeper (“-15

µm off” with blue curve and “-25 µm off” with black curve).

For effective single-mode CCC fibers (see Figure 2.14a), we can obtain the opti-

mum launching position (“0 off”) by maximizing the transmission power. Even off

the optimum launching positions (“-15 µm off” and “-25 µm off”), there are no spec-

trum beating pattern at all. It means we have robust single-mode operation for this

CCC fiber sample with this length. However, when the CCC fiber sample is short

enough and the launching position is off the optimum position, we start to see slight

spectrum beating pattern on the OSA and higher order mode profile on the CCD.

For this particular fiber sample, experiment shows that any piece with more than 1.2

meter long could provide robust single mode operation.
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2.2.2 S2 Measurement of Effective Single-Mode CCC

Figure 2.15: Setup for ASE-Based Spectrally and Spatially Resolved Imaging

The method to characterize the effective single-mode operation in the last section

is rather qualitative. In this section, we present a more quantitative means to quantify

the higher order mode percentage in the fiber sample, so we would quantify the

performance of effective single mode operation of certain fiber sample. This method

is called ASE-based Spectrally and Spatially resolved imaging. We can call it as S2

measurement for convenience. Its experimental setup is shown in Figure 2.15.

The idea of this method comes from the fact that the Fourier transform of the

power spectrum S(ω) is the group delay spectrum τ(neff) as a function of modal

effective refractive index neff. Since the power spectrum S(ω) is a superposition of all

the fields after propagating through a certain length L:

S(ω) ∝
∣∣∣∣∫ ejωτdτ

∣∣∣∣ , (2.12)

we have the Fourier Transform of the power spectrum as

τ(neff) ∝ F [S(ω)] . (2.13)

Here is just simple analysis to demonstrate the principle. To apply S2 technique and

extract the modal spectrum, we need rigorous and detailed derivations, which can be
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found in references (Nicholson et al., 2008).

The analysis above basically shows that the modal spectrum can be extracted by

performing a Fourier transform to the power spectrum. This also mathematically

explains the direct connection between spectrum beating pattern and the number of

supported modes. More specifically, when the spectrum has no beating pattern but

smooth DC signal, the Fourier transform of this power spectrum should have only the

fundamental frequency (zero frequency), which shows the modal spectrum has only

a single component. When the power spectrum has a beating pattern, the Fourier

transform of the beating pattern would also show the frequency peaks other than

fundamental frequency, which means we have multiple modes.

In the experiment setup in Figure 2.15, we use ASE signal as broadband source

to catch the spectrum beating. A single mode fiber is aligned on the nanometer-

precession adjustment stage to receive the signal out of the fiber sample and send the

signal to the OSA. Since the reception area of this single mode fiber is much smaller

than the beam size (or we can make the beam size larger by choosing the large focal

length lens to collimate the beam), we can scan the single mode fiber reception end

over the 2D plane of beam cross section point by point. By Fourier transform the

power spectrum point by point, we can have the modal spectrum point by point across

the 2D plane. In this way, we can obtain the 2D spatially and spectrally resolved

image of the beam coming out of the fiber sample.

For the 1.5 meter of the passive CCC sample, the S2 measured spacial profiles for

LP11 mode and LP21 are shown in Figure 2.16. Due to the much shorter length of

the fiber used for characterization, the S2-measured spacial profiles of higher order

modes are not as “pretty” as the ones shown in the reference, but they indeed show

important physical information:

1. The relative intensity of higher order modes are more than 30dB/m down com-

pared with fundamental mode, which indicates this short piece of uncoiled CCC
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fiber is truly the effective single-mode large-mode-area fiber.

2. The spacial pattern of the higher order modes are ring-like, which also indicates

the fact that the eigenmodes of CCC fibers are the ones carrying optical spin

and orbital angular momentum.

Figure 2.16: S2 Measured Higher-Order Mode Spatial Distribution

One interesting thing is to consider such a situation: we launch a 100nm-broadband

ASE source into a 1.5meter multi-mode fiber sample with 0.0002 modal effective-

refractive-index difference between fundamental mode LP01 and first-order mode LP11

(typical number for 35um 0.06NA central core of CCC fibers), so the phase delay be-

tween the two modes through such a fiber with 1.5meter length is about 1 ps. But

the coherent time of 100nm-bandwidth source is only about 30fs, which means the

modes are separated so well that the interference between these two modes should

not happen. Then, why do we see the spectrum beating even with a fiber longer

than 1.5meter? This is actually because the grating in the optical spectrum analyzer

stretch the coherent time of the incoming frequency component by narrowing the

spectrum with a grating resolution. Therefore, it is critical to have a grating resolu-

tion narrow enough to see the beating pattern. With simple calculation, for 1.5meter

of this particular fiber, we need at least 1nm-bandwidth grating resolution, and for

15meter we need at least 0.1nm-bandwidth. Fortunately, our OSA has a resolution

as high as 0.05nm, which guarantees the proper working of the S2 measurement.
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2.2.3 High Power Fiber Laser with Effective Single-Mode CCC Fibers

Figure 2.17: Effective Single-Mode Operation for LMA and CCC Setup.

Effective single-mode large-mode-area fibers are critical for developing kilowatt-

level high power fiber lasers. Usually, the goal of high power fiber lasers is either

to achieve high average power in CW laser setup or to achieve high energy pulse in

pulsed laser amplifier setup. For both scenarios, implementing effective single-mode

large-mode-area fibers is crucial to increase the power level and maintain the beam

quality at the same time.

Before effective single-mode CCC fibers are invented, we use traditional LMA

fibers and effective single-mode techniques to fulfill effective single-mode operation.

In Figure 2.17, we can see how complicated it is to work with traditional LMA to

obtain single-mode operation. First, the LMA fiber has to be tightly coiled to strip

off the higher order modes. The coiling radius varies for different core size and core

NA, and thus has to be calculated for different fibers. Second, there has to be a

single-mode diagnostics stage, and the excitation at the signal input end of LMA has

to cooperate with the excitation at input end of single-mode diagnostics stage. By

adjusting both nanometer-precision adjustment stages and several associated mirrors,
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Figure 2.18: Experimental Setup for Lasing Test and Laser Amplifier Test (System
Operated by Cheng Zhu and Shenghong Huang).

we can maximize the power output at the diagnostics stage. It indeed requires expe-

rienced skills and time-consuming effort to achieve successful single-mode operation

with LMA setup, and most of the time this setup is not stable enough to stay working

for a long time and can not provide robust and excellent beam quality as well.

However, with CCC fibers in Figure 2.17, it is very easy to achieve single-mode

operation comparing with LMA fibers. It is truly working just like a single-mode

fiber. The most important point is that, CCC fibers can be spliced together and still

provide large-mode-area and single mode operation in a monolithic system. This is

the dominating advantage of CCC fibers over LMA fibers.

The experimental setup for laser and laser amplifier with CCC fibers are shown

in Figure 2.18. So far, we have successfully designed up to 37um-diameter Yb-doped

double-clad CCC fibers with effective single-mode operation. For 37um polymer-

coating CCC with 400um-diameter cladding, we have achieved 600Watts CW laser

with diffraction-limited beam quality. For 37um air-clad CCC with 250um-diameter

cladding, we have achieved 500Watts narrow-linewidth amplified laser signal also with

good beam quality.
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CHAPTER III

Theoretical Model in Helicoidal Coordinates

System

In this chapter, we will mainly focus on building a rigorous theoretical model from

the first principle and trying to explain and predict CCC fibers’ performance with

analytically derived expressions.

First, we introduce the covariant and contravariant dual space in the curvilin-

ear helicoidal coordinates system. In this coordinates system, we re-formulate the

Maxwell equation and derive the general form for coupled mode equations for optical

parallel waveguides.

Then, we can formulate the CCC model and CCC anisotropic permittivity in

this coordinates system, where CCC structure indeed becomes “unwounded”. This

means we can use the coupled mode equations derived for optical parallel waveguide

to analyze this CCC model.

The key of this rigorous theoretical model is to obtain the eigenmodes of CCC

structures: helical modes inside each isotropic core. Plugging these helical modes

into the coupled mode equation derived in curvilinear Helicoidal coordinates, we can

mathematically prove the analytical QPM formula by analytical derivations.
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3.1 Maxwell Equation and Coupled Mode Equations in He-

licoidal Coordinates and Curvilinear Reference Frame

3.1.1 Covariant and Contravariant Dual Space

In the anti-clockwise rotating helical system, we choose the so called Helicoidal

coordinates {X,Y, Z} as


X = x · cos τz + y · sin τz,

Y = −x · sin τz + y · cos τz,

Z = z,

(3.1)

which are three single-valued functions of Cartesian coordinates {x, y, z}, and by def-

inition, they form a so called general or curvilinear coordinates system. As common,

we designate {X, Y, Z} as {u1, u2, u3} for further discussion:


X

Y

Z

 =


u1

u2

u3

 . (3.2)

Here, we define ui-constant surfaces as coordinate surfaces and their ui-variable

intersection curves as coordinates curves. The basis whose vectors are tangen-

tial to these curves are covariant basis {e1, e2, e3}. Correspondingly, we also call

{u1, u2, u3} as contravariant coordinates.

The relation “tangential to coordinates curves” actually means that the vectors

of covariant basis are along the coordinates curves, so we can have:

ei =
∂R

∂ui
. (3.3)

In order to further write down ei explicitly, we need to express R explicitly with the
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Cartesian basis as R = xx̂ + yŷ + zẑ. Also, we need the inverse transformation of

Eq.(3.1) to express {x, y, z} with {X,Y, Z} as:


x = X · cos τZ − Y · sin τZ,

y = X · sin τZ + Y · cos τZ,

z = Z.

(3.4)

Plugging Eq.(3.4) into Eq.(3.3), we have the covariant basis explicitly expressed as


e1 = x̂ · cos τZ − ŷ · sin τZ,

e2 = x̂ · sin τZ + ŷ · cos τZ,

e3 = ẑ+ τ(xx̂+ yŷ),

(3.5)

where {x̂, ŷ, ẑ} are Cartesian basis.

This covariant basis in Eq.(3.5) is the one that we are going to use throughout this

chapter. Here, we can see, the covariant vectors e1 and e2 are two orthogonal unit

vector that are rotating with the “local” reference frame in xy plane. As has been

point out earlier, within this local reference frame, the CCC structure is “unwounded”,

which is the whole purpose of using the general (curvilinear) coordinates system. The

other covariant vector e3 is orthogonal to e1 and e2 when on-axis, and it coincides

with ẑ on the rotation axis. However, it is nonorthogonal and oblique with respect to

e1 and e2 when off-axis, i.e. τ(xx̂+yŷ) ̸= 0. This is an important feature of covariant

basis vector e3 to keep in mind.

To fully express an nonorthogonal oblique coordinates system, we have to intro-

duce the so called dual space and reciprocal basis. Here, the reciprocal basis of

covariant basis {e1, e2, e3} is the so called contravariant basis {e1, e2, e3}. The

details about dual space and reciprocal basis can be found in references (Borisenko

et al., 1979). In general, a vector space must require two spaces represented by two

different sets of vector basis. In fact, an orthogonal unitary coordinates system can
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be seen as a special case for general nonorthogonal coordinates system, where covari-

ant and contravariant basis in such an orthogonal unitary coordinates system (e.g.

Cartesian Coordinates system) coincide with each other.

The contravariant basis is defined to be orthogonal to the coordinates surfaces, so

we obtain the contravariant basis by taking the gradient of these surfaces:

ei = ∇ui. (3.6)

Plugging Eq.(3.1) into Eq.(3.6), we can have contravariant basis as


e1 = x̂ · cos τZ + ŷ · sin τZ + τY ẑ,

e2 = −x̂ · sin τZ + ŷ · cos τZ − τX ẑ,

e3 = ẑ.

(3.7)

This is a different set of basis other than the covariant basis in Eq.(3.5). We can see

that the basis vector e3 is always along the ẑ, which is consistent with the definition

that e3 is always orthogonal to the Z-coordinates surface. X-coordinates and Y -

coordinates surfaces are not easy to visualize, but they can be seen as the twisted xz

and yz plane following the helix path. Thus, in general, the vectors e1 and e2 are

nonorthogonal and oblique with respect to the vector e3.

Correspondingly, the coordinates based on the contravariant basis is called co-

variant coordinates represented as {u1, u2, u3}. Since an unique spacial point can

be expressed as both contravariant coordinates in covariant basis and covariant coor-

dinates in contravariant basis, we have the relation Σiuie
i = Σju

jej. Defining the so

called metric tensor gij = ei · ej, we can link covariant coordinates {u1, u2, u3} and

contravariant coordinates {u1, u2, u3} as

ui = Σj gij u
j. (3.8)

37



Using Eq.(3.1), Eq.(3.5) and Eq.(3.8), we have the covariant coordinates as


u1 = X − (τZ) · Y,

u2 = Y + (τZ) ·X,

u3 = [1 + τ 2(X2 + Y 2)]Z.

(3.9)

3.1.2 Maxwell Equations in Helicoidal Coordinates System

Now, with the contravariant coordinates in covariant basis and covariant coordi-

nates in contravariant basis, we can rewrite the Maxwell equations in this dual space

with this Helicoidal coordinates system {X, Y, Z} or {u1, u2, u3}.

First, let’s rewrite the curl of a general vector field F in this dual space. As

usual, the curl of the vector field F is calculated by the line integral of F around an

infinitesimal close path

(∇× F) · n = lim
L→0

1

L

∫
F · dl. (3.10)

However, comparing with the case in Cartesian coordinates, the differences are: the

basis of vector n on the left-hand-side must take the contravariant basis {e1, e2, e3}

because it is always orthogonal to the coordinates surfaces; the basis of vector dl

on the right-hand-side must take the covariant basis {e1, e2, e3} because it is always

along the coordinates curves. The Eq.(3.10) will end up with

(∇× F) · e1 = 1
√
g

[
∂

∂u2
(F · e3)−

∂

∂u3
(F · e2)

]
, (3.11)

where we choose the line integral on the e1-constant coordinate surface, and g is

defined as the determination of metric tensor gij. For Helicoidal coordinates, we have

g = det |gij| = 1. (3.12)
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In Eq.(3.11), the left-hand-side is the curl’s contravariant component (∇×F)i = (∇×

F) · ei, while the right-hand-side is a function of the F vector’s covariant component

Fi = F · ei. Then, we can write down the equation for the curl of the vector field F:

∇× F =

∣∣∣∣∣∣∣∣∣∣
e1 e2 e3

∂
∂X

∂
∂Y

∂
∂Z

F1 F2 F3

∣∣∣∣∣∣∣∣∣∣
= [{∇i} ⊗ {Fi}]ei, (3.13)

where the {∇i} ⊗ {Fi} catches the inner index rotation inside the determination. So

in the Helicoidal coordinates, the curl of a vector field ∇ × F is finally expressed

with the following quantities: covariant basis ei, covariant components of the vector

field {Fi} = {F1, F2, F3}, and the derivative with respect to contravariant coordinates

{∇i} = {∇1,∇2,∇3} = {∂/∂u1, ∂/∂u2, ∂/∂u3} = {∂/∂X, ∂/∂Y, ∂/∂X}. Therefore,

for the two curl equations in Maxwell equations, we have

{{∇i} ⊗ {Ei}} = − ∂

∂t
{Bi}, (3.14)

{{∇i} ⊗ {Hi}} =
∂

∂t
{Di}. (3.15)

For the two divergence equations in Maxwell equation, we can write down as

{∇i} · {Bi} = 0, (3.16)

{∇i} · {Di} = 0, (3.17)

where Einstein’s notation is applied. Assuming monochromatic field, we can rewrite

Eq.(3.14) and Eq.(3.15) as

{{∇i} ⊗ {Ei}} = −jω{Bi}, (3.18)

{{∇i} ⊗ {Hi}} = jω{Di}. (3.19)
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These two equations are going to be used in the later sections to derive the coupled

mode equations in the Helicoidal coordinates system.

3.1.3 Cartesian to Helicoidal Coordinates Transformation

Regarding one-to-one principle from Cartesian coordinates {x, y, z} to Helicoidal

Coordinates {X,Y, Z}, we define the Jacobian matrix of Cartesian coordinates {x, y, z}

with respect to Helicoidal Coordinates {X,Y, Z} as Jx,y,z
X,Y,Z :

Jx,y,z
X,Y,Z =

∂(x, y, z)

∂(X, Y, z)
, (3.20)

=


cos τz − sin τz −τX sin τz − τY cos τz

sin τz cos τz τX cos τz − τY sin τz

0 0 1

 . (3.21)

The name of “Jacobian matrix” comes from the definition that the determination

J = det |Jx,y,z
X,Y,Z | is called as “Jacobian of {x, y, z} with respect to {X,Y, Z}”. The

Jacobian matrix J is actually characterizing the coordinates transformation from

Helicoidal Coordinates to Cartesian coordinates:

Jcontrav.
Hel.→Car. = Jx,y,z

X,Y,Z , (3.22)

which transforms from the coordinates X, Y, Z in subscripts to the coordinates x, y, z

in superscripts. From now on, we will use J = Jx,y,z
X,Y,Z for convenience.

Therefore, we have the transformation from contravariant component in Helicoidal

coordinates {F i}Hel. to Cartesian vector FCar.:

FCar. = J{F i}Hel.. (3.23)

Then, the inverse transformation gives the transformation from Cartesian vector FCar.
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to contravariant component in Helicoidal coordinates {F i}Hel. with the inverse Jaco-

bian matrix J−1:

{F i}Hel. = J−1FCar.. (3.24)

According to the relation of covariant and contravariant components, we can express

the transformation from the covariant components in Helicoidal coordinates {Fi}Hel.

to Cartesian vector FCar. with the transpose of inverse Jacobian matrix (J−1)T:

FCar. = (J−1)T{Fi}Hel.. (3.25)

With these transformations between Helicoidal coordinates and Cartesian coordi-

nates, we can apply the constitutive relation to the right-hand-side of Eq.(3.18) and

Eq.(3.19) , and have the following expressions:

{Bi} = J−1BCar.,

= J−1µ0µ̃cHCar.,

= µ0J
−1µ̃c(J

−1)T{Hi}, (3.26)

where µ̃c tensor is expressed in Cartesian coordinates. Similarly, we have

{Di} = ϵ0J
−1ϵ̃c(J

−1)T{Ei}, (3.27)

where ϵ̃c tensor is expressed in Cartesian coordinates.

