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Regression analysis with covariates that
have heteroscedastic measurement error
Ying Guo∗† and Roderick J. Little

We consider the estimation of the regression of an outcome Y on a covariate X, where X is unobserved, but
a variable W that measures X with error is observed. A calibration sample that measures pairs of values of
X and W is also available; we consider calibration samples where Y is measured (internal calibration) and
not measured (external calibration). One common approach for measurement error correction is Regression
Calibration (RC), which substitutes the unknown values of X by predictions from the regression of X on W
estimated from the calibration sample. An alternative approach is to multiply impute the missing values of
X given Y and W based on an imputation model, and then use multiple imputation (MI) combining rules for
inferences. Most of current work assumes that the measurement error of W has a constant variance, whereas
in many situations, the variance varies as a function of X. We consider extensions of the RC and MI methods
that allow for heteroscedastic measurement error, and compare them by simulation. The MI method is shown
to provide better inferences in this setting. We also illustrate the proposed methods using a data set from the
BioCycle study. Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction

Measurement error is common in many empirical studies, arising from assay or instrumental error,
biological variation, or errors in questionnaire-based self-report data. It is well known that in a regression
analysis the estimated effect of a predictor variable may be attenuated when it is measured with
substantial error. In particular, Kipnis et al. [1] find that measurement error in dietary intake assessment
by using the Food Frequency Questionnaires (FFQ) leads to severe attenuation in the estimate of
disease relative risk in a biomarker study. Cotton et al. [2] show that measurement error can reduce the
chance of accurate diagnosis of appropriate educational placement for children with reading difficulties.
Wannemuehler et al. [3] indicate that the impact of measurement error can be substantial in the
assessment of the association between pollutant exposure and a health outcome, using surrogates for
unobserved measurements of ambient concentrations.

Most of the research on measurement error in covariates assumes that the variance of measurement
error is constant. However, the variance of measurement error often increases with the true underlying
value, as evidenced by the fact that the limit of quantification in assays is often defined in terms of
the coefficient of variation rather than the standard deviation. We consider here methods for correcting
for heteroscedastic covariate measurement error. Our motivating example is provided by the BioCycle
study, a study where one of the primary goals is to investigate the association between fat-soluble
vitamins (e.g. �-carotene) and progesterone in human serum [4]. The fat-soluble vitamins are measured
with error using high-performance liquid chromatography (HPLC). Guo et al. [5] model calibration
data on eight fat-soluble vitamin analytes with measurement variance �2g2(X,�), where X is the true
value, and g(X,�)= X�, a power function of X . They find that the constant variance assumption (�=0)
is clearly violated, with estimates of � ranging from 0.5 to 0.8.
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(a) (b)

Figure 1. Calibration/main study design: (a) internal and (b) external.

We consider data in the form displayed in Figure 1, where Y denotes a response variable, X denotes
the covariate of interest, W denotes the error-prone measurement of X , and question marks denote unob-
served values. The main study data consist of a sample of independent and identically distributed obser-
vations on (Y,W ). The calibration data consist of a sample of independent and identically distributed
observations on (X,W ). Information about the measurement error is contained in calibration data with
measured and true values of the covariate both recorded. We call the calibration data internal when they
are a random sample from the main study, so they also contain observations of Y , as in Figure 1(a).
We call the calibration data external when they are from another source, and information of Y is not
available, as in Figure 1(b). We consider inference for the parameters of the regression of Y on X . The
common case where there are additional error-free covariates is discussed in Section 8.

Comprehensive reviews of statistical methods for adjusting the measurement error include Fuller
[6] for linear models and Carroll et al. [7] for nonlinear models. One commonly used and simple
method is regression calibration (RC) [8]. The unobserved value X is imputed by the expected value
of X given W , with coefficients estimated from the calibration data, and the regression of Y on X is
then estimated using the filled-in data in the main study. A related method is moment reconstruction,
where imputed values are constructed to match the first two moments of Y and X [9]. This method
is equivalent to RC in the linear regression case. For the case of internal calibration data, the estimate
from RC can be combined with the estimate of the regression of Y and X computed directly from the
calibration data, weighting the estimates from two sources according to their precisions. This method
is known as efficient RC (ERC); see [10].

An alternative approach is to use imputation or multiple imputation (MI) methods from the missing
data literature to fill in the true values. Cole et al. [11] consider the MI method to remove the bias
in the estimation of the hazard ratio for chronic kidney disease due to mismeasured covariates in a
prospective cohort study. Schenker et al. [12] describe MI to correct for measurement error of self-report
data on health conditions in large-scale population surveys. Other Bayesian approaches for covariate
measurement error are given in [13--17].

Freedman et al. [18] evaluate the performance of a number of these methods by simulation, for
the case of internal calibration data. Several different scenarios are considered, including different
choices of the measurement error variance and the strength of the response–covariate relationship.
Data are simulated assuming non-differential measurement error (NDME), meaning that Y and W are
independent given X . Their findings suggest that the ERC is the preferred method. However, we note
that unlike ERC, the version of MI used in this simulation does not exploit the NDME assumption. The
MI methods described in this article are more efficient since they are based on an imputation model
that makes the NDME assumption.

In addition, Freedman et al. [18] assume that the variance of measurement error is constant, and
do not assess methods when the measurement error is heteroscedastic. In that situation, existing error
correction methods yield biased estimates, as our simulations demonstrate. Spiegelman et al. [19]
propose Taylor series-based modifications of RC for heteroscedastic measurement error, under the
assumption that g(X,�)=g(X ) is known. We propose extensions of the methods compared in [18] to
correct for heteroscedastic measurement error. We compare these methods through a simulation study,
concluding that MI is the best of the methods compared in this setting.

The outline of the rest of this article is as follows. In Section 2, we specify models for the calibration
data and main study data. In Section 3, we describe various measurement error correction methods.
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We propose a simple extension of standard RC to deal with nonconstant variance. We also propose
MI methods under both constant and nonconstant measurement variance, with and without the NDME
assumption. MI methods are developed for both internal and external calibration designs. Our MI
methods are Bayesian. The unobserved values of covariate X are replaced by draws generated using data
augmentation [20], and (in the nonconstant variance case) a Metropolis–Hastings (MH) algorithm [21].
A simplified approximate method that avoids the MH step is also developed. In Section 4, a simulation
study is described, considering both constant and nonconstant measurement error variances, and both
internal and external calibration study designs. Results from simulations are reported in Section 5.
Sensitivity analysis is presented to examine the performance of the MI methods to misspecification of
the prior distribution of X in Section 6. In Section 7, we illustrate the use of proposed methods on a
real data example from the BioCycle study, where the effect of oxidative stress on female fecundity
and fertility is investigated. In Section 8, we conclude with a discussion of the results and extensions
of the proposed methods.

