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Applying Efficient Implicit Nongeometric Constraints in
Alchemical Free Energy Simulations

Jennifer L. Knight,[a,b] and Charles L. Brooks III*[a,b]

Several strategies have been developed for satisfying bond

lengths, angle, and other geometric constraints in molecular

dynamics simulations. Advanced variations of alchemical free

energy perturbation simulations, however, also require

nongeometric constraints. In our recently developed multisite

k-dynamics simulation method, the conventional k parameters

that are associated with the progress variables in alchemical

transformations are treated as dynamic variables and are

constrained such that: 0 � ki � 1 and
P

N
i¼1 ki ¼ 1. Here, we

present four functional forms of k that implicitly satisfy these

nongeometric constraints, whose values and forces are facile to

compute and that yield stable simulations using a 2 fs integration

timestep. Using model systems, we present the sampling

characteristics of these functional forms and demonstrate the

enhanced sampling profiles and improved convergence rates that

are achieved by the functional form: ki ¼ ec sin hiPN

j¼1
ec sin hj

that oscillates

between ki ¼ 0 and ki ¼ 1 and has relatively steep transitions

between these endpoints. VC 2011 Wiley Periodicals, Inc. J Comput

Chem 32: 3423–3432, 2011
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Introduction

Effectively including constraints in simulation methods is criti-

cal to achieve optimal sampling efficiency. These constraints

limit the phase space that is explored so that sampling is

focused in the regions of greatest interest. For example, in mo-

lecular dynamics (MD) simulations, bond length constraints are

often used to eliminate the high-frequency motions that are

associated with hydrogen atoms. These rapid oscillations do

not significantly affect the longer timescale processes under

investigation and yet require a small integration timestep to

ensure the numerical stability of the simulations. Therefore,

utilizing these hydrogen bond constraints allows for larger

integration timestep and thus effectively generates longer tra-

jectory lengths.

In unconstrained MD simulations where molecular models

are represented in Cartesian coordinates, the equations of

motion are described by a series of ordinary differential equa-

tions (ODEs). When rigid (holonomic) constraints are incorpo-

rated into these models, the equations of motion become sig-

nificantly more complex. In the Lagrangian equations of

motion, the forces of the constraints appear explicitly and the

dependence of these forces on the positions and velocities of

the centers of force is obtained from the corresponding set of

constraint equations that contain undetermined Lagrange multi-

pliers.[1] These equations can be solved to determine the con-

straint forces; however, because in MD simulations the equa-

tions of motion are solved approximately using finite difference

methods, the constraints will gradually diverge from the target

values.[2] In practice, this strategy for solving the equations of

motion generally requires integration timesteps that are signifi-

cantly smaller than the timescales of motion the constraints are

seeking to eliminate, so is often impractical to implement.[2]

An alternative strategy for satisfying holonomic constraints

is implemented by the family of SHAKE algorithms. In the

SHAKE algorithm,[2] the equations of motion are solved in an

unconstrained manner according to the ODEs to obtain an ini-

tial estimate of the new conformation and then the positions

of the specific atoms are modified iteratively until all con-

straints are satisfied within a given tolerance level. Related

algorithms also constrain the velocities (RATTLE[3]) and acceler-

ations (WIGGLE[4]); other variants of the algorithm are specific

for given topologies, for example, linear and ring systems

(MILC SHAKE[5,6]) or semirigid molecules (Q-SHAKE[7],

SETTLE[8]).

Another strategy for satisfying holonomic constraints in MD

simulations may be described as using ‘‘implicit constraints,’’

that is, using a functional form of the coordinate variables

themselves to ensure that the constraints will be satisfied. This

strategy has been adopted for modeling rigid molecules where

Euler angles [9] or quaternions[10] are used to describe the rota-

tional degrees of freedom of the system. This strategy has also

been implemented in torsion-angle MD in which internal coor-

dinates are used to define and sample atomic positions.[11–13]

In this strategy, rigid units within a molecule are defined and

atoms within these units remain fixed with respect to one

another while the relative positions of the rigid units are

sampled. Thus, the equations of motion are reduced to the

usual ODEs and the geometric constraints that would
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otherwise be required to ensure the appropriate rigidity of the

system are satisfied at every timestep.

Nongeometric holonomic constraints have also been utilized

in simulation methods and can be implemented using strat-

egies that are analogous to those used to satisfy geometric

constraints. k-Dynamics simulations is an extension of alchemi-

cal free energy simulations in which the conventional {k} pa-
rameters that are associated with the progress variables in the

chemical coordinates are treated as dynamic but constrained

variables. In traditional free energy simulations in which one

ligand is alchemically transformed into another, a nonphysical

hybrid molecule is often constructed. In this case, atoms that

are common to both ligands are represented once as a com-

mon core and are treated as ‘‘environment’’ atoms in the Ham-

iltonian. The atoms that are unique to each ligand are repre-

sented by individual noninteracting moieties that are attached

to the common core. The corresponding hybrid potential

energy function is defined by:

VðX; fxgÞ ¼ VenvðXÞ þ k1ðX; x1Þ þ k2ðX; x2Þ (1)

where X and xi are the coordinates of environmental atoms

and of those atoms which are unique to ligand i, respectively;

Venv is the potential energy involving the environmental atoms

only, V(X,xi) is the interaction energy between ligand i and the

environment atoms and where the nongeometric constraints

are defined by:

0 � ki � 1 (2a)

k1 þ k2 ¼ 1 (2b)