Now, by substituting Eq.(3.26) and Eq.(3.27) into Eq.(3.18) and Eq.(3.19), we can

express the two curl Maxwell equations with covariant coordinates {u1, u2, u3} and

covariant basis {e1, e2, e3}. Thus, we can write down the two curl Maxwell equations

in Helicoidal coordinates (Eq.(3.18) and Eq.(3.19)) in the same mathematical form
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as in Cartesian coordinates but with different meaning of each physical quantity:

∇× E = −jµ0ωµ̃hH, (3.28)

∇×H = jϵ0ωϵ̃hE, (3.29)

where the curl product operates with the covariant basis {ei}, the vector field is ex-

pressed with covariant components E = {E1, E2, E3},H = {H1, H2, H3}, the deriva-

tive is with respect to the contravariant coordinates ∇ = {∂/∂u1, ∂/∂u2, ∂/∂u3}, and

the new electric permittivity tensor ϵ̃h and magnetic permeability tensor µ̃h are

ϵ̃h = J−1ϵ̃c(J
−1)T, (3.30)

µ̃h = J−1µ̃c(J
−1)T. (3.31)

Therefore, we can have such a general conclusion: In any general coordinates system

regardless of their orthogonality or unitary properties, the Maxwell equations can

keep the same mathematical form as in Cartesian coordinates system, and the only

difference is captured by the electric permittivity tensor ϵ̃ and magnetic permeability

tensor µ̃, which follow the transformation in Eq.(3.30) and Eq.(3.31).

More simply put, in a new coordinates system other than Cartesian coordinates,

instead of changing the mathematical form of Maxwell equations written in Cartesian

coordinates, we can change the material property (changing the electric permittivity

tensor ϵ̃ and magnetic permeability tensor µ̃) for the convenience of keeping the same

mathematical form in the new coordinates system. Taking the homogenous isotropic

medium for example, a scalar number of the electric permittivity or magnetic per-

meability can turn into a tensor with inhomogeneous distribution and anisotropic

off-diagonal components: the homogenous isotropic material will appear to be inho-

mogenous and anisotropic in the new coordinates system. However, by sacrificing the

material simplicity (go from homogenous isotropic to inhomogenous anisotropic), it is
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also possible that, in the new coordinates system, the complex geometry of unsolved

problem can have a simple and straightforward geometry, which would thus provide

an easy approach of solution. This is the general idea of building the theoretical

model for CCC structures in the Helicoidal coordinates system.

3.1.4 Coupled Mode Equations in Helicoidal Coordinates System

Intuitively, working with the Helicoidal coordinates will make CCC structure’s

geometry become straight parallel waveguides, so it allows us to employ analytical

means (i.e. coupled mode equations) to analyze the modal propagation. Therefore,

it is essential to formulate the coupled mode equations in the Helicoidal coordinates

based on the Maxwell equations Eq.(3.28) and Eq.(3.29).

First, in the Helicoidal coordinates, we assume two modal field {Ea,Ha} and

{Eb,Hb} are propagating with slowly varying envelope A(Z) and B(Z) respectively.

Thus, we have the two curl Maxwell equations for each individual modal fields as

∇× Ea,b = −jωµ0µ̃hHa,b, ∇×Ha,b = jωϵ0(ϵ̃
s
h +∆ϵ̃a,bh )Ea,b, (3.32)

and for two curl Maxwell equations with total fields A(Z)Ea+B(Z)Eb and A(Z)Ha+

B(Z)Hb, we have

∇× [A(Z)Ea +B(Z)Eb] = −jωµ0µ̃h [A(Z)Ha +B(Z)Hb] , (3.33)

∇× [A(Z)Ha +B(Z)Hb] = jωϵ0(ϵ̃
s
h +∆ϵ̃ah +∆ϵ̃bh +∆ϵ̃ptbh ) [A(Z)Ea +B(Z)Eb] .

(3.34)

where ϵ̃sh is the substrate permittivity, ∆ϵ̃ah,∆ϵ̃
b
h are the permittivity differences for

guiding the two modal fields, and ∆ϵ̃ptbh is the general perturbations.

For an arbitrary scalar function f(Z), which actually implies the slowly varying
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envelope A(Z) or B(Z), Eq.(3.13) gives

∇× [f(Z)F] =

∣∣∣∣∣∣∣∣∣∣
e1 e2 e3

∂
∂X

∂
∂Y

∂
∂Z

f(Z)F1 f(Z)F2 f(Z)F3

∣∣∣∣∣∣∣∣∣∣
,

= f(Z)[∇× F] +

∣∣∣∣∣∣∣∣∣∣
e1 e2 e3

0 0 ∂
∂Z
f(Z)

F1 F2 F3

∣∣∣∣∣∣∣∣∣∣
,

= f(Z)[∇× F] +
df(Z)

dZ
{−F2, F1, 0}, (3.35)

We define unit vector Ẑ as:

Ẑ =
e3
|e3|

= {0, 0, 1}, (3.36)

Then, we can rewrite Eq.(3.35) more compact as

∇× [f(Z)F] = f(Z)[∇× F] +
df(Z)

dZ
[Ẑ× F]. (3.37)

Using Eq.(3.32)-(3.34) and Eq.(3.37), we can obtain

dA(Z)

dZ
[Ẑ× Ea] +

dB(Z)

dZ
[Ẑ× Eb] = 0, (3.38)

dA(Z)

dZ
[Ẑ×Ha] +

dB(Z)

dZ
[Ẑ×Hb] = jωϵ0(∆ϵ̃

a
h +∆ϵ̃ptbh )EbB(Z)

+jωϵ0(∆ϵ̃
b
h +∆ϵ̃ptbh )EaA(Z). (3.39)

Now, we substitute Eq.(3.38) and Eq.(3.39) into the following integrals which inte-

grate over the entire Z-constant surface (coordinate surface):

∫
[E∗

a · (3.39)−H∗
a · (3.38)]dS|Z = 0,

∫
[E∗

b · (3.39)−H∗
b · (3.38)]dS|Z = 0, (3.40)
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where we have the area dS|Z expressed in the dual space of Helicoidal coordinates

with
√
g = 1 and |e3| = 1:

dS|Z =
√
g|e3|dXdY, (3.41)

Substituting Eq.(3.41) and the relations

E∗ · (Ẑ×H) = −Ẑ · (E∗ ×H), H∗ · (Ẑ× E) = Ẑ · (E×H∗), (3.42)

into Eq.(3.40), we can obtain the forms:

 dA/dz +Xab · dB/dz = −jκaa · A− jκab ·B,

dB/dz +Xab · dA/dz = −jκba · A− jκbb ·B.
(3.43)

To include the longitudinal dependence into the equation, we take the substitution

Ea,b → Ea,be
−jβa,bz, Ha,b → Ha,be

−jβa,bz, (3.44)

into Eq.(3.40), we can obtain the general form of coupled mode equations:

 dA/dz · e−jβaz +Xab · dB/dz · e−jβbz = −jκaa · Ae−jβaz − jκab ·Be−jβbz,

dB/dz · e−jβbz +Xab · dA/dz · e−jβaz = −jκba · Ae−jβaz − jκbb ·Be−jβbz,
(3.45)

where Xab and Xba are two dimensionless cross power ratios:

Xpq =

∫ ∫
Ẑ · (E∗

p ×Hq + Eq ×H∗
p)dXdY∫ ∫

Ẑ · (E∗
p ×Hp + Ep ×H∗

p)dXdY
, p, q = a, b; (3.46)

κaa and κbb are two self-coupling terms:

κpp =
ωϵ0

∫ ∫
E∗

p(∆ϵ̃
q
h +∆ϵ̃ptbh )EpdXdY∫ ∫

Ẑ · (E∗
p ×Hp + Ep ×H∗

p)dXdY
, p = a, b; (3.47)
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κab and κba are two cross-coupling terms which quantify the coupling strength

between the two modal fields:

κpq =
ωϵ0

∫ ∫
E∗

p(∆ϵ̃
p
h +∆ϵ̃ptbh )EqdXdY∫ ∫

Ẑ · (E∗
p ×Hp + Ep ×H∗

p)dXdY
, p, q = a, b. (3.48)

We can see the coupled mode equations in the Helicoidal coordinates also have the

same mathematical form that has been derived in the Cartesian coordinates as long

as we keep in mind that the quantities here have their specific meaning with respect

to covariant and contravariant dual space.

We can simplify the coupled mode equations as

 dA/dz = −jκab ·Be−j(βb−βa)z,

dB/dz = −jκba · Ae−j(βa−βb)z,
(3.49)

where the new forms of propagation constants βa and βb take the substitutions:

βa +
κaa − κbaXab

1−XabXba

→ βa, βb +
κbb − κabXba

1−XabXba

→ βb, (3.50)

and the new forms of coupling coefficients κab and κba take the substitutions:

κab − κbbXab

1−XabXba

→ κab,
κba − κaaXba

1−XabXba

→ κba. (3.51)

This is a very simple form of ordinary differential equations, and its analytical solution

is very well known. In later chapters, we will obtain the analytical solution of this

two-mode coupling equations, which can be used to analyze the general designing

approach of certain CCC fibers.

In some literature, there is another form of coupled mode equations which is

completely equivalent but more convenient to see the physical meaning of each terms.

We can put the harmonic longitudinal dependence e−jβz into the envelope function
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A(Z) and B(Z)

Ae−jβaz → A, Be−jβbz → B. (3.52)

Then, we can use this sort of “fast-varying” envelope to formulate the general form

of coupled mode equations in another way:

 1 Xab

Xba 1


 dA/dZ

dB/dZ

 = −j

 βa + κaa κab + βbXab

κba + βaXba βb + κbb


 A

B

 . (3.53)

Here, we can see that the self-coupling terms κaa and κbb only contribute as additional

corrections to the effective propagation constants as [βa,b + κaa,bb]. Usually, the two

coupling modes are supposed to be orthogonal or almost orthogonal, so the terms

with Xab and Xba are commonly small enough to be neglected. Thus, the key of this

coupling system relies on the cross-coupling terms κab and κab.

To evaluate the cross-coupling terms κab and κab, all we need to know are:

1. The perturbing permittivity tensors.

2. The eigenmode fields that get perturbed.

In the next section, we will focus on the permittivity of CCC structure, which is the

first item. Then, we will analyze the eigenmode fields perturbed by different types of

perturbing permittivity tensors, which is the second item.
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3.2 CCC Permittivity and Structure in Cartesian Coordi-

nates System and Helicoidal Coordinates System

3.2.1 Permittivity and Structure of CCC Fibers

Now, let’s start illustrating the coordinates transformation procedure of CCC

permittivity and structure. For a given CCC permittivity ϵ̃, we first start with the

expression in a fixed Cartesian cross-section {x0, y0, z0}. In this cross-section, we have

the CCC permittivity tensor ϵ̃ expressed as a general form:

ϵ̃c(x0, y0, z = z0) =


ϵ1(x0, y0) ϵ6(x0, y0) ϵ5(x0, y0)

ϵ6(x0, y0) ϵ2(x0, y0) ϵ4(x0, y0)

ϵ5(x0, y0) ϵ4(x0, y0) ϵ3(x0, y0)

 . (3.54)

The reason to start with this expression is that, this general permittivity expression

is a z-independent 2D expression, which will help deriving the permittivity tensor for

the 3D rotating CCC structure in both Cartesian coordinates ϵ̃c(x, y, z) and Helicoidal

coordinates ϵ̃h(X,Y, Z).

The transformation from 2D cross-section expression ϵ̃c(x0, y0) to 3D Cartesian

CCC rotating structure ϵ̃c(x, y, z) is actually a rotation operation in terms of co-

ordinates transformation, which is graphically shown in Figure 3.1. This rotation

operation requires two steps:

1. Transform the tensor matrix ϵ̃;

2. Rotate the scalar distribution function by making the substitution from

{x0, y0, z0} to {x, y, z}.

It is very important to fulfill both of two operations.

Regarding the first step, we have the tensor matrix rotation transformation ac-
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cording to the Jones matrix theory (Yariv and Yeh, 2003):

ϵ̃c(x0, y0) → R−1
3 (τz) · ϵ̃c0(x0, y0) ·R3(τz). (3.55)

This is the new tensor form, but the scalar distribution functions ϵ1,2,3,4,5,6 of each

components are still functions of {x0, y0}. Thus, we need to make the substitution

from {x0, y0, z0} to {x, y, z} to fulfill the second step:


x0

y0

z0

 =


x cos τz + y sin τz

−x sin τz + y cos τz

z

 = R3(τz)


x

y

z

 . (3.56)

Therefore, the 3D Cartesian CCC permittivity ϵ̃c(x, y, z) can be expressed as:

ϵ̃c(x, y, z) = R−1
3 (τz) · ϵ̃c0(x0, y0) ·R3(τz),

= R−1
3 (τz) · ϵ̃c0(x cos τz + y sin τz,−x sin τz + y cos τz) ·R3(τz).

(3.57)

Here, the 3D anti-clockwise rotation matrix R3(θ) and its inverse matrix R−1
3 (θ) =

R3(−θ) as clockwise rotation are defined as

R3(θ) =

 R(θ) 0

0 1

 , R3(−θ) =

 R(−θ) 0

0 1

 , (3.58)

where R(θ) and R−1(θ) = R(−θ) are the 2D anti-clockwise and clockwise rotation:

R(θ) =

 cos θ sin θ

− sin θ cos θ

 , R(−θ) =

 cos θ − sin θ

sin θ cos θ

 . (3.59)

The transformation from Cartesian CCC permittivity ϵ̃c(x, y, z) to Helicoidal CCC
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Figure 3.1: Anti-Clockwise CCC Structure: The 3D anti-clockwise CCC structure is
generated by anti-clockwisely rotating the fixed z = z0 2D cross-section.

permittivity ϵ̃h(X,Y, Z) also requires two operations — tensor matrix transformation

following Eq.(3.30) and scalar distribution substitution following Eq.(3.4):

ϵ̃h(X, Y, Z) = J−1 · ϵ̃c(x, y, z) · (J−1)T,

= J−1 · ϵ̃c(X cos τZ − Y sin τZ,X sin τZ + Y cos τZ, Z) · (J−1)T,

(3.60)

where the variables of scalar function are substituted from {x, y, z} to {X, Y, Z}:


x

y

z

 =


X cos τZ − Y sin τZ

X sin τZ + Y cos τZ

Z

 = R−1
3 (τz)


X

Y

Z

 . (3.61)

Therefore, using Eq.(3.57) and Eq.(3.60), we have the transformation from the 2D
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cross-section expression ϵ̃c(x0, y0) to 3D Helicoidal CCC permittivity ϵ̃h(X,Y, Z):

ϵ̃h(X, Y, Z) = J−1 ·R−1
3 · ϵ̃c(x0, y0) ·R3 · (J−1)T,

= J−1 ·R−1
3 · ϵ̃c(X,Y ) ·R3 · (J−1)T, (3.62)

where the substitution from {x0, y0, z0} to {X,Y, Z} follows Eq.(3.56) and Eq.(3.61):


x0

y0

z0

 = R3(τz) ·

R−1
3 (τz) ·


X

Y

Z


 =


X

Y

Z

 , (3.63)

Here, we can rewrite the expression of Jacobian Matrix J in Eq.(3.21) as:

J =

 R−1(τz) τR−1(τz)ρ̄

0 1

 , ρ̄ =

 −Y

X

 . (3.64)

With this compact form, we can write down J−1 and (J−1)T as:

J−1 =

 R(τz) −τ ρ̄

0 1

 , (J−1)T =

 R−1(τz) 0

−τ ρ̄′ 1

 , (3.65)

which leads to two matrices on left and right of ϵ̃c(X,Y ) in Eq.(3.62) as:

TL = J−1 ·R−1
3 =

 I −τ ρ̄

0 1

 =


1 0 τY

0 1 −τX

0 0 1

 , (3.66)

TR = R3 · (J−1)T =

 I 0

−τ ρ̄′ 1

 =


1 0 0

0 1 0

τY −τX 1

 . (3.67)
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Figure 3.2: “Unwounded” CCC Structure: The CCC structure is “unwounded” by
coordinates transformation. The CCC permittivity tensor in Helicoidal
coordinates system is z-independent (Z-independent in Eq.(3.68)).

Then, due to the rule of associativity for matrix chain multiplication, we can finally

express the general form of CCC permittivity in Helicoidal coordinates ϵ̃h(X, Y, Z)

by substituting Eq.(3.66), Eq.(3.66) and Eq.(3.54) into Eq.(3.62):

ϵ̃h(X, Y, Z) = TL · ϵ̃c(x0, y0) ·TR

=


1 0 τY

0 1 −τX

0 0 1




ϵ1(X,Y ) ϵ6(X, Y ) ϵ5(X, Y )

ϵ6(X,Y ) ϵ2(X, Y ) ϵ4(X, Y )

ϵ5(X,Y ) ϵ4(X, Y ) ϵ3(X, Y )




1 0 0

0 1 0

τY −τX 1

 ,

(3.68)

which indeed shows that the CCC structure is “unwounded” by coordinates trans-

formation, and the CCC permittivity tensor in the Helicoidal coordinates system is

z-independent. We can see that, the cancelation of z-dependent rotation term τz

in Eq,(3.62) comes from the fact that the rotation of distribution function and the

rotation of coordinates basis are always opposite to each other.
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3.2.2 Anisotropic Model of CCC Fibers

The ideal CCC fibers are made of amorphous fused silica, which means the ideal

CCC fibers are supposed to be isotropic medium. However, the practically-made CCC

fibers contain the strain-induced birefringence due to the manufacture process. These

strain-induced birefringence are weak compared with the isotropic part, so we consider

them as perturbations. We are going to build a model to analyze the anisotropic CCC

structure, which includes two isotropic cores, one perturbation regions with linear and

torsional birefringence, and a homogeneous isotropic cladding.

The linear birefringence will appear due to the cooling process when CCC fibers

are drawn (Yablon, 2004). The refractive index differences between cladding, central

core and side core are achieved by applying different doping concentration in the

regions of central and side cores. The differences in doping concentration, in turn,

induce the differences in thermal-expansion coefficients. Thus, during the cooling

process of CCC fiber drawing, plane strain exx, eyy and exy (also eyx) will rise, which

would cause linear birefringence terms ∆ϵ1, ∆ϵ2 and ϵ6 to appear through photoelastic

effect (Tai and Rogowski , 2002).

The torsional birefringence is caused by the rotation process during the CCC fibers

fabrication. As known, fused silica fibers are drawn when the amorphous fiber preform

is heated to a condition with a viscosity. The differences in doping concentration also

cause the differences in viscosity coefficients. Hence, when the CCC fiber preform

is rotating when it is drawn, different viscosity will induce shear strain exz and ezx,

and eyz and ezy (Pietralunga et al., 2006; Li et al., 2004), which would in turn cause

torsional birefringence ϵ4 and ϵ5 to rise through photoelastic effect.

Since the plane strain terms are well-known and easily calculable physical quanti-

ties, we can calculate the distribution of plane strains in the cross section of the CCC

fibers either analytically or numerically. We use FEM-based software called “COM-

SOL Multi-Physics” to simulate the cooling-induced linear strains . The distribution

53



Figure 3.3: COMSOL-Calculated Strain Distribution in CCC Fiber Cross Section.
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of exx, eyy and exy are simulated and shown in Figure 3.3. In this figure, subplot

(d) shows the strain energy distribution is a ring shape surrounding the two cores,

while the orientation of this particular cross section gives different distributions of

exx, eyy and exy in (a), (b)and (c). Also from (d), we can see that the plane strain

is more heavily distributed at the region between the two cores. This is because the

doping concentration experiences the most dramatic change in this region, which in

turn causes the most dramatic change in thermal-expansion coefficients.