2. Models

Measurement error adjustments require an error model linking the true variable X to the surrogate
measure W , which requires careful consideration in the context of the specific application [22, 23]. The
classical measurement error model assumes that

W = X +� (1)

where � is a random error with mean zero and constant variance [24--26]. In some epidemiological
studies, W and X are transformed by taking logarithms, that is: log(W )∼N(log(X ),�2) [27]. In our
work, we consider a linear mean function and heteroscedastic measurement error, specifically:

p(W |X,�)∼N(�0 +�1 X,�2 X2�) (2)

where �= (�0,�1,�,�2), and the parameter � models heteroscedasticity. The measurement error variance
is constant when �=0. In the main study, we assume a linear regression model of Y on X :

p(Y |X,�)∼N(�0 +�X X,	2) (3)

where �= (�0,�X ,	2), although more generally nonlinear relationships between Y and X can be
modeled.

We assume that (Y,W ) given X are bivariate normal with constant correlation 
. Under the NDME
assumption that Y and W are independent given X , 
=0 [18]. This assumption is often reasonable
when measurement error arises from bioassay techniques or laboratory experiments. NDME is less
reasonable in retrospective case–control studies, where the disease status of subjects is known and the
data about their exposure to risk factors are collected retrospectively, since recall error of past exposures
is often thought to be more likely for cases than for controls (e.g. mothers of babies with a deformity
may, on the average, have a different recall error about their early pregnancy drug intake than mothers
of normal infants).

Further, we assume that the error model of W given X , and the regression model of Y given X hold
with the same parameter values in both the main study sample and the calibration sample, when using
external calibration data to assess measurement error. This assumption naturally holds for the internal
calibration sample since it is a subsample of the main study sample. Therefore, the final analysis can be
applied to the completed data including both samples. The situation where the model for measurement
error in the external calibration study may differ from that in the main study is discussed later in
this article.

3. Methods

3.1. Conventional approach

The conventional approach (CA) fits an appropriate regression curve of W on X to the calibration
data and estimates the true value of X using the value on the predicted calibration curve [28--30]. For
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example, assuming a linear relationship between the true and measured values, the estimate of the true
value given the measured value W is X̂CA = (W − �̂0)/�̂1, where �̂0 and �̂1 are the estimates of the
intercept and slope obtained from the regression of W on X using the calibration data. The estimate
X̂CA is then substituted for the unknown X in the main study data, and the regression model (3) is fitted
to the data, yielding the CA estimate �̂X,CA. The CA approach is biased for the regression coefficients
but is nevertheless widely used in practice.

3.2. Regression calibration

RC estimates the regression of X on W using the calibration data, and then substitutes the unknown
values X in the main study with predictions X̂RC = E(X |W ) from this regression. The RC estimate �̂X,RC

is then obtained by regressing Y on X̂RC. The RC method rests on the assumption that measurement
error is non-differential. If this assumption is violated, the RC estimates are biased.

The standard error of the RC estimate can be estimated using asymptotic calculations [10], or by
bootstrapping the main and calibration samples. We create bootstrap samples from the calibration data
and the main study data separately, and then combine them to compute RC estimates of the regression
parameters. This procedure is repeated B =200 times. The sample variance of the resulting B estimates
is used to estimate the variance.

When the calibration data are internal, two estimates of the regression coefficient are available, the
RC estimate �̂X,RC, and the least squares estimate �̂X,LSCalib from fitting the linear regression model (3)
to the calibration sample data on (Y, X ). The ERC estimate is the inverse-variance-weighted average
of these two estimates,

�̂X,ERC =wRC�̂X,RC +(1−wRC)�̂X,LSCalib

with weight

wRC = v̂ar(�̂X,RC)−1[v̂ar(�̂X,RC)−1 + v̂ar(�̂X,LSCalib)−1]−1

where v̂ar(�̂X,RC) and v̂ar(�̂X,LSCalib) are the estimated variances of �̂X,RC and �̂X,LSCalib, respec-
tively. The variance of �̂X,ERC is computed approximately as v̂ar(�̂X,ERC)= [v̂ar(�̂X,RC)−1 +
v̂ar(�̂X,LSCalib)−1]−1. ERC is more efficient than RC, particularly when the calibration data set is large.

We propose a modified version of RC, weighted RC (WRC), for situations where measurement
error is heteroscedastic. This method estimates the parameters of the regression model of X on W by
weighted least squares. Specifically, we assume the regression of X on W can be approximated by the
weighted regression model

p(X |W,�,�,
)∼N(�0 +�1W,�2W 2
) (4)

The estimate �̂X,WRC is obtained by

• Estimating 
 as the slope of a simple regression of the logarithm of squared residuals of the
regression of X on W on the logarithm of squared W using the calibration data.

• Estimating �̂0 and �̂1 by weighted least squares.
• Substituting unknown values X in the main study with the prediction, i.e. X̂WRC = �̂0 + �̂1W .
• Estimating the coefficient �X,WRC of the regression of Y on X̂WRC from the main study data.

The associated standard error of the WRC estimate can be estimated using the bootstrapping approach
mentioned above. We estimate 
 using a simple regression approach. This approach is easy to implement,
and yields estimates of 
 close to the ML estimates (using an iterated conditional modes algorithm),
as demonstrated when applied to the BioCycle study data in our previous study [5].

We can also modify the ERC estimate to account for heteroscedastic measurement error by replacing
�̂X,RC with �̂X,WRC. We call this the weighted ERC (WERC) estimate.

3.3. Multiple imputation

We now develop MI methods based on a fully Bayesian model for the joint distribution of X,W and
Y , which we write as p(X,W,Y ). These methods all create MIs of the missing values – for the internal
calibration design (Figure 1(a)), the missing values of X in the main sample, and for the external
calibration design (Figure 1(b)), the missing values of X in the main sample and the missing values
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of Y in the calibration sample. In the work described in this article, we combine both the calibration
sample and the main study sample in the final (post-imputation) analysis to provide inferences for the
regression of Y on X . The MI estimates and associated standard errors are then obtained by applying
standard MI combining rules to M multiply-imputed data sets including both samples [31]. Specifically,
the MI estimate of �X is

�̂X,MI =
1

m

M∑
m=1

�̂(m)
X,MI

and the corresponding variance is

Var(�̂X,MI)= W̄ + B ×(M +1)/M

where �̂(m)
X,MI is the estimate of the coefficient of X (m)

MI in the regression of Y on X (m)
MI in the mth imputed

data set; B is the between-imputation variance, calculated as B =∑M
m=1(�̂(m)

X,MI − �̂X,MI)
2/(M −1); W̄ is

the average of the within-imputation variance, calculated as W̄ =∑M
m=1 var(�̂(m)

X,MI)/M ; and var(�̂(m)
X,MI)

is the standard variance estimator obtained from the mth imputed data set. We apply this method to
M =16 multiply-imputed data sets.