In k-dynamics, the hybrid ligand is extended to N ligands

where the hybrid potential energy function is defined by:

VðX; fxgÞ ¼ VenvðXÞ þ
XN

i¼1

kiðX; xiÞ (3)

where the nongeometric constraints are now extended to:

0 � ki � 1 (4a)

XN

i¼1

ki ¼ 1 (4b)

The hybrid Hamiltonian that governs the k-dynamics simula-

tions is defined by:

HOðX; fxg; fkgÞ ¼ TX þ Tfxg þ Tk þ VenvðXÞ þ
XN

i¼1

kiVðX; xiÞ (5)

The original implementation of k-dynamics in the chemistry

at HARvard macromolecular mechanics (CHARMM) macromo-

lecular modeling package[14,15] directly satisfied the constraints

in Eq. (4). Specifically, the Lagrange multiplier method was

used to determine the explicit constraint forces of k and a

subsequent renormalization of the k positions and velocities

was performed at every timestep to reduce the accumulation

of small errors. However, due to the sensitivity of the total

energy of the system to small changes in {k} at the k endpoints,

small integration timesteps are required to retain the stability of

the numerical integrator for long trajectory lengths. In this

study, we explore the use of implicit constraints in k-dynamic

simulations, namely implicitly satisfying the holonomic con-

straints on k by judicious selection of a functional form of {k}.
This strategy for implicitly satisfying nongeometric holo-

nomic constraints has been implemented in contexts where

only two related ks are being sampled simultaneously. Given

the constraints listed in Eq. (2), this problem can be reduced

to one-dimension with k2 ¼ 1 � k1. For example, constant pH-

MD[16–18] simulations adopt hybrid molecules and correspond-

ing hybrid potential energy functions that are similar to those

that are used in traditional alchemical free energy simulations.

However, in constant pH-MD simulations, the ‘‘k’’ is a dynamic

variable that is a function of y; y is a volumeless particle with

fictious mass and is propagated throughout the course of the

simulation. The hybrid Hamiltonian that is used to govern the

dynamics of the simulation is described by:

HOðX; fxg; fkðhÞgÞ ¼ TX þ Tfxg þ Th þ VenvðXÞ
þ k1ðhÞVðX; x1Þ þ k2ðhÞVðX; x2Þ ð6Þ

which have the same nongeometric constraints as are listed in

Eq. (2). In this case, the coefficients {k(y)} describe the relative

presence (k1 ¼ 0; k2 ¼ 1) or absence (k1 ¼ 1; k2 ¼ 0) of a

hydrogen atom on a titratible amino acid and are defined by:

k1 ¼ sin2 h and k2 ¼ 1� sin2 h (7)

Thus, by using this functional form for the k values and

sampling {y} throughout the simulations, the nongeometric

constraints are exactly satisfied at every timestep.

In another example, nongeometric implicit constraints are

used in logistic regression for predicting event probabilities in

which the logist or sigmoid function is defined by:

k ¼ 1

1þ eh
(8)

This function can be expressed in terms of two related

variables:

k1 ¼ eh

1þ eh
and k2 ¼ 1

1þ eh
(9)

that implicitly satisfy the two constraints in Eq. (2). Variations

of this function are applied in a wide variety of fields to

model, for example, population growth,[19] nonlinearity in neu-

ral networks,[20] and sigmoidal behavior of dose–response

curves.[21]

In constant pH-MD [Eq. (7)] and logistic regression [Eq. (9)],

only two related variables are constrained and implicitly satisfy

the nongeometric constraints in the simulations given the spe-

cific functional form of the variables themselves. However,

k-dynamics simulations require N k variables to be sampled

simultaneously and constrained. We are not aware of any

implemented strategies in molecular simulations for defining N
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related variables that implicitly satisfy the corresponding non-

geometric constraints in Eq. (4). Here, we first explore the sam-

pling profiles of eqs. (7) and (9) for defining two related k varia-

bles and then we present two functional forms of {k} that

implicitly enable nongeometric constraints for N related ks to be

satisfied simultaneously. The first new functional form is based

on the constant pH-MD formalism such that for a given set of ks:

kN sin
a;i

¼ sin2 ha;i
PN

j¼1

sin2 ha;j

(10)

and the second new functional form is based on the logist

function such that:

kN exp
a;i

¼ ec sin ha;i

PN

j¼1

ec sin ha;j

(11)

In this study, we explore the sampling characteristics of

these functional forms of {k} using our recently developed

multisite k-dynamics (MSkD) alchemical free energy simula-

tions.[22] This simulation strategy is an extension of k-dynamics

in which {k} are treated as dynamic variables but with hybrid

models that can have N distinct substituents at M sites on a

common ligand framework.[23,24] For each functional form of

{k}, we evaluate the resulting relative free energy differences

estimated by MSkD in vacuum and/or solvent environments

for series of identical benzene, dihydrobenzene, or dimethoxy-

benzene molecules to characterize its sampling behavior. The

kNexp functional form clearly has the optimal sampling profile

for these MSkD simulations; it enables facile transitions

between ki � 1 and ki � 0, spends a significant amount of

time sampling at the endpoints rather than the physically irrele-

vant intermediate values of {k}, is easy to compute, and leads to

numerically stable simulations.