The shear strains exz and ezx, and eyz and ezy are not quantitatively calculable.

However, we can legitimately assume these shear strain terms are also heavily dis-

tributed in the region between two cores, because it is supposed to have the most

dramatic change in viscosity coefficients as well. In addition, the measurement does-

n’t show any sign of shear strain induced optical activity in the core, so it is also

necessary to assume that the shear strain region is outside the cores.

It is possible to use the simulated strain distribution in Figure 3.3 to simulate

the performance of practically-made CCC fibers. However, to continue with a less

complicated physical model, we simplify the specific distribution of strains shown in

Fig. 3.3 into a mathematically describable distribution of strains and strain-induced

birefringence. Because both the linear and the torsional birefringence is heavily dis-

tributed at the region between two cores, and the more important point is we are

mainly studying the coupling between two cores, it is physically reasonable and nec-

essary to assume that the birefringence region is a single ellipse located between the

two core, as shown in Figure 3.4.

Therefore, our anisotropic model of CCC fibers is based on the distribution on

Figure 3.4, and there are totally 4 parts: a homogenous isotropic cladding ϵsc, an

isotropic cylindrically central-symmetric central core ∆ϵac(x0, y0), an isotropic cylin-

drical side core ∆ϵbc(x0, y0), and an anisotropic ellipse region with a tensor perturba-

tion ∆ϵ̃ptbc (x0, y0). We can separate the expression of anisotropic CCC permittivity
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Figure 3.4: Simplified Perturbation Region for Anisotropic CCC Fibers.

into an isotropic part ϵ̃Isoc (x0, y0) and an anisotropic part ∆ϵ̃ptbc (x0, y0):

ϵ̃c(x0, y0, z = z0) = ϵ̃Isoc (x0, y0) + ∆ϵ̃ptbc (x0, y0), (3.69)

where the isotropic permittivity tensor ϵ̃Isoc (x0, y0) contains isotropic cladding ϵ
s
c, and

two isotropic cores ∆ϵac(x0, y0) and ∆ϵbc(x0, y0):

ϵ̃Isoc (x0, y0) =
[
ϵsc +∆ϵac(x0, y0) + ∆ϵbc(x0, y0)

]
· I. (3.70)

and the anisotropic perturbation tensor ∆ϵ̃ptbc (x0, y0) contains linear birefringence

∆ϵ̃Lc (x0, y0) and torsional birefringence ∆ϵ̃Tc (x0, y0):

∆ϵ̃ptbc (x0, y0) = ∆ϵ̃Lc (x0, y0) + ∆ϵ̃Tc (x0, y0). (3.71)

In the following sections, we will separately investigate the linear birefringence ∆ϵ̃Lc (x0, y0)

and torsional birefringence ∆ϵ̃Tc (x0, y0) in detail.
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3.2.3 Linear Birefringence of Anisotropic CCC

The plane strain induced linear birefringence at z = z0 cross section can be ex-

pressed as:

∆ϵ̃Lc (x0, y0, z = z0) =


∆ϵ1(x0, y0) ϵ6(x0, y0) 0

ϵ6(x0, y0) ∆ϵ2(x0, y0) 0

0 0 0

 . (3.72)

From the plane strain simulation, we can see that, at certain cross section (shown

in Figure 3.3c), ϵ6(x0, y0) can be approximated to be zero between two cores, while

∆ϵ1(x0, y0) and ∆ϵ2(x0, y0) reach the peak values. Therefore, we can assume Eq.(3.72)

is written in such a cross section, so ϵ6(x0, y0) ≈ 0, and ∆ϵ1(x0, y0) and ∆ϵ2(x0, y0) are

the peak values: ∆ϵ1,2(x0, y0) = −n4
0p11e1,2(x0, y0), where the plane strain distribution

gives e1(x0, y0) = −e2(x0, y0). Thus, the linear birefringence dnl between the fast and

slow axis is proportional to |e1− e2| = |exx− eyy| = |exx|+ |eyy| (shown in Figure 3.3e

and Figure 3.3f), and it would take the form

dnl = −n3
0p11[|exx(x0, y0)|+ |eyy(x0, y0)|], (3.73)

for which we give it a moderate estimate to be 0.5 × 10−3. Then, we can define the

distribution function of linear birefringence D(x0, y0) at {x0, y0} cross section as

D(x0, y0) = n0 · dnl(x0, y0) = ∆ϵ1(x0, y0) = −∆ϵ2(x0, y0). (3.74)

Hence, we have linear perturbation such a 2D cross section as

∆ϵ̃Lc (x0, y0) =


D(x0, y0) 0 0

0 −D(x0, y0) 0

0 0 0

 . (3.75)
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Substituting the Eq.(3.75) into Eq.(3.57) and using the substitution (x0, y0) →

(x cos τz+y sin τz,−x sin τz+y cos τz), we have the 3D distribution of linear pertur-

bation in Cartesian coordinates expressed as:

∆ϵ̃Lc (x, y, z) =


D(x, y, z) · cos 2τz D(x, y, z) · sin 2τz 0

D(x, y, z) · sin 2τz −D(x, y, z) · cos 2τz 0

0 0 0

 . (3.76)

This means that the 3D distribution function of linear perturbation in Cartesian co-

ordinates system is a z-dependent function D(x, y, z). In addition, the tensor compo-

nents become “double-helix” winding following the helical rotation(evolving as sin 2τz

and cos 2τz), which is consistent with the fact that this linear birefringence is along

the radius vector. This is an very important conclusion regarding the physical picture

of QPM conditions in CCC fibers within Cartesian coordinates. When we numerically

simulate the optical waves propagation in CCC structure within the so called “labora-

tory” coordinates system (essentially Cartesian coordinates system), this double-helix

winding is critical to understand the origin of QPM. Detailed discussion can be found

in Chapter V.

Substituting the Eq.(3.75) into Eq.(3.68) and using substitution in Eq.(3.61), we

have the linear perturbation in the Helicoidal coordinates:

∆ϵ̃Lh (X,Y, Z) =


D(X, Y ) 0 0

0 −D(X, Y ) 0

0 0 0

 . (3.77)

This means both the amplitude distribution and the direction distribution of the

linear birefringence are fixed in the Helicoidal coordinates, which are expected from

the general analysis in Eq.(3.68). This is the form we are going to use for the CCC

theoretical model in Helicoidal coordinates system.
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3.2.4 Torsional Birefringence of Anisotropic CCC

For the torsional birefringence induced by the shear strain, the elasticity theory

shows the shear strains as e5 = −τy and e4 = τx (Timoshenko, 1970), so photoelastic

theory gives (Ulrich and Simon, 1979):

 ϵ5 = −n4
0[

1
2
(p11 − p12)]e5 = −n4

0[
1
2
(p11 − p12)](−τy) = −στy,

ϵ4 = −n4
0[

1
2
(p11 − p12)]e4 = −n4

0[
1
2
(p11 − p12)]τx = στx,

(3.78)

where we define torsional photoelastic constant σ as

σ = −n4
0

[
1

2
(p11 − p12)

]
. (3.79)

Then, we have the torsional birefringence in the fixed z0 cross section

∆ϵ̃Tc (x0, y0) =


0 0 −σ(x0, y0)τy0

0 0 σ(x0, y0)τx0

−σ(x0, y0)τy0 σ(x0, y0, )τx0 0

 . (3.80)

However, Eq.(3.80) is derived for a twisted rod with elasticity (Timoshenko, 1970),

which applies for the case of twisting an optical fiber. Here, we have a different situ-

ation: a rod with viscosity (heated CCC fiber preform) is twisted, and the torsional

strain is frozen into CCC fibers during the cooling process. Thus, the form of tor-

sional birefringence is expected to be different from Eq.(3.80). Here, we assume the

form of the torsional birefringence as

∆ϵ̃Tc (x0, y0, z) =


0 0 −σ(x0, y0)τy′

0 0 σ(x0, y0)τx
′

−σ(x0, y0)τy′ σ(x0, y0)τx
′ 0

 , (3.81)
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where x′ = x0 cos τz−y0 sin τz, y′ = x0 sin τz+y0 cos τz. This assumption means that

we still assume the same amplitude distribution function for torsional birefringence as

σ(x0, y0), but the direction of the torsional strain is different from the one in Eq.(3.80).

Because the torsional strains induced by viscosity is not clear yet, we are not sure

why it could take this form in Eq.(3.81) other than the one in Eq.(3.80) at this point,

but we do know that the form in Eq.(3.81) leads us to the right conclusion.

Substituting Eq.(3.81) into Eq.(3.57), we can have the 3D torsional birefringence

perturbation in the Cartesian coordinates as

∆ϵ̃Tc (x, y, z) = τσ(x, y, z)


0 0 −y′′

0 0 x′′

−y′′ x′′ 0

 , (3.82)

where x′′ = x cos τz + y sin τz, y′′ = −x sin τz + y cos τz. Comparing with the lin-

ear birefringence ∆ϵ̃Lc (x, y, z) in Eq.(3.76) which is double-helix winding and always

parallel to the radius vector, we can see that the torsional birefringence perturba-

tion ∆ϵ̃Tc (x, y, z) here is single-helix winding and always perpendicular to the radius

vector.

Substituting Eq.(3.81) into Eq.(3.68), we can explicitly write down the torsional

birefringence perturbation in the Helicoidal coordinates as

∆ϵ̃Th (X,Y, Z) = σ(X,Y )


−2τ 2Y y τ 2(Xy + xY ) −τy

τ 2(Xy + xY ) −2τ 2Xx τx

−τy τx 0

 , (3.83)

where x′ = X cos τZ − Y sin τz, y′ = X sin τZ + Y cos τZ. This is the form we are

going to use for the CCC theoretical model in the Helicoidal coordinates system.
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3.3 Helical Modes and QPM Resonances

3.3.1 Helical Modes Inside Each Isotropic Core

By substituting Eq.(3.70) into Eq.(3.68) and using substitution {x0 → X, y0 →

Y }, we can have the isotropic permittivity of CCC fibers in Helicoidal coordinates as

ϵ̃Isoh (X, Y ) =
[
ϵsc +∆ϵah(X, Y ) + ∆ϵbh(X, Y )

]
·TL ·TR. (3.84)

Inside each isotropic core, we have the permittivity tensor expressed as

ϵ̃Core
h (X, Y, Z) =

[
ϵsc +∆ϵa,bc (X, Y )

]
·TL ·TR. (3.85)

We can separate this permittivity tensor into two parts

ϵ̃Core
h (X, Y ) = ϵStrh +∆ϵ̃Rot

h , (3.86)

where the scalar part ϵStrh acts as a straight isotropic core:

ϵStrh = ϵsc +∆ϵa,bh (X,Y ), (3.87)

and the tensor part ∆ϵ̃Rot
h describes the rotation effect of CCC structure:

∆ϵ̃Rot
h = [ϵsh +∆ϵa,bh (X, Y )] ·TL ·TR ≈ ϵsc ·TL ·TR,

= ϵsc


τ 2Y 2 −τ 2XY τY

−τ 2XY τ 2X2 −τX

τY −τX 0

 . (3.88)

This leads to an important fact that, the straight fiber static modes (carrying no

angular momentum) inside each isotropic core are not eigenmodes anymore in the
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Helicoidal coordinates system: an extra perturbation tensor term ∆ϵ̃Rot
h appears.

The fundamental physics behind this conclusion is associated with the symmetry of

Helicoidal coordinates system. Indeed, the symmetry of Helicoidal coordinates is

a lower degree of symmetry compared with the traditional cylindrical symmetry in

straight fibers. Thus, the straight fiber static modes carrying the cylindrical symmetry

would not be the eigenmodes anymore.

To obtain the new fiber modes (as eigenmodes) inside each isotropic core in Heli-

coidal coordinates system, two approaches are used in this thesis: one is numerical,

and another is analytical. The numerical approach is to rigorously solve the Maxwell

equations for the eigenmodes with the permittivity tensor of each core ϵ̃Core
h (X,Y ) in

Eq.(3.86). The analytical approach is to use the coupled mode theory to analytically

solve for normal modes. The straight fiber static modes that are solved with the ϵStrh

can be considered as “zero-order” solutions. Then, the degenerate pairs of straight

fiber static modes would be perturbed by ∆ϵ̃Rot
h and mixed into the new eigenmodes,

which can be obtained by solving the coupled mode equations.

Due to the periodicity of CCC rotation structure, there might exist another modal

solution that is to the analogy of Bloch modes in periodical structures. Since the an-

alytical approach based on the coupled mode equations is actually giving a first order

approximation solutions, the Bloch mode approach might provide a more exact modal

solution in comparison. However, this Bloch mode approach would be more compli-

cated considering the nature of its rotational periodicity instead of linear periodicity.

Here, we just point out this approach for future analysis.

During the rest part of this section, we mainly focus on the analytical approach

based on the coupled mode equations. It would give us the helical modes carrying

orbital and spin optical angular momentums, and eventually lead us to the QPM

conditions of CCC fibers. We will not discuss the numerical approach in details, but

the numerical simulation results will be shown to confirm the results derived by the
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analytical approach.

The general form of coupled mode equations in Helicoidal coordinates is presented

in Eq.(3.53). For this particular problem — the coupling between a pair of two

degenerate zero-order straight fiber static modes denoted by “o” and “e” inside either

core “a” or core “b”, we can rewrite the coupled mode equations as

d

dz

 Aa,b
o

Aa,b
e

 = −j

 βa,b + κa,boo κa,boe

κa,beo βa,b + κa,bee


 Aa,b

o

Aa,b
e

 . (3.89)

Here, the cross-power ratio Xoe and Xeo disappear for two degenerate orthogonal

modal fields Eo and Ee. The two self-coupling terms κaa and κbb are defined as

κpp =
ωϵ0

∫ ∫
E∗

p∆ϵ̃
Rot
h EpdXdY∫ ∫

Ẑ · (E∗
p ×Hp + Ep ×H∗

p)dXdY
, p = a, b. (3.90)

Also, the two cross-coupling terms κab and κba are defined as:

κpq =
ωϵ0

∫ ∫
E∗

p∆ϵ̃
Rot
h EqdXdY∫ ∫

Ẑ · (E∗
p ×Hp + Ep ×H∗

p)dXdY
, p, q = a, b. (3.91)

Pairs of two degenerate zero-order straight fiber modes are very well known as HEo,e
nx(n =

1, 2, 3, ..., x = 1, 2, 3, ...) modal pairs and EHo,e
nx(n = 2, 3, 4, ..., x = 1, 2, 3, ...) modal

pairs, whose modal field expressions can be found in numerous textbooks and refer-

ences. For convenience, we present their expressions in the appendix of this chapter.

Substituting the modal fields of a certain degenerate zero-order modal pair into

Eq.(3.90) and Eq.(3.91), we can have two very interesting and important integration

results after some algebra calculation.

First, the integration result of Eq.(3.90), regardless of which modal pair plugged

in, always shows

κa,bee = κa,boo =
δ

2
τ 2R2

hβb, (3.92)
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where the symbol δ stands for:

δ =

 0, on-axis core,

1, off-axis core,
(3.93)

which means this term only exists for side core and vanishes for central core. This is

very important in physics, because it means that the effective propagation constant

of side core is lifted by the helical path, which has been intuitively pointed out:

βb + κbee,oo = βb(1 +
1

2
τ 2R2

h) ≈ βb

√
1 +

1

2
K2R2

h → βb, (3.94)

where we have relation τ = K.

Second, the integration result of Eq.(3.91), regardless of which modal pair plugged

in, always shows

κa,beo = −κa,boe = −jnτ = −jnK. (3.95)

This is also a very important result. It shows that the two off-diagonal cross-coupling

terms κa,beo and κa,boe are both pure imaginary quantities and mutually complex con-

jugate to each other, so they are analogous to the two optical activity terms in the

coupled mode equations of two orthogonally linearly polarized modes, which means

they would have the similar effect of optical activity. It turns out that these two

terms are the ones associated with angular momentum, and we would see that they

are responsible for the angular momentum associated new eigenmodes.

Then, with the substitution of Eq.(3.94) and Eq.(3.95), the coupled mode equa-

tions Eq.(3.89) becomes a coupling system with complex-conjugate off-diagonal terms

d

dz

 Aa,b
o

Aa,b
e

 = −j

 βa,b jnK

−jnK βa,b


 Aa,b

o

Aa,b
e

 . (3.96)
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For this linear system, we can solve it as an eigenvalue problem to obtain the new

eigenvector(eigenmodes) and eigenvalue(modal propagation constants):

d

dz

 Aa,b
o + jAa,b

e

Aa,b
o − jAa,b

e

 = −j

 βa,b + nK 0

0 βa,b − nK


 Aa,b

o + jAa,b
e

Aa,b
o − jAa,b

e

 . (3.97)

Therefore, we have found the eigenmodes for the CCC structure:

E± = Eo ± jEe, (3.98)

with their new modal propagation constants as

β± = β ± nK, (3.99)

which clearly shows the degeneracy breaking in the Helicoidal coordinates.

The new eigenmodes are the 90◦-phase-shift combination of degenerate mode pair

HEo,e
nx(n ≥ 1) or EHo,e

nx(n ≥ 2), or near-degenerate mode pair TE0x and TM0x. Here,

we limit our discussion to weakly-guiding fibers, so the near-degenerate mode pair

TE0x and TM0x can be approximated as degenerate mode pair and have the same

modal-field expression of EHo,e
nx(n = 0). We call these new eigenmodes as “Helical

modes”, and their general form of modal field takes:

Es
nx = s

 ET S̄s

γEz

 e−j(β+γsnK)z, (3.100)

where ET and Ez are expressed as

ET = β/u · Zn−γ · e−j(γsn−s)θ, Ez = jZn · e−jγsnθ, (3.101)

S̄s and s = ±1 are the circular polarization (S̄+corresponds to LCP, and S̄−corresponds
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to RCP) and its chiral sign (spin quantum number) of particular helical mode Es
nx:

S̄s =

 1

sj

 , (3.102)

and γ is the “type sign” depending on which type of helical modes:

γ =


+1, HE±

nx = HEodd
nx ± jHEeven

nx , n = 1, 2, 3, ...

−1, EH±
nx = EHodd

nx ∓ jHEeven
nx , n = 2, 3, 4, ...

−1, EH±
nx = TEodd

0x ∓ jTMeven
0x , n = 0.

(3.103)

For a certain pair of HE helical modes, namely HE±
nx = HEodd

nx ±jHEeven
nx , the phase

term e−j[±(n−1)]θ of ET is carrying orbital-angular-momentum(OAM) of±(n−1)~, and

the term e−j[±θ] of circular polarization S̄± is carrying spin-angular-momentum(SAM)

of ±~. The summation of OAM and SAM gives the total-angular-momentum(TAM)

as ±n~, which is actually the physical reason why the helical modes HE±
nx requires

an extra increment of propagation constant ∆β = ±nK.