The form of the MI method depends on the assumption made about � and 
. When �=0, that
is, the measurement error variance is constant, MI can be performed easily using standard Bayesian
techniques for normal data described by Little and Rubin [32]. We assume uniform priors for the
location parameters and log variances. The methods are labeled with a ‘0’ to indicate the assumed value
of �. For internal calibration data (Figure 1(a)), the imputation of X can be created assuming NDME
(
=0)—we label this method MIND0, or not assuming NDME (
 �=0)—we label this method MI0.
The MI0 method is assessed in the simulation study of [18], but we also consider MIND0 to assess
the gain of efficiency from basing imputations on the NDME assumption. For the external calibration
design, the parameter 
 is not identified, so we only consider the MIND0 method that assumes
NDME (
=0).

For the cases where � �=0 (i.e. the measurement error variance is not constant), we consider two
approaches for estimating �. One approach is to generate draws of this parameter from its posterior
distribution, through a Metropolis–Hastings step. We describe here MI under the NDME assumption,
where the joint distribution of W and Y given X can be factored as:

p(W,Y |X,�,	,�,�,�)= p(W |X,�,�,�)p(Y |X,�,	)

We add prior distributions for the marginal distribution of X and the parameters (�,	,�,�,�) to
complete the fully Bayesian specification. Specifically, we assume

p(X,�,	,�,�,�)= p(X )p(�,	,�,�,�)

where the prior distribution of X is a normal distribution with mean �x and variance �2
x , and the prior

distribution of parameters (�,	,�,�,�) is a noninformative prior

p(�, log	,�, log�,�)=const., −2<�<2

where the range (−2,2) for � includes values of that parameter thought likely to be of interest;
the proper prior distribution for � is to ensure a proper posterior distribution [5]. In this article, we
consider a hierarchical normal structure for X , and assume a noninformative prior distribution for
hyperparameters �x and �2

x , with p(�x , log�x )=const., letting the posterior inferences be dominated
by the observed data. Other choices of the prior distribution for X are discussed in the concluding
section.

Draws can be conveniently computed using the data augmentation algorithm, which iteratively
imputes missing values given observed data and draws of the parameters (the imputation step), and
then draws parameters of the model from their posterior distribution given imputed values and observed
data (the posterior step). A Metropolis–Hastings step is required to generate draws of X . Details are
given in Appendix A. We label MI inferences from this algorithm MIND�.

We also develop a simpler version of MI that does not require the MH step, and can be viewed as a
MI analog of the WRC method. The measurement error model is reformulated as the model (4), and the
estimate 
̂ of the parameter 
 is substituted. For known 
, MI can be performed easily using standard
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Bayesian approaches for normal data. The estimate of 
 can be computed using a simple regression
approach, where 
 is estimated as the slope of a regression of logarithm of squared residuals of the
regression of X on W on the logarithm of squared W using the calibration data. We take into account
the uncertainty of the estimation of 
 by bootstrapping the calibration data to assure that MI is proper.
We label this simplified MI method SMIND�.

4. Simulation study

We assess the performance of the above methods by a simulation study. We consider both internal
and external calibration data designs, vary the strength of the association of Y and X , the size of
measurement error, and consider both homoscedastic and heteroscedastic measurement error. Simulation
scenarios are generated by the following combinations of parameters:

Main study data: �0 =0; �X =0.3 or 0.6, 	2 =1.
Measurement error data: �0 =0; �1 =0.5, 1 or 2; �2 =0.25, 0.5 or 1; �=0 (homoscedastic measure-

ment error) or 0.4 (heteroscedastic measurement error). The cases of �2 =0.5 and 1 are investigated
only for �1 =0.5, which results in five combinations. Different combinations of � and �2 values result
in varying degrees of the correlation 
XW between X and W .

To clarify the notation, ‘calib’ and ‘main’ will be attached to subscript to denote the calibration
study and main study, respectively. We simulate ncalib =100 observations in the calibration sample and
nmain =400 observations in the main sample. For each scenario, 500 simulated data sets are generated.

The true X is first generated from the normal distribution with variance 1. Each main study data set
is simulated by randomly generating the values for the response variable Yi and the observed error-
prone variable Wi for i =1, . . . ,nmain, based on the models (2) and (3) respectively. For the external
calibration data design, we randomly generate values of Wi from the measurement error model (2), for
i =1, . . . ,ncalib. For the internal calibration data design, we also generate responses Yi , i =1, . . . ,ncalib,
using the model (3) with the same values of � and 	2 used to simulate the corresponding main study data.

For each of the 500 simulations across each of the simulation scenarios, we estimate the parameter
of interest �X for each of the measurement error correction methods described above. All methods
are compared with respect to bias, root mean squared error (RMSE) of the estimates and empirical
non-coverage of 95 per cent confidence intervals. The empirical non-coverage is calculated as the
proportion of simulated data sets for which the 95 per cent confidence interval does not include the
true value of �X . The proportions are multiplied by 1000 to avoid decimal points, and hence a nominal
level of non-coverage is equal to 50.

5. Results

In Tables I–III, we examine the performance of the naïve regression of Y on W (i.e. ignoring measure-
ment error), and measurement error correction techniques CA, RC, and MI. We focus on the performance
of various methods on inferences for the regression coefficient �X . We compare the methods in situ-
ations where the association between X and Y is weak (�X =0.3) and strong (�X =0.6), and where
the measurement error, as measured by the correlation 
XW between X and W , is small (
XW>0.9)
and large (
XW<0.6). Table I compares Naïve, CA, RC, ERC, LSCalib, MI0, and MIND0 for the case
of internal calibration data with homoscedastic measurement error (�=0). Table II compares Naïve,
CA, RC, MI0, MIND0, WRC, WERC, LSCalib, MIND�, and SMIND� for internal calibration data
with heteroscedastic measurement error (�=0.4). Table III compares Naïve, CA, RC, MIND0, WRC,
MIND�, and SMIND� for external calibration data with heteroscedastic measurement error (�=0.4);
we do not evaluate the LSCalib, ERC, and WERC methods since they are not applicable for this data
structure.