Methods

Multisite k-dynamics theory

In MSkD, we have extended the hybrid potential energy func-
tion to include multiple chemical modifications (i.e., substitu-
ents) at multiple sites on a common ligand core to be:

VðX; fxg; fkgÞ ¼ VenvðXÞ þ
XNsites

S¼1

XLs

i¼1

kS;iðVðX; xS;iÞ � FS;iÞ

þ
XNsites�1

S¼1

XLs

i¼1

XNsites

T¼Sþ1

XLT

j¼1

kS;ikT ;jðVðxS;i; xT;jÞÞ (12)

where the constraints are now given to be:

0 � ka;i � 1 and
XLa

i¼1

ka;i ¼ 1 for each site a; (13)

where Nsites is the total number of sites which contain multiple

substituents, LS is the number of substituents at site S, and FS,i

is a precalculated biasing potential that can enhance the sam-

pling of each kS,i state. The double summation in the second

term of the hybrid potential accounts for the interactions

between the environment and each substituent at each site in

the system. The third term accounts for the interactions

between each substituent and the substituents modeled on all

other sites. Note that substituents at a given site do not ‘‘see’’

each other in these simulations.

A substituent at a given site is described to be ‘‘dominant’’
or ‘‘present’’ when its corresponding k value approaches 1. A
ligand is described to be dominant or present when the k val-
ues associated with its constituent substituents are dominant
at the same time. For systems with two sites, the relative free
energies between two ligands is then computed by:

DDG1;i;2;j!1;k;2;l ¼ �kBT ln
Pðk1;k ¼ 1; k2;l ¼ 1Þ
Pðk1;i ¼ 1; k2;j ¼ 1Þ (14)

where P(k1,i ¼ 1;{k1,m=i ¼ 0},k2,j ¼ 1;{k2,m=j ¼ 0}) corresponds

to the amount of time that substituent i is present at site 1

and substituent j is present at site 2, that is, when k1,i � 1 and

k2,j � 1 concurrently during the k-dynamics simulation. In

practice, the amount of time k1,i � 1 is approximated by using

a threshold, say k1,i > 0.8. MSkD has been implemented in the

CHARMM macromolecular software package.[14,15]

Functional forms of k

The functional forms of {k} that are assessed in this work are
listed in Table 1 along with their corresponding partial deriva-
tives with respect to y. Lookup tables were used to efficiently
approximate kNexp.[25] Using this formalism for MSkD, it is the
values of y that have fictious masses, my, and are propagated
through the equations of motion, not the k values directly.
Thus, the extended Hamiltonian is:

HoðX; fxg; fkðhÞgÞ ¼ Tx þ Th þ VðX; fxg; fkðhÞgÞ (15)

The Leapfrog Verlet algorithm is used to integrate the equa-
tions of motions and the forces on each y are calculated by:

Fha;i ¼ � @V

@ha;i
¼ � @ka;i

@ha;i
ðVðX; xa;iÞ � Fa;i þ

XNsites

T 6¼a

XLT

k¼1

kT;kðVðxa;i; xT;kÞÞÞ

þXLa

j 6¼i

@ka;j
@ha;i

ðVðX; xa;jÞ � Fa;j þ
XNsites

T 6¼a

XLT

k¼1

kT;kðVðxa;j; xT ;kÞÞÞ (16)

Model systems

Model hybrid ligands were constructed to represent multiple
identical benzene, dihydroxybenzene, or dimethoxybenzene
molecules. Each hybrid benzene molecule contained a single
benzene ring with N distinct pairs of hydrogen and ipso car-
bon atoms at one or two sites on the common benzene ring
(see Fig. 1A). As each CAH pair in the para-position interacts
with each CAH pair at the ipso-position, the hybrid molecule
with multiple substituents at two sites represents Nsite1 �
Nsite2 distinct yet identical molecules. Similarly, each hybrid
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dihydroxybenzene molecule consisted of a single benzene

ring with N hydroxy groups and ipso carbon atoms at two

sites on the common ring and each hybrid dimethoxyben-

zene molecule consisted of a single benzene ring with N

methoxy groups and ipso carbon atoms at two sites on the

common ring (see Fig. 1B). Parameters and partial charges

for the model systems were assigned from the recently

developed CHARMM general force field.[26] The hybrid

molecules are identified in the text by the names

‘‘Nsite1substituent � Nsite2substituent’’ where substituents ‘‘H,’’ ‘‘OH,’’

and ‘‘OCH3’’ designate the hydrogen atoms, hydroxy and

methoxy groups, respectively.

Simulation details

The Leapfrog Verlet algorithm was used to integrate the equa-

tions of motion and propagate the atomic coordinates, atomic

velocities as well as the y values and their velocities. For all

simulations, a nonbonded cutoff of 15 Å was used with an

electrostatic force shifting function and a van der Waals

switching function between 10 and 12 Å. Hydrogen bonds

were constrained using the SHAKE[27] algorithm and the inte-

gration timestep was 2 fs. Linear scaling by k was applied to

all energy terms except the bond and angle terms which were

treated at full strength regardless of k value to retain physi-

cally reasonable geometries. Each yi was assigned a fictious

Table 1. Summary of the functional forms for {k} that are used in this study where ka,i represents k for the ith substituent at site a.