For a certain pair of EH helical modes, namely EH±
nx = EHodd

nx ∓ jEHeven
nx includ-

ing TEodd
0x ∓ jTMeven

0x , the phase term e−j[∓(n+1)]θ of ET is carrying orbital-angular-

momentum(OAM) of ∓(n + 1)~, and the term e−j[±θ] of circular polarization S̄± is

carrying spin-angular-momentum(SAM) of ±~. So the summation of OAM and SAM

gives the total-angular-momentum(TAM) as ∓n~, which is also the physical reason

why the helical modes EH±
nx requires an extra increment of propagation constant

∆β = ∓nK.

We can also notice that, for either HE or EH helical modes, the longitudinal modal

field sγEze
−j(β+γsnK)z doesn’t have SAM. Thus, the longitudinal modal field only has

OAM, and TAM is equal to OAM. Physically, this is because the electric field of the

longitudinal modal field is always pointing at the same direction as the propagation

direction, so it would not have a circular polarization nor even a linear polarization
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at all. However, we can see that it is still consistent to have TAM equal to ±n~ and

∓n~ for HE and EH helical modes respectively.

By combining the degenerate or near-degenerate straight fiber modes into so called

“LP-modes”(modal groups), we can summarize the helical modes in LP|l|x group as

ELP
|l|x = s

 β/u · Z|l|e
−jlθ · S̄s

γ · jZ|l+s|e
−j(l+s)θ

 e−j(β+lK+sK)z, (3.104)

where the |l| is the mode order of LP|l|x mode and the l = ±|l| is the orbital quantum

number, s = ±1 and γ = ±1 remain their meaning, and γ actually takes the sign of

(|l + s| − |l|).

Here, we need to clarify the relation between LP-modes and vector modes (HE

modes, EH modes, TE and TM modes). In optics and even fiber-optics community,

people are more familiar with LP-modes, which is derived by assuming the modal

electric fields are linearly polarized all over the fiber cross-section in cylindrical sym-

metry. However, the assumption of linearly polarized modal fields would never fulfill

the boundary condition of cylindrical symmetry for Maxwell equation, so LP-modes

are actually approximated modal solutions. In fact, only the longitudinal field compo-

nent Ez of the modal fields can fulfill the cylindrical symmetry, so we can solve for Ez

first and use relation between Ez and Ex,y in Maxwell equation to obtain the whole

modal solution. Following this procedure, we have the solution of vector modes which

contains HE modes, EH modes, TE and TM modes. When the fiber is approaching

“weakly guiding limit”, a group of vector modes will have approximately the same

propagation constants, and they can combine together to render the LP-modes. Thus,

the vector modes are the true eigenmodes of Maxwell equation in cylindrical fibers,

and the LP-modes are just the superposition of different vector modes. We can also

consider LP-modes as modal groups which contain several different vector modes with

degenerate or near-degenerate modal propagation constants.
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Table 3.1: LP Helical Modes with SAM and OAM

|l| Modes l s m = l + s ∆βOAM+SAM = mKz

|l| = 0 HE+
1,x 0 +1 1 Kz

HE−
1,x 0 −1 −1 −Kz

HE+
2,x +1 +1 2 2Kz

|l| = 1 TE0,x 0(+1) 0(−1) 0 0

LP|l|x TM0,x 0(−1) 0(−1) 0 0

HE−
2,x −1 −1 −2 −2Kz

HE+
l+1,x +l +1 l + 1 (l + 1)Kz

|l| ≥ 2 EH−
l−1,x +l −1 l − 1 (l − 1)Kz

EH+
l−1,x −l +1 −(l − 1) −(l − 1)Kz

HE−
l+1,x −l −1 −(l + 1) −(l + 1)Kz

By defining the total quantum number m = (l + s), we can summarize LP-

modes and vector modes in Table 3.1. In this table, we can see it shows a strong

analogy to the angular momentum of electrons in quantum mechanics. We know that

the microscopic photon is also a quantum particle, so here comes a very interesting

question: should macroscopic laser beam exhibit the same angular momentum effect

in quantum mechanics? If we consider the coherent laser beam as a giant Bose-

Einstein Condensation(BEC) of photons, then the laser beam should also exhibit the

quantum effect as well. In this table, we can see that it basically follows the rule of

m = l+s, and l and s should take any value available. From this table we can also see

that, the modal order |l| for a LP|l|x mode is the absolute value of its orbital quantum

number. Also, the modal order n for a vector mode (e.g. HE±
nx) is the absolute value

of its angular quantum number m = ±n. Hence, for a given vector mode we can

easily know its corresponding propagation constant increment ∆βOAM+SAM = mKz.

We have also rigorously confirmed our derived helical modes by solving the modal

fields in the helical reference frame with Finite-Element-Method(FEM) (Nicolet et al.,
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Figure 3.5: FEM Simulated Helical Modes in Helical Reference Frame.

2004). In Fig. 3.5, the left column of the refractive index are the calculated number

for the modal effective refractive index in the Cartesian reference frame, while the

right column of the refractive index are the simulated number. It clearly shows

the degeneracy breaking in the helical reference frame. The propagation constant

increments also fit the derived expression from the theory ∆βOAM+SAM = mKz.

3.3.2 Central-Side Coupling of Vector Helical Modes

Now, we can treat helical modes as unperturbed zero-order solutions, and substi-

tute the modal expression of helical modes of both central and side core into the

coupled mode equation Eq.(3.53) to solve the phase matching conditions for the

central-side helical-modes coupling. In this subsection, we will use the modal ex-

pression in Eq.(3.100) for vector helical modes, and derive the phase matching con-

ditions for two LP groups from central and side core (central LP01 and side LP21).

We will see that, however, it is rather complicated and tedious to illustrate QPM

conditions with vector helical mode. In the next subsection, we will find out that
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it is rather straightforward to use the modal expression Eq.(3.104) for LP groups of

helical modes to derive the qausi-phase-matching conditions, which leads to the proof

of QPM formula in Eq.(2.9) and Eq.(2.10).

Based on the analysis following Eq.(3.53), we know that the phase matching con-

dition in this central-side coupling system only relies on the cross-coupling terms in

Eq.(3.48). Furthermore, we can see that the key to determine the cross-coupling

terms expressed in Eq.(3.48) is the interaction function Ipq, which is essentially the

part to be integrated in the numerator integral of Eq.(3.48):

Ipq = E∗
p(∆ϵ̃

p
h +∆ϵ̃ptbh )Eq, p, q = a, b, (3.105)

where a and b are specifically referring to central core “a” and side core “b”. Obviously,

the phase matching of this coupling system is determined as the condition when the

propagation phase of interaction function Ipq is equal to zero:

Phase{Ipq} ≡ 0. (3.106)

We can rewrite the permittivity tensor in Eq.(3.105) as

∆ϵ̃ph +∆ϵ̃ptbh = ∆ϵ̃Sh +∆ϵ̃Lh +∆ϵ̃Th . (3.107)

Here the scalar perturbation ∆ϵ̃Sh comes from another isotropic core

∆ϵ̃Sh = ∆ϵph


1 + τ 2Y 2 −τ 2XY τY

−τ 2XY 1 + τ 2X2 −τX

τY −τX 1

 ≈ ∆ϵph, (3.108)

where the rotation of this isotropic core is neglected, because it is an even smaller effect

than the scalar perturbation of this isotropic core itself. By substituting Eq.(3.107)
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into Eq.(3.105), we have interaction function separated into three parts:

Ipq = ISpq + ILpq + ITpq, (3.109)

where the scalar interaction ISpq, the linear interaction I
S
pq, and the torsional interaction

ISpq are defined respectively as:

ISpq = E∗
p∆ϵ̃

S
hEq, ILpq = E∗

p∆ϵ̃
L
hEq, ITpq = E∗

p∆ϵ̃
T
hEq, (3.110)

Regarding the scalar interaction ISpq, we can substitute Eq.(3.108) and Eq.(3.100)

to obtain its expression. By keeping the largest term with Ep∗
T E

q
T and neglecting

other smaller terms with Ep∗
T E

q
z , E

p∗
z E

q
T or Ep∗

z E
q
z , we have

ISpq ≈ spsqE
p∗
T E

q
T (1 + spsq) ·∆ϵph · e

−j(βq−βp)ze−j(γqsqnq−γpspnp)Kz, (3.111)

which requires sp = sq to obtain non-zero value of scalar interaction ISpq:

ISpq ≈

 2Ep∗
T E

q
T∆ϵ

p
he

−j(βq−βp)ze−j(γqnq−γpnp)Kz, sp = sq,

0, sp ̸= sq.
(3.112)

Therefore, the QPM conditions for scalar interactions are

∆m = γqnq − γpnp, sp = sq. (3.113)

Taking the helical modes in LPp
01 group and LPq

21 group for example, we have the

following QPM conditions:

 ∆m = +2, HE+
11

⊕
HE+

31; ∆m = −2, HE−
11

⊕
HE−

31;

∆m = +2, HE−
11

⊕
EH−

31; ∆m = −2, HE+
11

⊕
EH+

31,
(3.114)
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where “
⊕

” means interaction between the two modes. We can see that the scalar

interaction term ISpq comes from the interaction between modal fields with the same

circularly polarization. Since the two modal fields interact in the way as if they

interact with each other with only scalar modal functions, we can call these QPM

resonances as scalar resonances.

Regarding the linear interaction ILpq, we can use Eq.(3.77) and Eq.(3.100) to obtain

its expression. Similarly, by keeping the largest term with Ep∗
T E

q
T and neglecting other

smaller terms with Ep∗
T E

q
z , E

p∗
z E

q
T or Ep∗

z E
q
z , we have

ILpq ≈ spsqE
p∗
T E

q
T (1− spsq) ·D(X, Y ) · e−j(βq−βp)ze−j(γqsqnq−γpspnp)Kz, (3.115)

which requires sp ̸= sq to obtain non-zero value of scalar interaction ILpq:

ILpq ≈

 2Ep∗
T E

q
T∆ϵ

p
he

−j(βq−βp)ze−j(γqnq−γpnp)Kz, sp ̸= sq,

0, sp = sq.
(3.116)

Then, the QPM conditions for linear interactions are

∆m = γqnq − γpnp, sp ̸= sq. (3.117)

Again, taking LPp
01 group and LPq

21 group for example, we have the following QPM

conditions for linear interactions: ∆m = +4, HE−
11

⊕
HE+

31; ∆m = −4, HE+
11

⊕
HE−

31;

∆m = 0 , HE−
11

⊕
EH+

31; ∆m = 0 , HE+
11

⊕
EH−

31.
(3.118)

We can see that the linear interaction term ILpq comes from the interaction between

two orthogonal circularly polarized modal fields. The physics behind this is that, the

linear birefringence couples two orthogonal circularly polarized fields. So we can call
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these QPM resonances as linear birefringence resonances.

Regarding the torsional interaction ITpq, we can use Eq.(3.83), Eq.(3.100) to obtain

its expression by neglecting the smallest term with Ep∗
z E

q
z . Since the expression of

ITpq is much more complicated than the previous two scenarios, it is more convenient

to separate ITpq into three terms:

ITpq = I ttpq + I tzpq + Iztpq,

where I ttpq contains the transverse-transverse coupling term Ep∗
T E

q
T , I

tz
pq contains the

transverse-longitudinal coupling term Ep∗
T E

q
z , and I

zt
pq contains the longitudinal-transverse

coupling term Ep∗
z E

q
T . For transverse-transverse coupling term I ttpq, we have

I ttpq = −spsqστ 2Ep∗
T E

q
T · e−j(βq−βp)ze−j(γqsqnq−γpspnp)Kz ·{

(1 + spsq)(X
2 + Y 2)

[
e−j(−τz) + e−j(τz)

]
/2

+2(sq − sp)[(Y
2 −X2)(sq − sp)/4− jXY ]e−j(sp−sq)τz/2

}
, (3.119)

which leads to the phase term

Phase{I ttpq} =

 e−j(βq−βp)ze−j(γqsqnq−γpspnp)Kz · [ejτz + e−jτz] , sp = sq,

e−j(βq−βp)ze−j(γqsqnq−γpspnp)Kz · e−j(sp−sq)τz/2, sp ̸= sq.
(3.120)

By taking the helical modes in LPp
01 and LPq

21 group for example, we can summarize

the QPM conditions as: no matter the circular polarizations of the two interacting

modal fields are orthogonal or the same, this term always gives

∆m = ±3,±1. (3.121)

For the other two terms I tzpq and I
zt
pq, since both of these two terms are the interactions

between one transverse field from one mode and one longitudinal field from another
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mode, we can put them together and have the expression:

I tzpq + Iztpq = −spsqστ · e−j(βq−βp)ze−j(γqsqnq−γpspnp)Kz ·[
γqE

p∗
T E

q
z(Y + jspX)e−spτz + γpE

p∗
z E

q
T (Y − jspX)ejsqτz

]
.(3.122)

Going through the same procedures, we will find out that these two terms render the

same QPM conditions for the helical modes in LPp
01 group and LPq

21 group:

∆m = ±3,±1. (3.123)

Thus, all three terms in torsional interaction term ITpq give the same conclusion, and

they all come from the physical consequence of torsional birefringence which couples

one transverse field and one longitudinal field. We can call these QPM resonances as

torsional birefringence resonances.

Combining the analysis of the three individual parts ISpq, I
L
pq and I

T
pq, we can sum-

marize the QPM conditions for the interaction between LPp
01 group and LPq

21 group

as ∆m = −4,−3,−2,−1, 0,+1,+2,+3,+4, in which ±2 are scalar resonances, 0,±4

are linear birefringence resonances, and ±1,±3 are torsional birefringence resonances.

Furthermore, given any arbitrary two helical modes inside central and side core, we

can use the above analyzing procedure to find out their QPM conditions. However,

as has been pointed out, it is rather tedious to use vector helical mode expression in

Eq.(3.100) to derive the QPM conditions. There is a much more straightforward way

to do it, which is illustrated in the next subsection.

3.3.3 Central-Side Coupling of LP-Modes and QPM Formula

For LPp
|lp|xp

group and LPq
|lq |xq

group, it would be more convenient and intuitive

to directly use LP-modes expression in Eq.(3.104) instead of modal expression for

each vector helical modes expression Eq.(3.100) inside each LP group. For further
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convenience, we can express the propagation phase of interaction function Ipq as the

product of a propagation constant phase mismatch ∆β and propagation distance z:

Phase{Ipq} = Phase{κpq} = ∆βz, (3.124)

Thus, we can have a more convenient definition for phase matching condition as

∆β ≡ 0, (3.125)

which is equivalent to Eq.(3.106).

By substituting the LP-modes expression Eq.(3.104) into coupled mode equation

and cross-coupling terms, we can have the three parts ISpq, I
L
pq and ITpq of interaction

function one by one. For scalar interaction ISpq, we have

ISpq ∝ (1 + spsq) · e−j[βq−βp+(lq−lp+sq−sp)K]z. (3.126)

For linear interaction ILpq, we have

ILpq ∝ (1− spsq) · e−j[βq−βp+(lq−lp+sq−sp)K]z, (3.127)

For the torsional interaction ITpq, we have to separate the discussion into three terms:

1. The transverse-transverse term I ttpq gives

I ttpq ∝


[e−jKz + ejKz] · e−j[βq−βp+(lq−lp)K]z, sp = sq,

e−j[βq−βp+(lq−lp+sq)K]z, sp → −sq,

e−j[βq−βp+(lq−lp−sp)K]z, sq → −sp,

(3.128)
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2. The transverse-longitudinal term I tzpq gives

I tzpq ∝ e−jspKz · e−j[βq−βp+(lq−lp+sq−sp)K]z, (3.129)

3. The longitudinal-transverse term Iztpq gives

Iztpq ∝ e−j(−sq)Kz · e−j[βq−βp+(lq−lp+sq−sp)K]z. (3.130)

Thus, we can summarize the general expression for torsional interaction ITpq as

ITpq ∝ e−j[βq−βp+(lq−lp+sp,q)K]z, (3.131)

Then, from Eq.(3.126), Eq.(3.127) and Eq.(3.131), we can see that, for all three cases

we can have a general expression for phase-matching condition following Eq.(3.125):

∆β = βq − βp +∆mK = 0. (3.132)

where the so called QPM number ∆m (from Chapter II) follows:

∆m = ∆l +∆s, (3.133)

with ∆l = lq−lp and ∆s = sq−sp (except for torsional interaction we have ∆s = sp,q).

The orbital quantum number renders lp,q = ±|lp,q|, which we have always known, so

∆l would take all possible number of {±|lq|±|lp|}. The spin quantum number renders

sp,q = ±1, so ∆s would take all possible number of {0,±1,±2}. In fact, this is how

Eq.(2.9) and Eq.(2.10) come from.

Also from Eq.(3.126), Eq.(3.127) and Eq.(3.131), we can obtain the correspon-

dence between the interaction type and the value of ∆s:
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1. Scalar Perturbation: ∆s = 0.

2. Linear Perturbation: ∆s = ±2.

3. Torsional Perturbation: ∆s = ±1.

Thus, we can identify the interaction type of a certain QPM resonance by identifying

the number of ∆s.

If taking q = a as central core and p = b as side core, and counting the side core

correction fact
√
1 +K2R2

h, we can conclude the QPM conditions for LPa
|la|xa

modal

group and LPb
|lb|xb

modal group as:

∆β = βa − βb

√
1 +K2R2

h +∆mK = 0, (3.134)

where we have

∆m = ∆l +∆s, ∆l = ±|la| ± |lb|, ∆s = 0,±1,±2. (3.135)

Therefore, we have proven the QPM formula for anisotropic CCC fibers.

Appendix

HE and EH modes are expressed as

HEodd =


jβ/uZn−1[− sin(n− 1)θ]

jβ/uZn−1[− cos(n− 1)θ]

Zn sinnθ

 , HEeven =


jβ/uZn−1[− cos(n− 1)θ]

jβ/uZn−1[sin(n− 1)θ]

Zn cosnθ

 ,

EHodd =


jβ/uZn+1[sin(n+ 1)θ]

jβ/uZn+1[− cos(n+ 1)θ]

Zn sinnθ

 , EHeven =


jβ/uZn+1[cos(n+ 1)θ]

jβ/uZn+1[sin(n+ 1)θ]

Zn cosnθ

 .
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CHAPTER IV

Design Principle and Core-Size Scalability of

Effective Single-Mode CCC Fibers

In this chapter, the core-size scalability of effective single-mode CCC fibers is

briefly discussed.

The two-mode coupling model is formulated with the coupled mode theory. The

analytical solution illustrates the working mechanism of CCC effective single-mode

operations, which is essentially to control the central mode effective loss αa as a

function of two-mode coupling strength κ, two-mode phase mismatch ∆β and side

mode loss αb.

Then, based on the analytical solutions of two-mode coupling model, we can

discuss the design of effective single-mode CCC, and obtain the ultimate core-size

scalability.
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4.1 Two-Mode Coupling Model For CCC Fibers

4.1.1 Analytical Solution of Two-Mode Coupling Model

To investigate the core-size scalability of effective single-mode CCC design, we

need to study the dynamics of mode coupling inside CCC fibers. First, let’s start with

the simplest case and explore the dynamics of two-mode coupling model: one central-

mode amplitude A(z) couples with one side-mode amplitude B(z). The dynamics of

this coupling is governed by the coupled mode equations derived in the early chapters.