Table I presents the results for the case of homoscedastic measurement error. As theory predicts,
Naïve estimates are attenuated towards zero, with the degree of attenuation varying with the magnitude
of measurement error and the response–covariate association. The non-coverage rate of Naïve is much
higher than the nominal level of 50 in most of simulation scenarios. CA also performs poorly, with
substantial bias and poor confidence interval coverage, particularly when the measurement error is large.
RC is much less biased and has much better coverage than Naïve and CA, but has very large RMSE
when the measurement error variance is large, suggesting that it is not very efficient. ERC, LSCalib,
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Table I. Empirical bias, RMSE and non-coverage of 95 per cent confidence interval (nominal=50) of
estimates of �X with the internal calibration data based on 500 simulations, when the variance of measurement
error is constant.

�X � �2 
XW Inference Naïve CA RC LSCalib ERC MI0 MIND0

0.3 2 0.25 0.97 Bias 159 19 1 0 1 2 1
RMSE 160 51 52 98 46 50 45

Non-coverage 1000 82 68 58 52 42 50

0.3 1 0.25 0.89 Bias 61 62 1 1 2 3 2
RMSE 77 77 60 101 50 61 49

Non-coverage 268 266 68 58 52 44 52

0.3 0.5 0.25 0.71 Bias 2 152 6 0 3 3 1
RMSE 73 157 82 99 67 71 61

Non-coverage 58 952 52 58 44 42 44

0.3 0.5 0.5 0.58 Bias 101 202 16 1 5 3 2
RMSE 118 204 110 100 70 73 66

Non-coverage 398 998 48 58 38 58 44

0.3 0.5 1 0.44 Bias 181 241 23 1 4 4 3
RMSE 187 243 315 99 79 76 70

Non-coverage 970 1000 40 58 46 52 40

0.6 2 0.25 0.97 Bias 318 38 1 0 0 3 1
RMSE 319 63 54 98 45 51 45

Non-coverage 1000 110 64 58 48 40 48

0.6 1 0.25 0.89 Bias 122 124 2 0 2 3 2
RMSE 130 134 66 98 54 62 54

Non-coverage 742 652 64 58 40 46 48

0.6 0.5 0.25 0.71 Bias 4 303 18 1 3 3 3
RMSE 71 307 105 96 69 75 66

Non-coverage 50 1000 52 58 42 48 42

0.6 0.5 0.5 0.58 Bias 201 401 40 0 4 4 3
RMSE 209 404 151 98 77 79 69

Non-coverage 894 1000 42 58 40 52 38

0.6 0.5 1 0.44 Bias 359 480 54 1 5 4 3
RMSE 362 481 531 101 86 80 71

Non-coverage 1000 1000 40 58 57 50 42

All values are multiplied by 1000. Naïve, naïve linear regression of Y on W ; CA, conventional approach; RC,
regression calibration; LSCalib, linear regression of Y on X using calibration data only; ERC, efficient regression
calibration; MI0, multiple imputation without the NDME assumption; MIND0, multiple imputation with the NDME
assumption.

MI0, and MIND0 methods have little empirical bias. When measurement error is small or moderate
(e.g. 
XW>0.6), ERC generally has smaller RMSE than RC, LSCalib, and MI0, a finding consistent
with the simulation results in [18]. ERC has smaller RMSE than MI0 and similar or greater RMSE
than MIND0 in small measurement error settings. For example, when �X =0.3, �=1 and �2 =0.25,
the RMSEs of ERC, MI0, and MIND0 are 50, 61, and 49, respectively. For large measurement error
and strong response–covariate association, ERC has higher RMSE than both MI0 and MIND0. Overall,
MIND0 is superior to other methods, with small empirical bias, low RMSE and close to nominal levels
of confidence coverage.

Table II concerns heteroscedastic measurement error for the internal calibration data design, so ERC,
WERC, and LSCalib are available for comparison. The MI methods taking into account heteroscedastic
measurement error perform better than other methods with respect to bias, RMSE and confidence interval
coverage, for all simulation scenarios considered. The simplified MI method SMIND� is comparable
in performance to MIND�. Naïve and CA are both seriously biased for �X with high non-coverage. RC
is also badly biased with inflated RMSE when measurement error and the response–covariate effect
are both large. WRC has less empirical bias than RC, but some bias remains, and it has large RMSE
when the measurement error is large. WERC has smaller bias and lower RMSE than WRC, especially
for large measurement error. For example, when �X =0.6, �1 =0.5 and �2 =1, the RMSE of WERC is
0.102, compared with 1.655 for WRC. The good performance of WERC possibly arises because the
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Table II. Empirical bias, RMSE and non-coverage of 95 per cent confidence interval (nominal=50) of
estimates of �X with the internal calibration data based on 500 simulations, when the variance of measurement
error is heteroscedastic.

�X � �2 
XW Inference Naïve CA RC LSCalib MIND0 MI0 WRC WERC MIND� SMIND�

0.3 2 0.25 0.92 Bias 175 47 3 5 2 3 1 0 0 0
RMSE 177 69 61 96 50 59 61 53 48 49
Non-
coverage

1000 176 70 46 58 60 60 68 58 46

0.3 1 0.25 0.76 Bias 130 129 8 5 5 7 7 2 2 3
RMSE 136 136 81 96 64 76 80 64 58 59
Non-
coverage

912 824 66 46 58 64 60 66 56 44

0.3 0.5 0.25 0.50 Bias 152 226 29 5 2 8 22 6 3 4
RMSE 161 228 156 96 76 88 147 80 69 72
Non-
coverage

822 1000 48 46 54 60 46 48 46 50

0.3 0.5 0.5 0.38 Bias 216 258 116 5 8 7 20 10 4 5
RMSE 220 259 1335 96 81 92 699 88 71 79
Non-
coverage

1000 1000 42 46 50 78 42 60 46 44

0.3 0.5 1 0.28 Bias 250 274 251 3 6 9 47 11 6 7
RMSE 252 274 1951 106 83 94 882 99 72 81
Non-
coverage

1000 1000 40 60 58 68 40 58 52 44

0.6 2 0.25 0.92 Bias 349 94 5 5 3 6 3 0 0 1
RMSE 350 109 68 96 54 63 67 57 52 53
Non-
coverage

1000 430 64 46 52 60 60 64 56 52

0.6 1 0.25 0.76 Bias 259 257 16 8 7 6 16 2 4 3
RMSE 263 262 101 96 70 80 101 72 60 67
Non-
coverage

1000 988 72 46 46 70 56 54 46 48

0.6 0.5 0.25 0.50 Bias 302 450 57 5 6 13 45 8 3 9
RMSE 307 451 230 96 78 90 221 87 70 78
Non-
coverage