Functional form Nsub/site k hð Þ @k hð Þ
@h Schematic of ka,1

k2exp 2
ka;1 ¼ eha

1þ eha
;

ka;2 ¼ 1

1þ eha

@ka;1
@ha

¼ ka;1ka;2;

@ka;2
@ha

¼ �ka;1ka;2

k2sin 2
ka;1 ¼ sin2 ha;

ka;2 ¼ 1� sin2 ha

@ka;1
@ha

¼ 2 sin ha cos ha;

@ka;2
@ha

¼ �2 sin ha cos ha

kNsin N ka;i ¼ sin2 ha;i
PN
j¼1

sin2 ha;j

@ka;i
@ha;i

¼ 2 cot ha;ika;ið1� ka;iÞ;
@ka;j 6¼i

@ha;i
¼ �2 cot ha;iðka;ika;jÞ

kNexp N ka;i ¼ ec sin ha;i

PN
j¼1

ec sin ha;j

@ka;i
@ha;i

¼ c cos ha;ika;ið1� ka;iÞ;
@ka;j 6¼i

@ha;i
¼ �c cos ha;ika;ika;j
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mass of 12 amu�Å2 and k values were saved every 10 steps.

Solvent simulations were performed using 351 TIP3P[28] water

molecules in a water box of 22 Å3 with periodic boundary

conditions. The temperature was maintained near 310 K by

coupling to a Langevin heat bath using a frictional coefficient

of 10 ps�1 for all atoms and 5 ps�1 for each yi. Production
runs were 25 and 2 ns for vacuum and solvation simulations,

respectively, and the threshold value for assigning ki,a � 1 was

ki,a � 0.8 unless otherwise stated. Several values of c were

assessed for the functional form kNexp and results are reported

for c ¼ 5.5 unless otherwise specified. Ten simulations with dif-

ferent initial seed values for yi were performed for each combi-

nation of parameters and the resulting averages and standard

deviations were reported. All simulations were performed on

dual 2.66 GHz Intel Quad Core Xeon processors.

Model quality

All MSkD trajectories have been analyzed using new routines
that we have implemented in CHARMM. The relative free
energy difference for each pair of compounds (ij) that are rep-
resented in the hybrid molecules was estimated by averaging
over results from 10 simulation trajectories. The average
unsigned error (AUE), standard deviations (r), and maximum
errors that are reported in the tables and text represent the
statistics compiled over all relative free energies that are esti-
mated for the NP (i.e., N(N � 1)/2) pairs of compounds in the
hybrid molecule in the 10 simulation trajectories, for example:

AUE ¼ 1

NP

XNP

ij¼1

1

10

X10

k¼1

ðDDGkðijÞÞ
�����

����� (17)

where DDGk(ij) represents the relative free energy difference

that is calculated between the ith and jth ligand from the kth

trajectory.

Results

The functional forms of {k} that were explored in this study

are summarized in Table 1 along with their corresponding first

derivatives with respect to y, which are required to calculate

the forces on y in Eq. (16). In each case, the constraints

described in Eq. (2) are satisfied at every timestep. For the pur-

poses of assessing the sampling properties of these functional

forms in the MSkD free energy simulations, model compounds

have been constructed that represent multiple identical mole-

cules. These molecules are identical to one another in their

structure and their force field parameters; thus, regardless of

the environment, the relative free energy differences between

any two molecules is exactly 0 kcal mol�1. Therefore, any devi-

ations in the simulation estimates from 0 kcal mol�1 can be

understood as errors due to limitations in the MSkD sampling

specifically. In the most simple simulation scenerio, multiple

benzene compounds effectively ‘‘compete’’ with each other in

vacuum. More flexible and thus more complicated cases are

also considered with the dihydroxybenzene and then dime-

thoxybenzene hybrid models.

Implicit constraints for two variables: k2exp, k2sin

The first functional form of the implicit constraints that we

consider is based on the logist function and the results for

sampling the different model ligands using this functional

form of {k} are summarized in Table 2. In this case, the func-

tional form of {k} is:

k2 expa;1 ¼ eha

1þ eha
and k2 expa;2 ¼ 1

1þ eha
(18)

and this construct implicitly satisfies both constraints in Eq. (2).

While this functional form never allows ka,i ¼ 1 and ka,i ¼ 0,

exactly, the ka,i values approach sufficiently close to 1 and 0 to

be of practical use. The implementation of this form of the

constraints is very stable with timesteps up to 2 fs for trajec-

tory lengths up to 25 ns. However, large average errors (0.6–

1.3 kcal mol�1), standard deviations (0.4–1.1 kcal mol�1), and

maximum errors (1.3–2.4 kcal mol�1) are observed in the esti-

mated relative free energies. The convergence of the ligand

Figure 1. Schematic representation of three model systems used to assess

the quality of the functional forms of k in MSkD simulations. Hybrid mol-

ecules representing multiple identical benzene molecules by modeling

distinct sets of hydrogen and corresponding ipso carbon atoms at A) sites

1 and 4 on a common benzene core. B) Hybrid molecule representing

multiple dimethoxybenzene molecules at two sites on a common ben-

zene core.

Table 2. Quality of relative free energy estimates for 25 ns MSkD

simulations using implicit constraints: k2exp and k2sin in vacuum.