Here, we define the phase mismatch (propagation constant difference) ∆β as

∆β =
βa − βb

2
. (4.1)

Substituting this quantity into the coupled mode equations Eq.(3.49), we have the

coupled mode equations for two lossless modal coupling as

 dA/dz = −jκab ·Bej2∆βz,

dB/dz = −jκba · Ae−j2∆βz,
(4.2)

where βa, βb and κab, κba are the modified ones in Eq.(3.50) and Eq.(3.51). In the

dynamics of effective single-mode operation, the side mode amplitude loss αb/2 is

necessary to consider, so we modify Eq.(4.2) to obtain the two-mode coupling model

expressed as

 dA/dz = −jκab ·Bej2∆βz,

dB/dz = −jκba · Ae−j2∆βz − αb/2 ·B,
(4.3)

We can solve this set of ordinary differential equations either numerically or analyti-

cally. In the following discussions, we are going to explore the analytical solutions for

the initial condition: A(0) = A0 and B(0) = 0, which is mimicking the condition of
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launching the optical light into CCC fibers. Also, we will give numerical calculation

to show the agreement between analytical and numerical results. With this initial

condition, the analytical solutions for lossless coupled mode equations Eq.(4.2) are

A(z) = A0e
−jβ̄z

[
cos(

√
∆β2 + κ2z)− j

∆β√
∆β2 + κ2

sin(
√
∆β2 + κ2z)

]
, (4.4)

B(z) = A0e
−jβ̄z −jκ̃ba√

∆β2 + κ2
· sin(

√
∆β2 + κ2z), (4.5)

where we define average propagation constant β̄ and effective coupling coefficient κ:

β̄ =
βa + βb

2
, κ2 = κabκba. (4.6)

Eq.(4.3) shows that, we can include the side mode loss αb into the propagation con-

stant of side core:

βb → βb − jαb/2. (4.7)

so that Eq.(4.3) would be the same form as Eq.(4.2). Correspondingly, β̄ and ∆β

would include the side mode loss αb as well:

β̄ → β̄ − jαb/4, ∆β → ∆β + jαb/4. (4.8)

Substituting the relations in Eq.(4.8) into the solution Eq.(4.4), we have the lossless

central mode amplitude expressed as

A(z) = A0e
−jβ̄ze−

αb
4
z

[
cos(

√
∆β2 − α2

b/16 + jαb∆β/2 + κ2z)

−j ∆β + jαb/4√
∆β2 − α2

b/16 + jαb∆β/2 + κ2
sin(

√
∆β2 − α2

b/16 + jαb∆β/2 + κ2z)

]
.

(4.9)
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Figure 4.1: Typical Power Flow in Two-Mode Coupling Model.

Thus, the power flow of the lossless central mode PA(z) should follow

PA(z) = |A(z)|2. (4.10)

To verify the validity of the analytically derived expression, we plot the numerical

and analytical calculation results in Figure 4.1. We can see that, the blue circle of

analytical calculation following Eq.(4.9) match the blue solid curve solved numerically

based on the coupled mode equations in Eq.(4.3). It verifies that the analytical

expression in Eq.(4.9) is the solution for the coupled mode equations in Eq.(4.3).

Therefore, we would use this expression to derive the central mode effective loss in

the following subsections.

4.1.2 Central Mode Effective Loss in CCC Fibers

Actually, the Figure 4.1 shows a typical power flow of coupling dynamics in a two-

mode coupling model, which demonstrates that the power in such a coupling system
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Figure 4.2: The general loss formula for the effective loss of lossless central core in
CCC structure. The 3D plot and 2D contour plot of central-core loss as a
function of coupling coefficient κab and side-core loss αb are shown side by
side. The peak corresponds to the completely-phase-matching condition.

is going back and forth between central and side modes. Looking at the power flow

of each individual mode, we can also see that, the power flow of central mode PA(z)

exhibits a loss as it is going down after each coupling cycle and eventually disappears

to be zero. Unlike the side mode, the central mode should have no intrinsic power

loss, so we can call it as “central mode effective loss”, which is due to the two-mode

coupling:

αa = 0 −→ αa(∆β, κ, αb) > 0. (4.11)

It means that the effective loss of the central mode should depend on the coupling

condition which involves the phase mismatching ∆β and the cross-coupling coefficient

κ, and the side modal loss αb.

From the definition of modal loss, we can express the lossy amplitude evolution

as this form:

|A(z)| = |A0| · e−
αa
2
z. (4.12)
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By comparing Eq.(4.9) and Eq.(4.12), we can extract the analytical formula for central

mode effective loss as

αa =
αb

2
− Im

{
2
√

∆β2 − α2
b/16 + jαb∆β/2 + κ2

}
. (4.13)

Indeed, the central mode effective loss αa is a function of phase-mismatch ∆β, cou-

pling strength κ, and side mode loss αb.

To show how the central mode effective loss αa(∆β, κ, αb) is dependent on the

three parameter variables, we can assume one of variable is 1 and plot the function

value against the other two variables. In Figure 4.2, we set κ = 1, and then we can

plot the effective loss formula as a function of ∆β and κ. A 3D plot is on the left,

where the value of central mode effective loss αa is plotted as a surface. A 2D contour

plot is on the right, where the contour line of αa =1, 0.6, and 0.2 are plotted.

When large phase mismatch presents ∆β ≫ 1, we can see from Figure 4.2 that, the

central mode effective loss is essentially zero αa = 0, no matter what value the other

two parameters take. It means, when phase mismatch is large (at the wavelength

off the phase matching condition resonances), the light propagating in this central

mode would have no loss or negligible loss. This corresponds to the high transmission

wavelength range in CCC transmission spectrum. When phase mismatch is zero

∆β = 0, we can also see from the Figure 4.2 that, there is a peak value of central

core effective loss αa, which actually corresponds to the lossy dips we observed in

CCC transmission spectrum. Within the bandwidth of these lossy dips, the central

mode is expected to have large modal loss, so we can use these lossy dips with certain

bandwidth to suppress the high order modes in the central core.

In fact, the key of designing effective single-mode CCC fibers relies on the two

conditions: ∆β ≫ 1 and ∆β = 0. We will have more discussion of these two cases in

the next section.
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4.2 Design Principle and Core-Size Scalability

4.2.1 Phase Mismatched Fundamental Mode: ∆β ≫ κ

To achieve CCC effective single-mode operation, the fundamental mode must

be designed to have large phase mismatched ∆β ≫ κ at the operation wavelength

range. In other words, for a sample of CCC working around 1µm wavelength, the

phase matching resonance conditions of central core fundamental mode in this CCC

fiber must be away from 1µm wavelength as far as possible.

This can be explained by numerical plot in Figure 4.2. When we have large phase

mismatched ∆β ≫ κ, the plot shows practically zero central mode effective loss, so

the fundamental mode can be unperturbed and propagating along the CCC fibers.

This can also be explained by some analytical analysis. For the general case with

finite value of phase-mismatch ∆β ̸= 0, we can rewrite the general loss formula in

Eq.(4.13) to a more explicit form:

αa =
αb

2
− 2

√
(∆β2 − α2

b/16 + κ2)
2
+ (αb∆β/2)

2

× sin

[
1

2
tan−1

(
αb∆β/2

∆β2 − α2
b/16 + κ2

)]
. (4.14)

Assuming large phase mismatch:

∆β ≫ αb, κ. (4.15)

we can approximate the Eq.(4.14) into such a form:

αa → αb

2
×

[
1− ∆β√

∆β2 − α2
b/16 + κ2

]
→ 0, (4.16)

which means the central mode effective loss is nearly zero under the condition of large

phase mismatch.
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4.2.2 Phase Matched Higher-Order-Modes: ∆β = 0

To achieve CCC effective single-mode operation, the higher-order-mode(HOM) in

the central core must be designed to achieve phase matched condition ∆β = 0 at

operating wavelength range. Thus, HOM would have large central mode effective loss

based on the numerical plot in Figure 4.2. However, depending on the relative ratio

between coupling strength κ and side mode loss αb, the effective loss of the central

mode also varies in a dramatic way in Figure 4.2. Therefore, let’s assume phase

matching condition ∆β = 0, and investigate how to maximize the HOM effective

loss, which is to essentially optimize the suppression of HOM.

By substituting ∆β = 0 into the general loss formula Eq.(4.13), we have the

central mode effective loss as a function of coupling strength κ and side mode loss αb:

αa =
αb

2
− Im

{
2
√

−α2
b/16 + κ2

}
, (4.17)

which can be expressed more explicitly as

αa =


αb/2, αb < 4κ;

2κ, αb = 4κ;

αb/2− 2
√
α2
b/16− κ2, αb > 4κ.

(4.18)

The derived expression in Eq.(4.18) is a very important result. In Figure 4.3, we plot

the central core loss αa/κ as a function of side core loss αb/κ based on the expression

in Eq.(4.18).

We can see αb = 4κ is a critical value. When the side core loss is below this

critical value αb < 4κ, the central mode effective loss αa is following half of the side

mode loss αb/2. This makes perfect sense, because the central mode effective loss is

essentially from the side mode loss. We would expect that the higher the side loss is,

the higher the central effective loss is.
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Figure 4.3: CCC Central Core Effective Loss At Phase Matching Condition.

However, when the side core loss is above the critical value αb > 4κ, the central

mode effective loss starts to decrease when side loss further increases, which is a

little counterintuitive. We can understand this in a more intuitive way by considering

the extreme case — the side loss is infinitely large αb = ∞, which also implies that

this side mode barely exists. To couple with a mode barely existed, the two-mode

coupling must be quenched. Therefore, the excessively large side mode loss (αb > 4κ)

would quench the coupling between the two cores, and thus quench the central mode

effective loss as well.

When the side core loss is right equal to the critical value αb = 4κ, we can

achieve the maximum suppression for the HOM. Therefore, in order to optimize the

suppression for the central HOM in CCC fiber structure, not only the phase match

condition ∆β = 0 must be achieved, but the coupling κ and the side loss αb must also

“balance” with each other, and this “balance” is the key to design the well working

effective single mode CCC fibers.
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4.2.3 Ultimate Core-Size Scalability

Based on the Eq.(4.18) and Figure 4.3, we have known that the maximum sup-

pression of HOM can only be achieved when αb = 4κ, and the maximum suppression

can be achieved is 2 times of κ:

αa,max = 2κ. (4.19)

This actually means that we have an ultimate theoretical limit for HOM suppression.

By simply calculating the coupling coefficient κ in the CCC structure, we can obtain

this theoretical limit.

Figure 4.4: Demonstration of Ultimate Core-Size Scalability.

In Figure 4.4, for different core size of the central core in the horizontal axis, we

calculate the ultimate HOM suppression in dB/m using Eq.(4.19) for the central core

LP11 mode. Since LP11 mode always renders the lowest suppression compared with

other HOM, Figure 4.3 could represent the ultimate core-size scalability for large-core

effective single-mode operation. It shows that, even when core size reaches 120µm, we

can still have the HOM suppression as high as 40dB/m. Knowing that the industrial

standard for large-core effective single mode operation is 20dB HOM suppression with

a certain length of fibers, 40dB/m HOM suppression is high enough to perform very

well effective single-mode operations.
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CHAPTER V

Numerical Algorithm and Related Simulation

Tools

This chapter is dedicated to the numerical simulation of CCC fibers. Since CCC

fiber is a real-world engineering device, analytical explanation of its performance is not

sufficient. We need to fully understand the details of optical light propagating inside

CCC fibers, and accurately predict the CCC performance with certain parameters.

It turns out that, our self-developed Beam Propagating Method (BPM) algorithm is

the only candidate that has such ability.

In the beginning of this chapter, we will start with the derivation from Maxwell

equation to different BPM algorithms. Then, we will talk about different existing BP-

M algorithms, which would provide a context of how to formulate a BPM algorithm.

Based on this given context, we will demonstrate the discretization, implementation

and verification of self-developed BPM algorithm. After that, a few computer pro-

grams developed for simulating and designing the CCC fibers are briefly discussed.
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5.1 From Maxwell Equation to Different BPM Formulations

5.1.1 Wave Equation with Anisotropic Permittivity

We start from the so called Source-Free Maxwell Equations:

∇× E = −∂B
∂t

Faraday’s law, (5.1a)

∇×H =
∂D

∂t
Ampère’s law, (5.1b)

∇ ·B = 0 Gauss’s law for magnetism, (5.1c)

∇ ·D = 0 Gauss’s law, (5.1d)

where we have Non-Magnetic Anisotropic Material

B = µ0H, (5.2a)

D = ϵ0ϵ̃rE, (5.2b)

where ϵ0 is vacuum dielectric constant, and the relative dielectric constant ϵ̃r is a full

tensor in general. To derive with electric field, we usually start from Faraday’s Law:

∇× (∇× E) = −∇× ∂

∂t
B. (5.3)

The Left-Hand-Side(L.H.S.) and Right-Hand-Side(R.H.S.) of this equation are:

L.H.S. = ∇× (∇× E) = ∇ · (∇ · E)−∇2E, (5.4)

R.H.S. = −∇× ∂

∂t
B = −µ0

∂

∂t
∇×H = −ϵ0µ0

∂2

∂2t
ϵ̃rE. (5.5)

With the substitution ϵ0µ0 → 1/c20, we have the Time-dependent Wave Equation:

∇2E− 1

c20

∂2

∂2t
ϵ̃rE−∇ · (∇ · E) = 0. (5.6)
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Assuming monochromatic wave propagation ∂/∂t → jω, we have the expression for

optical waves propagating in space — Propagation Wave Equation:

∇2E+ k20 ϵ̃rE−∇ [∇ · E] = 0, (5.7)

where k0 = ω/c is the wave vector. Let’s separate the permittivity tensor into a

scalar permittivity ϵs representing the isotropic refractive index of the CCC fibers and

another perturbation tensor term ϵ̃ representing the linear and torsional birefringence

ϵ̃r = ϵs + ϵ̃, where the perturbation ϵ̃ is a full tensor as

ϵ̃ =


∆ϵ1 ϵ6 ϵ5

ϵ6 ∆ϵ2 ϵ4

ϵ5 ϵ4 0

 , (5.8)

Then, Gauss’s Law goes

∇ ·D = ∇ · (ϵ̃rE) ≈ ∇ϵs · E+ ϵs(∇ · E) +∇(ϵ̃ E) = 0, (5.9)

which leads to:

∇ · E = −∇ϵs
ϵs

· E− 1

ϵs
∇(ϵ̃ E). (5.10)

Substituting Eq.(5.10) into Eq.(5.7), we have an explicit form of Propagation Wave

Equation with ϵs and ϵ̃ as:

∇2E+ k20 ϵ̃rE+∇ [∇ϵs/ϵs · E] + (1/ϵs) · ∇ [∇(ϵ̃ E)] = 0. (5.11)

Since ϵs is the scalar refractive index of the fiber, the third term ∆ϵs/ϵ in Eq.(5.11)

actually describes the guiding effect of the isotropic core and cladding. Thus, we can
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call this term ∇ [∇ϵs/ϵs · E] as the Guiding Term. For most of the optical fibers, they

are actually so called weakly-guiding optical fibers, and this term can be approximated

to be zero ∇ [∇ϵs/ϵs · E] → 0. This is the case we call it as “weakly-guiding limit”

(Gloge, 1971). However, for planner waveguides made of semiconductors or nonlinear

crystals, the refractive-index change in these waveguide structures are large enough

to produce physical effect, and the guiding term will become necessary to explain the

entire physics described by the propagation wave equation in Eq.(5.11).

Since the expression ∇(ϵ̃ E) in the middle parenthesis of the fourth term (1/ϵs) ·

∇ [∇(ϵ̃ E)] in Eq.(5.11) has the same physical meaning as spacial change density in

Gauss’s Law, we can call this whole term as “Fictitious Charge term”. Substitut-

ing the general form for the anisotropic perturbation tensor, the fourth term shows

explicitly as:

1

ϵs
· ∇ [∇(ϵ̃ E)] =

1

ϵs
· ∇




∂/∂x

∂/∂y

∂/∂z




∆ϵ1 ϵ6 ϵ5

ϵ6 ∆ϵ2 ϵ4

ϵ5 ϵ4 0




Ex

Ey

Ez


 . (5.12)

If we assume the modal electric field has a longitudinal dependence e−jβz, this ex-

pression can be approximated as

1

ϵs
· ∇ [∇(ϵ̃ E)] ≈ −jβ

ϵs
· ∇ [ϵ5Ex + ϵ4Ey] , (5.13)

where all the small terms are neglected and only the dominant terms are present. It

shows that this term only contains the torsional birefringence ϵ4 and ϵ5. Thus, the

fictitious charge term can be neglected when no torsional birefringence appears in the

waveguide.
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5.1.2 Overview of Different BPM Formulations

The transverse-field-based Beam-Propagation-Method(BPM) is the most popular

algorithm used to simulate the propagation of optical waves in the waveguides, which

is to essentially solve the propagation wave equation in Eq.(5.11). More accurately

speaking, the BPM algorithm is to numerically solve the propagation wave equation

by solving its approximated forms: Paraxial Equations. Thus, the BPM algorithm is

definitely not the most accurate algorithm. However, since the paraxial equation is

the first-order derivative of propagation variable z comparing with the second-order

derivative in wave equation, the BPM algorithm certainly gives more promising speed.

Plus, since the implicit BPM algorithm is essentially solving an eigenvalue problem

of a tridiagonal matrix, it turns out to be very efficient and fast.

In fact, the transverse-field-based implicit FD-BPM is considered to be the fastest

and the most reliable numerical algorithm for simulating the propagation wave equa-

tion so far. This is also the reason why we have to choose it to simulate the CCC

fibers: it is the only numerical method that is capable of simulating long enough CC-

C fiber structures (at least a few centimeters) within minutes. We have investigated

several different numerical methods, and some of them such as Finite-Difference-

Time-Domain (FDTD) and Finite-Element-BPM (FE-BPM) could certainly promise

better accuracy and precision, but none of them could provide the eligible speed.

There are different BPM formulations when dealing with different forms of wave

equation in Eq.(5.11). For example, when dealing with free-space propagation or

propagation along ideal isotropic weakly-guiding fibers, neither the guiding term nor

the fictitious charge term would appear in the wave equation, so the wave equation

degrades to the vectorial Helmholtz equation:

∇2E+ k20ϵsE = 0, (5.14)
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where each component Ex, Ey and Ez of the vector field E is following the scalar

Helmholtz equation independently:

∇2E(x, y, z) + k20n
2(x, y, z)E(x, y, z) = 0. (5.15)

Solving this equation leads to the so called scalar BPM problem.