998 1000 38 46 50 62 38 54 48 48

0.6 0.5 0.5 0.38 Bias 430 514 220 5 8 13 52 13 8 12
RMSE 432 515 2196 96 82 94 1327 94 72 78
Non-
coverage

1000 1000 42 46 52 74 40 62 56 44

0.6 0.5 1 0.28 Bias 505 550 397 3 7 11 129 12 7 13
RMSE 506 551 3457 106 87 96 1655 102 76 85
Non-
coverage

1000 1000 36 60 58 70 40 64 44 38

All values are multiplied by 1000. Naïve, naïve linear regression of Y on W ; CA, conventional approach; RC,
regression calibration; LSCalib, linear regression of Y on X using calibration data only; WRC, weighted regression
calibration; WERC, weighted ERC; MI0, multiple imputation without the NDME assumption; MIND0, multiple
imputation with the NDME assumption. MIND�, multiple imputation with the NDME and � �=0 assumptions;
SMIND�, simplified version of MIND�.

inflated standard error of WRC reduces its effect on WERC, and the least squares estimate stabilizes the
estimation, as WERC is an inverse-variance-weighted average of WRC and the least squares estimate.
When measurement error is small, WERC is comparable to MIND�, with small bias and low RMSE.
When measurement error is large and the response-covariate association is strong, WERC has larger
RMSE than MIND�. The MI methods that assume constant measurement error variance (MI0 and
MIND0) have larger RMSE and higher non-coverage than the MI methods that allow for nonconstant
variance.

Results of the external calibration design are presented in Table III. We observe similar trends to those
seen in Table II. Naïve and CA are both biased, with above nominal confidence interval non-coverage.
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Table III. Empirical bias, RMSE and non-coverage of 95 per cent confidence interval (nominal=50)
of estimates of �X with the external calibration data based on 500 simulations, when the variance of
measurement error is heteroscedastic.

�X � �2 
XW Inference Naïve CA RC MIND0 WRC MIND� SMIND�

0.3 2 0.25 0.92 Bias 172 46 3 5 2 0 0
RMSE 174 66 57 61 57 52 58

Non-coverage 1000 180 64 88 60 54 52

0.3 1 0.25 0.76 Bias 129 125 4 13 3 2 6
RMSE 134 132 80 81 78 74 79

Non-coverage 910 836 60 100 56 46 52

0.3 0.5 0.25 0.50 Bias 148 223 28 55 23 7 11
RMSE 156 224 157 177 150 129 135

Non-coverage 822 1000 40 128 52 56 46

0.3 0.5 0.5 0.38 Bias 212 255 72 86 58 8 14
RMSE 216 256 389 246 378 162 171

Non-coverage 1000 1000 44 196 42 48 42

0.3 0.5 1 0.28 Bias 250 274 251 68 109 10 12
RMSE 252 274 1951 306 888 213 239

Non-coverage 1000 1000 40 212 40 56 38

0.6 2 0.25 0.92 Bias 346 92 5 8 3 2 2
RMSE 347 106 63 68 62 61 65

Non-coverage 1000 422 66 106 64 58 54

0.6 1 0.25 0.76 Bias 255 253 5 27 4 6 7
RMSE 259 258 98 107 97 92 100

Non-coverage 1000 998 58 120 56 54 50

0.6 0.5 0.25 0.50 Bias 299 447 51 82 42 8 13
RMSE 304 449 252 210 234 145 166

Non-coverage 1000 1000 40 228 48 52 46

0.6 0.5 0.5 0.38 Bias 427 513 197 99 91 18 23
RMSE 429 513 1211 241 1016 171 194

Non-coverage 1000 1000 42 268 40 56 58

0.6 0.5 1 0.28 Bias 510 556 314 93 166 21 28
RMSE 511 556 2526 306 1774 236 251

Non-coverage 1000 1000 48 274 52 58 54

All values are multiplied by 1000. Naïve, naïve linear regression of Y on W ; CA, conventional approach; RC, regres-
sion calibration; WRC, weighted regression calibration; MIND0, multiple imputation with the NDME assumption.
MIND�, multiple imputation with the NDME and � �=0 assumptions; SMIND�, simplified version of MIND�.

When measurement error is large, RC performs poorly with large bias and RMSE, and WRC has less
empirical bias but inflated RMSE. MIND0 has generally greater RMSE than MIND�. Overall, MIND�
and its simplified version SMIND� dominate all other methods.

The results of the MI methods presented in Tables I–III are based upon M =16 multiply-imputed
data sets. We also examined the performance of MI for M =10 and 20. The results were similar,
although coverage with M =10 was slightly below the nominal level.

6. Sensitivity to the choice of prior distribution for X

In this work, we have specified a ‘default’ normal prior distribution of X with a noninformative prior
on the mean and log variance. Ideally, the prior distribution of X would be tailored to the particular
context, but we are deliberately considering an ‘off-the-shelf’ method that does not entail this level of
customized specification, since it is not needed for the compared methods. Given this orientation, we
conduct a limited investigation of the robustness of the proposed MI methods to misspecification of
the prior distribution for X . We consider simulation designs similar to those described in Richardson
et al. [33]. Two forms of misspecification of the prior distribution are examined. The first case is
referred to as ‘bimodal’, and simulates X from a well-separated symmetric bimodal mixture given by
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Table IV. Sensitivity to normality assumption in the bimodal and the skew cases.


XW �2 Inference Naïve CA RC WRC WERC MIND�

Bimodal case
0.88 1.340 Bias 121 120 5 7 5 8

RMSE 123 125 40 42 33 36
Non-coverage 1000 970 50 52 50 62

0.77 0.670 Bias 202 200 10 11 9 10
RMSE 203 204 49 51 39 38

Non-coverage 1000 1000 48 62 46 58
0.64 0.340 Bias 300 299 14 17 10 12

RMSE 301 301 66 68 43 41
Non-coverage 1000 1000 42 50 48 54

Skew case
0.89 4.000 Bias 139 140 1 2 2 4

RMSE 149 152 75 75 65 63
Non-coverage 760 738 46 48 50 34

0.81 1.800 Bias 241 242 8 6 5 5
RMSE 246 249 98 97 78 72

Non-coverage 998 986 48 46 52 54
0.69 0.900 Bias 347 348 18 14 12 11

RMSE 350 352 139 135 88 84
Non-coverage 1000 1000 36 40 54 56

0.5N(−2.0,1.0)+0.5N(2.0,1.0). The second case is referred to as ‘skew’, and simulates X from an
asymmetric normal mixture given by 0.5N(0.19,0.082)+0.2N(1.05,0.22)+0.3N(2.0,0.482).