Functional

form

Hybrid ligand

Dt (fs)
strans
(ps�1)

DDG (kcal mol�1)

nSite1 � nSite4 AUE r Max

k2exp 2H � 2H 2.0 0.02 1.194 1.114 2.366

2OH � 2OH 2.0 0.02 1.310 0.876 2.001

2OCH3 � 2OCH3 1.5 0.002 0.597 0.411 1.281

k2sin 2H � 2H 2.0 1.34 0.006 0.003 0.011

2OH � 2OH 2.0 1.32 0.004 0.002 0.007

2OCH3 � 2OCH3 0.5 0.90 0.010 0.005 0.017

The integration timestep is Dt and strans is the average frequency of the

change in the identity of the substituent with k � 1 on each site. Statis-

tics are averaged over the six pairs of compounds in the model hybrid

ligands.
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populations is quite slow due to the infrequent exchanges

between ka,1 ¼ 1 and ka,2 ¼ 1. Essentially, once one benzene

molecule for example becomes the dominant ligand, that is,

one substituent at site 1 has its k value assigned to 1 and one

substituent at site 2 has its k value assigned to 1, it is difficult

to drive y1 and y2 into regimes where other combinations of

substituents will have k ¼ 1 such that one of the other ben-

zene molecule becomes the dominant ligand. Therefore, the

relative free energy differences which are computed from the

relative probabilities of each molecule being the dominant

ligand in Eq. (13) is severely biased by the combination of sub-

stituents that first reach k ¼ 1 and thus first identify a domi-

nant ligand.

The second functional form of {k} that we consider for im-

plicitly satisfying these nongeometric k constraints is defined

by:

k2 sin
a;1 ¼ sin2 ha and k2 sin

a;2 ¼ 1� sin2 ha (19)

This formalism that is used for sampling two related k val-

ues was originally implemented in CHARMM for constant pH-

MD simulations by Lee and coworkers[16–18] and as a variant of

k-dynamics, termed ‘‘y-dynamics’’, by Yang and coworkers

(unpublished). This functional form of {k} also leads to stable

simulations; although the integration timestep needed to be

reduced to 0.5 fs to sample the more flexible methoxy moi-

eties on the dimethoxybenzene hybrid model without com-

promising the numerical stability of the Verlet integrator. The

results summarized in Table 2 demonstrate that the exchange

rate between dominant substituents at each site is one to two

orders of magnitude higher than the k2exp functional form and

results in very low standard deviations of less than 0.002 kcal

mol�1. Similarly, low average and maximum errors of less than

0.007 and 0.013 kcal mol�1, respectively, are achieved for rela-

tive free energy differences between pairs of benzene, dihy-

droxybenzene, or dimethoxybenzene molecules in vacuum.

This functional form implicitly encourages the change in the

identity of the dominant substituents and thus exchanges in

the identity of the dominant ligand throughout the simulation

trajectories primarily due to its oscillating nature.

Implicit constraints for N variables: kNsin, kNexp

The first functional form of {k} that is generalized to N ks that

we have examined is defined by:

kN sin
a;i

¼ sin2 ha;i
PN

j¼1

sin2 ha;j

(20)

Simulations were quite stable for this functional form,

although the integration timestep also needed to be reduced

to 0.5 fs to successfully sample the more flexible methoxy

moieties on the dimethoxybenzene

hybrid model. Simulation results based

on sampling {k} with this functional form

are summarized in Table 3. For sampling

with any of the 2 � 2 hybrid ligands, that

is, sampling two substituents at each site,

the quality of the results is very high.

However, these results are slightly

degraded relative to those obtained from

simulations using the k2sin functional

form; average and maximum errors in the

relative free energy estimates of less than

0.01 and 0.03 kcal mol�1, respectively, are

achieved for simulations based on the

kNsin functional form while the corre-

sponding errors are 0.007 and 0.013 kcal

mol�1 for the k2sin functional form. For

increasing numbers of substituents at

each site, the transition rate decreases

significantly and the overall quality of the

relative free energy estimates tends to di-

minish. For hybrid ligands with four or

more substituents at each of two sites, in

Table 3. Quality of relative free energy estimates for 1 250 000 steps MSkD simulations using

implicit constraints: kNsin in vacuum.

Hybrid ligand

N Dt (fs) strans (ps
�1)

DDG (kcal/mol)

nSite1 � nSite4 AUE r Max

2H � 1H 2 2.0 0.87 0.0141

3H � 1H 3 2.0 0.29 0.0072 0.0040 0.0108

4H � 1H 4 2.0 0.09 0.0035 0.0022 0.0064

5H � 1H 5 2.0 0.03 0.0201 0.0131 0.0476

2H � 2H 4 2.0 0.76 0.0150 0.0081 0.0278

3H � 3H 9 2.0 0.26 0.0490 0.0363 0.1217

4H � 4H 16 2.0 – – – –

5H � 5H 25 2.0 – – – –

2OH � 2OH 4 2.0 0.81 0.0051 0.0023 0.0090

3OH � 3OH 9 2.0 0.25 0.0349 0.0206 0.0814

4OH � 4OH 16 2.0 – – – –

5OH � 5OH 25 2.0 – – – –

2OCH3 � 2OCH3 4 0.5 0.80 0.0017 0.0009 0.0032

3OCH3 � 3OCH3 9 0.5 0.50 0.0193 0.0124 0.0494

4OCH3 � 4OCH3 16 0.5 0.22 0.1600 0.1102 0.4803

5OCH3 � 5OCH3 25 0.5 – – – –

The integration timestep is Dt and strans is the average frequency of the change in the identity of

the substituent with k � 1 on each site. Statistics are averaged over all N(N � 1)/2 pairs of com-

pounds in the model hybrid ligands. Rows with ‘‘–’’ indicate that not all ligands were sampled to

be dominant in the course of the trajectory.

Table 4. Fraction of y-phase space in which a physically meaningful

molecule is represented in a hybrid molecule with N substituents at a

single site on a common ligand core, that is, when any substituent has

ki � 1 defined by ki > threshold.