In terms of specific algorithm formulation, there is also quite a significant difference

between 2D BPM problem and 3D BPM problem. The 3D function E(x, y, z) in

Eq.(5.15) indicates itself as a 3D BPM problem. If the 2D function E(x, z) is used

in Eq.(5.15) instead, then it is a 2D scalar problem. It turns out that the direct

implementation of a 2D scalar problem would end up with a tridiagonal matrix, but

3D scalar problem would not. Thus, a very important technique called alternating-

direction-implicit(ADI) method is used to convert a 3D scalar problem into a 2D

scalar problem. More details are discussed in the following sections.

Other than scalar BPM formulation, there are several different FD-BPM algo-

rithms available in literature and commercial market. Even though each of them is

claimed or named to be “Vectorial BPM”, none of them can really solve the problem

with a full anisotropic permittivity tensor, especially with torsional birefringence. Up

to date, the FD-BPM algorithm is limited to the formulation with only linear part of

the anisotropic perturbation tensor, so permittivity tensor is

ϵ̃r = ϵs +


∆ϵ1 ϵ6 0

ϵ6 ∆ϵ2 0

0 0 0

 . (5.16)

When the torsional birefringence is gone, we only have the guiding term:

∇2E+ k20 ϵ̃rE+∇ [∇ϵs/ϵs · E] = 0. (5.17)
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Since the fictitious charge term is already dropped, we can write this wave equation

in another form as

∇2E+ k20 ϵ̃rE−∇ [∇ · E] = 0, (5.18)

where the permittivity tensor is expressed as

ϵ̃r =


ϵ1 ∆ϵ6 0

∆ϵ6 ϵ2 0

0 0 ϵ3

 . (5.19)

This is actually the most comprehensive and complicated existing transverse-field-

based FD-BPM so far. In our language, we can call this BPM formulation as “3D

vectorial BPM”.

We will show that, the direct implementation of 3D vectorial BPM could not work

with ADI technique, and further simplifications with approximations or scarification

from 2nd-order accuracy to 1st-order accuracy is needed to make it work. Thus, this

BPM formulation is considered to be immature. However, there are two broadly used

BPM algorithms called “Semi-Vectorial BPM” and “Full-Vectorial BPM”, which are

essentially simplified versions of 3D vectorial BPM. More specifically, they only keep

the guiding term but throw the linear birefringence away:

∇2E+ k20ϵsE+∇ [∇ϵs/ϵs · E] = 0. (5.20)

Obviously, these two BPM formulations only contain scalar permittivity, and no vec-

torial tensor effect is involved. The word “Vectorial” here only means that, the large

refractive index change ∆ϵs is inducing different effects for different linearly polarized

fields (Semi-Vectorial BPM) and sometimes even the cross-coupling effect between

different linearly polarized fields (Full-Vectorial BPM).
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From previous chapters, we have known that the practically-made CCC fibers

contain linear and torsional birefringence. This means all the existing BPM formu-

lations that we have discussed above are not capable of simulating the performance

of CCC fibers. Therefore, we need to develop our own BPM algorithm to implement

CCC anisotropic permittivity with both linear and torsional birefringence. In order

to do so, our initial thinking is to do two things:

1. Drop the guiding term;

2. Keep the fictitious charge term.

Thus, we have wave equation for CCC problems as

∇2E+ k20(ϵs + ϵ̃)E+ (1/ϵs) · ∇ [∇(ϵ̃ E)] = 0. (5.21)

To drop the guiding term in CCC problem is not only legitimate due to the nature

of the weakly guiding optical fibers, but also necessary to work with ADI method

and obtain 2nd-order accuracy as a 3D propagation problem. However, to keep the

fictitious charge term is a challenge: to the best of our knowledge, no one has ever

managed to make it work in term of BPM formulations. We found out that, by making

some approximations, we can derive an energy-conserved BPM formulation including

the effect of torsional birefringence. We also benchmarked this BPM formulation with

analytical results in the references. One of the following sections will be dedicated to

discuss this self-developed BPM algorithm.
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5.2 Existing BPM Formulations and Techniques

5.2.1 The Simplest Case: 2D Scalar BPM

As just has been pointed out, we have scalar Helmholtz equation for isotropic

weakly guiding fibers as

∇2E(x, y, z) + k20n
2(x, y, z)E(x, y, z) = 0, (5.22)

where refractive index is used instead of scalar permittivity ϵs(x, y, z) = n2(x, y, z).

We can separate the field envelope and the longitudinal propagation phase term

E(x, y, z) = ε(x, y, z) · e−jβz, (5.23)

where β is effective propagation constant of the propagating waves, and often called

as “reference k-vector”. Then, we can substitute into the scalar Helmholtz Equation:

[
∂2

∂x2
+

∂2

∂y2
+
ω2

c2
n2(x, y, z)

]
ε(x, y, z) · e−jβz +

∂2

∂z2
[
ε(x, y, z) · e−jβz

]
= 0, (5.24)

which leads to

−d
2ε

dz2
+ 2jβ

dε

dz
=

[
∂2

∂x2
+

∂2

∂y2

]
ε(x, y, z) +

[
k20 · n2(x, y, z)− β2

]
ε(x, y, z). (5.25)

This equation is actually describing the propagating evolution of the electromagnetic

optical field propagating along z direction. The left-hand-side is the evolution of the

field along z direction, and the right-hand-side is the function of transverse distri-

bution, waveguide configuration and propagating velocity. By definition, the modal

field has no evolution at all because it is a stationary solution along the z direction,

so the evolution on the left-hand-side of the Eq.(5.25) is required to be zero. Hence,
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a modal field must satisfy the following equation:

[
∂2

∂x2
+

∂2

∂y2

]
ε(x, y, z) +

[
k20 · n2(x, y, z)− β2

]
ε(x, y, z) = 0. (5.26)

On the other hand, if the modal envelope function ε(x, y, z) is given, we can use this

equation to calculate the effective propagation constant β.

Usually, we apply Slowly Varying Envelope Approximation (SEVA) to Eq.(5.25)

∣∣∣∣d2εdz2
∣∣∣∣ → 0, (5.27)

then we have the envelope’s paraxial equation:

2jβ
d

dz
ε(x, y, z) =

[
∂2

∂x2
+

∂2

∂y2

]
ε(x, y, z) +

[
k2(x, y, z)− β2

]
ε(x, y, z), (5.28)

where k(x, y, z) is expressed as

k(x, y, z) = k0 · n(x, y, z). (5.29)

We have been discussing BPM for a while, but the real definition of the BPM method

comes here: the numerical method that uses the paraxial equation Eq.(5.28) to simu-

late the electromagnetic wave propagating along one direction in space is called Beam

Propagation Method (Okamoto, 2006; Kawano and Kitoh, 2001).

BPM algorithm is based on the paraxial equation Eq.(5.28), and the paraxial

equation relies on two conditions:

1. Paraxial wave: less than 15◦ angle in ray picture;

2. Slowly varying envelope approximation: slowly varying structures.

Therefore, the problems that break either of the two conditions should not be qualified

to use BPM method. For example, a photonic crystal waveguide with 90 degree
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guiding corners breaks both of the above conditions, so it requires more accurate

numerical method such as FDTD to do the simulation. The propagations inside

CCC fibers satisfy both conditions, so we can use BPM method on CCC fibers.

Moreover, the core of the 2D scalar implicit FD-BPM is to solve an eigenvalue

problem of a tridiagonal matrix, which is very fast (Scarmozzino and Osgood, Jr.,

1990). It turns out that, the BPM method could be less accurate, but it is the fastest

in speed compared with other simulation methods (Scarmozzino et al., 2000). Since

CCC fibers typically have a helical period of several millimeters, we need to simulate

at least a few centimeters to obtain the real performance and observe the physical

effect. On the other hand, the time consuming must be within a few minutes per

run. Thus, considering the fact that CCC fibers obey the paraxial equation and also

require fast speed to simulate long propagation length, the BPM algorithm is the best

and probably the only candidate so far.

Under the so called “Engineering Convention”, we have the 2D scalar BPM

2jβuz = uxx +
[
k(x, z)2 − β2

]
u, (5.30)

where the notation follows

uz =
du

dz
, uxx =

d2u

dx2
, uyy =

d2u

dy2
(5.31)

By further defining A, B coefficients as

A =
1

2jβ
, B =

k2(x, z)− β2

2jβ
, (5.32)

we can rewrite the 2D scalar BPM as

uz = Auxx +Bu. (5.33)

98



With so called CN-Scheme (Scarmozzino and Osgood, Jr., 1990), we can write the

discretization of the Eq.(5.33) at the middle point u
r+1/2
s (see Figure.5.1):

ur+1
s − urs
∆z

=
1

2
Ar+1/2

s

[
ur+1
s−1 − 2ur+1

s + ur+1
s+1

∆x2
+
urs−1 − 2urs + urs+1

∆x2

]
+
1

2
Br+1/2

s

[
ur+1
s + urs

]
, (5.34)

where r stands for discretization along longitudinal z direction, and s stands for the

discretization along transverse x or y direction. For convenience and simplicity, we

define ascending symbol δ+ and descending symbol δ− as

δ±us = us±1. (5.35)

Then, Eq.(5.34) becomes

2ur+1
s − 2urs =

[
ρA(δ+ + δ− − 2) + hB

]
·
(
ur+1
s + urs

)
, (5.36)

with the substitutions

ρ =
∆z

∆x2
, h = ∆z, A = Ar+1/2

s , Bs = Br+1/2
s . (5.37)

By collecting the known points ur to the right hand side and the unknown points

ur+1 to the left hand side of the equation, we have the 2D scalar BPM formulation as

[
2− ρA(δ+ + δ− − 2)− hB

]
ur+1
s =

[
2 + ρA(δ+ + δ− − 2) + hB

]
urs. (5.38)

Here, we can see that, solving an unknown set of ur+1
s is equivalent to finding the

eigenvector of a tridiagonal matrix. Therefore, we use the so called “Thomas algo-

rithm” and “Transparent Boundary Condition” to implement the algorithm. More

details can be found in the references (Okamoto, 2006; Kawano and Kitoh, 2001;
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Figure 5.1: Algorithm Molecule for 2D Scalar BPM.

Hadley , 1991, 1992).

5.2.2 3D Scalar FD-BPM and ADI Method

Under the engineering convention, we have the paraxial equation for 3D scalar

BPM formulation as

2jβuz = uxx + uyy +
[
k(x, y, z)2 − β2

]
u. (5.39)

To simplify the bulky expression, we introduce 2nd-Order differential operator δ2s :

δ2s = δ+s + δ−s − 2, (5.40)

which leads to

uxx =
δ2x

2∆x2
[ur+1

i,j + uri,j], uyy =
δ2y

2∆y2
[ur+1

i,j + uri,j]. (5.41)

Then, Eq.(5.39) becomes

ur+1
i,j − uri,j
∆z

=
1

2
A

r+1/2
i,j

[
δ2x
∆x2

+
δ2y
∆y2

]
[ur+1

i,j + uri,j] +
1

2
B

r+1/2
i,j

[
ur+1
i,j + uri,j

]
. (5.42)
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Then, we can separate all the coefficients into two Linear Operators L̂x and L̂y:

L̂x =
∆z

2
A

r+1/2
i,j

δ2x
∆x2

+
∆z

4
B

r+1/2
i,j , (5.43)

L̂y =
∆z

2
A

r+1/2
i,j

δ2y
∆y2

+
∆z

4
B

r+1/2
i,j . (5.44)

This is an important step for making the ADI work. The point here is to separate two

variables x and y (or differentiation along two directions) into two equally weighted

linear operators, so we can later separate them into two equally weighted steps along

two directions. Now, let’s just plug them into Eq.(5.42), and after some algebra we

can express the unknown points with the known points as:

(1− L̂x − L̂y)u
r+1
i,j = (1 + L̂x + L̂y)u

r
i,j. (5.45)

Based on this equation, we can already calculate the unknown points ur+1
i,j from the

known points uri,j, but the calculation mechanism would be a more complicated sparse

matrix other than a tridiagonal matrix. For such a sparse matrix, either iterative

method or non-iterative method with digital filter is needed (Mansour et al., 1996),

which turns out to be slow and noisy in terms of numerical results.

In general, it shows (Press et al., 1992) the eigenvalue problem of tridiagonal

matrix is a few order of magnitude faster than other sparse matrix. Therefore, we need

to convert 3D scalar BPM formulations somehow into 2D scalar BPM formulations,

so we can solve a tridiagonal matrix instead. This leads us to the so called Alternating

Direction Implicit(ADI) method, which converts a 3D BPM problem to a two-step 2D

problem. The trick is to introduce an extra term with 2nd-order accuracy L̂xL̂y. Since

the BPM formulations with CN-scheme are intrinsically with 2nd-order accuracy, this

extra term would maintain the same accuracy. Thus, we have Eq.(5.45) rewritten as

(1− L̂x − L̂y + L̂xL̂y)u
r+1
i,j = (1 + L̂x + L̂y + L̂xL̂y)u

r
i,j. (5.46)
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Figure 5.2: Algorithm Molecule for 3D Scalar BPM with ADI Method.

After some algebra, we can have the equation

ur+1
i,j =

1

(1− L̂y)
(1 + L̂x)

1

(1− L̂x)
(1 + L̂y)u

r
i,j. (5.47)

Now, we can separate into two steps

u
r+1/2
i,j =

1

(1− L̂x)
(1 + L̂y)u

r
i,j, (5.48)

ur+1
i,j =

1

(1− L̂y)
(1 + L̂x)u

r+1/2
i,j . (5.49)

This means we have the Alternating Direction Implicit(ADI) formulation:

(1− L̂x)u
r+1/2
i,j = (1 + L̂y)u

r
i,j, (5.50)

(1− L̂y)u
r+1
i,j = (1 + L̂x)u

r+1/2
i,j . (5.51)

The name ADI actually explains how we use this formulation to perform the BPM

algorithm:
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1. Use the known points along y direction to generate the half-way unknown points

along x direction;

2. Use the calculated half-way points along x direction to generate the final un-

known points along y direction.

The algorithm molecule is shown in Figure 5.2.

5.2.3 3D Vectorial FD-BPM with ADI method

The full tensor form for 3D vectorial FD-BPM is described by Eq.(5.18) and

Eq.(5.19). Since BPM algorithm is transverse-field based, we can first write down the

transverse-field based wave equation as:

∇2E+ k20

 ϵxx ϵxy

ϵyx ϵyy

E−∇ [∇ · E] = 0. (5.52)

Then, using Gauss’s Law in Eq.(5.1d) and SVEA in Eq.(5.27), we can write down

the coupled paraxial equations for transverse field Ex,y = ux,ye
−jβz as

∂

∂z

 ux

uy

 =

 P11 P12

P21 P22


 ux

uy

 , (5.53)

where the operators P11, P12, P21, P22 are defined as:

Pxxux =
1

2jβ

{
∂2

∂y2
ux +

ω2

c20
(ϵxx − ϵ̄)ux +

∂

∂x

[
1

ϵzz

∂

∂x
(ϵxxux) +

1

ϵzz

∂

∂y
(ϵyxux)

]}
Pxyuy =

1

2jβ

{
ω2

c20
ϵxyuy +

∂

∂x

[
− ∂

∂y
uy +

1

ϵzz

∂

∂x
(ϵxyuy) +

1

ϵzz

∂

∂y
(ϵyyuy)

]}
Pyxux =

1

2jβ

{
ω2

c20
ϵyxux +

∂

∂y

[
− ∂

∂x
ux +

1

ϵzz

∂

∂x
(ϵxxux) +

1

ϵzz

∂

∂y
(ϵyxux)

]}
Pyyuy =

1

2jβ

{
∂2

∂x2
uy +

ω2

c20
(ϵyy − ϵ̄)uy +

∂

∂y

[
1

ϵzz

∂

∂y
(ϵyyuy) +

1

ϵzz

∂

∂x
(ϵxyuy)

]}
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To work with ADI method, we need to separate all the coefficient terms into two

“equally-weighted” linear operators. For this purpose, we can rewrite the above

equation with more operator terms

∂

∂z

 ux

uy

 =

 P xx
11 + P yy

11 + Cxy
11 P xy

12

P yx
21 P xx

22 + P yy
22 + Cyx

22


 ux

uy

 , (5.54)

where these operator terms are defined as

P xx
11 ux =

1

2jβ

{
1

2

ω2

c20
(ϵxx − ϵ̄)ux +

∂

∂x

[
1

ϵzz

∂

∂x
(ϵxxux)

]}
,

P yy
11 ux =

1

2jβ

{
∂2

∂y2
ux +

1

2

ω2

c20
(ϵxx − ϵ̄)ux

}
,

Cxy
11 ux =

1

2jβ

{
∂

∂x

[
1

ϵzz

∂

∂y
(ϵyxux)

]}
,

P xy
12 uy =

1

2jβ

{
ω2

c20
ϵxyuy +

∂

∂x

[
− ∂

∂y
uy +

1

ϵzz

∂

∂x
(ϵxyuy) +

1

ϵzz

∂

∂y
(ϵyyuy)

]}
,

P xx
22 uy =

1

2jβ

{
∂2

∂x2
uy +

1

2

ω2

c20
(ϵyy − ϵ̄)uy

}
,

P yy
22 uy =

1

2jβ

{
1

2

ω2

c20
(ϵyy − ϵ̄)uy +

∂

∂y

[
1

ϵzz

∂

∂y
(ϵyyuy)

]}
,

Cyx
22 uy =

1

2jβ

{
∂

∂y

[
1

ϵzz

∂

∂x
(ϵxyuy)

]}
,

P yx
21 ux =

1

2jβ

{
ω2

c20
ϵyxux +

∂

∂y

[
− ∂

∂x
ux +

1

ϵzz

∂

∂x
(ϵxxux) +

1

ϵzz

∂

∂y
(ϵyxux)

]}
.

We can see that, the variable-mixed operators Cxy
11 and Cxy

22 have both variable deriva-

tives mixed up, and thus they can not be separated as two equally-weighted terms.

Then, it comes to a very important point that, the two terms Cxy
11 and Cxy

22 in this

coupled paraxial equation show contradiction with ADI method. Therefore, to keep

the same order of accuracy and maintain the non-iterative ADI method, we need to

drop these two terms

Cxx → 0, Cyy → 0. (5.55)
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It needs to be pointed out that, the off-diagonal terms P xy
12 and P yx

21 are also variable-

mixed operators, but they are not against ADI method. We will see later that these

two variable-mixed operators can be incorporated into the ADI method. Thus, only

the diagonal terms with variable-mixed operators are not allowed for ADI method.

When two variable-mixed operator Cxy
11 and Cxy

22 are not dropped, the eigenval-

ue problem of the sparse matrix for the implicit method can be solved by iterative

method, which can not guarantee the convergence and thus is very unstable. Alter-

natively, a 1st-order accuracy non-iterative method can be used (Wang et al., 2006b),

but we have to sacrifice the accuracy since the original accuracy is 2nd-order.