In both cases, the surrogate W is generated from the heteroscedastic measurement error model
N(X,�2 X2�) with �=0.4, and values of �−2 were simulated corresponding to different values of
correlation between W and X , representing varying sizes of measurement error (Table IV). The outcome
Y is related to X by a linear regression model Y ∼N(�0 +�X X,	2) with �0 =0, �X =0.6, and 	2 =1.
To be consistent with simulation design reported in Section 4, the sample size of the main study is
400, and the sample size of the calibration study is 100. Under each simulation setting, the number of
simulated data sets is set to 500. We consider the case of internal calibration data with heteroscedastic
measurement error, so all proposed methods are available for comparison. We mainly focus on the
performances of Naïve, CA, RC, WRC, WERC, and MIND�.

Table IV summarizes the results corresponding to the bimodal and the skew cases with respect
to the bias, RMSE, and non-coverage rate per 1000 samples of the 95 per cent confidence intervals
(target=50). In both the bimodal and skew cases, the MI method provides satisfactory or conservative
confidence coverage, and has lower RMSE than the other methods. These simulations suggest that our
MI methods have satisfactory frequentist performance, at least for these choices of misspecification of
the prior distribution.

7. Application

In this section, we perform an analysis of the data set from the BioCycle study. This study was designed
to assess the relationship between endogenous hormones and biomarkers of oxidative stress during
the menstrual cycle. Two hundred and fifty-nine regularly menstruating pre-menopausal women were
followed for two menstrual cycles. The goal of the study was to investigate the association between
carotenoids (�-carotene) and progesterone.

The calibration data were obtained from calibration experiments for human serum fat-soluble vita-
mins, measured by using HPLC. Three replicate calibration experiments were performed, with each
experiment analyzing eight samples with known concentrations of the analyte carotene, from standard
reference materials (SRMs) obtained from the National Institute of Standards and Technology. For
each of the three replicate experiments, each of eight samples was analyzed 10 times by using HPLC,
yielding a total of 30 replicate measures for each sample. In the calibration data, the true concentrations
of carotene X are known, and HPLC measurements can be viewed as error-contaminated versions of
X , denoted by W . This calibration data are external, since it includes only the information of W and X .
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Figure 2. Calibration data of carotene from the BioCycle study: (a) Original calibration data and (b) Modified
calibration data.

Table V. BioCycle data: estimated regression coefficients in a linear regression model with carotene as the
covariate and progesterone as the dependent variable using data collected at visiting time F1.

Parameters Naïve CA RC WRC MIND�

Intercept 0.5089 (0.0238) 0.5089 (0.0238) 0.5095 (0.0244) 0.5099 (0.0242) 0.5089 (0.0239)
Carotene −0.0065 (0.0024) −0.0281 (0.0104) −0.0289 (0.0107) −0.0286 (0.0106) −0.0282 (0.0107)

The calibration data of carotene, which is generated from SRMs 968 C1, is external. Standard error is shown in
parentheses.

The main study consisted of 211 individual samples with complete information on both progesterone
and carotene. Each individual sample had one measurement of outcome progesterone Y and one HPLC
measurement of carotene W , but the true concentration of carotene X was unknown. We use the data
collected at the visiting time F1.

Figure 2(a) shows the original calibration data for carotene. It is clear that the variance of HPLC
measurements increases as the true concentration of carotene increases, suggesting that the measurement
error variance is not constant. To estimate the linear regression of progesterone Y on carotene X , we
apply the naïve regression of Y on W , and four different measurement error correction methods (i.e.
CA, RC, WRC, and MI) to the data. Standard errors of the CA, RC, and WRC methods are calculated
using the bootstrapping method. Note that these methods are applied to correct only for measurement
error from the assay, but not from other sources such as biological variation.

Table V presents the estimates and associated standard errors for regression coefficients. The naïve
estimate indicates a weak association between progesterone and carotene—the change of progesterone
is 0.0065 when carotene changes one unit. Adjusting for measurement error by the CA, RC, WRC, and
MI methods, we find a stronger association between carotene and progesterone. The error-corrected
estimates are all four-fold greater than the uncorrected estimates. In particular, the CA method estimates
a change of progesterone of 0.0281 for one unit change in carotene. The estimates obtained from the
RC, WRC, and MI methods are similar, and slightly larger than the CA estimate.

Our simulation studies suggest that the performance of CA, RC, and MI is more differentiated when
the magnitude of measurement error is large. Differences between the correction methods are minor
in this example, we think because the magnitude of measurement error is not large. Specifically, the
maximum likelihood estimators of the measurement error variance and the effect size are �̂2 =0.117
and �̂1 =4.353, indicating a high correlation between X and W (
XW =0.98).

To better illustrate our proposed approaches, we created a modified BioCycle data set, where some
random noise was added to HPLC measurements to increase the magnitude of measurement error.
Figure 2(b) shows the modified calibration data, which maintain the same pattern as the original
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Table VI. Modified BioCycle data: estimated regression coefficients in a linear regression model with
carotene as the covariate and progesterone as the dependent variable using data collected at visiting time F1.

Parameters Naïve CA RC WRC MIND�

Intercept 0.5068 (0.0238) 0.5066 (0.0238) 0.5110 (0.0242) 0.5085 (0.0231) 0.5128 (0.0253)
Carotene −0.0061 (0.0024) −0.0255 (0.0099) −0.0339 (0.0123) −0.0297 (0.0113) −0.0285 (0.0105)

The calibration data are external. Standard error is shown in parentheses.

calibration data but are more dispersed, with �̂2 =2.496, resulting in a relatively low correlation (
XW =
0.77), compared with the original calibration data. We analyze the modified data with our proposed
methods, and results are summarized in Table VI.

As shown in Table VI, the naïve analysis attenuates the association between carotene and progesterone
toward the null, as expected. Noticeably, when applying our proposed error correction methods to the
modified BioCycle data, there is an appreciable difference in the estimates of regression coefficient of
carotene. In particular, the estimates of the CA, RC, WRC, and MIND� methods are −0.0255, −0.0339,
−0.0298, and −0.0280, respectively. We also observe that the RC estimate has a larger standard error
than the WRC or MI estimate.

8. Discussion

The study in [18] shows that ERC outperforms MI for the case of homoscedastic measurement error.
The reason is that ERC exploits the NDME assumption, whereas the version of MI (MI0) considered
by these authors does not. The results reported in Table I indicate that a version of MI that exploits the
NDME assumption (MIND0) is similar or superior to ERC for the simulation conditions compared.
This finding is to be expected, given the asymptotic efficiency of MI under a correctly specified model,
as the number of imputations tends to infinity. Our simulation results also show the efficiency gains of
MIND0 over MI0, demonstrating the utility of taking into account the NDME assumption when it is
substantively reasonable. The RMSE of the MIND0 estimate is generally 10–15 per cent smaller than
that of the MI0 estimate in our simulation settings.