Functional form N

Threshold

0.80 0.90 0.95 0.99

k2sin 2 0.588 0.412 0.284 0.114

kNsin 2 0.416 0.274 0.186 0.076

3 0.126 0.054 0.024 0.006

4 0.030 0.008 0.003 0.0002

kNexp 2 0.772 0.676 0.596 0.412

3 0.660 0.540 0.447 0.270

4 0.544 0.412 0.320 0.164
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most cases, trajectory lengths of 25 ns were not even long

enough to sample each ligand in the dominant state. This ob-

servation is due to the fact that as the number of substituents

increases, the fraction of y-phase space that is associated with

a substituent having ki � 1 decreases. Table 4 summarizes the

fraction of y-phase space that is associated with a dominant

substituent as a function of the threshold value for defining ki
� 1. For the kNsin functional form given a threshold value of

0.8, the fraction of y-phase space that is dedicated to repre-

senting physical ligands reduces from 0.41 to 0.13 to 0.03 for

hybrid ligands with two, three, and four substituents modeled,

respectively. The schematic in Table 1 clearly shows that even

for N ¼ 2 a significant portion of y-space yields intermediate

rather than endpoint k values.

We have explored another functional form of {k} that is gen-
eralized to N substituents at each site on a hybrid ligand and

implicitly satisfies the nongeometric constraints in Eq. (4). This

modified exponential is defined as:

kN exp
a;i

¼ e5:5 sin ha;i

PN

j¼1

e5:5 sin ha;j

(21)

Results from simulations based on this functional form are

summarized in Table 5. This functional form was designed to

combine the strengths of the previous functional forms: specif-

ically, (i) an exponential term so that a single ka,i could

approach 1 regardless of how many substituents were present,

and (ii) a sin term as an argument of the exponential to en-

courage the oscillation of {k}. Furthermore, we wanted a func-

tional form that would have the same probability distribution

for each ka,i so no further correction would be required to

unbias the relative population counts in the analysis of the

simulation trajectories.

Indeed, simulations based on this functional form are very

stable; unlike the k2sin and kNsin functional forms, the kNexp

functional form only required a small decrease in the integra-

tion timestep (to 1.5 fs) to successfully sample the more flexible

methoxy moieties on the dimethoxybenzene hybrid model. This

functional form yields frequent transitions among the dominant

substituents and leads to very high quality relative free energy

estimates. For up to 10 substituents modeled on one site of

the benzene core, the average and maximum errors are less

than 0.008 and 0.025 kcal mol�1, respectively, while the stand-

ard deviation is less than 0.006 kcal mol�1 in vacuum. Even the

more flexible hybrid ligands representing 25 distinct dihydroxy-

benzene and dimethoxybenzene molecules have relative free

energy estimates within 0.03 kcal mol�1 on average and at

most have errors of 0.1 kcal mol�1. The precision is also very

good with standard deviations within 0.02 kcal mol�1.

Simulations of each of the hybrid ligands were repeated in

explicit solvent environments. In general, the transition rates

for the benzene and dihydrobenzene models were similar in

vacuum and solvent environments. By contrast, transition rates

for the dimethoxybenzene hybrid ligands were systematically

slower in solvent than in vacuum. Visual inspection of the tra-

jectories confirmed that the methoxy groups explored a wide

variety of conformations. Thus, the extra volume that is

explored by the methoxy groups relative to the smaller sub-

stituents suggests that more substantial solvent rearrange-

ments are required to sample each of the dimethoxybenzene

ligands in the dominant state.

Discussion

Simulation stability

From these simulation results based on model hybrid ligands,

we have demonstrated that implicitly incorporating nongeo-

metric constraints into the functional form of {k} yields relatively
stable simulations with timesteps up to 2 fs in vacuum environ-

ments. Each of these functional forms and their corresponding

forces in the MD simulations are relatively inexpensive to com-

pute. To ensure that kNsin would never be undefined, in the

case when all sin yi ¼ 0 a small offset could be applied to all yi;
however, in practice, this event is so rare that this correction

was not required even for simulations up to 25 ns.

With these functional forms of {k}, the numerical stability of

the equations of motion can become compromised when

there is a small change in ka,i when ka,i � 0. This situation

Table 5. Quality of relative free energy estimates for MSkD simulations using implicit constraints: kNexp.

Hybrid ligand

N Dt (fs) strans (ps
1)

DDGvac (kcal/mol)

Dt (fs) strans (ps
1)

DDGsolv (kcal/mol)

nSite1 � nSite4 AUE R Max AUE r Max

2H � 1H 2 2.0 1.10 0.0010 2.0 1.08 0.0000

6H � 1H 6 2.0 0.65 0.0074 0.0050 0.0175 2.0 0.64 0.0088 0.0069 0.0213

10H � 1H 10 2.0 0.27 0.0077 0.0053 0.0229 2.0 0.27 0.0328 0.0211 0.0793

2H � 2H 4 2.0 1.08 0.0027 0.0019 0.0050 2.0 1.08 0.0098 0.0057 0.0177

5H � 5H 25 2.0 0.54 0.0326 0.0229 0.0923 2.0 0.54 0.0693 0.0529 0.2735

2OH � 2OH 4 2.0 1.01 0.0054 0.0033 0.0102 2.0 0.38 0.0068 0.0049 0.0133

5OH � 5OH 25 2.0 0.66 0.0322 0.0279 0.1171 2.0 0.71 0.0730 0.0524 0.2326

2OCH3 � 2OCH3 4 2.0 0.44 0.0046 0.0021 0.0083 1.5 0.15 0.0152 0.0080 0.0251

5OCH3 � 5OCH3 25 2.0 0.69 0.0116 0.0080 0.0383 1.5 0.29 0.0785 0.0548 0.2376

Vacuum simulations were run for 25 ns while solvent simulations were run for 3 ns (2.25 ns for the dimethoxybenzene simulations). The integration