After dropping the diagonal variable-mixed operators Cxy
11 and Cxy

22 , we can define

the x-directional linear operator Lx and y-directional linear operator Ly as

L̂x =
∆z

2

 P xx
11 0

P yx
21 P xx

22

 , L̂y =
∆z

2

 P yy
11 P xy

12

0 P yy
22

 , (5.56)

then the coupled paraxial equation for 3D vectorial BPM is

(1− L̂x − L̂y)û
r+1 = (1 + L̂x + L̂y)û

r (5.57)

where û is defined as

û →

 ux

uy

 . (5.58)

We can see that Eq.(5.57) is now in the same form as Eq.(5.45), so we can follow the

same procedure for ADI method and convert this 3D problem into two steps:

(1− L̂y)û
r+1/2 = (1 + L̂x)û

r, (5.59)

(1− L̂x)û
r+1 = (1 + L̂y)û

r+1/2. (5.60)
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So the actual procedure could be written down as four consecutive steps:

2ur+1/2
x −∆zP yy

11 u
r+1/2
x = 2urx +∆zP xx

11 u
r
x +∆zP xy

12 u
r
y, 1st step, (5.61a)

2ur+1/2
y −∆zP yy

22 u
r+1/2
y = 2ury +∆zP xx

22 u
r
y +∆zP yx

21 u
r+1/2
x , 2nd step, (5.61b)

2ur+1
y −∆zP xx

22 u
r+1
y = 2ur+1/2

y +∆zP yx
21 u

r+1/2
x +∆zP yy

22 u
r+1/2
y , 3rd step, (5.61c)

2ur+1
x −∆zP xx

11 u
r+1
x = 2ur+1/2

x +∆zP yy
11 u

r+1/2
x +∆zP xy

12 u
r+1
y , 4th step. (5.61d)

In fact, this is the most generalized and complicated form of transverse-field-based

3D vectorial FD-BPM algorithm that have ever appeared in the literatures. However,

this BPM algorithm is considered to be immature because of the two variable-mixed

operators Cxy
11 and Cxy

22 .

There are two mature and very popular simplified versions of this 3D vectorial

BPM algorithm, but they are limited to the problem without linear birefringence. In

other words, we have

ϵxy → 0, ϵyx → 0, ϵxx = ϵyy → n2. (5.62)

Then, the troublesome terms Cxy
11 and Cyx

22 are automatically gone, and this becomes

the so called “Full Vectorial 3D BPM”. If we even drop the cross-coupling terms P xy
12

and P yx
21 , it becomes the so called “Semi-Vectorial 3D BPM”, and the cross-coupling

between the two orthogonal fields only happens in “Full Vectorial 3D BPM” case

but not in “Semi-Vectorial 3D BPM” case. However, in both cases, the two linearly

polarized orthogonal fields Ex and Ey are expected to behave differently. This is

essentially due to the geometrical distribution of the refractive index profile. More

specifically speaking, these effects are usually produced by the large refractive index

jump or the sharp edges between different isotropic regions in the waveguides. Thus,

they are generally used to simulate the polarization effect inside the isotropic waveg-
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Figure 5.3: Comparing Scalar BPM with Full- and Semi-Vectorial BPM.

uides with large refractive index changes, such as the ones made of semiconductors

or nonlinear crystals.

Since these two simplified versions of 3D vectorial BPM are commercially available,

we have tested them in comparison with scalar BPM regarding the CCC fibers. In

Figure 5.3, for 2 centimeter of a typical CCC fiber structure, we have shown the

comparison of the three different algorithms. In terms of functionality, as expected,

both of the two algorithms give the same performances as scalar BPM does. It

confirms that, in weakly guiding fibers, the guiding-term-based semi-vectorial and

full-vectorial BPM have no difference comparing with scalar BPM. In terms of speed,

the semi-vectorial is 1.5 times slower than scalar BPM, and full-vectorial is 3.5 times

slower. Thus, we can draw the conclusion that, these two BPM algorithms are of no

use for CCC problems.
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5.3 3D Transverse-Field-Based FD-BPM for Anisotropic C-

CC

5.3.1 Transverse-Field Anisotropic Wave Equation

To obtain 3D transverse-field-based FD-BPM for anisotropic CCC fibers, we need

to derive the wave equation with anisotropic permittivity, which is given by substi-

tuting Eq.(5.13) into Eq.(5.21):

∇2E+ k20(ϵs + ϵ̃)E− jβ

ϵs
· ∇ (ϵ5Ex + ϵ4Ey) = 0. (5.63)

Substituting Eq.(3.78), Eq.(5.8), ϵs = n2 and ∇σ ≈ 0 into Eq.(5.63), we have the

transverse field wave equation with full anisotropic tensor expressed as

∇2 + k20

 n2 +∆ϵ1 ϵ6

ϵ6 n2 +∆ϵ2



 Ex

Ey

− jβ
στ

n2

 ∂
∂x

(−yEx + xEy)

∂
∂y

(−yEx + xEy)

 = 0.

(5.64)

Here comes a very important approximation:

∂

∂x
(−yEx + xEy) = Ey − y

∂Ex

∂x
+ x

∂Ey

∂x
≈ Ey, (5.65)

∂

∂y
(−yEx + xEy) = −Ex − y

∂Ex

∂y
+ x

∂Ey

∂y
≈ −Ex. (5.66)

This approximation is more like an assumption, because up to now no proof can be

given to its general validity. However, this assumption directly leads to an energy-

conserved transverse-field wave equation that can include the torsional birefringence.

For convenience and simplicity, we define

η = στ/n2, (5.67)
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which is a quantity with the dimension as propagation constant β. Then, by substi-

tuting Eq.(5.65), Eq.(5.66) and Eq.(5.67) into Eq.(5.64), we have

∇2 +

 k20[n
2 +∆ϵ1] k20ϵ6 − jβη

k20ϵ6 + jβη k20[n
2 +∆ϵ2]



 Ex

Ey

 = 0. (5.68)

This is the form of wave equation we are going to use for anisotropic CCC fibers, where

the linear birefringence is included by ∆ϵ1, ∆ϵ2 and ϵ6, and the torsional birefringence

is included by η = στ/n2.

We need to point out that, this form of wave equation in Eq.(5.68) is energy

conserved. The energy conservation is guaranteed by the 2×2 Hermitian matrix in

the parentheses of Eq.(5.68). As known, in order to make the algorithm work, the

equation that the algorithm is based on must provide energy conservation. Thus, the

energy conservation of Eq.(5.68) guarantees that the BPM algorithm based on this

equation can be properly working in terms of numerical simulation.

5.3.2 Self-Developed BPM Algorithm: Implementation

Based on Eq.(5.68), we can implement a BPM algorithm which can handle the

weakly-guiding waveguide with rotational linear birefringence and twisted torsional

birefringence effect. We name this self-developed BPM algorithm as FISTS (Fiber

Simulator with Torsion and Stress).

It is designed to simulate the optical wave propagation in the anisotropic CCC

fibers, but it is not limited by it. For example, it can be used to simulate the effect

of the stationary distributed linear birefringence in Polarization-Maintaining (PM)

fibers. It can also be used to simulate the effect of twisting a normal piece of optical

fiber. Hence, the FISTS algorithm can be used widely in fiber optics, such as PM

fiber design, fiber sensor design and so on.

Since the formulation with the rotational linear birefringence and twisted tor-
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sional birefringence includes the cases with stationary linear birefringence, no linear

birefringence, and no twisted torsional birefringence. We will implement the BPM

algorithm for the formulation with the rotational linear birefringence and twisted

torsional birefringence.

Regarding the rotational linear birefringence, Eq.(3.76) already shows

 ∆ϵ1 ϵ6

ϵ6 ∆ϵ2

 =

 n0 · dnl · cos 2τz n0 · dnl · sin 2τz

n0 · dnl · sin 2τz −n0 · dnl · cos 2τz

 , (5.69)

where dnl is the refractive index difference between the fast and slow axis of linear

birefringence. Hence, the stationary linear birefringence can be obtained by taking

cos τz → 1 and sin τz → 0, and no linear birefringence case corresponds to dnl = 0.

The propagation constant β can also be expressed as

β = k0 · n̄, (5.70)

where n̄ is the effective refractive index, which can be seen as a weighted average value

for the refractive index value across the entire cross-section of the fiber or waveguide.

Since η is defined as the same dimension as β, we can express η in a similar way:

η = k0 · dnt, (5.71)

where dnt is a quantity as a refractive index difference similar to dnl. We will see

later that dnt can be seen as the torsional birefringence.

By substituting Eq.(5.69), Eq.(5.70) and Eq.(5.71) into Eq.(5.68), we can write

down the coupled paraxial equations as

∂

∂z

 ux

uy

 =


 P xx

11 P xy
12

0 P xx
22

+

 P yy
11 0

P yx
21 P yy

22




 ux

uy

 , (5.72)
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where the operators are defined:

P xx
11 ux =

1

2jβ

{
∇2

xux +
1

2
k20[n

2
0 + n0dnl cos 2τz] · ux

}
,

P yy
11 ux =

1

2jβ

{
∇2

yux +
1

2
k20[n

2
0 + n0dnl cos 2τz] · ux

}
,

P xy
12 uy =

1

2jβ

{
k20n0dnl sin 2τz · uy − jk20n̄dnt · uy

}
,

P yy
22 uy =

1

2jβ

{
∇2

yuy +
1

2
k20[n

2
0 − n0dnl cos 2τz] · uy

}
,

P xx
22 uy =

1

2jβ

{
∇2

xuy +
1

2
k20[n

2
0 − n0dnl cos 2τz] · uy

}
,

P yx
21 ux =

1

2jβ

{
k20n0dnl sin 2τz · ux + jk20n̄dnt · ux

}
.

Substituting all these operators into Eq.(5.61), we have the FISTS algorithm.

5.3.3 Self-Developed BPM Algorithm: Verification

Regarding the validity of this self-developed BPM algorithm, we can have a series

of verifications. For example, the first thing to verify is to benchmark this algorithm

with a simple scalar BPM problem to see if it agrees with a commercially available

standard BPM algorithm. We actually did this benchmark and it did show wonderful

agreement. However, there might be more than a dozen of verifications like this kind

to show. Therefore, to keep the discussion concise, we will only investigate the three

most critical questions:

1. Is FISTS’ rotational linear birefringence working properly?

2. Is FISTS’ twisted torsional birefringence working properly?

3. Is FISTS capable of simulating anisotropic CCC fibers?

We will go through these three questions one by one.

Regarding the 1st question, we can compare the FISTS simulation with some

known analytical results. In Snyder and McIntyre’s work (Snyder and McIntyre,
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Figure 5.4: Verification of Linear Birefringence in FISTS.

1978), they investigated the evolution of the two orthogonal fields Ex and Ey when

rotating linear birefringence presents. Assuming A(z) and B(z) are the envelope

functions of fields Ex and Ey in local coordinates, they achieved the following results:

A(z) =

[
A0 cos(

√
1 +X2τz) +

jXA0 +B0√
1 +X2

sin(
√
1 +X2τz)

]
e−jβ̄z, (5.73)

B(z) =

[
B0 cos(

√
1 +X2τz)− A0 + jXB0√

1 +X2
sin(

√
1 +X2τz)

]
e−jβ̄z, (5.74)

where we have A0 = A(0) and B0 = B(0) and average propagation constant β̄ and

ratio X (has different meaning with our X in Chapter III) are defined as

β̄ =
βx + βy

2
, (5.75)

X =
βx − βy

2τ
. (5.76)

Then, the envelope functions Ac(z) and Bc(z) in the fixed laboratory Cartesian ref-

erence frame should take:

Ac(z) = A(z) cos τz −B(z) sin τz, (5.77)

Bc(z) = A(z) sin τz +B(z) cos τz. (5.78)
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Thus, we can compare the FISTS simulation along z-direction with the equation

above. For benchmarking, we take following parameters: wavelength at 1µm, helical

pitch at 5mm, linear birefringence dnl = 2× 10−4, simulation length at 2cm, and the

initial values are A0 = 1 and B0 = 0. Then we plot both the FISTS simulation and

analytical calculation in Figure 5.4, where the blue curve is FISTS-simulated power

evolution of Ac(z), the blue circle points are analytically calculated power evolution

of Ac(z), the red curve is FISTS-simulated power evolution of Bc(z), and the red

rectangular points are analytically calculated power evolution of Bc(z). We can see

the simulation fits the analytical derivation very well. It means the rotational linear

birefringence in FISTS is indeed working properly.

The 2nd question seems to be more complicated and quite involved, but on the

contrary, all we need to do is to compare the algorithm formulation with some known

analytical derivation results for the case of twisted optical fibers. In Ulrich and

Simon’s work (Ulrich and Simon, 1979), given an optical fiber with only twisted

torsional birefringence and no linear birefringence, they found that the two orthogonal

polarized modal field amplitude ax and ay should follow this set of coupled mode

equations:

d

dz

 ax

ay

 = −j

 0 −jη/2

jη/2 0


 ax

ay

 , (5.79)

which follows the form of couple mode equations in Eq.(4.2) with ∆β = 0 due to

no linear birefringence. This set of couple mode equations means that, given the

torsional photoelastic constant σ and twist rate τ , the torsional birefringence will

induce an optical activity G whose value is half of the value of η = στ/n2:

G = η/2. (5.80)
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Figure 5.5: Verification of Torsional Birefringence in FISTS.

Now let’s see what is happening inside the FISTS algorithm. If we assume ux

and uy are two modal field amplitudes and there is no linear birefringence dnl = 0,

Eq.(5.72) would become

d

dz

 ux

uy

 = −j

 0 −jη/2

jη/2 0


 ux

uy

 . (5.81)

By comparing Eq.(5.79) and Eq.(5.81), we can see that, the algorithm formulation

in FISTS shows exactly the same coupled mode equations as the analytical results

in the reference. To further confirm this argument, we choose following parameters

to do the FISTS simulation: wavelength at 1µm, simulation length at 2cm, torsional

birefringence dnt = 10−4, no linear birefringence dnl = 0. The propagation is plot-

ted in Figure 5.5: blue and green curves are the evolution for the two orthogonal

polarized fields, and the red curve is the total power which shows indeed the energy

conservation. It also shows the beating length with these parameters is right about

1cm. From the optics theory, we know that the polarization beating length LB is

LB =
2π

2G
=

2π

η
=

2π

2π/λ · dnt

=
λ

dnt

=
10−6m

10−4
= 1cm, (5.82)
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where the factor of 2 comes from the difference between power and amplitude. It

shows good agreement. Therefore, the torsional birefringence is working properly as

well.

Since FISTS is primarily designed to simulate anisotropic CCC performance, the

3rd question is the most critical question to answer. In fact, we have already given

the positive answer in early chapters. In Figure 2.12, the FISTS-simulated transmis-

sion spectrum fits the experimental observation very well. We have used FISTS to

characterize nearly a dozen of different CCC samples, and most of them give very

good fit. We can give a general statement that FISTS works very well to predict the

performance of anisotropic CCC fibers.

However, we have to point out a very important point about CCC torsional bire-

fringence. In early chapters, we have argued that the torsional strain in CCC fibers

are different from the one induced in twisted fibers. More specifically, the analytical

derivation of torsional birefringence is based on the twisted fibers, so the CCC torsion-

al birefringence due to the viscosity is expected to behave in a slightly different way.

Thus, in the theoretical modal, we assumed the substitution x = x cos τz + y sin τz

and y = −x sin τz + y cos τz, and it worked perfectly for the theoretical derivation.

But this substitution will lead to energy un-conserved numerical simulation in FIST-

S algorithm. Instead, if we assume the substitution x = x cos τz and y = y cos τz

in FISTS, then the algorithm maintains energy conserved and provide the current

version of FISTS which is working very well to predict CCC performance.

To show that FISTS is the only BPM algorithm that is capable of simulating

anisotropic CCC fibers, we compare the FISTS with two other BPM algorithms in

Figure 5.6. Indeed, it shows only the FISTS algorithm can predict all the resonances

of CCC fibers. The scalar BPM can only predict the scalar resonances marked as red

dash lines in Figure 5.6, while the vectorial BPM can predict the scalar resonances

and the linear birefringence resonances marked as yellow dash lines. The torsional
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Figure 5.6: Comparison of BPM Algorithm with the Same Parameters for CCC Fiber.

birefringence marked as green dash lines can only be seen with FISTS. In general, to

the best of our knowledge, FISTS is the most comprehensive algorithm that has ever

be developed for simulating weakly guiding fibers.
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5.4 FISTS Program and Other Related Simulation Tools

In this section, we will briefly introduce the computational tools that we have

developed to design and characterize the CCC fibers. After all, the CCC fiber is

a real-world and practically-made engineering device, which means it requires fast,

convenient, and accurate designing tools. We have developed three different de-

signing tools with MATLAB: the analytical tool CATS is fast but less accurate, so

we use it to find the rough designing point; the numerical tool FISTS is relatively

slower but can give accurate prediction of the CCC performance, so we use it for

rigorous designing; the RATS control a commercial BPM simulator which provides

a standard BPM simulation but cannot explain the CCC performance, so we use it

as the calibration tool. All three programs are made with convenient interface and

can be used as Windows executable program without MATLAB environment.

5.4.1 Fiber Simulator with Torsion and Stress (FISTS)

In Figure 5.7, the program interface for FISTS (Fiber Simulator with Torsion and

Stress) Version1.8 is shown. It is a MATLAB-made Windows Executable Program,

which means it is made with MATLAB, but it can still run without the MATLAB

environment. In the program interface, there are 6 executive buttons, 3 functional

menus, 4 display windows with 4 “Reset” buttons, and 1 additional advanced setting

display window.

Clicking the button “Run” can start a calculation window as in Figure 5.8, and

the 2D field evolution and power propagation are separately shown in this window.

Clicking the button “Stop” and “Close” can stop the calculation and close this cal-

culation window. Clicking the button “Plot” will open up an “Easyplot” program

and plot the power propagation within the calculation window. Sometimes, we need

to check the refractive index profile of the fiber structure, so we can click the button

“Index” and the 2D plot of refractive index profile of the fiber cross section will be
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Figure 5.7: Program Interface For FISTS Version1.8.

shown in a popup window. The button “Scan” runs a series of simulations quietly

without showing the evolution of the fields and power propagation, and shows the

transmission spectrum for a list of wavelength positions by collecting the central core

loss at the end of each simulation. For this wavelength scanning functionality, we

have also implemented the parallel computing techniques to accelerate the simulation
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Figure 5.8: FISTS Calculation Window.

speed. Currently, for eight 10cm propagation simulations, we can run all of them in

the parallel mode and it only costs 5 minutes in total.

The “File” menu is used to conveniently load and save parameters: “Default” loads

the default value from a default parameter file; “Load” opens up an directory window

and let user choose the parameter file to load; “Save” saves the current parameter

settings to the default parameter file; “Save As” allows user to save the current

parameter settings to a separate parameter file for future use. The “Options” menu

gives the options to choose either static or helical modes with either linear or circular

polarization, and the rotation sign of the orbital angular momentum or spin angular

momentum can be selected too. The “Curves” menu gives the options to choose the

representation of the red, blue and green curves in the calculation window, which is

shown in Figure 5.8. For this particular case, the red curve represents the total power

flow for both polarizations adding up “(R)|Ex|∧2+|Ey|∧2: Total Structure”, the blue

curve represents the power flow in the central core with only one linear polarization

component “(R)|Ex|∧2: Center Core”, and the green curve represents the power flow
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in the central core with another polarization “(R)|Ey|∧2: Center Core”. Because

the field we launch is only Ex component, and all birefringence terms have been

deactivated for the isotropic case, the green curve always stay zero for this particular

case. Due to the side core loss, we can see the red curve (total power flow) is declining.