The main focus of this article is on extending methods to the case of heteroscedastic measurement
error, a situation where existing methods are biased. In particular, the RC method, which imputes
a conditional mean of X given W , does not yield consistent estimates when the measurement error
variance is not constant. Our modification WRC of RC, based on estimating the conditional means
by weighted least squares, reduces but does not solve this problem. In contrast, the MI methods,
which impute draws rather than means, can readily allow for nonconstant measurement variance by
simply modifying the imputation model to reflect this feature. Our simulations support that the MI
methods are superior to other existing methods, particularly when measurement error is substantial.
The higher level of measurement error in our simulation studies may be more substantial than in
many real settings, but the widespread use of a flawed technique (e.g. the CA method) inhibits the
ability to make use of assays that have relatively high levels of measurement error. Our method allows
inferences in noisy assays that currently would not be regarded as acceptable. We have also studied the
performance of MIND� (developed to deal with heteroscedastic measurement error) under the scenario
of homoscedastic measurement error using the same simulation settings presented in Section 4. Our
simulation results show that there is zero or a small loss of efficiency (less than 6 per cent) for all
simulation scenarios we considered.

We consider inference for the parameters of the regression Y on X by applying standard MI combining
rules to multiply-imputed data sets. The MI analysis is appealing since it allows standard analysis
methods to be used on the filled-in data sets. However, it is certainly possible to base inferences directly
on the posterior distributions of model parameters—these inferences should be similar to MI, since MI
combining rules are based on simulation approximations to the posterior distribution.

The RC method and its extensions rely on the assumption that measurement error is non-differential,
and in this article we focus on the performance of MI methods based on the NDME assumption.
However, we note that the MI methods can also handle differential measurement error, provided that
internal calibration data are available to identify the model parameters. The MIND� method designed
under the NDME assumption can be easily extended to work in the case where the assumption may
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not hold, i.e. allowing for differential measurement error by remodeling the measurement error as
p(W |X,Y ), instead of p(W |X ).

Although the MIND� method performs well in the simulation studies, it is comparatively complex
computationally, given its use of Markov Chain Monte Carlo (MCMC) with a MH step. We provide an
alternative, SMIND�, which is much simpler computationally since it avoids the MH step. It is based
on an approximate model similar to WRC, so it lacks statistical rigor. However, SMIND� performed
similarly to MIND� in the simulations, and it takes much less time to compute.

Our Bayesian MI methods require specification of prior distributions for the model parameters, and
also for X . We choose simple noninformative priors. Our main intent here is not to come up with the
best possible Bayesian model, but to compare frequentist performance of Bayesian inferences under
noninformative priors with more standard frequentist methods, in the heteroscedastic measurement
error setting. We are seeking an ‘off-the-shelf’ all-purpose method rather than a method that tailors
prior to the particular data set, since this form of tailoring is not required by the competing methods.
We assume that the prior distribution for X is normally distributed with noninformative priors on the
mean and log variance, and our simulations suggested a degree of robustness to misspecification of
this prior, at least in the cases investigated. However, other more tailored choices of prior distribution
for X may lead to better inferences. For example, for linear measurement error models, mixtures of
normal distributions for X have been proposed with a prespecified [34] or unknown [33] number of
components. These methods could be adapted to our heteroscedastic setting.

We assume that the measurement error variance model is �2 X2�, indicating that the variance increases
as the true value of X increases through a power function. This form of nonconstant variance model
is a common and intuitive choice, but the proposed MI methods could be extended to more complex
choices of variance function, at the expense of some additional computational complexity. In recent
work, Spiegelman et al. [19] propose Taylor series-based modifications of RC for heteroscedastic
measurement error under the assumption that g(X,�)=g(X ) is known. These methods do not appear to
improve on RC in their simulations, and RC performs better in their simulations than in the simulations
reported here.

We have restricted attention here to the case where a simple regression of Y on X is of interest.
It is relatively straightforward to extend our MI methods to allow for other covariates Z , recorded
without measurement error, since values of these variables can be conditioned in the MCMC analysis.
Extensions to non-normal outcomes, as when Y is binary and follows a probit model, could also be
developed without too much difficulty.

A crucial assumption here is that the same measurement error model holds for the calibration and
main data sets. In some epidemiologic study designs, the calibration data are supplied by an external
source, such as a pure standard sample, and the relationship of the true and measured variables might
be different for the calibration and main study data, because the sample from each subject of the
main study might have impurities that change the measurement error properties. Methods that allow a
different measurement model in the two samples are a worthwhile topic for future research, although
we expect problems in identifying the parameters in that case.

The traditional CA method performed poorly in our simulations, but yielded reasonable estimates in
the BioCycle data application, where the measurement error was small. The discrepancy between CA
and the other methods becomes more substantial as the measurement error increases, as our analysis
of the modified BioCycle data demonstrated. The developed MI methods can be expected to yield
substantial improvements when the response–covariate association is strong and the measurement error
is large.

Appendix A

In this article, we apply the MI approach via data augmentation using a MCMC algorithm. We consider
measurement error problems in a missing data context where the true value of X is unoberved. The
data augmentation method is a two-step iterative algorithm. The key idea is to generate draws for
missing values given observed data and a set of parameters (I-step) and then draws of the model
parameters from their posterior distribution given completed data (P-step). These two steps are iterated
until convergence, and then the results are used to generate multiply-imputed data sets [35].

Suppose we have data collected from the main study containing nmain observations (Wi ,Yi ) and from
the external calibration study containing ncalib observations (Xi ,Wi ). The observations are assumed
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to be independently and identically distributed. We let n denote the number of all observations, n =
ncalib +nmain.

The posterior predictive distribution of X given W , Y and the parameters cannot be expressed in a
closed form; however, by Bayes’ Theorem, it can be factorized as

p(X |Y,W,�,�,�,�,	,�x ,�x ) ∝ p(W |X,Y,�,�,�)p(Y |X,�,	)p(X |�x ,�x )

∝ p(W |X,�,�,�)p(Y |X,�,	)p(X |�x ,�x)

This factorization includes three models: the measurement error model which links the true variable
X and the observed variable W , the main study model which specifies the relationship between the
response variable Y and the unobserved covariate X , and the prior distribution for X .