timestep is Dt and strans is the average frequency of the change in the identity of the substituent with k � 1 on each site. Statistics are averaged over

all N(N � 1)/2 pairs of compounds in the model hybrid ligands.
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arises when the substituent i on site a is in an energetically

unfavorable conformation or, more frequently, is too close to

an environment atom. When ka,i approaches 0, the contribu-

tion of this unfavorable interaction to the total energy of the

system is very small. However, even a very small increase in

the value of ka,i can contribute a significant amount of energy

to the system and cause a spike in the energy and thus render

the numerical solutions to the equations of motion unstable.

In the original implementation of k-dynamics,[23,29] due to

small changes at the {k} endpoints introduced by the Lagrange

multiplier method followed by the {k} renormalization at every

timestep, the timestep often had to be decreased to 0.5 fs to

retain numerical stability of the Verlet integrator. The k2sin and

kNsin functional forms require integration timesteps of 0.5 fs

for modeling the flexible dimethoxybenzene compounds while

the k2exp, k2sin, and kNsin functional forms require integration

timesteps of 0.5–1.0 fs for simulations when the hybrid com-

pounds are modeled in explicit solvent environments (data

not shown). By contrast, the kNexp functional form is generally

stable with an integration timestep of 1.5 fs in vacuum and in

explicit solvent environments even for the flexible dimethoxy-

benzene molecules. This functional form is less sensitive than

the other functional forms that we examined to slight changes

at the {k} endpoints because the exact boundaries are:

e�c

ec þ N� 1ð Þe�c
� kN exp

a;i
� ec

ec þ N� 1ð Þe�c
(22)

where for N ¼ 5 and c ¼ 5.5 (as used in these simulations),

the boundaries are 0.000016 < ka,i < 0.99993.

Leveraging the functional form of {k} to enhance sampling

In MSkD simulations, the efficiency of the simulations is

directly related to the number of times that the identity of the

substituent with ka,i � 1 at each site changes, that is, the number

of transitions, which leads to increased convergence of the rela-

tive free energy differences estimated by Eq. (13). The difference

between the k2exp and k2sin functional forms in the ‘‘2 � 2’’ mod-

els clearly demonstrates the value of the k2sin functional form

that oscillates in y-space to improve the sampling of {k} itself,
which in turn improves the likelihood of changing the identity of

Figure 2. Representative data from explicit solvent 2OCH3 � 2OCH3 simulation trajectories based on k2sin, kNsin, and kNexp: k-Value for first substituent on

site 1 (top panel) and site 4 (middle panel); and the relative free energy free energy surface in kcal mol�1 calculated over 400 ps in the corresponding tra-

jectories (bottom panel). Note the physically meaningful ligands coincide with the corners of each of the relative free energy surfaces.
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the substituent with ka,i � 1. Continually exerting a force that

increases the magnitude of y according to the k2exp functional

form will perpetuate the ‘‘dominance’’ of the first substituent

selected. By contrast, continually exerting a force that increases

the magnitude of y according to the k2sin functional form will

eventually lead to an exchange in the substituent with ka,i � 1.

While these oscillating functional forms do encourage more

extensive sampling of k-phase space, they do not render the

simulations insensitive to the chemical identity of the com-

pounds under investigation. Specifically, reasonable estimates

of the biasing potentials in Eq. (12) must be used to effectively

sample ligands whose relative free energies differ by more

than 2–3 kcal mol�1. We have demonstrated elsewhere[22] the

effectiveness of MSkD sampling with the kNexp functional form

and good estimates of the biasing potentials to model relative

hydration free energies of a series of benzene derivatives that

range from 0 to 10 kcal mol�1. In this study, MSkD simulations

were performed based on a single hybrid ligand that con-

tained two substituents modeled at one site and three sub-

stituents modeled at another site for a total of six distinct ben-

zene derivatives. Reasonable biasing potentials {Fa,i} were

determined that yielded sufficient transitions among the sub-

stituents at each site of the hybrid molecule and reproduced

the hydration free energy estimates that were achieved by

performing much more extensive traditional alchemical free

energy perturbation simulations for pairs of these benzene

derivatives.

Efficiency in MSkD simulations is also related to the fraction

of time that a dominant ligand is present as compared with the

time that several partial or intermediate and unphysical ligands

are present. A functional form of {ki} which is biased toward ka,i
� 1 and ka,i � 0 will be more efficient than one in which inter-

mediate ka,i values can dominate. Among the functional forms

that we have examined in this study, the y-phase space in kNexp

as compared with kNsin is more biased towards k values that

are closer to 0 or 1. Furthermore, as seen from sample data

from explicit solvent 2OCH3 � 2OCH3 simulation trajectories in

Figure 2, simulations based on the kNexp and k2sin functional

forms spend a significant proportion of time at the physically

meaning endpoints with k values close to 0 or 1 as compared

with kNsin trajectories in which the endpoints are only weakly

favored over intermediate k values. Finally, the coefficient c in

kNexp can be tuned to describe the steepness of the switching

between ka,i � 1 and ka,i � 0. We have identified a ‘‘sweet spot’’

coefficient of 5.5 that seems optimal for a broad range of these

hybrid ligands and environments and should be robust for

MSkD simulations regardless of the system. The relatively steep

transition between ka,i � 1 and ka,i � 0 when c ¼ 5.5 in kNexp

has several advantages in MSkD simulations. First, the quality of

the results are relatively insensitive to the specific threshold

value that is used to define ka,i � 1. Second, there is little time

in the simulations when intermediate ka,i values are explored

and thus the simulation trajectories are predominantly sampling

physical ligands which leads to faster simulation convergence.