The blue curve is declining while oscillating due to the coupling with the side core.

Figure 5.9: FISTS Pop-up Input Window.

Each display window contains 7 different input parameters, and clicking the “Re-

set” button besides the window will pop up the input window. For instance, the “Per-

turbation Parameters” pop-up input window is shown in Figure 5.9. This particular

input window contains the most distinctive parameters for FISTS — the anisotropic

birefringence in the CCC fibers. In Figure 5.9, “Global Rotating Birefringence” refers

to the linear birefringence and torsional birefringence throughout the entire cross sec-

tion of the structure. In fact, we currently don’t see any global birefringence in CCC

fiber, which we can intensionally generate by adding stress rods in the fiber cladding

in the future. The “Local Rotating Birefringence” refers to the linear birefringence

in the strongly distributed local area between two cores, and “Torsional Rotating

Birefringence” refers to the torsional birefringence in the same area. In Figure 5.10,

the referred “Local” area is plotted as an ellipse in the cladding located between two
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cores, and the refractive index change along one polarization (e.g. ∆n for Ex) is

plotted. From the comparison of linear and torsional birefringence in the Figure 5.10,

we can see the linear birefringence is oscillating at twice of the side core helix period,

which is consistent with the result in Eq.(3.76), and the torsional birefringence is

oscillating at the same period as helical period, which is consistent with the result

in Eq.(3.82). This could intuitively explain how the FISTS generates all the QPM

resonances: the linear and torsional birefringence oscillate periodically and generate

the “sidebands”. These sidebands are the equally separated QPM resonances in the

transmission spectrum.

Figure 5.10: The Local Birefringence in FISTS.

Figure 5.10 is actually a snapshot of a movie, where the evolution of the cross-

section refractive-index profile along the CCC fiber is shown dynamically. In fact,

FISTS is capable of simulating any arbitrary cross-section profile for scalar refractive

index, linear birefringence and torsional birefringence. For example, FISTS can do:
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more side cores than just one side core, arbitrary refractive-index profile in one core,

refractive-index rings on the edge of the cores, refractive-index dunes at the center

of the core, and so on... Due to the limitation of the thesis volume, we cannot

demonstrate all of them.

FISTS can also work under a batch mode. In such a batch mode, different sets of

parameters can be written down one after one in a batch file. Then, the FISTS would

run each set of parameters one by one. After the simulation of each set of parameters

is done, the FISTS will automatically send email notification with simulation results

attached. With this advanced feature, we can let the computer run for several days

without intermittence, so we can achieve the most efficient way for optimizing the

designing work of CCC fibers.

5.4.2 CCC Analytical Tool for Step-index (CATS)

In Figure 5.11, the program interface for CATS (CCC Analytical Tools for Step-

index) Version7.0 is shown. It is also a MATLAB made Windows Executable Pro-

gram. As its name, the CATS is an analytical tool, and all the calculations within

this program are based on analytical methods for optical fibers, which means it is

limited to the step-index optical fibers. Thus, it can not be used for the practically

made CCC fibers with arbitrary refractive index profile. But, since the analytical

calculations are very fast and usually can be done in seconds, we use CATS for rough

searching towards the promising design region. As a matter of fact, at the time when

FISTS had not been developed, we actually used CATS to design a few batches of

effective single-mode CCC fibers, which turned out to give very good performances.

Therefore, CATS is an important designing tool as useful as FISTS.

There are 6 executable buttons in total:

1. The executive button “Search” displays the existing modes in “Cen-

tral Existing Modes” and “Side Existing Modes” frames. When “Search”
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Figure 5.11: Program Interface For CATS Version7.0.

button is pressed down, the modes that exist in the fiber cores would be

highlighted and ready to be chosen.

2. The “Sideloss” displays the modal loss of side mode which has been

chosen in the “Side Existing Modes” frame. The 2D plot of the chosen

side mode will be calculated based on the analytical formula for bent step-

index optical fiber (Marcuse, 1975).

3. The “QPM” button displays two windows: one is the dispersion curves

(modal effective refractive index as a function of wavelength in a 2D plot)
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for both central core and side core, and the other is the QPM condition-

s (QPM resonances in a 2D plot with helical pitch as vertical axis and

wavelength as horizontal axis) for the pair of coupling modes chosen in

“Central Existing Modes” and “Side Existing Modes” frames.

4. The “Couple” button displays the coupling coefficients κpq(p, q = a, b)

in the output window beneath the executive buttons, and also shows the

1D and 2D modal profile of the two coupled modes.

5. The “PropSc” button stands for “propagation scan”, and it will show

the power flow while the two modes propagating and coupling along the

CCC fiber.

6. The “Scan” button displays a wavelength scan regarding the perfor-

mance of CCC fibers.

In Figure 5.12, the 2D plots calculated by CATS are shown together:

1. In “Figure 111”, the horizontal axis is the distance in µm, and the

vertical axis is the normalized amplitude. In “Figure 222”, both the hor-

izontal axis and the vertical axis are the distance in µm. “Figure 111” is

the 1D view of the two coupled modes, while “Figure 222” is the 2D view

of the two coupled modes. We can see that the two modes both penetrate

into each other’s core and the perturbation region between the two cores,

which gives modal overlaps and interactions for this two-mode coupling.

2. “Figure 333” is the dispersion curves for the two coupled modes, where

the horizontal axis is wavelength in µm and the vertical axis is the effective

modal refractive index. The black curve is for the cladding refractive index

value, and the blue curve is for the larger diameter central core mode The

green and red curves are for the uncorrected and corrected side core mode

respectively. Due to the side core helical path, the effective modal refrac-

tive index of the side core mode is lifted by a factor of
√
1 +K2R2, which
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Figure 5.12: CATS Display Windows.
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has been proven in early chapters. We can also notice that, the effective

refractive index of side core mode crosses cladding refractive index 1.45

at around 1µm, and starts to be below 1.45 beyond 1µm. According to

waveguide theory, only the modes with the effective refractive index larger

than cladding refractive index 1.45 can be guided. Thus, these modes are

called as “leaky modes”. In fact, to use side core leaky mode is the reason

why CCC fibers can introduced more than hundreds of dB/m side modal

loss, because the bending loss usually cannot provide so large value.

3. “Figure 444” is the QPM conditions for the two coupled modes, where

the horizontal axis is wavelength in µm and the vertical axis is the helical

period in millimeter. The blue dotted curves are the QPM resonances.

Since the red horizontal line is one value of the helical period, the cross

points between the resonance curves and this red horizontal line are the

QPM resonances for this particular helical period. We can see that the

resonance position will move towards the shorter wavelength when the

helical period gets longer, which is one of the means we can use to finely

adjust the design.

4. “Figure 555” is the modal loss of the side core, where the horizontal

axis is the wavelength in µm and the vertical axis is the side modal loss

in dB/m. Knowing the results in “Figure 444” and “Figure 555’, we can

roughly design an effective single-mode CCC fiber based on the analysis

and conclusion in Chapter IV.

5. “Figure 666” is the power flow for the CCC fiber regarding the propa-

gation and the coupling between the two coupled modes, which is similar

to the calculation in Figure 4.1. The horizontal axis is the propagation

distance in meter, and the vertical axis is the normalized amplitude.
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5.4.3 RSoft-Beamprop Active Test and Scan (RATS)

RSoft-Beamprop is a commercially available BPM program. It has been con-

firmed that RSoft-Beamprop cannot explain the performance the CCC fiber due to

its lack of rotating linear birefringence and torsional birefringence. However, since

it is broadly recognized as the most mature and trustable commercial simulator for

BPM simulations, we can use it to calibrate our FISTS program. In Figure 5.13, the

program interface for RATS (RSoft-Beamprop Active Test and Scan) Version1.5 is

shown. For our purpose, we can gain more flexibility and convenience with RATS

than with RSoft-Beamprop’s own program interface.

Figure 5.13: Program Interface For RATS Version1.5.
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CHAPTER VI

Conclusion

In this final chapter of the entire dissertation, we are going to talk about the

potential applications and the conclusions of CCC fibers.

The large-core-size effective single-mode CCC fiber, which is discussed with greater

details in the previous chapters, is our primary application that has been successfully

demonstrated in experiments. However, there are several other applications that we

are currently pursuing but haven’t demonstrated yet. Thus, we are going to briefly

introduce these applications just for the purpose of demonstrating the idea and the

concepts.

Due to the innovative nature of PhD thesis work, it is necessary to point out the

innovations of this thesis comparing with up-to-date contemporary works. Several

highlight points are discussed in terms of their academic contributions.

After that, a short final summary is given to illustrate the personal opinion towards

the overall significance of CCC fibers.
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6.1 Potential Applications of CCC Fiber

6.1.1 SRS Suppression with CCC Fibers

It is well known that the Stimulated Raman Scattering(SRS) is one of the major

limiting factors for high power fiber laser, especially for the high energy pulsed laser

in quasi-CW domain, and this type of laser is most needed for industry applications

such as material processing, so the suppression of SRS is strongly urged in making

this kind of industrial fiber lasers.

Figure 6.1: Suppression of Stimulated Raman Scattering in CCC Fibers.
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In Figure 6.1, the suppression of SRS in a particular design of CCC fiber is shown.

In the upper part of Figure 6.1, it shows the stokes Raman gain of fused silica for laser

signal at 1030nm. In the lower part of Figure 6.1, it is the transmission spectrum

of a particular design of passive CCC fiber. We can clearly see that the 10dB/m

suppression would overlap with the peak of stokes Raman gain spectrum, so the

stokes Raman gain is suppressed. We are currently working on demonstrating the

SRS suppression.

6.1.2 Wavelength Selection of Yb-Doped Fiber Laser

In principle, we can design the CCC fiber to suppress any particularly chosen

wavelength range, therefore, we can achieve wavelength selection for Yb-doped fiber

laser or laser amplifier. Generally speaking, Yb-doped fiber laser prefers lasing around

the range from 1030nm to 1070nm, but it is hard to control the lasing wavelength

precisely without adding an active component inside the laser cavity such as a band-

pass-filter. A free running Yb-doping fiber laser can lase at any wavelength between

1030nm and 1070nm depending on specific configuration of the laser cavity. With

CCC fiber, by engineering the suppressed wavelength range, we can demand the Yb-

doped CCC fibers only lase at one fixed wavelength. This will provide a more stable

and intrinsic way to control the wavelength of Yb-doped fiber laser or laser amplifier.

It is well know that building a 980nm laser with Yb-doped fiber laser is very

challenging. Around 980nm, due to the large absorption cross-section around this

wavelength, the lasing is usually quite difficult to compete with the other lasing

wavelength. However, if we can suppress other wavelength and provide the best

scenario for 980nm to lase, then 980nm lasing wavelength might become superior to

other lasing wavelength. This would provide a fundamentally easy way to achieve the

980nm Yb-doped fiber laser.
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6.1.3 SBS Suppression with CCC Fibers

It is also well known that Stimulated Brillouin Scattering(SBS) is another major

limiting factor for fiber laser, especially for CW laser with narrow linewidth signal.

In fact, SBS is currently the exact reason preventing the current narrow linewidth

fiber laser to reach 1000 Watts, to the best of my knowledge. Therefore, suppression

of SBS is strongly needed for fiber laser community. Up to now, only a few ideas

have been proposed to suppress the SBS, and one of them is the circular polarization

dichroism. The idea is based on the fact that SBS only generates counter-propagating

reflectively scattered light by the grating effect of Brillouin scattering. The reflection

of circularly polarized optical wave always carries the opposite sign of circular polar-

ization compared to the originally propagating optical wave. Therefore, if we have

the circular polarization dichroism in the fiber which would prohibit the counter-

propagating reflectively scattered light to propagate, we can essentially suppress the

SBS from being generated inside the fiber.

Figure 6.2: Circular Polarization Dichroism of CCC Fibers.

In Figure 6.2, the circular polarization dichroism of CCC fibers is demonstrated.

The black profile in the plot is the refractive profile of central core (on the left) and

the side core (on the right) separated by a distance as in CCC fibers. We can design

a CCC fiber in such a way that the central core fundamental mode and side core LP21

131



mode have the relationship shown in Figure 6.2. Then, one circular polarization for

the fundamental mode in central core will be constantly coupled into the side core

lossy LP21 mode, which means this circular polarization for fundamental mode in the

central core will get lossy and eventually get suppressed.

6.1.4 Laser Beams with Optical Angular Momentum

We have experimentally demonstrated the generation of optical beam with opti-

cal angular momentum out of the side core and measured the quantum number of

its orbital angular momentum in Chapter II. In principle, we can design the CCC

fibers to be more efficient and convenient to generate such optical beams. Then, we

can find numerous application in scientific community, including particle trapping

and manipulation [8, 9], quantum communication [10] and quantum computing and

information encoding in multi-dimensional quantum space [11]. More details can be

found in references.
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6.2 Up-to-date Innovation and Contemporary Comparison

6.2.1 Another Degree of Freedom in Optical Fibers

The most profound innovation of CCC fiber is to introduce another degree of

freedom for controlling the modal properties, which is the optical angular momentum

of the light in the optical fibers. There are two other fiber devices that contain the

core with helical rotation:

1. Helical-core fibers (Wang et al., 2006a);

2. Chiral fiber grating (Kopp et al., 2004).

The helical-core fiber has just one helical core in the cladding. Since there is no

coupling system, this fiber is simply mimicking the tightly coiled traditional LMA

fibers. Therefore, no control of optical angular momentum is introduced.

The chiral fiber grating is to rotate an elliptical core or rectangular core in a very

short period — a few µm. In fact, we can use the theory developed for CCC fiber in

this thesis to understand the working mechanism of chiral fiber gratings. Instead of

coupling the light from a central round core to a side round core in CCC fibers, the

chiral fiber grating couples the light from elliptical or rectangular core to the cladding

modes. Since the elliptical core or rectangular core is polarization sensitive, they can

achieve the control of optical spin angular momentum, but there is no optical orbital

angular momentum effect. In comparison, CCC fibers can control both the spin and

the orbital angular momentum.

6.2.2 Effective Single-Mode Operation in Fiber Lasers

Effective single-mode operation in fiber lasers is currently the primary application

of CCC fibers. Since large-mode-area effective single-mode fibers are so crucial for

developing high power fiber lasers, there are quite a few different approaches including:
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1. Helical-core fibers (Wang et al., 2006a);

2. Gain-guiding fibers (Xie et al., 2008);

3. Photonic-crystal fibers (Baumgartl et al., 2011);

4. Leaky-channel fibers (Dong et al., 2009).

Regarding the helical-core fiber, as has been pointed out, it is simply mimicking

the tightly coiled traditional LMA fiber, so the effective single-mode operation of this

fiber wouldn’t exceed the performance of traditional LMA fibers.

Regarding the gain-guiding fiber, the core size can reach more than 100µm, but it

can not be bent whatsoever. To keep it straight in the experiment setup, the length

of the fiber has to be quite short. Therefore, the laser setups with gain-guiding fibers

are practically solid-state lasers other than fiber lasers.

Regarding the photonic-crystal fibers, when the core size reaches more than 50µm,

they become the so called “photonic-crystal rods”, which can not be bent as well.

Similar to gain-guiding fibers, the laser setup with photonic-crystal rods is more like

solid-state laser and doesn’t seem to preserve the advantage of fiber laser in the first

place.

Regarding the leaky-channel fibers, samples with more than 100µm core size have

been reported. However, up to now and to the best of our knowledge, no direct

evidence of effectively single-mode operation has been demonstrated.

6.2.3 Derivation of Eigenmodes in CCC Structure

To the best of my knowledge, this is the first theoretical description of an optical

waveguide obtained through transformational-optics approach by developing Maxwell

equation-based theory in a curvilinear coordinate system.
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6.2.4 Core-Size Scalability of CCC Design

In Chapter 4 we presented a simple two-mode interaction model that we used to

evaluate the ultimate core-size scalability for single-mode operation. Based on this

simplified model we argued that up to 40dB/m HOM suppression can be achieved

for CCC core sizes of 100µm. In reality, scaling of CCC core is less straightforward,

since in CCC structures modes can interact not only in pairs but also can interact

in groups. This can create certain bottlenecks for power flow from central-core HOM

into the ”lossy” side core, which can effectively ”quench” HOM suppression. We have

observed such bottlenecks both numerically and theoretically, using multiple-mode

interaction models. Our latest theoretical and design results show, that it is possible

to overcome these bottlenecks and we recently designed CCC fibers with core sizes

exceeding 50um with a predicted excellent HOM-suppressing performance (well above

the HOM-suppression requirement for effectively single mode performance). However,

due to the complicated nature of multiple-mode interactions in CCC fibers it is not

straightforward to formulate a general accurate core-size scalability description.

6.2.5 Novel BPM Algorithm for CCC Simulation

The FISTS algorithm represents one of the most original technical contributions of

this thesis work. FISTS has passed all the benchmarking for torsional birefringence in

comparison with well-known analytical results (comparison with an existing analytical

theory of optics of twisted optical fibers). To the best of my knowledge, this makes it

the only available numerical methods to simulate weakly guiding optical fibers with

torsional (twist-induced) birefringence.
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6.3 Final Summary

This thesis is mainly about a new type of optical fiber that we have designed and

fabricated. We name it as “Chirally-Coupled-Cores(CCC) Fiber”. The experimental

observations, theoretical analysis and numerical simulations are all consistently indi-

cating that, the eigenmodes of optical field interacting and propagating in such fibers

are the ones carrying spin and orbital angular momentums.

From the fundamental physics point of view, it goes profoundly to the new sym-

metry that we have introduced to CCC fibers. The degeneracy breaking for the modes

with the same phase velocity but different optical angular momentum would enable a

fundamentally new degree of freedom to control the optical light in optical fibers. It

would be interesting for the scientific community to know the potential to use CCC

fibers to manipulate the angular momentum of optical light just like the manipulation

of atoms’ in quantum physics. It could also provide advance scientific understanding

toward angular momentum of optical light.

From the engineering point of view, it goes broadly to quite a few strongly-urged

and novel applications described in the early sections of this chapter, which all come

from the new degree of freedom of controlling the modal properties. Considering the

fact that the CCC fibers are relatively easy to make (we have fabricated hundreds

of meters of such fibers with our commercial manufactures), we believe they would

be quite useful in all kind of areas ranging from “every-day” engineering devices to

fundamental-scientific-study tools.

Therefore, by combining such a fundamental physics topic with such a broadly-

used engineering device, we believe our work would be quite a contribution to both

scientific and engineering community.
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