Assuming that the parameter vectors �= (�,�,�), �= (�,	) and �= (�x ,�x ) are distinct and priori
independent, the likelihood function can be factorized, and the joint posterior for the parameters given
the complete data can be expressed as

p(�,�,�,�,	,�x ,�x |Y, X,W ) ∝ p(Y, X,W |�,�,�,�,	)p(�,�,�,�,	,�x ,�x )

∝ p(W |X,�,�,�)p(�,�,�)p(Y |X,�,	)p(�,	)p(X |�x ,�x )p(�x ,�x )

Hence �, � and � can be sampled separately.
For the external calibration/main design, we also need impute missing values for Y . The posterior

distribution of Y given the parameters is simply normal with mean (�0 +�X X ) and variance 	2. Draws
of Y are obtained by substituting drawn values of the parameters in this distribution.

Having obtained the complete-data posteriors for the model parameters, and the predictive distribution
for X and Y , our imputation procedure for the external calibration/main study composes of the following
steps:

I-1 step: Generate imputed values of Yi for i corresponding to the i th observation in the calibration
study, i =1, . . . ,ncalib, from the posterior density

p(Yi |Xi ,�)∼N(�0 +�X Xi ,	
2)

I-2 step: Generate imputed values of Xi for i corresponding to the i th observation in the main study,
i =1, . . . ,nmain, from the posterior density specified by

p(Xi |Yi ,Wi ,�,�,�,�,	�x ,�x ) ∝ 	−2 exp

(
− 1

2	2
(Yi −�0 −�X Xi )

2
)

×�−2 X−2�
i exp

(
− 1

2�2 X2�
i

(Wi −�0 −�1 Xi )
2

)

×�−2
x exp

(
− 1

2�2
x

(Xi −�x )2
)

P-1 step: Draw � from the posterior density p(�|X,Y ).
P-2 step: Draw � from the posterior density p(�|W, X ).
P-3 step: Draw � from the posterior density p(�|X ).

For the internal calibration/main study design, we observe (Y, X,W ) in the calibration study. There-
fore, ML estimates for the regression parameters �0, �X and 	2, as well as the measurement error model
parameters �0, �1 and �2 can be computed using the calibration data by standard analysis (e.g. least
squares methods), and used as initial values for the data augmentation algorithm. The sample mean
and variance of X can also be calculated from the calibration data, and used as initial values for �x
and �2

x . The initial value of � is estimated as the slope of regression of logarithm of squared residuals
of the regression of X on W on the logarithm of squared W . For the external calibration/main study
design, we still can obtain estimates of the measurement error parameters �0, �1, �2 and �, using the
same approach as for the internal calibration design. However, the initial values of �0, �X and 	2 cannot
be computed straightforwardly because X and Y are not observed together in the whole data set. We
apply the RC method to obtain initial values. Specifically, we first substitute unobserved values of X
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in the main study by the expectation E(X |W ), and then regress Y on the substituted values to obtain
initial estimates for � and 	2.

The data augmentation method iterates between the P-step and the I-step for a large number of times
until the algorithm converges. We use the method proposed by Gelman and Rubin [36] to diagnose
convergence of the model parameter iterates. Initial values of model parameters are chosen to be
reasonably overdispersed by bootstrapping the original data set. For each of the bootstrap samples,
estimates of model parameters are obtained using the method described above, and used as the initial
points for the MCMC chains. After the algorithm converges, we discard data from the initial burn-in
period before saving the values. The imputed complete data set is generated by using every dth iteration
after an adequate burn-in period, to avoid possible autocorrelation between successive sets of imputed
values, so that the imputed data sets can be treated as independent. For all the model parameters, we
observe reasonable mixing and convergence after 2000 iterations of the MCMC chains. Hence, we
decide to discard the first 2000 iterations, and choose d =100. We generate 16 imputed data sets, which
can be analyzed by standard complete data methods.

The imputation procedure for the internal calibration/main study is similar to that of the external
calibration/main study, except that the I-1 step can be omitted since Y is observed in this design.

The I-1 step can be performed easily by generating a random draw from a normal distribution. The
I-2 step is not straightforward, since we do not have an analytical expression for the posterior density
of X . We use a Metropolis–Hastings algorithm for this step to generate values of Xi . It consists of the
following two steps:

• Generate a value X′
i from an appropriate candidate-generating density qi (Xi,X′

i), where Xi denote
the current value

• Set

X( j+1)
i =

⎧⎪⎪⎨⎪⎪⎩
X′

i with probability �=min

[
1,

�(X′
i)q(X′

i,X( j)
i )

�(X( j)
i )q(X( j)

i ,X′
i)

]
X( j)

i otherwise.

where �(Xi ) is the target density from which we want to simulate X .

The choice of candidate-generating density is arbitrary, but a correctly specified density can improve
the efficiency of this algorithm. In our work, we generate a candidate X′

i from a Gaussian model centered

on the current value X( j)
i and variance �2∗, equal to a scaled sampling variance of the target density.

That is, q(X′
i,X( j)

i )=N(X( j)
i ,�2∗). The algorithm with the normal-generating density is also called ‘a

random walk Metropolis’ algorithm.
The P-step requires generating the draws of the parameters from the complete-data posterior distri-

bution. In P-1 step, by Bayes’ rule, the posterior for �= (�,	) given the data (X,Y ) can be factored as
a multivariate normal distribution and a scaled inverted �2 -distribution, which make it easy to draw the
values. In practice, we first draw 	2 from 	2 ∼ inv−�2(�, S2); and then draw � from multivariate normal
distribution N(�̂,	2(X ′X )−1), where �̂= (X ′X )−1 X ′Y is the ordinary least squares estimate from the
regression of all data, S2 = (Y − X �̂)′(Y − X �̂) is the corresponding sample variance, and �=n−2 is the
degree of freedom.

Drawing parameter � from the posterior density p(�|X,W ) is little complicated due to the presence
of the unknown parameter �. For known �, draws of �, �2 can be readily obtained from their posterior
density using an approach similar to the P-1 step, with the least squares estimate replaced by the
weighted least squares estimate. Specifically, let �i =1/X�

i , we first generate values of � from its
posterior distribution,

p(�|�0,�1,�
2, X,W )∝

(
n∏

i=1
�i

)
exp

{
− 1

2�2

n∑
i=1

�2
i (Wi −�0 −�1 Xi )

2
}
, i =1, . . . ,n

using a random walk Metropolis step. Given �, we draw �2 from �2 ∼ inv−�2(�, S2
�); and then draw �

from multivariate normal distribution N(�̂,�2(X ′�X )−1), where �̂= (X ′�X )−1 X ′�W is the weighted
least squares estimate from the regression of all data, � is a n×n weighted matrix with the diagonal
element �i and the other elements equal to zero, S2

� = (W − X �̂)′�(W − X �̂) is the corresponding
weighted sample variance, and �=n−2.
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