Finally, the simulations become much less sensitive than the

kNsin functional form to the number of substituents in the

hybrid molecule. Coefficients of less than 5.5 do not sufficiently

approach the endpoints and spend a larger fraction of y-space
in intermediate k values so were less efficient for these simula-

tions. Coefficients of greater than 5.5 demonstrate increased

transition rates in vacuum and thus increased convergence

rates; however, the rates of change in {k} near the endpoints

are too abrupt in solvent simulations to retain the stability in

the numerical integrator (data not shown). A decrease in the

integration timestep can alleviate this problem, but we have

chosen instead to use c ¼ 5.5 in all simulations in this study

and recommend the use of this value across applications.

Enhancing simulation efficacy

Other MSkD parameters can be used to increase the efficacy of

the simulations. For example, decreasing the my parameters will

tend to increase the mobility of the y values and thus increase

transition rates. Adding distance restraints that superimpose the

ipso carbon atoms throughout the simulation ensure that sub-

stituents are in similar conformations to one another and increase

the likelihood of the transitions. Finally, adding biases on the y
values that take effect only when ka,i< 0.8 will also tend to

increase the transition rates, but will also increase the amount of

time spent at intermediate k values (data not shown).
In addition, other advanced sampling methods could be used

to further enhance simulation efficiency by reducing the effective

barriers that are associated with environmental relaxation proc-

esses. For example, transitions between dominant substituents of

a hybrid ligand can be hindered if the transition requires a confor-

mational change in the solvent or protein side chain. This effec-

tive barrier to k transitions may be exaggerated when substitu-

ents of significantly different charge distributions or volume are

involved. In these cases, adopting strategies like temperature-

accelerated MD [30,31] or k-adiabatic free energy dynamics[32] in

which the dynamics of the k variables are adiabatically separated

from the solvent dynamics may prove beneficial. Alternatively,

the self-guided Langevin dynamics,[33,34] in which local average

properties are used to enhance low-frequency conformational

searching, or orthogonal space random walk,[35,36] in which the

free-energy surface in both the k-phase space and its generalized

force space are flattened could enable those barriers directly

related to k and those related to the environment relaxation to

be overcome more readily.

Model quality

This study has focused on the sampling characteristics of dif-

ferent functional forms of {k} in MSkD simulation trajectories

using model hybrid ligands. Because we have been evaluating

relative free energy differences between pairs of compounds

that are identical to one another, we have isolated the contri-

bution of the observed errors to errors in the sampling

method itself. In most real applications, however, the quality

of the results will have contributions from sampling errors and

errors due to the force field parameters that define the mod-

eled potential energy surface.

Even for the most flexible dimethyoxybenzene ligands in this

study, the kNexp functional form yields average and maximum

unsigned errors of 0.01 and 0.04 kcal mol�1, respectively, for the
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10 and 25 ns vacuum trajectories and 0.08 and 0.24 kcal mol�1,

respectively, for the 10 and 2.25 ns solvent trajectories. The pre-

cision of the simulations is also very high with standard devia-

tions within 0.06 kcal mol�1. Other work is underway in our

group to apply this method in both retrospective and prospec-

tive structure-based drug design applications and obtain better

estimates of the combined modeling error. Because of the high

quality and efficiency of this MSkD sampling method using the

kNexp functional form of {k}, MSkD simulations could be used as

a method for optimizing new ligand force field parameters to

reproduce available hydration free energy data or alternatively

relative hydration free energies for series of functional groups

that would be consistent for a given force field.

Conclusions

In this study, we have presented four different strategies

for sampling the {k} variables in MD simulations based on

alchemical free energy simulations. In these simulations, the

dynamic variables {k} represent the coefficients that scale the

interaction energies between the individual substituents and

their environment. To satisfy the hybrid Hamiltonian that is

used in the simulations, nongeometric constraints:

0 � ka;i � 1 and
PNa

i¼1 ka;i ¼ 1 for each site a, must be satisfied

at every timestep. Four functional forms of {k} were evaluated

for implicitly constraining either two or N k parameters. The

functional form of kN exp
a;i

¼ ec sin ha;iPN

j¼1
ec sin ha;j

exhibits the ideal charac-

teristics for our MSkD simulations. It implicitly satisfies the con-

straints and does not compromise the numerical stability of

the simulations. It is oscillating in nature and so provides

enhanced sampling of the ki values. It transits quickly between

ka,i � 1 and ka,i � 0 such that (i) there is a significant fraction

of y-phase space in which a physical rather than unphysical

ligand is present and (ii) it is relatively insensitive to the spe-

cific threshold that is used to define ka,i � 1. Both the value of

ka,i and the forces on ka,i are computationally inexpensive and

each ka,i has same probability density function so no further

bias or correction is required to account for differences in

effective phase space volume sampled.
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